WO1999011465A1 - Printer for effecting bidirectional printing and method of adjusting the printing position therefor - Google Patents

Printer for effecting bidirectional printing and method of adjusting the printing position therefor Download PDF

Info

Publication number
WO1999011465A1
WO1999011465A1 PCT/JP1998/003908 JP9803908W WO9911465A1 WO 1999011465 A1 WO1999011465 A1 WO 1999011465A1 JP 9803908 W JP9803908 W JP 9803908W WO 9911465 A1 WO9911465 A1 WO 9911465A1
Authority
WO
WIPO (PCT)
Prior art keywords
print
printing
main scanning
printer
scanning direction
Prior art date
Application number
PCT/JP1998/003908
Other languages
French (fr)
Japanese (ja)
Inventor
Hironori Endo
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to EP98940662A priority Critical patent/EP0938977B1/en
Priority to DE69834802T priority patent/DE69834802T2/en
Priority to US09/297,067 priority patent/US6158905A/en
Publication of WO1999011465A1 publication Critical patent/WO1999011465A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J19/00Character- or line-spacing mechanisms
    • B41J19/14Character- or line-spacing mechanisms with means for effecting line or character spacing in either direction
    • B41J19/142Character- or line-spacing mechanisms with means for effecting line or character spacing in either direction with a reciprocating print head printing in both directions across the paper width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/22Actions or mechanisms not otherwise provided for for aligning characters for impression

Definitions

  • the present invention relates to a printer for performing bidirectional printing and a printing position adjusting method therefor.
  • the present invention relates to a technique for printing an image on a print medium while performing main scanning in both directions in a reciprocating manner, and more particularly, to a technique for adjusting a deviation (printing deviation) of a printing position in a main scanning direction in a forward path and a return path. is there.
  • the printing position in the main scanning direction on the forward path and the return path is reduced due to the backlash of the drive mechanism in the main scanning direction, the extension of the carriage belt, and the warpage of the platen supporting the print medium below.
  • the problem of misalignment is likely to occur.
  • a technique for resolving such printing misalignment for example, a technique disclosed in Japanese Patent Application Laid-Open No. Hei 5-69625 disclosed by the present applicant is known.
  • the shift amount (print shift amount) of the print position in the main scanning direction is registered in advance, and the print position in the forward path and the return path is corrected based on the print shift amount.
  • a printer having a bidirectional printing function for printing an image on a print medium while performing main scanning in both directions in a reciprocating manner.
  • the printer moves the print head, the print head and the print medium at least relatively in the main scanning direction and the sub-scan direction, and drives the print head to print on the print medium.
  • a control unit for controlling the driving mechanism.
  • the control unit is configured to control the print head in the main scan direction so that the print position in the main scan direction in the forward pass substantially matches the print position in the main scan direction in the return pass according to the position of the print head in the main scan direction.
  • a print misalignment adjustment unit that adjusts a print position in at least one of them is provided.
  • the print misalignment adjustment unit may adjust the print position according to an actual main scanning range of the print head and a position of the print head in the main scan direction.
  • the control unit further includes an adjustment value memory that stores an adjustment value used for adjusting the print position for each of a plurality of print media having different widths in the main scanning direction.
  • the adjustment value may be read from the adjustment value memory according to the width of the print medium in the main scanning direction that is actually used, and the printing position may be adjusted according to the read adjustment value. .
  • the printer may further include a memory that stores data for printing a plurality of print misalignment inspection patterns corresponding to the plurality of print media.
  • the adjustment value of the printing deviation may be corrected using an offset corresponding to the thickness of the printing medium used.
  • the print misalignment adjustment unit may adjust the print position at a central position in the main scanning direction of each of the plurality of recording media. Further, the print misalignment adjustment unit may adjust the print position at a plurality of positions in the main scanning direction of each of the plurality of recording media.
  • the print shift adjusting unit generates a drive clock signal to be given to the print head, and changes a frequency of the drive clock signal in at least one of the forward path and the return path along the main scanning direction.
  • a driving clock generating unit for driving.
  • the drive clock generation unit may individually set the frequency of the drive clock signal in a plurality of areas that divide the main scanning range.
  • the driving clock generation unit generates an adjustment value memory that stores a parameter for setting a frequency of the driving clock signal for each of the plurality of regions, and generates a reference clock signal having a predetermined reference frequency.
  • a reference clock generation unit a frequency conversion unit that generates the drive clock signal by converting the frequency of the reference clock signal using a parameter read from the adjustment value memory; and
  • a parameter setting unit that determines which of the plurality of regions the main scanning position of the pad is included in, reads a parameter corresponding to the region including the main scanning position from the memory, and sets the parameter in the frequency conversion unit. And may be provided.
  • the parameter setting unit may change a division of the plurality of areas and a value of the parameter according to a width and a thickness of a print medium in a main scanning direction to be used.
  • the shift of the printing position in the main scanning direction between the forward path and the return path can be reduced by changing the frequency of the drive clock signal in at least one of the forward path and the return path along the main scanning direction.
  • the present invention further provides printing using a printing head while performing bidirectional main scanning in both directions. It is also directed to a method of adjusting a printing position in a main scanning direction in a printer that prints an image on a medium. In this method, at least one of the forward path and the return path is adjusted so that the print position in the main scan direction on the forward path and the print position in the main scan direction on the return path substantially match in accordance with the position of the print head in the main scan direction. The printing position is adjusted in.
  • FIG. 1 is a conceptual diagram of an ink jet printer to which the present invention is applied.
  • FIG. 2 is a diagram showing an example of adjustment of print misalignment
  • FIG. 3 is a diagram showing an example of a print misalignment inspection pattern.
  • Fig. 4 is a graph showing the result of adjusting the print shift in the main scanning direction of the ink jet printer.
  • FIG. 5 is a diagram showing another example of a print misalignment inspection pattern.
  • FIGS. 6 (a) and 6 (b) are diagrams showing still another example of the print misregistration inspection pattern.
  • FIG. 7 is an explanatory diagram showing a schematic configuration of a printer 22 as one embodiment of the present invention
  • FIG. 8 is an explanatory diagram showing a schematic configuration of a dot recording head of the printer of the present invention
  • FIGS. 10 (a:) to 10 (e) are explanatory diagrams showing a method for correcting a printing shift in bidirectional printing in the embodiment.
  • FIG. 11 is a block diagram showing the internal configuration of the drive clock generation circuit 44
  • FIG. 12 is a block diagram showing another configuration of the drive clock generation circuit 44.
  • FIG. 1 is a conceptual diagram of an ink jet printer to which the present invention is applied.
  • the ink jet printer includes a control unit 200 and a drive mechanism unit 300.
  • Control unit 2 Reference numeral 00 denotes a print shift adjustment value memory 202, a print shift adjustment unit 204, and a print shift inspection pattern memory 206.
  • the drive mechanism section 300 includes a print head 302, a carriage motor 304, a paper feed motor 306, and a paper sensor 308.
  • the print shift inspection pattern memory 206 stores parameters for printing a print shift inspection pattern as described later.
  • the types of printing paper that can normally be used in printers are somewhat limited.
  • the print shift adjustment value memory 202 stores print shift adjustment values (5 1, (5 2, 6 3%) For each print sheet determined using the test pattern for each print sheet. Is stored.
  • the type of printing paper actually used for printing (that is, the width of the printing paper) is detected by the paper sensor 308.
  • the paper sensor 308 detects the type of printing paper actually used for printing from a plurality of types of printing paper registered in advance.
  • the print misalignment adjustment unit 204 sets the adjustment value 5 suitable for the printing paper actually used for printing.
  • the drive mechanism unit 300 is controlled using 1 (the subscript i indicates the i-th printing paper) to adjust the printing misalignment.
  • a method of adjusting the frequency of the drive clock signal supplied to the print head 302 as described later can be adopted, or any other method can be used. It is also possible to employ.
  • FIGS. 2 (a) and 2 (b) are diagrams showing adjustment of print misalignment using a print misalignment inspection pattern.
  • the inspection pattern 402 is formed by printing a plurality of dots arranged in the sub-scanning direction on the outward path and printing a plurality of dots arranged in the sub-scanning direction on the return path.
  • the amount of deviation in the main scanning direction between the dot row printed on the forward path and the dot row printed on the return path ⁇ X force ⁇ is detected as a print deviation in bidirectional printing.
  • the detection of the print misregistration amount ⁇ can be performed visually, or can be automatically performed using an optical position detection device (not shown).
  • the adjustment amount of the print misalignment ⁇ 5 can be input by the adjuster, or the adjustment amount can be automatically determined from the detection result of the optical position detection device, for example. It is.
  • FIG. 3 is a diagram illustrating an example of a print misalignment inspection pattern for a plurality of types of printing paper.
  • the print misalignment inspection pattern is located at the center position in the main scanning direction of each of the three types of printing paper 40 "1a, 401b, and 401c, which are A3 paper and A4 paper.
  • the print misalignment is adjusted by adjusting the center position in the main scanning direction with respect to each of the plurality of printing papers so that the misalignment of the print misalignment inspection pattern 402 becomes zero.
  • the print misalignment inspection pattern 402 becomes zero.
  • the determination of the print shift adjustment amount 5i for an inkjet printer in which the maximum size of print paper that can be used is A3 is performed as follows. First, in order to print the print misalignment inspection pattern at the center position in the main scanning direction of a plurality of usable printing papers (A3 paper, A4 paper, postcard), an inspection pattern for each printing paper is used. The data to be represented are created and stored in the print shift inspection pattern memory 206. This inspection pattern data is commonly used by printers of the same model. Then, as shown in FIG. 3, a printing misalignment inspection pattern suitable for the printing paper is printed on each printing paper, and the printing misalignment ⁇ X in these inspection patterns 402 is measured.
  • the print shift adjustment values in bidirectional printing ⁇ 5 1, 6 2, (5 3...) are determined so that the print shift amount ⁇ X becomes zero.
  • the print shift adjustment values S 1, ⁇ 2, (5 3 ... are stored in the print shift adjustment value memory 202.
  • the print shift amount ⁇ ⁇ ⁇ ⁇ is different for each printer, even for printers of the same model. A different value is also set for each printer for 51, ⁇ 2, ⁇ 5 3 .. Therefore, the print shift adjustment value memory 202 stores the adjustment value 51, ⁇ 2, ⁇ 5 for each printer. It is preferable to use a rewritable nonvolatile memory so that 3 can be written.
  • Fig. 4 is a graph showing the distribution of the print shift amount AX on a plurality of printing papers with different paper widths. It is rough.
  • each print sheet is fed in accordance with the left end of a printer input tray (not shown).
  • the print shift adjustment value for each print sheet is adjusted so that the print shift amount ⁇ X at the center position of the width in the main scanning direction for each sheet 4 0 4 a, 4 0 4 b, 4 0 4 c is zero.
  • the adjustment value for each printing paper is set appropriately, and as a result, the printing quality is prevented from deteriorating for each printing paper due to print misalignment.
  • the print misalignment increases at both ends of the printable area (scannable area of the print head) along the main scanning direction of the printer, temporarily print to fit A3 paper, which has the maximum paper width that can be fed If the misalignment is adjusted, it may not be possible to properly adjust the misalignment of the postcard with a small paper width.
  • the adjustment value for each print sheet is stored in the adjustment value memory 202, so that it is not necessary to adjust the print sheet once adjusted.
  • the width in the main scanning direction differs depending on the paper feeding direction even for the same size printing paper (that is, the width in the main scanning direction differs vertically and horizontally).
  • the width in the main scanning direction may be the same for different sizes of printing paper depending on the paper feeding direction.
  • the width in the main scanning direction is the same for A3 paper portrait orientation and A4 paper landscape orientation. In consideration of such various cases, it is preferable that the adjustment of the printing misalignment is performed not according to the size of the printing paper but according to the width along the main scanning direction when the printing paper is fed.
  • FIG. 5 is a diagram showing another example of the print misalignment inspection pattern.
  • the print misregistration inspection pattern for all the printing papers is placed on the widest A3 paper 401a. Is printed.
  • the maximum size of printable paper is A3 paper.
  • the data for printing the print misalignment inspection pattern for A3 paper, A4 paper, and postcard on one sheet of print paper is created, and the print misalignment inspection pattern memory 206 is prepared in advance. Is stored in advance.
  • the print misalignment inspection pattern is printed on a single print paper (in this case, A3 paper), and the print misalignment adjustment values S 1, in bidirectional printing are printed for all print papers having different paper widths. ⁇ 2, ⁇ 3... are sequentially determined.
  • the adjustment values 51, ⁇ 2, S3,... Are stored in the print shift adjustment amount memory 202 for each printing paper.
  • the print misregistration is not adjusted using multiple print papers.Therefore, when printing on other print paper that has a different paper thickness from the print paper used to adjust the print misalignment, There is a possibility that printing deviation may occur due to the difference. Therefore, for printing paper such as a postcard whose paper thickness is significantly different from the printing paper used for printing the test pattern, the offset of the print shift adjustment amount corresponding to the paper thickness must be offset.
  • the adjustment value of the printing deviation is automatically corrected. For example, measure the paper thickness of a postcard in advance, set an offset (adjustment value) of the adjustment amount of the printing deviation caused by the difference in the paper thickness of the postcard, and add the offset to the adjustment value of the printing deviation. You can do so.
  • the offset of the print shift adjustment amount may be stored in the adjustment amount memory 202 separately from the adjustment amounts 51, ⁇ 2, ⁇ 53, ... determined by the method of FIG.
  • the adjustment amounts 51, ⁇ 2, S3,... In which the offset is reflected may be stored in the adjustment amount memory 2 2.
  • the paper sensor 308 automatically detects the thickness of the printing paper actually used (the printing paper conveyed by the printer), and switches appropriately according to the detection result. It is possible.
  • the offset amount is stored separately from the adjustment values S 1, 6 ⁇ , (5 3..., even if the printing paper has the same paper width, an appropriate offset can be set according to the paper thickness. It is possible to correct the adjustment amount of the printing deviation by the amount.
  • the main scanning direction of each printing paper with different paper width is 5 points.
  • the average value of the print misregistration amount at a location may be adopted as an appropriate print misregistration adjustment value.
  • the print misregistration amount in both directions differs depending on environmental changes such as temperature.
  • the print misalignment is adjusted again using one printing paper to determine the re-adjustment value, and the difference from the previous adjustment value is used as the adjustment value for all other papers with different widths or thicknesses. If it is added, it is possible to easily cope with printing deviation due to environmental changes. In any case, it is not necessary to determine the adjustment values for all printing papers again.
  • the center position of the printing paper differs depending on the width of the printing paper.
  • the center position is almost in the center of the scannable section of the print head, and in the case of postcard, the center position is on the left side of the scannable section of the print head (see Fig. 4). Therefore, instead of changing the print shift adjustment value according to the width of the print paper in the main scanning direction, the print shift is determined according to the position of the scanable section of the print head corresponding to the center position of the print paper. It is also possible to change the adjustment value.
  • the print shift adjustment values for the forward pass and the return pass are set for each print sheet with a different width in the main scanning direction. This makes it possible to adjust the print misregistration, and to minimize the degradation of print quality due to graininess and rattling, and perform high-speed bidirectional printing. Moreover, once the printing paper has been adjusted, there is no need to adjust it again.
  • printing misalignment can be minimized in bidirectional printing of postcards that are very frequently used in home use of ink jet printers.
  • FIG. 7 is an explanatory diagram showing a schematic configuration of a computer system including a printer as one embodiment of the present invention.
  • This computer system includes a computer 20 and a printer 22.
  • the printer 22 records an image on the printing paper P according to an image signal sent from the computer 20.
  • the printer 22 includes a sub-scanning drive mechanism for transporting the printing paper P by the paper feed motor 23, a main scanning drive mechanism for reciprocating the carriage 31 in the axial direction of the platen 26 by the carriage motor 24, and a carriage.
  • 31 A printing mechanism that drives the print head 28 mounted on 1 to control ink ejection and dot formation, and a paper feed motor 23, carriage motor 24, print head 28, and operation.
  • a control circuit 40 for exchanging signals with the panel 32.
  • the carriage 31 can be loaded with a cartridge 71 for black ink and a cartridge 72 for color ink containing five color inks of cyan, light cyan, magenta, light magenta, and yellow. .
  • a total of six ink discharge heads 61 to 66 are formed in the print head 28 below the carriage 31.
  • the paper feed motor 23 executes sub-scanning by rotating the platen 26 and other rollers to convey the printing paper P.
  • the carriage motor 24 performs bidirectional main scanning by reciprocating the carriage 31.
  • the control circuit 40 drives the piezo elements (described later) of the respective printing heads 6 1 to 66 of the printing heads 28 to discharge the respective color inks, and multi-colors the printing paper P. Is formed.
  • the mechanism that transports the printing paper P uses the rotation of the paper feed motor 23 as the platen 26 Instead, a gear train for transmission to the paper transport rollers is provided (not shown).
  • the mechanism for reciprocating the carriage 31 is provided between a carriage shaft 24 and a sliding shaft 34 that is installed in parallel with the axis of the platen 26 and holds the carriage 31 in a slidable manner. It has a pulley 38 on which an endless drive belt 36 is stretched, and a position detection sensor 39 for detecting the origin position of the carriage 31.
  • the control circuit 40 includes a drive peak generation circuit 44 that generates a drive peak signal CLK that defines the ink ejection timing of the ink ejection head 28.
  • the drive clock generation circuit 44 has a function of changing the ink ejection position (that is, the dot recording position) in the main scanning direction by adjusting the frequency of the drive clock signal CLK.
  • the internal configuration of the drive cook generation circuit 44 will be described later.
  • Paper sensors 51 to 53 are provided in a paper feed path inside the printer 22.
  • the paper sensors 51 to 53 have paper detection pins 51 a to 53 a at the lower end, respectively.
  • the control circuit 40 detects the width of the printing paper being fed in the main scanning direction according to the combination of the pressed paper detection pins (52 a and 53 a in the example of FIG. 7). It is also possible to detect the thickness of the printing paper according to the amount of the pressed paper detection pins 52a and 53a.
  • the paper size and paper feed direction (portrait or landscape) set by the user using the printer driver (not shown) of the computer 20 are used.
  • the width and thickness of the printing paper in the main scanning direction can be determined.
  • the paper sensors 51 to 53 in FIG. 7 correspond to the paper sensor 308 in FIG. 1, and the print head 28, the carriage motor 24, and the paper feed motor 23 in FIG. 1 corresponds to the print head 3 ⁇ 2, the carriage motor 304, and the paper feed motor 303.
  • the control circuit 40 in FIG. 40 corresponds to the control unit 200 in FIG.
  • FIG. 8 is an explanatory diagram showing a schematic configuration of the inside of the ink ejection head 28.
  • ink When the cartridges 7 1 and 2 are mounted on the carriage 31, as shown in FIG. 8, the ink in the ink cartridge is sucked out through the introduction pipe 67 using the capillary phenomenon, and 3 1 The printing head provided at the lower part 28 is guided to each color head 6 1 or 6 6 of 8.
  • the ink cartridge When the ink cartridge is installed for the first time, the operation of sucking the ink into the heads 61 to 66 of the respective colors by a dedicated pump is performed. In this embodiment, the pump for suction and the print head at the time of suction are used. Illustration and explanation of the configuration of a cap and the like that cover the door 28 are omitted.
  • the heads 61 to 66 of each color are provided with a plurality of nozzles Nz for each color, and a piezo element PE, which is one of the electrostrictive elements and has excellent response, is provided for each nozzle. It is located.
  • FIG. 9 shows the structure of the piezo element PE and the nozzle Nz in detail. As shown in the figure, the piezo element PE is installed at a position in contact with an ink passage 68 that guides ink to the nozzle Nz. As is well known, the piezo element PE is an element that performs a very high-speed electric-mechanical-energy conversion by distorting the crystal structure when a voltage is applied.
  • the piezo element P is expanded by the voltage application time as shown in the lower part of FIG. Deform one side wall of passage 6 8.
  • the volume of the ink passage 68 contracts in accordance with the expansion of the piezo element PE, and becomes ink particles Ip corresponding to the contraction, and is ejected at a high speed from the tip of the nozzle Nz. Printing is performed by the ink particles Ip permeating the paper P mounted on the platen 26.
  • FIG. 10 is an explanatory diagram showing a method for correcting a print shift during bidirectional printing in the present embodiment.
  • FIG. 10A shows the distribution of the print shift amount ⁇ X in the main scanning direction when no correction is performed.
  • FIG. 10 (b) shows the corresponding shift in the print position (pixel position) in the forward pass and the return pass.
  • the direction of the horizontal axis X in FIG. 10 (a) is the main scanning direction, which also corresponds to the digit direction of the printing paper.
  • the width Lmax of the printed printing paper is referred to as “main scanning width” or “main scanning range”. As shown by the solid line in Fig.
  • the horizontal axis X in FIG. 10 (b) is defined as the coordinate axis of the forward scan in the main scanning direction
  • the shift amount ⁇ X is defined as a value obtained by subtracting the print position of the backward scan from the print position of the forward scan.
  • the distribution of the deviation amount ⁇ X along the main scanning direction is convex upward, and takes a positive value at almost the center of the main scanning width Lmax and a negative value at both ends. I take the.
  • the zero level of the displacement amount ⁇ X is arbitrary, and in FIG. 10A, the average value of the displacement amount ⁇ X over the main scanning width Lmax is used as the zero level. Note that, depending on the printer, the deviation amount ⁇ ⁇ may show a downward convex distribution, contrary to FIG. 1 (a). Since the distribution of the deviation amount ⁇ X differs for each printer, the deviation amount ⁇ X on the actual printed matter is measured for each printer.
  • FIG. 10 (c) shows a distribution of an ideal correction amount 5 for correcting the deviation amount of FIG. 10 (a).
  • FIG. 10 (d) shows the print position of the forward path and the return path when the deviation amount ⁇ X is corrected to be substantially zero.
  • the ideal correction amount ⁇ 5 is obtained by inverting the sign of the distribution of the deviation amount ⁇ X shown in FIG. 10 (a).
  • FIG. 10E shows a change in the frequency f CLK of the drive clock signal C LK (FIG. 7) used to correct the print misalignment in the present embodiment.
  • the main scanning width Lmax is divided into five regions R 1 to R 5 at substantially equal intervals, and the value of the frequency f GLK of the driving clock signal CLK is set individually for each region.
  • L 1 to L 4 indicate the positions of the boundaries of the area.
  • the frequency fCLK is set to the standard value f2 in the regions R2 and R4 where the correction amount S is close to zero, and in the region R3 where the correction amount S is negative, the frequency fCLK is higher than the standard value f2.
  • the frequency f CLK is set to a large value f 3, and the frequency f CLK is set to a value f 1 smaller than the standard value f 2 in the regions R 1 and R 5 where the correction amount 5 is positive.
  • the ink ejection timing of the print head 28 depends on the frequency of the drive clock signal CLK. Therefore, the higher the frequency fCLK, the higher the cycle of ink ejection. Becomes shorter, and the distance between the dots in the main scanning direction becomes smaller. The relationship between the change in the dot recording position due to the change in the frequency fCL and the correction of the printing displacement will be described later.
  • the ideal correction amount 5 can be approximated. Can be realized.
  • the frequency of the drive clock signal CLK may be changed almost continuously, if the capability of the drive clock generation circuit 44 (FIG. 7) permits.
  • FIG. 10 (e) there is an advantage that changing the frequency f GLK stepwise simplifies the circuit configuration.
  • the deviation ⁇ ⁇ becomes almost zero.
  • the recording position can be corrected.
  • the frequency f GLK may be adjusted on the outward path, and the frequency f CLK may be maintained at a constant value on the return path.
  • the frequency may be adjusted on both the outward route and the return route. That is, in general, the frequency f CLK of the drive clock signal CLK may be adjusted in at least one of the forward path and the return path.
  • the frequency of the main scanning drive signal for driving the carriage motor 24 is maintained at the same constant value in the forward path and the return path. Therefore, if the frequency f GLK of the drive clock signal CLK of the print head 28 is changed as shown in FIG. 10 (e), the recording position (ink discharge position) in the main scanning direction changes accordingly. . However, by changing the frequency of the main scanning drive signal, it is possible to correct the deviation of the recording position in bidirectional printing.
  • the relationship between the change in the dot recording position due to the change in the frequency f CLK and the correction of the printing deviation is as follows. As described above, the higher the frequency fCLK, the smaller the distance between the dots. In the first and fifth regions R 1 and R 5 in Fig. 10 (e), the frequency f CLK is relatively low, so the distance between dots is relatively large, The recording position is shifted in the minus X direction as compared with FIG. 10 (b). On the other hand, in the third region R3, since the frequency f GLK is relatively high, the distance between the dots is relatively small, and the recording position on the return path is shifted in the plus X direction compared to FIG. 10 (b). Become. As a result, as shown in FIG.
  • the recording position on the return path is corrected so that the recording positions on the outward path and the return path are almost the same.
  • the frequency f CLK may be changed in the same distribution as in FIG. 8 (e).
  • the distribution of the deviation amount ⁇ can be measured by various methods. For example, when the printer 22 is assembled, the same pattern (for example, a black and white stripe pattern) is printed on the outward path and the return path. Then, the deviation amount ⁇ ⁇ in each of the regions R1 to R5 can be manually measured from the printing result.
  • the printer 22 may be provided with an optical reading device such as a CCD camera or the like, and the shift amount ⁇ X may be automatically measured while printing the same pattern on the outward and return paths.
  • the value of the measured shift amount ⁇ ⁇ (or the corresponding correction amount S, frequency f1 to f3, or dividing ratio n, m described later) is calculated for each region R1 to R5. Is registered in the control circuit 40 (FIG. 7).
  • FIG. 11 is a block diagram showing the internal configuration of the drive clock generation circuit 44.
  • the driving clock generation circuit 44 includes a reference clock generation circuit 102, a frequency divider 104, an on / off gate 106, a parameter setting circuit 108, and a programmable ROM (PROM) 110. ing.
  • the reference clock generation circuit 102 generates a reference clock signal RCLK having a predetermined relatively high frequency. This reference clock signal RCLK is frequency-divided by the frequency divider to 1 n to become the drive clock signal CLK.
  • the ON / OFF gate 106 has a function of stopping or restarting the supply of the drive clock signal CLK to the print head 28 in response to a control signal from another circuit in the control circuit 40.
  • the PROM 110 calculates the division ratios n (R 1) to n (R 5) in each of the regions R 1 to R 5 and the position L 1 to Lmax (or the width of each region) of the boundary between the regions.
  • the parameter setting circuit 108 realizes the frequency change shown in FIG. 10 (e) by changing the setting of the frequency division ratio n in the frequency divider 104.
  • the parameter setting circuit 108 has a counter (not shown) that counts the number of pulses of the drive clock signal CLK output from the on / off gate 1 • 6. By comparing the position "! ⁇ Lmax" (or comparing the count value with the width of each area), the current main scanning position of the carriage 31 is determined in any of the five areas R1 to R5.
  • the origin position of the carriage 31 is determined in advance by a signal supplied from the position detection sensor 39 (see FIG. 8) to the control circuit 40.
  • the frequency division ratio n corresponding to the area including the main scanning position is read from the PROM 110 and set in the frequency divider 104.
  • the PROM 110 in FIG. 11 corresponds to the print shift adjustment value memory 202 in FIG. That is, the parameters ⁇ n (L1) to n (Lmax), L1 to max ⁇ corresponding to a plurality of combinations of the width and thickness of the printing paper are stored in the PROM 110 as adjustment values of the printing deviation. Have been. Further, the entire other circuit elements 102, 104, 106, and 108 in FIG. 11 correspond to the print shift adjusting unit 204 in FIG. As described above, in the drive clock generation circuit 44, only by changing the frequency division ratio n for dividing the reference clock signal RC LK for each region, the drive clock signal C LK having a frequency suitable for each region is obtained. Can be easily obtained. In addition, the method of this embodiment in which the recording position is corrected by adjusting the frequency of the driving signal CLK is simpler in circuit configuration than the conventional method in which the recording position itself is corrected, and is more practical. There is an advantage that it is easy.
  • some printers are equipped with a linear encoder for the purpose of correcting a printing displacement caused by the vibration of the carriage.
  • a linear encoder it is difficult for a linear encoder to correct the print misalignment caused by the platen warpage.
  • the driving clock signal CLK of the print head 28 is used. If the frequency is changed along the main scanning direction, it is possible to correct the printing deviation caused by the warpage of the platen. That is, the present invention is effective even when applied to a model provided with a linear encoder for correcting a printing shift.
  • both the print shift caused by the vibration of the carriage and the print shift caused by the warpage of the platen can be achieved. Has the effect of being able to simultaneously correct
  • FIG. 12 is a block diagram showing another configuration of the drive clock generation circuit 44.
  • This drive clock generation circuit 44a is obtained by adding a PLL circuit 120 between the frequency divider 104 and the on / off gate 106 of the circuit 44 in FIG. Also, the function of the parameter setting circuit 108a and the contents stored in the PROM 110 are slightly changed in accordance with the addition of the PLL circuit 120.
  • the circuit 1_ circuit 120 includes a phase frequency detector (P FD) 122, a low pass filter (LPF) 124, a voltage controlled oscillator (VCO) 126, and a frequency divider 128. I have.
  • This PLL circuit 120 multiplies the frequency of the clock signal CLK divided by the first divider 104 by a multiple of delay m (this is equal to the division ratio of the divider 128). Then, a drive clock signal CLK 'is generated and supplied to the print head 28.
  • the frequency f CLK ′ of the drive clock signal CLK ′ has a value that is mZn times the frequency f RCLK of the reference clock signal R CLK.
  • the parameter setting circuit 108a sets the drive clock signal CLK 'by setting the frequency division ratios n and m of the two frequency dividers 104 and 128 to values suitable for the respective regions R1 to R5. Can be set to a value suitable for each of the regions R1 to R5.
  • there are two parameters (n and m) for adjusting the frequency so it is possible to set the frequency in smaller units than in the circuit shown in Fig. 11.
  • the circuit 120 implements a frequency conversion unit (also referred to as a “frequency setting unit”) that generates a drive clock signal by converting the frequency of the reference clock signal RCLK.
  • a frequency conversion unit also referred to as a “frequency setting unit”
  • these configurations are merely examples, and other configurations can be adopted as the frequency conversion unit (frequency setting unit).
  • the recording position is corrected by changing the frequency of the drive clock signal applied to the print head so that the recording position on the forward path and the recording position on the return path substantially match.
  • the adjustment of the printing displacement by changing the frequency of the drive clock signal is performed when the printing displacement is adjusted only at the center position of the printing paper in the main scanning direction, as shown in FIGS. 3 and 4 described above. Is also applicable.
  • the main scanning width L max of the printing paper is equally divided into five regions R 1 to R 5, but it is not always necessary to divide the printing paper into equal widths, and it is possible to divide the main scanning width into a plurality of regions with an arbitrary width. It is possible to classify.
  • the number of area divisions is not limited to 5, and generally, it is sufficient to divide the area into two or more areas. However, since the correction amount closer to the ideal correction amount 5 can be obtained as the number of region divisions increases, it is preferable to divide the scanning width L max into at least five regions.
  • the main scanning range where the print head 28 actually moves may be limited to a part of the main scanning width L max of the printing paper.
  • the actual main scanning range of the print head 28 is only the left half of the printing paper.
  • the value of the printing deviation X at the second position L2 in FIG. 10 (a) is scanned with the printing head 28 over the entire main scanning width Lmax of the printing paper.
  • the reason for this is that the printing deviation is affected by the elongation of the carriage belt. The carriage belt elongation depends on the acceleration of the carriage.
  • the carriage moves at almost the same speed at position L2, whereas when scanning only the left half of the printing paper, position L2 In, the carriage is accelerating or decelerating. Therefore, even at the same position L2, the value of the printing deviation ⁇ X differs depending on the actual main scanning range of the print head 28. Considering such a phenomenon, even when the main scanning width L max of the printing paper is the same, the adjustment value (correction amount) of the printing deviation is changed according to the actual scanning range of the printing head 28. It is preferable to set different values for a plurality of positions on the paper.
  • the main scanning is performed by moving the print head.
  • the printing paper may be moved. That is, the present invention is generally applicable to a printer having a bidirectional printing function of performing bidirectional main scanning by moving at least the print medium and the print head relatively.
  • a part of the configuration realized by hardware may be replaced by software, and conversely, a part of the configuration realized by software may be replaced by hardware.
  • the functions of a part of the circuits shown in FIGS. 11 and 12 may be executed by a microprocessor executing a computer program stored in a recording medium. It may be realized by. Further, a part (or all) of the functions of the control circuit 40 may be executed by a microprocessor (CPU or the like) of the computer 20.
  • Recording media include flexible disks, CD-ROMs, magneto-optical disks, IC cards, ROM cartridges, punch cards, printed materials on which codes such as barcodes are printed, and internal storage devices (RAM, Various computer-readable media, such as memory (ROM) and external storage, can be used. Wear. Industrial applicability
  • the present invention is applicable to a bidirectional printer that performs bidirectional printing, such as a bidirectional inkjet printer.

Abstract

The value for adjusting the printing misregistration between one way and the return way is determined for each of the printing papers having different widths. The printing misregistration is adjusted by, for example, changing the frequency of drive clock signal given to the print head in the direction of horizontal scanning. The frequency of drive clock signal is separately set for each of regions defined by dividing the horizontal scanning range.

Description

明細書  Specification
双方向印刷を行うプリンタおよびそのための印刷位置調整方法 技術分野  TECHNICAL FIELD The present invention relates to a printer for performing bidirectional printing and a printing position adjusting method therefor.
本発明は、 主走査を往復で双方向に行いつつ印刷媒体上に画像を印刷する技術 に関し、 特に、 往路と復路における主走査方向の印刷位置のズレ (印刷ズレ) を 調整する技術に関するものである。 背景技術  The present invention relates to a technique for printing an image on a print medium while performing main scanning in both directions in a reciprocating manner, and more particularly, to a technique for adjusting a deviation (printing deviation) of a printing position in a main scanning direction in a forward path and a return path. is there. Background art
近年、 コンピュータの出力装置として、 数色のインクをヘッドから吐出するタ イブのカラ一プリンタが広く普及している。このようなカラープリンタの中には、 印刷速度の向上のために、 いわゆる 「双方向印刷」 を行う機能を有するものがあ る。  2. Description of the Related Art In recent years, as a computer output device, a type color printer that discharges several colors of ink from a head has been widely used. Some of such color printers have a function of performing so-called "bidirectional printing" in order to improve printing speed.
双方向印刷では、 主走査方向の駆動機構のバックラッシュや、 キャリッジベル 卜の伸び、 印刷媒体を下で支えているプラテンの反り等に起因して、 往路と復路 における主走査方向の印刷位置がずれてしまうという問題が生じ易い。 このよう な印刷ズレを解決する技術としては、 例えば本出願人により開示された特開平 5 — 6 9 6 2 5号公報に記載されたものが知られている。 この従来技術では、 主走 査方向における印刷位置のズレ量 (印刷ズレ量) を予め登録しておき、 この印刷 ズレ量に基づいて往路と復路における印刷位置を補正している。  In bidirectional printing, the printing position in the main scanning direction on the forward path and the return path is reduced due to the backlash of the drive mechanism in the main scanning direction, the extension of the carriage belt, and the warpage of the platen supporting the print medium below. The problem of misalignment is likely to occur. As a technique for resolving such printing misalignment, for example, a technique disclosed in Japanese Patent Application Laid-Open No. Hei 5-69625 disclosed by the present applicant is known. In this prior art, the shift amount (print shift amount) of the print position in the main scanning direction is registered in advance, and the print position in the forward path and the return path is corrected based on the print shift amount.
ところで、 印刷媒体としては、 A 3用紙、 A 4用紙、 はがきなどの種々のもの が使用される。 通常は、 A 3用紙や A 4用紙はプリンタの主走査範囲のほぼ中央 に挿入されて印刷されるが、 はがきはプリンタの端部近傍に挿入されて印刷され る。 印刷ズレは、 プリンタの主走査範囲の両端において特に大きいという傾向が ある。 このため、 A 3用紙や A 4用紙に対して印刷ズレの調整を適正に行ったと しても、 はがきに対する印刷ズレをうまく調整できないという問題があつた。 この発明は、 従来技術における上述の課題を解決するためになされたものであ リ、 双方向印刷を行うプリンタにおいて、 往路と復路における主走査方向の印刷 位置のズレを軽減するための新たな技術を提供することを目的とする。 発明の開示 By the way, various types of print media such as A3 paper, A4 paper, and postcards are used. Normally, A3 and A4 papers are inserted and printed almost at the center of the main scanning range of the printer, but postcards are inserted and printed near the edge of the printer. The printing shift tends to be particularly large at both ends of the main scanning range of the printer. For this reason, even if the print misregistration was properly adjusted for A3 paper or A4 paper, there was a problem that the print misregistration for the postcard could not be properly adjusted. The present invention has been made to solve the above-mentioned problems in the prior art. (1) It is an object of the present invention to provide a new technology for a printer that performs bidirectional printing, in order to reduce a deviation of a printing position in a main scanning direction between a forward pass and a return pass. Disclosure of the invention
上述のあるいは他の課題の少なくとも一部を解決するため、 主走査を往復で双 方向に行いつつ印刷媒体上に画像を印刷する双方向印刷機能を有するプリンタが 提供される。 このプリンタは、 印刷ヘッドと、 前記印刷ヘッ ドと前記印刷媒体を 少なくとも相対的に主走査方向および副走査方向に移動させるとともに、 前記印 刷へッ ドを駆動して前記印刷媒体上に印刷を行わせる駆動機構部と、 前記駆動機 構部を制御する制御部と、 を備える。 前記制御部は、 前記印刷ヘッドの主走査方 向の位置に応じて、 往路における主走査方向の印刷位置と復路における主走査方 向の印刷位置とがほぼ一致するように、 前記往路と復路の少なくとも一方におい て印刷位置を調整する印刷ズレ調整部を備える。  In order to solve at least part of the above or other problems, there is provided a printer having a bidirectional printing function for printing an image on a print medium while performing main scanning in both directions in a reciprocating manner. The printer moves the print head, the print head and the print medium at least relatively in the main scanning direction and the sub-scan direction, and drives the print head to print on the print medium. And a control unit for controlling the driving mechanism. The control unit is configured to control the print head in the main scan direction so that the print position in the main scan direction in the forward pass substantially matches the print position in the main scan direction in the return pass according to the position of the print head in the main scan direction. A print misalignment adjustment unit that adjusts a print position in at least one of them is provided.
前記印刷ズレ調整部は、 前記印刷へッドの実際の主走査範囲と前記印刷へッド の主走査方向の位置とに応じて前記印刷位置の調整を行うようにしてもよい。 前記制御部は、 さらに、 前記印刷位置の調整に用いる調整値を、 主走査方向の 幅が異なる複数の印刷媒体のそれぞれに関して記憶する調整値メモリを備え、 前 記印刷ズレ調整部は、 印刷に実際に使用される印刷媒体の主走査方向の幅に応じ て前記調整値メモリから前記調整値を読み出すとともに、 読み出された前記調整 値に従つて前記印刷位置の調整を行うようにしてもよい。  The print misalignment adjustment unit may adjust the print position according to an actual main scanning range of the print head and a position of the print head in the main scan direction. The control unit further includes an adjustment value memory that stores an adjustment value used for adjusting the print position for each of a plurality of print media having different widths in the main scanning direction. The adjustment value may be read from the adjustment value memory according to the width of the print medium in the main scanning direction that is actually used, and the printing position may be adjusted according to the read adjustment value. .
前記プリンタは、 さらに、 前記複数の印刷媒体に対応した複数の印刷ズレ検査 用パターンを印刷するためのデータを記憶するメモリを備えるようにしてもよい 前記印刷ズレ調整部は、 前記印刷に実際に使用される印刷媒体の厚さに応じた オフセットを用いて前記印刷ズレの調整値を補正するようにしてもよい。  The printer may further include a memory that stores data for printing a plurality of print misalignment inspection patterns corresponding to the plurality of print media. The adjustment value of the printing deviation may be corrected using an offset corresponding to the thickness of the printing medium used.
前記印刷ズレ調整部は、 前記複数の記録媒体のそれぞれの主走査方向の中央位 置において前記印刷位置の調整を行うようにしてもよい。 また、 前記印刷ズレ調整部は、 前記複数の記録媒体のそれぞれの主走査方向の 複数の位置において前記印刷位置の調整を行うようにしてもよい。 The print misalignment adjustment unit may adjust the print position at a central position in the main scanning direction of each of the plurality of recording media. Further, the print misalignment adjustment unit may adjust the print position at a plurality of positions in the main scanning direction of each of the plurality of recording media.
このようなプリンタでは、 複数の記録媒体について適正な印刷ずれの調整を行 うことができる。  In such a printer, it is possible to perform appropriate adjustment of print misregistration for a plurality of recording media.
実施例においては、 前記印刷ズレ調整部は、 前記印刷ヘッドに与える駆動クロ ック信号を生成するとともに、 前記往路と復路の少なくとも一方において前記駆 動クロック信号の周波数を主走査方向に沿って変化させる駆動クロック生成部を 備える。  In an embodiment, the print shift adjusting unit generates a drive clock signal to be given to the print head, and changes a frequency of the drive clock signal in at least one of the forward path and the return path along the main scanning direction. And a driving clock generating unit for driving.
前記駆動クロック生成部は、 主走査範囲を区分した複数の領域において前記駆 動クロック信号の周波数を個別に設定するようにしてもよい。  The drive clock generation unit may individually set the frequency of the drive clock signal in a plurality of areas that divide the main scanning range.
また、 前記駆動クロック生成部は、 前記駆動クロック信号の周波数を設定する ためのパラメータを前記複数の領域のそれぞれに関して記憶する調整値メモリと、 所定の基準周波数を有する基準ク口ック信号を生成する基準ク口ック生成部と、 前記調整値メモリから読み出されたパラメータを用いて、 前記基準クロック信号 の周波数を変換することによって前記駆動クロック信号を生成する周波数変換部 と、 前記印刷へッドの主走査位置が前記複数の領域のいずれに含まれているかを 判断し、 前記主走査位置を含む領域に対応するパラメータを前記メモリから読み 出して前記周波数変換部に設定するパラメータ設定部と、 を備えるようにしても よい。  The driving clock generation unit generates an adjustment value memory that stores a parameter for setting a frequency of the driving clock signal for each of the plurality of regions, and generates a reference clock signal having a predetermined reference frequency. A reference clock generation unit, a frequency conversion unit that generates the drive clock signal by converting the frequency of the reference clock signal using a parameter read from the adjustment value memory; and A parameter setting unit that determines which of the plurality of regions the main scanning position of the pad is included in, reads a parameter corresponding to the region including the main scanning position from the memory, and sets the parameter in the frequency conversion unit. And may be provided.
前記パラメータ設定部は、 使用される印刷媒体の主走査方向の幅と厚さとに応 じて、 前記複数の領域の区分と前記パラメータの値とを変更するようにしてもよ い。  The parameter setting unit may change a division of the plurality of areas and a value of the parameter according to a width and a thickness of a print medium in a main scanning direction to be used.
このようなプリンタでは、 往路と復路の少なくとも一方において駆動クロック 信号の周波数を主走査方向に沿って変化させることによって、 往路と復路におけ る主走査方向の印刷位置のズレを軽減することができる。  In such a printer, the shift of the printing position in the main scanning direction between the forward path and the return path can be reduced by changing the frequency of the drive clock signal in at least one of the forward path and the return path along the main scanning direction. .
本発明は、 さらに、 主走査を往復で双方向に行いつつ印刷ヘッ ドを用いて印刷 媒体上に画像を印刷するプリンタにおける主走査方向の印刷位置の調整方法にも 向けられている。 この方法では、 前記印刷ヘッドの主走査方向の位置に応じて、 往路における主走査方向の印刷位置と復路における主走査方向の印刷位置とがほ ぼ一致するように、 前記往路と復路の少なくとも一方において印刷位置が調整さ れる。 図面の簡単な説明 The present invention further provides printing using a printing head while performing bidirectional main scanning in both directions. It is also directed to a method of adjusting a printing position in a main scanning direction in a printer that prints an image on a medium. In this method, at least one of the forward path and the return path is adjusted so that the print position in the main scan direction on the forward path and the print position in the main scan direction on the return path substantially match in accordance with the position of the print head in the main scan direction. The printing position is adjusted in. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明を適用するインクジエツ トプリンタの概念図、  FIG. 1 is a conceptual diagram of an ink jet printer to which the present invention is applied.
図 2は、 印刷ズレの調整の一例を示す図、  FIG. 2 is a diagram showing an example of adjustment of print misalignment,
図 3は、 印刷ズレ検査用パターンの一例を示す図、  FIG. 3 is a diagram showing an example of a print misalignment inspection pattern.
図 4は、 インクジエツ卜プリンタの主走査方向の印刷ズレの調整結果を示すグ ラフ、  Fig. 4 is a graph showing the result of adjusting the print shift in the main scanning direction of the ink jet printer.
図 5は、 印刷ズレ検査用パターンの他の例を示す図、  FIG. 5 is a diagram showing another example of a print misalignment inspection pattern.
図 6 ( a ) および 6 ( b ) は、 印刷ズレ検査用パターンのさらに他の例を示す 図、  FIGS. 6 (a) and 6 (b) are diagrams showing still another example of the print misregistration inspection pattern.
図 7は、 本発明の一実施例としてのプリンタ 2 2の概略構成を示す説明図、 図 8は、 本発明のプリンタのドッ ト記録へッ ドの概略構成を示す説明図、 図 9は、 本発明のプリンタにおけるドッ ト形成原理を示す説明図、  FIG. 7 is an explanatory diagram showing a schematic configuration of a printer 22 as one embodiment of the present invention, FIG. 8 is an explanatory diagram showing a schematic configuration of a dot recording head of the printer of the present invention, and FIG. Explanatory diagram showing the principle of dot formation in the printer of the present invention,
図 1 0 ( a:) 〜 1 0 ( e ) は、 実施例において双方向印刷の印刷ズレを補正す る方法を示す説明図、  FIGS. 10 (a:) to 10 (e) are explanatory diagrams showing a method for correcting a printing shift in bidirectional printing in the embodiment.
図 1 1 は、 駆動クロック生成回路 4 4の内部構成を示すブロック図、 図 1 2は、 駆動クロック生成回路 4 4の他の構成を示すブロック図である。 発明を実施するための最良の形態  FIG. 11 is a block diagram showing the internal configuration of the drive clock generation circuit 44, and FIG. 12 is a block diagram showing another configuration of the drive clock generation circuit 44. BEST MODE FOR CARRYING OUT THE INVENTION
A . 印刷用紙に応じた印刷ズレの補正 A. Correction of print misalignment according to printing paper
図 1 は、 本発明を適用するインクジェットプリンタの概念図である。 インクジ エツトプリンタは、 制御部 2 0 0と駆動機構部 3 0 0とを備えている。 制御部 2 0 0は、 印刷ズレ調整値メモリ 2 0 2と、 印刷ズレ調整部 2 0 4と、 印刷ズレ検 査用パターンメモリ 2 0 6とを備えている。 また、 駆動機構部 3 0 0は、 印刷へ ッド 3 0 2と、 キヤリッジモータ 3 0 4と、 紙送りモータ 3 0 6と、 用紙センサ 3 0 8とを備えている。 FIG. 1 is a conceptual diagram of an ink jet printer to which the present invention is applied. The ink jet printer includes a control unit 200 and a drive mechanism unit 300. Control unit 2 Reference numeral 00 denotes a print shift adjustment value memory 202, a print shift adjustment unit 204, and a print shift inspection pattern memory 206. Further, the drive mechanism section 300 includes a print head 302, a carriage motor 304, a paper feed motor 306, and a paper sensor 308.
印刷ズレ検査用パターンメモリ 2 0 6には、 後述するような印刷ズレの検査用 パターンを印刷するためのパラメータが格納されている。 プリンタで通常使用可 能な印刷用紙の種類は、 或る程度限定されている。 印刷ズレ調整値メモリ 2 0 2 には、 各印刷用紙のための検査用パターンを用いて決定された各印刷用紙に関す る印刷ズレの調整値 (5 1 , (5 2, 6 3…がそれぞれ格納される。  The print shift inspection pattern memory 206 stores parameters for printing a print shift inspection pattern as described later. The types of printing paper that can normally be used in printers are somewhat limited. The print shift adjustment value memory 202 stores print shift adjustment values (5 1, (5 2, 6 3...) For each print sheet determined using the test pattern for each print sheet. Is stored.
印刷に実際に使用される印刷用紙の種類 (すなわち印刷用紙の幅) は、 用紙セ ンサ 3 0 8によって検出される。 用紙センサ 3 0 8は、 予め登録されている複数 種類の印刷用紙の中から、 実際に印刷に使用される印刷用紙の種類を検出する。 印刷ズレ調整部 2 0 4は、 実際に印刷に使用される印刷用紙に適した調整値 5 The type of printing paper actually used for printing (that is, the width of the printing paper) is detected by the paper sensor 308. The paper sensor 308 detects the type of printing paper actually used for printing from a plurality of types of printing paper registered in advance. The print misalignment adjustment unit 204 sets the adjustment value 5 suitable for the printing paper actually used for printing.
1 (添え字 i は、 i番目の印刷用紙であることを示す) を用いて駆動機構部 3 0 0を制御し、 印刷ズレの調整を行う。 The drive mechanism unit 300 is controlled using 1 (the subscript i indicates the i-th printing paper) to adjust the printing misalignment.
印刷ズレの具体的な調整方法としては、 後述するように、 印刷ヘッド 3 0 2に 供給される駆動クロック信号の周波数を調整する方法を採用することもでき、 あ るいは、 他の任意の方法を採用することも可能である。  As a specific method of adjusting the printing deviation, a method of adjusting the frequency of the drive clock signal supplied to the print head 302 as described later can be adopted, or any other method can be used. It is also possible to employ.
図 2 ( a ) および 2 ( b ) は、 印刷ズレの検査用パターンを用いた印刷ズレの 調整を示す図である。 検査用パターン 4 0 2は、 図 2 ( a ) に示すように、 往路 において副走査方向に並ぶ複数のドットを印刷し、 復路においても副走査方向に 並ぶ複数のドットを印刷することによって形成される。 往路で印刷されたドット 列と復路で印刷されたドッ卜列の主走査方向のズレ量△ X力《、 双方向印刷におけ る印刷ズレとして検出される。 印刷ズレ量 Δ χの検出は、 目視によって行うこと もでき、 また、 図示しない光学式位置検出装置を用いて自動的に行うことも可能 である。 図 2 ( b ) は、 図 2 ( a ) に示す印刷ズレ量△ Xが 0になるように、 印 刷ズレの調整を行った状態を示している。 印刷ズレの調整量 <5 (ここでは、 (5 = △ x ) は調整者が入力することもでき、 あるいは、 例えば光学式位置検出装置の 検出結果から自動的に調整量を決定することも可能である。 FIGS. 2 (a) and 2 (b) are diagrams showing adjustment of print misalignment using a print misalignment inspection pattern. As shown in FIG. 2A, the inspection pattern 402 is formed by printing a plurality of dots arranged in the sub-scanning direction on the outward path and printing a plurality of dots arranged in the sub-scanning direction on the return path. You. The amount of deviation in the main scanning direction between the dot row printed on the forward path and the dot row printed on the return path △ X force <<, is detected as a print deviation in bidirectional printing. The detection of the print misregistration amount Δχ can be performed visually, or can be automatically performed using an optical position detection device (not shown). Fig. 2 (b) is printed so that the print shift amount △ X shown in Fig. 2 (a) becomes 0. This shows a state in which misregistration has been adjusted. The adjustment amount of the print misalignment <5 (here, (5 = △ x)) can be input by the adjuster, or the adjustment amount can be automatically determined from the detection result of the optical position detection device, for example. It is.
図 3は、 複数種類の印刷用紙のための印刷ズレ検査用パターンの一例を示す図 である。 ここでは、 A 3用紙と A 4用紙とはがきの 3種類の印刷用紙 4 0 "1 a , 4 0 1 b , 4 0 1 cのそれぞれの主走査方向の中央位置に、 印刷ズレ検査用パタ ーン 4 0 2が印刷されている。 印刷ズレの調整は、 この印刷ズレ検査用パターン 4 0 2のズレがゼロになるように、これらの複数の印刷用紙のそれぞれに関して、 主走査方向の中央位置においてそれぞれ行われる。  FIG. 3 is a diagram illustrating an example of a print misalignment inspection pattern for a plurality of types of printing paper. Here, the print misalignment inspection pattern is located at the center position in the main scanning direction of each of the three types of printing paper 40 "1a, 401b, and 401c, which are A3 paper and A4 paper. The print misalignment is adjusted by adjusting the center position in the main scanning direction with respect to each of the plurality of printing papers so that the misalignment of the print misalignment inspection pattern 402 becomes zero. Respectively.
例えば、 使用可能な印刷用紙の最大サイズが A 3であるインクジェットプリン 夕に関する印刷ズレの調整量 5 i の決定は、 以下のようにして行われる。 まず、 使用可能な複数の印刷用紙 (A 3用紙, A 4用紙, はがき) の主走査方向の中央 位置に印刷ズレ検査用パターンをそれぞれ印刷するために、 各印刷用紙のための 検査用パターンを表すデータがそれぞれ作成されて印刷ズレ検査用パターンメモ リ 2 0 6に格納される。 この検査用パターンデータは、 同一機種のプリンタに共 通に使用される。 そして、 図 3に示すように、 各印刷用紙上に、 その印刷用紙に 適した印刷ズレ検査用パターンを印刷し、 これらの検査用パターン 4 0 2におけ る印刷ズレ量 Δ Xを測定する。 そして、 印刷ズレ量 Δ Xがゼロになるように、 双 方向印刷における印刷ズレの調整値 <5 1 , 6 2 , (5 3…をそれぞれ決定する。 こ の印刷ズレの調整値 S 1, δ 2 , (5 3…は、 印刷ズレ調整値メモリ 2 0 2に格納 される。 なお、 印刷ズレ量 Δ χは、 同一機種のプリンタであっても個々のプリン タ毎に異なるので、 その調整値 5 1, δ 2 , <5 3…も個々のプリンタ毎に異なる 値が設定される。 従って、 印刷ズレ調整値メモリ 2 0 2は、 個々のプリンタ毎に 調整値 5 1 , δ 2 , <5 3…を書き込めるように、 書き換え可能な不揮発性メモリ を使用することが好ましい。  For example, the determination of the print shift adjustment amount 5i for an inkjet printer in which the maximum size of print paper that can be used is A3 is performed as follows. First, in order to print the print misalignment inspection pattern at the center position in the main scanning direction of a plurality of usable printing papers (A3 paper, A4 paper, postcard), an inspection pattern for each printing paper is used. The data to be represented are created and stored in the print shift inspection pattern memory 206. This inspection pattern data is commonly used by printers of the same model. Then, as shown in FIG. 3, a printing misalignment inspection pattern suitable for the printing paper is printed on each printing paper, and the printing misalignment ΔX in these inspection patterns 402 is measured. Then, the print shift adjustment values in bidirectional printing <5 1, 6 2, (5 3...) Are determined so that the print shift amount ΔX becomes zero. The print shift adjustment values S 1, δ 2, (5 3 ... are stored in the print shift adjustment value memory 202. The print shift amount Δ 異 な る is different for each printer, even for printers of the same model. A different value is also set for each printer for 51, δ 2, <5 3 .. Therefore, the print shift adjustment value memory 202 stores the adjustment value 51, δ 2, <5 for each printer. It is preferable to use a rewritable nonvolatile memory so that 3 can be written.
図 4は、 紙幅が異なる複数の印刷用紙における印刷ズレ量 A Xの分布を示すグ ラフである。 ここでは、 各印刷用紙は、 プリンタの給紙トレイ (図示せず) の左 端に合わせて給紙されると仮定している。 それぞれの印刷用紙についての印刷ズ レの調整値は、 各用紙に関する主走査方向の幅の中央位置 4 0 4 a , 4 0 4 b , 4 0 4 cにおける印刷ズレ量△ Xがゼロになるようにそれぞれ決定されている。 すなわち、 図 4の例では、 各印刷用紙における調整値が適正に設定されており、 この結果、 各印刷用紙毎に、 印刷ズレによる印刷品質の低下が最小限に抑えられ ている。 印刷ズレ量は、 プリンタの主走査方向に沿った印刷可能範囲 (印刷へッ ドの走査可能範囲) の両端において大きくなるので、 仮に、 給紙可能な最大紙幅 を有する A 3用紙に合わせて印刷ズレを調整すると、 紙幅が小さいはがきに関し ては、 印刷ズレがうまく調整できない可能性がある。 これに対して、 図 4に示す ように、 各印刷用紙毎にそれぞれ別個の調整値を使用すれば、 はがきのように紙 幅が小さい印刷用紙に関しても、 印刷ズレを適切に調整することができるという 効果がある。 なお、 各印刷用紙毎の調整値は、 調整値メモリ 2 0 2内に記憶して おくので、 一度調整した印刷用紙については再度調整する必要はない。 Fig. 4 is a graph showing the distribution of the print shift amount AX on a plurality of printing papers with different paper widths. It is rough. Here, it is assumed that each print sheet is fed in accordance with the left end of a printer input tray (not shown). The print shift adjustment value for each print sheet is adjusted so that the print shift amount △ X at the center position of the width in the main scanning direction for each sheet 4 0 4 a, 4 0 4 b, 4 0 4 c is zero. Has been determined respectively. That is, in the example of FIG. 4, the adjustment value for each printing paper is set appropriately, and as a result, the printing quality is prevented from deteriorating for each printing paper due to print misalignment. Since the print misalignment increases at both ends of the printable area (scannable area of the print head) along the main scanning direction of the printer, temporarily print to fit A3 paper, which has the maximum paper width that can be fed If the misalignment is adjusted, it may not be possible to properly adjust the misalignment of the postcard with a small paper width. On the other hand, as shown in Fig. 4, if a different adjustment value is used for each printing paper, it is possible to appropriately adjust the printing deviation even for printing paper with a small paper width such as a postcard. This has the effect. Note that the adjustment value for each print sheet is stored in the adjustment value memory 202, so that it is not necessary to adjust the print sheet once adjusted.
なお、 同じサイズの印刷用紙でも、 給紙時の向きによって、 主走査方向の幅が 異なる (すなわち縦置きと横置きとでは主走査方向の幅が異なる)。 また、 違う サイズの印刷用紙でも、 給紙時の向きによっては、 主走査方向の幅が同じにある 可能性がある。 例えば、 A 3用紙の縦置きと、 A 4用紙の横置きは、 主走査方向 の幅が同じになる。 このような種々の場合を考慮すると、 印刷ズレの調整は、 印 刷用紙のサイズではなく、 印刷用紙が給紙されるときの主走査方向に沿った幅に 応じて行われることが好ましい。  Note that the width in the main scanning direction differs depending on the paper feeding direction even for the same size printing paper (that is, the width in the main scanning direction differs vertically and horizontally). Also, the width in the main scanning direction may be the same for different sizes of printing paper depending on the paper feeding direction. For example, the width in the main scanning direction is the same for A3 paper portrait orientation and A4 paper landscape orientation. In consideration of such various cases, it is preferable that the adjustment of the printing misalignment is performed not according to the size of the printing paper but according to the width along the main scanning direction when the printing paper is fed.
図 5は、 印刷ズレ検査用パターンの他の一例を示す図である。 この例では、 紙 幅の異なる複数の印刷用紙に検査用パターンを印刷する代わりに、 最も紙幅の大 きな A 3用紙 4 0 1 aの上に、 すべての印刷用紙に関する印刷ズレ検査用パター ンが印刷されている。  FIG. 5 is a diagram showing another example of the print misalignment inspection pattern. In this example, instead of printing the inspection pattern on a plurality of printing papers with different paper widths, the print misregistration inspection pattern for all the printing papers is placed on the widest A3 paper 401a. Is printed.
具体的な手順では、 例えば、 給紙可能な印刷用紙の最大サイズが A 3用紙であ るときには、 A 3用紙, A 4用紙, および、 はがきに対する印刷ズレ検査用バタ ーンを 1枚の印刷用紙の上に印刷するためのデータを作成し、 予め印刷ズレ検査 用パターンメモリ 2 0 6に予め格納しておく。 そして、 ある一つの印刷用紙 (こ の場合 A 3用紙) に、 この印刷ズレ検査用パターンを印刷して、 紙幅の異なる印 刷用紙び全てについて、 双方向印刷における印刷ズレの調整値 S 1 , δ 2 , δ 3 …を順次決定する。 そして、 各印刷用紙毎に調整値 5 1 , δ 2 , S 3…を印刷ズ レ調整量メモリ 2 0 2に記憶する。 In a specific procedure, for example, the maximum size of printable paper is A3 paper. When printing, the data for printing the print misalignment inspection pattern for A3 paper, A4 paper, and postcard on one sheet of print paper is created, and the print misalignment inspection pattern memory 206 is prepared in advance. Is stored in advance. Then, the print misalignment inspection pattern is printed on a single print paper (in this case, A3 paper), and the print misalignment adjustment values S 1, in bidirectional printing are printed for all print papers having different paper widths. δ 2, δ 3... are sequentially determined. Then, the adjustment values 51, δ2, S3,... Are stored in the print shift adjustment amount memory 202 for each printing paper.
図 5の方法では、 複数の印刷用紙そのもので印刷ズレの調整を行う訳ではない ので、 印刷ズレの調整に使用した印刷用紙とは紙厚が異なる他の印刷用紙に印刷 するときには、紙厚の差によって印刷ズレが生じてしまう可能性がある。そこで、 はがきなどのように、 紙厚が、 検査用パターンの印刷に用いた印刷用紙とはかな り異なるような印刷用紙については、 紙厚分に相当する印刷ズレの調整量のオフ セッ卜をかけて、 印刷ズレの調整値を自動補正するようにすることが好ましい。 例えば、 はがきの紙厚を予め測定しておき、 はがきに関して紙厚の差に起因する 印刷ズレの調整量のオフセット (調整値の差分) を設定し、 印刷ズレの調整値に オフセッ卜を加算するようにすることができる。 印刷ズレの調整量のオフセッ卜 は、 図 5の方法で決定された調整量 5 1 , δ 2 , <5 3…とは別に調整量メモリ 2 0 2内に格納されるようにしてもよく、 あるいは、 オフセットが反映された調整 量 5 1 , δ 2 , S 3…を調整量メモリ 2◦ 2内に格納するようにしてもよい。 な お、 オフセット量の切換は、 実際に使用される印刷用紙 (プリンタによって搬送 された印刷用紙) の紙厚を用紙センサ 3 0 8によって自動検出し、 その検出結果 に応じて適宜切り替えるようにすることが可能である。 このとき、 オフセット量 が、 調整値 S 1 , 6 Ζ , (5 3…とは別に格納されているようにしておけば、 同じ 紙幅を有する印刷用紙でも、 その紙厚に応じて適切なオフセッ ト量で印刷ズレの 調整量を補正することが可能である。  In the method shown in Fig. 5, the print misregistration is not adjusted using multiple print papers.Therefore, when printing on other print paper that has a different paper thickness from the print paper used to adjust the print misalignment, There is a possibility that printing deviation may occur due to the difference. Therefore, for printing paper such as a postcard whose paper thickness is significantly different from the printing paper used for printing the test pattern, the offset of the print shift adjustment amount corresponding to the paper thickness must be offset. Preferably, the adjustment value of the printing deviation is automatically corrected. For example, measure the paper thickness of a postcard in advance, set an offset (adjustment value) of the adjustment amount of the printing deviation caused by the difference in the paper thickness of the postcard, and add the offset to the adjustment value of the printing deviation. You can do so. The offset of the print shift adjustment amount may be stored in the adjustment amount memory 202 separately from the adjustment amounts 51, δ2, <53, ... determined by the method of FIG. Alternatively, the adjustment amounts 51, δ2, S3,... In which the offset is reflected may be stored in the adjustment amount memory 2 2. When switching the offset amount, the paper sensor 308 automatically detects the thickness of the printing paper actually used (the printing paper conveyed by the printer), and switches appropriately according to the detection result. It is possible. At this time, if the offset amount is stored separately from the adjustment values S 1, 6 Ζ, (5 3…, even if the printing paper has the same paper width, an appropriate offset can be set according to the paper thickness. It is possible to correct the adjustment amount of the printing deviation by the amount.
図 5のように、 1枚の印刷用紙上にすべての印刷用紙のための検査用パターン を印刷するようにすれば、 普通紙のような安価な印刷用紙を用いて印刷ズレの調 整を行うことが可能であり、 コ一ト紙ゃはがきを印刷ズレの調整のために使用す る必要がない。 Inspection pattern for all printing papers on one printing paper as shown in Fig. 5 If printing is used, it is possible to adjust the print misregistration using inexpensive printing paper such as plain paper, and use the coat paper postcard to adjust the print misregistration. No need.
なお、 印刷用紙の主走査方向の複数の位置において検査用パターンを印刷し、 これらの複数の位置における印刷ズレを調整することも可能である。  In addition, it is also possible to print the inspection pattern at a plurality of positions in the main scanning direction of the printing paper and adjust the print misalignment at these plurality of positions.
例えば、 図 6 ( a ), 6 ( b ) に示すように、 紙幅の異なる各印刷用紙の主走 査方向 5力所図 2に示したような印刷ズレ検査用パターンを印刷して、 5力所に おける印刷ズレ量の平均値を、 適正な印刷ズレの調整値として採用してもよい。 あるいは、 後述するように、 5力所のそれぞれにおいて異なる調整量を設定し、 5力所のそれぞれで印刷位置を調整することも可能である。  For example, as shown in Fig. 6 (a) and 6 (b), the main scanning direction of each printing paper with different paper width is 5 points. The average value of the print misregistration amount at a location may be adopted as an appropriate print misregistration adjustment value. Alternatively, as described later, it is also possible to set a different adjustment amount in each of the five places and adjust the printing position in each of the five places.
なお、 温度等の環境変化によって、 双方向における印刷ズレ量が異なることが 考えられる。 このときには、 ある一つの印刷用紙をもちいて再度印刷ズレの調整 を行って再調整値を決定し、 以前の調整値との差分を他の全ての紙幅あるいは紙 厚の異なる印刷用紙の調整値に加算するようにすれば、 簡単に環境変化による印 刷ズレに対応できる。 いずれにしても、 再度全印刷用紙の調整値を決め直す必要 はない。  In addition, it is possible that the print misregistration amount in both directions differs depending on environmental changes such as temperature. In this case, the print misalignment is adjusted again using one printing paper to determine the re-adjustment value, and the difference from the previous adjustment value is used as the adjustment value for all other papers with different widths or thicknesses. If it is added, it is possible to easily cope with printing deviation due to environmental changes. In any case, it is not necessary to determine the adjustment values for all printing papers again.
なお、 本実施例においては、 図 4に示したように、 印刷用紙のセッ ト位置が給 紙トレイの左側の一方に固定されているようなプリンタを例にして説明した。 こ の場合、 印刷用紙の幅の違いによって、 その印刷用紙の中央位置が異なることに なる。 例えば A 3用紙であればその中央位置が印刷へッドの走査可能区間のほぼ 中央となり、 ハガキであればその中央位置は印刷へッ ドの走査可能区間の左側と なる (図 4参照)。 従って、 印刷用紙の主走査方向の幅によって印刷ズレの調整 値を変える代わりに、 印刷用紙の中央位置が印刷へッ ドの走査可能区間のどの位 置に相当するかに応じて、 印刷ズレの調整値を変えることも可能である。  In the present embodiment, as shown in FIG. 4, a printer in which the set position of the printing paper is fixed to one of the left sides of the paper feeding tray has been described as an example. In this case, the center position of the printing paper differs depending on the width of the printing paper. For example, in the case of A3 paper, the center position is almost in the center of the scannable section of the print head, and in the case of postcard, the center position is on the left side of the scannable section of the print head (see Fig. 4). Therefore, instead of changing the print shift adjustment value according to the width of the print paper in the main scanning direction, the print shift is determined according to the position of the scanable section of the print head corresponding to the center position of the print paper. It is also possible to change the adjustment value.
以上に説明したように、 往路と復路の印刷ズレの調整値を、 主走査方向の幅が 異なる印刷用紙毎に設定するようにしたので、 それぞれの印刷用紙について適正 な印刷ズレの調整を行うことができ、 ざらつきやがたつきによる印刷品質の低下 を最小限に抑えて双方向で高速印刷することができる。 しかも、 一度調整を行つ た印刷用紙については再度調整する必要がない。 As described above, the print shift adjustment values for the forward pass and the return pass are set for each print sheet with a different width in the main scanning direction. This makes it possible to adjust the print misregistration, and to minimize the degradation of print quality due to graininess and rattling, and perform high-speed bidirectional printing. Moreover, once the printing paper has been adjusted, there is no need to adjust it again.
特に、 インクジエツトプリンタのホームユースにおいて非常に使用頻度の高い はがきの双方向印刷において、 印刷ズレを最小限に抑えることができる。  In particular, printing misalignment can be minimized in bidirectional printing of postcards that are very frequently used in home use of ink jet printers.
B . プリンタの具体的構成  B. Specific configuration of printer
図 7は、 本発明の一実施例としてのプリンタを備えたコンピュータシステムの 概略構成を示す説明図である。 このコンピュータシステムは、 コンピュータ 2 0 と、 プリンタ 2 2とを備えている。 プリンタ 2 2は、 コンピュータ 2 0から送ら れる画像信号に応じて印刷用紙 P上に画像を記録する。  FIG. 7 is an explanatory diagram showing a schematic configuration of a computer system including a printer as one embodiment of the present invention. This computer system includes a computer 20 and a printer 22. The printer 22 records an image on the printing paper P according to an image signal sent from the computer 20.
プリンタ 2 2は、 紙送りモータ 2 3によって印刷用紙 Pを搬送する副走査駆動 機構と、 キヤリッジモータ 2 4によってキヤリッジ 3 1 をプラテン 2 6の軸方向 に往復動させる主走査駆動機構と、 キャリッジ 3 1 に搭載された印刷へッド 2 8 を駆動してインクの吐出およびドッ卜形成を制御する印字機構と、 これらの紙送 リモータ 2 3, キャリッジモータ 2 4, 印刷ヘッ ド 2 8および操作パネル 3 2と の信号のやり取りを司る制御回路 4 0と、 を備えている。  The printer 22 includes a sub-scanning drive mechanism for transporting the printing paper P by the paper feed motor 23, a main scanning drive mechanism for reciprocating the carriage 31 in the axial direction of the platen 26 by the carriage motor 24, and a carriage. 31 A printing mechanism that drives the print head 28 mounted on 1 to control ink ejection and dot formation, and a paper feed motor 23, carriage motor 24, print head 28, and operation. And a control circuit 40 for exchanging signals with the panel 32.
キャリッジ 3 1には、 黒インク用のカートリッジ 7 1 と、 シアン, ライ トシァ ン, マゼンタ, ライ トマゼンダ、 イエロ一の 5色のインクを収納したカラ一イン ク用カートリッジ 7 2とが搭載可能である。 キヤリッジ 3 1の下部の印刷へッ ド 2 8には計 6個のィンク吐出用へッド 6 1 〜6 6が形成されている。  The carriage 31 can be loaded with a cartridge 71 for black ink and a cartridge 72 for color ink containing five color inks of cyan, light cyan, magenta, light magenta, and yellow. . A total of six ink discharge heads 61 to 66 are formed in the print head 28 below the carriage 31.
紙送りモータ 2 3は、 プラテン 2 6その他のローラを回転させて印刷用紙 Pを 搬送することによって副走査を実行する。 一方、 キャリッジモータ 2 4は、 キヤ リッジ 3 1 を往復動させることによって双方向の主走査を実行する。 主走査時に は、 制御回路 4 0が印刷へッド 2 8の各色へッド 6 1 ~ 6 6のピエゾ素子 (後述 する)を駆動して各色インクの吐出させ、印刷用紙 P上に多色の画像を形成する。 印刷用紙 Pを搬送する機構は、 紙送りモータ 2 3の回転をプラテン 2 6のみな らず、 用紙搬送ローラに伝達するギヤトレインを備える (図示省略)。 また、 キ ャリッジ 3 1 を往復動させる機構は、 プラテン 2 6の軸と並行に架設されキヤリ ッジ 3 1 を摺動可能に保持する摺動軸 3 4と、 キャリッジモータ 2 4との間に無 端の駆動ベルト 3 6を張設するプーリ 3 8と、 キヤリッジ 3 1の原点位置を検出 する位置検出センサ 3 9とを備えている。 The paper feed motor 23 executes sub-scanning by rotating the platen 26 and other rollers to convey the printing paper P. On the other hand, the carriage motor 24 performs bidirectional main scanning by reciprocating the carriage 31. At the time of the main scanning, the control circuit 40 drives the piezo elements (described later) of the respective printing heads 6 1 to 66 of the printing heads 28 to discharge the respective color inks, and multi-colors the printing paper P. Is formed. The mechanism that transports the printing paper P uses the rotation of the paper feed motor 23 as the platen 26 Instead, a gear train for transmission to the paper transport rollers is provided (not shown). The mechanism for reciprocating the carriage 31 is provided between a carriage shaft 24 and a sliding shaft 34 that is installed in parallel with the axis of the platen 26 and holds the carriage 31 in a slidable manner. It has a pulley 38 on which an endless drive belt 36 is stretched, and a position detection sensor 39 for detecting the origin position of the carriage 31.
制御回路 4 0は、 インク吐出へッド 2 8におけるインクの吐出タイミングを規 定する駆動ク口ック信号 C L Kを生成する駆動ク口ック生成回路 4 4を備えてい る。 駆動クロック生成回路 4 4は、 駆動クロック信号 C L Kの周波数を調整する ことによって、 インクの吐出位置 (すなわちドットの記録位置) を主走査方向に 変化させる機能を有する。 駆動ク口ック生成回路 4 4の内部構成については後述 する。  The control circuit 40 includes a drive peak generation circuit 44 that generates a drive peak signal CLK that defines the ink ejection timing of the ink ejection head 28. The drive clock generation circuit 44 has a function of changing the ink ejection position (that is, the dot recording position) in the main scanning direction by adjusting the frequency of the drive clock signal CLK. The internal configuration of the drive cook generation circuit 44 will be described later.
プリンタ 2 2の内部の給紙経路には、用紙センサ 5 1 〜5 3が設けられている。 用紙センサ 5 1 〜5 3は、 それぞれ下端に用紙検出ピン 5 1 a〜5 3 aを有して いる。 制御回路 4 0は、 押し込まれている用紙検出ピンの組合せ(図 7の例では、 5 2 aと 5 3 a ) に応じて、 給紙中の印刷用紙の主走査方向の幅を検出する。 ま た、 押し込まれている用紙検出ピン 5 2 a, 5 3 aの押し込み量に応じて、 印刷 用紙の厚さを検出することも可能である。  Paper sensors 51 to 53 are provided in a paper feed path inside the printer 22. The paper sensors 51 to 53 have paper detection pins 51 a to 53 a at the lower end, respectively. The control circuit 40 detects the width of the printing paper being fed in the main scanning direction according to the combination of the pressed paper detection pins (52 a and 53 a in the example of FIG. 7). It is also possible to detect the thickness of the printing paper according to the amount of the pressed paper detection pins 52a and 53a.
なお、 用紙センサ 5 1 ~ 5 3を用いずに、 コンピュータ 2 0のプリンタ ドライ バ (図示せず) を用いてユーザによって設定された用紙のサイズと給紙方向 (縦 置き、 横置き) に応じて、 印刷用紙の主走査方向の幅と厚さとを決定するように することも可能である。  Note that, instead of using the paper sensors 51 to 53, the paper size and paper feed direction (portrait or landscape) set by the user using the printer driver (not shown) of the computer 20 are used. Thus, the width and thickness of the printing paper in the main scanning direction can be determined.
図 7の用紙センサ 5 1 〜5 3は図 1の用紙センサ 3 0 8に相当し、 また、 図 7 の印刷へッド 2 8とキヤリッジモータ 2 4と紙送りモータ 2 3とは、 図 1の印刷 へッ ド 3◦ 2とキヤリッジモータ 3 0 4と紙送りモータ 3 0 6とにそれぞれ相当 する。 また、 図 4 0の制御回路 4 0は、 図 1の制御部 2 0 0に相当する。  The paper sensors 51 to 53 in FIG. 7 correspond to the paper sensor 308 in FIG. 1, and the print head 28, the carriage motor 24, and the paper feed motor 23 in FIG. 1 corresponds to the print head 3◦2, the carriage motor 304, and the paper feed motor 303. The control circuit 40 in FIG. 40 corresponds to the control unit 200 in FIG.
図 8はインク吐出用へッ ド 2 8の内部の概略構成を示す説明図である。 インク 用カートリッジ 7 1, フ 2がキャリッジ 3 1に装着されると、 図 8に示すように 毛細管現象を利用してインク用力一トリッジ内のインクが導入管 6 7を介して吸 い出され、 キヤリッジ 3 1下部に設けられた印刷へッド 2 8の各色へッド 6 1な いし 6 6に導かれる。 なお、 初めてインクカートリッジが装着されたときには、 専用のポンプによりインクを各色のへッド 6 1ないし 6 6に吸引する動作が行わ れるが、 本実施例では吸引のためのポンプ、 吸引時に印刷ヘッ ド 2 8を覆うキヤ ップ等の構成については図示および説明を省略する。 FIG. 8 is an explanatory diagram showing a schematic configuration of the inside of the ink ejection head 28. ink When the cartridges 7 1 and 2 are mounted on the carriage 31, as shown in FIG. 8, the ink in the ink cartridge is sucked out through the introduction pipe 67 using the capillary phenomenon, and 3 1 The printing head provided at the lower part 28 is guided to each color head 6 1 or 6 6 of 8. When the ink cartridge is installed for the first time, the operation of sucking the ink into the heads 61 to 66 of the respective colors by a dedicated pump is performed. In this embodiment, the pump for suction and the print head at the time of suction are used. Illustration and explanation of the configuration of a cap and the like that cover the door 28 are omitted.
各色のへッド 6 1ないし 6 6には、 各色毎に複数個のノズル N zが設けられて おり、 各ノズル毎に電歪素子の一つであって応答性に優れたピエゾ素子 P Eが配 置されている。 ピエゾ素子 P Eとノズル N zとの構造を詳細に示したのが、 図 9 である。 図示するように、 ピエゾ素子 P Eは、 ノズル N zまでインクを導くイン ク通路 6 8に接する位置に設置されている。 ピエゾ素子 P Eは、 周知のように、 電圧の印加によリ結晶構造が歪み、 極めて高速に電気一機械工ネルギの変換を行 う素子である。 本実施例では、 ピエゾ素子 P Eの両端に設けられた電極間に所定 時間幅の電圧を印加することにより、 図 9下段に示すように、 ピエゾ素子 P巴が 電圧の印加時間だけ伸張し、 インク通路 6 8の一側壁を変形させる。 この結果、 インク通路 6 8の体積はピエゾ素子 P Eの伸張に応じて収縮し、 この収縮分に相 当するインク力 粒子 I pとなって、 ノズル N zの先端から高速に吐出される。 このインク粒子 I pがプラテン 2 6に装着された用紙 Pに染み込むことによリ、 印刷が行われる。  The heads 61 to 66 of each color are provided with a plurality of nozzles Nz for each color, and a piezo element PE, which is one of the electrostrictive elements and has excellent response, is provided for each nozzle. It is located. FIG. 9 shows the structure of the piezo element PE and the nozzle Nz in detail. As shown in the figure, the piezo element PE is installed at a position in contact with an ink passage 68 that guides ink to the nozzle Nz. As is well known, the piezo element PE is an element that performs a very high-speed electric-mechanical-energy conversion by distorting the crystal structure when a voltage is applied. In the present embodiment, by applying a voltage having a predetermined time width between the electrodes provided at both ends of the piezo element PE, the piezo element P is expanded by the voltage application time as shown in the lower part of FIG. Deform one side wall of passage 6 8. As a result, the volume of the ink passage 68 contracts in accordance with the expansion of the piezo element PE, and becomes ink particles Ip corresponding to the contraction, and is ejected at a high speed from the tip of the nozzle Nz. Printing is performed by the ink particles Ip permeating the paper P mounted on the platen 26.
C . 双方向印刷時の印刷ズレの補正方法:  C. How to correct print misalignment during bidirectional printing:
図 1 0は、 本実施例において双方向印刷時の印刷ズレを補正する方法を示す説 明図である。 図 1 0 ( a ) は、 補正を行わない場合の印刷ズレ量 Δ Xの主走査方 向の分布を示している。 また、 図 1 0 ( b ) はこれに対応する往路と復路の印刷 位置 (画素位置) のズレを示している。 なお、 図 1 0 ( a ) の横軸 Xの方向は主 走査方向であり、 これは、 印刷用紙の桁方向にも相当している。 主走査方向に沿 つた印刷用紙の幅 Lmaxを以下では 「主走査幅」 あるいは 「主走査範囲」 と呼ぶ。 図 1 0 ( b ) において実線で示されるように、 プラテンの反りやキャリッジべ ル卜の伸び等の要因によって、 往路の記録位置と復路の印刷ズレ量 Δ Xは、 主走 査方向に沿って変化している。 図 1 0 ( b ) の横軸 Xは往路の主走査方向の座標 軸として定義されており、 ズレ量 Δ Xは往路の記録位置から復路の記録位置を減 算した値として定義されている。 図 1 0 (a) の例では、 主走査方向に沿ったズ レ量△ Xの分布は上に凸であり、 主走査幅 Lmax のほぼ中央で正の値を取り、 両 端で負の値を取る。 但し、 ズレ量△ Xのゼロレベルは任意であり、 図 1 0 (a) では主走査幅 Lmax にわたるズレ量△ Xの平均値をゼロレベルとして使用してい る。 なお、 プリンタによっては、 図 1 ◦ (a) とは反対に、 ズレ量 Δ χが下に凸 の分布を示すこともある。 ズレ量 Δ Xの分布は個々のプリンタ毎に異なるので、 個々のプリンタ毎に実際の印刷物上のズレ量 Δ Xが測定される。 FIG. 10 is an explanatory diagram showing a method for correcting a print shift during bidirectional printing in the present embodiment. FIG. 10A shows the distribution of the print shift amount ΔX in the main scanning direction when no correction is performed. FIG. 10 (b) shows the corresponding shift in the print position (pixel position) in the forward pass and the return pass. The direction of the horizontal axis X in FIG. 10 (a) is the main scanning direction, which also corresponds to the digit direction of the printing paper. Along the main scanning direction Hereinafter, the width Lmax of the printed printing paper is referred to as “main scanning width” or “main scanning range”. As shown by the solid line in Fig. 10 (b), due to factors such as the warpage of the platen and the extension of the carriage belt, the printing deviation amount ΔX in the forward path and the print deviation amount ΔX in the backward path vary along the main scanning direction. Is changing. The horizontal axis X in FIG. 10 (b) is defined as the coordinate axis of the forward scan in the main scanning direction, and the shift amount ΔX is defined as a value obtained by subtracting the print position of the backward scan from the print position of the forward scan. In the example of Fig. 10 (a), the distribution of the deviation amount △ X along the main scanning direction is convex upward, and takes a positive value at almost the center of the main scanning width Lmax and a negative value at both ends. I take the. However, the zero level of the displacement amount △ X is arbitrary, and in FIG. 10A, the average value of the displacement amount △ X over the main scanning width Lmax is used as the zero level. Note that, depending on the printer, the deviation amount Δ Δ may show a downward convex distribution, contrary to FIG. 1 (a). Since the distribution of the deviation amount ΔX differs for each printer, the deviation amount ΔX on the actual printed matter is measured for each printer.
図 1 0 (c) は、 図 1 0 (a) のズレ量を補正するための理想的な補正量 5の 分布を示している。 また、 図 1 0 ( d ) は補正されてズレ量△ Xがほぼゼロにな つたときの往路と復路の印刷位置を示している。 理想的な補正量 <5は、 図 1 0 (a) に示すズレ量 Δ Xの分布の正負の符号を反転したものである。  FIG. 10 (c) shows a distribution of an ideal correction amount 5 for correcting the deviation amount of FIG. 10 (a). Further, FIG. 10 (d) shows the print position of the forward path and the return path when the deviation amount △ X is corrected to be substantially zero. The ideal correction amount <5 is obtained by inverting the sign of the distribution of the deviation amount ΔX shown in FIG. 10 (a).
図 1 0 (e) は、 本実施例において印刷ズレを補正するために用いられる駆動 クロック信号 C LK (図 7) の周波数 f CLKの変化を示している。 主走査幅 Lmax は、 ほぼ等間隔の 5つの領域 R 1 ~R 5に区分されており、 各領域毎に駆動クロ ック信号 C LKの周波数 f GLK の値が個別に設定されている。 なお、 L 1 〜し 4 は、 領域の境界の位置を示している。 図 1 0 (c) の補正量 Sがゼロに近い領域 R2, R4では周波数 f CLK は標準値 f 2に設定され、 補正量 Sが負の領域 R3 では周波数 f CLK が標準値 f 2よりも大きな値 f 3に、 また、 補正量 5が正の領 域 R 1, R 5では周波数 f CLK が標準値 f 2よりも小さな値 f 1 に設定されてい る。 印刷ヘッド 28におけるインクの吐出タイミングは、 駆動クロック信号 C L Kの周波数に依存している。 従って、 周波数 f CLK が高いほどインク吐出の周期 は短くなり、主走査方向におけるドッ ト同士の距離が小さくなる。周波数 f CL の 変化によるドッ 卜の記録位置の変化と、 印刷ズレの補正との関係については後述 する。 FIG. 10E shows a change in the frequency f CLK of the drive clock signal C LK (FIG. 7) used to correct the print misalignment in the present embodiment. The main scanning width Lmax is divided into five regions R 1 to R 5 at substantially equal intervals, and the value of the frequency f GLK of the driving clock signal CLK is set individually for each region. L 1 to L 4 indicate the positions of the boundaries of the area. In Fig. 10 (c), the frequency fCLK is set to the standard value f2 in the regions R2 and R4 where the correction amount S is close to zero, and in the region R3 where the correction amount S is negative, the frequency fCLK is higher than the standard value f2. The frequency f CLK is set to a large value f 3, and the frequency f CLK is set to a value f 1 smaller than the standard value f 2 in the regions R 1 and R 5 where the correction amount 5 is positive. The ink ejection timing of the print head 28 depends on the frequency of the drive clock signal CLK. Therefore, the higher the frequency fCLK, the higher the cycle of ink ejection. Becomes shorter, and the distance between the dots in the main scanning direction becomes smaller. The relationship between the change in the dot recording position due to the change in the frequency fCL and the correction of the printing displacement will be described later.
図 1 0 (e) のように、 駆動クロック信号 C L Kの周波数 f CLK を主走査範囲 を区分した複数の領域毎に個別に設定するようにすれば、 理想的な補正量 5を近 似的に実現することができる。 なお、 駆動クロック生成回路 44 (図 7) の能力 が許せば、 駆動ク口ック信号 C L Kの周波数をほぼ連続的に変化させるようにし てもよい。 但し、 図 1 0 (e) に示すように、 周波数 f GLK を階段状に変化させ る方が回路構成が単純になるという利点がある。  As shown in Fig. 10 (e), if the frequency fCLK of the drive clock signal CLK is individually set for each of a plurality of areas that divide the main scanning range, the ideal correction amount 5 can be approximated. Can be realized. The frequency of the drive clock signal CLK may be changed almost continuously, if the capability of the drive clock generation circuit 44 (FIG. 7) permits. However, as shown in FIG. 10 (e), there is an advantage that changing the frequency f GLK stepwise simplifies the circuit configuration.
図 1 0 (e) に示すような周波数の変化を復路において適用し、 往路では周波 数 f GLK を一定値 (例えば標準値 f 2) に保つことによって、 ズレ量 Δ χがほぼ ゼロになるように記録位置を補正することができる。 あるいは、 往路において周 波数 f GLK を調整し、 復路においては周波数 f CLK を一定値に保つようにしても よい。 また、 往路と復路の両方で周波数を調整するようにしてもよい。すなわち、 一般には、 往路と復路の少なくとも一方で、 駆動クロック信号 C LKの周波数 f CLK を調整するようにすればよい。  By applying the frequency change shown in Fig. 10 (e) on the return path, and maintaining the frequency f GLK at a constant value (for example, the standard value f2) on the outward path, the deviation Δ Δ becomes almost zero. The recording position can be corrected. Alternatively, the frequency f GLK may be adjusted on the outward path, and the frequency f CLK may be maintained at a constant value on the return path. In addition, the frequency may be adjusted on both the outward route and the return route. That is, in general, the frequency f CLK of the drive clock signal CLK may be adjusted in at least one of the forward path and the return path.
なお、 キャリッジモータ 24を駆動する主走査駆動信号の周波数は、 往路と復 路とで同じ一定値に保たれる。 従って、 印刷ヘッ ド 28の駆動クロック信号 C L Kの周波数 f GLK を図 1 0 (e) のように変化させれば、 これに応じて主走査方 向の記録位置 (インクの吐出位置) が変化する。 但し、 主走査駆動信号の周波数 を変化させることによつても、 双方向印刷時の記録位置のズレを補正することが 可能である。  It should be noted that the frequency of the main scanning drive signal for driving the carriage motor 24 is maintained at the same constant value in the forward path and the return path. Therefore, if the frequency f GLK of the drive clock signal CLK of the print head 28 is changed as shown in FIG. 10 (e), the recording position (ink discharge position) in the main scanning direction changes accordingly. . However, by changing the frequency of the main scanning drive signal, it is possible to correct the deviation of the recording position in bidirectional printing.
さて、 周波数 f CLK の変化によるドットの記録位置の変化と、 印刷ズレの補正 との関係は以下のようになる。 前述したように、 周波数 f CLK が高いほどドッ卜 同士の距離が小さくなる。 図 1 0 (e) の 1番目と 5番目の領域 R 1, R 5では 周波数 f CLK が比較的低いので、 ドット同士の距離が比較的大きくなリ、 復路の 記録位置は図 1 0 ( b ) に比べてマイナス X方向にずれることになる。 一方、 3 番目の領域 R 3では周波数 f GLK が比較的高いので、 ドット同士の距離は比較的 小さくなリ、 復路の記録位置は図 1 0 ( b ) に比べてプラス X方向にずれること になる。 この結果、 図 1 0 ( d ) に示すように、 往路と復路の記録位置がほぼ一 致するように復路の記録位置が補正される。 なお、 往路において周波数 f CLK を 調整する場合にも、 図 8 (e) と同様の分布で周波数 f CLKを変化させればよい。 なお、 ズレ量 Δ χの分布は、 種々の方法によって測定可能である。 例えば、 プ リンタ 22の組立時に往路と復路とでそれぞれ同一のパターン (例えば黒白の縞 模様) を印刷する。 そして、 その印刷結果から各領域 R 1〜R 5におけるズレ量 Δ χを手動で測定することができる。 あるいは、 プリンタ 22に CCDカメラ等 の光学的な読取り装置を設けておき、 往路と復路で同一のパターンを印刷しなが ら自動的にズレ量△ Xを測定するようにしてもよい。 測定されたズレ量 Δ χ (ま たは、 これに対応する補正量 S、 周波数 f 1〜 f 3、 あるいは、 後述する分周比 n, m) の値は、 各領域 R 1 〜R 5毎に制御回路 40 (図 7) 内に登録される。 D. 駆動クロック生成回路 44の内部構成: The relationship between the change in the dot recording position due to the change in the frequency f CLK and the correction of the printing deviation is as follows. As described above, the higher the frequency fCLK, the smaller the distance between the dots. In the first and fifth regions R 1 and R 5 in Fig. 10 (e), the frequency f CLK is relatively low, so the distance between dots is relatively large, The recording position is shifted in the minus X direction as compared with FIG. 10 (b). On the other hand, in the third region R3, since the frequency f GLK is relatively high, the distance between the dots is relatively small, and the recording position on the return path is shifted in the plus X direction compared to FIG. 10 (b). Become. As a result, as shown in FIG. 10 (d), the recording position on the return path is corrected so that the recording positions on the outward path and the return path are almost the same. When adjusting the frequency f CLK on the outward path, the frequency f CLK may be changed in the same distribution as in FIG. 8 (e). In addition, the distribution of the deviation amount Δχ can be measured by various methods. For example, when the printer 22 is assembled, the same pattern (for example, a black and white stripe pattern) is printed on the outward path and the return path. Then, the deviation amount Δ 手動 in each of the regions R1 to R5 can be manually measured from the printing result. Alternatively, the printer 22 may be provided with an optical reading device such as a CCD camera or the like, and the shift amount △ X may be automatically measured while printing the same pattern on the outward and return paths. The value of the measured shift amount Δ χ (or the corresponding correction amount S, frequency f1 to f3, or dividing ratio n, m described later) is calculated for each region R1 to R5. Is registered in the control circuit 40 (FIG. 7). D. Internal configuration of drive clock generation circuit 44:
図 1 1 は、 駆動クロック生成回路 44の内部構成を示すブロック図である。 駆 動クロック生成回路 44は、 基準クロック生成回路 1 02と、 分周器 1 04と、 オンノオフゲート 1 06と、 パラメータ設定回路 1 08と、 プログラマブル RO M (PROM) 1 1 0とを備えている。 基準クロック生成回路 1 02は、 所定の 比較的高い周波数を有する基準ク口ック信号 R C L Kを生成する。 この基準ク口 ック信号 RC LKは、 分周器で 1 nに分周されて駆動クロック信号 C L Kとな る。 オン オフゲート 1 06は、 制御回路 40内の他の回路からの制御信号に応 じて、 印刷へッド 28への駆動クロック信号 C LKの供給を停止したり再開した りする機能を有する。  FIG. 11 is a block diagram showing the internal configuration of the drive clock generation circuit 44. The driving clock generation circuit 44 includes a reference clock generation circuit 102, a frequency divider 104, an on / off gate 106, a parameter setting circuit 108, and a programmable ROM (PROM) 110. ing. The reference clock generation circuit 102 generates a reference clock signal RCLK having a predetermined relatively high frequency. This reference clock signal RCLK is frequency-divided by the frequency divider to 1 n to become the drive clock signal CLK. The ON / OFF gate 106 has a function of stopping or restarting the supply of the drive clock signal CLK to the print head 28 in response to a control signal from another circuit in the control circuit 40.
PROM 1 1 0は、 各領域 R 1 〜R5における分周比 n (R 1 ) 〜n (R 5) の値と、 領域間の境界の位置 L 1 〜Lmax (または各領域の幅) とを記憶してい る。 パラメータ設定回路 1 08は、 分周器 1 04における分周比 nの設定を変更 することによって、 図 1 0 (e) に示す周波数変化を実現する。 パラメータ設定 回路 1 08は、 オン オフゲ一ト 1 ◦ 6から出力された駆動クロック信号 C L K のパルス数をカウン卜する図示しないカウンタを有しており、 このカウンタの力 ゥント値と領域間の境界の位置し "!〜 Lmax との比較 (またはカウント値と各領 域の幅との比較) を行うことによって、 キャリッジ 31の現在の主走査位置が 5 つの領域 R 1 〜R 5のうちのいずれであるかを判断する。 なお、 キャリッジ 31 の原点位置は、 位置検出センサ 39 (図フ) から制御回路 40に供給される信号 によって予め決定されている。 パラメ一タ設定回路 1 08は、 キヤリッジ 31の 主走査位置を含む領域に対応する分周比 nを PROM1 1 0から読み出して分周 器 1 04に設定する。 The PROM 110 calculates the division ratios n (R 1) to n (R 5) in each of the regions R 1 to R 5 and the position L 1 to Lmax (or the width of each region) of the boundary between the regions. Remember You. The parameter setting circuit 108 realizes the frequency change shown in FIG. 10 (e) by changing the setting of the frequency division ratio n in the frequency divider 104. The parameter setting circuit 108 has a counter (not shown) that counts the number of pulses of the drive clock signal CLK output from the on / off gate 1 • 6. By comparing the position "! ~ Lmax" (or comparing the count value with the width of each area), the current main scanning position of the carriage 31 is determined in any of the five areas R1 to R5. It should be noted that the origin position of the carriage 31 is determined in advance by a signal supplied from the position detection sensor 39 (see FIG. 8) to the control circuit 40. The frequency division ratio n corresponding to the area including the main scanning position is read from the PROM 110 and set in the frequency divider 104.
なお、 図 1 1の PROM1 1 0は、 図 1の印刷ズレ調整値メモリ 202に相当 する。 すなわち、 PROM1 1 0には、 印刷用紙の幅と厚さとの複数の組合せに 対応するパラメータ {n ( L 1 ) ~ n (Lmax ), L 1〜し max } 力 印刷ズレ の調整値としてそれぞれ格納されている。 また、 図 1 1の他の回路要素 1 02, 1 04, 1 06, 1 08の全体が、 図 1の印刷ズレ調整部 204に相当する。 このように、 この駆動クロック生成回路 44では、 基準クロック信号 RC LK を分周するための分周比 nを各領域毎に変更するだけで、 各領域に適した周波数 を有する駆動クロック信号 C LKを容易に得ることができるという利点がある。 また、 駆動ク口ック信号 C L Kの周波数の調整によって記録位置を補正する本実 施例の方法は、 記録位置自身を補正する従来の方法に比べて回路構成が簡単であ リ、 実現がより容易であるという利点がある。  The PROM 110 in FIG. 11 corresponds to the print shift adjustment value memory 202 in FIG. That is, the parameters {n (L1) to n (Lmax), L1 to max} corresponding to a plurality of combinations of the width and thickness of the printing paper are stored in the PROM 110 as adjustment values of the printing deviation. Have been. Further, the entire other circuit elements 102, 104, 106, and 108 in FIG. 11 correspond to the print shift adjusting unit 204 in FIG. As described above, in the drive clock generation circuit 44, only by changing the frequency division ratio n for dividing the reference clock signal RC LK for each region, the drive clock signal C LK having a frequency suitable for each region is obtained. Can be easily obtained. In addition, the method of this embodiment in which the recording position is corrected by adjusting the frequency of the driving signal CLK is simpler in circuit configuration than the conventional method in which the recording position itself is corrected, and is more practical. There is an advantage that it is easy.
ところで、 プリンタによっては、 キャリッジの振動に起因する印刷ズレを補正 する目的で、 リニアエンコーダが設けられている機種も存在する。 しかし、 リニ ァエンコーダでは、 プラテンの反リに起因する印刷ズレを補正することは困難で ある。 し力、し、 上記実施例のように、 印刷ヘッド 28の駆動クロック信号 C L K の周波数を主走査方向に沿って変化させるようにすれば、 プラテンの反りに起因 する印刷ズレも補正することが可能である。 すなわち、 本発明は、 印刷ズレを補 正するためのリニアエンコーダが設けられた機種に適用しても効果がある。また、 印刷ズレを補正するためのリニアェンコーダが設けられていない機種に関しても、 本発明を適用することによって、 キャリッジの振動に起因する印刷ズレと、 ブラ テンの反りに起因する印刷ズレの双方を同時に補正することができるという効果 がある。 By the way, some printers are equipped with a linear encoder for the purpose of correcting a printing displacement caused by the vibration of the carriage. However, it is difficult for a linear encoder to correct the print misalignment caused by the platen warpage. As described in the above embodiment, the driving clock signal CLK of the print head 28 is used. If the frequency is changed along the main scanning direction, it is possible to correct the printing deviation caused by the warpage of the platen. That is, the present invention is effective even when applied to a model provided with a linear encoder for correcting a printing shift. In addition, by applying the present invention to a model in which a linear encoder for correcting a print shift is not provided, both the print shift caused by the vibration of the carriage and the print shift caused by the warpage of the platen can be achieved. Has the effect of being able to simultaneously correct
図 1 2は、 駆動クロック生成回路 44の他の構成を示すブロック図である。 こ の駆動ク口ック生成回路 44 aは、 図 1 1の回路 44の分周器 1 04とオン ォ フゲート 1 06との間に P L L回路 1 20を追加したものである。 また、 パラメ ータ設定回路 1 08 aの機能と、 P ROM 1 1 0の記憶内容とは、 P L L回路 1 20の追加に応じて多少変更されている。  FIG. 12 is a block diagram showing another configuration of the drive clock generation circuit 44. This drive clock generation circuit 44a is obtained by adding a PLL circuit 120 between the frequency divider 104 and the on / off gate 106 of the circuit 44 in FIG. Also, the function of the parameter setting circuit 108a and the contents stored in the PROM 110 are slightly changed in accordance with the addition of the PLL circuit 120.
卩し 1_回路1 20は、 位相周波数検出器 (P FD) 1 22と、 ローパスフィル タ (L P F) 1 24と、 電圧制御発振器 (VCO) 1 26と、 分周器 1 28とを 備えている。 この P L L回路 1 20は、 第 1の分周器 1 04で分周されたクロッ ク信号 C L Kの周波数を遲倍数 m (これは分周器 1 28の分周比に等しい) で遁 倍することによって駆動クロック信号 C LK' を生成して、 印刷ヘッ ド 28に供 給する。 この駆動クロック信号 CLK' の周波数 f CLK'は、 基準クロック信号 R C L Kの周波数 f RCLKの mZn倍の値を有している。  The circuit 1_ circuit 120 includes a phase frequency detector (P FD) 122, a low pass filter (LPF) 124, a voltage controlled oscillator (VCO) 126, and a frequency divider 128. I have. This PLL circuit 120 multiplies the frequency of the clock signal CLK divided by the first divider 104 by a multiple of delay m (this is equal to the division ratio of the divider 128). Then, a drive clock signal CLK 'is generated and supplied to the print head 28. The frequency f CLK ′ of the drive clock signal CLK ′ has a value that is mZn times the frequency f RCLK of the reference clock signal R CLK.
パラメータ設定回路 1 08 aは、 2つの分周器 1 04, 1 28の分周比 n, m を各領域 R 1〜 R 5に適した値にそれぞれ設定することによって、 駆動クロック 信号 C LK' の周波数 f CLK'を各領域 R 1〜R 5に適した値に設定することがで きる。 図 1 2に示す回路では、 周波数を調整するためのパラメータが 2つ (nと m) になるので、 図 1 1に回路に比べてより細かな単位で周波数を設定すること が可能である。  The parameter setting circuit 108a sets the drive clock signal CLK 'by setting the frequency division ratios n and m of the two frequency dividers 104 and 128 to values suitable for the respective regions R1 to R5. Can be set to a value suitable for each of the regions R1 to R5. In the circuit shown in Fig. 12, there are two parameters (n and m) for adjusting the frequency, so it is possible to set the frequency in smaller units than in the circuit shown in Fig. 11.
なお、 図 1 1 における分周器 1 04や、 図 1 2における分周器 1 04と P L L 回路 1 2 0は、 基準クロック信号 R C L Kの周波数を変換することによって駆動 クロック信号を生成する周波数変換部 (「周波数設定部」 とも呼ぶ) を実現して いる。 但し、 これらの構成は単なる例示であり、 周波数変換部 (周波数設定部) として他の構成を採用することも可能である。 Note that the divider 104 in FIG. 11 and the divider 104 in FIG. The circuit 120 implements a frequency conversion unit (also referred to as a “frequency setting unit”) that generates a drive clock signal by converting the frequency of the reference clock signal RCLK. However, these configurations are merely examples, and other configurations can be adopted as the frequency conversion unit (frequency setting unit).
以上説明したように、 上記実施例では、 印刷ヘッ ドに与える駆動クロック信号 の周波数を変化させることによって、 往路と復路における記録位置がほぼ一致す るように記録位置を補正しているので、 記録位置自体を補正する場合に比べて簡 単な構成で容易に印刷ズレの補正を行うことができるという利点がある。 特に、 印刷用紙の主走査幅を区分した複数の領域において駆動クロック周波数を個別に 設定するようにしたので、 理想に近い補正を簡単な構成で実現することが可能で あ 。  As described above, in the above embodiment, the recording position is corrected by changing the frequency of the drive clock signal applied to the print head so that the recording position on the forward path and the recording position on the return path substantially match. There is an advantage that print misregistration can be easily corrected with a simple configuration as compared with the case where the position itself is corrected. In particular, since the drive clock frequency is individually set in a plurality of areas where the main scanning width of the printing paper is divided, it is possible to realize a correction close to ideal with a simple configuration.
なお、 駆動クロック信号の周波数を変更することによる印刷ズレの調整は、 前 述した図 3, 図 4に示したように、 印刷用紙の主走査方向の中央位置のみで印刷 ズレを調整する場合にも適用可能である。  The adjustment of the printing displacement by changing the frequency of the drive clock signal is performed when the printing displacement is adjusted only at the center position of the printing paper in the main scanning direction, as shown in FIGS. 3 and 4 described above. Is also applicable.
上記の回路では、 印刷用紙の主走査幅 L max を 5つの領域 R 1 〜R 5に等分し ていたが、 必ずしも互いに等しい幅に区分する必要は無く、 任意の幅で複数の領 域に区分することが可能である。 また、 領域区分の数は 5に限らず、 一般には 2 以上の複数の領域に区分すればよい。 但し、 領域区分の数が多いほど理想的な補 正量 5に近い補正量が得られるので、 走査幅 L max を少なくとも 5つの領域に区 分することが好ましい。  In the above circuit, the main scanning width L max of the printing paper is equally divided into five regions R 1 to R 5, but it is not always necessary to divide the printing paper into equal widths, and it is possible to divide the main scanning width into a plurality of regions with an arbitrary width. It is possible to classify. In addition, the number of area divisions is not limited to 5, and generally, it is sufficient to divide the area into two or more areas. However, since the correction amount closer to the ideal correction amount 5 can be obtained as the number of region divisions increases, it is preferable to divide the scanning width L max into at least five regions.
ところで、 印刷用紙の主走査幅 L max が同じ場合でも、 実際に印刷ヘッド 2 8 が移動する主走査範囲が印刷用紙の主走査幅 L max の一部分に限定されるような 場合がある。例えば、画像が印刷用紙の左半分にだけ印刷されるようなときには、 印刷へッド 2 8の実際の主走査範囲は印刷用紙の左半分だけになる。 このような 場合には、 例えば図 1 0 ( a ) の 2番目の位置 L 2の印刷ズレ△ Xの値が、 印刷 用紙の主走査幅 L max の全体にわたって印刷へッ ド 2 8が走査される場合の印刷 ズレの値とは異なる可能性がある。 この理由は、 印刷ズレにキャリッジベルトの 伸びが影響していることに起因している。 キャリッジベルトの伸びは、 キヤリツ ジの加速状態に依存している。 印刷用紙の主走査幅 Lmax の全体を走査する場合 には位置 L 2においてはキヤリッジがほぼ等速で移動しているのに対して、 印刷 用紙の左半分のみを走査する場合には位置 L 2においてはキヤリッジが加速また は減速状態にある。 従って、 同じ位置 L 2においても、 印刷ヘッド 2 8の実際の 主走査範囲に応じて印刷ズレ Δ Xの値が異なる。 このような現象を考慮すると、 印刷用紙の主走査幅 L max が同じ場合にも、 印刷ズレの調整値 (補正量) を、 印 刷へッ ド 2 8の実際の走査範囲に応じて、 印刷用紙上の複数の位置毎に異なる値 を設定するようにすることが好ましい。 By the way, even when the main scanning width L max of the printing paper is the same, the main scanning range where the print head 28 actually moves may be limited to a part of the main scanning width L max of the printing paper. For example, when the image is printed only on the left half of the printing paper, the actual main scanning range of the print head 28 is only the left half of the printing paper. In such a case, for example, the value of the printing deviation X at the second position L2 in FIG. 10 (a) is scanned with the printing head 28 over the entire main scanning width Lmax of the printing paper. When printing It may be different from the value of the deviation. The reason for this is that the printing deviation is affected by the elongation of the carriage belt. The carriage belt elongation depends on the acceleration of the carriage. When scanning the entire printing paper main scanning width Lmax, the carriage moves at almost the same speed at position L2, whereas when scanning only the left half of the printing paper, position L2 In, the carriage is accelerating or decelerating. Therefore, even at the same position L2, the value of the printing deviation ΔX differs depending on the actual main scanning range of the print head 28. Considering such a phenomenon, even when the main scanning width L max of the printing paper is the same, the adjustment value (correction amount) of the printing deviation is changed according to the actual scanning range of the printing head 28. It is preferable to set different values for a plurality of positions on the paper.
上記実施例では印刷へッ ドを移動させることによって主走査を行っていたが、 この代わりに、 印刷用紙を移動させるようにしてもよい。 すなわち、 本発明は、 一般に、 印刷媒体と印刷へッ ドを少なくとも相対的に移動させることによって双 方向の主走査を行う双方向印刷機能を有するプリンタに適用可能である。  In the above embodiment, the main scanning is performed by moving the print head. Alternatively, the printing paper may be moved. That is, the present invention is generally applicable to a printer having a bidirectional printing function of performing bidirectional main scanning by moving at least the print medium and the print head relatively.
上記実施例において、 ハードウヱァによって実現されていた構成の一部をソフ トウエアに置き換えるようにしてもよく、 逆に、 ソフトウェアによって実現され ていた構成の一部をハードウェアに置き換えるようにしてもよい。 例えば、 図 1 1 および図 1 2に示した回路の一部 (例えばパラメータ設定回路 1 0 8 , 1 0 8 a ) の機能を、 マイクロプロセッサが記録媒体に格納されたコンピュータプログ ラムを実行することによって実現するようにしてもよい。 また、 制御回路 4 0の 機能の一部あるいは全部を、 コンピュータ 2 0のマイクロプロセッサ(C P U等) が実行するようにしてもよい。  In the above embodiment, a part of the configuration realized by hardware may be replaced by software, and conversely, a part of the configuration realized by software may be replaced by hardware. For example, the functions of a part of the circuits shown in FIGS. 11 and 12 (for example, the parameter setting circuits 108 and 108a) may be executed by a microprocessor executing a computer program stored in a recording medium. It may be realized by. Further, a part (or all) of the functions of the control circuit 40 may be executed by a microprocessor (CPU or the like) of the computer 20.
なお、 記録媒体としては、 フレキシブルディスクや C D— R O M、 光磁気ディ スク、 I Cカード、 R O M力一トリッジ、 パンチカード、 バ一コードなどの符号 が印刷された印刷物、 コンピュータの内部記憶装置 (R A Mや R O Mなどのメモ リ) および外部記憶装置等の、 コンピュータが読取り可能な種々の媒体を利用で きる。 産業上の利用可能性 Recording media include flexible disks, CD-ROMs, magneto-optical disks, IC cards, ROM cartridges, punch cards, printed materials on which codes such as barcodes are printed, and internal storage devices (RAM, Various computer-readable media, such as memory (ROM) and external storage, can be used. Wear. Industrial applicability
この発明は、 双方向型インクジェットプリンタなどのように、 双方向印刷を行 う双方向プリンタに適用可能である。  The present invention is applicable to a bidirectional printer that performs bidirectional printing, such as a bidirectional inkjet printer.

Claims

請求の範囲 The scope of the claims
1 . 主走査を往復で双方向に行いつつ印刷媒体上に画像を印刷する双方向印刷 機能を有するプリンタであって、  1. A printer having a bidirectional printing function for printing an image on a print medium while performing main scanning in both directions in a reciprocating manner,
印刷へッ ドと、  Print head and
前記印刷へッドと前記印刷媒体を少なくとも相対的に主走査方向および副走査 方向に移動させるとともに、 前記印刷へッ ドを駆動して前記印刷媒体上に印刷を 行わせる駆動機構部と、  A drive mechanism for moving the printing head and the printing medium at least relatively in the main scanning direction and the sub-scanning direction, and driving the printing head to perform printing on the printing medium;
前記駆動機構部を制御する制御部と、 を備え、  A control unit that controls the drive mechanism unit,
前記制御部は、  The control unit includes:
前記印刷へッ ドの主走査方向の位置に応じて、 往路における主走査方向の印刷 位置と復路における主走査方向の印刷位置とがほぼ一致するように、 前記往路と 復路の少なくとも一方において印刷位置を調整する印刷ズレ調整部を備えるプリ ンタ。  In accordance with the position of the print head in the main scanning direction, the printing position in at least one of the forward path and the return path such that the printing position in the main scanning direction in the forward path substantially coincides with the printing position in the main scanning direction in the return path. Printer with a print misalignment adjustment unit that adjusts
2 . 請求項 1記載のプリンタであって、 2. The printer according to claim 1, wherein
前記印刷ズレ調整部は、 前記印刷へッドの実際の主走査範囲と前記印刷へッ ド の主走査方向の位置とに応じて前記印刷位置の調整を行う、 プリンタ。  The printer, wherein the print misalignment adjustment unit adjusts the print position according to an actual main scan range of the print head and a position of the print head in the main scan direction.
3 . 請求項 1記載のプリンタであって、 3. The printer according to claim 1, wherein
前記制御部は、 さらに、  The control unit further includes:
前記印刷位置の調整に用いる調整値を、 主走査方向の幅が異なる複数の印刷媒 体のそれぞれに関して記憶する調整値メモリを備え、  An adjustment value memory for storing an adjustment value used for adjusting the printing position for each of a plurality of printing media having different widths in the main scanning direction;
前記印刷ズレ調整部は、 印刷に実際に使用される印刷媒体の主走査方向の幅に 応じて前記調整値メモリから前記調整値を読み出すとともに、 読み出された前記 調整値に従つて前記印刷位置の調整を行う、 プリンタ。 The print misalignment adjustment unit reads the adjustment value from the adjustment value memory in accordance with the width of the print medium actually used for printing in the main scanning direction, and prints the printing position in accordance with the read adjustment value. Make adjustments for the printer.
4 . 請求項 3記載のプリンタであって、 さらに、 4. The printer according to claim 3, further comprising:
前記複数の印刷媒体に対応した複数の印刷ズレ検査用パターンを印刷するため のデータを記憶するメモリを備える、 プリンタ。  A printer comprising a memory for storing data for printing a plurality of print misalignment inspection patterns corresponding to the plurality of print media.
5 . 請求項 3記載のプリンタであって、 5. The printer according to claim 3, wherein
前記印刷ズレ調整部は、 前記印刷に実際に使用される印刷媒体の厚さに応じた オフセッ トを用いて前記印刷ズレの調整値を補正する、 プリンタ。  The printer, wherein the print misalignment adjustment unit corrects the adjustment value of the print misalignment using an offset corresponding to a thickness of a print medium actually used for the printing.
6 . 請求項 3記載のプリンタであって、 6. The printer according to claim 3, wherein
前記印刷ズレ調整部は、 前記複数の記録媒体のそれぞれの主走査方向の中央位 置において前記印刷位置の調整を行う、 プリンタ。  The printer, wherein the print misalignment adjustment unit adjusts the print position at a central position in the main scanning direction of each of the plurality of recording media.
7 . 請求項 3記載のプリンタであって、 7. The printer according to claim 3, wherein
前記印刷ズレ調整部は、 前記複数の記録媒体のそれぞれの主走査方向の複数の 位置において前記印刷位置の調整を行う、 プリンタ  A printer that adjusts the printing position at a plurality of positions in the main scanning direction of the plurality of recording media,
8 . 請求項 1記載のプリンタであって、 8. The printer according to claim 1, wherein
前記印刷ズレ調整部は、  The print shift adjustment unit,
前記印刷へッドに与える駆動クロック信号を生成するとともに、 前記往路と復 路の少なくとも一方において前記駆動クロック信号の周波数を主走査方向に沿つ て変化させる駆動クロック生成部を備える、 プリンタ。  A printer, comprising: a drive clock generation unit that generates a drive clock signal to be applied to the print head and that changes the frequency of the drive clock signal along at least one of the forward path and the return path in the main scanning direction.
9 . 請求項 8記載のプリンタであって、 9. The printer according to claim 8, wherein
前記駆動ク口ック生成部は、 主走査範囲を区分した複数の領域において前記駆 動クロック信号の周波数を個別に設定する、 プリンタ。 1 〇. 請求項 9記載のプリンタであって、 The printer, wherein the drive clock generation unit individually sets the frequency of the drive clock signal in a plurality of areas obtained by dividing a main scanning range. 1 〇. The printer according to claim 9, wherein
前記駆動クロック生成部は、  The drive clock generator,
前記駆動ク口ック信号の周波数を設定するためのパラメータを前記複数の領域 のそれぞれに関して記憶する調整値メモリと、  An adjustment value memory for storing a parameter for setting a frequency of the drive cook signal for each of the plurality of regions;
所定の基準周波数を有する基準クロック信号を生成する基準クロック生成部と、 前記調整値メモリから読み出されたパラメータを用いて、 前記基準クロック信 号の周波数を変換することによって前記駆動クロック信号を生成する周波数変換 部と、  A reference clock generating unit that generates a reference clock signal having a predetermined reference frequency; and generating the drive clock signal by converting a frequency of the reference clock signal using a parameter read from the adjustment value memory. Frequency conversion unit to perform
前記印刷へッ ドの主走査位置が前記複数の領域のいずれに含まれているかを判 断し、 前記主走査位置を含む領域に対応するパラメータを前記メモリから読み出 して前記周波数変換部に設定するパラメータ設定部と、  It is determined which of the plurality of areas the main scanning position of the print head is included in, and a parameter corresponding to the area including the main scanning position is read from the memory and sent to the frequency conversion unit. A parameter setting section to be set;
を備えるプリンタ。 A printer comprising:
1 1 . 請求項 1 0記載のプリンタであって、 11. The printer according to claim 10, wherein
前記パラメータ設定部は、 使用される印刷媒体の主走査方向の幅と厚さとに応 じて、 前記複数の領域の区分と前記パラメータの値とを変更する、 プリンタ。  The printer, wherein the parameter setting unit changes a division of the plurality of areas and a value of the parameter according to a width and a thickness of a print medium in a main scanning direction.
1 2 . 主走査を往復で双方向に行いつつ印刷ヘッドを用いて印刷媒体上に画像 を印刷するプリンタにおける主走査方向の印刷位置の調整方法であって、 12. A method for adjusting a printing position in a main scanning direction in a printer that prints an image on a print medium using a print head while performing bidirectional main scanning in both directions,
前記印刷へッドの主走査方向の位置に応じて、 往路における主走査方向の印刷 位置と復路における主走査方向の印刷位置とがほぼ一致するように、 前記往路と 復路の少なくとも一方において印刷位置を調整する、 方法。  In accordance with the position of the print head in the main scanning direction, the printing position in at least one of the forward path and the return path such that the printing position in the main scanning direction in the forward path substantially matches the printing position in the main scanning direction in the return path. Adjust the way.
1 3 . 請求項 1 2記載の方法であって、 1 3. The method according to claim 1, wherein
前記印刷位置の調整は、 前記印刷へッ ドの実際の主走査範囲と前記印刷へッド の主走査方向の位置とに応じて行われる、 方法。 The method of adjusting the printing position according to an actual main scanning range of the printing head and a position of the printing head in the main scanning direction.
1 4 . 請求項 1 2記載の方法であって、 14. The method according to claim 12, wherein
主走査方向の幅が異なる複数の印刷媒体に関して前記印刷位置の調整に用いる 調整値が予め準備されており、  Adjustment values used for adjusting the printing position are prepared in advance for a plurality of printing media having different widths in the main scanning direction,
前記印刷ズレの調整は、 印刷に実際に使用される印刷媒体の主走査方向の幅に 応じた前記調整値に従って行なわれる、 方法。  The method of adjusting the print misalignment according to the adjustment value according to the width in the main scanning direction of a print medium actually used for printing.
1 5 . 請求項 1 4記載の方法であって、 さらに、 15. The method of claim 14, further comprising:
前記複数の印刷媒体上に、 各印刷媒体に対する印刷ズレ検査用パターンをそれ ぞれ印刷し、 前記印刷ズレ検査用パターンにおける印刷ズレに基づいて、 前記複 数の印刷媒体に関する前記調整値が準備される、 方法。  The print misalignment inspection pattern for each print medium is printed on each of the plurality of print media, and the adjustment values for the plurality of print media are prepared based on the print misalignment in the print misalignment inspection pattern. How.
1 6 . 請求項 1 4記載の方法であって、 さらに、 16. The method of claim 14, further comprising:
前記複数の印刷媒体の中の選択された 1つの印刷媒体の上に、 前記複数の印刷 媒体に対する複数の印刷ズレ検査用パターンをすベて印刷し、 前記印刷ズレ検査 用パターンにおける印刷ズレに基づいて、 前記複数の印刷媒体に関する前記調整 値が準備される、 方法。  All the plurality of print misalignment inspection patterns for the plurality of print media are printed on one selected print medium among the plurality of print media, and based on the print misalignment in the print misalignment inspection pattern. And wherein the adjustment values for the plurality of print media are provided.
1 7 . 請求項 1 4記載の方法であって、 17. The method according to claim 14, wherein
前記印刷ズレの調整値は、 前記印刷に実際に使用される印刷媒体の厚さに応じ たオフセッ トを用いて補正される、 方法。  The method according to claim 1, wherein the adjustment value of the printing deviation is corrected using an offset according to a thickness of a printing medium actually used for the printing.
1 8 . 請求項 1 4記載の方法であって、 18. The method according to claim 14, wherein
前記印刷ズレの調整は、 前記複数の記録媒体のそれぞれの主走査方向の中央位 置において行われる、 方法。 The method according to claim 1, wherein the adjustment of the print misalignment is performed at a central position in the main scanning direction of each of the plurality of recording media.
1 9 . 請求項 1 4記載の方法であって、 1 9. The method according to claim 14, wherein
前記印刷ズレの調整は、 前記複数の記録媒体のそれぞれの主走査方向の複数の 位置において行われる、 方法  Adjusting the print misalignment at a plurality of positions in the main scanning direction of each of the plurality of recording media.
2 0 . 請求項 1 2記載の方法であって、 20. The method according to claim 12, wherein
前記印刷ズレの調整は、 前記印刷へッドに与えられる駆動クロック信号の周波 数を、 前記往路と復路の少なくとも一方において主走査方向に沿って変化させる ことによって行われる、 方法。  The method of adjusting the print misalignment by changing a frequency of a drive clock signal applied to the print head in at least one of the forward path and the return path along the main scanning direction.
2 1 . 請求項 2 0記載の方法であって、 21. The method of claim 20, wherein
前記駆動クロック信号の周波数は、 主走査範囲を区分した複数の領域において 個別に設定される、 方法。  The method according to claim 1, wherein a frequency of the driving clock signal is individually set in a plurality of regions that divide the main scanning range.
2 2 . 請求項 2 "1記載の方法であって、 2 2. The method according to claim 2, wherein
前記駆動ク口ック信号の周波数の設定は、  The setting of the frequency of the drive cook signal,
前記駆動クロック信号の周波数を設定するためのパラメータを前記複数の領域 のそれぞれに関して予め準備し、  Parameters for setting the frequency of the drive clock signal are prepared in advance for each of the plurality of regions;
所定の基準周波数を有する基準ク口ック信号を生成し、  Generating a reference cook signal having a predetermined reference frequency;
前記印刷へッドの主走査位置が前記複数の領域のいずれに含まれているかを判 断し、  Determining which of the plurality of areas the main scanning position of the print head is included in;
前記印刷へッドの主走査位置を含む領域に対応する前記パラメ一タを用いて、 前記基準ク口ック信号の周波数を変換することによって前記駆動ク口ック信号を 生成することによって行われる、 方法。  Using the parameters corresponding to the area including the main scanning position of the print head, converting the frequency of the reference cook signal to generate the drive cook signal, The way.
2 3 . 請求項 2 2記載の方法であって、 2 3. The method according to claim 2, wherein
印刷に実際に使用される印刷媒体の主走査方向の幅と厚さとに応じて、 前記複 数の領域の区分と前記パラメータの値とが変更される、 方法。 Depending on the width and thickness in the main scanning direction of the print medium actually used for printing, the A method wherein the division of the number domain and the value of said parameter are changed.
PCT/JP1998/003908 1997-09-02 1998-08-31 Printer for effecting bidirectional printing and method of adjusting the printing position therefor WO1999011465A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98940662A EP0938977B1 (en) 1997-09-02 1998-08-31 Printer for effecting bidirectional printing and method of adjusting the printing position therefor
DE69834802T DE69834802T2 (en) 1997-09-02 1998-08-31 IN TWO DIRECTIONS WORKING PRINTERS AND CORRECTION METHOD OF PRINTING POSITION THEREFOR
US09/297,067 US6158905A (en) 1997-09-02 1998-08-31 Bidirectional printer and printing position adjustment method for the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP23750997 1997-09-02
JP9/237509 1997-09-02
JP10/36714 1998-02-03
JP3671498 1998-02-03

Publications (1)

Publication Number Publication Date
WO1999011465A1 true WO1999011465A1 (en) 1999-03-11

Family

ID=26375802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003908 WO1999011465A1 (en) 1997-09-02 1998-08-31 Printer for effecting bidirectional printing and method of adjusting the printing position therefor

Country Status (4)

Country Link
US (1) US6158905A (en)
EP (1) EP0938977B1 (en)
DE (1) DE69834802T2 (en)
WO (1) WO1999011465A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126344A (en) * 1992-10-13 2000-10-03 Seiko Epson Corporation Tape cartridge and printing device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6354216B1 (en) * 1998-12-08 2002-03-12 Fuji Photo Film Co., Ltd. Driving mechanism for scanning head and image recording device
JP3507366B2 (en) * 1999-07-19 2004-03-15 キヤノン株式会社 Printing apparatus and image data processing method for printing apparatus
JP2001277597A (en) * 2000-04-03 2001-10-09 Nec Data Terminal Ltd Method and apparatus for adjusting printing position of dot line printer
JP3960083B2 (en) * 2002-03-06 2007-08-15 セイコーエプソン株式会社 Head driving apparatus and method, liquid droplet ejection apparatus, head driving program, and device manufacturing method and device
US6938975B2 (en) 2003-08-25 2005-09-06 Lexmark International, Inc. Method of reducing printing defects in an ink jet printer
US6935795B1 (en) * 2004-03-17 2005-08-30 Lexmark International, Inc. Method for reducing the effects of printhead carrier disturbance during printing with an imaging apparatus
KR101096489B1 (en) 2009-12-01 2011-12-20 엘아이지에이디피 주식회사 Bi-print compensation method of inkjet printer
JP2015032331A (en) * 2013-08-02 2015-02-16 株式会社日立エルジーデータストレージ Information recording medium, information reproduction device and information reproduction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243373A (en) * 1989-03-17 1990-09-27 Hitachi Ltd Print misregistration correcting method and printer for practicing same method
JPH0422665A (en) * 1990-05-18 1992-01-27 Hitachi Ltd Method for correcting shift of printing position and printing apparatus for executing the same
JPH0569625A (en) 1991-09-11 1993-03-23 Seiko Epson Corp Serial printer
JPH0740599A (en) * 1993-07-28 1995-02-10 Nec Corp Serial printer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524364A (en) * 1982-11-22 1985-06-18 Xerox Corporation Circuitry for correcting dot placement for oscillating carriage ink jet printer
JPH0784081B2 (en) * 1986-10-09 1995-09-13 沖電気工業株式会社 Reciprocal print alignment correction method for serial dot printer
JPH0490369A (en) * 1990-08-02 1992-03-24 Canon Inc Printer control device
US5116150A (en) * 1991-01-09 1992-05-26 Apple Computer, Inc. Apparatus and method for mapping and aligning digital images onto printed media
TW226450B (en) * 1992-08-31 1994-07-11 Canon Kk
JPH0732654A (en) * 1993-07-20 1995-02-03 Ricoh Co Ltd Method for correcting shear in image for printer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243373A (en) * 1989-03-17 1990-09-27 Hitachi Ltd Print misregistration correcting method and printer for practicing same method
JPH0422665A (en) * 1990-05-18 1992-01-27 Hitachi Ltd Method for correcting shift of printing position and printing apparatus for executing the same
JPH0569625A (en) 1991-09-11 1993-03-23 Seiko Epson Corp Serial printer
JPH0740599A (en) * 1993-07-28 1995-02-10 Nec Corp Serial printer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0938977A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126344A (en) * 1992-10-13 2000-10-03 Seiko Epson Corporation Tape cartridge and printing device
US6386774B1 (en) 1992-10-13 2002-05-14 Seiko Epson Corporation Tape cartridge and printing device

Also Published As

Publication number Publication date
DE69834802D1 (en) 2006-07-20
DE69834802T2 (en) 2007-05-16
EP0938977A4 (en) 2000-12-20
EP0938977B1 (en) 2006-06-07
US6158905A (en) 2000-12-12
EP0938977A1 (en) 1999-09-01

Similar Documents

Publication Publication Date Title
US7712739B2 (en) Conveying apparatus, inkjet recording apparatus, and method for controlling conveyance
US8356875B2 (en) Ink-jet recording device and ink-jet recording control method
US8562098B2 (en) Recording apparatus and recording method
JP2007331315A (en) Inkjet recorder and its controlling method
JP3557915B2 (en) Printing apparatus for performing bidirectional printing and print position adjusting method therefor
JP2009178986A (en) Inkjet recorder and method for detecting distance between head and paper
WO1999011465A1 (en) Printer for effecting bidirectional printing and method of adjusting the printing position therefor
JP4193902B2 (en) Image recording apparatus, image recording method, image recording program, and printer driver
JP4539182B2 (en) Printing apparatus, computer program, printing system, and printing method
JP2006224380A (en) Inkjet recording apparatus
JP2004058526A (en) Recorder, program, and computer system
JP4231122B2 (en) High density inkjet dot matrix printing method
JP4439207B2 (en) Image forming method and apparatus
JPH02145358A (en) Registration corrector
JP2004017505A (en) Inkjet recorder
JPH0280269A (en) Registration correction device
JP4507724B2 (en) Printing apparatus, computer program, printing system, and printing method
JP4683114B2 (en) Recording apparatus, recording control method, and recording control program
JP2008023778A (en) Image recording apparatus and program
US11660884B2 (en) Image forming apparatus
JP4604570B2 (en) Adjustment pattern forming method, adjustment pattern, printing method, and printing apparatus
JP4408769B2 (en) Image forming apparatus
JP2000203091A (en) Printing apparatus executing two-way printing and method for adjusting recording position and recording medium
JP4122886B2 (en) Printing apparatus, printing method, printed material manufacturing method, program, and computer system
JP2007008072A (en) Recording device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09297067

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998940662

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998940662

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998940662

Country of ref document: EP