WO1999005542A1 - Verfahren zur aufnahme von ultraschallbildern bewegter objekte - Google Patents

Verfahren zur aufnahme von ultraschallbildern bewegter objekte Download PDF

Info

Publication number
WO1999005542A1
WO1999005542A1 PCT/EP1998/004430 EP9804430W WO9905542A1 WO 1999005542 A1 WO1999005542 A1 WO 1999005542A1 EP 9804430 W EP9804430 W EP 9804430W WO 9905542 A1 WO9905542 A1 WO 9905542A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement
individual
ultrasound
areas
partial image
Prior art date
Application number
PCT/EP1998/004430
Other languages
English (en)
French (fr)
Inventor
Bernhard Mumm
Johannes Waldinger
Dietmar Kaiser
Original Assignee
Tomtec Imaging Systems Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomtec Imaging Systems Gmbh filed Critical Tomtec Imaging Systems Gmbh
Priority to US09/463,512 priority Critical patent/US6398731B1/en
Priority to EP98940237A priority patent/EP0998683B1/de
Priority to AT98940237T priority patent/ATE201511T1/de
Priority to JP2000504473A priority patent/JP2001511373A/ja
Priority to DE59800768T priority patent/DE59800768D1/de
Publication of WO1999005542A1 publication Critical patent/WO1999005542A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52068Stereoscopic displays; Three-dimensional displays; Pseudo 3D displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/52087Details related to the ultrasound signal acquisition, e.g. scan sequences using synchronization techniques
    • G01S7/52088Details related to the ultrasound signal acquisition, e.g. scan sequences using synchronization techniques involving retrospective scan line rearrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information

Definitions

  • the invention relates to a method for recording ultrasound images of moving objects, in particular blood vessels or organs of living beings, according to the preamble of claim 1.
  • an ultrasound transmitter for emitting ultrasound waves is directed onto the object, while an ultrasound receiver receives the ultrasound waves reflected by the object.
  • ultrasonic heads are usually used, which contain both the ultrasonic transmitter and the ultrasonic receiver. These ultrasound heads are moved along the object to be examined in order to record a large number of two-dimensional images, while a large number of individual images of the object are created.
  • the movement of the ultrasound head can be linear, circular, arc-shaped or in any other direction, for example freehand.
  • These pictures represent individual picture Subareas of the object represent and are put together in a data processing system, so that a three-dimensional volume image results.
  • the three-dimensional volume image consists of a “superimposition” of the individual partial image areas, which each represent individual “layers” of the object to be examined.
  • the movement of the ultrasound head along the object to be examined scans it in layers, with a linear scanning the number of layers per unit length determining the resolution of the resulting ultrasound image.
  • the ultrasound images are assembled and displayed in accordance with the incremental recording of individual partial image areas.
  • the movement of the transducer can be realized by mechanics, by a sound deflection device integrated in the transducer, or by free-hand imaging with magnetic or optical sensor systems for the three-dimensional assignment of the ultrasound images.
  • the assignment of the individual “layers” of the object can also be accomplished, for example, by the method of the parallel patent application made by the applicant.
  • the compilation of the ultrasound images for the acquisition of the third dimension is usually carried out in a data processing system which detects the video output signal or a digital output signal of the ultrasound system and The corresponding signals are supplied by the ultrasound head or the ultrasound receiver.
  • the image recordings of objects that produce a blurred motion due to their own movement or the movement of neighboring objects are usually recorded synchronized to this movement. Without syncing to the corresponding movement of the object (stroposcope-like image) results in a blurred image or a representation of the object in each of its movement states.
  • a volume image is created for each movement state of the respective object.
  • An example of this is three-dimensional ultrasound imaging of the heart.
  • the corresponding volume images of the heart show all stages (phases) between contraction (systole) and relaxation of the heart (diastole).
  • the successive representation of individual volume images of the heart corresponds to a four-dimensional representation of the heart, the fourth dimension representing the corresponding movement of the heart.
  • Only one state of the object is important in each case for the diagnosis of the individual states of the object to be examined, at specific times of the corresponding movement of the object. For example, at certain points in time of the electrocardiogram or breathing, the movement of the stomach or the perestalsis of a patient's esophagus, the particular organ condition is important for a targeted diagnosis. For example, the stenosis (constriction) of a blood vessel at the time of diastole is considered.
  • systole-diastole cycle (RR interval) (cf. FIG. 3).
  • the image acquisition speed that can be achieved is very low.
  • shots that follow the heart movement ie that follow the patient's pulse rate, approximately one shift is recorded per second, provided the pulse rate shows about 60 heartbeats per minute.
  • the image quality that can be achieved is good, but the long recording times are not acceptable in most cases.
  • the duration of the examination should be kept very short, since the catheter closes the vessel completely or partially, which represents a risk factor for the patient.
  • the long exposure times mentioned above are a great burden for the patient.
  • Movements of the patient which lead to movement artifacts in the three- or four-dimensional image, can be carried out over the long period of image acquisition, e.g. in the case of carotid artery (swallowing, sneezing, coughing, head or neck movement, etc.) do not rule out.
  • Artifacts i.e. The result is blurred images in the ultrasound image (the spatially incorrect assignment of individual ultrasound images corresponding to the image sub-areas by shifting the organ or a part of the organ or the assignment of the organ to the ultrasound head).
  • conventional methods use very large increments per shift or a very fast transducer movement along the organ to be examined is used. This leads to an inhomogeneous resolution in the three-dimensional volume image in the direction of the movement of the transducer.
  • the three-dimensional image is greatly affected by the movement of the organ or the blood vessel during systole and during diastole.
  • the images can only be used to a limited extent for subsequent evaluation and a misinterpretation of the image content by the doctor is possible (see Fig. 2).
  • the invention is based on the object of minimizing the blurring of motion when recording ultrasound images of a moving object and at the same time shortening the image recording time.
  • the process should be designed to be easy to handle and should be able to be implemented using conventional ultrasound devices and data processing systems.
  • the states of motion of the object are recorded in relation to the recordings of the individual partial image areas
  • the recordings of the individual partial image regions are then assigned to the states of motion of the object and are assembled and displayed in accordance with the states of motion of the object.
  • the times for the acquisition of individual partial image areas of the object are controlled by the movement sequences of the object.
  • the times for recording the individual partial image areas of the moving object are determined or regulated in such a way that no or only a few pictures are taken during the largest movement of the object and several pictures are taken at the times when the object moves less.
  • To record blood vessels or organs of a living being no or only a few recordings are made during the systolic cycle and several recordings of individual partial image regions of the blood vessel or the organ during the diastolic cycle.
  • the individual partial image areas can also be recorded at discrete, ie, fixedly defined points in time.
  • the control of the times of the recording of individual partial image areas by the signals of the electrocardiogram of the living being is suitable.
  • the systole is omitted, that is to say, for example, no recordings are made for a period of about 200 ms (at a pulse frequency of 60), and then approximately every 120 to 200 ms in accordance with the electrocardiogram during the diastole create multiple shots.
  • the data processing system selecting the corresponding recordings and processing the desired recordings.
  • the corresponding recordings are omitted, while afterwards, for example, every fifth image is recorded at a recording speed of 25 slices per second.
  • the scanning movement of the ultrasound head takes place continuously. This results in an approximately homogeneous spatial resolution for the scan of approximately four slices per second.
  • the method can be used particularly in the IVUS area. Long recording times are unacceptable in the interest of the patient (e.g. 30 mm with 0.1 mm increment at a pulse of 60 beats per minute: this corresponds to approximately 300 shifts and results in a total recording time of approximately 5 minutes).
  • the recording time can be reduced to approximately 25% of the conventional recording times (with ECG triggering).
  • no images are used during the systolic cycle and approximately 2 to 20, in particular 2 to 10, images of individual partial image regions of the moving organ are used during the diastolic cycle.
  • the method is particularly suitable for flow representations, i.e. through color-coded representations of the moving object or individual areas of the object.
  • the method can also be implemented in that the ultrasound head continuously records individual partial image areas of the object during the movement along the object to be examined and then a data processing system filters out the recordings of the times of greatest movement of the object.
  • This filtering is also expedient in the case of a recording method in which the times for the recording of individual partial image areas are controlled by the electrocardiogram of the living being, specifically if, for example, extrasystoles, ie extraordinary movements of the organ or of the organ, also during diastole object to be examined occur and these images can then be filtered out.
  • Targeted filtering can also be used to produce useful images of patients suffering from arrhythmia, whereby it must be ensured here that a sufficient number of images can still be created during the relaxed phases of the heart.
  • the ultrasound images associated with the individual movement states of the object are recorded continuously, it is possible to combine the ultrasound images associated with the individual movement states of the object to form a state image of the object.
  • one phase of the object results in a corresponding volume image by compiling a large number of ultrasound images that were recorded for a specific movement state.
  • the successive sequence of these volume images results in a representation of the movement sequence of the object in real time, comparable to a "film".
  • a so-called four-dimensional representation of the moving object is possible despite the short recording times.
  • Figure 2 shows a resulting ultrasound image with unsynchronized, i.e. continuous recording of the carotid artery according to Figure 1 by a conventional method
  • FIG. 3 shows the schematic representation of the heartbeat (e.g. EKG) and the discrete recording times of conventional methods
  • FIG. 4 shows the schematic representation of the heartbeat (eg EKG) according to FIG. 3 and the recording times according to the invention during diastole; and 5 shows the schematic representation of the heartbeat (eg EKG) according to FIG. 3 and the recording times of individual movement states according to the invention and their assignment.
  • Figure 1 shows the schematic representation of the ultrasound image examination arrangement for examining the carotid artery, i.e. for examining a moving object 1.
  • An ultrasound head 3 is moved along the direction of travel 6 along the object 1 to be examined, while various “layers”, ie partial image regions 9 of the object 1, are recorded.
  • a sound medium 7 such as oil, gel or water, which guides the ultrasound waves 8 from the ultrasound head 3 to the body wall 2.
  • the ultrasound head 3 supplies the corresponding image signals to a data processing system 4 which, after the processing of the ultrasound images, is a three-dimensional or four-dimensional (ie a moving one) three-dimensional image) to a display device 5.
  • the individual partial image areas 9 are assembled in the data processing system 4, so that a three- or four-dimensional image results on the display device 5.
  • the control of the ultrasound head 3 and the movement of the ultrasound head 3 either take over the data processing system 4 or a control device (not shown here).
  • FIG. 2 shows the section AA according to FIG. 1 through a carotid artery of a patient to be examined, the ultrasound image shown here being produced by the continuous recording of individual partial image areas 9.
  • a carotid artery wall which is represented as a wavy line, which has arisen in that the carotid artery moves through the heartbeat of the patient during the scanning process (approx. 25 images per second), ie has a larger or smaller diameter and these changing diameters are shown in a picture. This results in a smaller or larger diameter or a change in the position of the carotid artery during systole and diastole of the heart.
  • approximately 8 heartbeats can be seen, each heartbeat being divided into a systolic cycle 10 and a diastolic cycle 11.
  • the individual image partial areas 9 are shown schematically, the ultrasound image shown here being built up from approximately 200 image partial areas 9.
  • FIG. 3 shows schematically the EKG 12, which represents the movement sequence of the heart (the heartbeat of a patient) and which has movement maxima 14 at regular intervals, while between the movement maxima, i.e. during the relaxation of the heart, experience has shown that there are times of less movement.
  • FIG. 4 also schematically shows the EKG 12 of a patient with the movement maxima 14. According to the method according to the invention, a number of different recording times i 13 are defined here, which are recorded during the diastolic cycle 11. No images are taken during the systolic cycle 10, ie during the greatest movement of the heart, in order to avoid motion blur of the three-dimensional ultrasound image.
  • This method allows the organ to be examined, which is moved by the patient's heartbeat, to be displayed during the diastolic cycle 11, with the motion blur of the ultrasound image being minimized due to a plurality of recordings of partial image areas 9 during the diastolic cycle 11 leaves.
  • the image acquisition time is shortened many times over.
  • FIG. 5 shows the schematic representation of the EKG 12 according to FIG. 3 and the recording times according to the invention of individual movement states and their assignment.
  • the partial image areas 9 are recorded continuously.
  • individual recording times, ie the corresponding partial image areas 9, to the respective movement states of the object 1, the corresponding three-dimensional volume images of individual movement states of the object are obtained.
  • individual partial image areas 9 are put together (“stacked”) and result in a three-dimensional image of the object 1 relating to a certain state of motion.
  • the sequence of these individual volume images results in a real-time representation of the Movement of the object like in a film, faster or slower (slow motion) representations of the movements of the object can be realized Data processing system which also assigns the individual image sub-areas to a volume image.

Abstract

Die Erfindung betrifft ein Verfahren zur Aufnahme von Ultraschallbildern bewegter Objekte (1), wobei ein Ultraschallsender Ultraschallwellen auf das Objekt (1) abstrahlt und ein Ultraschallempfänger die vom Objekt (1) reflektierten Ultraschallwellen empfängt. Ein Datenverarbeitungssystem (4) erfaßt und speichert die empfangenen Ultraschallwellen sowie den jeweiligen Bewegungszustand des Objekts (1). Der Ultraschallsender bzw. der Ultraschallempfänger wird entlang dem bewegten Objekt (1) verfahren und nimmt Aufnahmen von einzelnen Bild-Teilbereichen (9) des Objekts (1) auf. Zu den Zeitpunkten größter Bewegungen des Objekts werden keine oder nur wenige Aufnahmen und zu den Zeitpunkten geringerer Bewegung des Objekts werden mehrere Aufnahmen von einzelnen Bild-Teilbereichen (9) des Objekts (1) erstellt und/oder verwertet. Durch die Zuordnung der einzelnen Bild-Teilbereiche (9) zu den entsprechenden Bewegungszustände selektiv oder ganze Bewegungsabläufe des Objekts (1) in Echtzeit darstellen. Insbesondere eignet sich das erfindungsgemäße Verfahren zur Aufnahme von Blutgefäßen eines Lebewesens, wobei die Zeitpunkte der Aufnahmen der einzelnen Bild-Teilbereiche (9) des Blutgefäßes durch das Elektrokardiogramm des Lebewesens gesteuert werden.

Description

,Verfahren zur Aufnahme von Ultraschallbildern bewegter
Objekte"
„Verfahren zur Aufnahme von Ultraschallbildern bewegter Objekte"
Die Erfindung betrifft ein Verfahren zur Aufnahme von Ultraschallbildern bewegter Objekte, insbesondere von Blutgefäßen oder Organen von Lebewesen, nach dem Oberbegriff des Anspruches 1.
Zur Aufnahme von Objekten mittels Ultraschallgeräten wird ein Ultraschallsender zur Abstrahlung von Ultraschallwellen auf das Objekt gerichtet, während ein Ultraschallempfänger die von dem Objekt reflektierten Ultraschallwellen empfängt. Dafür werden üblicherweise Ultraschaliköpfe verwendet, die sowohl den Ultraschallsender als auch den Ultraschallempfänger beinhalten. Diese Ultraschallköpfe werden zur Aufnahme einer Vielzahl von zweidimensionalen Bildern entlang dem zu untersuchenden Objekt bewegt, während eine Vielzahl von einzelnen Bildern des Objekts erstellt werden. Die Bewegung des Ultraschallkopfes kann dabei linear, zirkulär, bogenförmig oder in einer beliebigen anderen Richtung, beispielsweise freihand, erfolgen. Diese Bilder stellen einzelne Bild- Teilbereiche des Objekts dar und werden in einem Datenverarbeitungssystem zusammengesetzt, so daß sich ein dreidimensionales Volumenbild ergibt. Das dreidimensionale Volumenbild besteht dabei aus einer „Übereinanderschichtung" der einzelnen Bild-Teilbereiche, die jeweils einzelne „Schichten" des zu untersuchenden Objekts darstellen. Durch die Bewegung des Ultraschallkopfes entlang dem zu untersuchenden Objekt wird dieses schichtweise gescannt, wobei bei einer linearen Abtastung die Anzahl der Schichten pro Längeneinheit die Auflösung des resultierenden Ultraschallbildes bestimmen. Bei zirkulären oder anderen Abtastbewegungen werden die Ultraschallbilder entsprechend der inkrementalen Aufnahme von einzelnen Bild-Teilbereichen zusammengesetzt und dargestellt .
Die Bewegung des Schallkopfes kann durch eine Mechanik, durch eine in den Schallkopf integrierte Schallablenkeinrichtung oder durch Freihandbildaufnahmen mit magnetischen oder optischen Sensorsystemen zur dreidimensionalen Zuordnung der Ultraschallbilder realisiert werden. Die Zuordnung der einzelnen „Schichten" des Objekts kann beispielsweise auch durch das Verfahren der vom Anmelder getätigten parallelen Patentanmeldung bewerkstelligt werden. Die Zusammenstellung der Ultraschallbilder zur Erfassung der dritten Dimension erfolgt üblicherweise in einem Datenverarbeitungssystem, welches das Videoausgangssignal oder ein digitales Ausgangssignal des Ultraschallsystems erfaßt und entsprechend auswertet. Die entsprechenden Signale liefert der Ultraschallkopf, respektive der Ultraschallempfänger.
Die Bildaufnahmen von Objekten, die durch ihre Eigenbewegung oder durch die Bewegung benachbarter Objekte eine Bewegungs- unschärfe erzeugen, werden üblicherweise auf diese Bewegung synchronisiert aufgenommen. Ohne die Synchronisierung auf die entsprechende Bewegung des Objekts (stroposkopartige Aufnahme) ergibt sich ein unscharfes Bild bzw. eine Darstellung des Objekts in jedem seiner Bewegungszustände. Bei einer auf die Bewegung des Objekts synchronisierten Aufnahme entsteht je Bewegungszustand des jeweiligen Objekts ein Volumenbild. Ein Beispiel dafür ist die dreidimensionale Ultraschallbildaufnahme des Herzens. Die entsprechenden Volumenbilder des Herzens zeigen nacheinander alle Stufen (Phasen) zwischen Kontraktion (Systole) und Erschlaffung des Herzens (Diastole) . Die sukzessive Darstellung einzelner Volumenbilder des Herzens entspricht einer vierdimensionalen Darstellung des Herzens, wobei die vierte Dimension die entsprechende Bewegung des Herzens repräsentiert.
Zur Diagnose der einzelnen Zustände des zu untersuchenden Objektes, zu bestimmten Zeitpunkten der entsprechenden Bewegung des Objekts, ist jeweils nur ein Zustand des Objekts wichtig. Beispielsweise ist zu bestimmten Zeitpunkten des Elektrokardiogramms oder der Atmung, der Bewegung des Magens oder der Perestaltik der Speiseröhre eines Patienten der jeweilige Organzustand für eine gezielte Diagnose wichtig. Beispielsweise wird die Stenose (Engstelle) eines Blutgefäßes zum Zeitpunkt der Diastole betrachtet.
Bei der Aufnahme von Blutgefäßen oder Organen wird je Bewegungszyklus, z.B. Systole-Diastole-Zyklus (RR-Intervall) eine einzige Schicht aufgenommen (vgl. Figur 3). Die erreichbare Bildaufnahmegeschwindigkeit ist dabei sehr gering. Für Aufnahmen, die der Herzbewegung folgen, d.h. die der Pulsfrequenz des Patienten folgen, wird pro Sekunde ca. eine Schicht aufgenommen, sofern die Pulsfrequenz etwa 60 Herzschläge pro Minute zeigt. Die erreichbare Bildqualität ist gut, die langen Aufnahmezeiten sind in der Routine in den meisten Fällen jedoch nicht akzeptabel. Bei der Bildaufnahme von Herzkranzgefäßen mittels Katheter ist die Zeitdauer der Untersuchung sehr kurz zu halten, da der Katheter das Gefäß ganz oder teilweise verschließt, welches ein Risikofaktor für den Patienten darstellt. Hier sind die oben erwähnten langen Aufnahmezeiten für den Patienten eine große Belastung.
Bewegungen des Patienten, die zu Bewegungsartefakten im drei- oder vier- di ensionalen Bild führen, lassen sich über den langen Zeitraum der Bildaufnahme, z.B. bei der Karotis (Schlucken, Niesen, Husten, Kopf- oder Halsbewegung, etc..) nicht ausschließen. Artefakte, d.h. Unscharfen im Ultraschallbild (die räumlich falsche Zuordnung einzelner den Bild- Teilbereichen entsprechender Ultraschallbilder durch Verschiebung des Organs oder eines Teils des Organs oder der Zuordnung Organ-Ultraschallkopf), sind dann die Folge. Als Ausweg benutzen herkömmliche Verfahren sehr große Schrittweiten pro Schicht oder es wird mit einer sehr schnellen Schallkopfbewegung längs des zu untersuchenden Organs gearbeitet. Dies führt zu einer inhomogenen Auflösung im dreidimensionalen Volumenbild in Richtung der Bewegung des Schallkopfes .
Bei einer kontinuierlichen Bildaufnahme während der Bewegung des Schallkopfes und bei Kopplung des Schallkopfes an die Videonorm, z.B. PAL, werden pro Sekunde in etwa 25 Schichten aufgenommen. Das dreidimensionale Bild wird jedoch durch die Bewegung des Organs oder des Blutgefäßes während der Systole und während der Diastole stark beeinträchtigt. Die Bilder könnnen zur anschließenden Auswertung nur eingeschränkt verwendet werden und eine Fehlinterpretation der Bildinhalte durch den Arzt ist möglich (vgl. Fig.2). Der Erfindung liegt die Aufgabe zugrunde, die Bewegungsun- schärfe bei der Aufnahme von Ultraschallbildern eines bewegten Objekts zu minimieren und gleichzeitig die Bildaufnahmezeit zu verkürzen. Dabei soll das Verfahren einfach handhabbar gestaltet sein und sich mit herkömmlichen Ultraschallgeräten und Datenverarbeitungssystemen realisieren lassen.
Die Aufgabe der Erfindung wird durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst. Besondere Ausführungsformen der Erfindung sind in den Unteransprüchen gekennzeichnet .
Während der Ultraschallkopf zur Aufnahme von einzelnen Bild- Teilbereichen des bewegten Objekts entlang dem Objekt verfahren wird und dabei zu bestimmten Zeitpunkten Aufnahmen des Objekts erstellt, die die einzelnen „Schichten" des Objekts darstellen und die später in dem Datenverarbeitungssystem zu einem dreidimensionalen Volumenbild zusammengesetzt werden, werden zu den Aufnahmen der einzelnen Bild-Teilbereiche die Bewegungszustände des Objekts erfaßt. Die Aufnahmen der einzelnen Bild-Teilbereiche werden dann den Bewegungszuständen des Objekts zugeordnet und entsprechend den Bewegungszuständen des Objekts zusammengesetzt und dargestellt.
Insbesondere werden die Zeitpunkte zur Aufnahme von einzelnen Bild-Teilbereichen des Objekts durch die Bewegungsabläufe des Objekts gesteuert. Beispielsweise werden die Zeitpunkte zur Aufnahme der einzelnen Bild-Teilbereiche des bewegten Objekts derart festgelegt oder geregelt, daß während der größten Bewegung des Objekts keine oder nur wenige Aufnahmen und zu den Zeitpunkten geringerer Bewegung des Objekts mehrere Aufnahmen erstellt werden. Zur Aufnahme von Blutgefäßen oder Organen eines Lebewesens werden während des systolischen Zyklus keine oder nur wenige Aufnahmen und während des diastolischen Zyklus mehrere Aufnahmen von einzelnen Bild-Teilbereichen des Blutgefäßes oder des Organs erstellt. Ist die Bewegung des zu untersuchenden Objekts bekannt, so können die einzelnen Bild- Teilbereiche auch zu diskreten, d.h. fest definierten Zeitpunkten aufgenommen werden. Zur Aufnahme von durch den Herzschlag bewegten Objekten innerhalb eines Lebewesens eignet sich die Steuerung der Zeitpunkte der Aufnahme von einzelnen Bild-Teilbereichen durch die Signale des Elektrokardiogramms des Lebewesens.
Während der Ultraschallkopf längs des Organs des Lebewesens verfahren wird, werden kontinuierlich einzelne Aufnahmen unterschiedlicher Bild-Teilbereiche des Organs aufgenommen. Durch Kopplung der Aufnahmezeiten mit dem EKG des Lebewesens wird die Systole ausgelassen, d.h. es werden beispielsweise für einen Zeitraum von etwa 200 ms (bei einer Pulsfrequenz von 60) keine Aufnahmen erstellt, um anschließend etwa alle 120 bis 200 ms entsprechend dem Elektrokardiogramm während der Diastole mehrere Aufnahmen zu erstellen. Dies ist auch durch eine kontinuierliche Aufnahme des Organs möglich, wobei das Datenverarbeitungssystem die entsprechenden Aufnahmen ausselektiert und die gewünschten Aufnahmen verarbeitet. In der Zeit der größten Bewegungsartefakte durch die Pulsation werden also die entsprechenden Aufnahmen ausgelassen, während danach bei einer Aufnahmegeschwindigkeit von z.B. 25 Schichten pro Sekunde, z.B. jedes fünfte Bild aufgenommen wird. Die Scanbewegung des Ultraschallkopfes erfolgt dabei kontinuierlich. Dadurch erreicht man eine annähernd homogene Ortsauflösung für den Scan von ca. vier Schichten pro Sekunde. Das Verfahren ist besonders im IVUS-Bereich einsetzbar. Hier sind lange Aufnahmezeiten im Interesse des Patienten unakzeptabel (z.B. 30 mm mit 0,1 mm Inkrement bei Puls 60 Schlägen pro Minute: dies entspricht in etwa 300 Schichten und ergibt eine Gesamtaufnahmezeit von etwa 5 Minuten) .
Mit dem erfindungsgemäßen Verfahren läßt sich die Aufnahmezeit auf ca. 25 % der herkömmlichen Aufnahmezeiten (bei EKG- Triggerung) verringern. Vorteilhafterweise werden während des systolischen Zyklus keine Aufnahmen und während des diasto- lischen Zyklus etwa 2 bis 20, insbesondere 2 bis 10 Aufnahmen von einzelnen Bild-Teilbereichen des bewegten Organs verwertet. Insbesondere eignet sich das Verfahren für Flußdarstellungen, d.h. durch farblich gekennzeichnete Darstellungen des bewegten Objekts, bzw. einzelner Bereiche des Objekts.
Das Verfahren läßt sich auch dadurch realisieren, daß der Ultraschallkopf während der Bewegung entlang dem zu untersuchenden Objekts kontinuierlich einzelne Bild- Teilbereiche des Objekts aufnimmt und anschließend ein Datenverarbeitungssystem die Aufnahmen der Zeitpunkte größter Bewegung des Objekts ausfiltert. Diese Ausfilterung ist auch bei einem Aufnahmeverfahren zweckmäßig, bei dem die Zeitpunkte zur Aufnahme von einzelnen Bild-Teilbereichen durch das Elektrokardiogramm des Lebewesens gesteuert werden, und zwar dann, wenn beispielsweise auch während der Diastole Extra- systolen, d.h. außerordentliche Bewegungen des Organs bzw. des zu untersuchenden Objekts auftreten und diese Bildaufnahmen dann ausgefiltert werden können. Durch gezielte Filterung lassen sich auch brauchbare Bilder von Patienten erstellen, die unter einer Arhytmie leiden, wobei hier gewährleistet sein muß, daß noch eine genügende Anzahl von Bildern während der erschlafften Phasen des Herzens erstellt werden können. Werden die Bild-Teilbereiche eines Objekts kontinuierlich aufgenommen, so besteht die Möglichkeit, jeweils die den einzelnen Bewegungszuständen des Objekts zugehörigen Ultraschallbilder zu einem Zustandsbild des Objekts zusammenzufassen. Jeweils eine Phase des Objekts ergibt ein entsprechendes Volumenbild durch Zusammenstellung einer Vielzahl von Ultraschallbildern die zu einem bestimmten Bewegungszustand aufgenommen wurden. Die sukzessive Aneinanderreihung dieser Volumenbilder ergibt eine Darstellung des Bewegungsablaufes des Objekts in Echtzeit, vergleichbar mit einem „Film". Eine sog. vierdimensionale Darstellung des bewegten Objekts trotz geringer Aufnahmezeiten ist möglich.
Ein besonderes Ausführungsbeispiel wird anhand der Zeichnungen wie folgt erläutert. Dabei zeigen:
Figur 1 einen Schnitt durch ein Ultraschallsystem
(Ultraschallbild-Untersuchungsanordnung) , zur Untersuchung der Halsschlagader eines Patienten;
Figur 2 ein sich ergebendes Ultraschallbild bei unsynchronisierter, d.h. kontinuierlicher Aufnahme der Halsschlagader nach Figur 1 durch ein herkömmliches Verfahren;
Figur 3 die schematische Darstellung des Herzschlages (z.B. EKG) sowie der diskrete Aufnahmezeitpunkte herkömmlicher Verfahren;
Figur 4 die schematische Darstellung des Herzschlages (z.B. EKG) nach Figur 3 sowie die erfindungsgemäßen Aufnahmezeitpunkte während der Diastole; und Figur 5 die schematische Darstellung des Herzschlages (z.B. EKG) nach Figur 3 sowie die erfindungsgemäßen Aufnahmezeitpunkte einzelner Bewegungszustände und deren Zuordnung.
Figur 1 zeigt die schematische Darstellung der Ultraschallbild-Untersuchungsanordnung zur Untersuchung der Halsschlagader, d.h. zur Untersuchung eines bewegten Objekts 1. Ein Ultraschallkopf 3 wird längs der Verfahrrichtung 6 entlang dem zu untersuchenden Objekt 1 verfahren, während verschiedene „Schichten" d.h. Bild-Teilbereiche 9 des Objekts 1 aufgenommen werden. Zwischen dem Ultraschallkopf 3 und der Körperwand 2 befindet sich üblicherweise ein Schallmedium 7, wie beispielsweise Öl, Gel oder Wasser, welches die Ultraschallwellen 8 vom Ultraschallkopf 3 zur Körperwand 2 leitet. Der Ultraschallkopf 3 liefert die entsprechenden Bildsignale an ein Datenverarbeitungssystem 4, welches nach der Verarbeitung der Ultraschallbilder ein dreidimensionales oder vierdimensionales (d.h. ein bewegtes dreidimensionales Bild) an ein Anzeigegerät 5 weiterleitet.
Die einzelnen Bild-Teilbereiche 9 werden in dem Datenverarbeitungssystem 4 zusammengesetzt, so daß sich am Anzeigegerät 5 ein drei- oder vierdimensionales Bild ergibt. Die Ansteuerung des Ultraschallkopfes 3 sowie die Bewegung des Ultraschallkopfes 3 übernimmt entweder das Datenverarbeitungssystem 4 oder ein hier nicht dargestelltes Steuergerät.
Figur 2 zeigt den Schnitt A-A nach Figur 1 durch eine Halsschlagader eines zu untersuchenden Patienten, wobei das hier gezeigte Ultraschallbild durch die kontinuierliche Aufnahme einzelner Bild-Teilbereiche 9 entstanden ist. In dem Ultraschallbild nach Figur 2 erkennt man eine als Wellenlinie sich darstellende Halsschlagaderwand, die dadurch entstanden ist, daß sich während des Scanvorganges (ca. 25 Bilder pro Sekunde) durch den Herzschlag des Patienten die Halsschlagader bewegt, d.h. jeweils größere bzw. kleinere Durchmesser aufweist und sich diese sich ändernden Durchmesser in einem Bild dargestellt werden. So ergibt sich während der Systole und während der Diastole des Herzens ein kleinerer bzw. größerer Durchmesser bzw. eine Lageänderung der Halsschlagader. In dem Ultraschallbild nach Figur 2 erkennt man in etwa 8 Pulsschläge des Herzens, wobei sich jeder Pulsschlag in einen systolischen Zyklus 10 und einen diastolischen Zyklus 11 aufteilt. Die einzelnen Bild- Teilbereiche 9 sind schematisch dargestellt, wobei das hier gezeigte Ultraschallbild aus etwa 200 Bild-Teilbereichen 9 aufgebaut wurde.
Figur 3 zeigt schematisch das EKG 12, das den Bewegungsablauf des Herzens (den Herzschlag eines Patienten) repräsentiert und das in gleichmäßigen Abständen Bewegungsmaxima 14 aufweist, während zwischen den Bewegungsmaxima, d.h. während der Erschlaffung des Herzens, erfahrungsgemäß Zeiten geringerer Bewegung vorzufinden sind.
Im unteren Teil der Figur 3 erkennt man die Aufnahmezeitpunkte 13, die entsprechend den Bewegungsmaxima 14 des Herzens angeordnet sind, so daß sich durch dieses Aufnahmeverfahren stro- poskopartig die Bewegungszustände der durch den Herzschlag bewegten Organe jeweils vor Beginn des systolischen ZykluslO darstellen läßt. Eine zeitliche Verschiebung der Aufnahmezeitpunkte durch ein Zeit-Offset ist üblicherweise möglich. Figur 4 zeigt ebenfalls schematisch das EKG 12 eines Patienten mit den Bewegungsmaxima 14. Nach dem erfindungsgemäßen Verfahren werden hier eine Anzahl von unterschiedlichen Aufnahmezeitpunktesi 13 definiert, die während des diastolischen Zyklus 11 aufgenommen werden. Während des systolischen Zyklus 10, d.h. während der größten Bewegung des Herzens, werden keine Aufnahmen erstellt, um eine Bewegungsunschärfe des dreidimensionalen Ultraschallbildes zu vermeiden. Durch dieses Verfahren läßt sich das jeweils zu untersuchende Organ, welches durch den Herzschlag des Patienten bewegt wird, während des diastolischen Zyklus 11 darstellen, wobei sich hier aufgrund einer Mehrzahl von Aufnahmen von Bild-Teilbereichen 9 während des diastolischen Zyklus 11 die Bewegungsunschärfe des Ultraschallbildes minimieren läßt. Die Bildaufnahmezeit verkürzt sich gleichzeitig um ein Vielfaches.
Figur 5 zeigt die schematische Darstellung des EKGs 12 nach Figur 3 sowie die erfindungsgemäßen Aufnahmezeitpunkte einzelner Bewegungszustände und deren Zuordnung. Die Bild- Teilbereiche 9 werden kontinuierlich aufgenommen. Durch Zuordnung einzelner Aufnahmezeitpunkte, d.h. der entsprechenden Bild-Teilbereiche 9, zu den jeweiligen Bewegungszuständen des Objekts 1 ergeben sich die entsprechenden dreidimensionalen Volumenbilder einzelner Bewegungszustände des Objekts. Je nach Phase, d.h. je nach Bewegungszustand des Objekts 1 werden einzelne Bild- Teilbereiche 9 zusammengestellt („aufeinandergeschichtet") und ergeben in der Darstellung ein dreidimensionales Bild des Objekts 1 zu einem bestimmten Bewegungszustand. Die Aneinanderreihung dieser einzelnen Volumenbilder ergibt eine Echtzeit-Darstellung der Bewegung des Objekts wie in einem Film. Auch schnellere oder langsamere (Zeitlupe) Darstellungen der Bewegungen des Objekts lassen sich dadurch realisieren. Die Selektion der einzelnen Aufnahmezeitpunkte übernimmt das Datenverarbeitungssystem, welches auch die Zuordnung der einzelnen Bild-Teilbereiche zu einem Volumenbild vornimmt.

Claims

,Verfahren zur Aufnahme von Ultraschallbildern bewegterObjekte"Patentansprüche
1. Verfahren zur Aufnahme von Ultraschallbildern eines bewegten Objekts, insbesondere eines Blutgefäßes, mit einem Utraschallsender zur Abstrahlung von Ultraschall¬ wellen auf das Objekt, und einem Ultraschallempfänger zum Empfangen von von dem Objekt reflektierten Ultraschallwellen, wobei der Ultraschallsender und/oder der Ultraschallempfänger entlang dem Objekt verfahren wird und entsprechend den Bewegungen des Objekts zu bestimmten Zeitpunkten Aufnahmen von einzelnen Bild-Teilbereichen des Objekts erstellt werden, dadurch gekennzeichne , daß zu den Aufnahmen der einzelnen Bild-Teilbereiche (9) die Bewegungszustände des Objekts (1) erfaßt werden, daß die Aufnahmen der einzelnen Bild-Teilbereiche (9) den Bewegungszuständen des Objekts (1) zugeordnet werden, und daß die Aufnahmen der einzelnen Bild-Teilbereiche (9) entsprechend den Bewegungszuständen des Objekts (1) zusammengesetzt und dargestellt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Zeitpunkte zur Aufnahme von einzelnen Bild- Teilbereichen (9) des Objekts (1) durch die Bewegungsabläufe des Objekts (1) gesteuert werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Zeitpunkte für die Aufnahme von einzelnen Bild- Teilbereichen (9) des Objekts (1) durch Signale des Elektrokardiogramms, der Atmung, der Magenbewegung, der Perestaltik der Speiseröhre oder einer Kombination aus diesen Signalen eines Lebewesens gesteuert werden.
4. Verfahren nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß zu den Zeitpunkten größter Bewegung des Objekts (1) keine oder nur wenige Aufnahmen und zu den Zeitpunkten geringerer Bewegung des Objekts mehrere Aufnahmen von einzelnen Bild- Teilbereichen (9) des Objekts (1) erstellt werden.
5. Verfahren nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß zur Aufnahme von Blutgefäßen oder Organen eines Lebewesens während des systolischen Zyklus (10) keine oder nur wenige Aufnahmen und während des diastolischen Zyklus (11) mehrere Aufnahmen von einzelnen Bild-Teilbereichen (9) des Blutgefäßes oder des Organs erstellt werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die einzelnen Bild-Teilbereiche (9) des Blutgefäßes oder des Organs zu diskreten, fest definierten Zeitpunkten aufgenommen werden.
7. Verfahren nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, daß die Zeitpunkte zur Aufnahme von einzelnen Bild- Teilbereichen (9) des Blutgefäßes oder des Organs anhand von Signalen des Elektrokardiogramms, der Atmung, der Magenbewegung, der Perestaltik der Speiseröhre oder einer Kombination aus diesen Signalen des Lebewesens gesteuert werden.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß während des systolischen Zyklus (10) keine Aufnahmen und während des diastolischen Zyklus (11) etwa 2 bis 10 Aufnahmen von einzelnen Bild-Teilbereichen (9) des Blutgefäßes oder des Organs erstellt werden.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß einzelne Bild-Teilbereiche (9) des Objekts (1) kontinuierlich aufgenommen werden und daß durch ein Datenverarbeitungssystem (4) die Aufnahmen der
Zeitpunkte größter Bewegung des Objekts (1) ausgefiltert werden.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Bild-Teilbereiche (9) des Objekts (1) kontinuierlich aufgenommen werden und daß Aufnahmen einzelner Bild-Teilbereiche (9) entsprechend sich wiederholender Bewegungszustände des Objekts (1) zu einem Zustandsbild des Objekts (1) zusammengefaßt und dargestellt werden .
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die Zustandsbilder einzelner Bewegungszustände des Objekts (1) sukzessive entsprechend dem Bewegungsablauf des Objekts (1) dargestellt werden.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zeitpunkte zur Aufnahme von einzelnen Bild- Teilbereichen (9) des Objekts (1) anhand von Signalen des Elektrokardiogramms des Lebewesens gesteuert werden und daß durch ein Datenverarbeitungssystem (4) einzelne Aufnahmen der Zeitpunkte größter Bewegung des Objekts (1) ausgefiltert werden.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Utraschallsender und/oder der Ultraschallempfänger linear, zirkulär, bogenförmig oder freihand entlang dem Objekt (1) verfahren wird.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß einzelne Bereiche des Objekts (1) farblich gekennzeichnet werden, insbesondere unterschiedlich bewegte Bereiche des Objekts (1) .
PCT/EP1998/004430 1997-07-25 1998-07-16 Verfahren zur aufnahme von ultraschallbildern bewegter objekte WO1999005542A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/463,512 US6398731B1 (en) 1997-07-25 1998-07-16 Method for recording ultrasound images of moving objects
EP98940237A EP0998683B1 (de) 1997-07-25 1998-07-16 Verfahren zur aufnahme von ultraschallbildern bewegter objekte
AT98940237T ATE201511T1 (de) 1997-07-25 1998-07-16 Verfahren zur aufnahme von ultraschallbildern bewegter objekte
JP2000504473A JP2001511373A (ja) 1997-07-25 1998-07-16 運動オブジェクトの超音波画像を撮影する方法
DE59800768T DE59800768D1 (de) 1997-07-25 1998-07-16 Verfahren zur aufnahme von ultraschallbildern bewegter objekte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19732125.9 1997-07-25
DE19732125A DE19732125C1 (de) 1997-07-25 1997-07-25 Verfahren zur Aufnahme von Ultraschallbildern bewegter Objekte

Publications (1)

Publication Number Publication Date
WO1999005542A1 true WO1999005542A1 (de) 1999-02-04

Family

ID=7836933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/004430 WO1999005542A1 (de) 1997-07-25 1998-07-16 Verfahren zur aufnahme von ultraschallbildern bewegter objekte

Country Status (6)

Country Link
US (1) US6398731B1 (de)
EP (1) EP0998683B1 (de)
JP (1) JP2001511373A (de)
AT (1) ATE201511T1 (de)
DE (2) DE19732125C1 (de)
WO (1) WO1999005542A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000045193A1 (de) * 1999-01-28 2000-08-03 Tomtec Imaging Systems Gmbh Verfahren zur bewegungskompensation bei ultraschallaufnahmen eines objekts

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US6718192B1 (en) * 1999-11-24 2004-04-06 Ge Medical Systems Global Technology Company, Llc Method and apparatus for real-time 3D image rendering on a picture archival and communications system (PACS) workstation
US6926673B2 (en) * 2000-11-28 2005-08-09 Roke Manor Research Limited Optical tracking systems
US6748808B2 (en) 2001-08-14 2004-06-15 Varco I/P, Inc. Flaw detection in tubular members
US6622561B2 (en) 2001-08-14 2003-09-23 Varco I/P, Inc. Tubular member flaw detection
US6578422B2 (en) 2001-08-14 2003-06-17 Varco I/P, Inc. Ultrasonic detection of flaws in tubular members
US20050124898A1 (en) * 2002-01-16 2005-06-09 Ep Medsystems, Inc. Method and apparatus for isolating a catheter interface
US7648462B2 (en) 2002-01-16 2010-01-19 St. Jude Medical, Atrial Fibrillation Division, Inc. Safety systems and methods for ensuring safe use of intra-cardiac ultrasound catheters
US20080146943A1 (en) * 2006-12-14 2008-06-19 Ep Medsystems, Inc. Integrated Beam Former And Isolation For An Ultrasound Probe
US6862099B2 (en) * 2002-04-05 2005-03-01 Varco I/P Tubular ovality testing
US6931748B2 (en) * 2002-04-05 2005-08-23 Varco I/P, Inc. Riser and tubular inspection systems
US6745136B2 (en) 2002-07-02 2004-06-01 Varco I/P, Inc. Pipe inspection systems and methods
US20070083118A1 (en) * 2002-07-22 2007-04-12 Ep Medsystems, Inc. Method and System For Estimating Cardiac Ejection Volume Using Ultrasound Spectral Doppler Image Data
US7314446B2 (en) * 2002-07-22 2008-01-01 Ep Medsystems, Inc. Method and apparatus for time gating of medical images
US20070167809A1 (en) * 2002-07-22 2007-07-19 Ep Medsystems, Inc. Method and System For Estimating Cardiac Ejection Volume And Placing Pacemaker Electrodes Using Speckle Tracking
US20050245822A1 (en) * 2002-07-22 2005-11-03 Ep Medsystems, Inc. Method and apparatus for imaging distant anatomical structures in intra-cardiac ultrasound imaging
US7618371B2 (en) * 2003-08-20 2009-11-17 Hansen Medical, Inc. System and method for 3-D imaging
US7331927B2 (en) * 2003-10-28 2008-02-19 General Electric Company Methods and systems for medical imaging
US20050203410A1 (en) * 2004-02-27 2005-09-15 Ep Medsystems, Inc. Methods and systems for ultrasound imaging of the heart from the pericardium
JP4755638B2 (ja) 2004-03-05 2011-08-24 ハンセン メディカル,インク. ロボットガイドカテーテルシステム
US7976539B2 (en) 2004-03-05 2011-07-12 Hansen Medical, Inc. System and method for denaturing and fixing collagenous tissue
US7507205B2 (en) * 2004-04-07 2009-03-24 St. Jude Medical, Atrial Fibrillation Division, Inc. Steerable ultrasound catheter
US7654958B2 (en) * 2004-04-20 2010-02-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for ultrasound imaging with autofrequency selection
US7713210B2 (en) 2004-11-23 2010-05-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for localizing an ultrasound catheter
US7621874B2 (en) * 2004-12-14 2009-11-24 Scimed Life Systems, Inc. Systems and methods for improved three-dimensional imaging of a body lumen
EP1906858B1 (de) 2005-07-01 2016-11-16 Hansen Medical, Inc. Robotergesteuertes kathetersystem
WO2007066343A2 (en) * 2005-12-08 2007-06-14 Dan Furman Implantable biosensor assembly and health monitoring system
IL185609A0 (en) * 2007-08-30 2008-01-06 Dan Furman Multi function senssor
US20070167793A1 (en) * 2005-12-14 2007-07-19 Ep Medsystems, Inc. Method and system for enhancing spectral doppler presentation
US8070684B2 (en) * 2005-12-14 2011-12-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for evaluating valvular function
US20070232949A1 (en) * 2006-03-31 2007-10-04 Ep Medsystems, Inc. Method For Simultaneous Bi-Atrial Mapping Of Atrial Fibrillation
US20080009733A1 (en) * 2006-06-27 2008-01-10 Ep Medsystems, Inc. Method for Evaluating Regional Ventricular Function and Incoordinate Ventricular Contraction
US20070299479A1 (en) * 2006-06-27 2007-12-27 Ep Medsystems, Inc. Method for Reversing Ventricular Dyssynchrony
US20080146942A1 (en) * 2006-12-13 2008-06-19 Ep Medsystems, Inc. Catheter Position Tracking Methods Using Fluoroscopy and Rotational Sensors
US8187190B2 (en) * 2006-12-14 2012-05-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for configuration of a pacemaker and for placement of pacemaker electrodes
US20080146940A1 (en) * 2006-12-14 2008-06-19 Ep Medsystems, Inc. External and Internal Ultrasound Imaging System
US8317711B2 (en) * 2007-06-16 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Oscillating phased-array ultrasound imaging catheter system
US8057394B2 (en) 2007-06-30 2011-11-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Ultrasound image processing to render three-dimensional images from two-dimensional images
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8052607B2 (en) 2008-04-22 2011-11-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Ultrasound imaging catheter with pivoting head
DE102008025674B4 (de) 2008-05-29 2021-01-21 Tom Tec Imaging Systems Gmbh Verfahren, Vorrichtung und Computerprogrammprodukt zur Aufnahme von medizinischen Bildern eines sich bewegenden Objekts
US9757595B2 (en) * 2008-10-14 2017-09-12 Theraclion Sa Systems and methods for synchronizing ultrasound treatment of thryoid and parathyroid with movements of patients
US8353832B2 (en) * 2008-10-14 2013-01-15 Theraclion Systems and methods for ultrasound treatment of thyroid and parathyroid
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US20120191079A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US20130030363A1 (en) 2011-07-29 2013-01-31 Hansen Medical, Inc. Systems and methods utilizing shape sensing fibers
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
EP2921100A1 (de) 2014-03-21 2015-09-23 Siemens Aktiengesellschaft Verfahren zur Anpassung eines medizinisches Systems an die Bewegung des Patienten während einer medizinischen Untersuchung und System dafür
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
US10905402B2 (en) * 2016-07-27 2021-02-02 Canon Medical Systems Corporation Diagnostic guidance systems and methods
US10463439B2 (en) 2016-08-26 2019-11-05 Auris Health, Inc. Steerable catheter with shaft load distributions
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
WO2020044523A1 (ja) * 2018-08-30 2020-03-05 オリンパス株式会社 記録装置、画像観察装置、観察システム、観察システムの制御方法、及び観察システムの作動プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315512A (en) * 1989-09-01 1994-05-24 Montefiore Medical Center Apparatus and method for generating image representations of a body utilizing an ultrasonic imaging subsystem and a three-dimensional digitizer subsystem
EP0736284A2 (de) * 1995-04-03 1996-10-09 Hans Dr. Polz Verfahren und Vorrichtung zur Erfassung von diagnostisch verwertbaren, dreidimensionalen Ultraschallbilddatensätzen
EP0802423A1 (de) * 1996-04-15 1997-10-22 Siemens Medical Systems, Inc. Dreidimensionale Magnet-Resonanz Angiographie mit Synchronisierung durch Herzfrequenz

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE736284C (de) * 1940-08-11 1943-06-11 Ig Farbenindustrie Ag Verfahren zur fortlaufenden Durchfuehrung von Reaktionen, bei denen Gase und Fluessigkeiten im Gleichstrom gefuehrt werden und feinverteilte feste oder ungeloeste fluessige Stoffe zugegen sind
DE802423C (de) * 1949-11-26 1951-02-12 Georg Luettich Auflaufbremsvorrichtung, vorzugsweise fuer einachsige Anhaenger von Kraftfahrzeugen
IL49825A0 (en) 1976-04-05 1976-08-31 Varian Associates Display and recording system for ultrasonic diagnosis
US4572202A (en) 1983-11-14 1986-02-25 Elscint Inc. Method and apparatus for high-speed ultrasonic imaging
JP2557410B2 (ja) 1987-09-22 1996-11-27 株式会社東芝 超音波ドプラ血流イメージング装置
JP3410843B2 (ja) 1994-12-27 2003-05-26 株式会社東芝 超音波診断装置
US5924989A (en) * 1995-04-03 1999-07-20 Polz; Hans Method and device for capturing diagnostically acceptable three-dimensional ultrasound image data records
US5876345A (en) * 1997-02-27 1999-03-02 Acuson Corporation Ultrasonic catheter, system and method for two dimensional imaging or three-dimensional reconstruction
US6045508A (en) * 1997-02-27 2000-04-04 Acuson Corporation Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction
US5935069A (en) 1997-10-10 1999-08-10 Acuson Corporation Ultrasound system and method for variable transmission of ultrasonic signals
US6231508B1 (en) 1999-03-05 2001-05-15 Atl Ultrasound Ultrasonic diagnostic imaging system with digital video image marking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315512A (en) * 1989-09-01 1994-05-24 Montefiore Medical Center Apparatus and method for generating image representations of a body utilizing an ultrasonic imaging subsystem and a three-dimensional digitizer subsystem
EP0736284A2 (de) * 1995-04-03 1996-10-09 Hans Dr. Polz Verfahren und Vorrichtung zur Erfassung von diagnostisch verwertbaren, dreidimensionalen Ultraschallbilddatensätzen
EP0802423A1 (de) * 1996-04-15 1997-10-22 Siemens Medical Systems, Inc. Dreidimensionale Magnet-Resonanz Angiographie mit Synchronisierung durch Herzfrequenz

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MCCANN H A ET AL: "MULTIDIMENSIONAL ULTRASONIC IMAGING FOR CARDIOLOGY", PROCEEDINGS OF THE IEEE, vol. 76, no. 9, 1 September 1988 (1988-09-01), pages 1063 - 1072, XP000112039 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000045193A1 (de) * 1999-01-28 2000-08-03 Tomtec Imaging Systems Gmbh Verfahren zur bewegungskompensation bei ultraschallaufnahmen eines objekts

Also Published As

Publication number Publication date
DE19732125C1 (de) 1999-02-11
US6398731B1 (en) 2002-06-04
ATE201511T1 (de) 2001-06-15
EP0998683A1 (de) 2000-05-10
JP2001511373A (ja) 2001-08-14
EP0998683B1 (de) 2001-05-23
DE59800768D1 (de) 2001-06-28

Similar Documents

Publication Publication Date Title
DE19732125C1 (de) Verfahren zur Aufnahme von Ultraschallbildern bewegter Objekte
EP0470954B1 (de) Vorrichtung zur transösophagealen echokardiographie
DE19524880C2 (de) Endokardiale Echtzeit-Ultraschallverschiebungsanzeige
DE3832272A1 (de) Ultraschalldarstellungsgeraet
EP1086652A1 (de) Verfahren und Vorrichtung zur Ermittlung eines dreidimensionalen Bilddatensatzes eines sich periodisch bewegenden Körperorgans
EP0962785B1 (de) Verfahren zur Untersuchung von Objekten mit Ultraschall
DE69813087T2 (de) Verarbeitung von mittels Ultraschall erzeugten und verbesserten intravaskulären Abbildungen und Signalen
DE60034748T2 (de) Verfahren und Vorrichtung zur bewegungsfreien kardiologischen Computertomographie
DE60215964T2 (de) Verfahren zur rekonstruktion eines 3d bildes mit hoher auflösung
DE10054105A1 (de) Echtzeitanzeige von Ultraschall in Zeitlupe
DE10247299A1 (de) Bildverarbeitungseinheit und Verfahren für die Zuordnung von gespeicherten zu aktuellen Aufnahmen
DE10234680A1 (de) Ultraschallbilderfassung mit synchronisiertem Referenzbild
DE3821103C2 (de)
DE10054106A1 (de) EKG-gesteuerte Ultraschallbildzusammensetzung
DE10238747A1 (de) Verfahren und Gerät zur verbesserten Orts- und Zeitauflösung bei der Ultraschallabbildung
DE102004011156A1 (de) Verfahren zur endoluminalen Bildgebung mit Bewegungskorrektur
DE10323217A1 (de) Optisches Kohärenztomographiesystem zur Untersuchung des menschlichen oder tierischen Gewebes oder von Organen
DE10119228A1 (de) Verfahren zur dreidimensionalen Bildgebung eines sich bewegenden Untersuchungsobjekts, insbesondere zur Herzbildgebung
DE10245943A1 (de) Verfahren zur Erzeugung von CT-Bildern eines periodisch bewegten Organs und CT-Gerät zur Durchführung eines solchen Verfahrens
DE102011077406A1 (de) Verfahren zum Lokalisieren eines bewegbaren Objekts und Röntgenbildaufnahmevorrichtung
EP1147433B1 (de) Verfahren zur bewegungskompensation bei ultraschallaufnahmen eines objekts
DE102008025674B4 (de) Verfahren, Vorrichtung und Computerprogrammprodukt zur Aufnahme von medizinischen Bildern eines sich bewegenden Objekts
DE60132004T2 (de) Verfahren und vorrichtung zur 3d-rotations-röntgenbildgebung
DE3804446C2 (de)
DE10333074A1 (de) Verfahren zur Untersuchung eines eine periodische Bewegung in Form ausführenden Körperbereichs eines Untersuchungsobjektes und Diagnostik-Gerät zur Durchführung eines solchen Verfahrens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998940237

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09463512

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998940237

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998940237

Country of ref document: EP