WO1998056370A2 - Therapeutic nanospheres - Google Patents

Therapeutic nanospheres Download PDF

Info

Publication number
WO1998056370A2
WO1998056370A2 PCT/US1998/011880 US9811880W WO9856370A2 WO 1998056370 A2 WO1998056370 A2 WO 1998056370A2 US 9811880 W US9811880 W US 9811880W WO 9856370 A2 WO9856370 A2 WO 9856370A2
Authority
WO
WIPO (PCT)
Prior art keywords
nanosphere
pba
solid nanosphere
solid
promoter
Prior art date
Application number
PCT/US1998/011880
Other languages
French (fr)
Other versions
WO1998056370A3 (en
Inventor
Scott Walsh
Ronald Rubenstein
Pamela Zeitlin
Kam Leong
Original Assignee
Johns Hopkins University School Of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johns Hopkins University School Of Medicine filed Critical Johns Hopkins University School Of Medicine
Priority to EP98928941A priority Critical patent/EP0989849A2/en
Priority to CA002303268A priority patent/CA2303268A1/en
Priority to JP50306999A priority patent/JP2002506436A/en
Priority to AU80624/98A priority patent/AU749032B2/en
Publication of WO1998056370A2 publication Critical patent/WO1998056370A2/en
Publication of WO1998056370A3 publication Critical patent/WO1998056370A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/6435Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the peptide or protein in the drug conjugate being a connective tissue peptide, e.g. collagen, fibronectin or gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/882Assembling of separate components, e.g. by attaching
    • Y10S977/884Assembled via biorecognition entity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/915Therapeutic or pharmaceutical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/92Detection of biochemical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/923Cell culture

Definitions

  • This invention is related to the delivery of drugs and genes to cells via nanoparticles.
  • Cystic Fibrosis is a single gene, recessive disorder characterized by a defective cAMP stimulated chloride conductance across epithelia surfaces, especially in the lung and pancreatic duct. Clinically, this defect results in decreased mucocilliary clearance in lung airways, leading to chronic bacterial infections and inflammation. As a result, patients have a life expectancy of less than 30 years.
  • Another object of the invention is to provide a method of treating cystic fibrosis.
  • Another object of the invention is to provide a method of treating tumors. Another object of the invention is to provide a method of treating urea cycle disorders. It is yet another object of the invention to provide methods of treating a ⁇ - hemoglobinopathy.
  • a solid nanosphere for treating cystic fibrosis comprises sodium
  • a solid nanosphere for treating cystic fibrosis.
  • the nanosphere comprises: a wild-type CFTR-encoding nucleic acid; and a drug which activates ⁇ F508 mutant CFTR proteins.
  • a solid nanosphere for gene delivery.
  • the nanosphere comprises: sodium 4-phenylbutyrate (4-PBA) and a nucleic acid construct, wherein the construct comprises a promoter operatively linked to a gene coding sequence, wherein the promoter is 4-PBA-inducible.
  • a method of treating cystic fibrosis comprises the step of: administering an aerosolized medicament to a lung of a cystic fibrosis patient wherein the medicament comprises a solid nanosphere comprising 4-PBA.
  • a method of treating tumors comprises the step of: administering a medicament to a tumor, wherein the medicament comprises a solid nanosphere comprising 4-PBA.
  • a method of treating a urea cycle disorder comprises the step of: administering a medicament to the liver of a patient with a urea cycle disorder, wherein the medicament comprises a solid nanosphere comprising 4-PBA.
  • a method for treating a ⁇ -hemoglobinopathy comprises the step of: administering a medicament to the bone marrow of a patient with a ⁇ - hemoglobin ⁇ pathy, wherein the medicament comprises a solid nanosphere comprising 4-PBA.
  • Another method for treating a ⁇ -hemoglobinopathy.
  • the method comprises the step of: administering a medicament to a patient with a ⁇ -hemoglobinopathy, wherein the medicament comprises a solid nanosphere comprising 4-PBA.
  • the invention thus provides the art with formulations and methods for treating a variety of human diseases, including cystic fibrosis, urea cycle disorders, cancers, and ⁇ -hemoglobinopathies.
  • Figure 1 depicts a flow cytometry histogram of airway epithelial cells transfected with a gene encoding green fluorescent protein. Fluorescent intensity is measured for control (solid-LUL) and nanosphere (dotted-RLL) treated airways. Cells inside the gate Ml are counted as positive for LUL and RLL.
  • Figures 2A-D show efflux of M C from IB3 cells. Data are plotted as the percent change in chloride efflux over each 15 second interval. Forskolin is added to stimulate cells (open circles) at every time point after 45 seconds (arrows). Unstimulated cells (filled circles) received plain Ringer's solution at every time point. P values are determined by a rank Sum test performed on points from 0:45 to 2:30.
  • nanospheres are excellent delivery vehicles for drugs such as 4-phenylbutyrate (4-PBA).
  • drugs such as 4-phenylbutyrate (4-PBA).
  • Such vehicle formulations permit the use of lower doses, which is both economical and safer.
  • the delivery of such formulations by inhalation of an aerosol is more palatable than the oral ingestion of higher doses.
  • Such therapy is particularly useful for cystic fibrosis patients.
  • 4-PBA has been found to restore CFTR chloride conductance on the plasma membrane of ⁇ F508 bronchial epithelial cells in vitro.
  • Use of the present formulations in vivo can restore such function by direct delivery to the bronchial epithelium.
  • Other drugs which have this effect can also be encapsulated by nanospheres.
  • drugs which have this effect on other CFTR mutants can also be used.
  • Such drugs include milrinone, genistein, 8-cyclopentyl-l,3-dipropyl xanthine (CPX), and 3-isobutyl-l -methyl xanthine (IBMX).
  • the effect of 4-PBA can be enhanced by including a wild-type CFTR-encoding nucleic acid in the nanosphere.
  • wild-type CFTR is introduced in addition to delivering a drug which enhances the function of mutant CFTR.
  • a further enhancement occurs if the wild-type coding sequence is introduced in a construct which comprises a promoter which is 4-PBA-inducible.
  • Such inducible promoters include an adeno- associated virus promoter, metallothionine promoter, ⁇ -globin promoter, and the CFTR promoter.
  • 4-PBA and a construct with a 4-PBA-inducible promoter encapsulated in a nanosphere is not limited to the CFTR gene.
  • Other genes which will have a beneficial therapeutic effect can also be used advantageously. These include without limitation, RB, p53, Bcl2, ADA, ⁇ - globin.
  • 4-PBA also has the effect of inducing cellular differentiation. This is a desirable property in treatment of proliferative disorders, including cancer.
  • nanospheres comprising 4-PBA can be administered to tumors to efficiently deliver a cell-differentiating dose of 4-PBA to the cells. By inducing differentiation, the rapid proliferation of the tumor cells can be abated.
  • 4-PBA has also been used for treating urea cycle disorders.
  • nanospheres comprising 4-PBA can be used for effectively delivering an effective dose of 4-PBA to the target cells which perform the urea cycle.
  • nanospheres comprising 4-PBA can be used to deliver an effective amount to a patient or to isolated bone marrow to induce expression of fetal hemoglobin.
  • This will be of use in the case of ⁇ - hemoglobinopathies, such as ⁇ -thalassemia and sickle cell anemia.
  • gelatin or other polymeric cation having a similar charge density to gelatin is used to complex with nucleic acids to form nanoparticles.
  • the source of gelatin is not thought to be critical; it can be from bovine, porcine, human, or other animal source.
  • the polymeric cation has a molecular weight of between 19,000-30,000.
  • Poly-L-lysine or chitosan may be particularly useful as the polymeric cation of the present invention.
  • Desirably sodium sulfate is used to induce the coacervation of polymeric cation and nucleic acids.
  • Ethanol can also be used at a concentration of about 40 to 60% to induce coacervation.
  • Other drugs and lysosomolytic agents can be incorporated in the nanoparticle.
  • Targeting ligands can be directly bound to the surface of the nanoparticle or can be indirectly attached using a "bridge” or "spacer". Because of the amino groups provided by the lysine groups of the gelatin, the surface of the nanoparticles can be easily derivatized for the direct coupling of targeting moieties. For example, carbo-diimides can be used as a derivatizing agent. Alternatively, spacers (linking molecules and derivatizing moieties on targeting ligands) such as avidin-biotin and polyethylene glycol can be used to indirectly couple targeting ligands to the nanoparticles.
  • spacers linking molecules and derivatizing moieties on targeting ligands
  • avidin-biotin and polyethylene glycol can be used to indirectly couple targeting ligands to the nanoparticles.
  • Biotinylated antibodies and/or other biotinylated ligands can be coupled to the avidin-coated nanoparticle surface efficiently because of the high affinity of biotin (k, ⁇ 10 15 M "1 ) for avidin (Hazuda, et al., 1990, Processing of precursor interleukin 1 beta and inflammatory disease, J. Biol. Chem. , 265:6318-22; Wilchek, et al., 1990, Introduction to avidin-biotin technology, Methods In Enzymology, 184:5-13).
  • Orientation-selective attachment of IgGs can be achieved by biotinylating the antibody at the oligosaccharide groups found on the F c portion (O'Shannessy, et al., 1984, A novel procedure for labeling immunoglobulins by conjugation to oligosaccharides moieties, Immunol. Lett. , 8:273-277).
  • This design helps to preserve the total number of available binding sites and renders the attached antibodies less immunogenic to F c receptor-bearing cells such as macrophages.
  • Spacers other than the avidin-biotin bridge can also be used, as are known in the art.
  • Staphylococcal protein A can be coated on the nanoparticles for binding the F c portions of immunoglobulin molecules to the nanoparticles.
  • Cross-linking of linking molecules or targeting ligands to the nanoparticle is used to promote the stability of the nanoparticle as well as to covalently affix the linking molecule or targeting ligand to the nanoparticle.
  • the degree of cross-linking directly affects the rate of nucleic acids release from the microspheres.
  • Cross-linking can be accomplished using glutaraldehyde, carbodiimides such as EDC (l-ethyl-3-(3- dimethylaminopropyl)-carbodiimide, DCC (N,N'-dicyclohexylcarbodiimide), carboxyls (peptide bond) linkage, DSS (Disuccinimidyl suberate), SPDP (N- succinimidyl 3-[2-pyridyldithio]propionate) bis (sulfosuccinimidyl) suberate, dimethylsuberimidate, etc.
  • EDC l-ethyl-3-(3- dimethylaminopropyl)-carbodiimide
  • DCC N,N'-dicyclohexylcarbodiimide
  • carboxyls (peptide bond) linkage DSS (Disuccinimidyl suberate)
  • SPDP N- succinimidyl 3-[2-pyridyl
  • Targeting ligands are any molecules which bind to specific types of cells in the body. These may be any type of molecule for which a cellular receptor exists. Preferably the cellular receptors are expressed on specific cell types only. Examples of targeting ligands which may be used are hormones, antibodies, cell-adhesion molecules, saccharides, drugs, and neurotransmitters .
  • nanoparticles of the present invention have good loading properties. Typically, following the method of the present invention, nanoparticles having at least 5% (w/w) nucleic acids can be achieved. Preferably the loading is greater than
  • nucleic acids 10 or 15% nucleic acids. Often nanoparticles of greater than 20 or 30%, but less than 40 or 50% nucleic acids can be achieved. Typically encapsulation efficiencies of nucleic acids into nanoparticles of greater than 95% can be achieved.
  • the method of the present invention involves the coacervation of polymeric cations and nucleic acids. Because this process depends on the interaction of the positively charged polymeric cations and the negatively charged nucleic acids it can be considered as a complex coacervation process. However, sodium sulfate (or ethanol) induces the coacervation reaction by inducing a phase transition, and therefore it could also be considered as a simple coacervation reaction. Nucleic acids are present in the coacervation mixture at a concentration of between 1 ng/ml to 500 ⁇ g/ml. Desirably the nucleic acids are at least about 1-3 kb in length, although smaller molecules can be used.
  • Sodium sulfate is present at between 7 and 43 mM.
  • Gelatin or other polymeric cation is present at between about 2 and 7% in the coacervation mixture.
  • An attractive nanoparticle delivery system requires a delicate balance among factors such as the simplicity of preparation, cost effectiveness, nucleic acids loading level, controlled release ability, storage stability, and immunogenicity of the components.
  • the gene and drug delivery system described here may offer advantages compared to other particulate delivery systems, including the liposomal system. The problems of instability, low loading level, and controlled release ability are better resolved with the polymeric nanoparticle systems.
  • the mild conditions of nanoparticle formulation are appealing.
  • complex coacervation requires neither contact with organic solvents nor heat. It is also particularly suitable for encapsulating bio-macromolecules such as nucleic acids not only through passive solvent capturing but also by direct charge-charge interactions.
  • the nanoparticle delivery system of the present invention does not have such size limitations.
  • Nucleic acid molecules of between 1 and 10 kb can be used, between 5 and 15 kb, or between 10 and 50 kb.
  • the range of possible targets is dependent on the route of injection, e.g., intravenous or mtraarterial, subcutaneous, intra-peritoneal, intrathecal, etc.
  • the specificity of this delivery system is affected by the accessibility of the target to blood borne nanoparticles, which in turn, is affected by the size range of the particles. Size of the particles is affected by temperature, component concentration, and pH in the coacervation mixture.
  • the particles can also be size-fractionated, e.g., by sucrose gradient ultracentrifugation. Particles with size less than 3, 2, or 1 ⁇ m are desirable. Particles less than 150 nanometers can access the interstitial space by traversing through the fenestrations that line most blood vessels walls. Under such circumstances, the range of cells that can be targeted is extensive.
  • An abbreviated list of cells that can be targeted includes the parenchymal cells of the liver sinusoids, the fibroblasts of the connective tissues, the cells in the Islets of Langerhans in the pancreas, the cardiac myocytes, the Chief and parietal cells of the intestine, osteocytes and chondrocytes in the bone, keratinocytes, nerve cells of the peripheral nervous system, epithelial cells of the kidney and lung, etc.
  • the targetable cell types include erythrocytes, leukocytes (i.e. monocytes, macrophages, B and T lymphocytes, neutrophils, natural killer cells, progenitor cells, mast cells, eosinophils), platelets, and endothelial cells.
  • leukocytes i.e. monocytes, macrophages, B and T lymphocytes
  • neutrophils natural killer cells
  • progenitor cells i.e. monocytes, macrophages, B and T lymphocytes
  • mast cells eosinophils
  • platelets e.g., endothelial cells
  • endothelial cells e.g., endothelial cells.
  • the targetable cells includes all cells that reside in the connective tissue (e.g., fibroblasts, mast cells, etc.), Langerhans cells, keratinocytes, and muscle cells.
  • the targetable cells include neurons, glial cells, astrocytes, and blood
  • dosages can be reduced substantially. Desirable dosages are from 10 to 100 ⁇ g per day, in single or divided doses. However, dosages in the range of 1 ⁇ g to 20 mg can be used.
  • DNA in nanospheres can be administered in the range of 0.1 mg to 50 mg. If localized administration or targeted nanospheres are used lower amounts of DNA may be used. If systemic administration is used than higher amounts will be desired.
  • the nanospheres can be directly administered, for example by injection or implantation. Alternatively, intravenous, intraperitoneal, subcutaneous, or oral administration can be used. If administration is systemic, targeting ligands for the tumor or organ are desirable.
  • the nanospheres can be delivered systemically, as described above, or directly to the liver. Bone marrow can be treated ex vivo, and the treated bone marrow can be reinfused into the patient's body. Alternatively, the nanospheres can be administered systemically for treatment of bone marrow in vivo.
  • Ex ⁇ pients for formulation of the nanospheres of the invention can be any as are known in the art. Typically sterile saline or Ringer's solution will be used.
  • Gelatin nanospheres are formed when the charge-charge interaction of cationic gelatin and anionic DNA is induced to phase separate from solution. This process depends on several factors: concentration of gelatin and DNA, size and sequence of the plasmid, temperature, mixing speed, and concentration of desolvating agents. Since 4-
  • Nanospheres are synthesized with 4-PBA concentrations ranging from 0.1 to 0.5% (w/v) to determine the highest amount of 4-PBAthat could be used without compromising the physical quality of the nanospheres. Nanospheres synthesized from 0.1 to 0.4% 4-PBA appeared small, spherical, and totally non- aggregated. However, at concentrations of 4-PBA exceeding 0.4%, the nanospheres started to become larger, somewhat distorted in shape, and mildly aggregated. Therefore, nanospheres made with 0.4% 4-PBA were selected for all of the transfection experiments on IB3 cells.
  • Nanospheres A 100 ⁇ L solution of 5% gelatin (pH 5.5) and 5 mM chloroquine diphosphate is mixed with a solution (100 ⁇ L) containing 20 ⁇ g plasmid DNA and 0.1 to 0.5% (w/v) sodium 4-phenylbutyrate (4-PBA) by vortexing. Plain nanospheres are made by replacing the 4-PBA with 4.5 mM Na j SO 4 . The reaction is mixed for 20 seconds in a 0.5 mL microcentrifuge tube. Nanospheres are purified from unreacted material by ultracentrifugation into a three level sucrose gradient (30%, 55%, and 88%) at 50,000 x g and 25 °C for 8 minutes.
  • the top layer (reaction mixture) is then removed and the nanospheres are resuspended in the sucrose.
  • Human holo-transferrin (0.25 mg/mL; Sigma) and 25 mM 2-[N-Mo holino]ethane-sulfonic acid (MES, pH 4.5) are added to the nanosphere solution and allowed to incubate for 5 min RT.
  • the nanosphere/transferrin solution is crosslinked for 30 minutes at RT with 50 ⁇ g/mL 1- Ethyl-3-[3-dimethylaminopropyl]-carbodiimide Hydrochloride (EDC; Pierce).
  • EDC Ethyl-3-[3-dimethylaminopropyl]-carbodiimide Hydrochloride
  • the reaction is quenched by adding 30 mM sodium acetate (pH 5.5).
  • Sucrose, unco ⁇ jugated transferrin, and non-encapsulated 4-PBA are removed from the solution by di
  • Nanospheres are digested for two hours in 1.25% trypsin, reacted with the dye, and measured in a DyNA Quant 200 fluorometer (Pharmacia).
  • the human bronchial epithelial cell line, CFBE IB3-1 (IB3 cells), has the genotype ⁇ F508/W1282X; however, only the ⁇ F508 is expressed [7, 8].
  • Cells were grown at 37°C in 5% CO 2 and LHC-8 medium (Biofluids) supplemented with 10% fetal bovine serum. Eighteen hours prior to transfection, IB3 cells were seeded onto coverslips in 6-well culture dishes or 35 mm dishes at a density of 100,000 cells per well. The medium was replaced with transfection media (MEM plus 1% fetal bovine serum) after washing once with PBS.
  • Gelatin nanospheres made with 0.4% 4-PB A were added to wells at a DNA dose of 5 or 10 ⁇ g, which is a typical dose used for gene transfer with these nanospheres. Control wells were either untreated or incubated with 1 mm free 4-
  • KPL TrueBlueTM peroxidase substrate
  • Nuclei were counterstained with Nuclear Fast Red (Digene Diagnostics). Mounted coverslips were examined and photographed under light microscopy. Digitized images were color enhanced using Adobe PhotoShop (v. 4.0). All images were treated with an identical enhancement protocol.
  • Nanosphere delivered 4-PBA also restores the cAMP stimulated Cl " transport in IB3 cells ( Figures 2A-D).
  • Cells treated with 4-PBA nanospheres at a 5 ⁇ g DNA dose show a statistically significant increase in Cl " efflux upon stimulation with forskolin, a cAMP agonist.
  • Plain nanospheres were used to determine whether any component of the nanosphere other than 4-PBA was responsible for CFTR induction. There was no statistical difference between forskolin stimulated and unstimulated cells incubated with plain nanospheres, showing that 4-PBA alone is responsible for the observed effect.
  • the expression of functional CFTR shown in these results demonstrate that gelatin nanospheres can efficiently deliver a high local dose of 4-PBA for a comparatively small overall drug dose.
  • Chloride Efflux Assay Cells were transfected with plain or 4-PB A nanospheres at a DNA dose of 5 ⁇ g per 35 mm dish. Chloride efflux was measured three days post- transfection as previously described [4, 10]. Each dish was incubated with 3 ⁇ Ci of 36 C1 " in bicarbonate-free Ringer's balanced salt solution for two hours at 37°C. After loading, the cells were washed three times with 1 mL ice cold Ringer's and once with warm (37°C) Ringer's. At time 0, 1 mL of warm Ringer's was added, immediately collected, and replace with 1 mL fresh Ringer's. The solution was collected at 15 seconds and replaced with 1 mL fresh Ringer's. This process was repeated every 15 seconds up to
  • CFTR gene Delivery of the CFTR gene to rabbit airway epithelia was determined by specifically amplifying the pSA306 DNA without amplification of endogenous rabbit CFTR DNA. This was made possible by choosing one of the PCR primers in the fusion peptide region of pSA306, which is not present in any native CFTR sequence.
  • Rabbits treated with nanospheres showed a strong positive signal for the presence of pSA306 CFTR DNA compared to rabbits treated with a saline control.
  • the DNA was observed in a high percentage of airway epithelial cells and appears to be highly localized to the nucleus, an important step in the expression of any exogenously delivered gene. DNA persisted in airway nuclei for at least 28 days.
  • Histological evaluation of lung sections focused on peribronchial and perivascular polymorphonuclear infiltrates as well as perilymphoid hyperplasia. Rabbits treated with CFTR DNA-gelatin nanospheres were indistinguishable histologically from control animals receiving saline administration, demonstrating the safety of this non- viral delivery system.
  • GFP expression was evaluated using a GFP reporter gene. Fluorescence of cells brushed from airways of the LUL (control) were compared to brushed cells from RLL (nano-sphere treated) airways by FacScan analysis. GFP expression is detectable in 43% of the brushed airway cells from the RLL compared to the LUL
  • 4-PB A nanospheres were successfully synthesized by substituting 0.4% (w/v) 4- PBA for Na 2 SO 4 as the desolvating agent.
  • the participation of 4-PBA in the coacervation process demonstrates coencapsulation of the drug, although its loading level has yet to be measured.
  • the Dd-UF5 plasmid was substituted for the CFTR gene so that the effects of gene and drug transfer could be studied independently.
  • Transfection levels of 5-10% in IB3-1 cells were observed with these nanospheres, which is comparable to expression obtained with normal DNA-gelatin nanospheres. Therefore, 4-PBA is not interfering with the transfer or expression of cDNA.
  • the effect of encapsulated 4-PBA on stimulated chloride conductance in IB3-1 cells is illustrated in
  • Plasmids Two constructs were used for the detection of in vivo transfection.
  • the pSA306 CFTR plasmid was used for in situ DNA PCR and histological evaluation; it codes for the entire CFTR cDNA sequence, is flanked by the AAV inverted terminal repeats (TTR's), and contains a 26 amino acid fusion peptide at the amino terminus not found in native CFTR (MLLIYVHTKNQHTLIDASELFIRPGT) [4].
  • TTR's AAV inverted terminal repeats
  • a GFP construct, Dd-UF5, driven by RSV and flanked by AAV TTR's was used to evaluate in vivo gene expression [6].
  • Nanosphere Synthesis Nanospheres (100-600 nm) for gene transfer were formed by the complex coacervation of 5% porcine gelatin (pH 5.5; with 5 mM chloroquine diphosphate) and DNA (200 ⁇ g/mL CFTR cDNA in 4.5 mM Na 2 SO 4 solution) at 55 °C while stirring at high speed on a vortex mixer. Nanospheres for drug delivery were synthesized similarly except 0.4% (w/v) 4-PBA replaced Na ⁇ O, ⁇ and GFP cDNA replaced CFTR cDNA. The nanospheres were purified by ultracentrifugation on a sucrose gradient.
  • Gelatin crosslinking as well as transferrin (1 mg/mL) conjugation to the surface of the nanospheres was achieved using EDC (0.1 mg/mL) for 45 minutes at room temperature.
  • EDC 0.1 mg/mL
  • the crosslinked nanosphere solution was incubated for 24 hours at 4°C in 0.4 M calcium chloride and purified by dialysis (300,000 MWCO) for 24 hours in Ringer's balanced salt solution (pH 7.4).
  • Nanospheres In Vivo Delivery of Nanospheres. A 1 mL dose of approximately 1 mg of nanospheres containing 350 ⁇ g CFTR cDNA or 100 ⁇ g GFP cDNA was administered to the right lower lobe of New Zealand White Rabbits by a pediatric bronchoscope.
  • Control animals received either Ringer's buffer or 350 ⁇ g free CFTR DNA. Animals were sacrificed at days 7, 14, and 28 post-transfection. Lung tissue from CFTR treated rabbits were formalin fixed, 5 ⁇ M-sectioned, and subjected to in situ PCR amplification for the detection of CFTR DNA (Perkin Elmer). A digoxigenin labeled probe was used to detect the PCR product. Histology sections were evaluated by Fred
  • Bronchial epithelia brushings were obtained from the left upper (LUL) and right lower (RLL) lobes of rabbits treated with GFP. These epithelial cells were trypsinized for two hours and measured for expression by flow cytometry (FacScan).
  • IB3-1 cells ⁇ 508/ ⁇ F508 were treated with 4-PBA/Dd-UF5 nanospheres for 4 hours, replaced with fresh media, and allowed to grow for 3 days. The cells were loaded with 36 C1 " (2 ⁇ Ci) for 2 hours, washed with fresh buffer, then stimulated with forskolin. 36 CT released into the media at different time points was collected and counted.

Abstract

4-Phenylbutyrate exerts many beneficial biological effects. It appears to induce the transcription of certain promoters, as well as having a remedial effect on proteins which are aberrantly localized within the cell. In addition, it appears to cause cells to developmentally differentiate. The present invention provides nanosphere formulations of 4-phenylbutyrate and other drugs which remediate defective protein localization intracellularly. These formulations permit lower concentrations of drugs to be administered, providing both cost and safety benefits.

Description

THERAPEUTIC NANOSPHERES
TECHNICAL FIELD OF THE INVENTION
This invention is related to the delivery of drugs and genes to cells via nanoparticles. BACKGROUND OF THE INVENTION
Cystic Fibrosis (CF) is a single gene, recessive disorder characterized by a defective cAMP stimulated chloride conductance across epithelia surfaces, especially in the lung and pancreatic duct. Clinically, this defect results in decreased mucocilliary clearance in lung airways, leading to chronic bacterial infections and inflammation. As a result, patients have a life expectancy of less than 30 years.
Clinical trials have thus far focused on either gene or drug therapies for the pulmonary treatment of cystic fibrosis [7,8].
The most common CF mutation, ΔF508, results in failure of the CFTR protein to reach the plasma membrane, likely due to protein trafficking error. The action of 4PBA has been shown to restore CFTR chloride conductance on the plasma membrane of ΔF508 bronchial epithelial cells in vitro [10]. SUMM RY OF THE INVENTION
It is an object of the present invention to provide a solid nanosphere for treating cystic fibrosis. Another object of the invention is to provide a solid nanosphere for gene delivery.
Another object of the invention is to provide a method of treating cystic fibrosis.
Another object of the invention is to provide a method of treating tumors. Another object of the invention is to provide a method of treating urea cycle disorders. It is yet another object of the invention to provide methods of treating a β- hemoglobinopathy.
These and other objects of the invention are achieved by one or more embodiments of the invention. In one embodiment of the invention a solid nanosphere for treating cystic fibrosis is provided. The nanosphere comprises sodium
4-phenylbutyrate (4-PBA).
In another embodiment of the invention a solid nanosphere is provided for treating cystic fibrosis. The nanosphere comprises: a wild-type CFTR-encoding nucleic acid; and a drug which activates ΔF508 mutant CFTR proteins.
In still another embodiment of the invention a solid nanosphere is provided for gene delivery. The nanosphere comprises: sodium 4-phenylbutyrate (4-PBA) and a nucleic acid construct, wherein the construct comprises a promoter operatively linked to a gene coding sequence, wherein the promoter is 4-PBA-inducible.
In yet another embodiment of the invention a method of treating cystic fibrosis is provided. The method comprises the step of: administering an aerosolized medicament to a lung of a cystic fibrosis patient wherein the medicament comprises a solid nanosphere comprising 4-PBA. In still another embodiment of the invention a method of treating tumors is provided. The method comprises the step of: administering a medicament to a tumor, wherein the medicament comprises a solid nanosphere comprising 4-PBA.
According to another aspect of the invention a method of treating a urea cycle disorder is provided. The method comprises the step of: administering a medicament to the liver of a patient with a urea cycle disorder, wherein the medicament comprises a solid nanosphere comprising 4-PBA.
According to still another aspect of the invention a method is provided for treating a β-hemoglobinopathy. The method comprises the step of: administering a medicament to the bone marrow of a patient with a β- hemoglobinσpathy, wherein the medicament comprises a solid nanosphere comprising 4-PBA.
In still another embodiment of the invention another method is provided for treating a β-hemoglobinopathy. The method comprises the step of: administering a medicament to a patient with a β-hemoglobinopathy, wherein the medicament comprises a solid nanosphere comprising 4-PBA.
The invention thus provides the art with formulations and methods for treating a variety of human diseases, including cystic fibrosis, urea cycle disorders, cancers, and β-hemoglobinopathies.
BRIEF PESCMΓΠQN QΓ THE DRAWINGS
Figure 1 depicts a flow cytometry histogram of airway epithelial cells transfected with a gene encoding green fluorescent protein. Fluorescent intensity is measured for control (solid-LUL) and nanosphere (dotted-RLL) treated airways. Cells inside the gate Ml are counted as positive for LUL and RLL.
Figures 2A-D show efflux of MC from IB3 cells. Data are plotted as the percent change in chloride efflux over each 15 second interval. Forskolin is added to stimulate cells (open circles) at every time point after 45 seconds (arrows). Unstimulated cells (filled circles) received plain Ringer's solution at every time point. P values are determined by a rank Sum test performed on points from 0:45 to 2:30.
DETAILED DESCRIPTION
It is the discovery of the present inventors that nanospheres are excellent delivery vehicles for drugs such as 4-phenylbutyrate (4-PBA). Such vehicle formulations permit the use of lower doses, which is both economical and safer. In addition, the delivery of such formulations by inhalation of an aerosol is more palatable than the oral ingestion of higher doses. Such therapy is particularly useful for cystic fibrosis patients.
4-PBA has been found to restore CFTR chloride conductance on the plasma membrane of ΔF508 bronchial epithelial cells in vitro. Use of the present formulations in vivo can restore such function by direct delivery to the bronchial epithelium. Other drugs which have this effect can also be encapsulated by nanospheres. In addition, drugs which have this effect on other CFTR mutants can also be used. Such drugs include milrinone, genistein, 8-cyclopentyl-l,3-dipropyl xanthine (CPX), and 3-isobutyl-l -methyl xanthine (IBMX).
The effect of 4-PBA can be enhanced by including a wild-type CFTR-encoding nucleic acid in the nanosphere. Thus in addition to delivering a drug which enhances the function of mutant CFTR, wild-type CFTR is introduced. A further enhancement occurs if the wild-type coding sequence is introduced in a construct which comprises a promoter which is 4-PBA-inducible. Such inducible promoters include an adeno- associated virus promoter, metallothionine promoter, γ-globin promoter, and the CFTR promoter.
The use of 4-PBA and a construct with a 4-PBA-inducible promoter encapsulated in a nanosphere is not limited to the CFTR gene. Other genes which will have a beneficial therapeutic effect can also be used advantageously. These include without limitation, RB, p53, Bcl2, ADA, γ- globin.
4-PBA also has the effect of inducing cellular differentiation. This is a desirable property in treatment of proliferative disorders, including cancer. Thus nanospheres comprising 4-PBA can be administered to tumors to efficiently deliver a cell-differentiating dose of 4-PBA to the cells. By inducing differentiation, the rapid proliferation of the tumor cells can be abated.
4-PBA has also been used for treating urea cycle disorders. Thus nanospheres comprising 4-PBA can be used for effectively delivering an effective dose of 4-PBA to the target cells which perform the urea cycle.
4-PBA has also been found to induce the expression of fetal hemoglobin in cells which do not express the fetal form. Thus nanospheres comprising 4-PBA can be used to deliver an effective amount to a patient or to isolated bone marrow to induce expression of fetal hemoglobin. This will be of use in the case of β- hemoglobinopathies, such as β-thalassemia and sickle cell anemia. According to the present invention, gelatin or other polymeric cation having a similar charge density to gelatin, is used to complex with nucleic acids to form nanoparticles. The source of gelatin is not thought to be critical; it can be from bovine, porcine, human, or other animal source. Typically the polymeric cation has a molecular weight of between 19,000-30,000. Poly-L-lysine or chitosan may be particularly useful as the polymeric cation of the present invention. Desirably sodium sulfate is used to induce the coacervation of polymeric cation and nucleic acids. Ethanol can also be used at a concentration of about 40 to 60% to induce coacervation. Other drugs and lysosomolytic agents can be incorporated in the nanoparticle.
Targeting ligands, if desired, can be directly bound to the surface of the nanoparticle or can be indirectly attached using a "bridge" or "spacer". Because of the amino groups provided by the lysine groups of the gelatin, the surface of the nanoparticles can be easily derivatized for the direct coupling of targeting moieties. For example, carbo-diimides can be used as a derivatizing agent. Alternatively, spacers (linking molecules and derivatizing moieties on targeting ligands) such as avidin-biotin and polyethylene glycol can be used to indirectly couple targeting ligands to the nanoparticles. Biotinylated antibodies and/or other biotinylated ligands can be coupled to the avidin-coated nanoparticle surface efficiently because of the high affinity of biotin (k,~1015 M"1) for avidin (Hazuda, et al., 1990, Processing of precursor interleukin 1 beta and inflammatory disease, J. Biol. Chem. , 265:6318-22; Wilchek, et al., 1990, Introduction to avidin-biotin technology, Methods In Enzymology, 184:5-13). Orientation-selective attachment of IgGs can be achieved by biotinylating the antibody at the oligosaccharide groups found on the Fc portion (O'Shannessy, et al., 1984, A novel procedure for labeling immunoglobulins by conjugation to oligosaccharides moieties, Immunol. Lett. , 8:273-277). This design helps to preserve the total number of available binding sites and renders the attached antibodies less immunogenic to Fc receptor-bearing cells such as macrophages. Spacers other than the avidin-biotin bridge can also be used, as are known in the art. For example, Staphylococcal protein A can be coated on the nanoparticles for binding the Fc portions of immunoglobulin molecules to the nanoparticles.
Cross-linking of linking molecules or targeting ligands to the nanoparticle is used to promote the stability of the nanoparticle as well as to covalently affix the linking molecule or targeting ligand to the nanoparticle. The degree of cross-linking directly affects the rate of nucleic acids release from the microspheres. Cross-linking can be accomplished using glutaraldehyde, carbodiimides such as EDC (l-ethyl-3-(3- dimethylaminopropyl)-carbodiimide, DCC (N,N'-dicyclohexylcarbodiimide), carboxyls (peptide bond) linkage, DSS (Disuccinimidyl suberate), SPDP (N- succinimidyl 3-[2-pyridyldithio]propionate) bis (sulfosuccinimidyl) suberate, dimethylsuberimidate, etc.
Targeting ligands according to the present invention are any molecules which bind to specific types of cells in the body. These may be any type of molecule for which a cellular receptor exists. Preferably the cellular receptors are expressed on specific cell types only. Examples of targeting ligands which may be used are hormones, antibodies, cell-adhesion molecules, saccharides, drugs, and neurotransmitters .
The nanoparticles of the present invention have good loading properties. Typically, following the method of the present invention, nanoparticles having at least 5% (w/w) nucleic acids can be achieved. Preferably the loading is greater than
10 or 15% nucleic acids. Often nanoparticles of greater than 20 or 30%, but less than 40 or 50% nucleic acids can be achieved. Typically encapsulation efficiencies of nucleic acids into nanoparticles of greater than 95% can be achieved.
The method of the present invention involves the coacervation of polymeric cations and nucleic acids. Because this process depends on the interaction of the positively charged polymeric cations and the negatively charged nucleic acids it can be considered as a complex coacervation process. However, sodium sulfate (or ethanol) induces the coacervation reaction by inducing a phase transition, and therefore it could also be considered as a simple coacervation reaction. Nucleic acids are present in the coacervation mixture at a concentration of between 1 ng/ml to 500 μg/ml. Desirably the nucleic acids are at least about 1-3 kb in length, although smaller molecules can be used. Sodium sulfate is present at between 7 and 43 mM. Gelatin or other polymeric cation is present at between about 2 and 7% in the coacervation mixture. An attractive nanoparticle delivery system requires a delicate balance among factors such as the simplicity of preparation, cost effectiveness, nucleic acids loading level, controlled release ability, storage stability, and immunogenicity of the components. The gene and drug delivery system described here may offer advantages compared to other particulate delivery systems, including the liposomal system. The problems of instability, low loading level, and controlled release ability are better resolved with the polymeric nanoparticle systems. Gelatin has received increasing biologic use ranging from surgical tissue adhesive (Weinschelbaum, et al., 1992, Surgical treatment of acute type A dissecting aneurysm with preservation of the native aortic valve and use of biologic glue. Follow-up to 6 years, J. Thorac. Cardiovasc. Surg. , 130:369-74) to quantitative immunohistochemical assays (Izumi, et al. , 1990,
Novel gelatin particle agglutination test for serodiagnosis of leprosy in the field, J. Clinical Microbiol. , 28:525-9) and as drug delivery vehicle (Tabata, et al., 1991, Effects of recombinant alpha-interferon-gelatin conjugate on in vivo murine tumor cell growth, Cancer Res. , 51:5532-8), due to its biocompatibility and enzymatic degradability in vivo. Compared to other synthetic polymeric systems, such as the extensively studied polylactic/polyglycolic copolymers, the mild conditions of nanoparticle formulation are appealing. Unlike the solvent evaporation and hot-melt techniques used to formulate synthetic polymeric nanoparticles, complex coacervation requires neither contact with organic solvents nor heat. It is also particularly suitable for encapsulating bio-macromolecules such as nucleic acids not only through passive solvent capturing but also by direct charge-charge interactions.
Unlike viral vectors, which cannot deliver genes larger than 10 kb, the nanoparticle delivery system of the present invention does not have such size limitations. Nucleic acid molecules of between 1 and 10 kb can be used, between 5 and 15 kb, or between 10 and 50 kb. In general, the range of possible targets is dependent on the route of injection, e.g., intravenous or mtraarterial, subcutaneous, intra-peritoneal, intrathecal, etc. For systemic injections, the specificity of this delivery system is affected by the accessibility of the target to blood borne nanoparticles, which in turn, is affected by the size range of the particles. Size of the particles is affected by temperature, component concentration, and pH in the coacervation mixture. The particles can also be size-fractionated, e.g., by sucrose gradient ultracentrifugation. Particles with size less than 3, 2, or 1 μm are desirable. Particles less than 150 nanometers can access the interstitial space by traversing through the fenestrations that line most blood vessels walls. Under such circumstances, the range of cells that can be targeted is extensive. An abbreviated list of cells that can be targeted includes the parenchymal cells of the liver sinusoids, the fibroblasts of the connective tissues, the cells in the Islets of Langerhans in the pancreas, the cardiac myocytes, the Chief and parietal cells of the intestine, osteocytes and chondrocytes in the bone, keratinocytes, nerve cells of the peripheral nervous system, epithelial cells of the kidney and lung, etc.
The targets for particles with sizes greater than 0.2 microns will be confined largely to the vascular compartment. Here, the targetable cell types include erythrocytes, leukocytes (i.e. monocytes, macrophages, B and T lymphocytes, neutrophils, natural killer cells, progenitor cells, mast cells, eosinophils), platelets, and endothelial cells. For subcutaneous injections, the targetable cells includes all cells that reside in the connective tissue (e.g., fibroblasts, mast cells, etc.), Langerhans cells, keratinocytes, and muscle cells. For intrathecal injections, the targetable cells include neurons, glial cells, astrocytes, and blood-brain barrier endothelial cells. For intraperitoneal injection, the targetable cells include the macrophages and neutrophil. Currently 4-PBA is administered for urea cycle disorders as an oral tablet.
Twenty grams per day are prescribed. Using the nanoparticle formulations provided herein, dosages can be reduced substantially. Desirable dosages are from 10 to 100 μg per day, in single or divided doses. However, dosages in the range of 1 μg to 20 mg can be used. DNA in nanospheres can be administered in the range of 0.1 mg to 50 mg. If localized administration or targeted nanospheres are used lower amounts of DNA may be used. If systemic administration is used than higher amounts will be desired.
For administration to the lungs, especially for cystic fibrosis, aerosolization is the desired mode of administration. Any device for nebulizing can be used, most conveniently a metered dose inhaler. For treatment of tumors, the nanospheres can be directly administered, for example by injection or implantation. Alternatively, intravenous, intraperitoneal, subcutaneous, or oral administration can be used. If administration is systemic, targeting ligands for the tumor or organ are desirable. For treatment of urea cycle disorders, the nanospheres can be delivered systemically, as described above, or directly to the liver. Bone marrow can be treated ex vivo, and the treated bone marrow can be reinfused into the patient's body. Alternatively, the nanospheres can be administered systemically for treatment of bone marrow in vivo.
Exάpients for formulation of the nanospheres of the invention can be any as are known in the art. Typically sterile saline or Ringer's solution will be used.
The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples which are provided herein for purposes of illustration only, and are not intended to limit the scope of the invention.
EXAMPLE 1
Synthesis qf4-PBA Nanospheres
Gelatin nanospheres are formed when the charge-charge interaction of cationic gelatin and anionic DNA is induced to phase separate from solution. This process depends on several factors: concentration of gelatin and DNA, size and sequence of the plasmid, temperature, mixing speed, and concentration of desolvating agents. Since 4-
PBA is a charged molecule in the sodium salt form, it actively participates in the coacervation process and its concentration will affect nanosphere distributions of size, shape, and aggregation. Nanospheres were synthesized with 4-PBA concentrations ranging from 0.1 to 0.5% (w/v) to determine the highest amount of 4-PBAthat could be used without compromising the physical quality of the nanospheres. Nanospheres synthesized from 0.1 to 0.4% 4-PBA appeared small, spherical, and totally non- aggregated. However, at concentrations of 4-PBA exceeding 0.4%, the nanospheres started to become larger, somewhat distorted in shape, and mildly aggregated. Therefore, nanospheres made with 0.4% 4-PBA were selected for all of the transfection experiments on IB3 cells.
Nanospheres. A 100 μL solution of 5% gelatin (pH 5.5) and 5 mM chloroquine diphosphate is mixed with a solution (100 μL) containing 20 μg plasmid DNA and 0.1 to 0.5% (w/v) sodium 4-phenylbutyrate (4-PBA) by vortexing. Plain nanospheres are made by replacing the 4-PBA with 4.5 mM NajSO4. The reaction is mixed for 20 seconds in a 0.5 mL microcentrifuge tube. Nanospheres are purified from unreacted material by ultracentrifugation into a three level sucrose gradient (30%, 55%, and 88%) at 50,000 x g and 25 °C for 8 minutes. The top layer (reaction mixture) is then removed and the nanospheres are resuspended in the sucrose. Human holo-transferrin (0.25 mg/mL; Sigma) and 25 mM 2-[N-Mo holino]ethane-sulfonic acid (MES, pH 4.5) are added to the nanosphere solution and allowed to incubate for 5 min RT. The nanosphere/transferrin solution is crosslinked for 30 minutes at RT with 50 μg/mL 1- Ethyl-3-[3-dimethylaminopropyl]-carbodiimide Hydrochloride (EDC; Pierce). The reaction is quenched by adding 30 mM sodium acetate (pH 5.5). Sucrose, uncoηjugated transferrin, and non-encapsulated 4-PBA are removed from the solution by dialysis
(300,000 MWCO) overnight against phosphate buffered saline (PBS). The concentration of encapsulated DNA in the solution is measured using a Hoechst dye, H 33258. Nanospheres are digested for two hours in 1.25% trypsin, reacted with the dye, and measured in a DyNA Quant 200 fluorometer (Pharmacia).
EXAMPLE 2
Induction of endogenous CFTR expression by 4-PBA nanospheres
Studies have shown that 4-PBA can induce CFTR expression and cAMP stimulated Cl" transport in ΔF508 expressing cells . We tested the hypothesis that gelatin nanospheres could deliver a controlled, intracellular dose of 4-PBA to ΔF508 expressing IB3 cells and induce CFTR expression and function. Nanospheres containing 4-PBA were incubated with IB3 cells for four hours at two different doses, 5 or 10 μg encapsulated DNA. A green fluorescence protein (GFP) reporter gene was used for the plasmid cDNA in order to independently detect the effects of drug and gene therapy [6]. Induction of CFTR expression was detected by anti-CFTR antibody staining, where positive staining was characterized by blue color on the membrane surface of IB3 cells.
Doubling the nanosphere dose appeared to increase both the percentage of CFTR expressing cells and the overall intensity of expression. Furthermore, CFTR induction by the nanospheres was more intense than free 4-PBA treated cells, despite exposing the cells to free 4-PBA for all three days whereas nanospheres were only exposed for only four hours.
Although the loading level of 4-PBA in nanospheres has not been measured, a simple thought experiment demonstrates that CFTR induction is nanosphere dependent and not due to nanosphere break-up and consequent 4-PBA release into the culture medium. The loading level of most drugs in nanospheres has been found to be quite low, usually less than 10%. Chloroquine has been measured in gelatin nanospheres at a loading level of 2% with respect to the DNA mass. Therefore, even if we assume a very high loading level of 50% for 4-PBA, the concentration in the culture medium would only amount to 9 and 18 μM (for the 5 and 10 μg DNA doses, respectively), which is 50 and 100 times less than concentration in free 4-PBA treated cells. These results strongly indicate that nanospheres can deliver a high local dose of 4-PBA inside cells, thus improving bioavailability of the drug.
Tissue Culture. The human bronchial epithelial cell line, CFBE IB3-1 (IB3 cells), has the genotype ΔF508/W1282X; however, only the ΔF508 is expressed [7, 8]. Cells were grown at 37°C in 5% CO2 and LHC-8 medium (Biofluids) supplemented with 10% fetal bovine serum. Eighteen hours prior to transfection, IB3 cells were seeded onto coverslips in 6-well culture dishes or 35 mm dishes at a density of 100,000 cells per well. The medium was replaced with transfection media (MEM plus 1% fetal bovine serum) after washing once with PBS. Gelatin nanospheres made with 0.4% 4-PB A were added to wells at a DNA dose of 5 or 10 μg, which is a typical dose used for gene transfer with these nanospheres. Control wells were either untreated or incubated with 1 mm free 4-
PB A. After four hours, the transfection media was removed and replaced with normal IB3 growth medium. Cells were allowed to grow for three days before assaying for CFTR expression. Free 4-PBA treated wells were exposed to the 1 mm concentration (in the growth medium) for the entire three-day period.
Immunohistochemical staining of cells for CFTR protein. IB3 cells were washed twice with PBS, fixed for 10 minutes in 10% formalin, and permeabilized for 10 minutes in 95% methanol. The cells were incubated one hour with a 1:500 dilution of antibody 169. This rabbit polyclonal antibody binds to sequences within the R domain, amino acid residues 724-746, of CFTR protein [9]. A horseradish peroxidase (HRP) labeled secondary antibody (1:1000 dilution of donkey antirabbit antibody; Amersham) was then incubated with the cells for one hour. Bound HRP-labeled antibody was detected by
TrueBlue™ peroxidase substrate (KPL), which gives a dark blue/purple positive staining. Nuclei were counterstained with Nuclear Fast Red (Digene Diagnostics). Mounted coverslips were examined and photographed under light microscopy. Digitized images were color enhanced using Adobe PhotoShop (v. 4.0). All images were treated with an identical enhancement protocol.
EXAMPLE 3 Induction of chloride efflux by 4-PBA nanospheres
Nanosphere delivered 4-PBA also restores the cAMP stimulated Cl" transport in IB3 cells (Figures 2A-D). Cells treated with 4-PBA nanospheres at a 5 μg DNA dose show a statistically significant increase in Cl" efflux upon stimulation with forskolin, a cAMP agonist. Plain nanospheres were used to determine whether any component of the nanosphere other than 4-PBA was responsible for CFTR induction. There was no statistical difference between forskolin stimulated and unstimulated cells incubated with plain nanospheres, showing that 4-PBA alone is responsible for the observed effect. The expression of functional CFTR shown in these results demonstrate that gelatin nanospheres can efficiently deliver a high local dose of 4-PBA for a comparatively small overall drug dose.
Chloride Efflux Assay. Cells were transfected with plain or 4-PB A nanospheres at a DNA dose of 5 μg per 35 mm dish. Chloride efflux was measured three days post- transfection as previously described [4, 10]. Each dish was incubated with 3μ Ci of 36C1" in bicarbonate-free Ringer's balanced salt solution for two hours at 37°C. After loading, the cells were washed three times with 1 mL ice cold Ringer's and once with warm (37°C) Ringer's. At time 0, 1 mL of warm Ringer's was added, immediately collected, and replace with 1 mL fresh Ringer's. The solution was collected at 15 seconds and replaced with 1 mL fresh Ringer's. This process was repeated every 15 seconds up to
2V2 minutes. Finally, 0.2 N NaOH was added to release any remaining 36C1" in the cells. The radioactivity of each sample was measured by liquid scintillation counting.
EXAMPLE 4 Effect of4-PBA on gene transfection
The ability of gelatin nanospheres encapsulated with 4-PBA to transfect IB3 cells with the GFP cDNA was measured to ensure that 4-PBA does not affect the gene transfer capabilities of nanospheres. Expression of GFP was measured by flow cytometry; nanospheres with 4-PBA showed GFP expression in 3.32% of cells compared to 4.07% for plain (no 4-PBA) nanospheres, demonstrating that gene transfer is unaffected by coencapsulation of 4-PBA. However, the induction of CFTR shows a much higher percentage of positive cells (at least 50%), indicating that although most cells are efficient in nanosphere uptake, only a small percentage express the transferred cDNA.
EXAMPLE 5
In vivo gene delivery using 4-PBA nanospheres
Delivery of the CFTR gene to rabbit airway epithelia was determined by specifically amplifying the pSA306 DNA without amplification of endogenous rabbit CFTR DNA. This was made possible by choosing one of the PCR primers in the fusion peptide region of pSA306, which is not present in any native CFTR sequence.
Rabbits treated with nanospheres showed a strong positive signal for the presence of pSA306 CFTR DNA compared to rabbits treated with a saline control. The DNA was observed in a high percentage of airway epithelial cells and appears to be highly localized to the nucleus, an important step in the expression of any exogenously delivered gene. DNA persisted in airway nuclei for at least 28 days. Histological evaluation of lung sections focused on peribronchial and perivascular polymorphonuclear infiltrates as well as perilymphoid hyperplasia. Rabbits treated with CFTR DNA-gelatin nanospheres were indistinguishable histologically from control animals receiving saline administration, demonstrating the safety of this non- viral delivery system.
Gene expression was evaluated using a GFP reporter gene. Fluorescence of cells brushed from airways of the LUL (control) were compared to brushed cells from RLL (nano-sphere treated) airways by FacScan analysis. GFP expression is detectable in 43% of the brushed airway cells from the RLL compared to the LUL
(background fluorescence).
4-PB A nanospheres were successfully synthesized by substituting 0.4% (w/v) 4- PBA for Na2SO4 as the desolvating agent. The participation of 4-PBA in the coacervation process demonstrates coencapsulation of the drug, although its loading level has yet to be measured. The Dd-UF5 plasmid was substituted for the CFTR gene so that the effects of gene and drug transfer could be studied independently. Transfection levels of 5-10% in IB3-1 cells were observed with these nanospheres, which is comparable to expression obtained with normal DNA-gelatin nanospheres. Therefore, 4-PBA is not interfering with the transfer or expression of cDNA. The effect of encapsulated 4-PBA on stimulated chloride conductance in IB3-1 cells is illustrated in
Figures 2A-D. 4-PB A nanospheres were capable of restoring cAMP stimulated chloride conductance to levels similar to that achieved in cells treated with free 4-PB A (p values <0.05). Nanospheres without 4-PBA showed no stimulated chloride conductance (p=0.16). These results indicate the feasibility of combinational therapy by a single carrier and suggest a more effective strategy of treating the chloride conductance defect in CF than either gene or drug therapy alone.
Plasmids. Two constructs were used for the detection of in vivo transfection. The pSA306 CFTR plasmid was used for in situ DNA PCR and histological evaluation; it codes for the entire CFTR cDNA sequence, is flanked by the AAV inverted terminal repeats (TTR's), and contains a 26 amino acid fusion peptide at the amino terminus not found in native CFTR (MLLIYVHTKNQHTLIDASELFIRPGT) [4]. A GFP construct, Dd-UF5, driven by RSV and flanked by AAV TTR's was used to evaluate in vivo gene expression [6].
Nanosphere Synthesis. Nanospheres (100-600 nm) for gene transfer were formed by the complex coacervation of 5% porcine gelatin (pH 5.5; with 5 mM chloroquine diphosphate) and DNA (200μg/mL CFTR cDNA in 4.5 mM Na2SO4 solution) at 55 °C while stirring at high speed on a vortex mixer. Nanospheres for drug delivery were synthesized similarly except 0.4% (w/v) 4-PBA replaced Na^O,^ and GFP cDNA replaced CFTR cDNA. The nanospheres were purified by ultracentrifugation on a sucrose gradient. Gelatin crosslinking as well as transferrin (1 mg/mL) conjugation to the surface of the nanospheres was achieved using EDC (0.1 mg/mL) for 45 minutes at room temperature. The crosslinked nanosphere solution was incubated for 24 hours at 4°C in 0.4 M calcium chloride and purified by dialysis (300,000 MWCO) for 24 hours in Ringer's balanced salt solution (pH 7.4).
In Vivo Delivery of Nanospheres. A 1 mL dose of approximately 1 mg of nanospheres containing 350 μg CFTR cDNA or 100 μg GFP cDNA was administered to the right lower lobe of New Zealand White Rabbits by a pediatric bronchoscope.
Control animals received either Ringer's buffer or 350 μg free CFTR DNA. Animals were sacrificed at days 7, 14, and 28 post-transfection. Lung tissue from CFTR treated rabbits were formalin fixed, 5 μM-sectioned, and subjected to in situ PCR amplification for the detection of CFTR DNA (Perkin Elmer). A digoxigenin labeled probe was used to detect the PCR product. Histology sections were evaluated by Fred
Askin, a clinical pathologist at Johns Hopkins, for the presence of any immune reaction to the nanospheres. Bronchial epithelia brushings were obtained from the left upper (LUL) and right lower (RLL) lobes of rabbits treated with GFP. These epithelial cells were trypsinized for two hours and measured for expression by flow cytometry (FacScan). In Vitro Correction of Chloride Transport. IB3-1 cells (Δ508/ΔF508) were treated with 4-PBA/Dd-UF5 nanospheres for 4 hours, replaced with fresh media, and allowed to grow for 3 days. The cells were loaded with 36C1" (2 μCi) for 2 hours, washed with fresh buffer, then stimulated with forskolin. 36CT released into the media at different time points was collected and counted.
REFERENCES
1. Zeitlin, P. , et al. , A cystic fibrosis bronchial epithelial cell line: immortalization by adeno-12-SV40 infection. Am J Respir Cell Mol Biol, 1991. 4(4): p. 313-9.
2. Zeitlin, P., et al. , CFTR protein expression in primary and cultured epithelia. Proc Natl Acad Sci U S A, 1992. 89(1): p. 344-7.
3. Crawford, I., et al. , Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci U S A, 1991. 88(20): p. 9262-6.
4. Flotte, T., et a , Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J Biol Chem, 1993. 268(5): p. 3781-90.
5. Egan, M., Schwiebert, E., and Guggino, W., Differential expression ofORCC and CFTR induced by low temperature in CF airway epithelial cells. Am J Physiol, 1995. 268(1 Pt 1): p. C243-51.
6. Zolotukhin, S., Potter, M., Hauswirth, W., Guy, J., and Muzyczka, N., A "humanized'' green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol, 1996. 70(7): p. 4646-54.
7. Hay, J. et al. Human Gene Therapy 6:11,1481-96 (1995)
8. Bennet, W. et al. Am J Respir Crit Care Med 153:6 Ptl, 1786- 81 (1996) 9. Walsh, S. et al. Int Symp Control Release Bioact Mater. 23:73-4 (1996)
10. Rubenstein, R. and Zeitlin, P. Pediatric Pulmonary, Suppl. 12:234 (abstract) (1995).

Claims

CLATMS
1. A solid nanosphere for treating cystic fibrosis, comprising: sodium 4-phenylbutyrate (4-PBA).
2. The solid nanosphere of claim 1 wherein the nanosphere is formed by coacervation of a polycation and a polyanion.
3. The solid nanosphere of claim 2 wherein the polycation is a protein.
4. The solid nanosphere of claim 3 wherein the polycation is gelatin.
5. The solid nanosphere of claim 2 wherein the polycation is a polysaccharide.
6. The solid nanosphere of claim 5 wherein the polycation is chitosan.
7. The solid nanosphere of claim 2 wherein the polyanion is nucleic acids.
8. The solid nanosphere of claim 7 wherein the DNA is wild-type CFTR cDNA.
9. The solid nanosphere of claim 1 wherein a ligand is covalentiy bound to the nanosphere, wherein the ligand binds to a cellular receptor.
10. A solid nanosphere for treating cystic fibrosis comprising: a wild-type CFTR-encoding nucleic acid; and a drug which activates ΔF508 mutant CFTR proteins.
11. A solid nanosphere of claim 10 wherein the drug is 4-PBA.
12. The solid nanosphere of claim 10 wherein the drug is milrinone.
13. The solid nanosphere of claim 10 wherein the drug is genistein.
14. The solid nanosphere of claim 10 wherein the drug is
8-cyclopentyl-l,3-dipropyl xanthine (CPX).
15. The solid nanosphere of claim 10 wherein the drug is
3-isobutyl-l-methyl xanthine (IBMX).
16. A solid nanosphere for gene delivery comprising: sodium 4-phenylbutyrate (4-PBA) and a nucleic acid construct, wherein the construct comprises a promoter operatively linked to a gene coding sequence, wherein the promoter is 4-PBA-inducible.
17. A solid nanosphere of claim 16 wherein the promoter is an adeno- associated virus promoter.
18. A solid nanosphere of claim 16 wherein the promoter is a metallothionine promoter.
19. A solid nanosphere of claim 16 wherein the promoter is a ╬│-globin promoter.
20. A solid nanosphere of claim 16 wherein the promoter is a CFTR promoter.
21. A method of treating cystic fibrosis comprising the step of: administering an aerosolized medicament to a lung of a cystic fibrosis patient wherein the medicament comprises a solid nanosphere comprising 4-PBA.
22. A method of treating tumors comprising the step of: administering a medicament to a tumor, wherein the medicament comprises a solid nanosphere comprising 4-PBA.
23. A method of treating a urea cycle disorder, comprising the step of: administering a medicament to the liver of a patient with a urea cycle disorder, wherein the medicament comprises a solid nanosphere comprising 4-PBA.
24. A method of treating a ╬▓-hemoglobinopathy, comprising the step of: administering a medicament to the bone marrow of a patient with a ╬▓- hemoglobinopathy, wherein the medicament comprises a solid nanosphere comprising 4-PBA.
25. The method of claim 24 wherein the ╬▓-hemoglobinopathy is sickle cell anemia.
26. The method of claim 24 wherein the ╬▓-hemoglobinopathy is ╬▓- thalassemia.
27. A method of treating a ╬▓-hemoglobinopathy, comprising the step of: administering a medicament to a patient with a ╬▓-hemoglobinopathy, wherein the medicament comprises a solid nanosphere comprising 4-PBA.
28. The method of claim 27 wherein the ╬▓-hemoglobinopathy is sickle cell anemia.
29. The method of claim 27 wherein the ╬▓-hemoglobinopathy is ╬▓- thalassemia.
PCT/US1998/011880 1997-06-13 1998-06-11 Therapeutic nanospheres WO1998056370A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98928941A EP0989849A2 (en) 1997-06-13 1998-06-11 Therapeutic nanospheres
CA002303268A CA2303268A1 (en) 1997-06-13 1998-06-11 Therapeutic nanospheres
JP50306999A JP2002506436A (en) 1997-06-13 1998-06-11 Therapeutic nanospheres
AU80624/98A AU749032B2 (en) 1997-06-13 1998-06-11 Therapeutic nanospheres

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4949797P 1997-06-13 1997-06-13
US60/049,497 1997-06-13

Publications (2)

Publication Number Publication Date
WO1998056370A2 true WO1998056370A2 (en) 1998-12-17
WO1998056370A3 WO1998056370A3 (en) 1999-04-01

Family

ID=21960137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/011880 WO1998056370A2 (en) 1997-06-13 1998-06-11 Therapeutic nanospheres

Country Status (6)

Country Link
US (1) US6207195B1 (en)
EP (1) EP0989849A2 (en)
JP (1) JP2002506436A (en)
AU (1) AU749032B2 (en)
CA (1) CA2303268A1 (en)
WO (1) WO1998056370A2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029307A1 (en) * 1997-12-12 1999-06-17 Massachusetts Institute Of Technology SUB-100nm BIODEGRADABLE POLYMER SPHERES CAPABLE OF TRANSPORTING AND RELEASING NUCLEIC ACIDS
WO1999040883A2 (en) * 1998-02-11 1999-08-19 Faller Douglas V Compositions and methods for the treatment of cystic fibrosis
JP2002543110A (en) * 1999-05-04 2002-12-17 バイオテック・オーストラリア・ピーティーワイ・リミテッド Amplification of folate-mediated targeting to tumor cells using nanoparticles
EP1291015A1 (en) * 2001-09-10 2003-03-12 Lunamed AG Dosage forms having prolonged active ingredient release
DE102004011776A1 (en) * 2004-03-09 2005-11-03 Lts Lohmann Therapie-Systeme Ag Carrier system in the form of protein-based nanoparticles for the cell-specific accumulation of pharmaceutically active substances
WO2007045616A1 (en) * 2005-10-18 2007-04-26 Cinvention Ag Thermoset particles and methods for production thereof
WO2011147584A1 (en) * 2010-05-28 2011-12-01 Lunamed Ag Compositions for use in genetic disorders causative for cystic fibrosis comprising 4-phenyl-butyric acid and its salts
EP2599482A1 (en) 2011-11-30 2013-06-05 Lunamed AG Low dose therapeutic use of glyceryl tri-(4-phenylbutyrate)
EP2599481A1 (en) * 2011-11-30 2013-06-05 Lunamed AG 4-phenylbutyric acid for the treatment or prevention of various diseases
US8618068B2 (en) 2009-12-08 2013-12-31 Trustees Of Boston University Methods and low dose regimens for treating red blood cell disorders
US8993581B2 (en) 2009-09-24 2015-03-31 Trustees Of Boston University Methods for treating viral disorders
US10857152B2 (en) 2010-03-11 2020-12-08 Trustees Of Boston University Methods and compositions for treating viral or virally-induced conditions
US10953011B2 (en) 2019-05-31 2021-03-23 Viracta Therapeutics Inc. Methods of treating virally associated cancers with histone deacetylase inhibitors

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433154B1 (en) * 1997-06-12 2002-08-13 Bristol-Myers Squibb Company Functional receptor/kinase chimera in yeast cells
US7375096B1 (en) * 1998-12-04 2008-05-20 California Institute Of Technology Method of preparing a supramolecular complex containing a therapeutic agent and a multi-dimensional polymer network
EP1282470B1 (en) * 2000-05-16 2008-08-20 Regents Of The University Of Minnesota High mass throughput particle generation using multiple nozzle spraying
US20040126900A1 (en) * 2001-04-13 2004-07-01 Barry Stephen E High affinity peptide- containing nanoparticles
US7247338B2 (en) * 2001-05-16 2007-07-24 Regents Of The University Of Minnesota Coating medical devices
WO2003048298A2 (en) * 2001-12-05 2003-06-12 Yissum Research Development Company Of The Hebrew University Of Jerusalem Nanoparticles containing polymeric nucleic acid homologs, pharmaceutical compositions and articles of manufacture containing same and methods of use thereof
DE60324225D1 (en) * 2002-06-14 2008-12-04 Rohm & Haas Colorants, dispersants and dispersions containing polymeric nanoparticles
US20040058457A1 (en) * 2002-08-29 2004-03-25 Xueying Huang Functionalized nanoparticles
BRPI0314042B8 (en) 2002-09-06 2021-05-25 Calando Pharmaceuticals Inc cyclodextrin-based polymers for the delivery of covalently linked therapeutic agents
US7344491B1 (en) 2003-11-26 2008-03-18 Nanobiomagnetics, Inc. Method and apparatus for improving hearing
US8651113B2 (en) * 2003-06-18 2014-02-18 Swr&D Inc. Magnetically responsive nanoparticle therapeutic constructs and methods of making and using
US7723311B2 (en) * 2003-06-18 2010-05-25 Nanobiomagnetics, Inc. Delivery of bioactive substances to target cells
US20050084513A1 (en) * 2003-10-21 2005-04-21 Board Of Regents Nanocoating for improving biocompatibility of medical implants
WO2006023207A2 (en) * 2004-08-19 2006-03-02 The United States Of America As Represented By The Secretary Of Health And Human Services, Nih Coacervate of anionic and cationic polymer forming microparticles for the sustained release of therapeutic agents
CA2582255A1 (en) * 2004-08-30 2006-08-08 Lunamed, Inc. 4-phenylbutyric acid controlled-release formulations for therapeutic use
US20090311767A1 (en) * 2005-04-21 2009-12-17 Chiles Thomas C Method for molecular delivery into cells using naonotube spearing
US20070004805A1 (en) * 2005-07-01 2007-01-04 Navinta Llc Process for preparation of liquid dosage form containing sodium 4-phenylbutyrate
CN1962155A (en) * 2005-11-10 2007-05-16 鸿富锦精密工业(深圳)有限公司 CO2 laser welding apparatus
US9108217B2 (en) 2006-01-31 2015-08-18 Nanocopoeia, Inc. Nanoparticle coating of surfaces
EP1988941A2 (en) * 2006-01-31 2008-11-12 Nanocopoeia, Inc. Nanoparticle coating of surfaces
WO2007089881A2 (en) 2006-01-31 2007-08-09 Regents Of The University Of Minnesota Electrospray coating of objects
AU2007327995B2 (en) 2006-12-06 2013-10-10 Medimmune, Llc Interferon alpha-induced pharmacodynamic markers
US9040816B2 (en) * 2006-12-08 2015-05-26 Nanocopoeia, Inc. Methods and apparatus for forming photovoltaic cells using electrospray
US20080176958A1 (en) 2007-01-24 2008-07-24 Insert Therapeutics, Inc. Cyclodextrin-based polymers for therapeutics delivery
AU2008247398B2 (en) 2007-05-03 2013-10-10 Medimmune, Llc Interferon alpha-induced pharmacodynamic markers
CA2781669A1 (en) * 2009-11-23 2011-05-26 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutic delivery
JP2014502296A (en) * 2010-11-12 2014-01-30 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデイション Simple adhesive coacervate and its production method and use
WO2014055493A1 (en) 2012-10-02 2014-04-10 Cerulean Pharma Inc. Methods and systems for polymer precipitation and generation of particles
EP2970440B1 (en) 2013-03-14 2019-11-20 University of Notre Dame du Lac Selective uv crosslinking of peptides and functional moieties to immunoglobulins
US11826423B2 (en) 2016-11-16 2023-11-28 Immunomic Therapeutics, Inc. Nucleic acids for treatment of allergies
CA3061206A1 (en) 2017-04-22 2018-10-25 Immunomic Therapeutics, Inc. Improved lamp constructs
US20200087365A1 (en) 2017-05-02 2020-03-19 Immunomic Therapeutics, Inc Improved lamp constructs comprising cancer antigens
CA3090322A1 (en) 2018-02-12 2019-08-15 Diabetes-Free, Inc. Improved antagonistic anti-human cd40 monoclonal antibodies
EP3793595A1 (en) 2018-05-15 2021-03-24 Immunomic Therapeutics, Inc. Improved lamp constructs comprising allergens
WO2020102454A1 (en) 2018-11-13 2020-05-22 Regents Of The University Of Minnesota Cd40 targeted peptides and uses thereof
US20220119794A1 (en) * 2018-12-27 2022-04-21 Virginia Polytechnic Institute And State University Chemically programmed neutrophils and uses thereof
TW202043256A (en) 2019-01-10 2020-12-01 美商健生生物科技公司 Prostate neoantigens and their uses
KR20220083773A (en) 2019-10-18 2022-06-20 이뮤노믹 쎄라퓨틱스, 인크. Improved LAMP Constructs Containing Cancer Antigens
MX2022005980A (en) 2019-11-18 2022-09-07 Janssen Biotech Inc Vaccines based on mutant calr and jak2 and their uses.
WO2022009052A2 (en) 2020-07-06 2022-01-13 Janssen Biotech, Inc. Prostate neoantigens and their uses
WO2022009049A1 (en) 2020-07-06 2022-01-13 Janssen Biotech, Inc. Prostate neoantigens and their uses
WO2022009051A1 (en) 2020-07-06 2022-01-13 Janssen Biotech, Inc. A method for determining responsiveness to prostate cancer treatment
WO2023201201A1 (en) 2022-04-10 2023-10-19 Immunomic Therapeutics, Inc. Bicistronic lamp constructs comprising immune response enhancing genes and methods of use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004671A1 (en) * 1992-08-26 1994-03-03 Genzyme Corporation Methods and therapeutic compositions for treating cystic fibrosis
WO1996029998A1 (en) * 1995-03-28 1996-10-03 Fidia Advanced Biopolymers S.R.L. Nanospheres comprising a biocompatible polysaccharide
WO1997046588A1 (en) * 1996-06-04 1997-12-11 The Regents Of The University Of California Cellular internalization of pigr stalk and associated ligands

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004671A1 (en) * 1992-08-26 1994-03-03 Genzyme Corporation Methods and therapeutic compositions for treating cystic fibrosis
WO1996029998A1 (en) * 1995-03-28 1996-10-03 Fidia Advanced Biopolymers S.R.L. Nanospheres comprising a biocompatible polysaccharide
WO1997046588A1 (en) * 1996-06-04 1997-12-11 The Regents Of The University Of California Cellular internalization of pigr stalk and associated ligands

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
GALLET X ET AL: "PREDICTION OF THE ANTIGENIC SITES OF THE CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR PROTEIN BY MOLECULAR MODELLING" PROTEIN ENGINEERING, vol. 8, no. 8, 1 August 1995, pages 829-834, XP000565688 *
KO Y H ET AL: "THE CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR OVEREXPRESSION, PURIFICATION, AND CHARACTERIZATION OF WILD TYPE ANDDELTAF508 MUTANT FORMS OF THE FIRST NUCLEOTIDE BINDING FOLD IN FUSION WITH THE MALTOSE-BINDING PROTEIN" J. BIOL. CHEM., vol. 268, no. 32, 15 November 1993, pages 24330-24338, XP002055212 *
MAO H -Q ET AL: "DNA-CHITOSAN NANOSPHERES FOR GENE DELIVERY" PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON CONTROLLED RELEASE BIOACTIVE MATERIALS, 7 July 1996, page 401/402 XP002052414 *
NEWMARK H L ET AL: "BUTYRATE AS A DIFFERENTIATING AGENT: PHARMACOKINETICS, ANALOGUES AND CURRENT STATUS" CANCER LETTERS, vol. 78, 1994, pages 1-5, XP000615955 *
RUBENSTEIN, R.C., ET AL.: "In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta.F508-CFTR" J. CLIN. INVEST., vol. 100, no. 10, 15 November 1997, pages 2457-2465, XP002076381 *
TRUONG V L ET AL: "A TARGET-SPECIFIC MICROSPHERES DRUG DELIVERY SYSTEM MADE OF ENZYMATICALLY DEGRADEABLE GELATIN AND CHONDROITIN SULFATE COACERVATES" PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON CONTROLLED RELEASE BIOACTIVE MATERIALS, vol. 20, 25 July 1993, page 474/475 XP002016479 *
WALSH S M ET AL: "COMBINATION OF DRUG AND GENE DELIVERY BY GELATIN NANOSPHERES FOR THE TREATMENT OF CYSTIC FIBROSIS" PROCEEDINGS OF THE 24TH. INTERNATIONAL SYMPOSIUM ON CONTROLLED RELEASE OF BIOACTIVE MATERIALS, STOCKHOLM, JUNE 15 - 19, 1997, no. SYMP. 24, 15 June 1997, page 75/76 XP002052415 CONTROLLED RELEASE SOCIETY *
ZABNER J ET AL: "REPEAT ADMINISTRATION OF AN DENOVIRUS VECTOR ENCODING CYSTIC FIBROSIS TRANSMEMBRANCE CONDUCTANCE REGULATOR TO THE NASAL EPITHELIUM OF PATIENTS WITH CYSTIC FIBROSIS" JOURNAL OF CLINICAL INVESTIGATION, vol. 97, no. 6, 15 March 1996, pages 1504-1511, XP000575871 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254890B1 (en) 1997-12-12 2001-07-03 Massachusetts Institute Of Technology Sub-100nm biodegradable polymer spheres capable of transporting and releasing nucleic acids
WO1999029307A1 (en) * 1997-12-12 1999-06-17 Massachusetts Institute Of Technology SUB-100nm BIODEGRADABLE POLYMER SPHERES CAPABLE OF TRANSPORTING AND RELEASING NUCLEIC ACIDS
US7265153B2 (en) 1998-02-11 2007-09-04 Faller Douglas V Compositions and methods for the treatment of cystic fibrosis
WO1999040883A2 (en) * 1998-02-11 1999-08-19 Faller Douglas V Compositions and methods for the treatment of cystic fibrosis
WO1999040883A3 (en) * 1998-02-11 2001-05-17 Douglas V Faller Compositions and methods for the treatment of cystic fibrosis
US8242172B2 (en) 1998-02-11 2012-08-14 Trustees Of Boston University 2,2-dimethylbutyric acid oral pharmaceutical compositions
JP2002543110A (en) * 1999-05-04 2002-12-17 バイオテック・オーストラリア・ピーティーワイ・リミテッド Amplification of folate-mediated targeting to tumor cells using nanoparticles
AU2002322964B2 (en) * 2001-09-10 2008-10-16 Lunamed Ag Dosage forms having prolonged active ingredient release
EP1291015A1 (en) * 2001-09-10 2003-03-12 Lunamed AG Dosage forms having prolonged active ingredient release
US7611729B2 (en) 2001-09-10 2009-11-03 Lunamed Ag Dosage forms having prolonged active ingredient release
WO2003022253A1 (en) * 2001-09-10 2003-03-20 Lunamed Ag Dosage forms having prolonged active ingredient release
CN100508965C (en) * 2001-09-10 2009-07-08 伦纳梅德股份公司 Dosage form with extended active ingredient release
DE102004011776A1 (en) * 2004-03-09 2005-11-03 Lts Lohmann Therapie-Systeme Ag Carrier system in the form of protein-based nanoparticles for the cell-specific accumulation of pharmaceutically active substances
WO2007045616A1 (en) * 2005-10-18 2007-04-26 Cinvention Ag Thermoset particles and methods for production thereof
US8993581B2 (en) 2009-09-24 2015-03-31 Trustees Of Boston University Methods for treating viral disorders
US11701363B2 (en) 2009-09-24 2023-07-18 Trustees Of Boston University Methods for treating viral disorders
US8618068B2 (en) 2009-12-08 2013-12-31 Trustees Of Boston University Methods and low dose regimens for treating red blood cell disorders
US10857152B2 (en) 2010-03-11 2020-12-08 Trustees Of Boston University Methods and compositions for treating viral or virally-induced conditions
WO2011147584A1 (en) * 2010-05-28 2011-12-01 Lunamed Ag Compositions for use in genetic disorders causative for cystic fibrosis comprising 4-phenyl-butyric acid and its salts
EP2599482A1 (en) 2011-11-30 2013-06-05 Lunamed AG Low dose therapeutic use of glyceryl tri-(4-phenylbutyrate)
EP2599481A1 (en) * 2011-11-30 2013-06-05 Lunamed AG 4-phenylbutyric acid for the treatment or prevention of various diseases
WO2013079205A1 (en) 2011-11-30 2013-06-06 Lunamed Ag Low dose therapeutic use of glyceryl tri-(4-phenylbutyrate)
US10953011B2 (en) 2019-05-31 2021-03-23 Viracta Therapeutics Inc. Methods of treating virally associated cancers with histone deacetylase inhibitors

Also Published As

Publication number Publication date
JP2002506436A (en) 2002-02-26
AU749032B2 (en) 2002-06-20
WO1998056370A3 (en) 1999-04-01
EP0989849A2 (en) 2000-04-05
US6207195B1 (en) 2001-03-27
CA2303268A1 (en) 1998-12-17
AU8062498A (en) 1998-12-30

Similar Documents

Publication Publication Date Title
US6207195B1 (en) Therapeutic nanospheres
US7276594B1 (en) Nucleic acid-containing complex
US5972707A (en) Gene delivery system
Harris et al. Tissue-specific gene delivery via nanoparticle coating
Jain et al. Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery
Panyam et al. Targeting intracellular targets
Tan et al. Antibody targeted gene transfer to endothelium
US5792475A (en) Lymphatic delivery composition
JP5866117B2 (en) Methods and materials for delivering molecules
US20070160658A1 (en) Delivery system for diagnostic and therapeutic agents
KR20000067855A (en) Gene therapy delivery system for targeting to endothelia
KR20080100376A (en) Agent-enriched nanoparticles based on hydrophilic proteins
US20070086983A1 (en) Endothelium-targeting nanoparticle for reversing endothelial dysfunction
Liu et al. The impact of arginine-modified chitosan–DNA nanoparticles on the function of macrophages
AU2016212527B2 (en) Compounds for enhancing PPARgamma expression and nuclear translocation and therapeutic use thereof
Zhang et al. Combined self-assembled hendeca-arginine nanocarriers for effective targeted gene delivery to bladder cancer
Fletcher et al. Sustained delivery of anti-VEGF from injectable hydrogel systems provides a prolonged decrease of endothelial cell proliferation and angiogenesis in vitro
Bohn Thomsen et al. Brain delivery systems via mechanism independent of receptor-mediated endocytosis and adsorptive-mediated endocytosis
JP2003514843A (en) Modular targeted liposome delivery system
Wang et al. Cyclic arginine-glycine-aspartic acid-modified red blood cells for drug delivery: Synthesis and in vitro evaluation
US8202544B2 (en) High capacity non-viral vectors
AU3301102A (en) Therapeutic nansopheres
De Braganca A Study of the Immune Responses to Therapeutic Inhaled Nanoparticles by Lung Alveolar Macrophages
Lakkadwala Dual Functionalized Liposomes for Co-delivery of Anti-cancer Chemotherapeutics for Treatment of Brain Tumor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2303268

Country of ref document: CA

Ref country code: CA

Ref document number: 2303268

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 80624/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1998928941

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998928941

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 80624/98

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1998928941

Country of ref document: EP