WO1998019202A1 - Optische anordnung zur symmetrierung der strahlung von laserdioden - Google Patents

Optische anordnung zur symmetrierung der strahlung von laserdioden Download PDF

Info

Publication number
WO1998019202A1
WO1998019202A1 PCT/DE1997/002573 DE9702573W WO9819202A1 WO 1998019202 A1 WO1998019202 A1 WO 1998019202A1 DE 9702573 W DE9702573 W DE 9702573W WO 9819202 A1 WO9819202 A1 WO 9819202A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrangement according
lens
laser diodes
deflection
deflecting element
Prior art date
Application number
PCT/DE1997/002573
Other languages
English (en)
French (fr)
Inventor
Rolf GÖRING
Peter Schreiber
Torsten Possner
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to DE59706197T priority Critical patent/DE59706197D1/de
Priority to US09/297,050 priority patent/US6151168A/en
Priority to EP97945797A priority patent/EP0934545B1/de
Priority to JP10519923A priority patent/JP2001502818A/ja
Publication of WO1998019202A1 publication Critical patent/WO1998019202A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • the invention relates to an optical arrangement for
  • a large number of laser diodes are used in solid state for the production of high-power laser diode arrangements
  • Such laser diode bars with optical output powers in the range up to approximately 30 usually consist of a plurality of laser diodes arranged in a row as individual emitters with a geometrical dimension of the radiating area between approximately 50 ⁇ 1 ⁇ m and approximately 200 ⁇ 1 ⁇ m, the linear arrangement of these emitters always in the direction their greatest extent takes place.
  • the output radiation from these laser diode bars is extremely asymmetrical.
  • laser diode bars for example for pumping solid-state lasers, for purposes of material processing and medical purposes, a symmetrical bundle of high radiation density is required.
  • the most compact possible optical systems for beam balancing are required.
  • Arrangements for symmetrizing the radiation from high-power laser diodes which use, for example, special beam rotating elements in the form of prisms, as a result of which the beam bundles emitted by the individual emitters are typically spatially rotated by 90 ° (US Pat. No. 5,168,401, EP 0 484 276).
  • the output radiation from the laser diodes passes through a system of two weakly inclined, highly reflecting surfaces such that a suitable reconfiguration of the laser diode bundle results at the output of this system (WO 95/15510). In all cases, a largely symmetrical output bundle is created, which is easy to focus.
  • a disadvantage of these known systems is, in particular, the complexity of the micro-optical elements used, this being particularly true for the beam rotation, in which implementation for larger numbers of emitters in the laser diode bar appears to be extremely difficult, the high adjustment effort of the overall system and the lack of the possibility of inexpensive production of such systems.
  • the object of the invention is to create an optical arrangement for symmetrizing the radiation of a plurality of To create a fixed assignment of laser diodes arranged next to one another, which transforms the output radiation using comparatively simple micro-optical components without loss of radiance with improved optical efficiency and at the same time reducing the dimensions of the arrangement.
  • This object is achieved by the characterizing features of the main claim in conjunction with the features of the preamble.
  • the output beams of the individual emitters each have different radiation angles and are thus at a sufficiently large distance behind the Lens separated in the desired direction perpendicular to the direction of the linear arrangement of the individual emitters.
  • the output radiation of the individual laser diodes or emitters is deflected in the direction of the linear arrangement of the individual laser diodes by a downstream optical deflection element, hereinafter referred to as the directional element, in such a way that at a predetermined distance behind the directional element
  • redirection element a second deflection element, hereinafter referred to as redirection element, is arranged behind the directional element, which deflects the output beam bundles of the individual laser diodes in such a way that the deflection angles generated by the directional element are compensated for again, a simple and inexpensive arrangement for beam shaping provided the opposite the prior art has improved optical efficiency.
  • the symmetry of the radiation is achieved by the multiple deflection.
  • the segmentation of the optical image is brought about by the lateral spacings of the individual emitters and the redirection element matched thereto, the spacings being able to be kept small, so that a high occupancy density of the laser diode bar is made possible.
  • Fig. 3 shows the beam paths at the edge of the
  • Laser diode bar arranged laser diode.
  • 1 denotes a high-power laser diode bar.
  • the laser diode bar 1 has a plurality of individual laser diodes or individual emitters 2 which are arranged next to one another in the y direction and have a fixed spacing from one another.
  • a typical laser diode bar 1 has a dimension of 10 mm in the direction of the juxtaposition (y direction), the individual emitters, for example 16, being arranged in a line.
  • the dimension of the emitters in the y direction varies between approximately 50 ⁇ m and 200 ⁇ m and depends on the specific type of laser diode.
  • each individual laser diode is relatively small in the yz plane shown at the top in FIG. 1, the half opening angle is approximately 6 °. In the direction perpendicular to the y direction (x direction), the dimensions of the individual laser diodes are approximately 1 ⁇ m, the size being predetermined by the epitaxy. The divergence of the output radiation in the in
  • Fig. 1 shown below the x-z plane is significantly larger and the half opening angle is about 30 °. There are areas between the individual laser diodes or emitters in which no radiation is emitted.
  • Laser diodes such that they are linearly arranged in the originally strongly divergent direction (x direction).
  • a collimator microcylinder lens 3 which, as indicated in FIG. 1 below, is tilted about the z-axis, which represents the optical axis.
  • the microcylinder lens 3 is designed so that it has a sufficiently large isoplanasia.
  • the respective output beam bundles 7 of the individual laser diodes 2 are collimated individually, obtained by the inclination of the microcylinder lens 3 different beam angles with respect to the original optical axis (z-axis in FIG. 1) and are thus seen in the x-direction, offset or separated in height.
  • the radiation in the yz direction of the individual laser diodes 2 passes unchanged through the cylindrical lens.
  • a gradient-optical microcylinder lens with a one-dimensional or two-dimensional refractive index profile can be used as the collimator microcylinder lens.
  • Aspherical micro-cylindrical lenses can also be used, but here, with an off-axis arrangement, collimation deteriorates.
  • the use of a Fresnel cylindrical lens, a plano-convex or bioconvex lens including a fiber lens (round cross-section) and a multi-component cylinder optics consisting of two or more of the individual lenses described above is conceivable.
  • An optical directional element 4 which can be designed, for example, as an achromatic lens, is arranged behind the microcylinder lens 3. Instead of
  • Achromatic lenses can also be used, for example a biconvex or plano-convex lens with spherical or aspherical surfaces or a biconvex or plano-convex cylindrical lens.
  • an optical redirection element 5 is arranged, which deflects the beams of the individual laser diodes so that the through
  • Directional element 4 in the y-z plane generated different angles of incidence are corrected, i.e. the inclination angles to the z-axis or optical axis generated by the directional element are compensated again.
  • the redirection element 5 must have linearly arranged different deflection areas in order to achieve the different deflection angles and can for example consist of narrow prismatic bodies. However, the implementation of such a redirection element 5 is quite complex. A simpler embodiment consists of a grating array with deflecting grids. The redirection element 5 can also be designed as a mirror field.
  • the beam bundles of the individual laser diodes 2 run in the same direction with respect to the yz plane, that is to say the radiation from the individual laser diodes 2 lies behind the redirection element in accordance with FIG. at the.
  • the individual bundles 7 continue to maintain their mutually divergent directions.
  • the redirection element 5 is followed by a focusing optics 6, which can consist, for example, of achromats, and the beam bundles 7 of the individual laser diodes 2 can now be reduced very well into a largely symmetrical beam spot both in the yz plane and in the xz plane Concentrate dimension, as can be seen from Fig. 1. In the exemplary embodiment shown, this radiation can then be coupled into an optical fiber 8 with high efficiency.
  • a focusing optics 6 can consist, for example, of achromats
  • GRIN gradient-optical
  • the individual laser diodes 2 are displaced to different extents with respect to the optical axis of the microcylinder lens 3, specifically in such a way that the center ter or the middle laser diodes practically not, the edge emitters, ie the laser diodes 2 lying on the edge of the laser diode bar 1, are most strongly collimated off-axis. This leads to a deflection of the collimated bundles with respect to the z-axis after the microcylinder lens 3. As shown in FIGS.
  • FIGS. 2 and 3 show the different deflections by the achromatic lens 4 for a center emitter and an edge emitter, the radiation for the center emitter being shown in FIG. 2 and the radiation for the edge emitter in FIG. 3.
  • the additional lens effect (divergence reduction) of the achromatic 4 is only of secondary effect.
  • the yz plane (upper representations in FIGS. 2 and 3)
  • all the beam bundles 7 of the individual emitters or individual laser diodes 2 are centered.
  • the angles of incidence with respect to the z axis lie between 0 ° for the center emitter and + approximately 6 ° for the two edge emitters corresponding to the width of the laser diode bar 1 of 10 mm, ie the edge emitters are 5 mm off-axis.
  • the central position of the individual beam bundles 7 is naturally present when the redirection plane lies behind the achromatic lens 4 at a distance of the focal length.
  • the beam width in the y direction in the redirection plane is approximately 10 mm.
  • the width of the beam bundles of the individual emitters or laser diodes 2 of approximately 0.5 to 0.6 results on the redirection element 5 for the dimensions and distances specified above mm, depending on the actual emitter divergence in this plane. For example, in order to be able to separate and separately deflect the associated individual beam bundles for a laser diode bar 1 with 16 emitters, a distance of the bundle 1 focal points in the x direction of 0.6 mm is necessary.
  • the result is an almost symmetrical overall bundle with a bundle cross section of 10 mm x 10 mm in the redirection level, consisting of a series of individual bundles arranged one above the other in the x direction, which in turn are assigned to the individual emitters 2 of the laser diode bar 1 arranged in the y direction are, ie the total radiation in the x-y plane consists of 16 superimposed beams with dimensions in the x direction of 0.6 mm and in the y direction of 10 mm.
  • the symmetry required for the efficient focusing provided below is thus achieved.
  • the redirection element 5 still has to correct the different angles of incidence of the beam bundles of the individual laser diodes 2 shown in FIG. 1 in the yz plane.
  • the correction in the redirection level can in principle be implemented, a different deflection being necessary for each individual beam bundle.
  • these deflection angles are between 0 ° for the beam of the center emitter and 6 ° for the beam of the edge emitter.
  • the individual deflecting regions must have a width of 0.6 mm in the x direction and at least 10 mm in the y direction.
  • a grating array using the possibilities of microstructuring from 16 differently deflecting narrow regions is used, the realization of the grating array with the required maximum deflection angles of only 6 ° grating periods being technically relatively simple is possible.
  • the focusing optics 6 can also be formed from two lenses, between which the redirection element 5 is arranged.
  • a field of cylindrical lenses effective in the xz plane can be connected upstream or downstream of the redirection element 5 in such a way that each area of the redirection element 5 is assigned a cylindrical lens, the width of which in the x or y direction corresponds to the width of the deflection areas of the deflection grating field or the prisms of the prism field or the mirror of the mirror field.

Abstract

Es wird eine optische Anordnung zur Symmetrierung der Strahlung einer Mehrzahl von in fester Zuordnung nebeneinander angeordneten Laserdioden, deren jeweilige Ausgangsstrahlung in bezug auf eine erste und eine zweite Richtung, die senkrecht aufeinanderstehen, unsymmetrisch ist, vorgeschlagen. Eine Zylinderlinse (3) mit ausreichend großer Isoplanasie ist um die optische Achse (z-Achse), die senkrecht zu der durch die zwei Richtungen (x, y) vorgegebenen Ebene steht, gekippt angeordnet. Sie kollimiert und versetzt die Ausgangsstrahlbündel der einzelnen Laserdioden in die erste Richtung (x) zueinander. Der Zylinderlinse (3) ist ein Direktionselement (4) nachgeschaltet, das die Strahlbündel der einzelnen Laserdioden (2) in der zweiten Richtung (y) mit jeweils unterschiedlichen Ablenkwinkeln derart umlenkt, daß in einem vorgegebenen Abstand die Schwerpunkte der einzelnen Strahlbündel zusammenfallen. In dem Abstand hinter dem Direktionselement (4) ist ein Redirektionselement (5) angeordnet, das die unterschiedlichen Ablenkwinkel der Strahlbündel zur optischen Achse (z-Achse) wieder kompensiert.

Description

Optische Anordnung zur Symmetrierung der Strahlung von Laserdioden
Die Erfindung betrifft eine optische Anordnung zur
Symmetrierung der Strahlung von Laserdioden nach dem Oberbegriff des Hauptanspruchs.
Zur Herstellung von Hochleistungslaserdiodenanordnun- gen werden eine Mehrzahl von Laserdioden in fester
Zuordnung zu sogenannten Laserdiodenbarren nebeneinander angeordnet. Derartige Laserdiodenbarren mit optischen Ausgangsleistungen im Bereich bis etwa 30 bestehen üblicherweise aus mehreren in einer Reihe angeordneten Laserdioden als Einzelemittern mit einer geometrischen Abmessung der abstrahlenden Fläche zwischen etwa 50 x 1 μm und etwa 200 x 1 μm, wobei die lineare Anordnung dieser Emitter stets in Richtung ihrer größten Ausdehnung erfolgt . Die Ausgangsstrah- lung dieser Laserdiodenbarren ist extrem unsymmetrisch. Für die meisten praktischen Anwendungen sol- eher Laserdiodenbarren, zum Beispiel zum Pumpen von Festkörperlasern, für Zwecke der Materialbearbeitung und medizinische Zwecke wird ein symmetrisches Bündel hoher Strahldichte benötigt. Für einen breiten Ein- satz von Hochleistungsdiodenlasern in den genannten Gebieten sind somit möglichst kompakte optische Systeme zur Strahlsymmetrierung erforderlich.
Es sind Anordnungen zur Symmetrierung der Strahlung von Hochleistungslaserdioden bekannt, die beispielsweise spezielle Strahlendrehelemente in Form von Prismen verwenden, wodurch die von den einzelnen Emittern ausgesandten Strahlenbündel räumlich typischerweise um 90° gedreht werden (US 5 168 401, EP 0 484 276) . In einer anderen Anordnung durchläuft die Ausgangsstrahlung der Laserdioden ein System aus zwei schwach zueinander geneigten hochreflektierenden Flächen derart, daß sich am Ausgang dieses Systems eine geeignete Rekonfigurierung des Laserdiodenbün- dels ergibt (WO 95/15510) . In allen Fällen wird ein weitgehend symmetrisches Ausgangsbündel geschaffen, welches sich gut fokussieren läßt.
Nachteilig an diesen bekannten Systemen ist insbeson- dere die Kompliziertheit der verwendeten mikrooptischen Elemente, wobei dies insbesondere für die Strahlendrehung gilt, bei der eine Realisierung für größere Emitterzahlen im Laserdiodenbarren als äußerst schwierig erscheint, der hohe Justieraufwand des Gesamtsystems und die fehlende Möglichkeit zur preisgünstigen Herstellung solcher Systeme.
Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine optische Anordnung zur Symmetrierung der Strahlung einer Mehrzahl von in fester Zuordnung nebeneinander angeordneten Laserdioden zu schaffen, die unter Verwendung vergleichsweise einfacher mikrooptischer Komponenten die Ausgangsstrahlung ohne Strahldichteneinbußen bei verbessertem optischen Wirkungsgrad und gleichzeitiger Verringerung der Abmessungen der Anordnung transformiert. Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Hauptanspruchs in Verbindung mit den Merkmalen des Oberbegriffs gelöst.
Dadurch, daß eine Mikrozylinderlinse mit ausreichend großer Isoplanasie in geneigter Orientierung zum Laserdiodenbarren angeordnet wird, das heißt um die als z-Achse bezeichnete optische Achse gekippt wird, er- halten die Ausgangsbündel der Einzelemitter jeweils unterschiedliche Abstrahlwinkel und werden somit in genügend großem Abstand hinter der Linse in der gewünschten Richtung senkrecht zu der Richtung der linearen Anordnung der Einzelemitter getrennt . Durch ein nachgeschaltetes optisches Ablenkelement, das im weiteren als Direktionselement bezeichnet wird, wird die Ausgangsstrahlung der einzelnen Laserdioden bzw. Emitter in der Richtung der linearen Anordnung der einzelnen Laserdioden so umgelenkt, daß in einem vor- gegebenen Abstand hinter dem Direktionselement die
Bündelschwerpunkte in dieser Richtung zusammenfallen. Dadurch, daß weiterhin hinter dem Direktionselement ein zweites Ablenkelement, im weiteren als Redirektionselement bezeichnet, angeordnet ist, das die Aus- gangsstrahlbündel der einzelnen Laserdioden derart umlenkt, daß die vom Direktionselement erzeugten Ablenkwinkel wieder kompensiert werden, wird insgesamt eine einfache und kostengünstige Anordnung zur Strahlformung zur Verfügung gestellt, die gegenüber dem Stand der Technik eine verbesserte optische Effizienz aufweist.
Es sind keine strahldrehenden Elemente notwendig, die Symmetrierung der Abstrahlung wird durch die mehrfache Ablenkung erreicht. Die Segmentierung der optischen Abbildung wird durch die lateralen Abstände der Einzelemitter und das darauf abgestimmte Redirektionselement bewirkt, wobei die Abstände gering ge- halten werden können, so daß eine hohe Belegungsdichte des Laserdiodenbarrens ermöglicht wird.
Durch die in den Unteransprüchen angegebenen Maßnahmen sind vorteilhafte Weiterbildungen und Verbesse- rungen möglich.
Ein Ausführungsbeispiel ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 die optische Anordnung zur Symmetrierung der Strahlung einer Mehrzahl von Laserdioden in zwei verschiedenen Ebenen mit den Strahlengängen,
Fig. 2 die optischen Strahlengänge in den zwei Ebenen für eine in der Mitte des Laserdiodenbarrens angeordnete Laserdiode, und
Fig. 3 die Strahlengänge einer am Rand des
Laserdiodenbarrens angeordneten Laserdiode . Bei der in Fig. 1 dargestellten optischen Anordnung zur Strahlformung ist mit 1 ein Hochleistungs-Laser- diodenbarren bezeichnet . Der Laserdiodenbarren 1 weist eine Mehrzahl von in y-Richtung nebeneinander angeordneten einzelnen Laserdioden oder Einzelemitter 2 auf, die einen festen Abstand zueinander haben. Ein typischer Laserdiodenbarren 1 besitzt in der Richtung der Nebeneinanderordnung (y-Richtung) eine Abmessung von 10 mm, wobei die Einzelemitter, zum Beispiel 16, in einer Linie angeordnet sind. Die Abmessung der Emitter in y-Richtung variiert zwischen etwa 50 μm und 200 μm und ist abhängig vom konkreten Laserdiodentyp. Die Divergenz der Ausgangsstrahlung jeder einzelnen Laserdiode ist in der in Fig. 1 oben darge- stellten y-z-Ebene relativ gering, der halbe Öffnungswinkel beträgt etwa 6°. In der zu der y-Richtung senkrechten Richtung (x-Richtung) betragen die Abmessungen der einzelnen Laserdioden etwa 1 μm, wobei die Größe durch die Epitaxie vorgegeben ist . Entsprechend ist die Divergenz der Ausgangsstrahlung in der in
Fig. 1 unten dargestellten x-z-Ebene deutlich größer und der halbe Öffnungswinkel ist etwa 30°. Zwischen den einzelnen Laserdioden bzw. Emitter befinden sich Bereiche, in denen keine Strahlung abgestrahlt wird.
Die aufgrund der unterschiedlichen Abmessungen in x- und y-Richtung auftretende extreme Unsymmetrie der Ausgangsstrahlung ist für viele Anwendungen ungünstig. Eine Symmetrierung der Ausgangsstrahlung erfor- dert eine Umordnung der Strahlbündel der einzelnen
Laserdioden derart, daß sie in der ursprünglich stark divergenten Richtung (x-Richtung) linear angeordnet sind. Parallel zu dem Laserdiodenbarren 1 ist eine Kollima- tor-Mikrozylinderlinse 3 angeordnet, die, wie in Fig. 1 unten angedeutet ist, um die z-Achse, die die optische Achse darstellt, gekippt ist. Die Mikrozylinder- linse 3 ist so ausgebildet, daß sie eine ausreichend große Isoplanasie aufweist. Die jeweiligen Ausgangsstrahlbündel 7 der einzelnen Laserdioden 2 werden jeweils für sich kollimiert, erhalten durch die Neigung der Mikrozylinderlinse 3 unterschiedliche Ab- Strahlwinkel bezüglich der ursprünglichen optischen Achse (z-Achse in Fig. 1) und werden so, in der x- Richtung gesehen, in der Höhe versetzt bzw. getrennt. Die Strahlung in der y-z-Richtung der einzelnen Laserdioden 2 geht unverändert durch die Zylinderlinse hindurch. Als Kollimator-Mikrozylinderlinse kann eine gradientenoptische Mikrozylinderlinse mit einem eindimensionalen oder auch zweidimensionalen Brechzahl - profil verwendet werden. Auch können Asphären-Mikro- zylinderlinsen eingesetzt werden, wobei hier jedoch bei einer außeraxialen Anordnung zu einer Verschlechterung der Kollimation führt. Weiterhin ist die Verwendung einer Fresnel-Zylinderlinse, einer Plankonvex- oder Biokonvexlinse einschließlich Faserlinse (runder Querschnitt) sowie einer Mehrkomponenten-Zy- linderoptik, bestehend aus zwei oder mehreren der oben beschriebenen Einzellinsen denkbar.
Hinter der Mikrozylinderlinse 3 ist ein optisches Direktionselement 4, das beispielsweise als Achromat ausgebildet sein kann, angeordnet. Anstelle des
Achromaten können auch andere Linsen verwendet werden, beispielsweise eine Bikonvex- oder Plankonvexlinse mit sphärischen oder asphärischen Oberflächen oder eine Bikonvex- oder Plankonvex-Zylinderlinse . Wie aus Fig. 1 oben zu erkennen ist, werden die Aus- gangsStrahlenbündel 7 der einzelnen Laserdioden 2 in der Richtung der linearen Anordnung der einzelnen Laserdioden 2 im Barren 1, das heißt in der y-z-Ebene so umgelenkt, daß in einem bestimmten Abstand hinter dem Direktionselement 4 die BündelSchwerpunkte zusammenfallen, d.h., in der y-Richtung liegen in dem vorbestimmten Abstand die Strahlbündel übereinander. In der x-z-Ebene werden die Strahlenbündel nur geringfügig beeinflußt.
In dem vorbestimmten Abstand, bei dem gemäß Fig. 1 oben die Schwerpunkte (Zentroid) der einzelnen Strahlenbündel zusammenfallen, ist ein optisches Redirektionselement 5 angeordnet, das die Strahlbündel der einzelnen Laserdioden so ablenkt, daß die durch das
Direktionselement 4 in der y-z-Ebene erzeugten unterschiedlichen Einfallswinkel korrigiert werden, d.h., daß die vom Direktionselement erzeugten Neigungswinkel zur z-Achse bzw. optischen Achse wieder kompen- siert werden. Das Redirektionselement 5 muß für die Erzielung der unterschiedlichen Ablenkungswinkel linear angeordnete unterschiedliche Ablenkbereiche aufweisen und kann beispielsweise aus schmalen prismatischen Körpern bestehen. Die Realisierung eines sol- chen Redirektionselementes 5 ist jedoch recht aufwendig. Eine einfachere Ausführungsform besteht in einem Gitterarray mit ablenkenden Gittern. Das Redirektionselement 5 kann auch als Spiegelfeld ausgebildet sein.
Nach dem Redirektionselement 5 verlaufen die Strahl - bündel der einzelnen Laserdioden 2 in bezug auf die y-z-Ebene in gleicher Richtung, das heißt die Strahlung der einzelnen Laserdioden 2 liegt entsprechend Fig. 1 oben hinter dem Redirektionselement überein- ander. In der x-z-Ebene entsprechend Fig. 1 unten behalten die einzelnen Bündel 7 weiter ihre zueinander divergenten Richtungen bei.
Dem Redirektionselement 5 ist eine Fokussieroptik 6 nachgeschaltet, die beispielsweise aus Achromaten bestehen kann, und die Strahlbündel 7 der einzelnen Laserdioden 2 lassen sich nun sowohl in der y-z-Ebene als auch in der x-z-Ebene sehr gut in einen weitest- gehend symmetrischen Strahlfleck geringer Abmessung konzentrieren, wie aus Fig. 1 zu erkennen ist. Diese Strahlung kann in dem dargestellten Ausführungsbei- spiel dann mit hoher Effizienz in eine optische Faser 8 eingekoppelt werden.
In Fig. 2 und Fig. 3 werden optische Strahlengänge dargestellt, die für das folgende Ausführungsbeispiel berechnet wurden. Zur Kollimation der stark divergenten Abstrahlrichtung (x-Richtung) und Ablenkung der kollimierten einzelnen Strahlbündel 7 ebenfalls in der x-Richtung wird eine gradientenoptische (GRIN) Zylindermikrolinse 3 verwendet, die in diesem Ausführungsbeispiel eine Abmessung in x-Richtung von 300 μm aufweist. Durch Schrägstellen der gradientenoptischen Mikrozylinderlinse 3 in bezug auf den Laserdiodenbarren 1 durch eine Drehung um die z-Achse um etwa 1° werden die einzelnen Laserdioden 2 in bezug auf die optische Achse der Mikrozylinderlinse 3 unterschiedlich stark versetzt, und zwar so, daß die Mittenemit- ter bzw. die mittleren Laserdioden praktisch nicht, die Randemitter, d.h. die am Rande des Laserdiodenbarrens 1 liegenden Laserdioden 2, am stärksten außeraxial kollimiert werden. Dies führt zu einer Ablenkung der kollimierten Bündel bezüglich der z-Achse nach der Mikrozylinderlinse 3. Wie aus Fign. 2 und 3 jeweils in der unteren Darstellung zu erkennen ist, führt die außeraxiale Anordnung bei der verwendeten Mikrozylinderlinse 3 nicht zu einer Verschlechterung der Kollimation, was bei Asphären-Mikrozylinderlinsen möglich ist. In dem dargestellten Ausführungsbeispiel wird weiterhin für das Direktionselement 4 ein handelsüblicher Achromat mit einer Brennweite im Bereich 50 mm verwendet. Fign. 2 und 3 zeigen die unterschiedlichen Ablenkungen durch den Achromaten 4 für einen Mittenemitter und einen Randemitter, wobei in Fig. 2 die Strahlung für den Mittenemitter und in Fig. 3 die Strahlung für den Randemitter dargestellt ist. Der zusätzliche Linseneffekt (Divergenzreduktion) des Achromaten 4 ist nur von sekundärer Wir- kung .
In der Ebene des Redirektionselementes 5 entstehen bei der konkreten Ausführungsform folgende Verhältnisse : In der y-z-Ebene (obere Darstellungen in Fign. 2 und 3) liegen alle Strahlbündel 7 der Einzelemitter bzw. einzelnen Laserdioden 2 zentrisch. Die Einfallswinkel bezüglich der z-Achse liegen dabei zwischen 0° für den Mittenemitter und + ungefähr 6° für die beiden Randemitter entsprechend der Breite des Laserdiodenbarrens 1 von 10 mm, d.h. die Randemitter liegen 5 mm außeraxial. Naturgemäß liegt die zentrische Lage der einzelnen Strahlbündel 7 dann vor, wenn die Redirek- tionsebene im Abstand der Brennweite hinter dem Achromaten 4 liegt. Bei der oben angegebenen typischen Divergenz der Ausgangsstrahlung der Laserdioden 2 in der y-z-Ebene von ungefähr 6° (halber Öffnungswinkel) ergibt sich eine Bündelbreite in y-Richtung in der Redirektionsebene von etwa 10 mm. In der x-z-Ebene (untere Darstellungen in Fign. 2 und 3) ergeben sich auf dem Redirektionselement 5 für die oben angegebenen Abmessungen und Abstände eine Breite der Strahlbündel der einzelnen Emitter bzw. Laserdio- den 2 von ungefähr 0,5 bis 0,6 mm, je nach tatsächlicher Emitterdivergenz in dieser Ebene. Um zum Beispiel für einen Laserdiodenbarren 1 mit 16 Emittern die zugehörigen einzelnen Strahlbündel trennen und separat umlenken zu können, ist ein Abstand der Bün- de1Schwerpunkte in x-Richtung von 0,6 mm notwendig.
Dies bedeutet, daß die beiden Strahlbündel der Randemitter in der x-Richtung um etwa ± 6° ausgelenkt werden müssen (siehe Fig. 3) . Dies erfordert die oben erwähnte Schrägstellung der Mikrozylinderlinse 3 um ungefähr 1°. Die Gesamtausdehnung der Ausgangsstrahlung der Laserdioden in x-Richtung beträgt dann etwa 10 mm (16 Emitter x 0,6 mm) .
Im Ergebnis entsteht in der Redirektionsebene ein nahezu symmetrisches Gesamtbündel mit einem Bündel- querschnitt von 10 mm x 10 mm, bestehend aus einer Reihe von in x-Richtung übereinander angeordneten Einzelbündeln, die wiederum den in y-Richtung angeordneten einzelnen Emittern 2 des Laserdiodenbarrens 1 zuzuordnen sind, d.h. die Gesamtstrahlung in der x-y-Ebene besteht aus 16 übereinanderliegenden Strahlbündel der Abmessung in x-Richtung von 0,6 mm und in y-Richtung von 10 mm. Somit ist die für die nachfolgend vorgesehene effiziente Fokussierung not- wendige Symmetrierung erreicht.
Das Redirektionselement 5 muß jedoch noch die in Fig. 1 oben dargestellten unterschiedlichen Einfallswinkel der Strahlbündel der einzelnen Laserdioden 2 in der y-z-Ebene korrigieren. Durch die in x-Richtung ent- sprechend Fig. 1 unten vorliegende räumliche Trennung der einzelnen Strahlbündel kann die Korrektur in der Redirektionsebene prinzipiell realisiert werden, wobei für jedes einzelne Strahlbündel eine unterschied- liehe Ablenkung notwendig ist. Im in Fign. 2 und 3 dargestellten Ausführungsbeispiel liegen diese Ablenkwinkel zwischen 0° für das Strahlbündel des Mittenemitters und 6° für die Strahlbündel der Randemitter. Entsprechend den Abmessungen der Strahlbündel in der Redirektionsebene müssen die einzelnen ablenkenden Bereiche dabei eine Breite von 0,6 mm in x-Richtung und mindestens 10 mm in y-Richtung aufweisen. Im Ausführungsbeispiel wird anstelle des klassischen Aufbaus mit 16 schmalen prismatischen Körpern ein Gitterarray unter Nutzung der Möglichkeiten der Mi- krostrukturierung aus 16 unterschiedlich ablenkenden schmalen Bereichen verwendet, wobei eine Realisierung des Gitterarrays mit den geforderten maximalen Ablenkwinkeln von nur 6° Gitterperioden technisch rela- tiv einfach möglich ist.
Für die abschließende Fokussierung des Gesamtbündels in einen möglichst kleinen Fleck werden im Ausführungsbeispiel zwei handelsübliche Achromaten mit Brennweiten von 50 mm und 60 mm verwendet. Mit dieser Fokussieroptik 6 werden Bündelbreiten im Fokus von etwa 0,2 x 0,2 mm erzeugt, und zwar mit einer Konvergenz des Bündels von etwa 6° halber Öffnungswinkel. Bei stärkerer Fokussierung wird das Bündel im Fokus entsprechend kleiner.
Die Fokussieroptik 6 kann auch aus zwei Linsen gebildet werden, zwischen denen das Redirektionselement 5 angeordnet ist . Zur Verbesserung der Abbildungseigenschaften der optischen Anordnung kann dem Redirektionselement 5 ein Feld von in der xz-Ebene wirksamen Zylinderlinsen so vor- oder nachgeschaltet werden, daß jedem Bereich des Redirektionselementes 5 eine Zylinderlinse zugeordnet ist, deren Breite in der x- bzw. y-Richtung der Breite der Ablenkbereiche des Ablenkgitterfeldes bzw. der Prismen des Prismenfeldes bzw. der Spiegel des Spiegelfeldes entspricht.

Claims

Patentansprüche
1. Optische Anordnung zur Symmetrierung der Strahlung einer Mehrzahl von in fester Zuordnung in y-Richtung nebeneinander angeordneten Laserdioden, die in z-Richtung abstrahlen und deren Ab- strahlung in der xz- und yz-Ebene unsymmetrisch ist, wobei den Laserdioden eine Zylinderlinsenoptik nachgeschaltet ist, d a d u r c h g e k e n n z e i c h n e t , daß die Zylinderlinsenoptik (3) um die optische Achse (z-Achse) , die senkrecht zu der xy-Ebene steht, gekippt angeordnet ist und die Ausgangsstrahlbündel der einzelnen Laserdioden in die x- Richtung kollimiert und zueinander versetzt und dabei trennt, daß der Zylinderlinsenoptik (3) ein erstes Ablenkelement (4) nachgeschaltet ist, das die Strahlbündel der einzelnen Laserdioden (2) in der y-Richtung mit jeweils unterschiedli- chen Ablenkwinkeln derart umlenkt, daß in einem vorgegebenen Abstand die Schwerpunkte der einzelnen Strahlbündel zusammenfallen und daß im Abstand hinter dem ersten Ablenkelement (4) ein zweites Ablenkelement (5) angeordnet ist, das die unterschiedlichen Ablenkwinkel der Strahl- bündel zur optischen Achse (z-Achse) wieder kompensiert .
2. Anordnung nach Anspruch 1, dadurch gekennzeich- net, daß dem zweiten Ablenkelement (5) eine Fokussieroptik (6) nachgeschaltet ist, die die durch das zweite Ablenkelement hindurchtretenden Strahlenbündel auf einen Strahlungsfleck geringer Abmessung konzentriert.
3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Zylinderlinsenoptik (3) eine gradientenoptische Mikrozylinderlinse
(GRIN) , eine Asphären-Mikrozylinderlinse, eine Fresnellinse, eine Plankonvex- und Bikonvexlinse und/oder eine Kombination derselben aufweist.
4. Anordnung nach Anspruch 3, dadurch gekennzeichnet, daß die gradientenoptische Mikrozylinder- linse ein in die erste Richtung eindimensionales
Brechzahlprofil aufweist.
5. Anordnung nach Anspruch 3, dadurch gekennzeichnet, daß die gradientenoptische Mikrozylinder- linse ein zweidimensionales Brechzahlprofil aufweist .
6. Anordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das erste Ablenkele- ment (4) als Achromat oder als Bikonvex- oder
Plankonvexlinse mit sphärischen oder asphärischen Oberflächen oder als Bikonvex- oder Plankonvex-Zylinderlinse ausgebildet ist.
7. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das zweite Ablenkelement (5) als Feld von Ablenkgittern ausgebildet ist .
8. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das zweite Ablenkelement (5) als Prismenfeld ausgebildet ist.
9. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das zweite Ablenkelement (5) als Spiegelfeld ausgebildet ist.
10. Anordnung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Ablenkbereiche bzw. Prismen bzw. Spiegel mit jeweils unterschiedlichen Ablenkwinkeln des Ablenkgitterfeldes bzw. des Prismenfeldes bzw. des Spiegelfel- des in der x-Richtung nebeneinander angeordnet sind.
11. Anordnung nach Anspruch 10, dadurch gekennzeichnet, daß die Breite der Ablenkbereiche bzw. der Prismen bzw. der Spiegel in der x-Richtung dem
Abstand der Schwerpunkte der Strahlbündel in x- Richtung auf der Ebene des zweiten Ablenkelementes (5) entsprechen.
12. Anordnung nach Anspruch 11, dadurch gekennzeichnet, daß dem zweiten Ablenkelement (5) ein Feld von in der xz-Ebene wirksamen Zylinderlinsen, deren Breite in der x- bzw. der y-Richtung der Breite der Ablenkbereiche bzw. der Prismen bzw. der Spiegel in der x- bzw. y-Richtung entspricht, so vor- oder nachgeschaltet wird, daß jedem Bereich des zweiten Ablenkelements (5) eine Zylinderlinse zur Verbesserung der Abbildungseigenschaften der Anordnung zugeordnet ist .
13. Anordnung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Fokussieroptik (6) aus zwei Linsen gebildet ist, zwischen denen das zweite Ablenkelement (5) angeordnet ist.
14. Anordnung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Fokussieroptik (6) aus Achromaten gebildet ist.
PCT/DE1997/002573 1996-10-28 1997-10-27 Optische anordnung zur symmetrierung der strahlung von laserdioden WO1998019202A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59706197T DE59706197D1 (de) 1996-10-28 1997-10-27 Optische anordnung zur symmetrierung der strahlung von laserdioden
US09/297,050 US6151168A (en) 1996-10-28 1997-10-27 Optical array for symmetrization of laser diode beams
EP97945797A EP0934545B1 (de) 1996-10-28 1997-10-27 Optische anordnung zur symmetrierung der strahlung von laserdioden
JP10519923A JP2001502818A (ja) 1996-10-28 1997-10-27 レーザダイオードの放射を対称的とするための光学的配置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19645150.7 1996-10-28
DE19645150A DE19645150C2 (de) 1996-10-28 1996-10-28 Optische Anordnung zur Symmetrierung der Strahlung von Laserdioden

Publications (1)

Publication Number Publication Date
WO1998019202A1 true WO1998019202A1 (de) 1998-05-07

Family

ID=7810434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002573 WO1998019202A1 (de) 1996-10-28 1997-10-27 Optische anordnung zur symmetrierung der strahlung von laserdioden

Country Status (5)

Country Link
US (1) US6151168A (de)
EP (1) EP0934545B1 (de)
JP (1) JP2001502818A (de)
DE (2) DE19645150C2 (de)
WO (1) WO1998019202A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969305A1 (de) * 1998-01-20 2000-01-05 Seiko Epson Corporation Optische schaltvorrichtung,bildanzeige und projektionsvorrichtung
EP1059713A2 (de) * 1999-06-08 2000-12-13 Bright Solutions Soluzioni Laser Innovative S.R.L Verfahren und Vorrichtung zur Konditionierung des Lichtemissions einer Vielfachdiodenlaser

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19800590B4 (de) * 1998-01-09 2005-12-01 Jenoptik Ag Optische Anordnung zur Symmetrierung der Strahlung eines oder mehrerer übereinander angeordneter Hochleistungsdiodenlaser
DE19834805C2 (de) * 1998-08-01 2002-03-07 Highyag Lasertechnologie Gmbh Verfahren und Vorrichtung zur Symmetrisierung von Laserstrahlen von Laserdioden-Arrays
DE10015245C2 (de) * 1999-03-31 2002-01-03 Fraunhofer Ges Forschung Optische Anordnung zur Symmetrierung der Strahlung von zweidimensionalen Arrays von Laserdioden
DE19948889C1 (de) * 1999-10-11 2001-06-07 Unique M O D E Ag Vorrichtung zur Symmetrierung der Strahlung von linearen optischen Emittern und Verwendung der Vorrichtung
EP1150097A1 (de) * 2000-04-26 2001-10-31 Leica Geosystems AG Optischer Entfernungsmesser
US6666590B2 (en) * 2000-12-14 2003-12-23 Northrop Grumman Corporation High brightness laser diode coupling to multimode optical fibers
US7075739B2 (en) 2001-04-07 2006-07-11 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg Assembly for correcting laser illumination emitted from a laser light source and method for producing said assembly
CA2463679C (en) * 2001-10-17 2009-08-04 Leica Geosystems Ag Optical telemeter
US6700709B1 (en) 2002-03-01 2004-03-02 Boston Laser Inc. Configuration of and method for optical beam shaping of diode laser bars
US6778732B1 (en) * 2002-06-07 2004-08-17 Boston Laser, Inc. Generation of high-power, high brightness optical beams by optical cutting and beam-shaping of diode lasers
TWI271580B (en) * 2002-12-27 2007-01-21 Hon Hai Prec Ind Co Ltd Reflective plate and plane light source with the same
JP4226482B2 (ja) * 2003-02-03 2009-02-18 富士フイルム株式会社 レーザ光合波装置
EP1460469A1 (de) * 2003-03-17 2004-09-22 Heptagon Oy Optische Anordnung und linearer Laser-Sender
US7181105B2 (en) * 2003-03-25 2007-02-20 Fuji Photo Film Co., Ltd. Method for adjusting alignment of laser beams in combined-laser-light source where the laser beams are incident on restricted area of light-emission end face of optical fiber
US7190496B2 (en) * 2003-07-24 2007-03-13 Zebra Imaging, Inc. Enhanced environment visualization using holographic stereograms
LT5257B (lt) * 2003-12-19 2005-08-25 Uždaroji akcinė bendrovė MGF "Šviesos konversija" Ryškį išsaugojantis lazerinių pluoštų formuotuvas
DE102004002221B3 (de) * 2004-01-15 2005-05-19 Unique-M.O.D.E. Ag Vorrichtung zur optischen Strahltransformation einer linearen Anordnung mehrerer Lichtquellen
EP1619765B1 (de) * 2004-07-19 2008-08-20 TRUMPF Laser GmbH + Co. KG Diodenlaseranordnung und Strahlformungseinheit dafür
DE102004040608B4 (de) * 2004-08-21 2006-09-07 Dilas Diodenlaser Gmbh Diodenlaser mit einer optischen Einrichtung zur Erhöhung der Strahldichte eines aus ihm austretenden Ausgangslaserstrahls
TWI361123B (en) * 2004-12-22 2012-04-01 Zeiss Carl Laser Optics Gmbh Optical illumination system for creating a line beam
US7881355B2 (en) * 2005-12-15 2011-02-01 Mind Melters, Inc. System and method for generating intense laser light from laser diode arrays
JP2009530661A (ja) * 2006-03-15 2009-08-27 ゼブラ・イメージング・インコーポレイテッド 動的裸眼立体視ディスプレイ
US9843790B2 (en) 2006-03-15 2017-12-12 Fovi 3D, Inc. Dynamic autostereoscopic displays
US20080144174A1 (en) * 2006-03-15 2008-06-19 Zebra Imaging, Inc. Dynamic autostereoscopic displays
US7515346B2 (en) 2006-07-18 2009-04-07 Coherent, Inc. High power and high brightness diode-laser array for material processing applications
DE102007020789A1 (de) 2007-05-03 2008-11-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optische Anordnung zur Symmetrierung der Strahlung von Laserdiodenbarren
US8345724B2 (en) * 2008-10-27 2013-01-01 Trumpf Photonics Inc. Laser beam interleaving
US7936799B2 (en) * 2008-10-27 2011-05-03 Trumpf Photonics Inc. Interleaving laser beams
US8437086B2 (en) 2010-06-30 2013-05-07 Jds Uniphase Corporation Beam combining light source
US8427749B2 (en) 2010-06-30 2013-04-23 Jds Uniphase Corporation Beam combining light source
US9142892B2 (en) * 2011-06-28 2015-09-22 Kuang-Chi Innovative Technology Ltd. Metamaterial and metamaterial antenna
US9142891B2 (en) * 2011-07-01 2015-09-22 Kuang-Chi Innovative Technology Ltd. Man-made composite material and man-made composite material antenna
WO2013011613A1 (ja) * 2011-07-15 2013-01-24 パナソニック株式会社 集光型レンズアレイおよびそれを備えた太陽電池
WO2013013462A1 (zh) * 2011-07-26 2013-01-31 深圳光启高等理工研究院 一种前馈式微波天线
US9099788B2 (en) * 2011-07-29 2015-08-04 Kuang-Chi Innovative Technology Ltd. Man-made composite material and man-made composite material antenna
US9343868B2 (en) 2012-08-28 2016-05-17 Optical Engines Inc. Efficient generation of intense laser light from multiple laser light sources using misaligned collimating optical elements
US10562132B2 (en) 2013-04-29 2020-02-18 Nuburu, Inc. Applications, methods and systems for materials processing with visible raman laser
US10971896B2 (en) 2013-04-29 2021-04-06 Nuburu, Inc. Applications, methods and systems for a laser deliver addressable array
US9647416B2 (en) 2013-12-23 2017-05-09 Lumentum Operations Llc Bidirectional long cavity semiconductor laser for improved power and efficiency
DE112015000994B4 (de) 2014-02-26 2024-01-18 Panasonic Corporation of North America (n.d.Ges.d. Staates Delaware) Systeme für Mehrstrahl-Laseranordnungen mit veränderbarem Strahlparameterprodukt
US11646549B2 (en) 2014-08-27 2023-05-09 Nuburu, Inc. Multi kW class blue laser system
DE102015000662B3 (de) 2015-01-23 2016-06-09 Jenoptik Laser Gmbh Laseranordnung mit Hilfsring
US11612957B2 (en) * 2016-04-29 2023-03-28 Nuburu, Inc. Methods and systems for welding copper and other metals using blue lasers
US20220072659A1 (en) * 2016-04-29 2022-03-10 Nuburu, Inc. Methods and Systems for Reducing Hazardous Byproduct from Welding Metals Using Lasers
WO2018144524A1 (en) 2017-01-31 2018-08-09 Nuburu Inc. Methods and systems for welding copper using blue laser
CN110651209B (zh) 2017-04-21 2021-09-24 努布鲁有限公司 多包层光纤
KR102631341B1 (ko) 2017-06-13 2024-01-29 누부루 인크. 매우 조밀한 파장 빔 조합 레이저 시스템
WO2020107030A1 (en) 2018-11-23 2020-05-28 Nuburu, Inc Multi-wavelength visible laser source
EP3917718A4 (de) 2019-02-02 2022-12-07 Nuburu, Inc. Hochzuverlässige leistungsstarke blaulasersysteme mit hoher helligkeit und verfahren zur herstellung
CN113064136A (zh) 2020-01-02 2021-07-02 隆达电子股份有限公司 发光元件与发光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156219A (ja) * 1984-12-28 1986-07-15 Fuji Photo Film Co Ltd 半導体レ−ザビ−ム合成方法
EP0484276A1 (de) * 1990-11-01 1992-05-06 Fisba Optik Ag Verfahren, bei dem mehrere, in einer oder mehreren Reihen angeordnete Strahlungsquellen abgebildet werden und Vorrichtung hierzu
JPH07287105A (ja) * 1994-04-18 1995-10-31 Nippon Steel Corp 光路変換器及び光路変換アレイ
WO1996002013A1 (en) * 1994-07-12 1996-01-25 Coherent, Inc. Optical system for improving the symmetry of the beam emitted from a broad area laser diode
US5513201A (en) * 1993-04-30 1996-04-30 Nippon Steel Corporation Optical path rotating device used with linear array laser diode and laser apparatus applied therewith
DE4438368A1 (de) * 1994-10-27 1996-05-09 Fraunhofer Ges Forschung Anordnung zur Führung und Formung von Strahlen eines geradlinigen Laserdiodenarrays

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1549613A (en) * 1975-12-23 1979-08-08 Plessey Co Ltd Optical system for producing an area of light of even dispersion of illumination
US5050153A (en) * 1989-06-06 1991-09-17 Wai-Hon Lee Semiconductor laser optical head assembly
US5081639A (en) * 1990-10-01 1992-01-14 The United States Of America As Represented By The United States Department Of Energy Laser diode assembly including a cylindrical lens
US5168401A (en) * 1991-05-07 1992-12-01 Spectra Diode Laboratories, Inc. Brightness conserving optical system for modifying beam symmetry
US5181224A (en) * 1991-05-10 1993-01-19 University Of California Microoptic lenses
US5321718A (en) * 1993-01-28 1994-06-14 Sdl, Inc. Frequency converted laser diode and lens system therefor
DE19500513C1 (de) * 1995-01-11 1996-07-11 Dilas Diodenlaser Gmbh Optische Anordnung zur Verwendung bei einer Laserdiodenanordnung
US5790576A (en) * 1996-06-26 1998-08-04 Sdl, Inc. High brightness laser diode source
US5867324A (en) * 1997-01-28 1999-02-02 Lightwave Electronics Corp. Side-pumped laser with shaped laser beam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156219A (ja) * 1984-12-28 1986-07-15 Fuji Photo Film Co Ltd 半導体レ−ザビ−ム合成方法
EP0484276A1 (de) * 1990-11-01 1992-05-06 Fisba Optik Ag Verfahren, bei dem mehrere, in einer oder mehreren Reihen angeordnete Strahlungsquellen abgebildet werden und Vorrichtung hierzu
US5513201A (en) * 1993-04-30 1996-04-30 Nippon Steel Corporation Optical path rotating device used with linear array laser diode and laser apparatus applied therewith
JPH07287105A (ja) * 1994-04-18 1995-10-31 Nippon Steel Corp 光路変換器及び光路変換アレイ
WO1996002013A1 (en) * 1994-07-12 1996-01-25 Coherent, Inc. Optical system for improving the symmetry of the beam emitted from a broad area laser diode
DE4438368A1 (de) * 1994-10-27 1996-05-09 Fraunhofer Ges Forschung Anordnung zur Führung und Formung von Strahlen eines geradlinigen Laserdiodenarrays

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 358 (P - 522) 2 December 1986 (1986-12-02) *
PATENT ABSTRACTS OF JAPAN vol. 096, no. 002 29 February 1996 (1996-02-29) *
R. GORING, P SCHREIBER, T POSSNER: "Micropotical beam transformation system for high-power laser diode bars with efficient brightness conservation", PROCEEDINGS OF SPIE, THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, MINIATURIZED SYSTEMS WITH MICROOPTICS AND MICROMECHANICS II 10-12 FEBRUARY 1997, vol. 3008, SAN JOSE, pages 202 - 210, XP002057348 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969305A1 (de) * 1998-01-20 2000-01-05 Seiko Epson Corporation Optische schaltvorrichtung,bildanzeige und projektionsvorrichtung
EP0969305A4 (de) * 1998-01-20 2003-06-25 Seiko Epson Corp Optische schaltvorrichtung,bildanzeige und projektionsvorrichtung
EP1059713A2 (de) * 1999-06-08 2000-12-13 Bright Solutions Soluzioni Laser Innovative S.R.L Verfahren und Vorrichtung zur Konditionierung des Lichtemissions einer Vielfachdiodenlaser
EP1059713A3 (de) * 1999-06-08 2003-01-29 Bright Solutions Soluzioni Laser Innovative S.R.L Verfahren und Vorrichtung zur Konditionierung des Lichtemissions einer Vielfachdiodenlaser

Also Published As

Publication number Publication date
US6151168A (en) 2000-11-21
JP2001502818A (ja) 2001-02-27
EP0934545B1 (de) 2002-01-23
DE59706197D1 (de) 2002-03-14
DE19645150A1 (de) 1998-05-14
EP0934545A1 (de) 1999-08-11
DE19645150C2 (de) 2002-10-24

Similar Documents

Publication Publication Date Title
EP0934545B1 (de) Optische anordnung zur symmetrierung der strahlung von laserdioden
DE19800590B4 (de) Optische Anordnung zur Symmetrierung der Strahlung eines oder mehrerer übereinander angeordneter Hochleistungsdiodenlaser
DE19939750C2 (de) Optische Anordnung zur Verwendung bei einer Laserdiodenanordnung sowie Laserdiodenanordnung mit einer solchen optischen Anordnung
DE19537265C1 (de) Anordnung zur Zusammenführung und Formung der Strahlung mehrerer Laserdiodenzeilen
DE19948889C1 (de) Vorrichtung zur Symmetrierung der Strahlung von linearen optischen Emittern und Verwendung der Vorrichtung
EP0984312B1 (de) Laserdiodenanordnung
DE102004002221B3 (de) Vorrichtung zur optischen Strahltransformation einer linearen Anordnung mehrerer Lichtquellen
DE10015245C2 (de) Optische Anordnung zur Symmetrierung der Strahlung von zweidimensionalen Arrays von Laserdioden
EP0803075B1 (de) Optische anordnung zur verwendung bei einer laserdiodenanordnung
DE19500513C1 (de) Optische Anordnung zur Verwendung bei einer Laserdiodenanordnung
EP1062540B1 (de) Vorrichtung und verfahren zur optischen strahltransformation
EP3084497B1 (de) Vorrichtung zur formung von laserstrahlung
DE19918444C2 (de) Laseroptik sowie Diodenlaser
DE10012480C2 (de) Laseroptik sowie Diodenlaser
DE19841285C1 (de) Optische Anordnung zur Verwendung bei einer Laserdiodenanordnung sowie Diodenlaser
DE10007123A1 (de) Optische Anordnung zur Verwendung bei einer Laserdiodenanordnung sowie Laserdiodenanordnung mit einer solchen Anordnung
DE102021126377A1 (de) Diodenlaseroptik und zugehöriges Diodenlasersystem
DE10014940A1 (de) Verfahren und Anordnung zur Homogenisation von divergenter Strahlung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997945797

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 519923

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09297050

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997945797

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997945797

Country of ref document: EP