WO1999006192A2 - Cutting insert cartridge arrangement - Google Patents

Cutting insert cartridge arrangement Download PDF

Info

Publication number
WO1999006192A2
WO1999006192A2 PCT/US1998/015776 US9815776W WO9906192A2 WO 1999006192 A2 WO1999006192 A2 WO 1999006192A2 US 9815776 W US9815776 W US 9815776W WO 9906192 A2 WO9906192 A2 WO 9906192A2
Authority
WO
WIPO (PCT)
Prior art keywords
cutting insert
receiver
cutting
tool body
cutting tool
Prior art date
Application number
PCT/US1998/015776
Other languages
French (fr)
Other versions
WO1999006192A3 (en
Inventor
Leonard Arden Briese
Original Assignee
Briese Leonard A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Briese Leonard A filed Critical Briese Leonard A
Priority to AU86714/98A priority Critical patent/AU8671498A/en
Publication of WO1999006192A2 publication Critical patent/WO1999006192A2/en
Publication of WO1999006192A3 publication Critical patent/WO1999006192A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • B23C5/22Securing arrangements for bits or teeth or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/04Overall shape
    • B23C2200/045Round
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1906Rotary cutting tool including holder [i.e., head] having seat for inserted tool
    • Y10T407/1908Face or end mill
    • Y10T407/192Face or end mill with separate means to fasten tool to holder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1906Rotary cutting tool including holder [i.e., head] having seat for inserted tool
    • Y10T407/1932Rotary cutting tool including holder [i.e., head] having seat for inserted tool with means to fasten tool seat to holder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1906Rotary cutting tool including holder [i.e., head] having seat for inserted tool
    • Y10T407/1934Rotary cutting tool including holder [i.e., head] having seat for inserted tool with separate means to fasten tool to holder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/20Profiled circular tool

Definitions

  • the present invention is related to the field of rotary cutting tools, and more particularly to a cutting insert holder which facilitates easy removal and replacement of the cutting elements or cutting inserts used with rotary cutting tools .
  • Rotary cutting tools are well known in the art. Such cutting tools have long been utilized in many fields of endeavor, such as the material shaping field, stone and concrete grinding, road surfacing, mining, tunnel construction, etc. In addition to the large sized road construction, mining, and tunnel construction machines, such cutting tools are commonly used in relatively small sized tools such as milling machines, lathes, boring tools, planing tools, etc. Cutting tools for these uses generally have one or more cutting inserts mounted thereon such that the cutting insert is fixed relative to its mounting or rotational with respect to such mounting. The cutting tool causes the cutting insert to engage the workpiece to cut a predetermined amount of material therefrom. In such cutting tools, many are provided with means for adjusting the position of the cutting insert with respect to a nominal or "zero" plane. Where more than one cutting insert is utilized on the tool, it is desirable to have all of the cutting inserts precisely adjusted to the same position with respect to the zero plane. Such adjustment, of course, is also desired in cutting tools in which only a single cutting insert is provided.
  • the cutting inserts are mounted on the cutting surface of the tool by use of a bolt or the like extending through the center of the insert and into a protruding base portion of the rotary cutting tool.
  • Cutting tools heretofore available have, in general, not been able to accept cutting inserts of more than one size.
  • U.S. Patent No. 4,477,211 provides cutting insert cartridges that permit new cutting inserts for rotary cutting tools to be easily, quickly, and cheaply replaced or installed.
  • U.S. Patent No. 4,828,436 a cartridge assembly for a cutting insert in a rotary cutting tool is provided offering a high degree of precision adjustment of the cutting insert.
  • Both rotating and fixed cutting inserts are shown in the ⁇ 436 patent to be utilized interchangeably, and the removal and replacement of a cutting element is shown to be easily and quickly accomplished.
  • the present invention offers an even further improvement over the inventions according to these prior U.S.
  • the present invention overcomes the deficiencies of the prior art as noted above by providing an improved cutting insert cartridge arrangement for quick and easy mounting of cutting inserts to and removal from a rotary cutting tool, comprising a cutting insert receiver for the cutting insert, the insert receiver itself being quickly and easily removed from the rotary cutting tool body.
  • a cutting insert cartridge arrangement for mounting to and removal from a rotary cutting tool body, comprising a cutting insert receiver having an outer end portion with an opening therein for receiving a cutting insert, the outer end potion being configurable to apply a varying grasping or gripping force against an inserted cutting insert.
  • the cutting insert receiver has an outer camming surface, while the cavity in the rotary cutting tool body has an inner camming surface.
  • a coupler is provided for coupling the cutting insert receiver to the rotary cutting tool body while effecting mutual camming engagement between the two camming surfaces.
  • the configurable cutting insert receiver is configured to increase the gripping force of the cutting insert receiver against an inserted cutting insert as the cutting insert receiver moves toward the rotary cutting tool body, and the camming engagement between the two surfaces configures the cutting insert receiver to decrease the gripping force of the cutting insert receiver against an inserted cutting insert as the cutting insert receiver moves away from the rotary cutting tool body to facilitate removal of the cutting insert.
  • the cutting insert receiver and rotary cutting tool body have opposite-hand internal threads for receiving the opposite ends of a differential screw, whereby rotation of the differential screw in one direction draws the two members together while rotation in the other direction causes them to tend to separate.
  • the outer surface of the cutting insert receiver is conical, and the cavity in the rotary cutting tool has complementary tapered conical sidewalls, as the differential screw is rotated to draw the cutting insert receiver into the rotary cutting tool body, the cutting insert receiver collapses radially inwardly due to the camming action of the two conical surfaces sliding against one another to increase the gripping force of the cutting insert receiver against an inserted cutting insert.
  • the cutting insert receiver has an outer end portion with an opening therein for receiving a cutting insert, the outer end portion of the receiver being configurable to apply a varying lateral grasping force against an inserted cutting insert.
  • the cutting insert receiver may be frusto conical in shape to mate with a complementary frusto conical recess in the rotary cutting tool body, whereby securing the receiver in the recess serves to apply the lateral grasping force against an inserted cutting insert due to the camming action between the mating surfaces of the two frusto conical members and the collapsing of the collet-like receiver.
  • a movable holder for holding the insert receiver is coupled to the cutting insert receiver and slidable axially relative thereto to configure the outer end portion to increase grasping holding force against an inserted cutting insert in a first axial position of the movable holder, and to diminish grasping holding force against an inserted cutting insert in a second axial position of the movable holder.
  • a biasing member is provided for biasing the movable holder toward its first position
  • an operating member is provided for coupling and acting between the rotary cutting tool body and the movable holder to move the movable holder against the biasing member to diminish the grasping holding force sufficiently to release, for removal, a cutting insert received in the cutting insert receiver.
  • an inserted cutting insert Due to a fixed position for the cutting insert receiver relative to the rotary cutting tool body, an inserted cutting insert is always disposed with its cutting edges at the zero plane position.
  • Positioning the cutting edges at the zero plane position is especially accurate in an embodiment employing a movable holder for the insert receiver. That is, the cutting insert receiver has a machined inner base end portion for fitting solidly against a mating machined surface within a cavity in the rotary cutting tool body. Furthermore, the cutting insert receiver is machined to have a precise spacing between its inner base end portion and the bottom of the opening which receives the cutting insert. With the cutting insert also having a precision machined base contacting the bottom of the opening in the cutting insert receiver, and also having a precise dimension between its base and the cutting edge, the position of the cutting edge of the insert will be located at the precise zero plane position to whatever accuracy has been chosen for the machining of the contacting parts so described.
  • the cutting insert receiver may take the form of an axially split collet.
  • the cutting insert receiver may be split along its entire axial length, if desired.
  • the bit can move slightly in the axial direction, thereby affecting the zero plane position of the cutting edge.
  • Employing the construction elements and configuration according to the present invention avoids this problem, since the "collet", i.e. the collapsible portion of the cutting insert receiver, is not movable axially within the rotary cutting tool body, and the cutting insert receiver is precisely fixed axially relative to the rotary cutting tool body.
  • a biasing member is provided, preferably in the form of a compression spring tending to move the movable holder away from the rotary cutting tool body and act on the cutting insert receiver to increase the grasping pressure on a cutter insert held in the opening of the cutting insert receiver.
  • the compression spring means is effective to automatically cause the cutting insert receiver to grasp the cutting insert.
  • An operating member may then be manually actuated to move the movable holder to more tightly press the cutting insert receiver about the cutting insert.
  • Moving the operating member in the opposite direction i.e. moving the movable holder against the compression spring action, diminishes the grasping force sufficiently so that a user may simply withdraw the cutting insert from the cutting insert receiver.
  • the user reverses that process. That is, the user manipulates the operating member to move the movable holder against the compression spring, inserts the new cutting insert, and then releases the operating member, upon which the compression spring moves the movable member outwardly to again collapse the "collet" portion of the cutting insert receiver to again grasp the replaced cutting insert.
  • the cutting tool insert receiver is provided with internal threads axially located on an inner end portion thereof.
  • the rotary cutting tool body also has internal threads axially aligned with the internal threads on the cutting insert receiver inner end portion.
  • the threads in the rotary cutting tool body are of the opposite-hand direction than the threads in the cutting insert receiver.
  • the cutting insert cartridge arrangement further comprises a differential screw having left-hand external threads at one end and right-hand external threads at the other end, whereby, after starting to thread its ends into the cutting insert receiver and into the rotary cutting tool body, rotation of the differential screw means in one direction pulls the cutting insert receiver and rotary cutting tool body together. Likewise, rotation of the differential screw means in the opposite direction pushes the cutting insert receiver and rotary cutting tool body apart, allowing quick and easy replacement of the cutting insert cutting arrangement, either to replace a damaged one, or to replace it with a cutting insert cutting arrangement for holding a different size cutting insert.
  • the drawing of the cutting insert receiver toward the rotary cutting tool body due to the construction of the cutting insert cartridge arrangement, also draws the cartridge arrangement into a cavity in the rotary cutting tool body. In one embodiment, this action clamps the cutting insert in the receiver. In the embodiment employing a receiver holder, such action solidly fixes the cutting insert receiver to the rotary cutting tool body. Then, after the cutting insert cartridge arrangement is fully seated and tightened in place within the cavity in the rotary cutting tool body, the operating member is put in position to selectively activate the movable holder as hereinbefore described.
  • FIGURE 1 is a perspective view of a cutting insert cartridge arrangement in accordance with the present invention mounted to a rotary cutting tool body, the figure showing only a fragmentary portion of the rotary cutting tool body;
  • FIGURE 2 is a partial cross sectional view of an embodiment of the invention employing a collapsible taper lock feature and a differential screw arrangement, the figure also showing a cutting insert grasped and held in place by a cutting insert receiver;
  • FIGURE 3 is a perspective view of a cutting insert receiver for receiving and retaining a removable cutting insert
  • FIGURE 4 is a perspective view of a cutting insert of the type that can be received by the cutting insert cartridge arrangement constructed in accordance with the invention
  • FIGURE 4A is a view similar to Figure 4, but with the cutting insert having a plurality of exterior and interior flutes on the surfaces forming the cutting edge for the cutting insert;
  • FIGURE 5 is a view similar to that of Figure 2 but with the taper lock having released its grasping force against the cutting insert for allowing easy removal of the cutting insert;
  • FIGURE 5A is a view from the bottom of Figure 5, showing a rear access opening for an installation/adjustment tool
  • FIGURE 6 is a partial cross sectional view of a second embodiment of the invention showing the cutting insert cartridge arrangement mounted in a rotary cutting tool body, only a fragment of the rotary cutting tool body being shown in this figure;
  • FIGURE 7 is a view similar to that of Figure 6 showing the cutting insert cartridge arrangement in a condition to diminish the grasping force on the cutting insert sufficiently for removal of the cutting insert;
  • FIGURE 8 is a perspective view of the alternative embodiment of the invention shown in Figures 6 and 7, employing a cutting insert receiver and a movable holder for holding the insert receiver;
  • FIGURE 9 is a perspective view of the cutting insert receiver employed in the second described embodiment of the invention.
  • FIGURE 10 is a side perspective view of a cutting insert receiver employed in the second embodiment of the invention, schematically showing the relationship with an operating member;
  • FIGURE 11 is a perspective view of an operating member for diminishing or releasing grasping pressure on a cutting insert by the second embodiment of the invention.
  • FIGURE 12 is a perspective view of the operating member of Figure 11 showing the opposite end of the operating member.
  • FIGURE 13 is a front elevational view of the operating member shown in Figure 12.
  • Figure 1 is a perspective view of a cutting insert cartridge arrangement 1 in accordance with the present invention, mounted to a rotary cutting tool body 3, the figure showing only a fragmentary portion of the rotary cutting tool body 3.
  • a cutting insert receiver 5 in a preferred embodiment functioning as a collet, is mounted in the rotary cutting tool body 3 and, when so mounted, applies a grasping force to hold a cutter insert 7 in a proper and predetermined orientation and at a zero plane position for the cutting edge 23 of the cutting insert 7.
  • a hole 24 is provided in insert 7 for insertion of an installation/- locking/releasing tool for both mounting the cutting insert cartridge arrangement 1 in the rotary cutting tool body 3, and for selectively locking and releasing the cutting insert 7 within the cutting insert receiver 5. Details of the installation of the cutting insert cartridge arrangement and operation of the grasping and releasing functions of the cutting insert 7 will be described hereinafter.
  • Figure 2 is a partial cross sectional view of a first embodiment of the invention employing a collapsible taper lock feature and a differential screw arrangement. The figure also shows a cutting insert 7 held in place by a cutting insert receiver 5.
  • a differential screw 15 mounts the cutting insert receiver 5 into the rotary cutting tool body 3 initially, and, upon inserting a cutting insert 7 into the outer open end portion 9 of the cutting insert receiver 5, further turning of the differential screw 15 serves to collapse at least the outer end portion 9 of cutting insert receiver 5 to grasp the cutting insert 7 sufficiently to hold it in place for cutting action.
  • the differential screw 15 has left hand threads 17 at one end and right hand threads 19 at the other.
  • the rotary cutter tool body 3 has a left hand threaded bore 10, and the inner base end portion 11 of cutting insert receiver 5 has a right hand threaded bore 12.
  • the differential screw 15 is threaded into body 3 by turning the differential screw counterclockwise from the front, e.g., by a tool passing through hole 24 in the cutting insert 7, or, at least initially by applying a tool to the outer end of the right hand threaded portion 19 of the differential screw 15.
  • a slot, alien wrench socket, or Phillips cross point depression may be provided in the end of the right hand thread section 19.
  • the next step in the installation procedure is to screw the receiver 5 onto the right hand threads 19 of the differential screw 15 in a clockwise direction while holding screw 15, if necessary, from turning.
  • the screw 15 is loosened slightly by turning it clockwise a few turns, and, while holding the screw 15 at that position, the receiver 5 is turned further down the screw threads 19 until it seats in a cavity of the rotary tool body 3 with surfaces 6 and 8 being in surface contact.
  • the final step is then to tighten screw 15 (counterclockwise) , and if a cutting insert 7 is in place, the further movement of screw 15 counterclockwise will cause a camming action between conical surfaces 6 and 8 to collapse the cutting insert receiver 5, if it is slit along its entire length axially, or, at least, the outer end portion 9 collapses radially inwardly to lock the insert 7 in the receiver 5.
  • the position of the cutting edge 23 is such that material being cut tends to rotate the cutting insert 7 counterclockwise, as viewed from the front. Such counterclockwise forces simply tend to move the left hand threads 10 further into body 3 and the right hand threads 19 further into receiver 5, thereby tending to draw these two bodies further together.
  • the angles for the inner conical surface 6 of body 3 and the outer conical surface 8 of receiver 5 are chosen to effect a taper lock action when they are mutually engaged.
  • Figure 3 is a perspective view of a cutting insert receiver 5 showing a slit 28 extending the entire length of the receiver 5, the entire body of receiver 5 collapsing radially inwardly or expanding radially outwardly as the differential screw 15 is turned counterclockwise or clockwise, respectively.
  • the embodiments shown in Figures 1-5 are members of a first preferred embodiment, and other configurations would be evident to the skilled worker.
  • the cutting insert receiver 5 may have a cylindrical inner base end portion 11, and a conical outer end portion 9, and the rotary cutting tool body 3 may have a cavity with a complementary shape allowing for axial movement of the cutting insert receiver 5, but with only the outer end portion 9 slit axially to act as a collet portion of the receiver 5.
  • a cutting insert receiver 5 may be employed to couple the cutting insert receiver 5 to the body 3 other than a differential screw 15. All that is required is that a cutting insert receiver 5 be drawn toward the rotary cutting tool body 3 to effect a camming action on a collet-like member for grasping a cutting insert 7 and locking it into position.
  • the taper of the sides of surfaces 6 and 8 may be formed by precision machining such that, with a given diameter cutting insert 7 and a given diameter for the opening in outer end portion 9, the distance from the bottom 26 of insert 7 to the bottom 30 of the cavity in rotary cutting tool body 3 will be precise.
  • the axial length of the cutting insert 7 can obviously be machined to great precision, so that the distance between the cutting edge 23 of the insert 7 and the bottom 30 of the body cavity 3 will likewise be a precision dimension repeatedly achievable upon each removal and insertion of a fresh cutting insert 7.
  • the axial length of cutting insert receiver 5 is chosen to leave a space 21 when surfaces 6 and 8 achieve a taper lock condition. This is simply a safety factor to ensure that the taper lock effect will be achieved before the cutting insert receiver 5 could possibly seat against the bottom 30 of the cavity in rotary cutting tool body 3.
  • Figure 4 is a perspective view of a typical cutting insert 7 showing a frusto conical nose portion having a cutting edge 23. A hole 24 for the installation and operation of the cutting insert cartridge arrangement is shown in Figure 4.
  • Figure 4A a similar view as that of Figure 4 is shown, but with the cutting insert 7 having a plurality of exterior 18 and interior 20 flutes on the surfaces forming the cutting edge 23 for the cutting insert 7.
  • These sharp-edged flutes aid in chipping away the material being cut by the cutting insert 7, in providing breaking of chips in metal removal, in moving small particles away from the cutting/drilling process and away from the cutting edges to avoid clogging of the rotary cutting tool, and in providing forced rotation of rotary cutting inserts.
  • the design of the flutes shown in Figure 4A are for illustrative purposes only, and any of a variety of patterns of sharp cutting edges on the cutting insert 7 faces can be formed, as desired.
  • facial sharp edges for the cutting insert 7 may be radial grooves, axially angular grooves, helical grooves, tapered grooves, or grooves in a feathered pattern or in a chevron pattern, to name a few.
  • Figure 5 it will be noted that the differential screw 15 has been turned clockwise (as viewed from the front) tending to push the cutting insert receiver 5 away from rotary cutting tool body 3 due to the opposite-handed screw threads acting on these two bodies.
  • Figure 5 shows the cutting insert receiver 5 raised slightly from the tool body 3, whereby the cutting insert receiver 5 is self-expanding to provide a slight gap 25 between the outer surface of cutting insert 7 and the walls of the opening in outer end portion 9 of the receiver 5.
  • the cutting insert 7 is not in any other way attached to the body 3 or receiver 5, it is easily removed by hand and replaced by a fresh cutting insert 7, after which the differential screw 15 is rotated counterclockwise to bring receiver 5 back toward body 3 and, again, effect a collet grasping action against insert 7 by cutting insert receiver 5 in the manner previously described.
  • FIG. 5A shows an optional rear access opening 16 in the rotary cutting tool body 3 in which an installation/- adjustment tool (not shown) may be inserted for turning differential screw 15.
  • the tool may be, for example, a hex driver fitting into a complementary hex opening 14 in the end of differential screw 15.
  • This arrangement does not require the cutting insert 7' to have a through hole 24 as shown in the cutting insert 7 of Figures 1 and 2, for example.
  • which installation/adjustment structure is to be used is determined by whether or not rear access to the differential screw 15 is available, and if so, further determined at the option of the equipment designer.
  • Figure 6 is a figure similar to that of Figure 2, but with some additional features. Like components to those shown and described with respect to Figures 1-5 will not be repeated, as the person of ordinary skill in the art will appreciate the similar functions of such elements of the invention.
  • Figure 6 is a partial cross sectional view of the second embodiment of the invention showing the cutting insert cartridge arrangement 31 mounted in a rotary cutting tool body 43, only a fragment of the rotary cutting tool body being shown in this figure.
  • a differential screw 45 is likewise provided with left hand threads 47 screwed into a complementary threaded bore in rotary cutting tool body 43 and right hand threads 49 screwed into a complementary threaded bore in insert receiver 35.
  • the Figure 6 embodiment employs a cutting insert receiver 35 taking the form of a collet and having the ability to collapse radially inwardly or expand radially outwardly to grasp or release a cylindrical cutting insert 37, as hereinbefore described.
  • the cutting insert receiver 35 which is first mounted, without a cutting insert 37 in place, to the body 43 by an installation similar to that described with respect to Figure 2. Upon tightening of the differential screw 45 by a tool having access to the outer end of the right hand thread portion 49 of screw 45, the cutting insert receiver 35 will have its precision machined inner end portion 51 seated against a similarly precision machined surface 53 at the bottom of the cavity in rotary cutting tool body 43.
  • a movable holder 58 and a spring 59 are inserted over the outside of cutting insert receiver 35, assembled as shown in Figure 6.
  • the spring 59 may be any preferred form of compression spring, the Figure 6 embodiment showing a number of alternately flipped belville springs 59.
  • a helical compression spring could be used instead, if desired.
  • the movable holder 58 has a conical interior surface 60 mating with and taper locking with the outer conical surface 62 of the cutting insert receiver 35.
  • the spring arrangement 59 pushes against the bottom 53 of the cavity in body 43 and against a radially inwardly directed planar shoulder 64 of movable holder 58. Since cutting insert receiver 35 is fixed to body 43, the action of the spring arrangement 59 is effective to cam the inner conical surface 60 against the outer conical surface 62 of the receiver 35, thereby forcing the cutting insert receiver 35 to collapse radially inwardly and apply a grasping force to the outer cylindrical surface of cutting insert 37.
  • the movable holder 58 may be pushed axially inwardly against the action of the spring arrangement 59, thereby releasing the taper lock hold between the contacting conical surfaces 60 and 62.
  • the cutting insert receiver 35 self-expands radially outwardly to provide a gap between the outer surface of cutting insert 37 and the inner surface of opening 40, as best seen in Figure 7 showing a gap 73 being produced at that interface.
  • a preferred embodiment of the invention employs an eccentric release pin or operating member 61 rotatable in a bore 70 formed in body 43.
  • the operating member 61 is rotatable with respect to, but locked axially into, body 43 by a locking ring 67, e.g. a snap ring, engagable in an annular groove 81 formed in the operating member 61 and an annular groove 68 formed in body 43.
  • the operating member 61 has an activating portion, in the preferred embodiment taking the form of an eccentric boss 63 fitting into an off-center slot opening 65 in movable holder 58.
  • the slot opening 65 is axially offset from the axis of rotation of operating member 61 and defines a short circumferential groove in the periphery of cutting insert receiver 35.
  • the operating member 61 is rotatable in bore 70 by applying a screwdriver, alien wrench, or other similar tool to the outer end of operating member 61, the engagement part of operating member 61 receiving such a tool, shown in Figure 11 as an alien.
  • the taper lock set can enhanced by an operator rotating operating member 61 to manually move boss 63, and movable holder 58 axially outwardly.
  • operating member 61 moves boss 63, and movable holder 58, axially inwardly to release the taper lock condition as illustrated in Figure 7.
  • Figure 7 shows the boss 63 at a more inwardly position relative to body 43, and, likewise shows the spring arrangement 59 further collapsed and the taper lock released producing a gap 73 for the easy removal of cutting insert 37.
  • Figure 8 is a perspective view of the second preferred embodiment, similar to the view in Figure 1, but showing the additional movable holder 58 and the position of an operating member 61.
  • Figure 10 is a schematic illustration of the cooperation between the operating member 61 and the movable holder 58.
  • the axes of a cylindrical operating member 61 and a cylindrical boss 63 extending eccentrically therefrom is also shown in Figure 10 for illustrative purposes.
  • Figure 10 also shows an optional feature of the invention, wherein an annular groove 88 may be provided at the most forward end of the movable member 58.
  • a dedicated operating member 61 is not absolutely required to operate the invention, as any tool that can push • axially inwardly the movable member 58 to release the taper lock and collet action described would suffice.
  • Annular groove 88 simply makes this point more clear, as a tubular tool fitting in the annular groove 88, a forked tool having two or more tines fitting into annular groove 88 at spaced angular positions, or even a screwdriver or other instrument pushing against the nose of movable member 58 may serve to compress the compression spring arrangement 59 ( Figures 6 and 7) sufficiently to release the cutting insert 37. It will therefore be understood that the operating member 61 is provided for a convenience factor only and is not an essential part of the invention.
  • Figure 9 is a perspective view of the cutting insert receiver 35 showing an outer surface 85, an outer end portion 39, and the inner base end portion 41 as previously described.
  • the cutting insert receiver 35 is axially slit along its entire length forming a slit 79. Again, if desired, only the outer end portion 39 need be slit to act as a collet for retaining the cutting insert 37.
  • Figures 11-13 show the operating member 61 in different views, these figures showing the eccentric nature of the boss 63 relative to the cylindrical operating member body 61, the annular groove 81 cooperating with a locking ring 67 ( Figure 6) , and, in the example shown in Figure 11, a hex opening 71 for insertion of an alien wrench for releasing and assisting in the locking of the movable holder 58 relative to the cutting insert receiver 35.
  • a cutting insert 37 may, afterwards, be inserted by the turning of operating member 61 to push movable holder 58 against spring assembly 59 to release the cutting insert 37, and operating member 61 may simply be released to permit the movable holder 58 to be forced outwardly by spring assembly 59, again locking the cutting insert 37 in place.
  • a solid cutting insert 37 may be provided, i.e. without any axial through hole.

Abstract

An improved cutting insert cartridge arrangement (1) for quick and easy mounting of cutting inserts (7) to and removal from a rotary cutting tool, comprising a cutting insert receiver (5) for the cutting insert (7), the cutting insert receiver (5) itself being quickly and easily removed from the rotary cutting tool body (3). The cutting insert receiver (5) may have an outer end portion (9) with an opening therein for receiving a cutting insert (7), the outer end portion (9) being configurable to apply a varying lateral grasping force against an inserted cutting insert (7). The cutting insert receiver (5) may be frusto conical in shape to mate with a complementary frusto conical recess (6) in the rotary cutting tool body (3), whereby securing the receiver in the recess serves to apply the lateral grasping force against an inserted cutting insert due to the camming action between the mating surfaces (6, 8) of the two frusto conical members.

Description

CUTTING INSERT CARTRIDGE ARRANGEMENT
BACKGROUND OF THE INVENTION Field of the Invention
The present invention is related to the field of rotary cutting tools, and more particularly to a cutting insert holder which facilitates easy removal and replacement of the cutting elements or cutting inserts used with rotary cutting tools .
Brief Description of the Prior Art Rotary cutting tools are well known in the art. Such cutting tools have long been utilized in many fields of endeavor, such as the material shaping field, stone and concrete grinding, road surfacing, mining, tunnel construction, etc. In addition to the large sized road construction, mining, and tunnel construction machines, such cutting tools are commonly used in relatively small sized tools such as milling machines, lathes, boring tools, planing tools, etc. Cutting tools for these uses generally have one or more cutting inserts mounted thereon such that the cutting insert is fixed relative to its mounting or rotational with respect to such mounting. The cutting tool causes the cutting insert to engage the workpiece to cut a predetermined amount of material therefrom. In such cutting tools, many are provided with means for adjusting the position of the cutting insert with respect to a nominal or "zero" plane. Where more than one cutting insert is utilized on the tool, it is desirable to have all of the cutting inserts precisely adjusted to the same position with respect to the zero plane. Such adjustment, of course, is also desired in cutting tools in which only a single cutting insert is provided.
In some prior art rotary cutting tools, the cutting inserts are mounted on the cutting surface of the tool by use of a bolt or the like extending through the center of the insert and into a protruding base portion of the rotary cutting tool.
It is often desired to change the physical size of the cutting insert depending upon the machine operation being performed. Cutting tools heretofore available have, in general, not been able to accept cutting inserts of more than one size.
In many of the heretofore available cutting tools, it has been a comparatively time-consuming task to make the necessary adjustment of the cutting insert or inserts toward and away from the zero plane, and/or comparatively complex cartridge arrangements for holding the cutting inserts have been utilized with the consequent increase in cost and decrease in reliability associated with larger numbers of components .
Also, in the past, replacement of damaged or dulled cutting inserts involved a major disassembly of a rotary cutting tool. Such disassembly procedure is time-consuming, inconvenient, generally costly, and can involve a substantial waste of machining operating time.
There are some notable exceptions to the aforementioned lack in the prior art of addressing the several problems in the field of rotary cutting tools. Specifically, U.S. Patent No. 4,477,211 provides cutting insert cartridges that permit new cutting inserts for rotary cutting tools to be easily, quickly, and cheaply replaced or installed. In U.S. Patent No. 4,828,436, a cartridge assembly for a cutting insert in a rotary cutting tool is provided offering a high degree of precision adjustment of the cutting insert. Both rotating and fixed cutting inserts are shown in the ~436 patent to be utilized interchangeably, and the removal and replacement of a cutting element is shown to be easily and quickly accomplished. The present invention offers an even further improvement over the inventions according to these prior U.S. patents by providing an extremely easily operated cutting insert removal and replacement function, as well as providing the ability to remove and replace the cutting insert holding cartridge for exchange with another cutting insert holding cartridge which will accept a different size cutting insert. all while maintaining a very precise zero plane position for the cutting edge of each cutting insert.
SUMMARY OF THE INVENTION
The present invention overcomes the deficiencies of the prior art as noted above by providing an improved cutting insert cartridge arrangement for quick and easy mounting of cutting inserts to and removal from a rotary cutting tool, comprising a cutting insert receiver for the cutting insert, the insert receiver itself being quickly and easily removed from the rotary cutting tool body.
In one aspect of the invention, a cutting insert cartridge arrangement is provided for mounting to and removal from a rotary cutting tool body, comprising a cutting insert receiver having an outer end portion with an opening therein for receiving a cutting insert, the outer end potion being configurable to apply a varying grasping or gripping force against an inserted cutting insert.
The cutting insert receiver has an outer camming surface, while the cavity in the rotary cutting tool body has an inner camming surface. A coupler is provided for coupling the cutting insert receiver to the rotary cutting tool body while effecting mutual camming engagement between the two camming surfaces. As a result of the camming action between the two camming surfaces, the configurable cutting insert receiver is configured to increase the gripping force of the cutting insert receiver against an inserted cutting insert as the cutting insert receiver moves toward the rotary cutting tool body, and the camming engagement between the two surfaces configures the cutting insert receiver to decrease the gripping force of the cutting insert receiver against an inserted cutting insert as the cutting insert receiver moves away from the rotary cutting tool body to facilitate removal of the cutting insert.
Preferably, the cutting insert receiver and rotary cutting tool body have opposite-hand internal threads for receiving the opposite ends of a differential screw, whereby rotation of the differential screw in one direction draws the two members together while rotation in the other direction causes them to tend to separate.
In an embodiment where the cutting insert receiver functions as a collet, the outer surface of the cutting insert receiver is conical, and the cavity in the rotary cutting tool has complementary tapered conical sidewalls, as the differential screw is rotated to draw the cutting insert receiver into the rotary cutting tool body, the cutting insert receiver collapses radially inwardly due to the camming action of the two conical surfaces sliding against one another to increase the gripping force of the cutting insert receiver against an inserted cutting insert.
In a preferred embodiment, the cutting insert receiver has an outer end portion with an opening therein for receiving a cutting insert, the outer end portion of the receiver being configurable to apply a varying lateral grasping force against an inserted cutting insert. The cutting insert receiver may be frusto conical in shape to mate with a complementary frusto conical recess in the rotary cutting tool body, whereby securing the receiver in the recess serves to apply the lateral grasping force against an inserted cutting insert due to the camming action between the mating surfaces of the two frusto conical members and the collapsing of the collet-like receiver.
In another embodiment, a movable holder for holding the insert receiver is coupled to the cutting insert receiver and slidable axially relative thereto to configure the outer end portion to increase grasping holding force against an inserted cutting insert in a first axial position of the movable holder, and to diminish grasping holding force against an inserted cutting insert in a second axial position of the movable holder. According to one aspect of the invention, a biasing member is provided for biasing the movable holder toward its first position, and an operating member is provided for coupling and acting between the rotary cutting tool body and the movable holder to move the movable holder against the biasing member to diminish the grasping holding force sufficiently to release, for removal, a cutting insert received in the cutting insert receiver.
Due to a fixed position for the cutting insert receiver relative to the rotary cutting tool body, an inserted cutting insert is always disposed with its cutting edges at the zero plane position.
Positioning the cutting edges at the zero plane position is especially accurate in an embodiment employing a movable holder for the insert receiver. That is, the cutting insert receiver has a machined inner base end portion for fitting solidly against a mating machined surface within a cavity in the rotary cutting tool body. Furthermore, the cutting insert receiver is machined to have a precise spacing between its inner base end portion and the bottom of the opening which receives the cutting insert. With the cutting insert also having a precision machined base contacting the bottom of the opening in the cutting insert receiver, and also having a precise dimension between its base and the cutting edge, the position of the cutting edge of the insert will be located at the precise zero plane position to whatever accuracy has been chosen for the machining of the contacting parts so described.
In any of the preferred embodiments, the cutting insert receiver, at least at its open outer end portion, may take the form of an axially split collet. Of course, the cutting insert receiver may be split along its entire axial length, if desired. As every machinist knows, when bits are placed in a collet, and the collet is collapsed to apply a grasping force against the shank of the bit, the bit can move slightly in the axial direction, thereby affecting the zero plane position of the cutting edge. Employing the construction elements and configuration according to the present invention avoids this problem, since the "collet", i.e. the collapsible portion of the cutting insert receiver, is not movable axially within the rotary cutting tool body, and the cutting insert receiver is precisely fixed axially relative to the rotary cutting tool body.
In yet another aspect of the invention, a biasing member is provided, preferably in the form of a compression spring tending to move the movable holder away from the rotary cutting tool body and act on the cutting insert receiver to increase the grasping pressure on a cutter insert held in the opening of the cutting insert receiver. In this way, the compression spring means is effective to automatically cause the cutting insert receiver to grasp the cutting insert.
An operating member may then be manually actuated to move the movable holder to more tightly press the cutting insert receiver about the cutting insert. Moving the operating member in the opposite direction, i.e. moving the movable holder against the compression spring action, diminishes the grasping force sufficiently so that a user may simply withdraw the cutting insert from the cutting insert receiver. To replace the cutting insert, the user reverses that process. That is, the user manipulates the operating member to move the movable holder against the compression spring, inserts the new cutting insert, and then releases the operating member, upon which the compression spring moves the movable member outwardly to again collapse the "collet" portion of the cutting insert receiver to again grasp the replaced cutting insert.
For mounting the cutting insert cartridge arrangement to the rotary cutting tool body, the cutting tool insert receiver is provided with internal threads axially located on an inner end portion thereof. The rotary cutting tool body also has internal threads axially aligned with the internal threads on the cutting insert receiver inner end portion. The threads in the rotary cutting tool body are of the opposite-hand direction than the threads in the cutting insert receiver.
The cutting insert cartridge arrangement further comprises a differential screw having left-hand external threads at one end and right-hand external threads at the other end, whereby, after starting to thread its ends into the cutting insert receiver and into the rotary cutting tool body, rotation of the differential screw means in one direction pulls the cutting insert receiver and rotary cutting tool body together. Likewise, rotation of the differential screw means in the opposite direction pushes the cutting insert receiver and rotary cutting tool body apart, allowing quick and easy replacement of the cutting insert cutting arrangement, either to replace a damaged one, or to replace it with a cutting insert cutting arrangement for holding a different size cutting insert.
The drawing of the cutting insert receiver toward the rotary cutting tool body, due to the construction of the cutting insert cartridge arrangement, also draws the cartridge arrangement into a cavity in the rotary cutting tool body. In one embodiment, this action clamps the cutting insert in the receiver. In the embodiment employing a receiver holder, such action solidly fixes the cutting insert receiver to the rotary cutting tool body. Then, after the cutting insert cartridge arrangement is fully seated and tightened in place within the cavity in the rotary cutting tool body, the operating member is put in position to selectively activate the movable holder as hereinbefore described.
BRIEF DESCRIPTION OF THE DRAWING The above and other objects of the present invention may be more fully understood from the following detailed description taken together with the accompanying drawings, wherein similar reference characters refer to similar elements throughout, and in which: FIGURE 1 is a perspective view of a cutting insert cartridge arrangement in accordance with the present invention mounted to a rotary cutting tool body, the figure showing only a fragmentary portion of the rotary cutting tool body;
FIGURE 2 is a partial cross sectional view of an embodiment of the invention employing a collapsible taper lock feature and a differential screw arrangement, the figure also showing a cutting insert grasped and held in place by a cutting insert receiver;
FIGURE 3 is a perspective view of a cutting insert receiver for receiving and retaining a removable cutting insert;
FIGURE 4 is a perspective view of a cutting insert of the type that can be received by the cutting insert cartridge arrangement constructed in accordance with the invention;
FIGURE 4A is a view similar to Figure 4, but with the cutting insert having a plurality of exterior and interior flutes on the surfaces forming the cutting edge for the cutting insert;
FIGURE 5 is a view similar to that of Figure 2 but with the taper lock having released its grasping force against the cutting insert for allowing easy removal of the cutting insert;
FIGURE 5A is a view from the bottom of Figure 5, showing a rear access opening for an installation/adjustment tool;
FIGURE 6 is a partial cross sectional view of a second embodiment of the invention showing the cutting insert cartridge arrangement mounted in a rotary cutting tool body, only a fragment of the rotary cutting tool body being shown in this figure;
FIGURE 7 is a view similar to that of Figure 6 showing the cutting insert cartridge arrangement in a condition to diminish the grasping force on the cutting insert sufficiently for removal of the cutting insert;
FIGURE 8 is a perspective view of the alternative embodiment of the invention shown in Figures 6 and 7, employing a cutting insert receiver and a movable holder for holding the insert receiver;
FIGURE 9 is a perspective view of the cutting insert receiver employed in the second described embodiment of the invention;
FIGURE 10 is a side perspective view of a cutting insert receiver employed in the second embodiment of the invention, schematically showing the relationship with an operating member;
FIGURE 11 is a perspective view of an operating member for diminishing or releasing grasping pressure on a cutting insert by the second embodiment of the invention;
FIGURE 12 is a perspective view of the operating member of Figure 11 showing the opposite end of the operating member; and
FIGURE 13 is a front elevational view of the operating member shown in Figure 12.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Figure 1 is a perspective view of a cutting insert cartridge arrangement 1 in accordance with the present invention, mounted to a rotary cutting tool body 3, the figure showing only a fragmentary portion of the rotary cutting tool body 3.
Referencing Figures 1-5, a cutting insert receiver 5, in a preferred embodiment functioning as a collet, is mounted in the rotary cutting tool body 3 and, when so mounted, applies a grasping force to hold a cutter insert 7 in a proper and predetermined orientation and at a zero plane position for the cutting edge 23 of the cutting insert 7. A hole 24 is provided in insert 7 for insertion of an installation/- locking/releasing tool for both mounting the cutting insert cartridge arrangement 1 in the rotary cutting tool body 3, and for selectively locking and releasing the cutting insert 7 within the cutting insert receiver 5. Details of the installation of the cutting insert cartridge arrangement and operation of the grasping and releasing functions of the cutting insert 7 will be described hereinafter.
Figure 2 is a partial cross sectional view of a first embodiment of the invention employing a collapsible taper lock feature and a differential screw arrangement. The figure also shows a cutting insert 7 held in place by a cutting insert receiver 5.
In Figure 2, a differential screw 15 mounts the cutting insert receiver 5 into the rotary cutting tool body 3 initially, and, upon inserting a cutting insert 7 into the outer open end portion 9 of the cutting insert receiver 5, further turning of the differential screw 15 serves to collapse at least the outer end portion 9 of cutting insert receiver 5 to grasp the cutting insert 7 sufficiently to hold it in place for cutting action.
More particularly, it will be noted that the differential screw 15 has left hand threads 17 at one end and right hand threads 19 at the other. The rotary cutter tool body 3 has a left hand threaded bore 10, and the inner base end portion 11 of cutting insert receiver 5 has a right hand threaded bore 12.
In an installation procedure for installing the receiver 5 in body 3, the differential screw 15 is threaded into body 3 by turning the differential screw counterclockwise from the front, e.g., by a tool passing through hole 24 in the cutting insert 7, or, at least initially by applying a tool to the outer end of the right hand threaded portion 19 of the differential screw 15. For this function, a slot, alien wrench socket, or Phillips cross point depression (not shown) may be provided in the end of the right hand thread section 19. The next step in the installation procedure is to screw the receiver 5 onto the right hand threads 19 of the differential screw 15 in a clockwise direction while holding screw 15, if necessary, from turning. Then, the screw 15 is loosened slightly by turning it clockwise a few turns, and, while holding the screw 15 at that position, the receiver 5 is turned further down the screw threads 19 until it seats in a cavity of the rotary tool body 3 with surfaces 6 and 8 being in surface contact. The final step is then to tighten screw 15 (counterclockwise) , and if a cutting insert 7 is in place, the further movement of screw 15 counterclockwise will cause a camming action between conical surfaces 6 and 8 to collapse the cutting insert receiver 5, if it is slit along its entire length axially, or, at least, the outer end portion 9 collapses radially inwardly to lock the insert 7 in the receiver 5.
Further aspects of this unique construction aid in retaining the insert 7 in place. First, the position of the cutting edge 23 is such that material being cut tends to rotate the cutting insert 7 counterclockwise, as viewed from the front. Such counterclockwise forces simply tend to move the left hand threads 10 further into body 3 and the right hand threads 19 further into receiver 5, thereby tending to draw these two bodies further together. Secondly, the angles for the inner conical surface 6 of body 3 and the outer conical surface 8 of receiver 5 are chosen to effect a taper lock action when they are mutually engaged.
Figure 3 is a perspective view of a cutting insert receiver 5 showing a slit 28 extending the entire length of the receiver 5, the entire body of receiver 5 collapsing radially inwardly or expanding radially outwardly as the differential screw 15 is turned counterclockwise or clockwise, respectively. It will be understood that the embodiments shown in Figures 1-5 are members of a first preferred embodiment, and other configurations would be evident to the skilled worker. For example, the cutting insert receiver 5 may have a cylindrical inner base end portion 11, and a conical outer end portion 9, and the rotary cutting tool body 3 may have a cavity with a complementary shape allowing for axial movement of the cutting insert receiver 5, but with only the outer end portion 9 slit axially to act as a collet portion of the receiver 5. Additionally, other mounting devices may be employed to couple the cutting insert receiver 5 to the body 3 other than a differential screw 15. All that is required is that a cutting insert receiver 5 be drawn toward the rotary cutting tool body 3 to effect a camming action on a collet-like member for grasping a cutting insert 7 and locking it into position.
It should also be further appreciated that the taper of the sides of surfaces 6 and 8 may be formed by precision machining such that, with a given diameter cutting insert 7 and a given diameter for the opening in outer end portion 9, the distance from the bottom 26 of insert 7 to the bottom 30 of the cavity in rotary cutting tool body 3 will be precise. Moreover, the axial length of the cutting insert 7 can obviously be machined to great precision, so that the distance between the cutting edge 23 of the insert 7 and the bottom 30 of the body cavity 3 will likewise be a precision dimension repeatedly achievable upon each removal and insertion of a fresh cutting insert 7.
These precision dimensions are important when considering that a number of cutting inserts, in their insert cartridges, are positioned along a rotary cutting tool body 3 in a predetermined plane perpendicular to the axis of rotation of the body 3, and to achieve the most efficient cutting and to insure that the cutting inserts 7 all wear relatively evenly, positioning the cutting edges 23 of each of the plurality of cutting inserts 7 is extremely important. The present invention as described above achieves this goal.
The axial length of cutting insert receiver 5 is chosen to leave a space 21 when surfaces 6 and 8 achieve a taper lock condition. This is simply a safety factor to ensure that the taper lock effect will be achieved before the cutting insert receiver 5 could possibly seat against the bottom 30 of the cavity in rotary cutting tool body 3.
Figure 4 is a perspective view of a typical cutting insert 7 showing a frusto conical nose portion having a cutting edge 23. A hole 24 for the installation and operation of the cutting insert cartridge arrangement is shown in Figure 4.
In Figure 4A, a similar view as that of Figure 4 is shown, but with the cutting insert 7 having a plurality of exterior 18 and interior 20 flutes on the surfaces forming the cutting edge 23 for the cutting insert 7. These sharp-edged flutes aid in chipping away the material being cut by the cutting insert 7, in providing breaking of chips in metal removal, in moving small particles away from the cutting/drilling process and away from the cutting edges to avoid clogging of the rotary cutting tool, and in providing forced rotation of rotary cutting inserts. It is to be understood that the design of the flutes shown in Figure 4A are for illustrative purposes only, and any of a variety of patterns of sharp cutting edges on the cutting insert 7 faces can be formed, as desired. For example, instead of the diamond shaped V- grooves shown in Figure 4 , facial sharp edges for the cutting insert 7 may be radial grooves, axially angular grooves, helical grooves, tapered grooves, or grooves in a feathered pattern or in a chevron pattern, to name a few.
In Figure 5, it will be noted that the differential screw 15 has been turned clockwise (as viewed from the front) tending to push the cutting insert receiver 5 away from rotary cutting tool body 3 due to the opposite-handed screw threads acting on these two bodies. As a result, Figure 5 shows the cutting insert receiver 5 raised slightly from the tool body 3, whereby the cutting insert receiver 5 is self-expanding to provide a slight gap 25 between the outer surface of cutting insert 7 and the walls of the opening in outer end portion 9 of the receiver 5. Since the cutting insert 7 is not in any other way attached to the body 3 or receiver 5, it is easily removed by hand and replaced by a fresh cutting insert 7, after which the differential screw 15 is rotated counterclockwise to bring receiver 5 back toward body 3 and, again, effect a collet grasping action against insert 7 by cutting insert receiver 5 in the manner previously described.
As an alternate installation and adjustment (collet release) arrangement for the cutting insert cartridge arrangement 1, Figure 5A shows an optional rear access opening 16 in the rotary cutting tool body 3 in which an installation/- adjustment tool (not shown) may be inserted for turning differential screw 15. The tool may be, for example, a hex driver fitting into a complementary hex opening 14 in the end of differential screw 15. This arrangement does not require the cutting insert 7' to have a through hole 24 as shown in the cutting insert 7 of Figures 1 and 2, for example. Thus, which installation/adjustment structure is to be used is determined by whether or not rear access to the differential screw 15 is available, and if so, further determined at the option of the equipment designer.
Figure 6 is a figure similar to that of Figure 2, but with some additional features. Like components to those shown and described with respect to Figures 1-5 will not be repeated, as the person of ordinary skill in the art will appreciate the similar functions of such elements of the invention.
Figure 6 is a partial cross sectional view of the second embodiment of the invention showing the cutting insert cartridge arrangement 31 mounted in a rotary cutting tool body 43, only a fragment of the rotary cutting tool body being shown in this figure. In this embodiment, a differential screw 45 is likewise provided with left hand threads 47 screwed into a complementary threaded bore in rotary cutting tool body 43 and right hand threads 49 screwed into a complementary threaded bore in insert receiver 35. The Figure 6 embodiment employs a cutting insert receiver 35 taking the form of a collet and having the ability to collapse radially inwardly or expand radially outwardly to grasp or release a cylindrical cutting insert 37, as hereinbefore described.
However, in the Figure 6 embodiment, it is the cutting insert receiver 35 which is first mounted, without a cutting insert 37 in place, to the body 43 by an installation similar to that described with respect to Figure 2. Upon tightening of the differential screw 45 by a tool having access to the outer end of the right hand thread portion 49 of screw 45, the cutting insert receiver 35 will have its precision machined inner end portion 51 seated against a similarly precision machined surface 53 at the bottom of the cavity in rotary cutting tool body 43.
Prior to mounting the cutting insert receiver 35 to body 43, however, a movable holder 58 and a spring 59 are inserted over the outside of cutting insert receiver 35, assembled as shown in Figure 6. The spring 59 may be any preferred form of compression spring, the Figure 6 embodiment showing a number of alternately flipped belville springs 59. A helical compression spring could be used instead, if desired.
It will be noted that, in the fully inserted and locked condition of cutting insert 37, the movable holder 58 has a conical interior surface 60 mating with and taper locking with the outer conical surface 62 of the cutting insert receiver 35. The spring arrangement 59 pushes against the bottom 53 of the cavity in body 43 and against a radially inwardly directed planar shoulder 64 of movable holder 58. Since cutting insert receiver 35 is fixed to body 43, the action of the spring arrangement 59 is effective to cam the inner conical surface 60 against the outer conical surface 62 of the receiver 35, thereby forcing the cutting insert receiver 35 to collapse radially inwardly and apply a grasping force to the outer cylindrical surface of cutting insert 37. It will be noted that, with the rear end 66 of the movable holder 58 spaced from the bottom 53 of the cavity in body 43, the movable holder 58 may be pushed axially inwardly against the action of the spring arrangement 59, thereby releasing the taper lock hold between the contacting conical surfaces 60 and 62. As a result of the movement of movable holder 58 axially inwardly, the cutting insert receiver 35 self-expands radially outwardly to provide a gap between the outer surface of cutting insert 37 and the inner surface of opening 40, as best seen in Figure 7 showing a gap 73 being produced at that interface.
Importantly, an even closer tolerance on the position of the cutting edge 69 in the zero plane of the rotary cutting tool 43 is achieved by this second embodiment of the invention as compared to the embodiment shown in Figures 1-5. In the second embodiment just described, extremely close tolerances can be held in the machining of bottom 53 of the body 43, inner end portion 51 of the cutting insert receiver 35, bottom surface 57 of the opening 40 in receiver 35, and the axial length of the cutting insert 37 between the cutting edge 69 and the planar base surface 55. In this second embodiment, the loosening and/or tightening of the grasping of the cutting insert 37 by the receiver 35 is totally independent of the spacing between the cutting edge 69 and the bottom surface 53 of the body 43.
Although any of a number of tools may be employed to push the movable holder 58 axially rearwardly to relieve the taper lock and collet action holding the cutting insert 37 in place, a preferred embodiment of the invention employs an eccentric release pin or operating member 61 rotatable in a bore 70 formed in body 43. The operating member 61 is rotatable with respect to, but locked axially into, body 43 by a locking ring 67, e.g. a snap ring, engagable in an annular groove 81 formed in the operating member 61 and an annular groove 68 formed in body 43. The operating member 61 has an activating portion, in the preferred embodiment taking the form of an eccentric boss 63 fitting into an off-center slot opening 65 in movable holder 58. The slot opening 65 is axially offset from the axis of rotation of operating member 61 and defines a short circumferential groove in the periphery of cutting insert receiver 35. The operating member 61 is rotatable in bore 70 by applying a screwdriver, alien wrench, or other similar tool to the outer end of operating member 61, the engagement part of operating member 61 receiving such a tool, shown in Figure 11 as an alien.
Although spring assembly 59 pushes movable holder 58 to taper lock against cutting insert receiver 35, the taper lock set can enhanced by an operator rotating operating member 61 to manually move boss 63, and movable holder 58 axially outwardly. In a similar, but opposite, action rotation of operating member 61 in the opposite direction moves boss 63, and movable holder 58, axially inwardly to release the taper lock condition as illustrated in Figure 7. Figure 7 shows the boss 63 at a more inwardly position relative to body 43, and, likewise shows the spring arrangement 59 further collapsed and the taper lock released producing a gap 73 for the easy removal of cutting insert 37.
Figure 8 is a perspective view of the second preferred embodiment, similar to the view in Figure 1, but showing the additional movable holder 58 and the position of an operating member 61.
Figure 10 is a schematic illustration of the cooperation between the operating member 61 and the movable holder 58. The axes of a cylindrical operating member 61 and a cylindrical boss 63 extending eccentrically therefrom is also shown in Figure 10 for illustrative purposes. Finally, Figure 10 also shows an optional feature of the invention, wherein an annular groove 88 may be provided at the most forward end of the movable member 58. As mentioned previously, a dedicated operating member 61 is not absolutely required to operate the invention, as any tool that can push • axially inwardly the movable member 58 to release the taper lock and collet action described would suffice. Annular groove 88 simply makes this point more clear, as a tubular tool fitting in the annular groove 88, a forked tool having two or more tines fitting into annular groove 88 at spaced angular positions, or even a screwdriver or other instrument pushing against the nose of movable member 58 may serve to compress the compression spring arrangement 59 (Figures 6 and 7) sufficiently to release the cutting insert 37. It will therefore be understood that the operating member 61 is provided for a convenience factor only and is not an essential part of the invention.
Figure 9 is a perspective view of the cutting insert receiver 35 showing an outer surface 85, an outer end portion 39, and the inner base end portion 41 as previously described. In the Figure 9 embodiment, the cutting insert receiver 35 is axially slit along its entire length forming a slit 79. Again, if desired, only the outer end portion 39 need be slit to act as a collet for retaining the cutting insert 37.
Figures 11-13 show the operating member 61 in different views, these figures showing the eccentric nature of the boss 63 relative to the cylindrical operating member body 61, the annular groove 81 cooperating with a locking ring 67 (Figure 6) , and, in the example shown in Figure 11, a hex opening 71 for insertion of an alien wrench for releasing and assisting in the locking of the movable holder 58 relative to the cutting insert receiver 35.
Another difference between the embodiment of Figures 6-13 as compared to that of Figures 1-5 is that, in the first embodiment, access to the end of differential screw 15 at the end 19 is necessary during installation of the cutting insert 7. Accordingly, an opening 24 was provided in insert 7 for the insertion of an appropriate tool to have access to the end of differential screw 15. In the second embodiment of the invention, the cutting insert receiver 35 is initally fully installed to the rotary cutting tool body 43 by turning differential screw 45 counterclockwise until the movable holder 58 is pressed tightly against bottom surface 53. A cutting insert 37 may, afterwards, be inserted by the turning of operating member 61 to push movable holder 58 against spring assembly 59 to release the cutting insert 37, and operating member 61 may simply be released to permit the movable holder 58 to be forced outwardly by spring assembly 59, again locking the cutting insert 37 in place. By this action, it will be appreciated that a solid cutting insert 37 may be provided, i.e. without any axial through hole.
While only certain embodiments of the invention have been set forth above, alternative embodiments and various modifications will be apparent from the above description and the accompanying drawing to those skilled in the art. These and other alternatives are considered equivalents and within the spirit and scope of the present invention.

Claims

WHAT IS CLAIMED IS
1. A cutting insert cartridge arrangement for mounting to and removal from a rotary cutting tool body, comprising: a cutting insert receiver having an outer end portion with an opening therein for receiving a cutting insert, said outer end portion configurable to apply a varying grasping force against an inserted cutting insert; and a movable holder for holding said insert receiver, said holder coupled to said cutting insert receiver and slidable axially relative to the cutting insert receiver to configure said outer end portion to increase grasping holding force against an inserted cutting insert in a first axial position of said movable holder, and to diminish grasping holding force against an inserted cutting insert in a second axial position of said movable holder, to facilitate removal of the cutting insert.
2. The cutting tool cartridge arrangement as claimed in Claim 1, comprising a biasing member for biasing said movable holder toward said first axial position.
3. The cutting tool cartridge arrangement as claimed in Claim 2, comprising an operating member coupled and acting between the rotary cutting tool body and said movable holder to move said movable holder against said biasing member to diminish said grasping holding force sufficiently to release, for removal, a cutting insert received in said cutting insert receiver.
4. The cutting tool cartridge arrangement as claimed in Claim 1, wherein: said cutting insert receiver has an inner base end portion opposite said outer end portion, said inner base end portion having an end surface contacting the rotary cutting tool body; and said cutting insert receiver has a seating surface at the bottom of said opening; whereby inserting a cutting insert of a fixed axial length into said opening until the cutting insert contacts said bottom of said opening will place the cutting insert at a precise predetermined zero plane position.
5. The cutting tool cartridge arrangement as claimed in Claim 3, wherein: said cutting insert receiver is a slotted collet having an outer surface tapered inwardly toward the rotary cutting tool body; said movable holder is an annular unslotted member having an inner surface tapered inwardly toward the rotary cutting tool body, the taper of said movable holder inner surface being the same as that of said cutting insert receiver outer surface; and said biasing member is a compression spring means tending to move said movable holder away from the rotary cutting tool body and cam said outer tapered surface of said slotted collet inwardly with the inner tapered surface of said movable holder to increase the grasping pressure by said cutting insert receiver on a cutter insert inserted into said opening in said cutting insert receiver.
6. The cutting tool cartridge arrangement as claimed in Claim 5, wherein the rotary cutting tool body has a bore into which said operating member snugly fits and is movable therein between a first position and a second position, said operating member having an activating portion coupled to said movable holder for moving said movable holder against the bias of said biasing means to diminish the grasping force on an inserted cutter insert by said collet when said operating member is moved to its second position.
7. The cutting tool cartridge arrangement as claimed in Claim 6, wherein, after said operating member has been moved to its second position and then released, said biasing means moves said movable holder to cam said collet into a grasping relationship with an inserted cutter insert and to move said operating member back to its first position.
8. The cutting tool cartridge arrangement as claimed in Claim 1, wherein: said cutting insert receiver has internal threads axially located in an inner end portion; the rotary cutting tool body has internal threads axially aligned with said internal threads on said cutting insert receiver inner end portion, the threads in the rotary cutting tool body being of the opposite-hand direction than the threads in said cutting insert receiver; and said cutting insert cartridge arrangement further comprises a differential screw means having left-hand external threads at one end and right-hand external threads at the other end, whereby, after starting to thread its ends into said cutting insert receiver and into the rotary cutting tool body, rotation of said differential screw means in one direction pulls said cutting insert receiver and said rotary cutting tool body together, and rotation of said differential screw means in the opposite direction pushes said cutting insert receiver and said rotary cutting tool body apart.
9. A cutting insert cartridge arrangement for mounting to and removal from a rotary cutting tool body, the rotary cutting tool body having a cavity with internal sidewalls, at least a portion of the internal sidewalls defining a first cam surface, said cutting insert cartridge arrangement comprising: a cutting insert receiver having an outer end portion with an opening therein for receiving a cutting insert, said outer end portion configurable to apply a varying grasping force against an inserted cutting insert, said cutting insert receiver having an outer surface defining a second cam surface; and a coupler for coupling said cutting insert receiver to the rotary cutting tool body while effecting mutual camming engagement between said first and second cam surfaces, said camming engagement configuring said configurable cutting insert receiver outer portion to increase said grasping force of said cutting insert receiver outer end against an inserted cutting insert as said coupler moves said cutting insert receiver toward the rotary cutting tool body, and said camming engagement configuring said configurable cutting insert receiver outer portion to decrease said grasping force of said cutting insert receiver outer end against an inserted cutting insert as said coupler moves said cutting insert receiver away from the rotary cutting tool body, to facilitate removal of the cutting insert.
10. The cutting insert cartridge arrangement as claimed in Claim 9, wherein: said cutting insert receiver has internal threads axially located in an inner end portion; the rotary cutting tool body has internal threads axially aligned with said internal threads on said cutting insert receiver inner end portion, the threads in the rotary cutting tool body being of the opposite-hand direction than the threads in said cutting insert receiver; and said connecting means further comprises a differential screw means having left-hand external threads at one end and right-hand external threads at the other end, whereby rotation of said differential screw means in one direction, after starting to thread its ends into said cutting insert receiver and into the rotary cutting tool body, pulls said cutting insert receiver and said rotary cutting tool body together, and rotation of said differential screw means in the opposite direction pushes said cutting insert receiver and said rotary cutting tool body apart.
11. The cutting insert cartridge arrangement as claimed in Claim 10, wherein: the cavity in the rotary cutting tool body has a bottom, and the cavity internal sidewalls in the rotary cutting tool body are tapered inwardly toward the bottom, the cavity internal sidewalls constituting the first cam surface; and said cutting insert receiver is a slotted collet having an outer surface tapered inwardly toward the rotary cutting tool body, said tapered outer surface constituting said second camming surface.
12. The cutting insert cartridge arrangement as claimed in Claim 10, wherein said differential screw has a tool receiving axis at its axial end threadably received in said cutting insert receiver, said cutting insert receiver having an axial opening through which a tool can be passed axially to engage in said tool receiving axis of said differential screw, said cutting insert cartridge arrangement being especially adapted to receive cutting inserts having a central opening axially aligned with the opening in said cutting insert receiver and with said differential screw.
13. A cutting insert cartridge arrangement for mounting to and removal from a rotary cutting tool body, comprising: a cutting insert receiver having an outer end portion with an opening therein for receiving a cutting insert, said outer end portion configurable to apply a varying grasping force against an inserted cutting insert; and wherein said cutting insert receiver has internal threads axially located in an inner end portion; the rotary cutting tool body has internal threads axially aligned with said internal threads on said cutting insert receiver inner end portion, the threads in the rotary cutting tool body being of the opposite-hand direction than the threads in said cutting insert receiver; and said cutting insert cartridge arrangement further comprises a differential screw means having left-hand external threads at one end and right-hand external threads at the other end, whereby, after starting to thread its ends into said cutting insert receiver and into the rotary cutting tool body, rotation of said differential screw means in one direction pulls said cutting insert receiver and said rotary cutting tool body together, and rotation of said differential screw means in the opposite direction pushes said cutting insert receiver and said rotary cutting tool body apart.
14. The cutting tool cartridge arrangement as claimed in Claim 13, wherein: said cutting insert receiver has an inner base end portion opposite said outer end portion, said inner base end portion having an end surface spaced from the rotary cutting tool body; and said cutting insert receiver has a seating surface at the bottom of said opening and a tapered outer surface, and the rotary cutting tool body has a complementary tapered inner surface; whereby inserting a cutting insert of a fixed axial length into said opening until the cutting insert contacts said opening bottom, and turning said differential screw until said tapered outer surface of said insert cutting receiver fits tightly against the complementary tapered inner surface of the rotary cutting tool, will place the cutting insert at a precise predetermined zero plane position.
15. The cutting tool cartridge arrangement as claimed in Claim 13, wherein said cutting insert receiver is a slotted collet having an outer surface tapered inwardly toward the rotary cutting tool body.
PCT/US1998/015776 1997-07-31 1998-07-30 Cutting insert cartridge arrangement WO1999006192A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU86714/98A AU8671498A (en) 1997-07-31 1998-07-30 Cutting insert cartridge arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/903,593 1997-07-31
US08/903,593 US5975811A (en) 1997-07-31 1997-07-31 Cutting insert cartridge arrangement

Publications (2)

Publication Number Publication Date
WO1999006192A2 true WO1999006192A2 (en) 1999-02-11
WO1999006192A3 WO1999006192A3 (en) 1999-05-20

Family

ID=25417747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/015776 WO1999006192A2 (en) 1997-07-31 1998-07-30 Cutting insert cartridge arrangement

Country Status (3)

Country Link
US (1) US5975811A (en)
AU (1) AU8671498A (en)
WO (1) WO1999006192A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2773838A4 (en) * 2011-11-03 2015-08-19 Us Synthetic Corp Borehole drill bit cutter indexing

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19949743C1 (en) * 1999-10-15 2001-03-22 Hollfelder Hans Peter Cutting tool for high-speed machining of metal workpiece has cutting block clamped in tool holder and positioned relative to latter by pin of eccentric bolt
US6574527B1 (en) 2000-10-05 2003-06-03 Kennametal Inc. Method of selecting a cutting system
US20030176868A1 (en) * 2002-02-22 2003-09-18 Pepper John R. Long bone reaming apparatus and method
US6702526B2 (en) * 2002-04-29 2004-03-09 Kennametal Inc. Cutting tool
DE10234030A1 (en) * 2002-07-26 2004-02-05 Widia Gmbh Cutting tool for stock-removal machining has positioning wedge axially displaceable by eccentric pivot in cassette recess in which cassette with cutting insert holder is mounted
WO2006000171A2 (en) * 2004-06-25 2006-01-05 Gühring, Jörg Tool for machining workpieces by chip removal
US20060015110A1 (en) * 2004-07-15 2006-01-19 Pepper John R Cutting device
US7325471B2 (en) * 2004-09-07 2008-02-05 Kennametal Inc. Toolholder and cutting insert for a toolholder assembly
US7575399B2 (en) * 2005-06-08 2009-08-18 Van Horssen Charles A Quick change holder for cutting tool
US7533739B2 (en) * 2005-06-09 2009-05-19 Us Synthetic Corporation Cutting element apparatuses and drill bits so equipped
US7942218B2 (en) 2005-06-09 2011-05-17 Us Synthetic Corporation Cutting element apparatuses and drill bits so equipped
US7604073B2 (en) * 2005-10-11 2009-10-20 Us Synthetic Corporation Cutting element apparatuses, drill bits including same, methods of cutting, and methods of rotating a cutting element
US7845436B2 (en) * 2005-10-11 2010-12-07 Us Synthetic Corporation Cutting element apparatuses, drill bits including same, methods of cutting, and methods of rotating a cutting element
KR100942983B1 (en) * 2007-10-16 2010-02-17 주식회사 하이닉스반도체 Semiconductor device and method for manufacturing the same
US20100051352A1 (en) * 2008-08-27 2010-03-04 Baker Hughes Incorporated Cutter Pocket Inserts
US8079431B1 (en) 2009-03-17 2011-12-20 Us Synthetic Corporation Drill bit having rotational cutting elements and method of drilling
US8887839B2 (en) 2009-06-25 2014-11-18 Baker Hughes Incorporated Drill bit for use in drilling subterranean formations
WO2011005996A2 (en) 2009-07-08 2011-01-13 Baker Hughes Incorporated Cutting element for a drill bit used in drilling subterranean formations
RU2012103935A (en) 2009-07-08 2013-08-20 Бейкер Хьюз Инкорпорейтед CUTTING ELEMENT AND METHOD FOR ITS FORMATION
EP2479003A3 (en) 2009-07-27 2013-10-02 Baker Hughes Incorporated Abrasive article
EP2546013A1 (en) * 2010-03-10 2013-01-16 Tungaloy Corporation Clamp assistant member and cutting tool including clamp assistant member
US8567533B2 (en) 2010-08-17 2013-10-29 Dover Bmcs Acquisition Corporation Rotational drill bits and drilling apparatuses including the same
US8807247B2 (en) 2011-06-21 2014-08-19 Baker Hughes Incorporated Cutting elements for earth-boring tools, earth-boring tools including such cutting elements, and methods of forming such cutting elements for earth-boring tools
US9322219B2 (en) * 2011-12-05 2016-04-26 Smith International, Inc. Rolling cutter using pin, ball or extrusion on the bit body as attachment methods
WO2013085869A1 (en) 2011-12-05 2013-06-13 Smith International Inc. Rotating cutting elements for pdc bits
US9617795B2 (en) 2012-03-09 2017-04-11 Dover Bmcs Acquisition Corporation Rotational drill bits and drilling apparatuses including the same
US9303461B2 (en) 2012-10-26 2016-04-05 Baker Hughes Incorporated Cutting elements having curved or annular configurations for earth-boring tools, earth-boring tools including such cutting elements, and related methods
US9388639B2 (en) 2012-10-26 2016-07-12 Baker Hughes Incorporated Rotatable cutting elements and related earth-boring tools and methods
US9862039B2 (en) * 2014-08-28 2018-01-09 Richard Theriault Milling tool with rotatable cutting disks
WO2017210400A1 (en) * 2016-06-01 2017-12-07 Endres William J Rotary cutting insert and support device
US10405872B2 (en) 2016-08-14 2019-09-10 Viant As&O Holdings, Llc Cutting head for an intramedullary reamer
CN106624101B (en) * 2016-11-30 2020-07-10 株洲钻石切削刀具股份有限公司 Wedge block with initial positioning function and adjustable cutter
US10875201B2 (en) 2018-04-04 2020-12-29 Swanstrom Tools Usa Inc. Relief guard for hand tools
US11306543B2 (en) * 2020-02-20 2022-04-19 Saudi Arabian Oil Company Drill bit cutter fitted with a threaded member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2906146A (en) * 1956-12-20 1959-09-29 Leonard W Kuttler Jr Floating reamer
US5163490A (en) * 1991-10-30 1992-11-17 Jackson Lumber Harvester Company, Inc. Knife clamp for wood planing heads

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US191241A (en) * 1877-05-29 Improvement in tools for shaping and dressing stone
US1790613A (en) * 1931-01-27 A corpo
US972969A (en) * 1908-06-04 1910-10-18 Wittich Success Shaft Sinking And Tunnelling Machine Company Stone-cutting tool.
US1238707A (en) * 1915-09-01 1917-08-28 Hugh A Bardeen Roller-bit.
US1438876A (en) * 1919-09-30 1922-12-12 E C Coffey Oil-well drill bit
US1415339A (en) * 1920-03-24 1922-05-09 Peter P-G Hall Milling cutter
US1723381A (en) * 1922-07-25 1929-08-06 Universal Rotary Bit Company Rotary drill bit
US1542007A (en) * 1922-12-06 1925-06-16 Frank J Schroeder Cutting tool
US1747908A (en) * 1923-08-11 1930-02-18 Universal Rotary Bit Company Rotary drill bit
US1692919A (en) * 1924-03-17 1928-11-27 Walter C Bailey Disk-drill bit
US1577952A (en) * 1924-05-06 1926-03-23 Carnegie William Turning and boring tool
US1812475A (en) * 1927-03-19 1931-06-30 Universal Rotary Bit Company Drilling device
US1945854A (en) * 1930-02-17 1934-02-06 Peter P-G Hall Milling cutter
US2054311A (en) * 1932-12-27 1936-09-15 Youngstown Sheet And Tube Co Interior bead trimmer
FR776939A (en) * 1933-10-24 1935-02-07 New tool working conditions
DE713504C (en) * 1938-04-13 1941-11-08 Roechling Sche Eisen Und Stahw Chip deflector on mushrooms
US2180823A (en) * 1938-05-28 1939-11-21 Doehler Die Casting Co Hole sizing tool
GB607770A (en) * 1944-01-31 1948-09-06 Ralph Gordon Fear Improvements in or relating to cutting tools for lathes and other machine tools
US2886293A (en) * 1955-01-10 1959-05-12 Charles J Carr Directional well bore roller bit
US2862286A (en) * 1955-06-10 1958-12-02 O K Tool Co Inc Tool and tool holder
US2860855A (en) * 1956-07-26 1958-11-18 Bertram J Vincent Apparatus for boring fishing holes in ice
US3049033A (en) * 1959-05-20 1962-08-14 Erickson Tool Co Spade drill and grinding fixture therefor
US3262184A (en) * 1960-07-26 1966-07-26 De Vlieg Machine Co Adjustable tool holder
US3106972A (en) * 1962-06-25 1963-10-15 Coal Bit Company Rotary drill bit for stone or the like
US3163246A (en) * 1963-04-18 1964-12-29 Westinghouse Air Brake Co Rock drill bit
US3434553A (en) * 1967-03-08 1969-03-25 Gen Electric Drill cutter bit
US3759625A (en) * 1970-09-15 1973-09-18 N Iversen Cutting tool
SU385676A1 (en) * 1971-04-09 1973-06-14 Е. Г. Коновалов , Г. Ф. Шатуров Физико технический институт Белорусской ССР ROTATING CUTTER
US3765496A (en) * 1971-12-27 1973-10-16 M Flores Drill head unit with throwaway insert holders
SU523761A1 (en) * 1974-10-29 1976-08-05 Предприятие П/Я Р-6760 Cup Rotary Cutter
US4093392A (en) * 1975-04-10 1978-06-06 The Valeron Corporation Milling cutter
SU607660A1 (en) * 1975-04-22 1978-05-25 Специальное Проектно-Конструкторское И Технологическое Бюро По Промышленным Электровозам Rotary cutting tool
US4086972A (en) * 1976-05-06 1978-05-02 Carmet Company Method and apparatus for roof drilling
US4047826A (en) * 1976-05-17 1977-09-13 Bennett John T Drill having indexable replaceable insert tip
US4936719A (en) * 1976-08-24 1990-06-26 Greenleaf Corporation Cutter and indexable on edge inserts with aligned corners and staggered serrated edges
US4190125A (en) * 1977-11-09 1980-02-26 Fansteel Inc. Drill bit and steel combination for improved fluid flow
US4222690A (en) * 1977-12-03 1980-09-16 Ryosuke Hosoi Drill having cutting edges with the greatest curvature at the central portion thereof
US4215955A (en) * 1978-10-11 1980-08-05 Trw Inc. Cutting tool and insert for same
US4337980A (en) * 1979-05-21 1982-07-06 The Cincinnati Mine Machinery Company Wedge arrangements and related means for mounting means, base members, and bits, and combinations thereof, for mining, road working, or earth moving machinery
GB2057939B (en) * 1979-09-04 1982-11-24 Univ Western Australia Method of machining and a rotary cutting tool therefor
US4477211A (en) * 1980-03-13 1984-10-16 Briese Leonard A Rotary tool cutting cartridge
EP0084418A3 (en) * 1982-01-20 1983-08-10 Unicorn Industries Limited Improved drill bit and method
US4627503A (en) * 1983-08-12 1986-12-09 Megadiamond Industries, Inc. Multiple layer polycrystalline diamond compact
US4645386A (en) * 1984-01-31 1987-02-24 The Ingersoll Cutting Tool Company Thread-cutting apparatus
CA1234096A (en) * 1984-03-19 1988-03-15 Inco Limited Spherical bit
US4621955A (en) * 1984-04-16 1986-11-11 Briese Leonard A Cone shaped cutting insert
US4682916A (en) * 1984-04-16 1987-07-28 Briese Leonard A Cutting insert arrangement
SE455676B (en) * 1984-11-12 1988-08-01 Sandvik Ab SHORT CARE, AND THEREFORE HAPPEN
US4614463A (en) * 1985-09-11 1986-09-30 Hughes Chesley P Cutter having removable cutting blades
CH663558A5 (en) * 1985-09-13 1987-12-31 Stellram Sa MILLING MACHINE FOR MACHINING T-GROOVES
GB8524146D0 (en) * 1985-10-01 1985-11-06 Nl Petroleum Prod Rotary drill bits
US5038859A (en) * 1988-04-15 1991-08-13 Tri-State Oil Tools, Inc. Cutting tool for removing man-made members from well bore
US4751972A (en) * 1986-03-13 1988-06-21 Smith International, Inc. Revolving cutters for rock bits
CH667407A5 (en) * 1986-03-27 1988-10-14 Stellram Sa STRAWBERRY WITH REMOVABLE CUTTING INSERTS.
CH672908A5 (en) * 1986-04-15 1990-01-15 Bechem Hannelore
US4984944A (en) * 1987-02-09 1991-01-15 Vermont American Corporation Drill bit blade for masonry and rock drill
US4819748A (en) * 1987-02-20 1989-04-11 Truscott Aaron S Roof drill bit
CH671901A5 (en) * 1987-06-25 1989-10-13 Stellram Sa
US4817742A (en) * 1987-08-11 1989-04-04 Kennametal Inc. Butterfly-type shim having perforations in mid-section thereof and double sandwich braze joint produced therewith
DE3730378A1 (en) * 1987-09-10 1989-03-23 Micro Crystal Ag CUTTING TOOL, ESPECIALLY DRILLING AND / OR MILLING
US4893967A (en) * 1987-09-29 1990-01-16 Briese Leonard A Cutting tool arrangement
US4993888A (en) * 1987-09-29 1991-02-19 Briese Leonard A Cutting tool arrangement
US5028175A (en) * 1988-03-21 1991-07-02 Gte Valenite Corporation Indexable insert for roughing and finishing
US5099929A (en) * 1990-05-04 1992-03-31 Dresser Industries, Inc. Unbalanced PDC drill bit with right hand walk tendencies, and method of drilling right hand bore holes
US5103922A (en) * 1990-10-30 1992-04-14 Smith International, Inc. Fishtail expendable diamond drag bit
US5220967A (en) * 1991-09-23 1993-06-22 Sandvik Rock Tools, Inc. Drill and self-centering cutter insert therefor
US5226489A (en) * 1992-01-10 1993-07-13 Kennametal Inc. Insert spacer assembly
US5311959A (en) * 1992-04-13 1994-05-17 Gte Valenite Corporation Mine tool roof bit insert
US5287937A (en) * 1992-06-30 1994-02-22 The Sollami Company Drill bits and the blades therefor
US5429199A (en) * 1992-08-26 1995-07-04 Kennametal Inc. Cutting bit and cutting insert
US5363932A (en) * 1993-05-10 1994-11-15 Smith International, Inc. PDC drag bit with improved hydraulics
US5458210A (en) * 1993-10-15 1995-10-17 The Sollami Company Drill bits and blades therefor
US5458211A (en) * 1994-02-16 1995-10-17 Dennis; Thomas M. Spade drill bit construction
US5456329A (en) * 1994-02-16 1995-10-10 Dennis Tool Company Bifurcated drill bit construction
US5433281A (en) * 1994-07-25 1995-07-18 Black; Stanton Roof drill bit tip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2906146A (en) * 1956-12-20 1959-09-29 Leonard W Kuttler Jr Floating reamer
US5163490A (en) * 1991-10-30 1992-11-17 Jackson Lumber Harvester Company, Inc. Knife clamp for wood planing heads

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2773838A4 (en) * 2011-11-03 2015-08-19 Us Synthetic Corp Borehole drill bit cutter indexing

Also Published As

Publication number Publication date
WO1999006192A3 (en) 1999-05-20
US5975811A (en) 1999-11-02
AU8671498A (en) 1999-02-22

Similar Documents

Publication Publication Date Title
US5975811A (en) Cutting insert cartridge arrangement
US6254303B1 (en) Quick-release connector and methods therefore
US7004692B2 (en) Rotary cutting tool
EP1638721B1 (en) Arbor for hole cutter and related method of use
EP1128923B1 (en) Chuck, bit, assembly thereof and methods of mounting
US4723877A (en) Toolholder
AU2012245003B2 (en) Chuck tool and bits arrangement
EP1296791B1 (en) Rotatable tool having a replaceable tip at the chip removing free end of the tool
US4350463A (en) Arrangement for mounting a cutter
EP1152858B1 (en) Tool and cutting head for cutting machining
CN1198698C (en) Tool for cutting machinng
EP1753569B1 (en) Toolholder assembly
US4726269A (en) Toolholder assembly
EP0446198B1 (en) Quick-change mechanism with eccentric lock
EP1404476B1 (en) Apparatus for cutting tools
US6543318B1 (en) Locking assembly
US20020083807A1 (en) Arbor
US5288182A (en) Boring bar holder and insert with precision placement insert locator means
US4340328A (en) Rotary cutting tool and tool driver
US6354772B1 (en) Cutting tool
US5791661A (en) Compliant chuck jaws
US3344690A (en) Boring bar assembly
EP0659511B1 (en) Tool system
EP1769868B1 (en) Chuck and method of assembly thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA