WO1999006822A1 - Clinical examination apparatus and method - Google Patents

Clinical examination apparatus and method Download PDF

Info

Publication number
WO1999006822A1
WO1999006822A1 PCT/JP1998/003467 JP9803467W WO9906822A1 WO 1999006822 A1 WO1999006822 A1 WO 1999006822A1 JP 9803467 W JP9803467 W JP 9803467W WO 9906822 A1 WO9906822 A1 WO 9906822A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflectance
temperature
measured
corrected
measuring
Prior art date
Application number
PCT/JP1998/003467
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiko Harada
Original Assignee
Kyoto Daiichi Kagaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Daiichi Kagaku Co., Ltd. filed Critical Kyoto Daiichi Kagaku Co., Ltd.
Priority to AU84634/98A priority Critical patent/AU8463498A/en
Priority to JP51080499A priority patent/JP3203411B2/en
Publication of WO1999006822A1 publication Critical patent/WO1999006822A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00108Test strips, e.g. paper
    • G01N2035/00118Test strips, e.g. paper for multiple tests

Definitions

  • the present invention determines the reaction progress of a reaction reagent that reacts with a sample in a reagent portion (for example, a reagent pad) of a test piece based on the reflectance of light, and determines the reaction rate of a component substance in the sample in accordance with the reaction progress.
  • the present invention relates to a clinical test device and a method for testing a concentration.
  • a test is performed using a test piece to which a reagent pad containing a reaction reagent is attached. Specifically, after the test piece is immersed (contacted) in the sample, the clinical test apparatus determines the change in the reaction progress of the reagent pad 11a based on the light reflectance, and determines the reaction progress. The concentration of the component in the sample is detected according to.
  • the reflectance of light reflected by the reagent pad of the test piece is measured on a reaction table on which the test piece is placed, and based on the measured reflectivity.
  • a microcomputer determines the progress of the reaction of the reaction reagent and calculates a determination value according to the concentration of the component in the sample.
  • the reaction progress of the reagent is closely related to the reflectance of the test piece in the reagent pad, and the reaction progress can be determined by measuring the reflectance.
  • a clinical test device that determines the degree of reaction based on the reflectance of light has a temperature control mechanism that maintains a constant reference temperature near the reaction table on which the test specimen is placed. Some have. With such a temperature control mechanism, the reflectance is measured after a predetermined time elapses until the vicinity of the reaction table reaches a certain reference temperature.
  • a clinical test device equipped with a temperature control mechanism has a problem in that the manufacturing cost and the internal space required for the temperature control mechanism are increased, and the entire device is generally expensive and large in size. .
  • it takes time to reach a certain reference temperature so that there is a problem that the inspection cannot be started quickly. Disclosure of the invention
  • an object of the present invention is to provide a clinical test apparatus and a clinical test apparatus capable of reducing manufacturing costs, satisfying the demand for miniaturization, and capable of quickly and accurately determining the component concentration under various temperature environments. It is intended to provide a way.
  • a test piece having at least one reagent portion is brought into contact with a sample, and the reagent portion is reacted with a component material in the sample, thereby reducing the concentration of the component material.
  • a clinical test apparatus for testing comprising: a temperature measuring means for measuring the temperature of the test piece; a reflectance measuring means for irradiating the reagent portion with light to measure the reflectance; and a measurement from the temperature measuring means.
  • a reflectance correction unit that receives a temperature and a measured reflectance from the reflectance measurement unit and calculates a corrected reflectance based on a predetermined correction function; and, based on the corrected reflectance,
  • a clinical test apparatus is provided, comprising: a determination means for determining a concentration.
  • the corrected reflectance is calculated from the measured reflectance in consideration of the influence of the temperature change. Therefore, a temperature control mechanism that maintains the temperature of the test piece at a constant reference temperature during measurement. You don't need As a result, the manufacturing cost of the entire device can be reduced, and the demand for miniaturization can be satisfied.
  • the corrected reflectance will almost accurately represent the component concentration regardless of the temperature change. It can be done accurately.
  • Examples of the temperature measuring means include a resistance type sensor such as a ceramic capacitor and a capacitance type temperature sensor such as a ceramic capacitor. The force is not limited to these, and it is only necessary to be able to convert a temperature change into an electric signal convenient for arithmetic processing.
  • Examples of the reflectivity measuring means include a photoelectric element such as a phototransistor or a photoconductive cell. There is no particular limitation on the power and power, as long as it can convert the reflectance into an electric signal convenient for operation.
  • the reflectance correction means and the determination means can be realized by a dedicated microcomputer including, for example, a CPU.
  • a plurality of reagent parts may be installed on a general personal computer in which the software necessary for calculating the corrected reflectance may be installed.
  • a clinical test apparatus for testing the concentration of the above-mentioned test substance by bringing the test specimen into contact with the specimen and reacting each reagent portion with the substance in the specimen, and measuring the temperature of the test specimen.
  • a reflectance measuring unit for irradiating the reagent portion with light to measure the reflectance, and a measuring temperature from the temperature measuring device and a measured reflectance from the reflectance measuring unit.
  • a clinical test apparatus is provided, comprising: a controller for calculating a corrected reflectance based on a correction function corresponding to the above component substance, and determining a concentration of the component substance based on the corrected reflectance. You.
  • the controller includes a CPU and a memory, wherein the memory stores a correction function corresponding to different component materials, Is configured to read a corresponding correction function from the memory according to the component substance to be inspected. Further, the test piece is disposed on a reaction table, and the temperature measuring device is provided on the reaction table.
  • the clinical test apparatus further includes a printer, and the controller causes the determination result to be output to the printer.
  • the correction function can be defined as the sum of the measured reflectance and the relative deviation term.
  • the relative deviation term can be defined as a product of a temperature factor having the measured temperature as a variable and a reflectance factor having the measured reflectance as a variable.
  • a test piece having at least one reagent portion is brought into contact with a sample, and the reagent portion is reacted with a component material in the sample, thereby reducing the concentration of the component material.
  • a clinical test method for testing comprising: a temperature measurement step for measuring the temperature of the test piece; a reflectance measurement step for irradiating the reagent portion with light to measure the reflectance; and the measurement temperature and the measurement.
  • a clinical test method is provided, comprising: a reflectance correction step of calculating a corrected reflectance; and a determining step of determining a concentration of the component substance based on the corrected reflectance.
  • FIG. 1 is a perspective view showing the overall configuration of a clinical test apparatus according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing main components of the clinical test device.
  • FIG. 3 is a block diagram showing a connection relationship between main components in the clinical test apparatus.
  • FIG. 4 is a block diagram showing a configuration of a controller in the clinical test apparatus.
  • Figure 5 is a table showing the statistical data of the reflectance measured at each temperature using three different types of concentration samples.
  • FIG. 6 is a graph showing the relationship between the measured reflectance and the corrected reflectance at each measurement temperature.
  • Figure 7 is a table showing the approximation results of different temperature factors for each temperature obtained by curve approximation using the least squares method.
  • FIG. 8 is a table showing the corrected reflectance for each temperature obtained by performing correction on the sample shown in FIG.
  • FIGS. 9a and 9b are tables respectively showing the corrected reflectance and the measured reflectance for five different concentration samples obtained for the constituent ketone bodies.
  • FIGS. 10a and 10b are tables respectively showing corrected reflectances and measured reflectances of five different concentration samples obtained for the “ketone body” as a component substance.
  • FIGS. 10a and 1Ob are tables respectively showing the corrected reflectance and the measured reflectance for five different concentration samples obtained for "glucose" as a component substance.
  • Figures 11a and 11b show the five differences obtained for “occult blood” as a component substance.
  • 9 is a table showing a corrected reflectance and a measured reflectance for each density sample.
  • Figures 12a and 12b are tables showing the corrected and measured reflectances for five different concentration samples, respectively, obtained for "leukocyte” as a constituent substance.
  • c 5 is a flowchart showing a control operation of the clinical test apparatus shown in FIGS. BEST MODE FOR CARRYING OUT THE INVENTION
  • the clinical test equipment mainly consists of a reaction table 1, a drive motor 2, a temperature measurement device 3, a reflectance measurement unit 4, a controller 5, a printer 6, a display unit. 7. Operation unit 8 and power supply 9 are provided.
  • the reaction table 1 is arranged so as to be partially (approximately half) exposed above the support 10a of the apparatus main body 10 (see FIG. 1). Further, the printer 6, the display unit 7, and the operation unit 8 (including a plurality of key switches) are arranged at appropriate portions of the apparatus main body 10.
  • the reaction table 1 is formed in a disk shape by, for example, resin molding. On the surface of the reaction table 1, a plurality of grooves 1a for accommodating the strip-shaped test pieces 11 are formed radially at regular angular intervals. Each test strip 11 is provided with a plurality of reagent pads (reagent portions) 11a that exhibit a color reaction in response to a sample such as urine. Each reagent pad 1 1 a, the different reagents are impregnated. The light reflectance of the reagent pad 11a (which changes depending on the color of the reagent pad 11a) indicates the reaction progress of the reagent, and the reaction progress indicates the concentration of a specific component in the sample. . Therefore, by measuring the reflectance of the reagent pad 11a, the concentration of the specific component in the sample can be determined.
  • the reaction table 1 is driven to rotate by a drive motor 2.
  • the drive motor 2 is composed of a stepping motor or the like, and receives electric power from the power supply 9 to rotate the reaction table 1 by a predetermined step angle under the control of the controller 5.
  • the temperature measuring device 3 is for measuring the temperature in the vicinity of each test piece 11, and is composed of, for example, a temperature sensor such as a thermistor. In the illustrated embodiment, the temperature measuring device 3 is built in the reaction table 1, and does not require a separate space for the temperature measuring device 3. No. The temperature measured by the temperature measuring device 3 is converted into an electric signal and transmitted to the controller 5.
  • the reflectance measuring unit 4 is composed of a light source 4a, a lens 4b, a filter 4c, an integrating sphere 4d, a light receiving element 4e, a slide mechanism 4f, and a position sensor 4 g.
  • the light source 4a is composed of, for example, an LED, and irradiates light to each test piece 11 via a lens 4b and a filter 4c.
  • the reflected light from each reagent pad 11a on each test piece 11 is diffusely reflected on the inner surface of the integrating sphere 4d and enters the light receiving element 4f.
  • the light receiving element 4 e is composed of, for example, a photoelectric element such as a phototransistor.
  • Each test piece 11 is slid in the longitudinal direction within the groove 1a of the reaction table 1 by the slide mechanism 4f, so that the light reflectance at each reagent pad 11a of the test piece 11 is reduced. Required sequentially.
