WO1998021308A2 - Acidic bleaching solution, method of preparation and a bleaching system for forming the same - Google Patents

Acidic bleaching solution, method of preparation and a bleaching system for forming the same Download PDF

Info

Publication number
WO1998021308A2
WO1998021308A2 PCT/US1997/020224 US9720224W WO9821308A2 WO 1998021308 A2 WO1998021308 A2 WO 1998021308A2 US 9720224 W US9720224 W US 9720224W WO 9821308 A2 WO9821308 A2 WO 9821308A2
Authority
WO
WIPO (PCT)
Prior art keywords
hypochlorite
acid
aqueous solution
solution
salt
Prior art date
Application number
PCT/US1997/020224
Other languages
French (fr)
Other versions
WO1998021308A3 (en
Inventor
Margaret Coyle-Rees
Original Assignee
S.C. Johnson & Son, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S.C. Johnson & Son, Inc. filed Critical S.C. Johnson & Son, Inc.
Priority to AU51982/98A priority Critical patent/AU5198298A/en
Publication of WO1998021308A2 publication Critical patent/WO1998021308A2/en
Publication of WO1998021308A3 publication Critical patent/WO1998021308A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/042Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/395Bleaching agents
    • C11D3/3956Liquid compositions

Definitions

  • This invention relates to an acidic bleaching solution that generates little or no chlorine gas during use and which is particularly effective as a cleaner for removing soapscum, limescale, mold and mildew from treated surfaces.
  • the invention also relates to a bleaching system for forming the acidic bleaching solution and a method of preparing the acidic bleaching solution.
  • Bleach/sulfamic acid cleaning compositions have long been known.
  • UK Patent Application GB 932,750 discloses a powdered cleansing composition containing alkali metal monopersulfate salts and alkali metal chlorides in combination with a nitrogen-containing chlorine-hypochlorite acceptor such as sulfamic acid.
  • the chlorine generated upon the addition of water to the composition is said to be tied up by the nitrogen-containing chlorine-hypochlorite acceptor so as to reduce or eliminate the expected chlorine odor.
  • a sanitizing composition which is said to have an improved shelf life in the dry state is described in UK Patent Application GB 2078522.
  • the composition comprises sodium or calcium hypochlorite, an acid source which desirably includes sulfamic acid in combination with another non-reducing acid such as malic acid or succinic acid and a surfactant.
  • the acid content of the composition is said to enhance the ability of the composition to sanitize surfaces with lime scale or milk stone.
  • This composition has been reported to evolve chlorine gas when stored in damp conditions or when prepared in concentrated aqueous solutions.
  • U.S. Patent No. 4,822,512 reportedly overcomes this problem through the use of a low level of water-soluble inorganic halide in the composition, such as sodium chloride.
  • a water-soluble biocidal composition is described as (a) 0.01 to 5 parts by weight of a water-soluble inorganic halide, (b) 25 to 60 parts by weight of an oxidizing agent which, in aqueous solution, reacts with halide to generate hypothalite ions, (c) 3 to 8 parts by weight of sulfamic acid, (d) 0 to 20 parts by weight of an anhydrous non-reducing organic acid such as malic acid or succinic acid and (e) 10 to 30 parts by weight of an anhydrous alkali metal phosphate.
  • the pH of a 1% by weight aqueous solution of this composition is between about 1.2 and 5.5.
  • the aforementioned compositions are directed to dry or powder compositions and thus do not contemplate the problems associated with aqueous liquid bleach solutions.
  • the electron donating aromatic compound i.e., the halogen scavenger
  • an acid cleaner which when mixed with an oxidizing agent such as sodium hypochlorite prior to use suppresses the release of halogen gas. It is reported that it is desirable to add the electron donating aromatic compound to the acid cleaner in an approximately equal molar amount to the halogen estimated to be released upon the mixture of the acid cleaner with the oxidizing agent.
  • This invention relates to an acidic bleaching solution prepared by the process of mixing
  • a first aqueous solution having a pH of about 6 or less comprising:
  • a second aqueous solution having a pH of about 10 or greater comprising: (i) a hypochlorite salt having 7% by weight or less of residual chloride ion; and
  • bleaching solution has a pH of about 6 or less and a molar ratio of hypochlorite ion to said chlorine deactivating agent when said first aqueous solution is mixed with said second aqueous solution is about 3.60 to about 2.5.
  • exemplary chlorine deactivating agents include sulfamic - A -
  • the acidic bleaching solution of this invention is highly effective for bleaching mold stains on ceramic tiles and like surfaces.
  • the inventive solution may also be employed for bleaching foods, beverages and general soil stains on other hard surfaces such as linoleum, as well as soft surfaces such as laundry and carpets.
  • Another aspect of this invention is directed to a bleaching system for forming the above-described solution.
  • the system is comprised of a first vessel containing the first aqueous solution and a second vessel containing the second aqueous solution.
  • the first and second vessels can be, for example, either two separate containers or two separate compartments within a single container.
  • the bleaching system is used to form the bleaching solution by mixing an amount of the second solution so that the hypochlorite ion is mixed with the chlorine deactivating agent at a molar ratio of 3.60 to 2.50 to provide a solution having a pH of about 6 or less.
  • Another aspect of this invention is directed to a method of preparing the acidic bleaching solution of this invention.
  • This method comprises mixing the above- described first aqueous solution and second aqueous solution to form the acid bleaching solution of this invention.
  • This method advantageously results in a highly effective acidic bleaching solution which generates 5 ppm of chlorine gas or less after the solutions are mixed.
  • the acidic bleaching solution of this invention is prepared by the admixture of a first aqueous solution containing a chlorine deactivating agent and a non-oxidizable acid with a second aqueous solution containing a hypochlorite salt and optionally a thickening agent.
  • the pH of the first aqueous solution is about 6 or less, while the pH of the second aqueous solution is about 10 or greater.
  • the pH of the mixture of the two aqueous solutions is about 6 or less. Most preferably the pH of the acidic bleaching solutions is about 4-5. Acidic bleaching solutions having a pH below 4 are generally not preferred because such solutions require an excess of chlorine deactivating agent.
  • Chlorine deactivating agents are well known. Sulfamic acid and water soluble salts thereof are preferred in the present invention. Such water soluble salts include, for example, sodium, potassium, magnesium, calcium, lithium and aluminum salts of sulfamic acid. Sulfamic acid itself, however, is most preferred.
  • chlorine deactivating agents useful in the present invention include, for example, isocyanuric acid, succinimide, cyanamide, dicyandiamide, melamine, ethyl carbamate, urea, thiourea, 1,3-dimethylbiuret, methyl phenylbiuret, barbituric acid, 6-methyluracil, 2-imidazolinone, iron, 5,5-dimethylhydantoin, ethyleneurea, 2- pyrimidinone, benzamide, phthalimide, N-ethylacetamide, azetidin-2-one, 2- pyrrolidone, caprolactam, sulfamide, p-toluenesulfonamide, phenyl sulfinimide, phenyl sulfinimidylamide, diphenyl sulfonimide, dimethyl sulfinimine, isothiazolene- 1,1 -dioxide, orthophosphoryl triamide
  • Additional useful chlorine deactivating agents include the electron-donating aromatic compounds described in U.S. Patent No. 5,503,768, the disclosure of which is incorporated by reference herein.
  • the chlorine deactivating agent is present in the first aqueous solution in an amount between about 0.05% to about 10.0%, preferably between about 0.5% to about 4.0% by weight of the first aqueous solution.
  • a critical aspect of this invention is that the chlorine deactivating agent present in the first aqueous solution should be combined with the hypochlorite of second aqueous solution at a molar ratio of hypochlorite to chlorine deactivating agent between about 3.60 and about 2.5, preferably between about 3.40 and about 2.80.
  • the nonoxidizable acid employed in the first aqueous solution is resistant to oxidation by hypochlorite salts. Typically it is present in amount of up to the buffer capacity of the first aqueous solution. Accordingly, the nonoxidizable acid is generally present in amounts from about 3% to about 15%, most preferably between about 6% to about 10% by weight of the first aqueous solution.
  • Preferred nonoxidizable acids include succinic, adipic and oxalic acids.
  • Other potential nonoxidizable acids include polyphosphates, polycarboxylates and diphosphonates, particularly aliphatic or cyclic diphosphonates, such as etridonic acid (EHDP).
  • the first aqueous solution may also contain a base to adjust the pH. Generally the pH of the first aqueous solution is adjusted to about 2-6, preferably 4-5 by the addition of a base such as sodium hydroxide, potassium hydroxide, magnesium hydroxide or calcium hydroxide. Since the first aqueous solution acts as a buffer, the ultimate pH of the acidic bleaching solution of this invention will generally approximate the pH of the the first aqueous solution.
  • Other components of the first aqueous solution may include surfactant(s), hydrotrope(s), solvent(s), fragrance(s) and the like.
  • Surfactant(s) may also be included in the first aqueous solution to enhance the cleaning and/or foaming properties of the acidic bleaching solution of this invention.
  • Such surfactants include, but are not limited to, linear alkyl benzene sulfonates, lauryl sulfates, alcohol ether sulfates and the like.
  • Other surfactants that may be present, but are less preferred, are ethoxylated nonionic surfactants.
  • the amount of surfactant utilized in the first aqueous solution is determined by the surfactant cleaning properties as well as the particular application for which the acidic bleaching solution is formulated. Generally, the surfactant is present in an amount between about 0 to 15% by weight of the first aqueous solution.
  • Hydrotropes may be employed in the first aqueous solution to assist in blending of solvents and surfactants, if present. Therefore the amount of hydrotrope is dependent upon the concentration of the solvents and surfactant. Generally, the hydrotrope is present in an amount between about 0 to about 8%, preferably about 2% to about 6% and most preferably about 4% by weight of the first aqueous solution.
  • a preferred hydrotrope is sodium xylene sulfonate.
  • Other exemplary hydrotropes include sodium butyl monoglycol sulfate, sodium toluene sulfonate and sodium cumene sulfonate.
  • Organic solvents may also be present in the first aqueous solution to enhance the cleaning efficiency of the acidic bleaching solution of this invention.
  • organic solvents are well known to those of ordinary skill in the art.
  • a preferred solvent is 2-(2-hexyloxy ethoxyl) ethanol available as Hexyl Carbitol® from Union Carbide, Danbury, Connecticut.
  • Other typical solvents that may be employed in this invention include glycol ethers such as, for example, ethylene glycol monobutyl ether or ethylene glycol monohexyl ether available as Butyl Cellusolve® and Hexyl Cellusolve®, respectively, from Union Carbide, as well as various Dowanol® solvents available from Dow Chemical, Midland, Michigan.
  • the solvent is generally present in the first aqueous solution in an amount of about 0 to 10%, more preferably about 3% to 7% by weight of the first aqueous solution.
  • hypochlorite salts employed in the present invention include, for example, potassium hypochlorite, sodium hypochlorite, lithium hypochlorite and the like. Sodium hypochlorite is most preferred.
  • a critical aspect of this invention is that the hypochlorite salt must have 7% or less residual chloride ion content, most preferably less than 1.0% by weight of the hypochlorite salt. Sodium hypochlorite having such a low residual chloride ion content is available from Olin Corporation, Charleston, Tennessee under the tradename "Hypure”.
  • hypochlorite salt is present in an amount between about 0.5% to about 12%, preferably about 1.0% to about 5% by weight of the second aqueous solution.
  • amount of hypochlorite salt will depend upon the amount of chlorine deactivating agent present in the first aqueous solution and the mixing ratio of the two aqueous solutions, as well as the desired bleaching efficiency of the resulting acidic bleaching solution.
  • the second aqueous solution also preferably contains a thickening agent.
  • a thickening agent Polyacrylate thickeners are preferred, although any thickener may be employed which is not deleteriously affected by the hypochlorite salt.
  • the thickening agent is present in the second aqueous solution in an amount from about 0 to about 5%, preferably from about 1% to about 3% by weight of the second aqueous solution.
  • the acidic bleaching solution is prepared just prior to use by admixture of the first aqueous solution and the second aqueous solution. Accordingly, another aspect of this invention is directed to a bleaching system for conveniently forming the acidic bleaching solution of this invention just prior to use.
  • the preferred bleaching system of this invention is comprised of two vessels.
  • the first vessel contains the first aqueous solution and a second vessel contains the second aqueous solution.
  • the concentration of the components in the first and second solutions is selected so that when a given amount of the first aqueous solution is mixed with a given amount of the second aqueous solution the above- described acidic bleaching solution is obtained.
  • the concentrations of the components in the first aqueous solution and the second aqueous solution will be dependent upon the ratio of the mixture of the two solutions.
  • the determination of the amounts of each component in each solution is a simple arithmetic calculation, i.e., a routine calculation to those having ordinary skill in the art.
  • the vessels employed in the bleaching system of this invention can each be separate containers or can be a single container having two compartments.
  • a single container having two compartments or vessels holding the first aqueous and second aqueous solutions and having a pump line inserted into each compartment and merging at a single pump spray mechanism may be employed.
  • the bleaching systems of this invention can simply consist of two separate containers holding the first aqueous and second aqueous solutions which can be mixed by adding a predetermined amount of one solution to a predetermined amount of the other.
  • Other delivery mechanisms which provide a means for mixing the components of the bleaching solution of this invention are also contemplated.
  • Exemplary containers for use with the bleaching system of this invention are disclosed in U.S. Patent No. 5,398,846 entitled "Assembly for Simultaneous Dispensing of Multiple Fluids", the disclosure of which is incorporated by reference as if fully set forth herein.
  • the present invention is also directed to the method of preparing the acidic bleaching solution of this invention.
  • the method comprises the step of combining the previously described first aqueous and second aqueous solutions so that the ratio of the hypochlorite ion added to the chlorine deactivating agent is between about 3.60 and 2.5, preferably about 3.40 to about 2.80 and the resulting acidic bleach solution has a pH of 6 or less, most preferably 5 to 4.
  • a first aqueous solution was prepared having the following components:
  • the resulting first aqueous solution had a pH of about 4.2.
  • a second aqueous solution was prepared having the following components:
  • the resulting second aqueous solution had a pH of about 12.
  • An acidic bleaching solution was prepared by placing the first aqueous solution (the cleaning solution) and the second aqueous solution (the bleaching solution) in separate chambers of a dual chambered bottle.
  • the bleaching solution and cleaning solution were codispensed at an equal rate and sprayed into an enclosed 10 inch (25.4 cm) x 10 inch (25.4 cm) x 16 inch (40.6 cm) plexi-glass box.
  • the combined solution had a pH of 4.17.
  • the acidic aqueous solutions of this invention were assessed for the ability to bleach common mold and mildew found on shower tiles in a typical bathroom.
  • White, 4 inch (10.2 cm) x 4 inch (10.2 cm), ceramic tiles were used. These tiles were quartered, washed and dried prior to inoculation with A. niger in Czappek Dox Broth.
  • the tiles were placed in humidity chambers that were equilibrated with a saturated solution of sodium phosphate to maintain a humidity of 80-95% and incubated at 28°C for 7 to 21 days until a desired amount of mold growth was obtained.
  • the bleaching solution to be tested was then applied to the tile by spray from a dual chambered bottle. Subtantially equivalent amounts of bleaching solution were applied to separate tiles and the tile was allowed to stand for specified time period (5-25 minutes). After the specified time interval, each tile was assessed for whiteness and rated on a scale of 0 to 4 (0 - no bleaching; 1 - 25% bleaching; 2 - 50% bleaching; 3 - 75% bleaching; 4 - 100% bleaching). The results of the bleach efficacy test are set forth in Table 1, infra.
  • An acidic aqueous bleaching solution was prepared in a manner similar to Example 1, with the exception that the first aqueous solution did not contain sulfamic acid. Approximately 40 ppm of chlorine gas was detected upon mixing the first aqueous solution with the second aqueous solution.
  • the acidic bleaching solution of this invention is highly effective for bleaching mold, food and beverage stains on a variety of hard and soft surfaces.
  • the solution may be utilized in a bleaching system employing at least two vessels, or alternatively, combining two solutions immediately prior to treating a stained surface.

Abstract

An acidic bleaching solution formed from the admixture of a first aqueous solution containing a chlorine deactivating agent and a second aqueous solution containing a hypochlorite salt is disclosed. Also disclosed is a bleaching system for forming the acidic bleaching solution, as well as a method of preparing the acidic bleaching solution. The acidic bleaching solution advantageously generates little or no chlorine gas while being a particularly effective cleaner for removing soapscum, limescale, mold and mildew from treated surfaces.

Description

ACIDIC BLEACHING SOLUTION, METHOD OF PREPARATION AND A BLEACHING SYSTEM FOR FORMING THE SAME
Technical Field
This invention relates to an acidic bleaching solution that generates little or no chlorine gas during use and which is particularly effective as a cleaner for removing soapscum, limescale, mold and mildew from treated surfaces. The invention also relates to a bleaching system for forming the acidic bleaching solution and a method of preparing the acidic bleaching solution.
Background Art
Bleach/sulfamic acid cleaning compositions have long been known. For example, UK Patent Application GB 932,750 discloses a powdered cleansing composition containing alkali metal monopersulfate salts and alkali metal chlorides in combination with a nitrogen-containing chlorine-hypochlorite acceptor such as sulfamic acid. The chlorine generated upon the addition of water to the composition is said to be tied up by the nitrogen-containing chlorine-hypochlorite acceptor so as to reduce or eliminate the expected chlorine odor.
A sanitizing composition which is said to have an improved shelf life in the dry state is described in UK Patent Application GB 2078522. The composition comprises sodium or calcium hypochlorite, an acid source which desirably includes sulfamic acid in combination with another non-reducing acid such as malic acid or succinic acid and a surfactant. The acid content of the composition is said to enhance the ability of the composition to sanitize surfaces with lime scale or milk stone. This composition, however, has been reported to evolve chlorine gas when stored in damp conditions or when prepared in concentrated aqueous solutions.
U.S. Patent No. 4,822,512 reportedly overcomes this problem through the use of a low level of water-soluble inorganic halide in the composition, such as sodium chloride. In particular, a water-soluble biocidal composition is described as (a) 0.01 to 5 parts by weight of a water-soluble inorganic halide, (b) 25 to 60 parts by weight of an oxidizing agent which, in aqueous solution, reacts with halide to generate hypothalite ions, (c) 3 to 8 parts by weight of sulfamic acid, (d) 0 to 20 parts by weight of an anhydrous non-reducing organic acid such as malic acid or succinic acid and (e) 10 to 30 parts by weight of an anhydrous alkali metal phosphate. The pH of a 1% by weight aqueous solution of this composition is between about 1.2 and 5.5. The aforementioned compositions, however, are directed to dry or powder compositions and thus do not contemplate the problems associated with aqueous liquid bleach solutions.
In particular, it is well known that the addition of an aqueous hypochlorite solution to an acidic cleaning solution will generally result in the evolution of potentially dangerous amounts of chlorine gas. A number of compositions have been proposed in an attempt to overcome this problem. U.S. Patent No. 3,749,672 is directed to buffered aqueous solutions having a pH between 4 and 11 which are prepared by adding a hypochlorite such as sodium hypochlorite to certain N-hydrogen compounds such as sulfamic acid. In particular, it is said that stable bleaching compositions under acid conditions (e.g. pH of about 4.0 to 6.9) may be obtained when there is an excess of sulfamate (e.g., a mole ratio less than 2:1 of hypochlorite to sulfamate). However, the presence of the excess sulfamate is likely to result in a hypochlorite-sulfamate complex which will decrease the bleaching kinetics or efficiency of the composition. U.S. Patent No. 5,503,768 describes a halogen scavanger constituted by an aromatic ring and at least one group which contains a lone-pair-containing hetero atom adjacent to the aromatic ring. The electron donating aromatic compound, i.e., the halogen scavenger, can be added to an acid cleaner which when mixed with an oxidizing agent such as sodium hypochlorite prior to use suppresses the release of halogen gas. It is reported that it is desirable to add the electron donating aromatic compound to the acid cleaner in an approximately equal molar amount to the halogen estimated to be released upon the mixture of the acid cleaner with the oxidizing agent.
There continues, however, to be a need for acidic bleaching compositions that do not result in the substantial generation of potentially hazardous chlorine gas when a hypochlorite solution is mixed with an acidic solution. Such acidic bleaching compositions, i.e., low chlorine gas generation, that have excellent bleaching efficacy are particularly desirable.
DISCLOSURE OF INVENTION
This invention relates to an acidic bleaching solution prepared by the process of mixing
(a) a first aqueous solution having a pH of about 6 or less comprising:
(i) a chlorine deactivating agent; and (ii) a non-oxidizable acid; and
(b) a second aqueous solution having a pH of about 10 or greater comprising: (i) a hypochlorite salt having 7% by weight or less of residual chloride ion; and
(ii) optionally a thickening agent, wherein said bleaching solution has a pH of about 6 or less and a molar ratio of hypochlorite ion to said chlorine deactivating agent when said first aqueous solution is mixed with said second aqueous solution is about 3.60 to about 2.5. Exemplary chlorine deactivating agents include sulfamic - A -
acid and the salts thereof, isocyanurates, imidosulfonates, carbamates, sulfonamidates and heterocyclic compounds including, for example, glycolurils, hydantoins and succinimides. Other exemplary chlorine deactivating agents include aromatic compounds which have a resonance-effect-relying electron donating group as a constituent. Sulfamic acid and the salts thereof are most preferred.
The acidic bleaching solution of this invention is highly effective for bleaching mold stains on ceramic tiles and like surfaces. The inventive solution may also be employed for bleaching foods, beverages and general soil stains on other hard surfaces such as linoleum, as well as soft surfaces such as laundry and carpets.
Another aspect of this invention is directed to a bleaching system for forming the above-described solution. The system is comprised of a first vessel containing the first aqueous solution and a second vessel containing the second aqueous solution. The first and second vessels can be, for example, either two separate containers or two separate compartments within a single container. The bleaching system is used to form the bleaching solution by mixing an amount of the second solution so that the hypochlorite ion is mixed with the chlorine deactivating agent at a molar ratio of 3.60 to 2.50 to provide a solution having a pH of about 6 or less.
Another aspect of this invention is directed to a method of preparing the acidic bleaching solution of this invention. This method comprises mixing the above- described first aqueous solution and second aqueous solution to form the acid bleaching solution of this invention. This method advantageously results in a highly effective acidic bleaching solution which generates 5 ppm of chlorine gas or less after the solutions are mixed.
MODES FOR CARRYING OUT THE INVENTION The acidic bleaching solution of this invention is prepared by the admixture of a first aqueous solution containing a chlorine deactivating agent and a non-oxidizable acid with a second aqueous solution containing a hypochlorite salt and optionally a thickening agent. The pH of the first aqueous solution is about 6 or less, while the pH of the second aqueous solution is about 10 or greater. The pH of the mixture of the two aqueous solutions is about 6 or less. Most preferably the pH of the acidic bleaching solutions is about 4-5. Acidic bleaching solutions having a pH below 4 are generally not preferred because such solutions require an excess of chlorine deactivating agent.
Chlorine deactivating agents are well known. Sulfamic acid and water soluble salts thereof are preferred in the present invention. Such water soluble salts include, for example, sodium, potassium, magnesium, calcium, lithium and aluminum salts of sulfamic acid. Sulfamic acid itself, however, is most preferred.
Other chlorine deactivating agents useful in the present invention include, for example, isocyanuric acid, succinimide, cyanamide, dicyandiamide, melamine, ethyl carbamate, urea, thiourea, 1,3-dimethylbiuret, methyl phenylbiuret, barbituric acid, 6-methyluracil, 2-imidazolinone, iron, 5,5-dimethylhydantoin, ethyleneurea, 2- pyrimidinone, benzamide, phthalimide, N-ethylacetamide, azetidin-2-one, 2- pyrrolidone, caprolactam, sulfamide, p-toluenesulfonamide, phenyl sulfinimide, phenyl sulfinimidylamide, diphenyl sulfonimide, dimethyl sulfinimine, isothiazolene- 1,1 -dioxide, orthophosphoryl triamide, pyrophosphoryl triamide, phenyl phosphoryl-bis dimethylamide, boric acid amide, methanesulfonamide, melamine, pyrrolidone, hydantoin, acetanilide, acetamide, N-methylurea, acetylurea, biuret, ethyl allophanate, pyrrole and indole.
Additional useful chlorine deactivating agents include the electron-donating aromatic compounds described in U.S. Patent No. 5,503,768, the disclosure of which is incorporated by reference herein. Generally, the chlorine deactivating agent is present in the first aqueous solution in an amount between about 0.05% to about 10.0%, preferably between about 0.5% to about 4.0% by weight of the first aqueous solution. However, a critical aspect of this invention is that the chlorine deactivating agent present in the first aqueous solution should be combined with the hypochlorite of second aqueous solution at a molar ratio of hypochlorite to chlorine deactivating agent between about 3.60 and about 2.5, preferably between about 3.40 and about 2.80.
The nonoxidizable acid employed in the first aqueous solution is resistant to oxidation by hypochlorite salts. Typically it is present in amount of up to the buffer capacity of the first aqueous solution. Accordingly, the nonoxidizable acid is generally present in amounts from about 3% to about 15%, most preferably between about 6% to about 10% by weight of the first aqueous solution. Preferred nonoxidizable acids include succinic, adipic and oxalic acids. Other potential nonoxidizable acids include polyphosphates, polycarboxylates and diphosphonates, particularly aliphatic or cyclic diphosphonates, such as etridonic acid (EHDP).
The first aqueous solution may also contain a base to adjust the pH. Generally the pH of the first aqueous solution is adjusted to about 2-6, preferably 4-5 by the addition of a base such as sodium hydroxide, potassium hydroxide, magnesium hydroxide or calcium hydroxide. Since the first aqueous solution acts as a buffer, the ultimate pH of the acidic bleaching solution of this invention will generally approximate the pH of the the first aqueous solution. Other components of the first aqueous solution may include surfactant(s), hydrotrope(s), solvent(s), fragrance(s) and the like.
Surfactant(s) may also be included in the first aqueous solution to enhance the cleaning and/or foaming properties of the acidic bleaching solution of this invention. Such surfactants include, but are not limited to, linear alkyl benzene sulfonates, lauryl sulfates, alcohol ether sulfates and the like. Other surfactants that may be present, but are less preferred, are ethoxylated nonionic surfactants. The amount of surfactant utilized in the first aqueous solution is determined by the surfactant cleaning properties as well as the particular application for which the acidic bleaching solution is formulated. Generally, the surfactant is present in an amount between about 0 to 15% by weight of the first aqueous solution.
Hydrotropes may be employed in the first aqueous solution to assist in blending of solvents and surfactants, if present. Therefore the amount of hydrotrope is dependent upon the concentration of the solvents and surfactant. Generally, the hydrotrope is present in an amount between about 0 to about 8%, preferably about 2% to about 6% and most preferably about 4% by weight of the first aqueous solution. A preferred hydrotrope is sodium xylene sulfonate. Other exemplary hydrotropes include sodium butyl monoglycol sulfate, sodium toluene sulfonate and sodium cumene sulfonate.
Organic solvents may also be present in the first aqueous solution to enhance the cleaning efficiency of the acidic bleaching solution of this invention. Such organic solvents are well known to those of ordinary skill in the art. A preferred solvent is 2-(2-hexyloxy ethoxyl) ethanol available as Hexyl Carbitol® from Union Carbide, Danbury, Connecticut. Other typical solvents that may be employed in this invention include glycol ethers such as, for example, ethylene glycol monobutyl ether or ethylene glycol monohexyl ether available as Butyl Cellusolve® and Hexyl Cellusolve®, respectively, from Union Carbide, as well as various Dowanol® solvents available from Dow Chemical, Midland, Michigan. The solvent is generally present in the first aqueous solution in an amount of about 0 to 10%, more preferably about 3% to 7% by weight of the first aqueous solution.
The hypochlorite salts employed in the present invention include, for example, potassium hypochlorite, sodium hypochlorite, lithium hypochlorite and the like. Sodium hypochlorite is most preferred. A critical aspect of this invention is that the hypochlorite salt must have 7% or less residual chloride ion content, most preferably less than 1.0% by weight of the hypochlorite salt. Sodium hypochlorite having such a low residual chloride ion content is available from Olin Corporation, Charleston, Tennessee under the tradename "Hypure".
Generally the hypochlorite salt is present in an amount between about 0.5% to about 12%, preferably about 1.0% to about 5% by weight of the second aqueous solution. Again, the amount of hypochlorite salt will depend upon the amount of chlorine deactivating agent present in the first aqueous solution and the mixing ratio of the two aqueous solutions, as well as the desired bleaching efficiency of the resulting acidic bleaching solution.
The second aqueous solution also preferably contains a thickening agent. Polyacrylate thickeners are preferred, although any thickener may be employed which is not deleteriously affected by the hypochlorite salt. Generally the thickening agent is present in the second aqueous solution in an amount from about 0 to about 5%, preferably from about 1% to about 3% by weight of the second aqueous solution.
For the best stability and most efficient bleaching efficacy the acidic bleaching solution is prepared just prior to use by admixture of the first aqueous solution and the second aqueous solution. Accordingly, another aspect of this invention is directed to a bleaching system for conveniently forming the acidic bleaching solution of this invention just prior to use.
The preferred bleaching system of this invention is comprised of two vessels. The first vessel contains the first aqueous solution and a second vessel contains the second aqueous solution. The concentration of the components in the first and second solutions is selected so that when a given amount of the first aqueous solution is mixed with a given amount of the second aqueous solution the above- described acidic bleaching solution is obtained. Thus, the concentrations of the components in the first aqueous solution and the second aqueous solution will be dependent upon the ratio of the mixture of the two solutions. Once it is decided what fixed amount of the first aqueous solution is to be combined with a fixed amount of the second solution, then the determination of the amounts of each component in each solution, particularly the amounts of hypochlorite salt and chlorine deactivating agent, is a simple arithmetic calculation, i.e., a routine calculation to those having ordinary skill in the art.
The vessels employed in the bleaching system of this invention can each be separate containers or can be a single container having two compartments. For instance, a single container having two compartments or vessels holding the first aqueous and second aqueous solutions and having a pump line inserted into each compartment and merging at a single pump spray mechanism may be employed. On the other hand, the bleaching systems of this invention can simply consist of two separate containers holding the first aqueous and second aqueous solutions which can be mixed by adding a predetermined amount of one solution to a predetermined amount of the other. Other delivery mechanisms which provide a means for mixing the components of the bleaching solution of this invention are also contemplated. Exemplary containers for use with the bleaching system of this invention are disclosed in U.S. Patent No. 5,398,846 entitled "Assembly for Simultaneous Dispensing of Multiple Fluids", the disclosure of which is incorporated by reference as if fully set forth herein.
The present invention is also directed to the method of preparing the acidic bleaching solution of this invention. The method comprises the step of combining the previously described first aqueous and second aqueous solutions so that the ratio of the hypochlorite ion added to the chlorine deactivating agent is between about 3.60 and 2.5, preferably about 3.40 to about 2.80 and the resulting acidic bleach solution has a pH of 6 or less, most preferably 5 to 4.
The examples which follow are intended as an illustration of certain preferred embodiments of the invention, and no limitation of the invention is implied.
Example 1
A first aqueous solution was prepared having the following components:
Figure imgf000013_0001
The resulting first aqueous solution had a pH of about 4.2.
A second aqueous solution was prepared having the following components:
Figure imgf000014_0001
The resulting second aqueous solution had a pH of about 12.
An acidic bleaching solution was prepared by placing the first aqueous solution (the cleaning solution) and the second aqueous solution (the bleaching solution) in separate chambers of a dual chambered bottle. The bleaching solution and cleaning solution were codispensed at an equal rate and sprayed into an enclosed 10 inch (25.4 cm) x 10 inch (25.4 cm) x 16 inch (40.6 cm) plexi-glass box. The combined solution had a pH of 4.17. No chlorine gas was detected by measurement with a Matheson-Kitagawa Gas Analyzer, Model #8014-400A and Matheson-Kitagawa Precision Gas Detector Tubes (Tube #1092b, Chlorine, O.1-10 ppm) over a time interval of 15-20 minutes after application of the acidic bleaching solution.
Bleaching Efficacy:
The acidic aqueous solutions of this invention were assessed for the ability to bleach common mold and mildew found on shower tiles in a typical bathroom. White, 4 inch (10.2 cm) x 4 inch (10.2 cm), ceramic tiles were used. These tiles were quartered, washed and dried prior to inoculation with A. niger in Czappek Dox Broth. The tiles were placed in humidity chambers that were equilibrated with a saturated solution of sodium phosphate to maintain a humidity of 80-95% and incubated at 28°C for 7 to 21 days until a desired amount of mold growth was obtained.
The bleaching solution to be tested was then applied to the tile by spray from a dual chambered bottle. Subtantially equivalent amounts of bleaching solution were applied to separate tiles and the tile was allowed to stand for specified time period (5-25 minutes). After the specified time interval, each tile was assessed for whiteness and rated on a scale of 0 to 4 (0 - no bleaching; 1 - 25% bleaching; 2 - 50% bleaching; 3 - 75% bleaching; 4 - 100% bleaching). The results of the bleach efficacy test are set forth in Table 1, infra.
Comparative Example 1
An acidic aqueous bleaching solution was prepared in a manner similar to Example 1, with the exception that the first aqueous solution did not contain sulfamic acid. Approximately 40 ppm of chlorine gas was detected upon mixing the first aqueous solution with the second aqueous solution.
Examples 2-4 and Comparative Examples 2-8
The effect of changing the hypochlorite/sulfamic acid ratio (B/S A) at a constant pH was studied by preparing first aqueous solutions in the manner described in Example 1, but varying the concentration of sulfamic acid and sodium hydroxide. The sodium hydroxide was varied to adjust the first aqueous solution to a pH of about 4.2.
The concentration of the sulfamic acid and ratio of hypochlorite ion to sulfamic acid (on both a weight/ weight basis and a molar basis) for each formulation (including Example 1), as well as the chlorine gas generation data and the bleach efficacy (Bleach Eff) are set forth in Table 1 below. Table 1
Figure imgf000016_0001
INDUSTRIAL APPLICABILITY
The acidic bleaching solution of this invention is highly effective for bleaching mold, food and beverage stains on a variety of hard and soft surfaces. The solution may be utilized in a bleaching system employing at least two vessels, or alternatively, combining two solutions immediately prior to treating a stained surface.
Other variations and modifications of this invention will be obvious to those skilled in the art.

Claims

WHAT IS CLAIMED IS:
1. An acidic bleaching solution prepared by the process of mixing
(a) a first aqueous solution having a pH of about 6 or less comprising: (i) a chlorine deactivating agent; and
(ii) a non-oxidizable acid; and
(b) a second aqueous solution having a pH of about 10 or greater comprising: (i) a hypochlorite salt having 7% by weight or less of residual chloride ion; and (ii) optionally a thickening agent, wherein said acidic bleaching solution has a pH of about 6 or less and a molar ratio of hypochlorite ion mixed with said chlorine deactivating agent is about 3.6 to about 2.5.
2. An acidic bleaching solution according to claim 1, wherein said chlorine deactivating agent is sulfamic acid or a salt thereof.
3. An acidic bleaching solution according to claim 2, wherein said nonoxidizable resin is selected from the group consisting of succinic acid, adipic acid and oxalic acid.
4. An acidic bleaching solution according to claim 3, wherein said residual chloride ion content of said hypochlorite salt is less than 1.0% by weight of said hypochlorite salt.
5. An acidic bleaching solution according to claim 4, wherein said second aqueous solution comprises a polyacrylate thickening agent.
6. An acidic bleaching solution according to claim 5, wherein said molar ratio of hypochlorite ion mixed with said sulfamic acid or salt thereof is about 3.4 to about 2.8.
7. An acidic bleaching solution according to claim 6, wherein the pH of said acidic bleaching solution is about 4 to about 5.
8. An acidic bleaching solution comprising an admixture of:
(a) a first aqueous solution having a pH of about 4 to about 5 comprising: (i) sulfamic acid or a soluble salt thereof; and
(ii) a nonoxidizable acid selected from the group consisting of succinic acid, adipic acid, or oxalic acid or mixtures thereof;
(iii) optionally at least one surfactant;
(iv) optionally a hydrotrope; and (v) optionally an organic solvent in an amount effective to enhance the cleaning efficacy of said acidic bleaching solution; and
(b) a second aqueous solution having a pH of about 11 to about 12 comprising: (i) a hypochlorite salt selected from the group consisting of potassium hypochlorite, sodium hypochlorite, lithium hypochlorite or mixtures thereof, wherein said hypochlorite salt has 7% by weight or less of residual chloride ion; and (ii) optionally a polyacrylate thickening agent, wherein said acidic bleaching solution has a pH of about 4 to about 5 and a molar ratio of hypochlorite ion admixed with said sulfamic acid or salt thereof is about 3.4 and 2.8.
9. A bleaching system for forming an acidic bleaching solution comprising (a) a first vessel containing a first aqueous solution having a pH of about 6 or less comprising:
(i) a chlorine deactivating agent; and (ii) a non-oxidizable acid; and (b) a second vessel containing a second aqueous solution having a pH of about 10 or greater comprising:
(i) a hypochlorite salt having 7% by weight or less of residual chloride ion; and (ii) optionally a thickening agent, wherein said first aqueous solution and said second aqueous solution are capable of admixture from said first vessel and said second vessel, respectively, at a molar ratio of hypochlorite ion to chlorine deactivating agent of about 3.6 to about 2.5, and said admixture has a pH of about 6 or less.
10. A bleaching system according to claim 9, wherein said chlorine deactivating agent is sulfamic acid or a salt thereof.
11. A bleaching system according to claim 10, wherein said non-oxidizable acid is selected from the group consisting of succinic acid, adipic acid and oxalic acid.
12. A bleaching system according to claim 11, wherein said residual chloride ion content of said hypochlorite salt is less than 1.0% by weight of said hypochlorite salt.
13. A bleaching system according to claim 12, wherein said second aqueous solution comprises a polyacrylate thickening agent.
14. A bleaching system according to claim 13, wherein said molar ratio of hypochlorite ion capable of admixture with said sulfamic acid or salt thereof is about 3.4 to about 2.8.
15. A bleaching system according to claim 14, wherein the pH of said acidic bleaching solution is about 4 to about 5.
16. A bleaching system according to claim 9, wherein said first vessel and said second vessel are united in a single container.
17. A method for preparing an acidic bleaching solution comprising the step of 5 combining (a) a first aqueous solution having a pH of about 6 or less comprising:
(i) a chlorine deactivating agent; and
(ii) a non-oxidizable acid; and (b) a second aqueous solution having a pH of about 10 or greater comprising:
(i) a hypochlorite salt having 7% by weight or less of residual chloride ion; 10 and
(ii) optionally a thickening agent, wherein said acidic bleaching solution has a pH of about 6 or less and a molar ratio of hypochlorite ion mixed with said chlorine deactivating agent is about 3.6 to about 2.5. 15
18. A method according to claim 17, wherein said chlorine deactivating agent is sulfamic acid or a salt thereof.
19. A method according to claim 18, wherein said non-oxidizable acid is
20 selected from the group consisting of succinic acid, adipic acid and oxalic acid.
20. A method according to claim 19, wherein said residual chloride ion content of said hypochlorite salt is less than 1.0% by weight of said hypochlorite salt.
25 21. A method according to claim 20, wherein said second aqueous solution comprises a polyacrylate thickening agent.
22. A method according to claim 21, wherein said molar ratio of hypochlorite ion mixed with said sulfamic acid or salt thereof is about 3.4 to about 2.8.
30
23. A method according to claim 22, wherein the pH of said acidic bleaching solution is about 4 to about 5.
PCT/US1997/020224 1996-11-12 1997-11-12 Acidic bleaching solution, method of preparation and a bleaching system for forming the same WO1998021308A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU51982/98A AU5198298A (en) 1996-11-12 1997-11-12 Acidic bleaching solution, method of preparation and a bleaching system for forming the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/747,491 1996-11-12
US08/747,491 US5911909A (en) 1996-11-12 1996-11-12 Acidic bleaching solution, method of preparation and a bleaching system for forming the same

Publications (2)

Publication Number Publication Date
WO1998021308A2 true WO1998021308A2 (en) 1998-05-22
WO1998021308A3 WO1998021308A3 (en) 1998-07-23

Family

ID=25005281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/020224 WO1998021308A2 (en) 1996-11-12 1997-11-12 Acidic bleaching solution, method of preparation and a bleaching system for forming the same

Country Status (3)

Country Link
US (2) US5911909A (en)
AU (1) AU5198298A (en)
WO (1) WO1998021308A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009123A1 (en) * 1997-08-14 1999-02-25 The Procter & Gamble Company Bleaching compositions
WO1999032596A1 (en) * 1997-12-22 1999-07-01 S. C. Johnson & Son, Inc. Stabilized acidic chlorine bleach composition and method of use
WO2000011128A1 (en) * 1998-08-19 2000-03-02 Jeyes Group Limited Liquid bleaching compositions
EP1130083A1 (en) * 2000-03-03 2001-09-05 Unilever Plc Cleaning compositions
WO2004018319A1 (en) 2002-08-16 2004-03-04 Henkel Kommanditgesellschaft Auf Aktien Dispenser bottle for at least two active fluids
DE10238431A1 (en) * 2002-08-16 2004-03-04 Henkel Kgaa Dispensing bottle, used for applying toilet or hard surface cleaner, disinfectant, laundry or dish-washing detergent or corrosion inhibitor, has separate parts holding different active liquids mixing only after discharge from nozzles
DE102004007860A1 (en) * 2004-02-17 2005-09-15 Henkel Kgaa Dispenser bottle for liquid detergents consisting of at least two partial compositions
EP2075325A1 (en) * 2007-12-27 2009-07-01 The Procter & Gamble Company Liquid acidic hard surface cleaning composition
GB2477597A (en) * 2010-02-03 2011-08-10 Mauve Technology Ltd Disinfectant materials and methods

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333299B1 (en) * 1997-10-31 2001-12-25 The Procter & Gamble Co. Liquid acidic limescale removal composition packaged in a spray-type dispenser
DE19837068A1 (en) * 1998-08-17 2000-02-24 Bayer Ag Water treatment composition, especially for use in cooling circuits, comprises polyaspartic acid, biocidal oxidizing agent and sulfamic acid stabilizer
US6372911B1 (en) * 1999-02-09 2002-04-16 Merck & Co., Inc. Process for preparing β-hydroxycarbamates and their conversion to oxazolidinones
US6951915B2 (en) * 1999-06-02 2005-10-04 The United States Of America As Represented By The Department Of Health And Human Services Redox-stable, non-phosphorylated cyclic peptide inhibitors of SH2 domain binding to target protein, conjugates thereof, compositions and methods of synthesis and use
US20030138498A1 (en) * 1999-12-10 2003-07-24 Kiyoaki Yoshikawa Methods of sterilization
US6793846B2 (en) 1999-12-10 2004-09-21 Kao Corporation Microbicide compositions
WO2001041572A1 (en) 1999-12-10 2001-06-14 Kao Corporation Methods of sterilization
EP1275708B1 (en) * 2001-07-10 2008-01-16 Kao Corporation Two-agent type liquid bleaching compositions
US7448556B2 (en) 2002-08-16 2008-11-11 Henkel Kgaa Dispenser bottle for at least two active fluids
US7906473B2 (en) * 2002-09-13 2011-03-15 Bissell Homecare, Inc. Manual spray cleaner
US20050079985A1 (en) * 2003-10-14 2005-04-14 Yocheved Shasho Method of preventing odors
DE502005005530D1 (en) * 2004-02-13 2008-11-13 Henkel Ag & Co Kgaa DISPENSER BOTTLE FOR AT LEAST TWO ACTIVE FLUIDS
US20050282722A1 (en) * 2004-06-16 2005-12-22 Mcreynolds Kent B Two part cleaning composition
EP1861488B1 (en) * 2004-11-05 2012-05-02 Tersus Technologies L.L.C. Mold removal and cleaning solution
EP1721961B1 (en) * 2005-05-12 2009-04-22 The Procter and Gamble Company Liquid acidic hard surface cleaning composition
EP1721960A1 (en) * 2005-05-12 2006-11-15 The Procter & Gamble Company Liquid acidic hard surface cleaning composition
US20080108537A1 (en) * 2006-11-03 2008-05-08 Rees Wayne M Corrosion inhibitor system for mildly acidic to ph neutral halogen bleach-containing cleaning compositions
US20090148342A1 (en) * 2007-10-29 2009-06-11 Bromberg Steven E Hypochlorite Technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2078522A (en) * 1980-06-26 1982-01-13 Antec Ah International Ltd Improvements in and relating to sanitizing compositions
US4822512A (en) * 1986-03-01 1989-04-18 Auchincloss Thomas R Biocidal, particularly virucidal, compositions
WO1990008558A1 (en) * 1989-01-27 1990-08-09 Trans Delta Corporation Stabilized sterilizing or disinfecting halogen containing composition, method and apparatus
US5651996A (en) * 1992-03-04 1997-07-29 Arco Research Co., Inc. Method and compositions for the production of chlorine dioxide
WO1997031095A1 (en) * 1996-02-23 1997-08-28 The Clorox Company Composition and apparatus for surface cleaning

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE607932A (en) * 1960-09-08
US3328294A (en) * 1966-09-19 1967-06-27 Mead Corp Process for control of micro-organisms in process streams
US3749672A (en) * 1971-04-19 1973-07-31 Du Pont Stabilized solutions of n-halo compounds
JPS5198523A (en) * 1974-12-17 1976-08-30 INKIKESHIZAI
GB2078511B (en) * 1980-06-12 1984-08-08 Smiths Industries Ltd Warm-air drying apparatus
US4552679A (en) * 1984-03-16 1985-11-12 Warner-Lambert Company Method for deodorizing hypochlorite denture cleansing solutions and product containing a delayed release hypochlorite deactivator
JPS63108099A (en) * 1986-10-24 1988-05-12 ライオン株式会社 Liquid bleaching composition
US4992195A (en) * 1988-08-10 1991-02-12 Monsanto Company Dishwashing composition
JPH07113B2 (en) * 1991-06-06 1995-01-11 エステー化学株式会社 Halogen scavenger
AU3970393A (en) * 1992-04-13 1993-11-18 Procter & Gamble Company, The Process for preparing thixotropic liquid detergent compositions
US5398846A (en) * 1993-08-20 1995-03-21 S. C. Johnson & Son, Inc. Assembly for simultaneous dispensing of multiple fluids
CZ86796A3 (en) * 1993-09-24 1996-10-16 Procter & Gamble Novel deoxy and on oxygen substituted sugar derivatives of aminosteroidal compounds
US5460736A (en) * 1994-10-07 1995-10-24 The Procter & Gamble Company Fabric softening composition containing chlorine scavengers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2078522A (en) * 1980-06-26 1982-01-13 Antec Ah International Ltd Improvements in and relating to sanitizing compositions
US4822512A (en) * 1986-03-01 1989-04-18 Auchincloss Thomas R Biocidal, particularly virucidal, compositions
WO1990008558A1 (en) * 1989-01-27 1990-08-09 Trans Delta Corporation Stabilized sterilizing or disinfecting halogen containing composition, method and apparatus
US5651996A (en) * 1992-03-04 1997-07-29 Arco Research Co., Inc. Method and compositions for the production of chlorine dioxide
WO1997031095A1 (en) * 1996-02-23 1997-08-28 The Clorox Company Composition and apparatus for surface cleaning

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 7642 Derwent Publications Ltd., London, GB; Class E17, AN 76-78225X XP002065591 & JP 51 098 523 A (PENTEL KK) *
DATABASE WPI Section Ch, Week 8825 Derwent Publications Ltd., London, GB; Class D25, AN 88-171056 XP002065590 & JP 63 108 099 A (LION CORP) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009123A1 (en) * 1997-08-14 1999-02-25 The Procter & Gamble Company Bleaching compositions
WO1999032596A1 (en) * 1997-12-22 1999-07-01 S. C. Johnson & Son, Inc. Stabilized acidic chlorine bleach composition and method of use
US6162371A (en) * 1997-12-22 2000-12-19 S. C. Johnson & Son, Inc. Stabilized acidic chlorine bleach composition and method of use
WO2000011128A1 (en) * 1998-08-19 2000-03-02 Jeyes Group Limited Liquid bleaching compositions
EP1130083A1 (en) * 2000-03-03 2001-09-05 Unilever Plc Cleaning compositions
WO2004018319A1 (en) 2002-08-16 2004-03-04 Henkel Kommanditgesellschaft Auf Aktien Dispenser bottle for at least two active fluids
DE10238431A1 (en) * 2002-08-16 2004-03-04 Henkel Kgaa Dispensing bottle, used for applying toilet or hard surface cleaner, disinfectant, laundry or dish-washing detergent or corrosion inhibitor, has separate parts holding different active liquids mixing only after discharge from nozzles
DE102004007860A1 (en) * 2004-02-17 2005-09-15 Henkel Kgaa Dispenser bottle for liquid detergents consisting of at least two partial compositions
EP2075325A1 (en) * 2007-12-27 2009-07-01 The Procter & Gamble Company Liquid acidic hard surface cleaning composition
EP2075324A1 (en) * 2007-12-27 2009-07-01 The Procter and Gamble Company Liquid acidic hard surface cleaning composition
WO2009083860A1 (en) * 2007-12-27 2009-07-09 The Procter & Gamble Company Liquid acidic hard surface cleaning composition
GB2477597A (en) * 2010-02-03 2011-08-10 Mauve Technology Ltd Disinfectant materials and methods
WO2011095809A1 (en) 2010-02-03 2011-08-11 Mauve Technology Ltd. Disinfectant materials and methods
GB2477717A (en) * 2010-02-03 2011-08-17 Mauve Technology Ltd Disinfectant materials and methods
GB2477597B (en) * 2010-02-03 2012-01-11 Mauve Technology Ltd Disinfectant materials and methods
US8883222B2 (en) 2010-02-03 2014-11-11 Mauve Technology Limited Disinfectant materials and methods

Also Published As

Publication number Publication date
WO1998021308A3 (en) 1998-07-23
US5972239A (en) 1999-10-26
US5911909A (en) 1999-06-15
AU5198298A (en) 1998-06-03

Similar Documents

Publication Publication Date Title
US5911909A (en) Acidic bleaching solution, method of preparation and a bleaching system for forming the same
EP1056828B1 (en) Stabilized acidic chlorine bleach composition and method of use
JP3098041B2 (en) Preparation of bleaching composition
US4485028A (en) Inorganic persulfate cleaning solution for acoustic materials
US20060089285A1 (en) Stabilized chlorine bleach in alkaline detergent composition and method of making and using the same
CA2254799C (en) Process for manufacturing bleaching compositions comprising chlorine and bromine sources and product thereof
US6037318A (en) Process for manufacturing bleaching compositions comprising chlorine and bromine sources and product thereof
CA2228626C (en) Cleaning and disinfecting compositions with electrolytic disinfecting booster
US5981461A (en) Cleaning compositions containing a halogen bleaching agent and a sulfosuccinate salt
WO1996002624A1 (en) A cleaning kit and a cleaning composition and methods of use
FI78513B (en) TYGBLEKNINGSKOMPOSITION OCH DESS FRAMSTAELLNINGSFOERFARANDE
US4594175A (en) Mechanical dishwashing rinse composition having a low foaming sulfonic acid rinsing agent, a hydrotrope and a source of active halogen
GB2078522A (en) Improvements in and relating to sanitizing compositions
PL192418B1 (en) Hypochlorite-type bleaching compositions
US6313082B1 (en) Bleaching compositions
US5686399A (en) Limescale removal compositions
CA1113966A (en) Surfactant for an automatic dishwasher
US4973424A (en) Bleaching and sanitizing compositions
RU2387705C2 (en) Aqueous liquid bleaching compositions
MX2010011616A (en) Colored bleaching composition.
JPH0460109B2 (en)
EP0119336B1 (en) Two-pack cleaning preparation, cleaning formulation prepared therefrom and method of cleaning building material therewith
EP1132458B1 (en) Limescale removing compositions
JP4021028B2 (en) Peracid precursor aqueous composition
RU2693486C1 (en) Stable bleaching composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU BR CA CN JP MX NZ

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA