WO1998023921A1 - Incremental encoder having absolute reference marks - Google Patents

Incremental encoder having absolute reference marks Download PDF

Info

Publication number
WO1998023921A1
WO1998023921A1 PCT/NL1997/000654 NL9700654W WO9823921A1 WO 1998023921 A1 WO1998023921 A1 WO 1998023921A1 NL 9700654 W NL9700654 W NL 9700654W WO 9823921 A1 WO9823921 A1 WO 9823921A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
sensor
gear
sensors
crenellations
Prior art date
Application number
PCT/NL1997/000654
Other languages
French (fr)
Inventor
Hendrikus Bernardus Maria Steentjes
Original Assignee
N.V. Nederlandsche Apparatenfabriek Nedap
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N.V. Nederlandsche Apparatenfabriek Nedap filed Critical N.V. Nederlandsche Apparatenfabriek Nedap
Priority to AU54161/98A priority Critical patent/AU5416198A/en
Priority to US09/308,942 priority patent/US6360449B1/en
Priority to EP97948001A priority patent/EP0941452A1/en
Publication of WO1998023921A1 publication Critical patent/WO1998023921A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/02Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means
    • G01D5/04Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means using levers; using cams; using gearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • G01D5/2457Incremental encoders having reference marks

Definitions

  • the invention provides a method for realizing a highly compact system for determining the position of a movable part for selectively closing or releasing an opening, in particular the panel of a sliding roof or a motor-driven window in a door of a motorcar or truck, in respect of which it is important to know the position of the roof panel in order to, for instance, cause the panel to stop at a particular location.
  • Devices which comprise external sensors such as Hall-effect sensors, disposed at a magnet with one or more pairs of poles which is/are mounted around the motor shaft or on a shaft connected to the motor shaft.
  • devices which comprise external sensors such as optical slotted sensors operated by crenellations, which are again mounted on or against a wheel driven, with or without a transmission, by the motor shaft .
  • the motor can move the roof panel for instance via a drive cable. Via this drive cable, the wheel with the crenellations can again be driven.
  • the invention enables the use of several wheels, which nevertheless do not occupy more space than the space occupied by one wheel. In particular if the building-in space is limited, this will be highly advantageous.
  • a gear wheel driven by the drive cable is used, which gear wheel drives, by means of an eccentric, a second wheel having substantially the same center as the first one. As a result, this second wheel rotates far more slowly than the first wheel.
  • Mounted on a ring on the first wheel are crenellations rotating through an optical slotted sensor whereby incremental position information is provided.
  • a crenellation On a concentric second ring on the first wheel, a crenellation is arranged. This crenellation also rotates through a slotted sensor, which produces a reference pulse which, however, occurs several times over the entire distance. On the second gear wheel, too, a crenellation is arranged. By means of a slotted sensor, this crenellation is scanned, too. Together with the reference pulse from the sensor around the second ring of the first wheel, an unequivocal, accurate reference pulse can now be made.
  • a combination of two gear wheels always takes up much more space than one gear wheel .
  • the invention has the advantage of two gear wheels, i.e. a large number of distance pulses with an accurate reference pulse, and the space occupation of one gear wheel. In particular in places where there is little space for a control, this invention will be highly advantageous. Hereinafter, the invention will be further described with reference to the accompanying drawings .
  • Fig. 1 shows the arrangement with the gear wheels, sensors and drive cable
  • Fig. 2 shows the same arrangement, viewed from below;
  • Fig. 3 shows gear wheel 1 and gear wheel 2, viewed from above ;
  • Fig. 4 shows gear wheel 1 and gear wheel 2, viewed from above, in an alternative embodiment according to Fig. 1.
  • a drive cable 3 as shown in Fig. 1 drives a wheel 1 via a gear ring 4.
  • the wheel 1 has sensor recognition elements in the form of crenellations 5 which move through the sensors 6 and 7. These two sensors 6, 7 provide quadrature detection, i.e. they provide 90° displaced incremental pulse information. The direction of rotation of wheel 1 can thus be determined.
  • a sensor recognition element in the form of a crenellation 8 of wheel 1 rotates through a slotted sensor 9 and thus provides a reference pulse. This reference pulse occurs only once per revolution of the wheel 1.
  • an outer edge 22 of the first wheel 1 drives an inner edge 24 of a second wheel 2, in this case a gear wheel 2, with the first wheel 1 and the second wheel 2 being positioned eccentrically relative to each other, so that the rotation of the first wheel 1 entails a reduced rotation of the second wheel 2.
  • the diameter of the outer edge 22 is slightly less than the diameter of the inner edge 24.
  • An outer edge 26 of the wheel 2 runs along an inner edge 28, closed in itself, of a fixed part 21.
  • the outer edge 26 of the second wheel 2 comprises a first number of teeth 30, the inner edge 28 of the fixed part 21 comprises a second number of teeth 32 which is larger than the first number of teeth.
  • gear wheel 2 has 15 teeth 30 and the firm world, i.e. the fixed part 21, has 16 teeth 32 (dotted line) .
  • gear wheel 1 Each revolution of the gear wheel 1 will cause the gear wheel 2, arranged eccentrically relative to the gear wheel 1, to travel one tooth and hence 1/16 revolution.
  • the ratio of transformation is 16.
  • Fig. 2 shows that the gear wheel 2 has only one sensor recognition element in the form of one crenellation 10. This element is sensed by a slotted sensor 11.
  • an absolute reference pulse is made which, however, is inaccurate.
  • gear wheel 2 rotates much more slowly than gear wheel 1.
  • the signal of crenellation 8 on gear wheel 1 is sensed by the slotted sensor 9 and can now be used for making a more accurate reference pulse.
  • this pulse of sensor 9 now occurs 16 times.
  • a combination of the signals of sensor 9 and sensor 11 provides a reference pulse which is 16 times more accurate than that of sensor 11 alone.
  • the absolute zero can now for instance be defined as being that position in which sensor 11 detects crenellation 10, while sensor 9 detects crenellation 8.
  • the output signals of the sensors 6 and 7 will not only be used for determining the direction of rotation of the first wheel, but also for an accurate determination of the rotational position of the first wheel.
  • crenellations 8, 9 in combination determine the absolute zero, while by counting the number of pulses of the sensors 6 and/or 7 from this absolute zero, the exact position of the first wheel can be determined.
  • the output signal of the sensor 9 can than be used as an extra check.
  • the axis of rotation of the first wheel is designated by reference numeral 13, while the axis of rotation of the second wheel is designated by reference numeral 14.
  • the axis of rotation 13 is fixedly disposed relative to the fixed part 21.
  • the diameter of the circular outer edge 22 of the first wheel is slightly less than the diameter of the inner edge 24 of the second wheel 2.
  • the axis of rotation 14 of the second wheel is eccentric relative to the axis of rotation 13 of the first wheel.
  • the center of the circular outer edge 22 of the first wheel substantially coincides with the axis of rotation 14. As a consequence, rotation of the second wheel will cause this inner edge 22 of the first wheel to move up and down.
  • the diameter of the first wheel is considerably smaller than the inside diameter of the second wheel. If the diameter of this outer edge of the first wheel is smaller by the same size as the difference between the diameter of the outer edge of the second wheel and the diameter of the inner edge of the fixed part, the center 13 of the circular inner edge 22 will coincide with the axis of rotation 13 of the first wheel. This axis of rotation 13 is fixedly disposed relative to the fixed part 21. During rotation of the second wheel, the center 14 of the this wheel runs along a circular path.
  • the second wheel may be omitted when the diameter of the first wheel is rendered much and much larger.
  • the sensor 9 determines the absolute zero and by means of the sensors 6 and/or 7, by counting the number of crenellations 5 that are successively detected by these sensors, the rotational position of the first wheel relative to the absolute zero is determined.
  • this implies that a complete revolution of the first wheel entails a much greater displacement of the drive cable 3 than in the case of the above-described embodiment.
  • the number of crenellations 5 will increase proportionally, so as to maintain a sufficiently great accuracy.
  • the slotted sensor may be designed as an optical slotted sensor. It is also possible to replace the sensor by a separate light source and a separate light detector. In addition, the sensor may be designed as a Hall-effect sensor. It is also possible to design the sensor as a magnetic sensor. Sensor recognition elements may be designed as crenellations, as described hereinabove, but also as magnets and/or other elements that can be detected by means of other types of sensors or similar sensors. Such variants are all understood to fall within the framework of the invention.

Abstract

The invention provides a method for realizing a highly compact system for determining a position. This position-determination method can be used for measuring the displacement of the panel of a sliding roof, or the displacement of a window in a side-window control in a motorcar. In general, this method can be used for measuring displacements of objects. For determining a position, a gear wheel is used which is driven by the drive cable and which drives, by means of an eccentric, a second wheel having substantially the same center as the first wheel. As a result, this second wheel rotates much more slowly than the first wheel. Mounted on a ring on the first wheel are crenellations which rotate through an optical slotted sensor whereby incremental position information is provided. On a concentric second ring on the first wheel, with only one crenellation, another slotted sensor is disposed, which provides a reference pulse which, however, occurs several times over the total distance. On the second gear, a crenellation is provided as well. By means of a slotted sensor, this crenellation is also scanned. Together with the reference pulse from the sensor around the second ring of the first wheel, an unequivocal, accurate reference pulse can now be made. A combination of two gear wheels always occupies much more space than one gear wheel. The invention offers the advantage of two gear wheels (a large number of distance pulses with an accurate reference pulse) and the space occupation of one gear wheel. This invention will be of great advantage in particular in places where there is little space for a control.

Description

Title: INCREMENTAL ENCODER HAVING ABSOLUTE REFERENCE MARKS.
The invention provides a method for realizing a highly compact system for determining the position of a movable part for selectively closing or releasing an opening, in particular the panel of a sliding roof or a motor-driven window in a door of a motorcar or truck, in respect of which it is important to know the position of the roof panel in order to, for instance, cause the panel to stop at a particular location.
Devices are known which comprise external sensors such as Hall-effect sensors, disposed at a magnet with one or more pairs of poles which is/are mounted around the motor shaft or on a shaft connected to the motor shaft. Also, devices are known which comprise external sensors such as optical slotted sensors operated by crenellations, which are again mounted on or against a wheel driven, with or without a transmission, by the motor shaft . The motor can move the roof panel for instance via a drive cable. Via this drive cable, the wheel with the crenellations can again be driven.
The drawback of such systems is that if gear wheels are involved, they usually turn out to be large.
The invention enables the use of several wheels, which nevertheless do not occupy more space than the space occupied by one wheel. In particular if the building-in space is limited, this will be highly advantageous. For determining the position, a gear wheel driven by the drive cable is used, which gear wheel drives, by means of an eccentric, a second wheel having substantially the same center as the first one. As a result, this second wheel rotates far more slowly than the first wheel. Mounted on a ring on the first wheel are crenellations rotating through an optical slotted sensor whereby incremental position information is provided.
On a concentric second ring on the first wheel, a crenellation is arranged. This crenellation also rotates through a slotted sensor, which produces a reference pulse which, however, occurs several times over the entire distance. On the second gear wheel, too, a crenellation is arranged. By means of a slotted sensor, this crenellation is scanned, too. Together with the reference pulse from the sensor around the second ring of the first wheel, an unequivocal, accurate reference pulse can now be made.
A combination of two gear wheels always takes up much more space than one gear wheel . The invention has the advantage of two gear wheels, i.e. a large number of distance pulses with an accurate reference pulse, and the space occupation of one gear wheel. In particular in places where there is little space for a control, this invention will be highly advantageous. Hereinafter, the invention will be further described with reference to the accompanying drawings .
Fig. 1 shows the arrangement with the gear wheels, sensors and drive cable;
Fig. 2 shows the same arrangement, viewed from below; Fig. 3 shows gear wheel 1 and gear wheel 2, viewed from above ; and
Fig. 4 shows gear wheel 1 and gear wheel 2, viewed from above, in an alternative embodiment according to Fig. 1.
A drive cable 3 as shown in Fig. 1 drives a wheel 1 via a gear ring 4. The wheel 1 has sensor recognition elements in the form of crenellations 5 which move through the sensors 6 and 7. These two sensors 6, 7 provide quadrature detection, i.e. they provide 90° displaced incremental pulse information. The direction of rotation of wheel 1 can thus be determined. A sensor recognition element in the form of a crenellation 8 of wheel 1 rotates through a slotted sensor 9 and thus provides a reference pulse. This reference pulse occurs only once per revolution of the wheel 1.
As Figs. 2 and 3 show, an outer edge 22 of the first wheel 1 drives an inner edge 24 of a second wheel 2, in this case a gear wheel 2, with the first wheel 1 and the second wheel 2 being positioned eccentrically relative to each other, so that the rotation of the first wheel 1 entails a reduced rotation of the second wheel 2. The diameter of the outer edge 22 is slightly less than the diameter of the inner edge 24. An outer edge 26 of the wheel 2 runs along an inner edge 28, closed in itself, of a fixed part 21. The outer edge 26 of the second wheel 2 comprises a first number of teeth 30, the inner edge 28 of the fixed part 21 comprises a second number of teeth 32 which is larger than the first number of teeth.
The above implies that the wheel 2 rotates much more slowly than the wheel 1. This is visible in particular in Fig. 3. In Fig. 3, gear wheel 2 has 15 teeth 30 and the firm world, i.e. the fixed part 21, has 16 teeth 32 (dotted line) . Each revolution of the gear wheel 1 will cause the gear wheel 2, arranged eccentrically relative to the gear wheel 1, to travel one tooth and hence 1/16 revolution. Here, the ratio of transformation is 16.
Fig. 2 shows that the gear wheel 2 has only one sensor recognition element in the form of one crenellation 10. This element is sensed by a slotted sensor 11. Thus, an absolute reference pulse is made which, however, is inaccurate. As it is, gear wheel 2 rotates much more slowly than gear wheel 1. The signal of crenellation 8 on gear wheel 1 is sensed by the slotted sensor 9 and can now be used for making a more accurate reference pulse. In one revolution of gear wheel 2 this pulse of sensor 9 now occurs 16 times. In this manner, a combination of the signals of sensor 9 and sensor 11 provides a reference pulse which is 16 times more accurate than that of sensor 11 alone. The absolute zero can now for instance be defined as being that position in which sensor 11 detects crenellation 10, while sensor 9 detects crenellation 8. Of course, the output signals of the sensors 6 and 7 will not only be used for determining the direction of rotation of the first wheel, but also for an accurate determination of the rotational position of the first wheel. As stated above, crenellations 8, 9 in combination determine the absolute zero, while by counting the number of pulses of the sensors 6 and/or 7 from this absolute zero, the exact position of the first wheel can be determined. Of course, the output signal of the sensor 9 can than be used as an extra check.
For completeness' sake, it is observed that in the drawing, the axis of rotation of the first wheel is designated by reference numeral 13, while the axis of rotation of the second wheel is designated by reference numeral 14. During rotation of the second wheel 2, the center 14 of this wheel moves along a circular path. The axis of rotation 13 is fixedly disposed relative to the fixed part 21. In this example, the diameter of the circular outer edge 22 of the first wheel is slightly less than the diameter of the inner edge 24 of the second wheel 2. Hence, the axis of rotation 14 of the second wheel is eccentric relative to the axis of rotation 13 of the first wheel. The center of the circular outer edge 22 of the first wheel substantially coincides with the axis of rotation 14. As a consequence, rotation of the second wheel will cause this inner edge 22 of the first wheel to move up and down.
However, it is also possible to design the diameter of the first wheel to be considerably smaller than the inside diameter of the second wheel. If the diameter of this outer edge of the first wheel is smaller by the same size as the difference between the diameter of the outer edge of the second wheel and the diameter of the inner edge of the fixed part, the center 13 of the circular inner edge 22 will coincide with the axis of rotation 13 of the first wheel. This axis of rotation 13 is fixedly disposed relative to the fixed part 21. During rotation of the second wheel, the center 14 of the this wheel runs along a circular path.
The invention is by no means limited to the embodiments outlined hereinabove. For instance, the second wheel may be omitted when the diameter of the first wheel is rendered much and much larger. In that case, the sensor 9 determines the absolute zero and by means of the sensors 6 and/or 7, by counting the number of crenellations 5 that are successively detected by these sensors, the rotational position of the first wheel relative to the absolute zero is determined. Of course, this implies that a complete revolution of the first wheel entails a much greater displacement of the drive cable 3 than in the case of the above-described embodiment. Also in the case where the first wheel has a larger diameter, the number of crenellations 5 will increase proportionally, so as to maintain a sufficiently great accuracy.
It will be understood that the slotted sensor may be designed as an optical slotted sensor. It is also possible to replace the sensor by a separate light source and a separate light detector. In addition, the sensor may be designed as a Hall-effect sensor. It is also possible to design the sensor as a magnetic sensor. Sensor recognition elements may be designed as crenellations, as described hereinabove, but also as magnets and/or other elements that can be detected by means of other types of sensors or similar sensors. Such variants are all understood to fall within the framework of the invention.

Claims

Claims
1. A device for operating a movable part for closing or releasing an opening, in particular for operating, by means of a motor, a panel of a sliding roof or a window of a motorcar, the device comprising at least one wheel having at least one sensor recognition element and at least one sensor, the sensor being arranged to detect the sensor recognition element when said element passes a predetermined position by rotation of the wheel, characterized in that the device comprises a first and a second sensor and a quick-rotating first wheel and a slow-rotating second wheel, wherein an outer edge of the first wheel drives an inner edge of the second wheel, wherein the first and the second wheel are positioned eccentrically relative to each other so that a rotation of the first wheel entails a reduced rotation of the second wheel, wherein the first wheel comprises a first sensor recognition element which can be detected by the first sensor when the first wheel is in a predetermined rotational position and wherein the second wheel comprises a second sensor recognition element which can be detected by the second sensor when the second wheel is in a predetermined rotational position.
2. A device according to claim 1, characterized in that the device further comprises at least one third sensor, the first wheel further comprising several third sensor recognition elements which, by rotation of the first wheel, can be successively detected by the third sensor.
3. A device according to claim 1 or 2 , characterized in that an outer edge of the second wheel runs along an inner edge, closed in itself, of a fixed part.
4. A device according to claim 3, characterized in that the outer edge of the second wheel comprises a first number of teeth, the inner edge of the fixed part comprising a second number of teeth which is larger than the first number of teeth.
5. A device according to any one of the preceding claims, characterized in that the first wheel is arranged to be driven upon operation of said movable part.
6. A device for operating a movable part for closing or releasing an opening, in particular for operating, by means of a motor, a panel of a sliding roof or a window of a motorcar, the device comprising at least one wheel having at least one sensor recognition element and at least one sensor, the sensor being arranged to detect the sensor recognition element when said element passes a predetermined position by rotation of the wheel, characterized in that the wheel comprises a first sensor recognition element which can be detected by a first sensor when the first wheel is in a predetermined rotational position, wherein the wheel further comprises several second sensor recognition elements which, by rotation of the wheel, can be successively detected by at least one second sensor.
7. A device according to claim 6, characterized in that the wheel is arranged to be driven upon operation of said movable part .
8. A device according to any one of the preceding claims, characterized in that at least one of the sensor recognition elements is designed as a crenellation.
9. A device according to any one of the preceding claims, characterized in that at least one of the sensors is designed as an optical slotted sensor.
10. A device according to any one of the preceding claims, characterized in that at least one of the sensors comprises a light source and a light detector.
11. A device according to any one of the preceding claims, characterized in that at least one of the sensor recognition elements comprises a magnet.
12. A device according to any one of the preceding claims, characterized in that at least one of the sensors is designed as a Hall-effect sensor.
13. A device according to any one of the preceding claims, characterized in that at least one of the sensors is designed as a magnetic sensor.
14. A device for operating a movable part for selectively closing or releasing an opening, in particular a panel of a sliding roof or a motor-driven window in a door of a motorcar or truck, the roof panel or the window being driven by a motor, for instance a direct-current motor, said device having one or more gear wheels with crenellations driven by the motor and one or more slotted sensors for detecting the rotation of the gear wheels in that a crenellation interrupts the ray of light from an optical slotted sensor, characterized in that a quick-rotating gear wheel having crenellations at a distance from the center provides the incremental position information by means of an optical slotted sensor, and a second gear wheel which is disposed within the first gear wheel eccentrically relative to said first gear wheel and which is driven by teeth in the first gear wheel and thus is subject to a reduction with respect to the first gear wheel, with one or more crenellations at a different distance provides the absolute position information by means of an optical slotted sensor.
15. A device for operating a movable part for selectively closing or releasing an opening, in particular a panel of a sliding roof or a motor-driven window in a door of a motorcar or truck, the roof panel or window being driven by a motor, for instance a direct-current motor, said device having one or more gear wheels with crenellations driven by the motor and one or more slotted sensors for detecting the rotation of the gear wheels in that a crenellation interrupts the ray of light from an optical slotted sensor, characterized in that a quick-rotating gear wheel with crenellations at a distance from the center of this gear wheel provides the incremental position information by means of an optical slotted sensor, and with one or more crenellations at a different distance from the center of this gear wheel provides the absolute position information by means of an optical slotted sensor.
16. A device for operating a movable part for selectively closing or releasing an opening, in particular a panel of a sliding roof or a motor-driven window in a door of a motorcar or truck, the roof panel or window being driven by a motor, for instance a direct-current motor, said device having one or more slotted sensors for detecting the rotation of the gear wheels in that a crenellation interrupts the ray of light from an optical slotted sensor, characterized in that a quick-rotating gear wheel with crenellations at a distance from the center provides the incremental position information by means of an optical slotted sensor, and with one or more crenellations at a different distance from the center provides incremental or absolute accurate reference information by means of an optical slotted sensor, and wherein a second gear wheel which is disposed eccentrically relative to the first gear wheel and which is driven by teeth in the first gear wheel and thus is subject to a reduction with respect to the first gear wheel, with one or more crenellations at a different distance provides absolute reference information by means of an optical slotted sensor, which absolute reference information, combined with the accurate reference information of the first gear wheel, provides accurate reference information.
17. A device according to any one of claims 14-16, characterized in that instead of optical slotted sensors, a separate optical transmitter and a separate optical receiver are used.
18. A device according to any one of claims 14-17, characterized in that instead of optical slotted sensors, a separate optical transmitter and a separate optical receiver are used, arranged in a holder especially made therefor.
19. A device according to any one of claims 14-18, characterized in that instead of crenellations, magnets are used, and instead of optical slotted sensors, Hall-effect sensors are used.
20. A device according to any one of claims 14-19, characterized in that instead of crenellations, magnets are used, and instead of optical slotted sensors, magnetic sensors are used such as oscillators which are tuned by a magnetic field.
PCT/NL1997/000654 1996-11-27 1997-11-27 Incremental encoder having absolute reference marks WO1998023921A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU54161/98A AU5416198A (en) 1996-11-27 1997-11-27 Incremental encoder having absolute reference marks
US09/308,942 US6360449B1 (en) 1996-11-27 1997-11-27 Incremental encoder having absolute reference marks
EP97948001A EP0941452A1 (en) 1996-11-27 1997-11-27 Incremental encoder having absolute reference marks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1004624 1996-11-27
NL1004624A NL1004624C2 (en) 1996-11-27 1996-11-27 Compact incremental position determination with an absolute reference.

Publications (1)

Publication Number Publication Date
WO1998023921A1 true WO1998023921A1 (en) 1998-06-04

Family

ID=19763939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL1997/000654 WO1998023921A1 (en) 1996-11-27 1997-11-27 Incremental encoder having absolute reference marks

Country Status (5)

Country Link
US (1) US6360449B1 (en)
EP (1) EP0941452A1 (en)
AU (1) AU5416198A (en)
NL (1) NL1004624C2 (en)
WO (1) WO1998023921A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2780157A1 (en) * 1998-06-18 1999-12-24 Valeo Electronique Sensor for determination of the absolute angle of rotation of a vehicle steering wheel
CN1313695C (en) * 2001-10-26 2007-05-02 马兰特克传动及控制技术股份有限两合公司 Driver for blocking element

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7290476B1 (en) 1998-10-20 2007-11-06 Control Products, Inc. Precision sensor for a hydraulic cylinder
JP2001343207A (en) * 2000-03-28 2001-12-14 Tokai Rika Co Ltd Rotation detection sensor
JP2002305399A (en) * 2001-04-05 2002-10-18 Fuji Mach Mfg Co Ltd Adjustment apparatus of rotating position
US7100861B2 (en) * 2002-01-23 2006-09-05 Control Products, Inc. Lead guide for cable extension type position sensors
US7093361B2 (en) * 2002-01-23 2006-08-22 Control Products, Inc. Method of assembling an actuator with an internal sensor
US6895355B2 (en) * 2002-10-01 2005-05-17 The Chamberlain Group, Inc. Method and apparatus for calibrating an incremental count of movement
US6972403B2 (en) * 2003-06-26 2005-12-06 Xerox Corporation Position encoder
US7197974B2 (en) * 2004-01-15 2007-04-03 Control Products Inc. Position sensor
US7609055B2 (en) * 2004-07-21 2009-10-27 Control Products, Inc. Position sensing device and method
EP2424803A4 (en) * 2009-04-29 2017-10-18 Muller Martini Corp. Apparatus and method for detecting sheet quantity of paper product
CN106149671B (en) * 2015-03-23 2018-09-04 徐工集团工程机械股份有限公司 The control system and method and dynamic compaction machinery of dynamic compaction machinery automatic job
CN106149672B (en) * 2015-03-30 2019-01-08 徐工集团工程机械股份有限公司 The control system and method and dynamic compaction machinery for preventing hammer ram from shaking
CN113276985B (en) * 2021-06-10 2022-08-23 济南科亚电子科技有限公司 Driver control method for automatically zeroing steering wheel by using incremental encoder motor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568629A (en) * 1968-07-24 1971-03-09 Herbert B Porter Eccentric gearing means
JPS56151311A (en) * 1980-04-25 1981-11-24 Hitachi Ltd Detecting device for rotary angle
JPS5791402A (en) * 1980-11-28 1982-06-07 Aisin Seiki Co Ltd Vehicle height detector
JPS59159015A (en) * 1983-03-01 1984-09-08 Matsushita Electric Ind Co Ltd Magnetic sensor
DE3416090A1 (en) * 1984-03-22 1985-09-26 Siemens AG, 1000 Berlin und 8000 München Incremental position measuring device
US5119670A (en) * 1991-01-02 1992-06-09 Delco Electronics Corporation Crankshaft angular position detecting apparatus
EP0539602A1 (en) * 1991-05-10 1993-05-05 Fanuc Ltd. Magnetoresistance type revolution detector
EP0684452A2 (en) * 1994-05-11 1995-11-29 Asmo Co., Ltd. Position detector and position control method for a moving body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL192755A (en) * 1953-11-30
DE2940429C2 (en) * 1979-10-05 1986-02-20 Marabuwerke Erwin Martz Gmbh & Co, 7146 Tamm Drawing machine head
DE3301205C2 (en) * 1982-02-26 1985-10-03 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Angle measuring device
JPS62293122A (en) * 1986-06-13 1987-12-19 Fuji Electric Co Ltd Rotational frequency and angle of rotation detector
IT1205656B (en) * 1987-05-20 1989-03-31 Ezio Terragni DEVICE FOR DETERMINING THE INCLINATION OF A PLAN COMPARED TO A THEORETICAL HORIZONTAL PLAN
JP2555083Y2 (en) * 1991-12-24 1997-11-19 株式会社ニコン Rotation angle measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568629A (en) * 1968-07-24 1971-03-09 Herbert B Porter Eccentric gearing means
JPS56151311A (en) * 1980-04-25 1981-11-24 Hitachi Ltd Detecting device for rotary angle
JPS5791402A (en) * 1980-11-28 1982-06-07 Aisin Seiki Co Ltd Vehicle height detector
JPS59159015A (en) * 1983-03-01 1984-09-08 Matsushita Electric Ind Co Ltd Magnetic sensor
DE3416090A1 (en) * 1984-03-22 1985-09-26 Siemens AG, 1000 Berlin und 8000 München Incremental position measuring device
US5119670A (en) * 1991-01-02 1992-06-09 Delco Electronics Corporation Crankshaft angular position detecting apparatus
EP0539602A1 (en) * 1991-05-10 1993-05-05 Fanuc Ltd. Magnetoresistance type revolution detector
EP0684452A2 (en) * 1994-05-11 1995-11-29 Asmo Co., Ltd. Position detector and position control method for a moving body

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 030 (P - 103) 23 February 1982 (1982-02-23) *
PATENT ABSTRACTS OF JAPAN vol. 006, no. 175 (P - 141) 9 September 1982 (1982-09-09) *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 009 (P - 327) 16 January 1985 (1985-01-16) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2780157A1 (en) * 1998-06-18 1999-12-24 Valeo Electronique Sensor for determination of the absolute angle of rotation of a vehicle steering wheel
CN1313695C (en) * 2001-10-26 2007-05-02 马兰特克传动及控制技术股份有限两合公司 Driver for blocking element
US7252018B2 (en) 2001-10-26 2007-08-07 Marantec Antriebs-Und Steuerungstechnik Gmbh & Co. Kg Drive for closure elements

Also Published As

Publication number Publication date
AU5416198A (en) 1998-06-22
NL1004624C2 (en) 1998-05-28
EP0941452A1 (en) 1999-09-15
US6360449B1 (en) 2002-03-26

Similar Documents

Publication Publication Date Title
US6360449B1 (en) Incremental encoder having absolute reference marks
US5610484A (en) Auto reverse power closure system
US5218769A (en) Sensor for sensing angle of rotation and/or number of rotations effected, and a power steering system for a vehicle including such a sensor
JP5296541B2 (en) Electric auxiliary drive device for vehicle
US7456629B2 (en) Rotary angle sensing system
JP2009513845A (en) Drive device for automatically operating the vehicle door
JPH02284004A (en) Angle sensor for measuring rotation of shaft
US11193799B2 (en) Rotary encoder for determining the angular position between two rotating components
CN105637325B (en) Sensor module for the rotational angle for detecting the rotary part in vehicle
GB2389422A (en) Method for initialsing position with an encoder
JP2002139351A (en) Apparatus and method for measuring steering, angle of steering wheel
WO2008106580A1 (en) Linear position sensor
US6481272B1 (en) Device for measuring angular rotation by producing a pivotal movement of a sensor unit
US20060174499A1 (en) Device for determining an absolute angle of rotation
US4841297A (en) Displacement coder
JP2003214845A (en) Device for determining steering angle of car steering wheel
US5422466A (en) Revolution indicator for measuring distances
US6534762B1 (en) Method and device for detecting position of a rotating control member
US20230099172A1 (en) System for detection of the position of the closing leaf for a barrier during its handling
US5446376A (en) Sensing motor speed and rotation direction
KR200250420Y1 (en) Encoder
US20240035861A1 (en) Device and Method for Determining a Reference Curve for the Rotational Position of a Rotary Component
JPH09113317A (en) Hybrid rotation detector and detecting method
JP3428943B2 (en) Rotary body position detector
JP2001194377A (en) Rotational speed and direction detecting apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997948001

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09308942

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997948001

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1997948001

Country of ref document: EP