  • the position sensor 4 g detects light through a through hole 1 b formed below each groove 1 a in the reaction table 1.
  • the slide mechanism 4f and the position sensor 4g are connected to the controller 5, whereby the controller 5 controls the operation of the drive motor 2 and the slide mechanism 4f.
  • the controller 5 is constituted by a so-called microcomputer and is built in the apparatus main body 10.
  • the controller 5 receives the measured temperature transmitted from the temperature measuring device 3 and the measured reflectance transmitted from the reflectance measurement unit 4, and calculates a corrected reflectance based on a predetermined collection function. Have. Further, the controller 5 has a function of calculating the component concentration in the specimen as a determination value based on the calculated corrected reflectance. Further, the controller 5 has a function of controlling the entire apparatus such as printing out the calculated determination value on the printer 6 and displaying the operation state of the apparatus on the display unit 7.
  • the operation unit 8 is used for inputting various settings such as a date.
  • FIG. 4 is a block diagram showing a specific configuration of the controller 5.
  • the controller 5 includes a CPU 50, a ROM 51, a RAM 52, an EEPROM 53, and an interface 54.
  • the CPU 50, the ROM 51, the RAM 52, the EEPROM 53, and the interface 54 are interconnected by a bus line.
  • the bus lines include an address bus, a data bus, and a control signal line.
  • a temperature measuring device 3, a reflectance measuring unit 4, a printer 6, a display unit 7, and an operation unit 8 are connected to the interface 54.
  • the CPU 50 controls the entire laboratory device.
  • the ROM 51 stores various programs for processing performed by the CPU 50.
  • the RAM 52 temporarily stores programs, calculation results, and the like.
  • the EPROM 53 stores various functions and data.
  • the interface 54 has an input / output function of a signal transmitted / received to / from the controller 5.
  • the CPU 50 calls the correction function stored in the EE PRO M53 based on the calculation program stored in the ROM 51, and substitutes the measured temperature and the measured reflectance into the correction function to calculate the corrected reflectance. Is calculated.
  • the corrected reflectance is a value that is corrected based on the standard reflectance at a predetermined reference temperature.
  • the standard reflectance was created based on statistical data collected from multiple specimens 11 reacted with different concentrations of component substances, and stored in EEPROM 53 as a regression function by regression analysis. Have been.
  • the correction function is a regression function defined for calculating the corrected reflectance by the regression analysis of the statistical data according to the standard reflectance function, and is detected from the sample in accordance with the concentration. It is specified for each component material and stored in EEPROM 53.
  • the measured reflectance is corrected using the standard reflectance and the correction function for the following reasons.
  • the reaction between the component substance in the sample and the reagent in each reagent pad 11a of each test piece 11 is affected not only by the concentration of the component substance but also by the temperature. Therefore, the reflectance of each reagent pad 11a does not always accurately reflect the concentration of the component substance. Therefore, for different concentrations of the component substances, the reflectance at a standard temperature (for example, 25 ° C) is determined in advance as the standard reflectance, and the measured reflectance at a temperature deviated from the standard temperature is statistically calculated. The correction is made using the determined correction function. As a result, the calculated corrected reflectance roughly represents the value that would be obtained if the reflectance measured at a temperature other than the standard temperature were measured at the standard temperature.
  • the CPU 50 that has calculated the corrected reflectance calls the determination information stored in the EEPROM 53, and calculates the concentration of the component substance corresponding to the corrective reflectance as a determination value based on the determination information.
  • the judgment information is based on the component substances corresponding to the standard reflectance at a predetermined reference temperature.
  • the CPU 50 that has calculated the determination value causes the printer 6 to finally print out the determination value.
  • the component substances in the specimen to be determined include ketone bodies, proteins, glucose, leukocytes, hemoglobin, and the like.
  • pH and the like can also be determined.
  • Figure 5 is a table showing statistical data of reflectance measured at each temperature using three types of samples with different concentrations when the component substance is a ketone body. In the statistical data table in the same table, the component concentrations were gradually reduced from sample 1 to sample 3.
  • FIG. 6 is a graph showing the relationship between the measured reflectance and the corrected reflectance at different temperatures when 25 ° C. is used as the reference temperature. The horizontal axis of the graph actually shows the measured reflectance, and the vertical axis shows the corrected reflectance.
  • the standard reflectance at 25 ° C is defined as a proportional function by the following equation 1 where X is an independent variable and Y is a dependent variable.
  • X and Y shown below are not percentage values but percentage values (for example, 70% is 0.7).
  • the reflectance measured at temperatures other than 25 is expected to fluctuate upward or downward depending on the measured temperature, centered on the proportional function of the standard reflectance at 25 ° C. Is done.
  • the measured reflectance X is 0 and 100
  • the corrected reflection is independent of the measured temperature.
  • the rates Y also converge to 0 and 100, respectively.
  • the characteristic curve is such that it expands upward with respect to the proportional line of the standard reflectance, and when the measured temperature is lower than the reference temperature.
  • the correction function f defined by the relative deviation term where the measured temperature T is one of the independent variables is assumed to be the following equation 2.
  • the relative deviation term is a term defined by the following equation (3).
  • g (T) X m (1 -X) n (3)
  • the relative deviation term is defined as the product of the temperature factor with the measured temperature T as a variable and the reflectance factor with the measured reflectance X as a variable. .
  • approximation results as shown in the table of FIG. 7 can be obtained as different temperature factors for each temperature.
  • Figure 9a shows the corrected reflectance and judgment values at various temperatures obtained using five different samples (component substance: ketone body) different from those for which the data in Figures 5 and 8 were created. It is a table shown.
  • FIG. 9b is a table showing the measured reflectivity and the judgment value of the same five kinds of samples before collection. The reference temperature used for these samples was 29 ° C., and the correction function was based on the following equation 6.
  • FIG. 10a is a table showing corrected reflectances and determination values at various temperatures obtained using five types of samples containing glucose as a component substance.
  • Fig. 1 Ob is a table showing the measured reflectance and the judgment value before correction for the same five types of samples. The reference temperature used for these samples was 29 ° C., and the correction function was based on the following equation 7.
  • Equation 2 it may be more appropriate to use a correction function different from Equations 2 and 7 depending on the component substances.
  • the component substance is occult blood in urine as a sample and the reference temperature is 29 ° C., it is preferable to use the following formula 8.
  • Figure 11a is a table showing the corrected reflectances and judgment values at various temperatures obtained using five types of samples containing occult blood as a component substance. Equation 8 above was used.
  • FIG. 11b is a table showing the measured reflectivity and the judgment value of the same five types of samples before collection.
  • the judgment value when there is correction, the judgment is made based on the corrected reflectance
  • the values are all consistent values according to the component concentration of each sample, regardless of the measurement temperature.
  • the judgment value in the case of no correction, the judgment value itself shows a value that matches all according to the component concentration of each sample regardless of the measurement temperature.
  • the fluctuation range of the rate due to temperature change is larger than the corrected reflectance, and it is expected that this will affect the judgment value when fine judgment is required.
  • the component substance is white blood cells and the reference temperature is 29 ° C.
  • the reference temperature is 29 ° C.
  • Figure 1 2 a is a table showing corrected reflectances and judgment values at various temperatures obtained using five types of samples containing leukocytes as component substances, and the above equation 9 was used as a correction function.
  • Fig. 12b is a table showing the measured reflectance and the judgment value before correction for the same five types of samples.
  • step S 1 when the operation of the determination process is started, the temperature near the reaction table 1 on which the test piece 11 is placed is measured by the temperature measuring device 3 and transmitted to the controller 5 (step S 1).
  • Step S2 the slide mechanism 4 f of the reflectance measurement unit 4 slides the test piece 11, so that the reflectance is sequentially measured for each of the different reagent pads 11 a and transmitted to the controller 5. Will be done.
  • the CPU 50 of the controller 5 which receives the input of the measured temperature and the measured reflectance, calls an appropriate correction function from the EE PROM 53 for each component substance, and, for each measured reflectance, based on the correction function. Then, the specular reflectance is calculated (step S3).
  • the CPU 50 calls the determination information specified for each component substance from the EEPROM 53, and calculates a half-value for each corrected reflectance based on the determination information (step S4).
  • the CPU 50 prints out the determination value on the printer 6 (step S5), and ends the routine of this determination processing.
  • the measured reflectance at various temperatures can be converted to the standard reflectance at a predetermined reference temperature (for example, 25 ° C or 29 ° C) based on an appropriate correction function according to the component substances. It can be converted to approximate corrected reflectance. Therefore, there is no need for a temperature control mechanism for maintaining the temperature of the test piece 11 at a constant reference temperature at the time of measurement. As a result, the manufacturing cost of the entire apparatus is reduced, and the size of the apparatus is reduced. Can be satisfied. Since the corrected reflectance is similar to the standard reflectance, the concentration of the component in the sample can be determined quickly and accurately without considering the influence of temperature during measurement. Further, since the correction function is selected according to the type of the component substances, an accurate corrected reflectance can be calculated for each component substance.
  • a predetermined reference temperature for example, 25 ° C or 29 ° C
  • a correction function is defined for each component substance based on statistical data of three or five types of concentration samples. Further, by further increasing the number of concentration samples for each component substance, the correction function can be defined with higher estimation accuracy. Further, the correction function is not limited to the one described above, and the most appropriate one can be arbitrarily selected according to the type of the constituent substance.

Abstract

A clinical examination apparatus for measuring the concentrations of constituents in a sample by bringing a test piece (11) having a plurality of reagent portions (11a) into contact with a sample, reacting the reagent portions (11a) with the constituents of the sample, and irradiating the reagent portions (11a) with light to measure the reflectances at the reagent portions (11a). The apparatus comprises a temperature-measuring instrument (3) for measuring the temperature of the test piece (11), a reflectance measuring unit (4) for measuring the reflectances of the reagent portions (11a), and a controller (5) for calculating corrected reflectances based upon the correction functions corresponding to the constituents upon receiving the temperature measured by the temperature measuring instrument (3) and the reflectances measured by the reflectance measuring unit (4), and for determining the concentrations of the constituents based upon the corrected reflectances.

Description

明細書 臨床検査装置及び方法 技術分野  Description Clinical test apparatus and method
本発明は、 試験片の試薬部分 (例えば、 試薬パッ ド) において検体に反応する反 応試薬の反応進度を光の反射率に基づいて判定し、 その反応進度に応じて検体中の 成分物質の濃度を検査する臨床検査装置及び方法に関する。  The present invention determines the reaction progress of a reaction reagent that reacts with a sample in a reagent portion (for example, a reagent pad) of a test piece based on the reflectance of light, and determines the reaction rate of a component substance in the sample in accordance with the reaction progress. The present invention relates to a clinical test device and a method for testing a concentration.
'景技術 '' Jing Technology
一般的に、 この種の臨床検査装置では、 反応試薬を含有する試薬パッ ドが貼付さ れた試験片を用いて検査が行われる。 具体的には、 試験片が検体に浸漬 (接触) さ せられた後、 臨床検査装置は、 試薬パッド 1 1 aにおける反応進度の変化を、 光の 反射率に基づいて判定し、 その反応進度に応じて検体中の成分濃度を検出するので ある。  Generally, in this type of clinical test apparatus, a test is performed using a test piece to which a reagent pad containing a reaction reagent is attached. Specifically, after the test piece is immersed (contacted) in the sample, the clinical test apparatus determines the change in the reaction progress of the reagent pad 11a based on the light reflectance, and determines the reaction progress. The concentration of the component in the sample is detected according to.
このような臨床検査装置では、 試験片が載置される反応テーブル上において、 そ の試験片の試薬パッ ドにて反射した光の反射率を測定しており、 測定された反射率 に基づいてマイクロコンピュータが反応試薬の反応進度を判定し、検体中の成分濃 度に応じた判定値を算出している。 試薬の反応進度は、 試験片の試薬パッ ドにおけ る反射率と密接に関係しており、 反射率を測定することにより反応進度が判定でき るのである。  In such a clinical test apparatus, the reflectance of light reflected by the reagent pad of the test piece is measured on a reaction table on which the test piece is placed, and based on the measured reflectivity. A microcomputer determines the progress of the reaction of the reaction reagent and calculates a determination value according to the concentration of the component in the sample. The reaction progress of the reagent is closely related to the reflectance of the test piece in the reagent pad, and the reaction progress can be determined by measuring the reflectance.
しカヽしな力くら、 試薬の反応進度は、 温度の影響によって大きく変動するため、 反 射率も温度の影響によって変動することになる。 従って、 温度変化に対して何らの 対策も講じな 、場合には、 成分濃度の判定を正確に行うことができないことになる。 このような問題を解決するものとして、 光の反射率に基づいて反応進度を判定す る臨床検査装置には、 試験片が載置された反応テーブル付近を一定の基準温度に保 つ温度制御機構を備えたものがある。 このような温度制御機構によって、 反応テー ブル付近が一定の基準温度に到達するまでの所定時間が経過した後、 反射率の測定 が行われるようになつている。 しかし、 温度制御機構を備えた臨床検査装置では、 その温度制御機構に要する製 造コス卜や内部スペースの増大化を招き、 総じて装置全体がコス卜高で大型化され てしまうという問題があった。 し力、も、 このような温度制御機構によっては、 一定 の基準温度に到達するまでに時間を要するため、 迅速に検査を開始できないという 問題もあった。 発明の開示 Since the reaction rate of the reagent varies greatly due to the temperature, the reflectivity also varies according to the temperature. Therefore, if no countermeasures are taken against the temperature change, the component concentration cannot be accurately determined. To solve this problem, a clinical test device that determines the degree of reaction based on the reflectance of light has a temperature control mechanism that maintains a constant reference temperature near the reaction table on which the test specimen is placed. Some have. With such a temperature control mechanism, the reflectance is measured after a predetermined time elapses until the vicinity of the reaction table reaches a certain reference temperature. However, a clinical test device equipped with a temperature control mechanism has a problem in that the manufacturing cost and the internal space required for the temperature control mechanism are increased, and the entire device is generally expensive and large in size. . However, depending on the temperature control mechanism, it takes time to reach a certain reference temperature, so that there is a problem that the inspection cannot be started quickly. Disclosure of the invention
そこで、 本発明の目的は、 製造コスト低減を図るとともに、 小型化の要求も満足 し、 しかも様々な温度環境の下において、 成分濃度の判定を迅速かつ正確に行うこ とができる臨床検査装置及び方法を提供することを目的としている。  Therefore, an object of the present invention is to provide a clinical test apparatus and a clinical test apparatus capable of reducing manufacturing costs, satisfying the demand for miniaturization, and capable of quickly and accurately determining the component concentration under various temperature environments. It is intended to provide a way.
本発明の第 1の側面によれば、 少なくとも 1つの試薬部分を備えた試験片を検体 に接触させて、 上記試薬部分を検体中の成分物質と反応させることにより、 上記成 分物質の濃度を検査する臨床検査装置であって、 上記試験片の温度を測定する温度 測定手段と、 上記試薬部分に光を照射してその反射率を測定する反射率測定手段と 、 上記温度測定手段からの測定温度及び上記反射率測定手段からの測定反射率を受 けて、 所定の補正関数に基づき、 補正反射率を算出する反射率捕正手段と、 上記補 正反射率に基づいて、 上記成分物質の濃度を判定する判定手段と、 含む、 臨床検査 装置が提供される。  According to the first aspect of the present invention, a test piece having at least one reagent portion is brought into contact with a sample, and the reagent portion is reacted with a component material in the sample, thereby reducing the concentration of the component material. A clinical test apparatus for testing, comprising: a temperature measuring means for measuring the temperature of the test piece; a reflectance measuring means for irradiating the reagent portion with light to measure the reflectance; and a measurement from the temperature measuring means. A reflectance correction unit that receives a temperature and a measured reflectance from the reflectance measurement unit and calculates a corrected reflectance based on a predetermined correction function; and, based on the corrected reflectance, A clinical test apparatus is provided, comprising: a determination means for determining a concentration.
以上の構成の臨床検査装置によれば、 温度変化による影響を考慮して測定反射率 から補正反射率が算出されるので、 測定時に試験片の温度を一定の基準温度に保つ ような温度制御機構を必要とすることない。 その結果、 装置全体の製造コストが低 減されるとともに、 小型化の要求も満足することができる。 し力、も、 成分物質に応 じて補正関数を適切に規定することにより、 温度変化にかかわらず、 補正反射率が 成分濃度をほぼ正確に表すものとなるため、 成分濃度の判定を迅速かつ正確に行う ことができる。  According to the clinical test apparatus having the above configuration, the corrected reflectance is calculated from the measured reflectance in consideration of the influence of the temperature change. Therefore, a temperature control mechanism that maintains the temperature of the test piece at a constant reference temperature during measurement. You don't need As a result, the manufacturing cost of the entire device can be reduced, and the demand for miniaturization can be satisfied. By appropriately defining the correction function in accordance with the component materials, the corrected reflectance will almost accurately represent the component concentration regardless of the temperature change. It can be done accurately.
温度測定手段としては、 たとえばサ一ミス夕などの抵抗型センサやセラミックコ ンデンサなどの静電容量型の温度センサが挙げられる。 し力、しな力 ら、 特にこれら に限ることはなく、 温度変化を演算処理に都合のよい電気信号に変換できるもので . あればよい。 反射率測定手段としては、 たとえばフォトトランジスタや光導電セルなどの光電 素子が挙げられる。 し力、しな力 ら、 特にこれらに限ることはなく、 反射率を演 理に都合のよい電気信号に変換できるものであればよい。 Examples of the temperature measuring means include a resistance type sensor such as a ceramic capacitor and a capacitance type temperature sensor such as a ceramic capacitor. The force is not limited to these, and it is only necessary to be able to convert a temperature change into an electric signal convenient for arithmetic processing. Examples of the reflectivity measuring means include a photoelectric element such as a phototransistor or a photoconductive cell. There is no particular limitation on the power and power, as long as it can convert the reflectance into an electric signal convenient for operation.
反射率補正手段及び判定手段は、 たとえば C P Uなどを含む専用のマイクロコン ピュー夕によって実現することができる。 し力、しな力くら、 一般的なパーソナルコン ピュー夕に補正反射率の演算処理に必要なソフトウエアをィンストールしてもよい 本発明の第 2の側面によれば、 複数の試薬部分を備えた試験片を検体に接触させ て、 各試薬部分を検体中の成分物質と反応させることにより、 上記成分物質の濃度 を検査する臨床検査装置であって、 上記試験片の温度を測定する温度測定器と、 上 記試薬部分に光を照射してその反射率を測定する反射率測定ュニッ 卜と、 上記温度 測定器からの測定温度及び上記反射率測定ュニッ 卜からの測定反射率を受けて、 上 記成分物質に応じた補正関数に基づき、 補正反射率を算出するとともに、 上記補正 反射率に基づいて、 上記成分物質の濃度を判定するためのコントローラと、 含む、 臨床検査装置が提供される。  The reflectance correction means and the determination means can be realized by a dedicated microcomputer including, for example, a CPU. According to the second aspect of the present invention, a plurality of reagent parts may be installed on a general personal computer in which the software necessary for calculating the corrected reflectance may be installed. A clinical test apparatus for testing the concentration of the above-mentioned test substance by bringing the test specimen into contact with the specimen and reacting each reagent portion with the substance in the specimen, and measuring the temperature of the test specimen. A reflectance measuring unit for irradiating the reagent portion with light to measure the reflectance, and a measuring temperature from the temperature measuring device and a measured reflectance from the reflectance measuring unit. A clinical test apparatus is provided, comprising: a controller for calculating a corrected reflectance based on a correction function corresponding to the above component substance, and determining a concentration of the component substance based on the corrected reflectance. You.
上記本発明の第 2の側面の好適な実施形態によれば、 上記コントローラは、 C P Uとメモリとを含んでおり、 上記メモリは異なる成分物質に対応する補正関数を記 憶しており、 上記 C P Uは検査すべき成分物質に応じて上記メモリから対応する補 正関数を読み出すように構成されている。 また、 上記試験片は反応テーブル上に配 置されており、 上記温度測定器は上記反応テーブルに設けられている。  According to a preferred embodiment of the second aspect of the present invention, the controller includes a CPU and a memory, wherein the memory stores a correction function corresponding to different component materials, Is configured to read a corresponding correction function from the memory according to the component substance to be inspected. Further, the test piece is disposed on a reaction table, and the temperature measuring device is provided on the reaction table.
臨床検査装置はさらにプリンタを備えており、 上記コントローラは判定結果を上 記プリン夕に出力させるようになつているのが好ましい。  Preferably, the clinical test apparatus further includes a printer, and the controller causes the determination result to be output to the printer.
上記補正関数は、 上記測定反射率と相対偏差項との和として規定することができ る。 この場合、 上記相対偏差項は、 上記測定温度を変数とした温度因子と上記測定 反射率を変数とした反射率因子との積として規定できる。  The correction function can be defined as the sum of the measured reflectance and the relative deviation term. In this case, the relative deviation term can be defined as a product of a temperature factor having the measured temperature as a variable and a reflectance factor having the measured reflectance as a variable.
本発明の第 3の側面によれば、 少なくとも 1つの試薬部分を備えた試験片を検体 に接触させて、 上記試薬部分を検体中の成分物質と反応させることにより、 上記成 分物質の濃度を検査する臨床検査方法であつて、 上記試験片の温度を測定する温度 測定ステツプと、 上記試薬部分に光を照射してその反射率を測定する反射率測定ス テツプと、 上記測定温度及び上記測定反射率を用いて、 所定の補正関数に基づき、 補正反射率を算出する反射率補正ステップと、 上記補正反射率に基づいて、 上記成 分物質の濃度を判定する判定ステップと、 を含む、 臨床検査方法が提供される。 本発明のその他の目的、 特徴及び利点は、 添付図面を参照して以下に行う詳細な 説明によってより明らかとなろう。 図面の簡単な説明 According to the third aspect of the present invention, a test piece having at least one reagent portion is brought into contact with a sample, and the reagent portion is reacted with a component material in the sample, thereby reducing the concentration of the component material. A clinical test method for testing, comprising: a temperature measurement step for measuring the temperature of the test piece; a reflectance measurement step for irradiating the reagent portion with light to measure the reflectance; and the measurement temperature and the measurement. Using the reflectance, based on a predetermined correction function, A clinical test method is provided, comprising: a reflectance correction step of calculating a corrected reflectance; and a determining step of determining a concentration of the component substance based on the corrected reflectance. Other objects, features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態にかかる臨床検査装置の全体構成を示す斜視図であ る。  FIG. 1 is a perspective view showing the overall configuration of a clinical test apparatus according to one embodiment of the present invention.
図 2は、 同臨床検査装置の主要構成要素を示す概略図である。  FIG. 2 is a schematic diagram showing main components of the clinical test device.
図 3は、 同臨床検査装置における主要構成要素間の接続関係を示すプロック図で ある。  FIG. 3 is a block diagram showing a connection relationship between main components in the clinical test apparatus.
図 4は、 同臨床検査装置におけるコントローラの構成を示したブロック図である。 図 5は、 異なる 3種類の濃度サンプルを用いて、 各温度ごとに測定された反射率 の統計デ一タを示した表である。  FIG. 4 is a block diagram showing a configuration of a controller in the clinical test apparatus. Figure 5 is a table showing the statistical data of the reflectance measured at each temperature using three different types of concentration samples.
図 6は、 各測定温度ごとにおける測定反射率と補正反射率との関係を示すグラフ である。  FIG. 6 is a graph showing the relationship between the measured reflectance and the corrected reflectance at each measurement temperature.
図 7は、 最小二乗法を利用した曲線近似により得られた各温度ごとに異なる温度 因子の近似結果を示した表である。  Figure 7 is a table showing the approximation results of different temperature factors for each temperature obtained by curve approximation using the least squares method.
図 8は、 図 5に示すサンプルについて補正を施すことにより得られた、 各温度ご との補正反射率を示した表である。  FIG. 8 is a table showing the corrected reflectance for each temperature obtained by performing correction on the sample shown in FIG.
図 9 a及び 9 bは、 成分物質ケトン体について得られた、 5つの異なる濃度サン プルについての補正反射率及び測定反射率をそれぞれ示す表である。  FIGS. 9a and 9b are tables respectively showing the corrected reflectance and the measured reflectance for five different concentration samples obtained for the constituent ketone bodies.
図 1 0 a及び 1 0 bは、 成分物質としての 「ケトン体」 について得られた、 5つ の異なる濃度サンプルについての補正反射率及び測定反射率をそれぞれ示す表であ 。  FIGS. 10a and 10b are tables respectively showing corrected reflectances and measured reflectances of five different concentration samples obtained for the “ketone body” as a component substance.
図 1 0 a及び 1 O bは、 成分物質としての 「グルコース」 について得られた、 5 つの異なる濃度サンプルについての補正反射率及び測定反射率をそれぞれ示す表で ある。  FIGS. 10a and 1Ob are tables respectively showing the corrected reflectance and the measured reflectance for five different concentration samples obtained for "glucose" as a component substance.
図 1 1 a及び 1 1 bは、 成分物質としての 「潜血」 について得られた、 5つの異 なる濃度サンプルについての補正反射率及び測定反射率をそれぞれ示す表である。 図 1 2 a及び 1 2 bは、 成分物質としての 「白血球」 について得られた、 5つの 異なる濃度サンプルについての補正反射率及び測定反射率をそれぞれ示す表である c 図 1 3は、 図 1〜4に示す臨床検査装置の制御動作を示したフローチャートであ る。 発明を実施するための最良の形態 Figures 11a and 11b show the five differences obtained for “occult blood” as a component substance. 9 is a table showing a corrected reflectance and a measured reflectance for each density sample. Figures 12a and 12b are tables showing the corrected and measured reflectances for five different concentration samples, respectively, obtained for "leukocyte" as a constituent substance.c 5 is a flowchart showing a control operation of the clinical test apparatus shown in FIGS. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施形態を添付図面を参照して具体的に説明する。  Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the accompanying drawings.
図 1〜図 3に示されるように、 臨床検査装置は、 主として、 反応テ一ブル 1、 駆 動モータ 2、 温度測定器 3、 反射率測定ュニッ ト 4、 コントローラ 5、 プリンタ 6 、 表示ュニッ ト 7、 操作ュニッ ト 8、 及び電源 9を備えている。 反応テーブル 1は 、 装置本体 1 0の支持台 1 0 a上方において一部 (約半分) 露出した状態にて配置 されている (図 1参照) 。 また、 プリンタ 6、 表示ュニッ ト 7及び操作ュニッ 卜 8 (複数のキースィッチを含む) は装置本体 1 0の適部に配置されている。  As shown in Fig. 1 to Fig. 3, the clinical test equipment mainly consists of a reaction table 1, a drive motor 2, a temperature measurement device 3, a reflectance measurement unit 4, a controller 5, a printer 6, a display unit. 7. Operation unit 8 and power supply 9 are provided. The reaction table 1 is arranged so as to be partially (approximately half) exposed above the support 10a of the apparatus main body 10 (see FIG. 1). Further, the printer 6, the display unit 7, and the operation unit 8 (including a plurality of key switches) are arranged at appropriate portions of the apparatus main body 10.
反応テーブル 1は、 例えば樹脂成形により円盤状に形成されている。 反応テープ ル 1の表面には、 ストリツプ状の試験片 1 1を収容するための複数の溝 1 aが放射 状にかつ一定角度間隔ごとに形成されている。 各試馬矣片 1 1は、 例えば尿などの検 体に反応して呈色反応を示す複数の試薬パッ ド (試薬部分) 1 1 aを備えている。 各試薬パッ ド 1 1 aは、 異なる試薬が含浸されている。 試薬パッ ド 1 1 aにおける 光の反射率 (試薬パッ ド 1 1 aの色により変化する) は試薬の反応進度を表してお り、 この反応進度は検体中における特定成分の濃度を表している。 従って、 試薬パ ッ ド 1 1 aの反射率を測定することにより、 検体中の特定成分の濃度を判定するこ とができる。 The reaction table 1 is formed in a disk shape by, for example, resin molding. On the surface of the reaction table 1, a plurality of grooves 1a for accommodating the strip-shaped test pieces 11 are formed radially at regular angular intervals. Each test strip 11 is provided with a plurality of reagent pads (reagent portions) 11a that exhibit a color reaction in response to a sample such as urine. Each reagent pad 1 1 a, the different reagents are impregnated. The light reflectance of the reagent pad 11a (which changes depending on the color of the reagent pad 11a) indicates the reaction progress of the reagent, and the reaction progress indicates the concentration of a specific component in the sample. . Therefore, by measuring the reflectance of the reagent pad 11a, the concentration of the specific component in the sample can be determined.
反応テーブル 1は、 駆動モータ 2により回転駆動される。 駆動モータ 2は、 ステ ッビングモータなどからなり、 電源 9からの電力を受けて、 コントローラ 5による 制御下で反応テーブル 1を所定のステツプ角ずつ回転させる。  The reaction table 1 is driven to rotate by a drive motor 2. The drive motor 2 is composed of a stepping motor or the like, and receives electric power from the power supply 9 to rotate the reaction table 1 by a predetermined step angle under the control of the controller 5.
温度測定器 3は、 各試験片 1 1の近傍の温度を測定するためのものであり、 例え ばサーミスタなどの温度センサにより構成される。 図示の実施形態では、 温度測定 器 3は反応テーブル 1に内蔵されており、 別途その配置スペースを要することはな い。 温度測定器 3によって測定された温度は、 電気信号に変換されてコントローラ 5に送信される。 The temperature measuring device 3 is for measuring the temperature in the vicinity of each test piece 11, and is composed of, for example, a temperature sensor such as a thermistor. In the illustrated embodiment, the temperature measuring device 3 is built in the reaction table 1, and does not require a separate space for the temperature measuring device 3. No. The temperature measured by the temperature measuring device 3 is converted into an electric signal and transmitted to the controller 5.
図 2に示されるように、 反射率測定ユニッ ト 4は、 光源 4 a、 レンズ 4 b、 フィ ル夕 4 c、 積分球 4 d、 受光素子 4 e、 スライ ド機構 4 f 、 及び位置センサ 4 gを 備えている。 光源 4 aは例えば L EDで構成され、 光をレンズ 4 b及びフィルタ 4 cを介して各試験片 1 1に照射する。 各試験片 1 1における各試薬パッ ド 1 1 aか らの反射光は積分球 4 dの内面で拡散反射して受光素子 4 f に入射する。 受光素子 4 eは例えばフォトトランジスタなどの光電素子で構成され、 受光した反射光を電 気信号に変換して、 コントローラ 5に送信する。 各試験片 1 1はスライ ド機構 4 f により、 反応テーブル 1の溝 1 a内で長手方向にスライド移動され、 それにより試 験片 1 1の各試薬パッ ド 1 1 aにおける光の反射率が順次求められる。 位置センサ 4 gは、 反応テーブル 1における各溝 1 aの下方に形成した貫通孔 1 bを介して光 を検出する。 スライ ド機構 4 f 及び位置センサ 4 gは、 コントローラ 5に接続され ており、 これによりコントローラ 5が駆動モータ 2及びスライ ド機構 4 f の動作を 制御する。  As shown in Fig. 2, the reflectance measuring unit 4 is composed of a light source 4a, a lens 4b, a filter 4c, an integrating sphere 4d, a light receiving element 4e, a slide mechanism 4f, and a position sensor 4 g. The light source 4a is composed of, for example, an LED, and irradiates light to each test piece 11 via a lens 4b and a filter 4c. The reflected light from each reagent pad 11a on each test piece 11 is diffusely reflected on the inner surface of the integrating sphere 4d and enters the light receiving element 4f. The light receiving element 4 e is composed of, for example, a photoelectric element such as a phototransistor. Each test piece 11 is slid in the longitudinal direction within the groove 1a of the reaction table 1 by the slide mechanism 4f, so that the light reflectance at each reagent pad 11a of the test piece 11 is reduced. Required sequentially. The position sensor 4 g detects light through a through hole 1 b formed below each groove 1 a in the reaction table 1. The slide mechanism 4f and the position sensor 4g are connected to the controller 5, whereby the controller 5 controls the operation of the drive motor 2 and the slide mechanism 4f.
コントローラ 5は、 いわゆるマイクロコンピュータにより構成されて装置本体 1 0内に内蔵されている。 コントローラ 5は、 温度測定器 3から送信された測定温度 と、 反射率測定ュニッ ト 4から送信された測定反射率とを受けて、 所定の捕正関数 に基づいて補正反射率を算出する機能を有している。 また、 コントローラ 5は、 算 出した補正反射率に基づいて、 検体中の成分濃度を判定値として算出する機能を有 している。 さらに、 コントローラ 5は、 算出した判定値をプリンタ 6に印字出力さ せたり、 装置の作動状態を表示ュニッ ト 7に表示させるなどの装置全体を制御する 機能も有している。  The controller 5 is constituted by a so-called microcomputer and is built in the apparatus main body 10. The controller 5 receives the measured temperature transmitted from the temperature measuring device 3 and the measured reflectance transmitted from the reflectance measurement unit 4, and calculates a corrected reflectance based on a predetermined collection function. Have. Further, the controller 5 has a function of calculating the component concentration in the specimen as a determination value based on the calculated corrected reflectance. Further, the controller 5 has a function of controlling the entire apparatus such as printing out the calculated determination value on the printer 6 and displaying the operation state of the apparatus on the display unit 7.
操作ュニッ ト 8は、 日付などの各種設定を入力するために使用される。  The operation unit 8 is used for inputting various settings such as a date.
図 4は、 コントローラ 5の具体的構成を示したブロック図である。 同図に示すよ うに、 コントローラ 5は、 C PU 5 0、 ROM5 1、 RAM 5 2、 EEPROM5 3、 及びインタ一フェース 5 4を備えている。 CPU 5 0、 ROM5 1、 RAM 5 2、 EEPROM5 3、 及びインタ一フェース 5 4は、 バス線により相互に接続さ れている。 バス線には、 アドレスバス、 データバス、 及び制御信号線が含まれる。 インタ一フヱ一ス 5 4には、 温度測定器 3、 反射率測定ュニッ 卜 4、 プリンタ 6、 表示ュニッ 卜 7、 及び操作ュニッ ト 8が接続されている。 FIG. 4 is a block diagram showing a specific configuration of the controller 5. As shown in the figure, the controller 5 includes a CPU 50, a ROM 51, a RAM 52, an EEPROM 53, and an interface 54. The CPU 50, the ROM 51, the RAM 52, the EEPROM 53, and the interface 54 are interconnected by a bus line. The bus lines include an address bus, a data bus, and a control signal line. A temperature measuring device 3, a reflectance measuring unit 4, a printer 6, a display unit 7, and an operation unit 8 are connected to the interface 54.
C P U 5 0は、 臨床検査装置全体を制御する。 ROM5 1は、 CPU 5 0で行わ れる処理のための種々なプログラムを格納している。 RAM5 2は、 プログラムや 算出結果などを一時的に格納する。 E E P ROM 5 3は、 各種の関数やデータなど を記憶している。 インタ一フヱ一ス 5 4は、 コントローラ 5との間で送受信される 信号の入出力機能を有する。  CPU 50 controls the entire laboratory device. The ROM 51 stores various programs for processing performed by the CPU 50. The RAM 52 temporarily stores programs, calculation results, and the like. The EPROM 53 stores various functions and data. The interface 54 has an input / output function of a signal transmitted / received to / from the controller 5.
CPU 5 0は、 ROM 5 1に格納された演算プログラムに基づいて、 EE PRO M5 3に記憶された補正関数を呼び出し、 この補正関数に測定温度及び測定反射率 を代入演算することによって補正反射率を算出する。 この補正反射率は、 所定の基 準温度における標準反射率を準拠として捕正される値である。 標準反射率は、 異な る濃度の成分物質と反応させられた複数の試験片 1 1より採取された統計デ一夕に 基づいて作成されたものであり、 回帰分析により回帰関数として EEPROM5 3 に記憶されている。 また、 補正関数は、 上記標準反射率の関数に準じた上記統計デ 一夕の回帰分析により、 補正反射率を算出するために規定された回帰関数であつて 、 濃度に応じて検体から検出される成分物質別に規定され、 EEPROM5 3に記 憶されている。  The CPU 50 calls the correction function stored in the EE PRO M53 based on the calculation program stored in the ROM 51, and substitutes the measured temperature and the measured reflectance into the correction function to calculate the corrected reflectance. Is calculated. The corrected reflectance is a value that is corrected based on the standard reflectance at a predetermined reference temperature. The standard reflectance was created based on statistical data collected from multiple specimens 11 reacted with different concentrations of component substances, and stored in EEPROM 53 as a regression function by regression analysis. Have been. Further, the correction function is a regression function defined for calculating the corrected reflectance by the regression analysis of the statistical data according to the standard reflectance function, and is detected from the sample in accordance with the concentration. It is specified for each component material and stored in EEPROM 53.
以上のように、 測定反射率を標準反射率と補正関数とを用いて補正するのは次の 理由による。 各試験片 1 1の各試薬パッ ド 1 1 aにおける検体中の成分物質と試薬 との反応は成分物質の濃度のみならず温度によっても影響を受ける。 従って、 各試 薬パッ ド 1 1 aの反射率は成分物質の濃度を正確に反映しているとは限らない。 そ こで、 成分物質の異なる濃度について予め標準温度 (例えば、 2 5°C) における反 射率を標準反射率として定めておき、 その標準温度からずれた温度における測定反 射率を統計的に定められた補正関数を用いて修正するのである。 この結果、 求めら れた補正反射率は、 標準温度以外の温度で測定された反射率が、 仮に標準温度で測 定されたならば得られるであろう値を概ね表すことになる。  As described above, the measured reflectance is corrected using the standard reflectance and the correction function for the following reasons. The reaction between the component substance in the sample and the reagent in each reagent pad 11a of each test piece 11 is affected not only by the concentration of the component substance but also by the temperature. Therefore, the reflectance of each reagent pad 11a does not always accurately reflect the concentration of the component substance. Therefore, for different concentrations of the component substances, the reflectance at a standard temperature (for example, 25 ° C) is determined in advance as the standard reflectance, and the measured reflectance at a temperature deviated from the standard temperature is statistically calculated. The correction is made using the determined correction function. As a result, the calculated corrected reflectance roughly represents the value that would be obtained if the reflectance measured at a temperature other than the standard temperature were measured at the standard temperature.
補正反射率を算出した CPU 5 0は、 EEPROM5 3に記憶された判定情報を 呼び出し、 この判定情報に基づいて捕正反射率に応じた成分物質の濃度を判定値と して算出する。 判定情報は、 所定の基準温度における標準反射率に応じた成分物質 の濃度を段階的な判定値として数値換算するデータマップあるいは換算式であつてThe CPU 50 that has calculated the corrected reflectance calls the determination information stored in the EEPROM 53, and calculates the concentration of the component substance corresponding to the corrective reflectance as a determination value based on the determination information. The judgment information is based on the component substances corresponding to the standard reflectance at a predetermined reference temperature. A data map or conversion formula that converts the concentration of
、 成分物質別に規定され、 E E P R O M 5 3に記憶されている。 It is defined for each component substance and is stored in EEPROM 53.
判定値を算出した C P U 5 0は、 最終的にプリンタ 6によってその判定値を印字 出力させる。 なお、 判定対象となる検体中の成分物質としては、 ケトン体、 たんば く質、 ブドウ糖、 白血球、 ヘモグロビンなどが挙げられる。 また、 検体の成分物質 ではないが、 p Hなども判定対象となる。  The CPU 50 that has calculated the determination value causes the printer 6 to finally print out the determination value. In addition, examples of the component substances in the specimen to be determined include ketone bodies, proteins, glucose, leukocytes, hemoglobin, and the like. In addition, although it is not a component of the sample, pH and the like can also be determined.
次に、 測定反射率から補正反射率を求め、 さらに判定値を算出するまでの具体的 手順を説明する。  Next, a specific procedure from obtaining the corrected reflectance from the measured reflectance to calculating the determination value will be described.
図 5は、 成分物質がケトン体である場合において、 その濃度が異なる 3種類のサ ンプルを用いて、 各温度ごとに測定された反射率の統計デ一夕を示した表である。 同表の統計デ一夕では、 サンプル 1からサンプル 3へと順次成分濃度を低濃度とし ている。  Figure 5 is a table showing statistical data of reflectance measured at each temperature using three types of samples with different concentrations when the component substance is a ketone body. In the statistical data table in the same table, the component concentrations were gradually reduced from sample 1 to sample 3.
図 5から分かるように、 成分濃度が低くなると反射率が高くなる。 一方、 各サン プルごとにおける温度の変化による反射率の変動を見ると、 サンプル 3を除き、 温 度が高くなるに従つて反射率が低くなることが読みとれる。 このような統計デ一夕 に基づき、 標準反射率は、 例えば 2 5 °Cにおける反射率として規定されている。 図 6は、 2 5 °Cを基準温度とした場合の異なる温度における測定反射率と補正反 射率の関係を示すグラフである。 同グラフの横軸が実際に測定反射率を示し、 縦軸 が補正反射率を示している。  As can be seen from Fig. 5, the reflectance increases as the component concentration decreases. On the other hand, looking at the change in reflectance due to the change in temperature for each sample, it can be seen that, except for Sample 3, the reflectance decreases as the temperature increases. Based on such statistical data, the standard reflectance is defined, for example, as the reflectance at 25 ° C. FIG. 6 is a graph showing the relationship between the measured reflectance and the corrected reflectance at different temperatures when 25 ° C. is used as the reference temperature. The horizontal axis of the graph actually shows the measured reflectance, and the vertical axis shows the corrected reflectance.
図 6のグラフから分かるように、 2 5 °Cにおける標準反射率は、 独立変数を X、 従属変数を Yとした下記式 1によって比例関数として規定される。 なお、 以下に示 す X及び Yの値は、 パーセント値ではない割合値 (例えば、 7 0 %は 0 . 7である ) としている。  As can be seen from the graph of FIG. 6, the standard reflectance at 25 ° C is defined as a proportional function by the following equation 1 where X is an independent variable and Y is a dependent variable. The values of X and Y shown below are not percentage values but percentage values (for example, 70% is 0.7).
X = Y ( 1 ) 一方、 2 5 以外の温度で測定された反射率は、 2 5 °Cにおける標準反射率の比 例関数を中心として、 測定温度に応じて上側又は下側に変動する予想される。 但し 、 測定反射率 Xが 0及び 1 0 0の場合は、 測定温度の如何にかかわらず、 補正反射 率 Yもそれぞれ 0及び 1 00に収束するものとされる。 この結果、 測定温度が基準 温度 (25°C) よりも大きい場合には、 標準反射率の比例直線に対して上側に膨ら むような特性曲線で示され、 測定温度が基準温度よりも小さい場合には、 標準反射 率の比例直線から下側に膨らんだような特性曲線で示されることになる。 そこで、 これらの統計データに基づいて曲線近似による回帰分析を行うことにより、 測定温 度 Tを独立変数の 1つとした相対偏差項により規定される補正関数 f を下式 2と仮 定する。 X = Y (1) On the other hand, the reflectance measured at temperatures other than 25 is expected to fluctuate upward or downward depending on the measured temperature, centered on the proportional function of the standard reflectance at 25 ° C. Is done. However, when the measured reflectance X is 0 and 100, the corrected reflection is independent of the measured temperature. The rates Y also converge to 0 and 100, respectively. As a result, when the measured temperature is higher than the reference temperature (25 ° C), the characteristic curve is such that it expands upward with respect to the proportional line of the standard reflectance, and when the measured temperature is lower than the reference temperature. Will be shown by a characteristic curve that swells downward from the proportional straight line of the standard reflectance. Therefore, by performing regression analysis by curve approximation based on these statistical data, the correction function f defined by the relative deviation term where the measured temperature T is one of the independent variables is assumed to be the following equation 2.
Y= f (X, T) =Χ+ g (Τ) · Xm (1 - X) η (2) Y = f (X, T) = Χ + g (Τ) X m (1-X) η (2)
m, n :任意の定数 ここで、 相対偏差項とは、 下式 3により規定される項である。 g (T) · Xm (1 -X) n (3) 上記相対偏差項は、 測定温度 Tを変数とした温度因子と測定反射率 Xを変数とし た反射率因子との積として規定される。 例えば、 m及び nを 2とし、 最小二乗法を 利用した曲線近似による回帰分析によれば、 各温度ごとに異なる温度因子として図 7の表に示すような近似結果が得られる。 m, n: Arbitrary constants Here, the relative deviation term is a term defined by the following equation (3). g (T) X m (1 -X) n (3) The relative deviation term is defined as the product of the temperature factor with the measured temperature T as a variable and the reflectance factor with the measured reflectance X as a variable. . For example, according to the regression analysis by curve approximation using the least squares method with m and n being 2, approximation results as shown in the table of FIG. 7 can be obtained as different temperature factors for each temperature.
この図 7の表に示される温度因子の近似結果に基づいて、 さらに最小二乗法を利 用した直線近似による回帰分析を行うことにより、 温度因子が下式 4により規定さ れる。 g (T) =A (T一 T。 ) (4)  Based on the approximation results of the temperature factors shown in the table of FIG. 7, regression analysis is performed by linear approximation using the least squares method, whereby the temperature factors are defined by the following equation 4. g (T) = A (T-T.) (4)
Α:最小二乗法により決定された係数 (A=0. 1 12)  Α: Coefficient determined by the least squares method (A = 0.112)
To :基準温度 (T。 = 25) 以上に基づいて、 補正関数は、 下式 5により決定される。 なお、 係数 Αは、 最小 二乗法によって決定された値より若干大きめの 0. 1 25とする。 Y = f (X, T ) = X + 0. 125 (T- 25) · X2 (1-X) 2 ( 5 ) 上記補正関数に対して、 図 5の統計データにより示される測定温度及び測定反射 率を代入すると、 図 8に示されるように、 各温度ごとに補正反射率が得られる。 こ の補正デ一夕について考察すると、 各温度ごとの補正反射率は、 基準温度 2 5 °Cに おける標準反射率に対して測定反射率よりも誤差の小さい数値となっている。 従つ て、 このような補正関数によって得られた補正反射率は、 基準温度に則して標準反 射率に近似した値として算出されることとなる。 そして、 コントローラ 5は、 算出 された捕正反射率を判定情報に対比することにより、 各温度ごとに判定値 (判定デ 一夕) を算出することができる。 To: Reference temperature (T. = 25) Based on the above, the correction function is determined by Equation 5 below. The coefficient Α is 0.125, which is slightly larger than the value determined by the least squares method. Y = f (X, T) = X + 0.125 (T-25) · X 2 (1-X) 2 (5) For the above correction function, the measurement temperature and measurement indicated by the statistical data in Fig. 5. By substituting the reflectance, a corrected reflectance is obtained for each temperature as shown in FIG. Considering this correction data, the corrected reflectance at each temperature has a smaller error than the measured reflectance at the reference temperature of 25 ° C. Therefore, the corrected reflectance obtained by such a correction function is calculated as a value approximating the standard reflectance in accordance with the reference temperature. Then, the controller 5 can calculate a judgment value (decision data) for each temperature by comparing the calculated corrective reflectance with the judgment information.
図 9 aは、 図 5及び 8のデータを作成したのとは別の 5種類のサンプル (成分物 質:ケトン体) を用いて得られた、 種々な温度における補正反射率と判定値とを示 す表である。 比較のために、 図 9 bは、 同じ 5種類のサンプルについての、 捕正前 の測定反射率及び判定値を示す表である。 なお、 これらサンプルについて用いた基 準温度は 2 9 °Cとし、 補正関数は、 下式 6によった。  Figure 9a shows the corrected reflectance and judgment values at various temperatures obtained using five different samples (component substance: ketone body) different from those for which the data in Figures 5 and 8 were created. It is a table shown. For comparison, FIG. 9b is a table showing the measured reflectivity and the judgment value of the same five kinds of samples before collection. The reference temperature used for these samples was 29 ° C., and the correction function was based on the following equation 6.
Y = f (X, T ) = X + 0. 16 (Τ-29) · X2 (1-Χ) 2 ( 6 ) 図 9 aに示すように、 捕正ありの場合、 補正反射率に基づいて判定された判定値 は、 測定温度の如何にかかわらず、 各サンプルの成分濃度に応じて全て一致した値 を示している。 一方、 図 9 bに示すように、 捕正なしの場合、 たとえばサンプル 5 について見ると、 基準温度 2 9 °Cにおける判定値に対して測定温度 1 6 °Cでは、 他 の測定温度におけるものと異なる値の判定値となっている。 このことから理解され るように、 補正関数に基づき演算された補正反射率を用いれば、 測定温度の影響に 左右されない一定した判定値が求められることがわかる。 なお、 図 9 a及び 9 b ( 後述の図 1 0 a〜図 1 2 bについても同様) にて用いている 「 F E Fし 」 な る略号は捕正反射率を示し、 「M. F E F L . 」 なる略号は測定反射率を示してい る。 また、 「E V T D. V」 なる略号は評価値を示す。 図 1 0 aは、 成分物質としてグルコースを含む 5種類のサンプルを用いて得られ た、 種々な温度における補正反射率と判定値とを示す表である。 比較のために、 図 1 O bは、 同じ 5種類のサンプルについての、 補正前の測定反射率及び判定値を示 す表である。 なお、 これらサンプルについて用いた基準温度は 2 9°Cとし、 補正関 数は、 下式 7によった。 Y = f (X, T) = X + 0.16 (Τ-29) · X 2 (1-Χ) 2 (6) As shown in Fig. 9a, with correction, based on the corrected reflectance The determination values determined by the above are all consistent values according to the component concentration of each sample regardless of the measurement temperature. On the other hand, as shown in FIG. The judgment values are different values. As can be understood from this, it is understood that a constant determination value that is not influenced by the measured temperature can be obtained by using the corrected reflectance calculated based on the correction function. Note that the abbreviation “FEF” used in FIGS. 9a and 9b (the same applies to FIGS. 10a to 12b described later) indicates the collection reflectance, and “M. FEFL.” The abbreviations indicate the measured reflectance. The abbreviation "EVT DV" indicates the evaluation value. FIG. 10a is a table showing corrected reflectances and determination values at various temperatures obtained using five types of samples containing glucose as a component substance. For comparison, Fig. 1 Ob is a table showing the measured reflectance and the judgment value before correction for the same five types of samples. The reference temperature used for these samples was 29 ° C., and the correction function was based on the following equation 7.
Y= f (X, T) = X + 0.021 (Τ-29) · X (1-Χ)3 (7) 上記式 7は、 式 2 [Y= f (X, T) =X+g (T) · Xm ( 1 - X) n ] にお いて、 m= l、 n= 3、 A= 0. 0 2 1としたものである。 図 1 0 aに示すように 、 補正ありの場合、 補正反射率に基づいて判定された判定値は、 測定温度の如何に かかわらず、 各サンプルの成分濃度に応じて全て一致した値を示している。 一方、 図 1 O bに示すように、 補正なしの場合、 たとえばサンプル 4について見ると、 基 準温度 2 9 °Cにおける判定値に対して測定温度 1 5°Cでは、 異なる値の判定値とな つている。 このこと力、ら、 成分物質の種類に応じて、 式 2における指数値 m、 nや 係数 Aを適切に設定することにより、 適切な補正反射率が得られ、 測定温度の影響 に左右されなレ、一定した判定値が求められることがわかる。 Y = f (X, T) = X + 0.021 (Τ-29) X (1-Χ) 3 (7) The above equation 7 is obtained by the equation 2 (Y = f (X, T) = X + g (T ) · X m (1-X) n ], where m = l, n = 3, and A = 0.021. As shown in Fig. 10a, when there is correction, the judgment value determined based on the corrected reflectance shows a value that matches all according to the component concentration of each sample regardless of the measurement temperature. I have. On the other hand, as shown in Fig. 1 Ob, in the case of no correction, for example, for sample 4, the judgment value at the reference temperature of 29 ° C was different from the judgment value at the measurement temperature of 15 ° C. It is. By appropriately setting the exponent values m and n and the coefficient A in Equation 2 according to the type of power, component, and component material, an appropriate corrected reflectance can be obtained, and it is not affected by the influence of the measurement temperature. It can be seen that a constant determination value is required.
また、 成分物質によっては式 2や式 7とは異なる補正関数を用いる方がより適切 な場合もある。 例えば、 成分物質が検体としての尿中の潜血であり、 基準温度が 2 9 °Cである場合には、 下式 8を用いるのが好ましい。  In some cases, it may be more appropriate to use a correction function different from Equations 2 and 7 depending on the component substances. For example, when the component substance is occult blood in urine as a sample and the reference temperature is 29 ° C., it is preferable to use the following formula 8.
,1/3 , 1/3
Y = X + 0.006 (T-29) {e 1 } 一 (8)  Y = X + 0.006 (T-29) {e 1} one (8)
e : 自然対数の底 図 1 1 aは、 成分物質として潜血を含む 5種類のサンプルを用いて得られた、 種 々な温度における補正反射率と判定値とを示す表であり、 捕正関数として上記式 8 を用いた。 比較のために、 図 1 1 bは、 同じ 5種類のサンプルについての、 捕正前 の測定反射率及び判定値を示す表である。  e: Bottom of natural logarithm Figure 11a is a table showing the corrected reflectances and judgment values at various temperatures obtained using five types of samples containing occult blood as a component substance. Equation 8 above was used. For comparison, FIG. 11b is a table showing the measured reflectivity and the judgment value of the same five types of samples before collection.
図 1 1 aに示すように、 補正ありの場合、 補正反射率に基づいて判定された判定 値は、 測定温度の如何にかかわらず、 各サンプルの成分濃度に応じて全て一致した 値を示している。 一方、 図 1 0 bに示すように、 補正なしの場合も、 判定値自体は 、 測定温度の如何にかかわらず、 各サンプルの成分濃度に応じて全て一致した値を 示しているが、 測定反射率の温度変化に伴う変動幅は補正反射率よりも大きく、 細 力、な判定が必要な場合に判定値に影響を与えるものと予想される。 As shown in Fig. 11a, when there is correction, the judgment is made based on the corrected reflectance The values are all consistent values according to the component concentration of each sample, regardless of the measurement temperature. On the other hand, as shown in Fig. 10b, in the case of no correction, the judgment value itself shows a value that matches all according to the component concentration of each sample regardless of the measurement temperature. The fluctuation range of the rate due to temperature change is larger than the corrected reflectance, and it is expected that this will affect the judgment value when fine judgment is required.
さらに、 成分物質が白血球であり、 基準温度が 2 9 °Cである場合には、 補正関数 として下式 9を用いるのが好ましい。  Further, when the component substance is white blood cells and the reference temperature is 29 ° C., it is preferable to use the following equation 9 as the correction function.
Y =X + 0. 056 (T-29) { e χ 1·2· [(0. 93-Χ/Ο. 93)] 2 / 3 - 1 } ( 9 ) e : 自然対数の底 図 1 2 aは、 成分物質として白血球を含む 5種類のサンプルを用いて得られた、 種々な温度における補正反射率と判定値とを示す表であり、 補正関数として上記式 9を用いた。 比較のために、 図 1 2 bは、 同じ 5種類のサンプルについての、 補正 前の測定反射率及び判定値を示す表である。 Y = X + 0.056 (T-29) {e χ 1 · 2 · [(0.93-Χ / Ο. 93)] 2/ 3-1} (9) e: base of natural logarithm Figure 1 2 a is a table showing corrected reflectances and judgment values at various temperatures obtained using five types of samples containing leukocytes as component substances, and the above equation 9 was used as a correction function. For comparison, Fig. 12b is a table showing the measured reflectance and the judgment value before correction for the same five types of samples.
図 1 2 aに示すように、 補正ありの場合、 補正反射率に基づいて判定された判定 値は、 測定温度の如何にかかわらず、 各サンプルの成分濃度に応じて全て一致した 値を示している。 一方、 図 1 2 bに示すように、 補正なしの場合、 温度変化により 判定値が大きく変動しており、 正確な判定値が殆ど得られていない。 このように、 成分物質の種類によっては、 反射率の補正が決定的に重要になることもあり、 その 際に、 適切な補正関数を選択する必要がある。 なお、 図 1 2 a及び 1 2 bにおける 略号 「N E G. 」 は、 無視可能量を示す。  As shown in Fig. 12a, when there is correction, the judgment values determined based on the corrected reflectance show values that all match according to the component concentration of each sample regardless of the measurement temperature. I have. On the other hand, as shown in Fig. 12b, in the case of no correction, the judgment value fluctuated greatly due to the temperature change, and almost no accurate judgment value was obtained. As described above, depending on the type of component material, the correction of the reflectance may be decisive, and in that case, it is necessary to select an appropriate correction function. The abbreviation "NEG." In Figs. 12a and 12b indicates a negligible amount.
次に、 図 1〜4に示す臨床検査装置の動作について、 図 1 3のフローチヤ一卜を 用いて説明する。  Next, the operation of the clinical test apparatus shown in FIGS. 1 to 4 will be described using the flowchart of FIG.
先ず、 判定処理の動作が開始されると、 温度測定器 3によって試験片 1 1が載置 された反応テーブル 1付近の温度が測定され、 コントローラ 5に送信される (ステ ップ S 1 ) 。  First, when the operation of the determination process is started, the temperature near the reaction table 1 on which the test piece 11 is placed is measured by the temperature measuring device 3 and transmitted to the controller 5 (step S 1).
続いて、 試験片 1 1の各試薬パッ ド 1 1 aに対して光源 4 aから光が導かれ、 そ の試薬パッ ド 1 1 aにて反射した光の反射率が反射率測定ュニッ 卜 4によって測定 される (ステップ S 2) 。 この際、 反射率測定ュニッ ト 4のスライ ド機構 4 f は、 試験片 1 1をスライド移動させるので、 異なる試薬パッ ド 1 1 aごとに反射率が順 次測定され、 コン卜ローラ 5に送信されることになる。 Subsequently, light is guided from the light source 4a to each reagent pad 11a of the test piece 11, and the reflectance of the light reflected by the reagent pad 11a is measured by the reflectance measurement unit 4. Measured by (Step S2). At this time, the slide mechanism 4 f of the reflectance measurement unit 4 slides the test piece 11, so that the reflectance is sequentially measured for each of the different reagent pads 11 a and transmitted to the controller 5. Will be done.
次に、 測定温度及び測定反射率の入力を受けたコントローラ 5の CPU 5 0は、 成分物質ごとに適切な補正関数を EE PROM 5 3から呼び出すとともに、 その補 正関数に基づき各測定反射率ごとに捕正反射率を算出する (ステップ S 3) 。  Next, the CPU 50 of the controller 5, which receives the input of the measured temperature and the measured reflectance, calls an appropriate correction function from the EE PROM 53 for each component substance, and, for each measured reflectance, based on the correction function. Then, the specular reflectance is calculated (step S3).
次に、 CPU 5 0は、 成分物質ごとに規定された判定情報を EEPROM5 3か ら呼び出すとともに、 その判定情報に基づき補正反射率ごとに半啶値を算出する ( ステップ S 4) 。  Next, the CPU 50 calls the determination information specified for each component substance from the EEPROM 53, and calculates a half-value for each corrected reflectance based on the determination information (step S4).
最後に、 CPU 50は、 その判定値をプリン夕 6に印字出力させ (ステップ S 5 ) 、 この判定処理のルーチンを終了する。  Finally, the CPU 50 prints out the determination value on the printer 6 (step S5), and ends the routine of this determination processing.
上記臨床検査装置を用いれば、 成分物質に応じた適切な補正関数に基づき、 様々 な温度における測定反射率を所定の基準温度 (例えば、 2 5°Cや 2 9°C) における 標準反射率に近似した補正反射率に変換できる。 従って、 測定時に試験片 1 1の温 度を一定の基準温度に保つような温度制御機構を必要とすることなく、 その結果と して装置全体の製造コス卜が低減されるとともに、 小型ィヒの要求も満足することが できる。 し力、も、 標準反射率に近似した補正反射率を用いるので、 測定時における 温度の影響を考慮することなく、 検体中の成分濃度の判定を迅速かつ正確に行うこ とができる。 さらに、 補正関数は成分物質の種類に応じて選択されるので、 各成分 物質ごとに正確な補正反射率が算出できる。  Using the above clinical test equipment, the measured reflectance at various temperatures can be converted to the standard reflectance at a predetermined reference temperature (for example, 25 ° C or 29 ° C) based on an appropriate correction function according to the component substances. It can be converted to approximate corrected reflectance. Therefore, there is no need for a temperature control mechanism for maintaining the temperature of the test piece 11 at a constant reference temperature at the time of measurement. As a result, the manufacturing cost of the entire apparatus is reduced, and the size of the apparatus is reduced. Can be satisfied. Since the corrected reflectance is similar to the standard reflectance, the concentration of the component in the sample can be determined quickly and accurately without considering the influence of temperature during measurement. Further, since the correction function is selected according to the type of the component substances, an accurate corrected reflectance can be calculated for each component substance.
上記実施形態においては、 各成分物質について 3種類あるいは 5種類の濃度サン プルによる統計データに基づいて補正関数を規定している。 し力、しな力 ら、 各成分 物質につ L、ての濃度サンプル数をさらに増すことによって、 さらに推定精度のよ ヽ 補正関数を規定することができる。 また、 補正関数も上述したものに限られず、 成 分物質の種類に応じて最も適切なものを任意に選択できる。  In the above embodiment, a correction function is defined for each component substance based on statistical data of three or five types of concentration samples. Further, by further increasing the number of concentration samples for each component substance, the correction function can be defined with higher estimation accuracy. Further, the correction function is not limited to the one described above, and the most appropriate one can be arbitrarily selected according to the type of the constituent substance.

Claims

請求の範囲 The scope of the claims
1 . 少なくとも 1つの試薬部分を備えた試験片を検体に接触させて、 上記試薬部分 を検体中の成分物質と反応させることにより、 上記成分物質の濃度を検査する臨床 検査装置であって、 1. A clinical test device for testing the concentration of the above-mentioned component substances by bringing a test piece having at least one reagent part into contact with a sample and reacting the reagent part with a component substance in the sample,
上記試験片の温度を測定する温度測定手段と、  Temperature measuring means for measuring the temperature of the test piece,
上記試薬部分に光を照射してその反射率を測定する反射率測定手段と、 上記温度測定手段からの測定温度及び上記反射率測定手段からの測定反射率を受 けて、 所定の補正関数に基づき、 補正反射率を算出する反射率補正手段と、 上記補正反射率に基づ 、て、 上記成分物質の濃度を判定する判定手段と、 を含む、 臨床検査装置。 '  A reflectance measuring means for irradiating the reagent portion with light to measure the reflectance, and receiving a measured temperature from the temperature measuring means and a measured reflectance from the reflectance measuring means to form a predetermined correction function. A clinical test apparatus, comprising: reflectance correction means for calculating a corrected reflectance based on the corrected reflectance; and determination means for determining a concentration of the component substance based on the corrected reflectance. '
2 . 複数の試薬部分を備えた試験片を検体に接触させて、 各試薬部分を検体中の成 分物質と反応させことにより、 上記成分物質の濃度を検査する臨床検査装置であつ て、 2. A clinical test apparatus for testing the concentration of the above-mentioned component substances by bringing a test strip having a plurality of reagent parts into contact with a sample and reacting each reagent part with a component substance in the sample,
上記試験片の温度を測定する温度測定器と、  A temperature measuring device for measuring the temperature of the test piece,
上記試薬部分に光を照射してその反射率を測定する反射率測定ュニッ 卜と、 上記温度測定器からの測定温度及び上記反射率測定ュニッ 卜からの測定反射率を 受けて、 上記成分物質に応じた補正関数に基づき、 補正反射率を算出するとともに 、 上記補正反射率に基づいて、 上記成分物質の濃度を判定するためのコントローラ と、  A reflectance measurement unit for irradiating the reagent portion with light to measure the reflectance, and a measurement temperature from the temperature measuring device and a measurement reflectance from the reflectance measurement unit, and the A controller for calculating a corrected reflectance based on the corresponding correction function, and determining a concentration of the component substance based on the corrected reflectance;
を含む、 臨床検査装置。 Including, clinical testing equipment.
3 . 上記コントローラは、 C P Uとメモリとを含んでおり、 上記メモリは異なる成 分物質に対応する補正関数を記憶しており、 上記 C P Uは検査すべき成分物質に応 じて上記メモリから対応する補正関数を読み出すように構成されている、 請求項 2 に記載の臨床検査装置。 3. The controller includes a CPU and a memory, wherein the memory stores correction functions corresponding to different component materials, and the CPU responds from the memory according to the component material to be inspected. The clinical test device according to claim 2, wherein the clinical test device is configured to read out a correction function.
4 . 上記試験片は反応テーブル上に配置されており、 上記温度測定器は上記反応テ 一ブルに設けられている、 請求項 2に記載の臨床検査装置。 4. The clinical test apparatus according to claim 2, wherein the test piece is disposed on a reaction table, and the temperature measuring device is provided on the reaction table.
5 . さらにプリンタを備えており、 上記コントローラは判定結果を上記プリンタに 出力させるようになつている、 請求項 2に記載の臨床検査装置。 5. The clinical test apparatus according to claim 2, further comprising a printer, wherein the controller outputs the determination result to the printer.
6 . 上記捕正関数は、 上記測定反射率と相対偏差項との和として規定されている、 請求項 2に記載の臨床検査装置。 6. The clinical test apparatus according to claim 2, wherein the correction function is defined as a sum of the measured reflectance and a relative deviation term.
7 . 上記相対偏差項は、 上記測定温度を変数とした温度因子と上記測定反射率を変 数とした反射率因子との積として規定されている、 請求項 6に記載の臨床検査装置。 7. The clinical test apparatus according to claim 6, wherein the relative deviation term is defined as a product of a temperature factor having the measured temperature as a variable and a reflectance factor having the measured reflectance as a variable.
8 . 少なくとも 1つの試薬部分を備えた試験片を検体に接角虫させて、 上記試薬部分 を検体中の成分物質と反応させることにより、 上記成分物質の濃度を検査する臨床 検査方法であって、 8. A clinical test method for testing the concentration of the above-mentioned component substances by causing a test piece provided with at least one reagent part to contact with a specimen and reacting the above-mentioned reagent part with a component substance in the specimen. ,
上記試験片の温度を測定する温度測定ステツプと、  A temperature measurement step for measuring the temperature of the test piece;
上記試薬部分に光を照射してその反射率を測定する反射率測定ステップと、 上記測定温度及び上記測定反射率を用いて、 所定の補正関数に基づき、 補正反射 率を算出する反射率補正ステツプと、  A reflectance measuring step of irradiating the reagent portion with light and measuring the reflectance, and a reflectance correction step of calculating a corrected reflectance based on a predetermined correction function using the measured temperature and the measured reflectance. When,
上記捕正反射率に基づいて、 上記成分物質の濃度を判定する判定ステツプと、 を含む、 臨床検査方法。  A determination step of determining the concentration of the component substance based on the specular reflectance.
9 . 上記補正関数は、 上記測定反射率と相対偏差項との和として規定されている、 請求項 8に記載の臨床検査方法。 9. The clinical test method according to claim 8, wherein the correction function is defined as a sum of the measured reflectance and a relative deviation term.
10. 上記相対偏差項は、 上記測定温度を変数とした温度因子と上記測定反射率を変 数とした反射率因子との積として規定されている、 請求項 9に記載の臨床検査方法。 10. The clinical examination method according to claim 9, wherein the relative deviation term is defined as a product of a temperature factor having the measured temperature as a variable and a reflectance factor having the measured reflectance as a variable.
PCT/JP1998/003467 1997-08-04 1998-08-03 Clinical examination apparatus and method WO1999006822A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU84634/98A AU8463498A (en) 1997-08-04 1998-08-03 Clinical examination apparatus and method
JP51080499A JP3203411B2 (en) 1997-08-04 1998-08-03 Clinical testing device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20874997 1997-08-04
JP9/208749 1997-08-04

Publications (1)

Publication Number Publication Date
WO1999006822A1 true WO1999006822A1 (en) 1999-02-11

Family

ID=16561452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003467 WO1999006822A1 (en) 1997-08-04 1998-08-03 Clinical examination apparatus and method

Country Status (3)

Country Link
JP (1) JP3203411B2 (en)
AU (1) AU8463498A (en)
WO (1) WO1999006822A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952215A1 (en) * 1999-10-29 2001-05-17 Roche Diagnostics Gmbh Test element analysis system
JP2006526786A (en) * 2003-06-03 2006-11-24 バイエル・ヘルスケア・エルエルシー Automatic identification of reagent test strips using reflectance values

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395440A (en) * 1989-09-08 1991-04-19 Terumo Corp Measuring apparatus
JPH0972912A (en) * 1995-09-04 1997-03-18 Fuji Photo Film Co Ltd Incubator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395440A (en) * 1989-09-08 1991-04-19 Terumo Corp Measuring apparatus
JPH0972912A (en) * 1995-09-04 1997-03-18 Fuji Photo Film Co Ltd Incubator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952215A1 (en) * 1999-10-29 2001-05-17 Roche Diagnostics Gmbh Test element analysis system
DE19952215C2 (en) * 1999-10-29 2001-10-31 Roche Diagnostics Gmbh Test element analysis system
US6880968B1 (en) 1999-10-29 2005-04-19 Roche Diagnostics Gmbh Test element analysis system
JP2006526786A (en) * 2003-06-03 2006-11-24 バイエル・ヘルスケア・エルエルシー Automatic identification of reagent test strips using reflectance values

Also Published As

Publication number Publication date
JP3203411B2 (en) 2001-08-27
AU8463498A (en) 1999-02-22

Similar Documents

Publication Publication Date Title
US5083283A (en) Method of determining calibration curve and apparatus using calibaration curve
US9488667B2 (en) Automatic analyzer
US4043756A (en) Calibration in an automatic chemical testing apparatus
US5413764A (en) Test carrier analysis system
JP2524454B2 (en) Analyzer for automatic analysis of body fluids
US20050203353A1 (en) Multiple purpose, portable apparatus for measurement, analysis and diagnosis
US7338802B2 (en) Method of performing calibration and quality control of a sensor and apparatus for performing the method
JP2004261573A (en) Automatic calibration label and apparatus having the same
US8491185B2 (en) Method for monitoring the thermal coupling of a measuring cell
US8285497B2 (en) Method for gravimetric volume determination
JP2009508109A (en) Method for hemoglobin correction by temperature fluctuation
US6656742B2 (en) Method for improving the measurement accuracy of sensors
JP2671931B2 (en) Device and method for analyzing medical samples
Chakraborty et al. Milk tester: Simultaneous detection of fat content and adulteration
EP0087466A4 (en) Method and apparatus for detecting sample fluid.
KR101190190B1 (en) Device for measuring reflective absorbance and combined device for reflective absorbance and lateral flow analysis
US4750133A (en) Validation of kinetic chemical reaction
WO1999006822A1 (en) Clinical examination apparatus and method
JP2008076342A (en) Automatic analyzer
JPH06308131A (en) Data processing apparatus
US7350396B2 (en) Pulse-type gas concentration measurement system and method thereof
EP0445210B1 (en) Method and apparatus for identifying causes of repeatability problems in near infrared analytical instruments
Belsey et al. Evaluation of a laboratory system intended for use in physicians' offices: I. Reliability of results produced by trained laboratory technologists
JPWO2019194096A1 (en) Temperature control system and temperature control method
RU26134U1 (en) DEVICE FOR DETERMINING THE OCTAN NUMBER OF AUTOMOBILE GASOLINES

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA