WO1998025316A1 - Material for fuel element interconnectors - Google Patents

Material for fuel element interconnectors Download PDF

Info

Publication number
WO1998025316A1
WO1998025316A1 PCT/DE1997/002669 DE9702669W WO9825316A1 WO 1998025316 A1 WO1998025316 A1 WO 1998025316A1 DE 9702669 W DE9702669 W DE 9702669W WO 9825316 A1 WO9825316 A1 WO 9825316A1
Authority
WO
WIPO (PCT)
Prior art keywords
interconnectors
interconnector
fuel cell
anode
cathode
Prior art date
Application number
PCT/DE1997/002669
Other languages
German (de)
French (fr)
Inventor
Uwe Diekmann
Willem Quadakkers
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO1998025316A1 publication Critical patent/WO1998025316A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a material for interconnectors for the electrical connection of fuel cells of a fuel cell stack.
  • the chemical energy stored in the fuel is converted directly into electrical energy and heat.
  • Pure hydrogen, methanol or natural gas are used as fuels, for example, which react in the fuel cell with the oxidant, usually pure or the oxygen contained in air. In addition to electrical power and heat, this reaction also generates water, and carbon dioxide also generates carbon dioxide.
  • Fuel and oxidant are also summarized under the term equipment.
  • the individual fuel cell has an anode and a cathode, between which the electrolyte is arranged.
  • the fuel is continuously fed to the anode side, the oxidant to the cathode side of the fuel cell, and the reaction products are continuously removed.
  • the different types of fuel cells are usually classified based on the electrolyte used.
  • a ceramic is used as the electrolyte in the solid oxide fuel cell (SOFC, abbreviation for Solid Oxide Fuel Cell).
  • SOFC solid Oxide Fuel Cell
  • the electrolyte of the solid oxide fuel cell is solid.
  • the working temperatures of the solid oxide fuel cells range from about 600 to about 1000 ° C.
  • the materials for the components of the solid oxide fuel cell are predominantly ceramics, the desired electrical and electrochemical properties of which are achieved through the targeted combination and processing of the starting materials.
  • the electrolyte is, for example, a gas-tight ceramic layer made of yttrium-stabilized zirconium dioxide (abbreviated to YSZ), which has a high conductivity for oxygen ions at the operating temperatures between 600 and 1000 ° C.
  • YSZ yttrium-stabilized zirconium dioxide
  • a nickel cermet is generally used for the anode and YSZ, a perovskite based on lanthanum manganite is used for the cathode.
  • the porosity of the two electrode layers must be sufficiently high that, on the one hand, when the fuel cell is in operation, a sufficiently large amount of gas can reach the corresponding electrode / electrolyte interface and, on the other hand, the reaction products can escape unhindered.
  • a cell voltage of approximately 1 V builds up between the anode and cathode. Since this value is too low for practical use, several individual cells are combined in one module and electrically connected in series. In the flat cell concept, for example, this is done by producing the individual cells in the form of plates and stacking them on top of one another. An electrically conductive plate, the so-called interconnector, is arranged between each two adjacent individual cells and electrically connects the anode of one individual cell to the cathode of the other individual cell.
  • the interconnector is also gas-tight and its two main surfaces have a rib structure, so that open channels are formed to the electrodes. As a result, separate gas spaces are formed between the anode and interconnector on the one hand and between the cathode and interconnector on the other hand, so that the anode can be supplied with fuel and the cathode with air.
  • interconnectors made from oxide dispersion strengthened (abbreviated as ODS) chromium-based alloys, for example with the composition 5% by weight Fe, 1% by weight 2O3, the rest Cr (abbreviated or from ceramics based on lanthanum chromite (LaCr ⁇ 3). Because of their thermal expansion behavior, such interconnectors are well suited for stacks of solid oxide fuel cells which are constructed according to the so-called film concept.
  • ODS oxide dispersion strengthened
  • LaCr ⁇ 3 lanthanum chromite
  • This film concept states that the mechanical stability of the individual cell is mainly due to the electrolyte.
  • the structure of such a single cell looks, for example, in such a way that the electrolyte is a 100-300 ⁇ m thick, flat, self-supporting film made of the above-mentioned YSZ, on one side of which the anode from the above-mentioned cermet and on the other side of which Cathode from the above-mentioned perovskite can be applied in 50-100 ⁇ m thick layers.
  • the dimensions of such individual cells are limited by their mechanical stability and their manageability in the manufacturing and further processing process.
  • Single cells of 100 x 100 mmA are common.
  • the thermal expansion behavior of this single cell is primarily determined by the electrolyte layer, which has a very low thermal expansion.
  • the so-called substrate concept has recently also been followed, which states that it is not the electrolyte that provides mechanical stability, but a substrate layer.
  • This can be the anode, for example. This is advantageous since the ohmic losses of the anode are lower than that of the cathode and much lower than that of the electrolyte.
  • Anode is for example 2000 ⁇ m thick and with this thickness even with large ones
  • Areas of, for example, 250 x 250 mm 2 are still sufficiently stable.
  • an approximately 20 ⁇ m thick electrolyte layer and an approximately 50 ⁇ m thick cathode layer are applied to this anode substrate.
  • a self-supporting substrate layer which does not have to have any influence with regard to the electrochemical processes in the fuel cell, on which the actual fuel cell layers, i.e. anode, cathode and electrolyte, are built up. These can then be applied as thin as desired, since they no longer have to contribute to the mechanical stability of the individual cell.
  • the substrate layer must be such that the electrode applied directly to it can be supplied with sufficient resources.
  • the operating temperature can be reduced below 700 ° C. Although the lowering of the operating temperature is associated with a reduction in the specific electrical conductivity of the electrolyte, this effect is compensated for by the shorter distance that the oxygen ions have to travel through the electrolyte on their way to the anode.
  • the thermal expansion behavior of the individual cells in accordance with the substrate concept is determined primarily by the self-supporting substrate, in the first example mentioned by the anode.
  • the known interconnector materials are not suitable here.
  • a major disadvantage of the known ODS-Cr alloys is that during operation of the fuel cell stack, cover layers made of chromium oxide form on the surface of the interconnector and evaporate into the respective gas space. This evaporated chromium oxide contaminates the individual cells, especially the cathodes, which is a serious aging problem.
  • ODS-Cr alloys are manufactured in a powder-metallurgical and thus complex process and are therefore very expensive. Their low fracture toughness and the associated poor processing properties are also very disadvantageous.
  • iron-based alloy which has 13 to 24% by weight of chromium and at most 3% by weight of manganese and / or at most 2% by weight of aluminum and / or at most 1.5% by weight of silicon .
  • the thermal expansion behavior of the material according to the invention fits well with the individual cells according to the substrate concept, it is simple and inexpensive to manufacture, it has very good processing properties and high electrical conductivity.
  • the material according to the invention is stable at the high operating temperatures. It also withstands the conditions on the cathode side, for example, where there is a very oxidizing atmosphere, and those on the anode side, where hot water vapor is present, for example. This is necessary because the interconnector delimits the gas space of the anode on one side and the gas space of the cathode on the other side. As a metallic material, it also has very good specific electrical conductivity.
  • each of the alloy elements Al, Si and Mn alone or together with one of the two other alloy elements or with the two other alloy elements, prevents the formation of pure chromium oxide layers.
  • cover layers are formed from mixed oxides or oxide mixtures, which have very good oxidation resistance and allow extremely reduced evaporation of contaminating chromium oxides.
  • the fuel cells therefore age much more slowly.
  • An advantageous example of this material has a content of 0 to 0, 12 wt .-% carbon, 12 to 14 wt .-% chromium, 0 to 1 wt .-% manganese, 0.7 to 1.2 wt .-% Aluminum and 0.7 to 1.4 wt .-% silicon.
  • Another advantageous example of this material has a content of 0 to 0, 12 wt .-% carbon, 17 to 19 wt .-% chromium, 0 to 1 wt .-% manganese, 0.7 to 1.2 wt .-% % Aluminum and 0.7 to 1.4% by weight silicon.
  • Another advantageous example of this material has a content of 0 to 0, 12 wt .-% carbon, 23 to 26 wt .-% chromium, 0 to 1 wt .-% manganese, 1.2 to 1.7 wt .-% % Aluminum and 0.7 to 1.4% by weight silicon.
  • the material according to the invention is particularly suitable for operating temperatures of at most 900 ° C.
  • An interconnect can advantageously be produced from the material according to the invention, which electrically and mechanically connects the individual cells in a fuel cell stack. Due to its thermal, electrical and electrical Such an interconnector is particularly suitable for high-temperature fuel cells due to its chemical properties.
  • FIG. 1 is a schematic illustration of a solid oxide fuel cell
  • FIG. 2 is an enlarged cross section through a solid oxide fuel cell according to the film concept
  • FIG. 3 is an enlarged cross section through a solid oxide fuel cell according to the substrate concept;
  • FIG. 4 is a perspective view of an interconnector;
  • FIG. 5 is a partially broken perspective view of a fuel cell assembly that includes a stack of solid oxide fuel cells according to the substrate concept and interconnectors according to FIG. 4;
  • FIG. 6 is a along line VI-VI in FIG. 5 sectional detailed view of the fuel cell stack;
  • FIG. 7 is a graph plotting the relative thermal expansion of various materials used for solid oxide fuel cells and interconnectors versus temperature.
  • a solid oxide fuel cell 10 has an anode 12, an electrolyte 14 and a cathode 16.
  • the electrolyte 14 is a gas-tight ceramic layer made of YSZ, which consists of Zr ⁇ with an addition of 8 mol% Y2O3.
  • the anode 12 is made of a Ni-YSZ cermet, which is made from the starting materials YSZ, which consists of Zr ⁇ with an addition of 8 mol% Y2O3, and NiO.
  • the cathode 16 is made of a perovskite based on lanthanum manganite with the composition Lao Q ⁇ Q 3oMn ⁇ 3-
  • the two electrodes layers are gas-permeable, so that when the fuel cell 10 is operating, the hydrogen reaches the anode / electrolyte interface and the atmospheric oxygen reaches the cathode / electrolyte interface in sufficient quantities and, on the other hand, the reaction product water can escape unhindered.
  • O 2 "ions migrate through the electrolyte 14 to the anode / electrolyte interface layer.
  • the hydrogen is oxidized and reacts with the O 2_ ions to form water, in addition to the heat of reaction electrons are also released.
  • These flow back via a consumer connected between anode 12 and cathode 16 to cathode 16, where they form new O 2 " ions.
  • the water formed at the anode 12 is present as steam because of the high temperatures and, like the air which is reduced in its oxygen content, is continuously removed on the cathode side.
  • FIG. 2 shows the structure of a planar solid oxide fuel cell 10 according to the film concept, in which the mechanical stability of the individual cell 10 is provided by the electrolyte 14.
  • This is a 150 ⁇ m thick, flat film from the YSZ mentioned above.
  • the anode 12 and the cathode 16 are each 50 ⁇ m thick layers made of the above-mentioned materials, which are applied to the electrolyte film on both sides.
  • FIG. 3 shows the structure of a solid oxide fuel cell 10 according to the
  • the supporting substrate is a 2000 ⁇ m thick anode 12.
  • the electrolyte layer with a thickness of 20 ⁇ m and the cathode layer with a thickness of 50 ⁇ m are applied to this anode substrate.
  • FIG. 4 shows a plate-shaped interconnector 18, which is made of an iron alloy according to the invention with a content of 0 to 0, 12% by weight carbon, 17 to 19% by weight chromium, 0 to 1% by weight manganese, 0.7 to 1 , 2 wt .-% aluminum and 0.7 to 1.4 wt .-% silicon.
  • the layout of the interconnector 18 is essentially the same as that of the individual cells 10, in the present preferred embodiment it is square, but it can also have a different shape.
  • the two square main surfaces 20, 22 of the interconnector 18 are ribbed in such a way that a plurality of parallel, groove-shaped channels 24 extend continuously from one edge of the
  • Interconnector 18 to the opposite range.
  • the channels 24 ' run in the manner shown in FIG. 4 visible upper main surface 20 perpendicular to the channels 24 ′′ in the opposite lower main surface 22.
  • FIG. 5 shows a fuel cell stack 26 and four gas boxes attached to it.
  • Stack 26 includes ten solid oxide fuel cells 10, each of which is shown in FIG. 3 substrate concept shown is constructed.
  • the anode 12 is at the top, the cathode 16 at the bottom.
  • Two adjacent individual cells 10 are connected by an interconnector 18 according to FIG. 4 on the one hand spatially separated from one another, on the other hand mechanically and electrically connected by this, as will be described in more detail below.
  • an interconnector 18 ', 18 " On the anode 12 of the uppermost individual cell 10 and below the cathode 16 of the lowest individual cell 10 there is also an interconnector 18 ', 18 ".
  • the uppermost interconnector 18' differs from the other nine interconnectors 18 between two individual cells 10 in that only the lower main surface 22 abutting the anode 12 has the channels 24 ′′, whereas the upper, free main surface 20 ′ is flat.
  • the lowest interconnector 18 "differs from the remaining nine interconnectors 18 between two individual cells 10 in that only the upper main surface 20 adjacent to the cathode 16 has the channels 24 ', whereas the lower, free one
  • Main surface 22 " is flat.
  • a current collector tab 36 is welded to each of these free main surfaces 20 ', 22', via which the electrical current generated in the fuel cell stack 26 is dissipated.
  • Gas boxes 28, 30, 32, 34 are attached to each of the four side surfaces of the stack 26 in an airtight manner, via which the operating means are respectively supplied or removed.
  • the in FIG. 5 front gas box 28 is used to supply air that is tere gas box 30 of the removal of air reduced in oxygen content.
  • the in FIG. 5 left gas box 32 is used to supply hydrogen, the right gas box 34 is used to remove the water and the hydrogen that has not reacted.
  • the joints between the gas boxes and the stack 26 are sealed with glass solder.
  • FIG. 6 is a section through the fuel cell stack 26 along the line VI-VI in FIG. 5 and shows in an enlarged detail how the anode 12 and cathode 16 of an individual cell 10 are contacted with the corresponding interconnector 18.
  • the in FIG. 6 left side surface of the stack 26 has, as also in FIG. 5, to the hydrogen supply box 32.
  • FIG. 6 one of the channels 24 "running from left to right in the lower main surface 22 of the upper interconnector 18 is shown in longitudinal section. Hydrogen flows through this channel 24" from the left out of the hydrogen supply box 32 to the anode 12. Furthermore, FIG. 6 shows two of the channels 24 ′ running from the front to the rear in the upper main surface 20 of the lower interconnector 18 in cross section. Air flows from the air supply box 28 to the cathode 16 through these channels 24 ′ from the front.
  • the electrical contacting of the electrodes 14, 18 with the interconnector 18 takes place on the anode side with the aid of a nickel network 38, which is achieved by spot welding on the webs 40 ′′ delimiting the channels 24 ′′ on the lower one
  • Main surface 22 of the interconnector 18 is fastened and pressed onto the anode 12 by the dead weight of the interconnectors 18 and individual cells 10 lying above it.
  • a contact layer 42 made of a ceramic based on lanthanum cobaltite is provided between the webs 40 on the upper main surface 20 of the interconnector 18 and cathode 16.
  • the cathode layer does not reach all the way to the edge of anode 12 and electrolyte 14. Rather, the underside of the electrolyte layer is exposed all round.
  • This two-layer edge region 44 of the individual cell 10, which runs around the entire circumference of the individual cell 10, is provided with a sealing mass 46 enclosed, which consists of alkali silicate glass with additions of MgO and YSZ and adheres poorly to the cathode material used.
  • This seal prevents, as shown in FIG. 6, it can be seen that the hydrogen present in the hydrogen feed box 32 and in the channel 24 "above the anode 12 mixes with the oxygen in the channels 24 'under the cathode 16.
  • the seal also adheres to the outside Edge regions of the webs 40 in the upper and lower main surfaces 20, 22 of the interconnectors 18, so that interconnectors 18 and individual cells 10 are firmly connected to one another.
  • connection between interconnectors 18 and single cells 10 entails, the different materials in their thermal expansion behavior must be coordinated to the extent that there is no destruction of the brittle individual cells even with large temperature changes, which occur, for example, when the fuel cell unit is switched on and off 10 is coming.
  • FIG. 7 plots the relative thermal expansion ⁇ L / LQ as a function of the temperature, which was measured for different materials.
  • the difference between two curves at a given temperature is a direct measure of the mechanical stress that would occur between two corresponding components if this temperature were reached if they had been firmly connected at the initial temperature of 20 ° C.
  • Curve 1 belongs to an interconnector 18, the composition and structure of which are described above in connection with FIG. 4 is described.
  • the curve 2 belongs to one in connection with FIG. 3 described solid oxide fuel cell 10 according to the substrate concept.
  • Curve 3 belongs to an interconnector made of the above-mentioned known ODS-Cr alloy Cr5FelY 2 ⁇ 3.
  • FIG. 4 belongs to one in connection with FIG. 2 described solid oxide fuel cell 10 according to the film concept. It can be clearly seen that curves 1 and 2 on the one hand and curves 3 and 4 on the other hand fit well together. However, the curves 2 and 3 are already so far apart from approximately 200 ° C. that the resulting mechanical stress would destroy the fuel cell 10.

Abstract

In a batch of solid-oxide fuel elements, the various elements are electrically connected through interconnectors. The solid mechanical linkage required for a good electric contact between elements and interconnectors bring about, in case of significant temperature changes of possibly hundreds of degrees when the fuel elements are activated, mechanical strains due to the fact that the interconnector behaviour with regard to thermal expansion is not sufficiently adapted to the various elements. For the interconnectors intended to link the solid-oxide fuel elements according to the film pattern, there exists of course appropriate materials, but these are too expensive and their workability is far from satisfactory. Besides, they are not suited to interconnectors to which the solid-oxide fuel elements are to be linked according to the substrate pattern. This is due to the fact that the thermal expansion is not alike with both types of fuel element. As an interconnector (18) material electrically connecting the fuel elements (10) in one batch (26), it is suggested that a iron alloy be used which contains 13 to 24 wt.% of chromium and no more than 3 wt.% of manganese and/or no more than 2 wt.% of alumunium and/or no more than 1.5 wt.% of silicon.

Description

WERKSTOFF FÜR BRENNSTOFFZELLEN-INTERKONNEKTOREN MATERIAL FOR FUEL CELL INTERCONNECTORS
Die Erfindung betrifft einen Werkstoff für Interkonnektoren zum elektrischen Verbinden von Brennstoffzellen eines Brennstoffzellen-Stapels.The invention relates to a material for interconnectors for the electrical connection of fuel cells of a fuel cell stack.
In Brennstoffzellen wird die in dem Brennstoff gespeicherte chemische Energie direkt in elektrische Energie und Wärme umgewandelt. Als Brennstoffe kommen beispielsweise reiner Wasserstoff, Methanol oder Erdgas zum Einsatz, die in der Brennstoffzelle mit dem Oxidans, meist reiner oder der in Luft enthaltene Sauerstoff, reagieren. Bei dieser Reaktion wird neben elektrischem Strom und Wärme noch Wasser erzeugt, bei den kohlenstoffhaltigen Brennstoffen zu- dem Kohlendioxid. Brennstoff und Oxidans werden auch unter dem Begriff Betriebsmittel zusammengefaßt.In fuel cells, the chemical energy stored in the fuel is converted directly into electrical energy and heat. Pure hydrogen, methanol or natural gas are used as fuels, for example, which react in the fuel cell with the oxidant, usually pure or the oxygen contained in air. In addition to electrical power and heat, this reaction also generates water, and carbon dioxide also generates carbon dioxide. Fuel and oxidant are also summarized under the term equipment.
Die einzelne Brennstoffzelle weist eine Anode und eine Kathode auf, zwischen denen der Elektrolyt angeordnet ist. Der Brennstoff wird der Anodenseite, das Oxidans der Kathodenseite der Brennstoffzelle kontinuierlich zugeführt, die Reaktionsprodukte werden kontinuierlich abgeführt.The individual fuel cell has an anode and a cathode, between which the electrolyte is arranged. The fuel is continuously fed to the anode side, the oxidant to the cathode side of the fuel cell, and the reaction products are continuously removed.
Die verschiedenen Typen von Brennstoffzellen werden gewöhnlich an Hand des verwendeten Elektrolyten eingeteilt. Bei der Festoxid-Brennstoffzelle (SOFC, Abkürzung für Solid Oxide Fuel Cell) wird eine Keramik als Elektrolyt eingesetzt. Im Gegensatz zu Brennstoffzellen-Typen ist der Elektrolyt der Festoxid- Brennstoffzelle fest. Die Arbeitstemperaturen der Festoxid-Brennstoffzellen liegen im Bereich von ungefähr 600 bis ungefähr 1000 °C.The different types of fuel cells are usually classified based on the electrolyte used. A ceramic is used as the electrolyte in the solid oxide fuel cell (SOFC, abbreviation for Solid Oxide Fuel Cell). In contrast to fuel cell types, the electrolyte of the solid oxide fuel cell is solid. The working temperatures of the solid oxide fuel cells range from about 600 to about 1000 ° C.
Werkstoffe für die Komponenten der Festoxid-Brennstoffzelle sind überwiegend Keramiken, deren gewünschte elektrische und elektrochemische Eigenschaften durch gezielte Kombination und Verarbeitung der Ausgangsstoffe erreicht wer- den. Der Elektrolyt ist beispielsweise eine gasdichte Keramikschicht aus Yttri- um-stabilisiertem Zirkondioxid (abgekürzt YSZ), das bei den erwähnten Betriebstemperaturen zwischen 600 und 1000 °C eine hohe Leitfähigkeit für Sauerstoffionen besitzt. Im allgemeinen wird für die Anode ein Cermet aus Nickel und YSZ, für die Kathode ein Perowskit auf Basis von Lanthanmanganit verwendet. Die Porosität der beiden Elektrodenschichten muß ausreichend hoch sein, damit bei Betrieb der Brennstoffzelle einerseits immer eine genügend große Gasmenge des zu der entsprechenden Grenzfläche Elektrode/Elektrolyt ge- langen kann und andererseits die Reaktionsprodukte unbehindert entweichen können.The materials for the components of the solid oxide fuel cell are predominantly ceramics, the desired electrical and electrochemical properties of which are achieved through the targeted combination and processing of the starting materials. The electrolyte is, for example, a gas-tight ceramic layer made of yttrium-stabilized zirconium dioxide (abbreviated to YSZ), which has a high conductivity for oxygen ions at the operating temperatures between 600 and 1000 ° C. A nickel cermet is generally used for the anode and YSZ, a perovskite based on lanthanum manganite is used for the cathode. The porosity of the two electrode layers must be sufficiently high that, on the one hand, when the fuel cell is in operation, a sufficiently large amount of gas can reach the corresponding electrode / electrolyte interface and, on the other hand, the reaction products can escape unhindered.
Ohne Stromfluß baut sich zwischen Anode und Kathode eine Zellspannung von ungefähr 1 V auf. Da dieser Wert für den praktischen Einsatz zu gering ist, werden mehrere Einzelzellen in einem Modul zusammengefaßt und elektrisch in Reihe geschaltet. Dies erfolgt beispielsweise im Flachzellenkonzept dadurch, daß die Einzelzellen in Form von Platten hergestellt und aufeinandergestapelt werden. Zwischen jeweils zwei benachbarten Einzelzellen ist eine elektrisch leitende Platte, der sogenannte Interkonnektor angeordnet, der die Anode der einen Einzelzelle mit der Kathode der anderen Einzelzelle elektrisch verbindet. Der Interkonnektor ist zudem gasdicht und seine beiden Hauptflächen weisen eine Rippenstruktur auf, so daß zu den Elektroden offene Kanäle gebildet werden. Dadurch werden zwischen Anode und Interkonnektor einerseits und zwischen Kathode und Interkonnektor andererseits voneinander getrennte Gasräume gebildet, so daß die Anode mit Brennstoff und die Kathode mit Luft ver- sorgt werden kann.Without current flow, a cell voltage of approximately 1 V builds up between the anode and cathode. Since this value is too low for practical use, several individual cells are combined in one module and electrically connected in series. In the flat cell concept, for example, this is done by producing the individual cells in the form of plates and stacking them on top of one another. An electrically conductive plate, the so-called interconnector, is arranged between each two adjacent individual cells and electrically connects the anode of one individual cell to the cathode of the other individual cell. The interconnector is also gas-tight and its two main surfaces have a rib structure, so that open channels are formed to the electrodes. As a result, separate gas spaces are formed between the anode and interconnector on the one hand and between the cathode and interconnector on the other hand, so that the anode can be supplied with fuel and the cathode with air.
Für eine sichere elektrische Verbindung zwischen Elektrode und Interkonnektor ist ein guter Kontakt zwischen Interkonnektor und Elektrode erforderlich. Dieser wird dadurch erreicht, daß beispielsweise der ganze Stapel aus Brennstoffzellen und Interkonnektoren großflächig zusammengedrückt wird, oder daß die Interkonnektoren und die Elektroden an den gewünschten Kontaktstellen über geeignete Kontaktschichten miteinander verbunden werden.Good contact between the interconnector and the electrode is required for a secure electrical connection between the electrode and the interconnector. This is achieved in that, for example, the entire stack of fuel cells and interconnectors is pressed together over a large area, or in that the interconnectors and the electrodes are connected to one another at the desired contact points via suitable contact layers.
Zur Inbetriebnahme des Brennstoffzellen-Stapels muß dieser von Raumtemperatur auf Betriebstemperatur aufgeheizt werden. Diese Temperaturänderung von einigen hundert °C kann zusammen mit der oben erwähnten für die elek- trische Kontaktierung erforderlichen Preß- oder Klebeverbindung zwischen In- terkonnektoren und Einzelzellen zu mechanischen Spannungen führen, die so stark sind, daß die bruchempfindlichen keramischen Einzelzellen zerstört werden. Es ist daher äußerst wichtig, daß die verschiedenen Werkstoffe in ihrem Wärmeausdehnungsverhalten aneinander angepaßt sind.To start up the fuel cell stack, it must be heated from room temperature to operating temperature. This change in temperature of a few hundred ° C can be combined with the above-mentioned press or adhesive connection required for electrical contact between the tconnectors and single cells lead to mechanical stresses that are so strong that the break-sensitive ceramic single cells are destroyed. It is therefore extremely important that the different materials are matched to one another in their thermal expansion behavior.
Bisher wurden herkömmliche Hochtemperatur-Legierungen auf Nickelbasis alsSo far, conventional high-temperature nickel-based alloys have been used as
Werkstoff für die Herstellung von Interkonnektoren für Festoxid- Brennstoffzellen verwendet. Mit diesen Legierungen ließen sich aber keine zufriedenstellenden Ergebnisse erzielen, da ihre Wärmeausdehnung im Vergleich zu den für die Einzelzellen verwendeten keramischen Werkstoffen viel zu groß ist, so daß eine Anpassung nicht möglich war.Material used for the manufacture of interconnectors for solid oxide fuel cells. However, satisfactory results could not be achieved with these alloys, since their thermal expansion is much too great in comparison with the ceramic materials used for the individual cells, so that an adaptation was not possible.
Außerdem ist bekannt, Interkonnektoren aus Oxid- dispersionsgehärteten (oxid dispersion strengthened, abgekürzt ODS) Legierungen auf Chrombasis, wie zum Beispiel mit der Zusammensetzung 5 Gew.-% Fe, 1 Gew.-% 2O3, Rest Cr (abgekürzt
Figure imgf000005_0001
oder aus Keramiken auf Basis von Lanthanchromit (LaCrθ3) herzustellen. Derartige Interkonnektoren sind auf Grund ihres Wärmeausdehnungsverhaltens gut für Stapel aus solchen Festoxid-Brennstoffzellen geeignet, die nach dem sogenannten Folienkonzept aufgebaut sind.
It is also known that interconnectors made from oxide dispersion strengthened (abbreviated as ODS) chromium-based alloys, for example with the composition 5% by weight Fe, 1% by weight 2O3, the rest Cr (abbreviated
Figure imgf000005_0001
or from ceramics based on lanthanum chromite (LaCrθ3). Because of their thermal expansion behavior, such interconnectors are well suited for stacks of solid oxide fuel cells which are constructed according to the so-called film concept.
Dieses Folienkonzept besagt, daß die mechanische Stabilität der Einzelzelle hauptsächlich durch den Elektrolyten erfolgt. Der Aufbau einer derartigen Ein- zelzelle sieht beispielsweise so aus, daß der Elektrolyt eine 100-300 μm dicke, flache, selbsttragende Folie aus dem oben erwähnten YSZ ist, auf deren eine Seite die Anode aus dem oben erwähnten Cermet und auf deren andere Seite die Kathode aus dem oben erwähnten Perowskit in jeweils 50-100 μm dicken Schichten aufgebracht werden. Die Abmessungen derartiger Einzelzellen sind durch ihre mechanische Stabilität und ihre Handhabbarkeit im Herstellungsund Weiterverarbeitungsprozeß begrenzt. Üblich sind Einzelzellen von 100 x 100 mmA Das Wärmeausdehnungsverhalten dieser Einzelzelle wird vor allem durch die Elektrolytschicht bestimmt, die eine sehr niedrige Wärmeausdehnung besitzt. Neben dem Folienkonzept wird in jüngerer Zeit auch noch das sogenannte Substratkonzept verfolgt, das besagt, daß nicht der Elektrolyt für die mechanische Stabilität sorgt, sondern eine Substratschicht. Diese kann beispielsweise die Anode sein. Dies ist von Vorteil, da die ohmschen Verluste der Anode gerin- ger als die der Kathode und sehr viel geringer die des Elektrolyten sind. DieThis film concept states that the mechanical stability of the individual cell is mainly due to the electrolyte. The structure of such a single cell looks, for example, in such a way that the electrolyte is a 100-300 μm thick, flat, self-supporting film made of the above-mentioned YSZ, on one side of which the anode from the above-mentioned cermet and on the other side of which Cathode from the above-mentioned perovskite can be applied in 50-100 μm thick layers. The dimensions of such individual cells are limited by their mechanical stability and their manageability in the manufacturing and further processing process. Single cells of 100 x 100 mmA are common. The thermal expansion behavior of this single cell is primarily determined by the electrolyte layer, which has a very low thermal expansion. In addition to the film concept, the so-called substrate concept has recently also been followed, which states that it is not the electrolyte that provides mechanical stability, but a substrate layer. This can be the anode, for example. This is advantageous since the ohmic losses of the anode are lower than that of the cathode and much lower than that of the electrolyte. The
Anode ist beispielsweise 2000 μm dick und mit dieser Dicke auch bei großenAnode is for example 2000 μm thick and with this thickness even with large ones
Flächen von beispielsweise 250 x 250 mm2 noch ausreichend stabil. Auf dieses Anoden-Substrat wird beispielsweise eine nur ungefähr 20 μm dicke Elektrolytschicht und darauf eine ungefähr 50 μm dicke Kathodenschicht aufgebracht.Areas of, for example, 250 x 250 mm 2 are still sufficiently stable. For example, an approximately 20 μm thick electrolyte layer and an approximately 50 μm thick cathode layer are applied to this anode substrate.
Es sind auch andere Strukturen möglich, so kann beispielsweise von einer selbsttragenden Substratschicht, die in Hinblick auf die elektrochemischen Abläufe in der Brennstoffzelle keinen Einfluß haben muß, ausgegangen werden, auf der die eigentlichen Brennstoffzellen-Schichten, also Anode, Kathode und Elektrolyt aufgebaut werden. Diese können dann beliebig dünn aufgebracht werden, da sie nicht mehr zur mechanischen Stabilität der Einzelzelle beitragen müssen. Die Substratschicht muß allerdings so beschaffen sein, daß die direkt auf ihr aufgebrachte Elektrode mit genügend Betriebsmittel versorgt werden kann.Other structures are also possible, for example a self-supporting substrate layer, which does not have to have any influence with regard to the electrochemical processes in the fuel cell, on which the actual fuel cell layers, i.e. anode, cathode and electrolyte, are built up. These can then be applied as thin as desired, since they no longer have to contribute to the mechanical stability of the individual cell. However, the substrate layer must be such that the electrode applied directly to it can be supplied with sufficient resources.
Da der Elektrolyt somit beim Substratkonzept viel dünner als beim Folienkon- zept ist, kann die Betriebstemperatur unter 700 °C gesenkt werden. Zwar ist mit der Absenkung der Betriebstemperatur eine Verringerung der spezifischen elektrischen Leitfähigkeit des Elektrolyten verbunden, dieser Effekt wird aber durch die kürzere Entfernung kompensiert, die die Sauerstoffionen auf ihrem Weg zur Anode durch den Elektrolyten zurücklegen müssen.Since the electrolyte in the substrate concept is much thinner than in the film concept, the operating temperature can be reduced below 700 ° C. Although the lowering of the operating temperature is associated with a reduction in the specific electrical conductivity of the electrolyte, this effect is compensated for by the shorter distance that the oxygen ions have to travel through the electrolyte on their way to the anode.
Das Wärmeausdehnungsverhalten der Einzelzellen gemäß dem Substratkonzept wird vor allem durch das selbsttragende Substrat, im erstgenannten Beispiel also durch die Anode bestimmt. Da dieses aber im Vergleich zu dem Elektrolyten, der eine sehr niedrige Wärmeausdehnung besitzt, in der Regel eine höhere Wärmeausdehnung hat, sind die bekannten Interkonnektor- Werkstoffe hier nicht geeignet. Ein wesentlicher Nachteil der bekannten ODS-Cr-Legierungen besteht zudem darin, daß sich beim Betrieb des Brennstoffzellen-Stapels auf der Oberfläche des Interkonnektors Deckschichten aus Chromoxid bilden, die in den jeweiligen Gasraum abdampfen. Dieses abgedampfte Chromoxid kontaminiert die Einzel- zellen, vor allem die Kathoden, was ein ernstes Alterungsproblem darstellt.The thermal expansion behavior of the individual cells in accordance with the substrate concept is determined primarily by the self-supporting substrate, in the first example mentioned by the anode. However, since this generally has a higher thermal expansion than the electrolyte, which has a very low thermal expansion, the known interconnector materials are not suitable here. A major disadvantage of the known ODS-Cr alloys is that during operation of the fuel cell stack, cover layers made of chromium oxide form on the surface of the interconnector and evaporate into the respective gas space. This evaporated chromium oxide contaminates the individual cells, especially the cathodes, which is a serious aging problem.
Außerdem werden ODS-Cr-Legierungen in einem pulvermetallurgischen und somit aufwendigen Verfahren hergestellt und sind daher sehr teuer. Auch ihre geringe Bruchzähigkeit und die damit verbundenen schlechten Verarbeitungseigenschaften sind sehr nachteilig.In addition, ODS-Cr alloys are manufactured in a powder-metallurgical and thus complex process and are therefore very expensive. Their low fracture toughness and the associated poor processing properties are also very disadvantageous.
Bei den bekannten Keramiken auf Basis von Lanthanchromit sind die hohenThe well-known ceramics based on lanthanum chromite are high
Rohstoff- und Herstellungskosten sowie die bei den hohen Betriebstemperaturen vorhandene, aber im Vergleich zu den metallischen Werkstoffen nicht zufriedenstellende spezifische elektrische Leitfähigkeit wesentliche Nachteile.Raw material and manufacturing costs as well as the specific electrical conductivity that is present at the high operating temperatures but not satisfactory in comparison to the metallic materials are significant disadvantages.
Es ist daher Aufgabe der Erfindung, einen Werkstoff der eingangs genannten Art zu schaffen, der die mit den bekannten Werkstoffen verbundenen Nachteile überwindet.It is therefore an object of the invention to provide a material of the type mentioned at the outset which overcomes the disadvantages associated with the known materials.
Diese Aufgabe wird durch eine Legierung auf Eisenbasis gelöst, die 13 bis 24 Gew.-% Chrom sowie höchstens 3 Gew.-% Mangan und/oder höchstens 2 Gew.-% Aluminium und/oder höchstens 1,5 Gew.-% Silizium aufweist.This object is achieved by an iron-based alloy which has 13 to 24% by weight of chromium and at most 3% by weight of manganese and / or at most 2% by weight of aluminum and / or at most 1.5% by weight of silicon .
Der erfindungsgemäße Werkstoff paßt in seinem Wärmeausdehnungsverhalten gut zu den Einzelzellen gemäß dem Substratkonzept, er ist einfach und preisgünstig herzustellen, er besitzt sehr gute Verarbeitungseigenschaften und eine hohe elektrische Leitfähigkeit.The thermal expansion behavior of the material according to the invention fits well with the individual cells according to the substrate concept, it is simple and inexpensive to manufacture, it has very good processing properties and high electrical conductivity.
Der erfindungsgemäße Werkstoff ist bei den hohen Betriebstemperaturen be- ständig. Er widersteht zudem gleichzeitig den Bedingungen auf der Kathodenseite, wo beispielsweise eine sehr oxidierende Atmosphäre vorherrscht, und denen der Anodenseite, wo beispielsweise heißer Wasserdampf vorhanden ist. Dies ist deshalb nötig, da der Interkonnektor mit einer Seite den Gasraum der Anode und mit der anderen Seite den Gasraum der Kathode abgrenzt. Außerdem besitzt er als metallischer Werkstoff eine sehr gute spezifische elektrische Leitfähigkeit.The material according to the invention is stable at the high operating temperatures. It also withstands the conditions on the cathode side, for example, where there is a very oxidizing atmosphere, and those on the anode side, where hot water vapor is present, for example. This is necessary because the interconnector delimits the gas space of the anode on one side and the gas space of the cathode on the other side. As a metallic material, it also has very good specific electrical conductivity.
Zudem verhindert jedes der Legierungselemente AI, Si und Mn, allein oder zusammen mit einem der beiden anderen Legierungselemente oder mit den beiden anderen Legierungselementen, die Bildung von reinen Chromoxid- Schichten. Statt dessen werden Deckschichten aus Mischoxiden oder Oxidgemischen gebildet, die eine sehr gute Oxidationsbeständigkeit aufweisen und eine extrem verringerte Abdampfung von kontaminierenden Chromoxiden zulassen.In addition, each of the alloy elements Al, Si and Mn, alone or together with one of the two other alloy elements or with the two other alloy elements, prevents the formation of pure chromium oxide layers. Instead, cover layers are formed from mixed oxides or oxide mixtures, which have very good oxidation resistance and allow extremely reduced evaporation of contaminating chromium oxides.
Die Brennstoffzellen altern daher wesentlich langsamer.The fuel cells therefore age much more slowly.
Ein vorteilhaftes Beispiel für diesen Werkstoff weist einen Gehalt an 0 bis 0, 12 Gew.-% Kohlenstoff, 12 bis 14 Gew.-% Chrom, 0 bis 1 Gew.-% Mangan, 0,7 bis 1,2 Gew.-% Aluminium und 0,7 bis 1,4 Gew.-% Silizium auf.An advantageous example of this material has a content of 0 to 0, 12 wt .-% carbon, 12 to 14 wt .-% chromium, 0 to 1 wt .-% manganese, 0.7 to 1.2 wt .-% Aluminum and 0.7 to 1.4 wt .-% silicon.
Ein weiteres vorteilhaftes Beispiel für diesen Werkstoff weist einen Gehalt an 0 bis 0, 12 Gew.-% Kohlenstoff, 17 bis 19 Gew.-% Chrom, 0 bis 1 Gew.-% Mangan, 0,7 bis 1,2 Gew.-% Aluminium und 0,7 bis 1,4 Gew.-% Silizium auf.Another advantageous example of this material has a content of 0 to 0, 12 wt .-% carbon, 17 to 19 wt .-% chromium, 0 to 1 wt .-% manganese, 0.7 to 1.2 wt .-% % Aluminum and 0.7 to 1.4% by weight silicon.
Ein anderes vorteilhaftes Beispiel für diesen Werkstoff weist einen Gehalt an 0 bis 0, 12 Gew.-% Kohlenstoff, 23 bis 26 Gew.-% Chrom, 0 bis 1 Gew.-% Mangan, 1,2 bis 1,7 Gew.-% Aluminium und 0,7 bis 1,4 Gew.-% Silizium auf.Another advantageous example of this material has a content of 0 to 0, 12 wt .-% carbon, 23 to 26 wt .-% chromium, 0 to 1 wt .-% manganese, 1.2 to 1.7 wt .-% % Aluminum and 0.7 to 1.4% by weight silicon.
Weitere vorteilhafte Zusammensetzungen sowie vorteilhafte Anwendungen und Weiterbildungen sind in den Unteransprüchen beschrieben.Further advantageous compositions and advantageous applications and developments are described in the subclaims.
Der erfindungsgemäße Werkstoff ist besonders für Betriebstemperaturen von höchstens 900 °C geeignet.The material according to the invention is particularly suitable for operating temperatures of at most 900 ° C.
Aus dem erfindungsgemäßen Werkstoff läßt sich vorteilhaft ein Interkonnektor herstellen, der in einem Brennstoffzellen-Stapel die Einzelzellen elektrisch und mechanisch verbindet. Auf Grund seiner thermischen, elektrischen und elektro- chemischen Eigenschaften ist ein derartiger Interkonnektor besonders für Hochtemperatur-Brennstoffzellen geeignet.An interconnect can advantageously be produced from the material according to the invention, which electrically and mechanically connects the individual cells in a fuel cell stack. Due to its thermal, electrical and electrical Such an interconnector is particularly suitable for high-temperature fuel cells due to its chemical properties.
Im folgenden werden bevorzugte Einsatzgebiete der Erfindung anhand der beigefügten Zeichnungen näher beschrieben.Preferred areas of application of the invention are described below with reference to the accompanying drawings.
FIG. 1 ist eine schematische Darstellung einer Festoxid-Brennstoffzelle;FIG. 1 is a schematic illustration of a solid oxide fuel cell;
FIG. 2 ist ein vergrößerter Querschnitt durch eine Festoxid-Brennstoffzelle gemäß dem Folienkonzept;FIG. 2 is an enlarged cross section through a solid oxide fuel cell according to the film concept;
FIG. 3 ist ein vergrößerter Querschnitt durch eine Festoxid-Brennstoffzelle gemäß dem Substratkonzept; FIG. 4 ist eine perspektivische Ansicht eines Interkonnektors;FIG. 3 is an enlarged cross section through a solid oxide fuel cell according to the substrate concept; FIG. 4 is a perspective view of an interconnector;
FIG. 5 ist eine teilweise aufgebrochene perspektivische Ansicht eines Brennstoffzellen-Aggregates, der einen Stapel aus Festoxid- Brennstoffzellen gemäß dem Substratkonzept und Interkonnektoren gemäß FIG. 4 aufweist; FIG. 6 ist eine entlang der Linie VI -VI in FIG. 5 geschnittene Detailansicht des Brennstoffzellen-Stapels; undFIG. 5 is a partially broken perspective view of a fuel cell assembly that includes a stack of solid oxide fuel cells according to the substrate concept and interconnectors according to FIG. 4; FIG. 6 is a along line VI-VI in FIG. 5 sectional detailed view of the fuel cell stack; and
FIG. 7 ist ein Graph, in dem die relative Wärmeausdehnung verschiedener für Festoxid-Brennstoffzellen und Interkonnektoren verwendeter Werkstoffe über der Temperatur aufgetragen ist.FIG. 7 is a graph plotting the relative thermal expansion of various materials used for solid oxide fuel cells and interconnectors versus temperature.
Arbeitsweise und Aufbau von Hochtemperatur-Brennstoffzellen werden nachstehend am Beispiel einer mit Wasserstoff und Luft betriebenen Festoxid- Brennstoffzelle näher beschrieben.Operation and structure of high-temperature fuel cells are described below using the example of a solid oxide fuel cell operated with hydrogen and air.
Gemäß FIG. 1 bis 3 weist eine Festoxid-Brennstoffzelle 10 eine Anode 12, einen Elektrolyten 14 und eine Kathode 16 auf. Der Elektrolyt 14 ist eine gasdichte Keramikschicht aus YSZ, das aus Zrθ mit einem Zusatz von 8 Mol-% Y2O3 besteht. Die Anode 12 ist aus einem Ni-YSZ-Cermet, das aus den Ausgangsstoffen YSZ, das aus Zrθ mit einem Zusatz von 8 Mol-% Y2O3 besteht, und NiO hergestellt ist. Die Kathode 16 ist aus einem Perowskit auf Basis von Lanthan- manganit der Zusammensetzung Lao Q^Q 3oMnθ3- Die beiden Elektroden- schichten sind gasdurchlässig, so daß bei Betrieb der Brennstoffzelle 10 der Wasserstoff zur Grenzfläche Anode/Elektrolyt und der Luftsauerstoff zur Grenzfläche Kathode/Elektrolyt jeweils in ausreichenden Mengen gelangen und andererseits das Reaktionsprodukt Wasser unbehindert entweichen können.According to FIG. 1 to 3, a solid oxide fuel cell 10 has an anode 12, an electrolyte 14 and a cathode 16. The electrolyte 14 is a gas-tight ceramic layer made of YSZ, which consists of Zrθ with an addition of 8 mol% Y2O3. The anode 12 is made of a Ni-YSZ cermet, which is made from the starting materials YSZ, which consists of Zrθ with an addition of 8 mol% Y2O3, and NiO. The cathode 16 is made of a perovskite based on lanthanum manganite with the composition Lao Q ^ Q 3oMnθ3- The two electrodes layers are gas-permeable, so that when the fuel cell 10 is operating, the hydrogen reaches the anode / electrolyte interface and the atmospheric oxygen reaches the cathode / electrolyte interface in sufficient quantities and, on the other hand, the reaction product water can escape unhindered.
Die gemäß FIG. 1 an der Grenzschicht Kathode/Elektrolyt aus dem kontinuierlich zugeführten Luftsauerstoff erzeugten O2"-Ionen wandern durch den Elektrolyten 14 zu der Grenzschicht Anode/Elektrolyt. Dort wird der Wasserstoff oxidiert und reagiert mit den O2_-Ionen zu Wasser, wobei neben der Reaktionswärme auch Elektronen freigesetzt werden. Diese fließen über einen zwischen Anode 12 und Kathode 16 geschalteten Verbraucher zurück zur Kathode 16, wo sie neue O2"-Ionen bilden. Das an der Anode 12 entstandene Wasser liegt wegen der hohen Temperaturen als Dampf vor und wird, wie die in ihrem Sauerstoffgehalt verringerte Luft, an der Kathodenseite kontinuierlich abgeführt.The according to FIG. 1 at the cathode / electrolyte interface layer from the continuously supplied atmospheric oxygen, O 2 "ions migrate through the electrolyte 14 to the anode / electrolyte interface layer. There the hydrogen is oxidized and reacts with the O 2_ ions to form water, in addition to the heat of reaction electrons are also released. These flow back via a consumer connected between anode 12 and cathode 16 to cathode 16, where they form new O 2 " ions. The water formed at the anode 12 is present as steam because of the high temperatures and, like the air which is reduced in its oxygen content, is continuously removed on the cathode side.
In FIG. 2 ist der Aufbau einer planaren Festoxid-Brennstoffzelle 10 gemäß dem Folienkonzept gezeigt, bei dem die mechanische Stabilität der Einzelzelle 10 durch den Elektrolyten 14 erfolgt. Dieser ist eine 150 μm dicke, flache Folie aus dem oben erwähnten YSZ. Die Anode 12 und die Kathode 16 sind jeweils 50 μm dicke Schichten aus den oben erwähnten Materialien, die beidseitig auf die Elektrolytfolie aufgebracht sind.In FIG. 2 shows the structure of a planar solid oxide fuel cell 10 according to the film concept, in which the mechanical stability of the individual cell 10 is provided by the electrolyte 14. This is a 150 μm thick, flat film from the YSZ mentioned above. The anode 12 and the cathode 16 are each 50 μm thick layers made of the above-mentioned materials, which are applied to the electrolyte film on both sides.
FIG. 3 zeigt den Aufbau einer Festoxid-Brennstoffzelle 10 gemäß demFIG. 3 shows the structure of a solid oxide fuel cell 10 according to the
Substratkonzept, bei der die gleichen Werkstoffe wie bei der in FIG. 2 gezeigten Festoxid-Brennstoffzelle 10 gemäß dem Folienkonzept verwendet werden. Bei dieser Einzelzelle 10 ist jedoch das tragende Substrat eine 2000 μm dicke Anode 12. Auf dieses Anoden-Substrat wird die Elektrolytschicht mit 20 μm Dicke und darauf die Kathodenschicht mit 50 μm Dicke aufgebracht.Substrate concept in which the same materials as in the in FIG. 2 shown solid oxide fuel cell 10 are used according to the film concept. In this single cell 10, however, the supporting substrate is a 2000 μm thick anode 12. The electrolyte layer with a thickness of 20 μm and the cathode layer with a thickness of 50 μm are applied to this anode substrate.
FIG. 4 zeigt einen plattenförmigen Interkonnektor 18, der aus einer erfindungsgemäßen Eisenlegierung mit einem Gehalt an 0 bis 0, 12 Gew.-% Kohlenstoff, 17 bis 19 Gew.-% Chrom, 0 bis 1 Gew.-% Mangan, 0,7 bis 1,2 Gew.-% Aluminium und 0,7 bis 1,4 Gew.-% Silizium hergestellt ist. Der Grundriß des Interkonnektors 18 gleicht im wesentlichen dem der Einzelzellen 10, in der vorliegenden bevorzugten Ausführungsform ist er quadratisch, er kann aber auch eine andere Form haben. Die beiden quadratischen Hauptflächen 20, 22 des Interkonnektors 18 sind derart gerippt, daß jeweils mehrere parallele, rillenförmige Kanäle 24 durchgehend von einem Rand desFIG. 4 shows a plate-shaped interconnector 18, which is made of an iron alloy according to the invention with a content of 0 to 0, 12% by weight carbon, 17 to 19% by weight chromium, 0 to 1% by weight manganese, 0.7 to 1 , 2 wt .-% aluminum and 0.7 to 1.4 wt .-% silicon. The layout of the interconnector 18 is essentially the same as that of the individual cells 10, in the present preferred embodiment it is square, but it can also have a different shape. The two square main surfaces 20, 22 of the interconnector 18 are ribbed in such a way that a plurality of parallel, groove-shaped channels 24 extend continuously from one edge of the
Interkonnektors 18 zum gegenüberliegenden reichen. Dabei verlaufen die Kanäle 24' in der in FIG. 4 sichtbaren oberen Hauptfläche 20 rechtwinklig zu den Kanälen 24" in der gegenüberliegenden unteren Hauptfläche 22.Interconnector 18 to the opposite range. The channels 24 'run in the manner shown in FIG. 4 visible upper main surface 20 perpendicular to the channels 24 ″ in the opposite lower main surface 22.
Das in FIG. 5 gezeigte Brennstoffzellen-Aggregat weist einen Brennstoffzellen- Stapel 26 und vier daran angebrachte Gaskästen auf. Der Brennstoffzellen-The in FIG. 5 shows a fuel cell stack 26 and four gas boxes attached to it. The fuel cell
Stapel 26 umfaßt zehn Festoxid-Brennstoffzellen 10, von denen jede gemäß dem in FIG. 3 gezeigten Substratkonzept aufgebaut ist. Bei jeder Einzelzelle 10 liegt die Anode 12 oben, die Kathode 16 unten. Jeweils zwei benachbarte Einzelzellen 10 sind durch einen Interkonnektor 18 gemäß FIG. 4 einerseits räumlich voneinander getrennt, andererseits durch diesen mechanisch und elektrisch miteinander verbunden, wie weiter unten näher beschrieben wird. Auf der Anode 12 der obersten Einzelzelle 10 und unter der Kathode 16 der untersten Einzelzelle 10 liegt jeweils ebenfalls ein Interkonnektor 18', 18". Der oberste Interkonnektor 18' unterscheidet sich dadurch von den übrigen neun zwischen zwei Einzelzellen 10 liegenden Interkonnektoren 18, daß nur die an der Anode 12 anliegende untere Hauptfläche 22 die Kanäle 24" aufweist, wohingegen die obere, freie Hauptfläche 20' eben ist. Entsprechend unterscheidet sich der unterste Interkonnektor 18" dadurch von den übrigen neun zwischen zwei Einzelzellen 10 liegenden Interkonnektoren 18, daß nur die an der Kathode 16 anliegende obere Hauptfläche 20 die Kanäle 24' aufweist, wohingegen die untere, freieStack 26 includes ten solid oxide fuel cells 10, each of which is shown in FIG. 3 substrate concept shown is constructed. In each individual cell 10, the anode 12 is at the top, the cathode 16 at the bottom. Two adjacent individual cells 10 are connected by an interconnector 18 according to FIG. 4 on the one hand spatially separated from one another, on the other hand mechanically and electrically connected by this, as will be described in more detail below. On the anode 12 of the uppermost individual cell 10 and below the cathode 16 of the lowest individual cell 10 there is also an interconnector 18 ', 18 ". The uppermost interconnector 18' differs from the other nine interconnectors 18 between two individual cells 10 in that only the lower main surface 22 abutting the anode 12 has the channels 24 ″, whereas the upper, free main surface 20 ′ is flat. Correspondingly, the lowest interconnector 18 "differs from the remaining nine interconnectors 18 between two individual cells 10 in that only the upper main surface 20 adjacent to the cathode 16 has the channels 24 ', whereas the lower, free one
Hauptfläche 22" eben ist. Auf diese freien Hauptflächen 20', 22' ist jeweils eine Stromabnehmerfahne 36 geschweißt, über die der in dem Brennstoffzellen- Stapel 26 erzeugte elektrische Strom abgeführt wird.Main surface 22 "is flat. A current collector tab 36 is welded to each of these free main surfaces 20 ', 22', via which the electrical current generated in the fuel cell stack 26 is dissipated.
An jeder der vier Seitenflächen des Stapels 26 sind Gaskästen 28, 30, 32, 34 luftdicht angebracht, über die die Betriebsmittel jeweils zu- oder abgeführt werden. Der in FIG. 5 vordere Gaskasten 28 dient der Zufuhr von Luft, der hin- tere Gaskasten 30 der Abfuhr der im Sauerstoffgehalt verringerten Luft. Der in FIG. 5 linke Gaskasten 32 dient der Zufuhr von Wasserstoff, der rechte Gaskasten 34 der Abfuhr des Wassers und desjenigen Wasserstoffes, der nicht reagiert hat. Die Fugen zwischen den Gaskästen und dem Stapel 26 sind mit Glaslot abgedichtet.Gas boxes 28, 30, 32, 34 are attached to each of the four side surfaces of the stack 26 in an airtight manner, via which the operating means are respectively supplied or removed. The in FIG. 5 front gas box 28 is used to supply air that is tere gas box 30 of the removal of air reduced in oxygen content. The in FIG. 5 left gas box 32 is used to supply hydrogen, the right gas box 34 is used to remove the water and the hydrogen that has not reacted. The joints between the gas boxes and the stack 26 are sealed with glass solder.
FIG. 6 ist ein Schnitt durch den Brennstoffzellen-Stapel 26 entlang der Linie VI-VI in FIG. 5 und zeigt in einem vergrößerten Ausschnitt, wie die Kontaktie- rung von Anode 12 und Kathode 16 einer Einzelzelle 10 mit dem entsprechenden Interkonnektor 18 erfolgt. Die in FIG. 6 linke Seitenfläche des Stapels 26 weist, wie auch in FIG. 5, zum Wasserstoffzufuhrkasten 32.FIG. 6 is a section through the fuel cell stack 26 along the line VI-VI in FIG. 5 and shows in an enlarged detail how the anode 12 and cathode 16 of an individual cell 10 are contacted with the corresponding interconnector 18. The in FIG. 6 left side surface of the stack 26 has, as also in FIG. 5, to the hydrogen supply box 32.
In FIG. 6 ist einer der von links nach rechts verlaufenden Kanäle 24" in der unteren Hauptfläche 22 des oberen Interkonnektors 18 im Längsschnitt gezeigt. Durch diesen Kanal 24" strömt von links Wasserstoff aus dem Wasserstoffzufuhrkasten 32 zur Anode 12. Weiter sind in FIG. 6 zwei der von vorn nach hin- ten verlaufenden Kanäle 24' in der oberen Hauptfläche 20 des unteren Interkonnektors 18 im Querschnitt dargestellt. Durch diese Kanäle 24' strömt von vorne Luft aus dem Luftzufuhrkasten 28 zur Kathode 16.In FIG. 6 one of the channels 24 "running from left to right in the lower main surface 22 of the upper interconnector 18 is shown in longitudinal section. Hydrogen flows through this channel 24" from the left out of the hydrogen supply box 32 to the anode 12. Furthermore, FIG. 6 shows two of the channels 24 ′ running from the front to the rear in the upper main surface 20 of the lower interconnector 18 in cross section. Air flows from the air supply box 28 to the cathode 16 through these channels 24 ′ from the front.
Die elektrische Kontaktierung der Elektroden 14, 18 mit dem Interkonnektor 18 erfolgt auf Anodenseite mit Hilfe eines Nickelnetzes 38, das durch Punkt- schweißen auf den die Kanäle 24" begrenzenden Stegen 40 an der unterenThe electrical contacting of the electrodes 14, 18 with the interconnector 18 takes place on the anode side with the aid of a nickel network 38, which is achieved by spot welding on the webs 40 ″ delimiting the channels 24 ″ on the lower one
Hauptfläche 22 des Interkonnektors 18 befestigt ist und durch das Eigengewicht der darüber liegenden Interkonnektoren 18 und Einzelzellen 10 auf die Anode 12 gedrückt wird. Auf der Kathodenseite ist eine Kontaktschicht 42 aus einer Keramik auf Basis von Lanthan-Kobaltit zwischen den Stegen 40 an der oberen Hauptfläche 20 des Interkonnektors 18 und Kathode 16 vorgesehen.Main surface 22 of the interconnector 18 is fastened and pressed onto the anode 12 by the dead weight of the interconnectors 18 and individual cells 10 lying above it. On the cathode side, a contact layer 42 made of a ceramic based on lanthanum cobaltite is provided between the webs 40 on the upper main surface 20 of the interconnector 18 and cathode 16.
Gemäß FIG. 6 reicht die Kathodenschicht nicht ganz bis zum Rand von Anode 12 und Elektrolyt 14. Vielmehr liegt die Unterseite der Elektrolytschicht umlaufend frei. Dieser um den gesamten Umfang der Einzelzelle 10 umlaufende zweischichtige Randbereich 44 der Einzelzelle 10 ist von einer Abdichtungs- masse 46 umschlossen, die aus Alkali-Silikat-Glas mit Zusätzen von MgO und YSZ besteht und schlecht an dem verwendeten Kathodenmaterial haftet. Diese Abdichtung verhindert, wie in FIG. 6 gut zu erkennen ist, daß sich der Wasserstoff, der in dem Wasserstoffzufuhrkasten 32 und in dem Kanal 24" über der Anode 12 vorhanden ist, mit dem Sauerstoff in den Kanälen 24' unter der Kathode 16 vermischt. Die Abdichtung haftet außerdem an den äußeren Randbereichen der Stege 40 in der oberen und unteren Hauptfläche 20, 22 der Interkonnektoren 18, so daß Interkonnektoren 18 und Einzelzellen 10 fest miteinander verbunden sind.According to FIG. 6, the cathode layer does not reach all the way to the edge of anode 12 and electrolyte 14. Rather, the underside of the electrolyte layer is exposed all round. This two-layer edge region 44 of the individual cell 10, which runs around the entire circumference of the individual cell 10, is provided with a sealing mass 46 enclosed, which consists of alkali silicate glass with additions of MgO and YSZ and adheres poorly to the cathode material used. This seal prevents, as shown in FIG. 6, it can be seen that the hydrogen present in the hydrogen feed box 32 and in the channel 24 "above the anode 12 mixes with the oxygen in the channels 24 'under the cathode 16. The seal also adheres to the outside Edge regions of the webs 40 in the upper and lower main surfaces 20, 22 of the interconnectors 18, so that interconnectors 18 and individual cells 10 are firmly connected to one another.
Da die beschriebene elektrische Kontaktierung auch eine feste mechanischeSince the electrical contact described also has a fixed mechanical
Verbindung zwischen Interkonnektoren 18 und Einzelzellen 10 mit sich bringt, müssen die verschiedenen Materialien in ihrem Wärmeausdehnungsverhalten soweit aufeinander abgestimmt sein, daß es auch bei großen Temperaturänderungen, die beispielsweise beim Ein- und Ausschalten des Brennstoffzellen- Aggregates auftreten, nicht zu einer Zerstörung der spröden Einzelzellen 10 kommt.Connection between interconnectors 18 and single cells 10 entails, the different materials in their thermal expansion behavior must be coordinated to the extent that there is no destruction of the brittle individual cells even with large temperature changes, which occur, for example, when the fuel cell unit is switched on and off 10 is coming.
In dem in FIG. 7 gezeigten Diagramm ist die relative Wärmeausdehnung ΔL/LQ als Funktion der Temperatur aufgetragen, die für verschiedene Werkstoffe gemessen wurde. Die Differenz zwischen zwei Kurven bei einer gegebenen Tem- peratur ist ein direktes Maß für die mechanische Spannung, die sich bei Erreichen dieser Temperatur zwischen zwei entsprechenden Bauteilen aufbauen würde, wenn sie bei der Ausgangstemperatur von 20 °C fest miteinander verbundenen worden wären.In the in FIG. The diagram shown in FIG. 7 plots the relative thermal expansion ΔL / LQ as a function of the temperature, which was measured for different materials. The difference between two curves at a given temperature is a direct measure of the mechanical stress that would occur between two corresponding components if this temperature were reached if they had been firmly connected at the initial temperature of 20 ° C.
Die Kurve 1 gehört zu einem Interkonnektor 18, dessen Zusammensetzung und Aufbau oben in Zusammenhang mit FIG. 4 beschrieben ist. Die Kurve 2 gehört zu einer in Zusammenhang mit FIG. 3 beschriebenen Festoxid-Brennstoffzelle 10 gemäß dem Substratkonzept. Die Kurve 3 gehört zu einem Interkonnektor aus der oben erwähnten bekannten ODS-Cr-Legierung Cr5FelY2θ3. Die KurveCurve 1 belongs to an interconnector 18, the composition and structure of which are described above in connection with FIG. 4 is described. The curve 2 belongs to one in connection with FIG. 3 described solid oxide fuel cell 10 according to the substrate concept. Curve 3 belongs to an interconnector made of the above-mentioned known ODS-Cr alloy Cr5FelY 2 θ3. The curve
4 gehört zu einer in Zusammenhang mit FIG. 2 beschriebenen Festoxid- Brennstoffzelle 10 gemäß dem Folienkonzept. Es ist deutlich zu erkennen, daß einerseits die Kurven 1 und 2 und andererseits die Kurven 3 und 4 gut zueinander passen. Die Kurven 2 und 3 liegen jedoch bereits ab ungefähr 200 °C so weit auseinander, daß die resultierende mechanische Spannung die Brennstoffzelle 10 zerstören würde. 4 belongs to one in connection with FIG. 2 described solid oxide fuel cell 10 according to the film concept. It can be clearly seen that curves 1 and 2 on the one hand and curves 3 and 4 on the other hand fit well together. However, the curves 2 and 3 are already so far apart from approximately 200 ° C. that the resulting mechanical stress would destroy the fuel cell 10.

Claims

PATENTANSPRÜCHE PATENT CLAIMS
1. Werkstoff für Interkonnektoren (18) zum elektrischen Verbinden von Brennstoffzellen (10) eines Brennstoffzellen-Stapels (26), gekennzeichnet durch eine Legierung auf Eisenbasis, die 13 bis 24 Gew.-% Chrom sowie höch- stens 3 Gew.-% Mangan und/oder höchstens 2 Gew.-% Aluminium und/oder höchstens 1,5 Gew.-% Silizium aufweist.1. Material for interconnectors (18) for the electrical connection of fuel cells (10) of a fuel cell stack (26), characterized by an iron-based alloy containing 13 to 24% by weight of chromium and a maximum of 3% by weight of manganese and / or at most 2% by weight of aluminum and / or at most 1.5% by weight of silicon.
2. Werkstoff nach Anspruch 1, dadurch gekennzeichnet, daß der Gehalt an Mangan wenigstens 0,5 Gew.-% beträgt.2. Material according to claim 1, characterized in that the manganese content is at least 0.5 wt .-%.
3. Werkstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Gehalt an Aluminium wenigstens 0,5 Gew.-% beträgt.3. Material according to claim 1 or 2, characterized in that the aluminum content is at least 0.5 wt .-%.
4. Werkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Gehalt an Silizium wenigstens 0,5 Gew.-% beträgt.4. Material according to any one of the preceding claims, characterized in that the silicon content is at least 0.5% by weight.
5. Werkstoff nach Anspruch 1, dadurch gekennzeichnet, daß er einen Gehalt an 0 bis 0, 12 Gew.-% Kohlenstoff, 12 bis 14 Gew.-% Chrom, 0 bis 1 Gew.-% Mangan, 0,7 bis 1,2 Gew.-% Aluminium und 0,7 bis 1,4 Gew.-% Silizium aufweist.5. Material according to claim 1, characterized in that it contains 0 to 0, 12 wt .-% carbon, 12 to 14 wt .-% chromium, 0 to 1 wt .-% manganese, 0.7 to 1, Has 2 wt .-% aluminum and 0.7 to 1.4 wt .-% silicon.
6. Werkstoff nach Anspruch 1, dadurch gekennzeichnet, daß er einen Gehalt an 0 bis 0, 12 Gew.-% Kohlenstoff, 17 bis 19 Gew.-% Chrom, 0 bis 1 Gew.-% Mangan, 0,7 bis 1,2 Gew.-% Aluminium und 0,7 bis 1,4 Gew.-% Silizium auf- weist.6. Material according to claim 1, characterized in that it contains 0 to 0, 12 wt .-% carbon, 17 to 19 wt .-% chromium, 0 to 1 wt .-% manganese, 0.7 to 1, Has 2 wt .-% aluminum and 0.7 to 1.4 wt .-% silicon.
7. Werkstoff nach Anspruch 1, dadurch gekennzeichnet, daß er einen Gehalt an 0 bis 0, 12 Gew.-% Kohlenstoff, 23 bis 26 Gew.-% Chrom, 0 bis 1 Gew.-% Mangan, 1,2 bis 1,7 Gew.-% Aluminium und 0,7 bis 1,4 Gew.-% Silizium aufweist. 7. Material according to claim 1, characterized in that it contains 0 to 0, 12 wt .-% carbon, 23 to 26 wt .-% chromium, 0 to 1 wt .-% manganese, 1.2 to 1, 7 wt .-% aluminum and 0.7 to 1.4 wt .-% silicon.
8. Interkonnektor zum elektrischen Verbinden von Brennstoffzellen (10) eines Brennstoffzellen-Stapels (26), dadurch gekennzeichnet, daß er aus einem Werkstoff nach einem der vorhergehenden Ansprüche hergestellt ist.8. interconnector for electrical connection of fuel cells (10) of a fuel cell stack (26), characterized in that it is made of a material according to one of the preceding claims.
9. Verwendung eines Werkstoffes nach einem der Ansprüche 1 bis 7 für die Herstellung eines Interkonnektors (18) zum elektrischen Verbinden von Brennstoffzellen (10) eines Brennstoffzellen-Stapels (26).9. Use of a material according to one of claims 1 to 7 for the manufacture of an interconnector (18) for the electrical connection of fuel cells (10) of a fuel cell stack (26).
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, daß die Brennstoffzellen (10) substratgestützte Hochtemperatur-Brennstoffzellen sind.10. Use according to claim 9, characterized in that the fuel cells (10) are substrate-based high-temperature fuel cells.
11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, daß der Werkstoff Betriebstemperaturen von höchstens 900 °C ausgesetzt wird. 11. Use according to claim 10, characterized in that the material is exposed to operating temperatures of at most 900 ° C.
PCT/DE1997/002669 1996-12-06 1997-11-12 Material for fuel element interconnectors WO1998025316A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19650704.9 1996-12-06
DE19650704A DE19650704C2 (en) 1996-12-06 1996-12-06 Connection element for fuel cells

Publications (1)

Publication Number Publication Date
WO1998025316A1 true WO1998025316A1 (en) 1998-06-11

Family

ID=7813872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002669 WO1998025316A1 (en) 1996-12-06 1997-11-12 Material for fuel element interconnectors

Country Status (2)

Country Link
DE (1) DE19650704C2 (en)
WO (1) WO1998025316A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390456B2 (en) 2001-01-15 2008-06-24 Plansee Aktiengesellschaft Powder-metallurgic method for producing highly dense shaped parts
KR100886882B1 (en) * 2004-12-28 2009-03-05 테크니칼 유니버시티 오브 덴마크 Method of producing metal to glass, metal to metal or metal to ceramic connections
US8173328B2 (en) 2005-06-15 2012-05-08 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19836352A1 (en) * 1998-08-11 2000-02-17 Siemens Ag High temperature fuel cell has a nickel net fixed in electrically conductive contact with a nickel layer on the fuel gas side of a bipolar plate to reduce chromium oxide layer formation
DE19858422C2 (en) * 1998-12-17 2002-01-31 Siemens Ag High-temperature fuel cell with nickel network and high-temperature fuel cell stack with such a cell
DE10039024B4 (en) 2000-08-10 2007-07-12 Forschungszentrum Jülich GmbH Fuel cell stack with internal gas connections
DE10056539C2 (en) * 2000-11-15 2002-10-24 Mtu Friedrichshafen Gmbh A fuel cell assembly
DE10219456B4 (en) * 2002-04-30 2005-10-13 Mtu Cfc Solutions Gmbh Fuel cell and method for producing such
NL1021547C2 (en) * 2002-09-27 2004-04-20 Stichting Energie Electrode-supported fuel cell.
CA2569866C (en) 2004-06-10 2011-05-17 Risoe National Laboratory Solid oxide fuel cell
US8039175B2 (en) 2005-01-12 2011-10-18 Technical University Of Denmark Method for shrinkage and porosity control during sintering of multilayer structures
RU2354013C1 (en) 2005-01-31 2009-04-27 Текникал Юниверсити Оф Денмарк Anode resistant to oxidation-reduction
WO2006082057A2 (en) 2005-02-02 2006-08-10 Technical University Of Denmark A method for producing a reversible solid oxid fuel cell
ES2434442T3 (en) 2005-08-31 2013-12-16 Technical University Of Denmark Solid reversible stacking of oxide fuel cells and method of preparing it
DE102005050661A1 (en) * 2005-10-20 2007-05-16 Forschungszentrum Juelich Gmbh Multi-layer thermal barrier coating systems and methods of manufacture
ES2382952T3 (en) 2006-11-23 2012-06-14 Technical University Of Denmark Method for the manufacture of reversible solid oxide batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516865A (en) * 1967-08-30 1970-06-23 Gen Electric Electrochemical cell including iron-chromium alloy conductor connected to cathode
DE3918115A1 (en) * 1989-06-02 1990-12-06 Siemens Ag Sold electrolyte high temperature fuel cell - has cell formed with plates with slots for passage of oxygen and gases
EP0432381A1 (en) * 1989-10-12 1991-06-19 Asea Brown Boveri Ag Arrangement of elements for the conduction of current between ceramic high temperature fuel cells
EP0440968A1 (en) * 1990-02-08 1991-08-14 Asea Brown Boveri Ag Element for obtaining a possible uniform temperature distribution on the surface of a plate-like ceramic high temperature fuel cell
EP0446680A1 (en) * 1990-03-15 1991-09-18 Asea Brown Boveri Ag Current collector for conducting current between neighbouring piled high temperature fuel cells
WO1997030485A1 (en) * 1996-02-12 1997-08-21 Siemens Aktiengesellschaft High-temperature fuel cell and high-temperature fuel cell stack with metallic composite conducting structures

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4410711C1 (en) * 1994-03-28 1995-09-07 Forschungszentrum Juelich Gmbh Metallic bipolar plate for HT fuel cells and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516865A (en) * 1967-08-30 1970-06-23 Gen Electric Electrochemical cell including iron-chromium alloy conductor connected to cathode
DE3918115A1 (en) * 1989-06-02 1990-12-06 Siemens Ag Sold electrolyte high temperature fuel cell - has cell formed with plates with slots for passage of oxygen and gases
EP0432381A1 (en) * 1989-10-12 1991-06-19 Asea Brown Boveri Ag Arrangement of elements for the conduction of current between ceramic high temperature fuel cells
EP0440968A1 (en) * 1990-02-08 1991-08-14 Asea Brown Boveri Ag Element for obtaining a possible uniform temperature distribution on the surface of a plate-like ceramic high temperature fuel cell
EP0446680A1 (en) * 1990-03-15 1991-09-18 Asea Brown Boveri Ag Current collector for conducting current between neighbouring piled high temperature fuel cells
WO1997030485A1 (en) * 1996-02-12 1997-08-21 Siemens Aktiengesellschaft High-temperature fuel cell and high-temperature fuel cell stack with metallic composite conducting structures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390456B2 (en) 2001-01-15 2008-06-24 Plansee Aktiengesellschaft Powder-metallurgic method for producing highly dense shaped parts
KR100886882B1 (en) * 2004-12-28 2009-03-05 테크니칼 유니버시티 오브 덴마크 Method of producing metal to glass, metal to metal or metal to ceramic connections
US8173328B2 (en) 2005-06-15 2012-05-08 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells

Also Published As

Publication number Publication date
DE19650704C2 (en) 2000-09-14
DE19650704A1 (en) 1998-06-10

Similar Documents

Publication Publication Date Title
DE19710345C1 (en) Material for electrical contact layers between an electrode of a high-temperature fuel cell and a connecting element
EP1662596B1 (en) Seal arrangement for a high temperature fuel cell stack and process to manufacture such a stack
DE69632531T2 (en) CONNECTING DEVICE FOR FUEL CELLS
DE69838679T2 (en) ELECTRICAL CONDUCTIVITY IN A FUEL CELL ARRANGEMENT
DE3922673C2 (en)
EP0425939B1 (en) Solid electrolyte high-temperature fuelcell module
EP2154742B1 (en) Fuel cell unit and method for producing an electrically conductive connection between an electrode and a bipolar plate
DE19650704C2 (en) Connection element for fuel cells
EP1923944B1 (en) Sealing device comprising silver braze with titanium for a high-temperature fuel cell and method for producing a fuel cell stack
DE102006016001B4 (en) fuel cell stack
DE4237602A1 (en) High temperature fuel cell stack and process for its manufacture
DE19841919C2 (en) Method for producing a fuel cell module
EP0840947B1 (en) High-temperature fuel cell and high-temperature fuel cell stack with interconnecting conducting plates provided with a chromium spinel contact layer
EP2054964B1 (en) Repetition unit for a stack of electrochemical cells and stack arrangement
DE19836132B4 (en) High temperature solid electrolyte fuel cell (SOFC) for a wide operating temperature range
DE10317388B4 (en) Fuel cell and / or electrolyzer and process for their preparation
DE4120359C2 (en) Process for the production of an electrochemical cell and its use
DE19605086C1 (en) High-temperature fuel cell and from such existing high-temperature fuel cell stacks
DE4307727C2 (en) Electrolytic film for planar high-temperature fuel cells and process for their production
DE102008036848A1 (en) Method for producing electrically conductive connection between electrode and bipolar plate of fuel cell unit, involves integrally connecting electrode with bipolar plate or electrically conductive intermediate element
DE4307967C2 (en) Process for the production of an integrated all-ceramic high-temperature fuel cell
DE4030944A1 (en) Molten carbonate fuel cell - has sintered cathode of lithium ferrite and opt. lithiated nickel oxide with high conductivity and catalytic activity
WO1997034332A1 (en) Interconnector made from a metallic high-temperature material and with a lanthanum-containing surface
DE4030943A1 (en) Molten carbonate fuel cell - has sintered porous nickel-nickel oxide anode with lithium titanate on inside and outside to stabilise inside dia.
WO1998043308A1 (en) High-temperature fuel cells with a composite material cathode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase