WO1998014555A1 - Process for making a detergent composition by non-tower process - Google Patents

Process for making a detergent composition by non-tower process Download PDF

Info

Publication number
WO1998014555A1
WO1998014555A1 PCT/US1997/009793 US9709793W WO9814555A1 WO 1998014555 A1 WO1998014555 A1 WO 1998014555A1 US 9709793 W US9709793 W US 9709793W WO 9814555 A1 WO9814555 A1 WO 9814555A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixer
surfactant
agglomerates
detergent
process according
Prior art date
Application number
PCT/US1997/009793
Other languages
French (fr)
Inventor
Angela Gloria Del Greco
Manivannan Kandasamy
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to US09/269,851 priority Critical patent/US6121229A/en
Priority to JP51649398A priority patent/JP3299984B2/en
Priority to BR9713251-9A priority patent/BR9713251A/en
Priority to CA002268063A priority patent/CA2268063C/en
Priority to EP97932153A priority patent/EP0929655A1/en
Priority to AU35683/97A priority patent/AU3568397A/en
Publication of WO1998014555A1 publication Critical patent/WO1998014555A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • C11D11/0088Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/02Preparation in the form of powder by spray drying
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers

Definitions

  • the present invention generally relates to a non-tower process for producing a particulate detergent composition. More particularly, the invention is directed to a continuous process during which detergent agglomerates are produced by feeding a surfactant and coating materials into a series of mixers. The process produces a free flowing, detergent composition whose density can be adjusted for wide range of consumer needs, and which can be commercially sold.
  • the first type of process involves spray- drying an aqueous detergent slurry in a spray-drying tower to produce highly porous detergent granules (e.g., tower process for low density detergent compositions).
  • the various detergent components are dry mixed after which they are agglomerated with a binder such as a nonionic or anionic surfactant, to produce high density detergent compositions (e.g., agglomeration process for high density detergent compositions).
  • a binder such as a nonionic or anionic surfactant
  • the Laid-open No.WO93/23,523 (Henkel) describes the process comprising pre-agglomeration by a low speed mixer and further agglomeration step by high speed mixer for obtaining high density detergent composition with less than 25 wt % of the granules having a diameter over 2 mm.
  • the U.S. Patent No. 4,427,417 (Korex) describes continuous process for agglomeration which reduces caking and oversized agglomerates.
  • the present invention meets the aforementioned needs in the art by providing a process which produces a high density granular detergent composition.
  • the present invention also meets the aforementioned needs in the art by providing a process which produces a granular detergent composition for flexibility in the ultimate density of the final composition from agglomeration (e.g., non-tower) process.
  • the process does not use the conventional spray drying towers currently which is limited in producing high surfactant loading compositions.
  • the process of the present invention is more efficient, economical and flexible with regard to the variety of detergent compositions which can be produced in the process.
  • the process is more amenable to environmental concerns in that it does not use spray drying towers which typically emit particulates and volatile organic compounds into the atmosphere.
  • agglomerates refers to particles formed by agglomerating raw materials with binder such as surfactants and or inorganic solutions / organic solvents and polymer solutions.
  • binder such as surfactants and or inorganic solutions / organic solvents and polymer solutions.
  • a process for preparing a granular detergent composition having a density at least about 600 g/l comprises the steps of:
  • granular detergent compositions having a high density of at least about 600g/l, produced by any one of the process embodiments described herein.
  • the present invention is directed to a process which produces free flowing, granular detergent agglomerates having a density of at least about 600 g/l.
  • the process produces granular detergent agglomerates from an aqueous and/or non-aqueous surfactant which is then coated with fine powder having a diameter from 0.1 to 500 microns, in order to obtain low density granules.
  • aqueous and/or non- aqueous surfactant(s) which is/are in the form of powder, paste and/or liquid , and fine powder having a diameter from 0.1 to 500 microns, preferably from about 1 to about 100 microns are fed into a first mixer, so as to make agglomerates.
  • a first mixer so as to make agglomerates.
  • an internal recycle stream of powder generally having a diameter of about 0.1 to about 300 microns, which can be generated from an "optional conditioning process (i.e., drying and/or cooling step)," which is an additional step after the process of present invention can be fed into the mixer in addition to the fine powder.
  • the amount of such internal recycle stream of powder can be 0 to about 60 wt% of final product.
  • the surfactant(s) can be initially fed into a mixer or pre-mixer (e.g. a conventional screw extruder or other similar mixer) prior to the above, after which the mixed detergent materials are fed into the first step mixer as described herein for agglomeration.
  • a mixer or pre-mixer e.g. a conventional screw extruder or other similar mixer
  • the mean residence time of the first mixer is in range from about 2 to about 50 seconds and tip speed of the first mixer is in range from about 4 m/s to about 25 m/s
  • the energy per unit mass of the first mixer (energy condition) is in range from about 0.15 kj/kg to about 7 kj/kg
  • the mean residence time of the first mixer is in range from about 5 to about 30 seconds and tip speed of the first mixer is in range from about 6 m/s to about 18 m/s
  • the energy per unit mass of the first mixer (energy condition) is in range from about 0.3 kj/kg to about 4 kj/kg
  • the mean residence time in the first mixer is in range from about 5 to about 20 seconds and tip speed of the first mixer is in range from about 8 m/s to about 18 m/s
  • the energy per unit mass of the first mixer (energy condition) is in range from about 0.3 kj/kg to about 4 kj/kg.
  • the examples of the first mixer for the first step can be any types of mixer known to persons skilled in the art, as long as the mixer can maintain the above mentioned condition for the first step.
  • An Example can be Lodige CB Mixer manufactured by the Lodige company (Germany).
  • agglomerates having fine powder on the surface of the agglomerates are then obtained.
  • the resultant (i.e., the first agglomerates) from the first step is fed into a second mixer.
  • Finely atomized liquid is sprayed on the agglomerates in the second mixer. If excessive fine powder from the first step is optionally included in the product added to the second step, spraying the finely atomized liquid is useful in order to bind the excessive fine powder onto the agglomerates from the first step.
  • About 0-10% , more preferably about 2-5% of powder detergent ingredients of the kind used in the first step and/or other detergent ingredients can be added to the second mixer.
  • the mean residence time of the second mixer is in range from about 0.2 to about 5 seconds and tip speed of the second mixer is in range from about 10 m/s to about 30 m/s
  • the energy per unit mass (energy condition) of the second mixer is in range from about 0.15 kj/kg to about 5 kj/kg
  • the mean residence time of the second mixer is in range from about 0.2 to about 5 seconds and tip speed of the second mixer is in range from about 10 m/s to about 30 m/s
  • the energy per unit mass of the second mixer (energy condition) is in range from about 0.15 kj/kg to about 5 kj/kg
  • the most preferably, the mean residence time of the second mixer is in range from about 0.2 to about 5 seconds
  • tip speed of the second mixer is in range from about 15 m/s to about 26 m/s
  • the energy per unit mass of the second mixer (energy condition) is in the range from about 0.15 kj/kg to about 2 kj/kg.
  • the examples of the second mixer can be any types of mixer known to persons skilled in the art, as long as the mixer can maintain the above mentioned condition for the second step.
  • An Example can be Flexomic Model manufactured by the Schugi company (Netherlands).
  • Second agglomerates are then obtained.
  • the agglomerates from the second step are fed into a third mixer.
  • the second agglomerates are mixed and sheared thoroughly for rounding and growth of the agglomerates in the third mixer.
  • about 0-10% more preferably about 2-5% of powder detergent ingredients of the kind used in the first step, second step, and/or other detergent ingredients can be added to the third step.
  • choppers which are attachable for the third mixer can be used to break up undesirable oversized agglomerates. Therefore, the process including the third mixer with choppers is useful in order to obtain reduced amount of oversized agglomerates as final products, and such process is one preferred embodiment of the present invention.
  • the mean residence time of the third mixer is in range from about 0.5 to about 15 minutes and the energy per unit mass of the third mixer (energy condition) is in range from about 0.15 to about 7 kj/kg, more preferably, the mean residence time of the third mixer is from about 3 to about 6 minutes and the energy per unit mass of the third mixer (energy condition) is in range from about 0.15 to about 4kj/kg.
  • the examples of the third mixer can be any types of mixer known to persons skilled in the art, as long as the mixer can maintain the above mentioned condition for the third step.
  • An Example can be Lodige KM Mixer manufactured by the Lodige company (Germany).
  • a resultant product having a density of at least 600 g/l is then obtained.
  • the resultant can be further subjected to drying, cooling and/or grinding.
  • the process of the present invention is proceeded by using (1) CB mixer which has flexibility to inject at least two liquid ingredients, (2) Schugi Mixer which has flexibility to inject at least two liquid ingredients, (3) KM mixer which has flexibility to inject at least a liquid ingredient, the process can incorporate five different kinds of liquid ingredients in the process. Therefore, the proposed process is beneficial for persons skilled in the art in order to incorporate into a granule making process starting detergent materials which are in liquid form and are rather expensive and sometimes more difficult in terms of handling and/or storage than solid materials.
  • the total amount of the surfactants in products made by the present invention is generally from about 5 % to about 60 %, more preferably from about 12% to about 40 %, more preferably, from about
  • the surfactants which should be included in the above can be from any part of the process of the present invention., e.g., from either one of the first step, the second step and/or the third step of the present invention.
  • the amount of the surfactant of the present process can be from about 5 % to about 60 %, more preferably from about 12% to about 40 %, more preferably, from about 15 to about 35%, in total amount of the final product obtained by the process of the present invention.
  • the surfactant of the present process which is used as the above mentioned starting detergent materials in the first step, is in the form of powdered, pasted or liquid raw materials.
  • the surfactant itself is preferably selected from anionic, nonionic, zwitterionic, ampholytic and cationic classes and compatible mixtures thereof.
  • Detergent surfactants useful herein are described in U.S. Patent 3,664,961, Norris, issued May 23, 1972, and in U.S. Patent 3,929,678, Laughlin et al., issued December 30, 1975, both of which are incorporated herein by reference.
  • Useful cationic surfactants also include those described in U.S. Patent 4,222,905, Cockrell, issued September 16, 1980, and in U.S. Patent 4,239,659, Mu ⁇ hy, issued December 16, 1980, both of which are also incorporated herein by reference.
  • anionics and nonionics are preferred and anionics are most preferred.
  • Nonlimiting examples of the preferred anionic surfactants useful in the present invention include the conventional C ⁇ ⁇
  • LAS C ⁇ ⁇
  • Useful anionic surfactants also include water-soluble salts of 2-acyloxy- alkane-1-sulfonic acids containing from about 2 to 9 carbon atoms in the acyl group and from about 9 to about 23 carbon atoms in the alkane moiety; water- soluble salts of olefin sulfonates containing from about 12 to 24 carbon atoms; and beta-alkyloxy alkane sulfonates containing from about 1 to 3 carbon atoms in the alkyl group and from about 8 to 20 carbon atoms in the alkane moiety .
  • exemplary surfactants useful in the invention include C10-C18 a'kyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylat.es), the C- ⁇ o-18 glycerol ethers, the C10-C18 alkyl polyglycosides and the corresponding sulfated polyglycosides, and C12-C18 alpha-sulfonated fatty acid esters.
  • the conventional nonionic and amphoteric surfactants such as the C12- -I8 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C-JO-C-I S amine oxides, and the like, can also be included in the overall compositions.
  • AE alkyl ethoxylates
  • C6-C12 alkyl phenol alkoxylates especially ethoxylates and mixed ethoxy/propoxy
  • C-JO-C-I S amine oxides and the like
  • the C-JQ-CI S N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C12-C18 N- methylglucamides. See WO 9,206,154.
  • sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C-J Q-CIS N _ (3- methoxypropyl) glucamide.
  • the N-propyl through N-hexyl C12-C18 glucamides can be used for low sudsing.
  • C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C10-C16 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts.
  • Cationic surfactants can also be used as a detergent surfactant herein and suitable quaternary ammonium surfactants are selected from mono C6-C16, preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • Ampholytic surfactants can also be used as a detergent surfactant herein, which include aliphatic derivatives of heterocyclic secondary and tertiary amines; zwitterionic surfactants which include derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds; water-soluble salts of esters of alpha-sulfonated fatty acids; alkyl ether sulfates; water-soluble salts of olefin sulfonates; beta-alkyloxy alkane sulfonates; betaines having the formula R(R 1 )2N + R 2 COO-, wherein R is a C6-C18 hydrocarbyl group, preferably a C10- C16 alkyl group or C10-C16 acylamido alkyl group, each R 1 is typically C1-C3 alkyl, preferably methyl and R2 is a C1-C5 hydrocarbyl group, preferably a C
  • betaines examples include coconut acylamidopropyldimethyl betaine; hexadecyl dimethyl betaine; C12-14 acylamidopropylbetaine; C8-14 acylamidohexyldiethyl betaine; 4[C14-16 acylmethylamidodiethylammonio]-1-carboxybutane; C16-18 acylamidodimethylbetaine; C12-I6 acylamidopentanediethylbetaine; and [C12-I6 acylmethylamidodimethylbetaine.
  • Preferred betaines are C12-I8 dimethyl-ammonio hexanoate and the C10-I8 acylamidopropane (or ethane) dimethyl (or diethyl) betaines; and the sultaines having the formula (R(R 1 )2N + R 2 SO3 _ wherein R is a C6-C18 hydrocarbyl group, preferably a C10- C16 alkyl group, more preferably a C12-C13 alkyl group, each R1 is typically C1- C3 alkyl, preferably methyl, and R 2 is a C1-C6 hydrocarbyl group, preferably a C1-C3 alkylene or, preferably, hydroxyalkylene group.
  • Suitable sultaines include C12-C14 dimethylammonio-2-hydroxypropyl sulfonate, C12- C14 amido propyl ammonio-2-hydroxypropyl sultaine, C12-C14 dihydroxyethylammonio propane sulfonate, and C16-I8 dimethylammonio hexane sulfonate, with C12-14 amido propyl ammonio-2-hydroxypropyl sultaine being preferred. Fine Powder
  • the amount of the fine powder of the present process, which is used in the first step, can be from about 94% to 30%, preferably from 86% to 54%, in total amount of starting material for the first step .
  • the starting fine powder of the present process preferably selected from the group consisting of ground soda ash, powdered sodium tripolyphosphate (STPP), hydrated tripolyphosphate, ground sodium sulphates, aluminosilicates, crystalline layered silicates, nitrilotriacetates (NTA), phosphates, precipitated silicates, polymers, carbonates, citrates, powdered surfactants (such as powdered alkane sulfonic acids) and internal recycle stream of powder occurring from the process of the present invention, wherein the average diameter of the powder is from 0.1 to 500 microns, preferably from 1 to 300 microns, more preferably from 5 to 100 microns.
  • the aluminosilicate ion exchange materials used herein as a detergent builder preferably have both a high calcium ion exchange capacity and a high exchange rate. Without intending to be limited by theory, it is believed that such high calcium ion exchange rate and capacity are a function of several interrelated factors which derive from the method by which the aluminosilicate ion exchange material is produced. In that regard, the aluminosilicate ion exchange materials used herein are preferably produced in accordance with Corkill et al, U.S. Patent No.
  • the aluminosilicate ion exchange material is in "sodium" form since the potassium and hydrogen forms of the instant aluminosilicate do not exhibit as high of an exchange rate and capacity as provided by the sodium form.
  • the aluminosilicate ion exchange material preferably is in over dried form so as to facilitate production of crisp detergent agglomerates as described herein.
  • the aluminosilicate ion exchange materials used herein preferably have particle size diameters which optimize their effectiveness as detergent builders.
  • particle size diameter represents the average particle size diameter of a given aluminosilicate ion exchange material as determined by conventional analytical techniques, such as microscopic determination and scanning electron microscope (SEM).
  • the preferred particle size diameter of the aluminosilicate is from about 0.1 micron to about 10 microns, more preferably from about 0.5 microns to about 9 microns. Most preferably, the particle size diameter is from about 1 microns to about 8 microns.
  • the aluminosilicate ion exchange material has the formula
  • the aluminosilicate has the formula Na 1 2[(Al ⁇ 2)i2-(Si ⁇ 2)l2]xH2 ⁇ wherein x is from about 20 to about 30, preferably about 27.
  • These preferred aluminosilicates are available commercially, for example under designations Zeolite A, Zeolite B and Zeolite X.
  • Naturally-occurring or synthetically derived aluminosilicate ion exchange materials suitable for use herein can be made as described in Krummel et al, U.S. Patent No. 3,985,669, the disclosure of which is incorporated herein by reference.
  • aluminosilicates used herein are further characterized by their ion exchange capacity which is at least about 200 mg equivalent of CaCO3 hardness/gram, calculated on an anhydrous basis, and which is preferably in a range from about 300 to 352 mg equivalent of CaCO3 hardness/gram.
  • the instant aluminosilicate ion exchange materials are still further characterized by their calcium ion exchange rate which is at least about 2 grains
  • Ca ++ /gallon/minute/-gram/gallon and more preferably in a range from about 2 grains Ca ++ /gallon/minute/-gram/gallon to about 6 grains Ca ++ /gallon/minute/
  • the amount of the finely atomized liquid of the present process can be from about 1 % to about 10% (active basis), preferably from 2% to about 6% (active basis) in total amount of the final product obtained by the process of the present invention.
  • the finely atomized liquid of the present process can be selected from the group consisting of liquid silicate, anionic or cationic surfactants which are in liquid form, aqueous or non-aqueous polymer solutions, water and mixtures thereof.
  • Other optional examples for the finely atomized liquid of the present invention can be sodium carboxy methyl cellulose solution, polyethylene glycol (PEG), and solutions of dimethylene triamine pentamethyl phosphonic acid (DETMP),
  • anionic surfactant solutions which can be used as the finely atomized liquid in the present inventions are about 88 - 97% active HLAS, about 30 - 50% active NaLAS, about 28% active AE3S solution, about 40-50% active liquid silicate, and so on.
  • Cationic surfactants can also be used as finely atomized liquid herein and suitable quaternary ammonium surfactants are selected from mono C6-C-J6. preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • aqueous or non-aqueous polymer solutions which can be used as the finely atomized liquid in the present inventions are modified polyamines which comprise a polyamine backbone corresponding to the formula: having a modified polyamine formula V( n+ i)W m Y n Z or a polyamine backbone corresponding to the formula:
  • V units are terminal units having the formula:
  • W units are backbone units having the formula:
  • Y units are branching units having the formula:
  • Z units are terminal units having the formula: wherein backbone linking R units are selected from the group consisting of C2- C-12 alkylene, C4-C12 alkenylene, C3-C12 hydroxyalkylene, C4-C12 dihydroxy- alkylene, C8-C 12 dialkylarylene, -(R 1 O) x R 1 -, -(R 1 O) X R5(OR 1 ) X -, -(CH2CH(OR 2 )CH2 ⁇ ) z (Rl O) y Rl (OCH2CH(OR2)CH2)W-,
  • R1 is C2- CQ alkylene and mixtures thereof
  • R2 is hydrogen, -(R 1 O) x B, and mixtures thereof
  • R 3 is C1-C18 alkyl, C7-C-12 arylalkyi, C7-C12 alkyl substituted aryl, C ⁇ - C-12 aryl, and mixtures thereof
  • R 4 is C ⁇
  • R ⁇ is C-1-C12 alkylene, C3-C-12 hydroxyalkylene, C4-C12 dihydroxy-alkylene, C8-C12 dialkylarylene, -C(O)-, -C(O)NHR6NHC(O)- F -R1(0R1)-, -C
  • B is hydrogen, C-i-C ⁇ alkyl, -(CH 2 )qSO3M, -(CH 2 )pCO 2 M, -(CH 2 )q(CHS ⁇ 3M)CH 2 S ⁇ 3M, -(CH2)q-(CHSO2M)CH2S03M, -(CH2) p PO3M, -PO3M, and mixtures thereof;
  • M is hydrogen or a water soluble cation in sufficient amount to satisfy charge balance;
  • X is a water soluble anion;
  • m has the value from 4 to about 400;
  • n has the value from 0 to about 200;
  • p has the value from 1 to 6,
  • q has the value from 0 to 6;
  • r has the value of 0 or 1 ;
  • w has the value 0 or 1 ;
  • x has the value from 1 to 100;
  • y has the value from 0 to 100;
  • z has the value 0 or
  • polyethyleneimines a polyethyleneimine having a molecular weight of 1800 which is further modified by ethoxylation to a degree of approximately 7 ethyleneoxy residues per nitrogen (PEI 1800, E7). It is preferable for the above polymer solution to be pre-complex with anionic surfactant such as NaLAS.
  • anionic surfactant such as NaLAS.
  • polymeric polycarboxylate dispersants which can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form.
  • Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
  • the presence in the polymeric polycarboxylates herein of monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight of the polymer.
  • Homo-polymeric polycarboxylates which have molecular weights above
  • Particularly suitable homo- polymeric polycarboxylates can be derived from acrylic acid.
  • acrylic acid- based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
  • the average molecular weight of such polymers in the acid form preferably ranges from above 4,000 to 10,000, preferably from above 4,000 to 7,000, and most preferably from above 4,000 to 5,000.
  • Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts.
  • Co-polymeric polycarboxylates such as a Acrylic/maleic-based copolymers may also be used.
  • Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
  • the average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000.
  • the ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1 :1 , more preferably from about 10:1 to 2:1.
  • Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. It is preferable for the above polymer solution to be pre-complexed with anionic surfactant such as LAS .
  • Adjunct Detergent Ingredients can include, for example, the alkali metal, ammonium and substituted ammoni
  • the starting detergent material in the present process can include additional detergent ingredients and/or, any number of additional ingredients can be incorporated in the detergent composition during subsequent steps of the present process.
  • adjunct ingredients include other detergency builders, bleaches, bleach activators, suds boosters or suds suppressors, anti-tarnish and anticorrosion agents, soil suspending agents, soil release agents, germicides, pH adjusting agents, non-builder alkalinity sources, chelating agents, smectite clays, enzymes, enzyme-stabilizing agents and perfumes. See U.S. Patent 3,936,537, issued February 3, 1976 to Baskerville, Jr. et al., incorporated herein by reference.
  • Other builders can be generally selected from the various water-soluble, alkali metal, ammonium or substituted ammonium phosphates, polyphosphates, phosphonates, polyphosphonates, carbonates, borates, polyhydroxy sulfonates, polyacetates, carboxylates, and polycarboxylates.
  • alkali metal especially sodium, salts of the above.
  • Preferred for use herein are the phosphates, carbonates, C ⁇ o-18 fatty acids, polycarboxylates, and mixtures thereof. More preferred are sodium tripolyphosphate, tetrasodium pyrophosphate, citrate, tartrate mono- and di-succinates, and mixtures thereof (see below).
  • crystalline layered sodium silicates exhibit a clearly increased calcium and magnesium ion exchange capacity.
  • the layered sodium silicates prefer magnesium ions over calcium ions, a feature necessary to insure that substantially all of the "hardness" is removed from the wash water.
  • These crystalline layered sodium silicates are generally more expensive than amorphous silicates as well as other builders. Accordingly, in order to provide an economically feasible laundry detergent, the proportion of crystalline layered sodium silicates used must be determined judiciously. Such crystalline layered sodium silicates are discussed in Corkill et al, U.S. Patent No. 4,605,509, previously incorporated herein by reference.
  • inorganic phosphate builders are sodium and potassium tripolyphosphate, pyrophosphate, polymeric metaphosphate having a degree of polymerization of from about 6 to 21 , and orthophosphates.
  • polyphosphonate builders are the sodium and potassium salts of ethylene diphosphonic acid, the sodium and potassium salts of ethane 1-hydroxy-1 , 1 -diphosphonic acid and the sodium and potassium salts of ethane, 1,1 ,2-triphosphonic acid.
  • Other phosphorus builder compounds are disclosed in U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,422,137; 3,400,176 and 3,400,148, all of which are incorporated herein by reference.
  • nonphosphorus, inorganic builders are tetraborate decahydrate and silicates having a weight ratio of SiO 2 to alkali metal oxide of from about 0.5 to about 4.0, preferably from about 1.0 to about 2.4.
  • Water-soluble, nonphosphorus organic builders useful herein include the various alkali metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates and polyhydroxy sulfonates.
  • polyacetate and polycarboxylate builders are the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylene diamine tetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid.
  • Polymeric polycarboxylate builders are set forth in U.S. Patent 3,308,067, Diehl, issued March 7, 1967, the disclosure of which is incorporated herein by reference.
  • Such materials include the water-soluble salts of homo- and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylene malonic acid.
  • Some of these materials are useful as the water-soluble anionic polymer as hereinafter described, but only if in intimate admixture with the non-soap anionic surfactant.
  • polyacetal carboxylates for use herein are the polyacetal carboxylates described in U.S. Patent 4,144,226, issued March 13, 1979 to Crutchfield et al, and U.S. Patent 4,246,495, issued March 27, 1979 to Crutchfield et al, both of which are incorporated herein by reference.
  • These polyacetal carboxylates can be prepared by bringing together under polymerization conditions an ester of glyoxylic acid and a polymerization initiator. The resulting polyacetal carboxylate ester is then attached to chemically stable end groups to stabilize the polyacetal carboxylate against rapid depolymerization in alkaline solution, converted to the corresponding salt, and added to a detergent composition.
  • Particularly preferred polycarboxylate builders are the ether carboxylate builder compositions comprising a combination of tartrate monosuccinate and tartrate disuccinate described in U.S. Patent 4,663,071, Bush et al., issued May 5, 1987, the disclosure of which is incorporated herein by reference.
  • Bleaching agents and activators are described in U.S. Patent 4,412,934, Chung et al., issued November 1 , 1983, and in U.S. Patent 4,483,781 , Hartman, issued November 20, 1984, both of which are incorporated herein by reference.
  • Chelating agents are also described in U.S. Patent 4,663,071 , Bush et al., from Column 17, line 54 through Column 18, line 68, incorporated herein by reference.
  • Suds modifiers are also optional ingredients and are described in U.S. Patents 3,933,672, issued January 20, 1976 to Bartoletta et al., and 4,136,045, issued January 23, 1979 to Gault et al., both incorporated herein by reference.
  • Suitable smectite clays for use herein are described in U.S. Patent 4,762,645, Tucker et al, issued August 9, 1988, Column 6, line 3 through Column 7, line 24, incorporated herein by reference.
  • Suitable additional detergency builders for use herein are enumerated in the Baskerville patent, Column 13, line 54 through Column 16, line 16, and in U.S. Patent 4,663,071 , Bush et al, issued May 5, 1987, both incorporated herein by reference.
  • the process can comprise the step of spraying an additional binder in one or more than one of the first, second and/or the third mixers for the present invention.
  • a binder is added for purposes of enhancing agglomeration by providing a "binding" or "sticking" agent for the detergent components.
  • the binder is preferably selected from the group consisting of water, anionic surfactants, nonionic surfactants, liquid silicates, polyethylene glycol, polyvinyl pyrrolidone polyacrylates, citric acid and mixtures thereof.
  • suitable binder materials including those listed herein are described in Beerse et al, U.S. Patent No.
  • Another optional step in the process entails finishing the resulting detergent agglomerates by a variety of processes including spraying and/or admixing other conventional detergent ingredients.
  • the finishing step encompasses spraying perfumes, brighteners and enzymes onto the finished agglomerates to provide a more complete detergent composition.
  • Such techniques and ingredients are well known in the art.
  • surfactant paste structuring process e.g., hardening an aqueous anionic surfactant paste by incorporating a paste-hardening material by using an extruder, prior to the process of the present invention.
  • surfactant paste structuring process e.g., hardening an aqueous anionic surfactant paste by incorporating a paste-hardening material by using an extruder.
  • the details of the surfactant paste structuring process is disclosed co-application No. PCT/US96/15960 (filed October 4, 1996) .
  • Step 1 250 - 270 kg/hr of aqueous CFAS (coconut fatty alcohol sulfate surfactant) paste (C12-C18. 71.5% active) is dispersed by the pin tools of a CB- 30 mixer along with 220 kg/hr of powdered STPP (mean particle size of 40 - 75 microns), 160 - 200 kg/hr of ground soda ash (mean particle size of 15 microns), 80- 120 kg/hr of ground sodium sulfate (mean particle size of 15 microns), and the 200 kg/hr of internal recycle stream of powder.
  • the surfactant paste is fed at about 40 to 52°C, and the powders are fed at room temperature.
  • the condition of the CB-30 mixer is as follows:
  • Step 2 The agglomerates from the CB-30 mixer are fed to the Schugi FX-160 mixer.
  • 30 kg/hr of HLAS an acid precursor of C ⁇
  • HLAS an acid precursor of C ⁇
  • 20-80 kg/hr of soda ash (mean particle size of about 10 - 20 microns) is added in the Schugi mixer.
  • the condition of the Schugi mixer is as follows: Mean residence time : 0.2 - 5 seconds Tip speed : 16 - 26 m/s
  • the resulting granules from the step 2 have a density of about 600g/l, and can be optionally subjected to the optional process of drying, cooling, sizing and/or grinding.
  • Step 1 15 kg/hr - 30kg/hr of HLAS (an acid precursor of C-J I-C-JS a'kyl benzene sulfonate; 95 % active) at about 50 °C, and 250 - 270 kg/hr of aqueous CFAS (coconut fatty alcohol sulfate surfactant) paste (C12-C18- 7 0 % active) is dispersed by the pin tools of a CB-30 mixer along with 220 kg/hr of powdered STPP (mean particle size of 40 - 75 microns), 160 - 200 kg/hr of ground soda ash (mean particle size of 15 microns), 80- 120 kg/hr of ground sodium sulfate (mean particle size of 15 microns), and the 200 kg/hr of internal recycle stream of powder.
  • the surfactant paste is fed at about 45 to 52°C, and the powders are fed at room temperature.
  • the condition of the CB-30 mixer is as follows
  • Step 3 The agglomerates from the Schugi mixer are fed to the KM-600 mixer for further agglomeration, rounding and growth of agglomerates. 60 kg/hr of ground soda ash (mean particle size of 15 microns) is also added in the KM mixer. Serrated plows are used as mixing elements in the KM mixer. Choppers for the KM mixer can be used to reduce the amount of oversized agglomerates.
  • the condition of the KM mixer is as follows: Mean residence time : 3- 6 minutes
  • the resulting granules from the step 3 have a density of about 700g/l, and can be optionally subjected to the optional process of cooling, drying, sizing an/or grinding.

Abstract

A non-tower process for continuously preparing granular detergent composition having a density of at least about 600 g/l is provided. The process comprises the steps of: (a) dispersing a surfactant, and coating the surfactant with fine powder having a diameter from 0.1 to 500 microns, in a mixer, wherein first agglomerates are formed, and (b) spraying on finely atomized liquid to the first agglomerates in a mixer, wherein second agglomerates are formed. Optionally, the second agglomerates are further subjected to the step (c), i.e., thoroughly mixing the second agglomerates in a mixer.

Description

PROCESS FOR MAKING A DETERGENT COMPOSITION BY NON-TOWER
PROCESS
FIELD OF THE INVENTION The present invention generally relates to a non-tower process for producing a particulate detergent composition. More particularly, the invention is directed to a continuous process during which detergent agglomerates are produced by feeding a surfactant and coating materials into a series of mixers. The process produces a free flowing, detergent composition whose density can be adjusted for wide range of consumer needs, and which can be commercially sold.
BACKGROUND OF THE INVENTION Recently, there has been considerable interest within the detergent industry for laundry detergents which are "compact" and therefore, have low dosage volumes. To facilitate production of these so-called low dosage detergents, many attempts have been made to produce high bulk density detergents, for example with a density of 600 g/l or higher. The low dosage detergents are currently in high demand as they conserve resources and can be sold in small packages which are more convenient for consumers. However, the extent to which modern detergent products need to be "compact" in nature remains unsettled. In fact, many consumers, especially in developing countries, continue to prefer a higher dosage levels in their respective laundering operations. Generally, there are two primary types of processes by which detergent granules or powders can be prepared. The first type of process involves spray- drying an aqueous detergent slurry in a spray-drying tower to produce highly porous detergent granules (e.g., tower process for low density detergent compositions). In the second type of process, the various detergent components are dry mixed after which they are agglomerated with a binder such as a nonionic or anionic surfactant, to produce high density detergent compositions (e.g., agglomeration process for high density detergent compositions). In the above two processes, the important factors which govern the density of the resulting detergent granules are the shape, porosity and particle size distribution of said granules, the density of the various starting materials, the shape of the various starting materials, and their respective chemical composition.
There have been many attempts in the art for providing processes which increase the density of detergent granules or powders. Particular attention has been given to densification of spray-dried granules by post tower treatment. For example, one attempt involves a batch process in which spray-dried or granulated detergent powders containing sodium tripolyphosphate and sodium sulfate are densified and spheronized in a Marumerizer®. This apparatus comprises a substantially horizontal, roughened, rotatable table positioned within and at the base of a substantially vertical, smooth walled cylinder. This process, however, is essentially a batch process and is therefore less suitable for the large scale production of detergent powders. More recently, other attempts have been made to provide continuous processes for increasing the density of "post- tower" or spray dried detergent granules. Typically, such processes require a first apparatus which pulverizes or grinds the granules and a second apparatus which increases the density of the pulverized granules by agglomeration. While these processes achieve the desired increase in density by treating or densifying "post tower" or spray dried granules, they are limited in their ability to go higher in surfactant active level without subsequent coating step. In addition, treating or densifying by "post tower" is not favourable in terms of economics (high capital cost) and complexity of operation. Moreover, all of the aforementioned processes are directed primarily for densifying or otherwise processing spray dried granules. Currently, the relative amounts and types of materials subjected to spray drying processes in the production of detergent granules has been limited. For example, it has been difficult to attain high levels of surfactant in the resulting detergent composition, a feature which facilitates production of detergents in a more efficient manner. Thus, it would be desirable to have a process by which detergent compositions can be produced without having the limitations imposed by conventional spray drying techniques.
To that end, the art is also replete with disclosures of processes which entail agglomerating detergent compositions. For example, attempts have been made to agglomerate detergent builders by mixing zeolite and/or layered silicates in a mixer to form free flowing agglomerates. While such attempts suggest that their process can be used to produce detergent agglomerates, they do not provide a mechanism by which starting detergent materials in the form of pastes, liquids and dry materials can be effectively agglomerated into crisp, free flowing detergent agglomerates.
Accordingly, there remains a need in the art to have an agglomeration (non-tower) process for continuously producing a detergent composition having high density delivered directly from starting detergent ingredients, and preferably the density can be achieved by adjusting the process condition. Also, there remains a need for such a process which is more efficient, flexible and economical to facilitate large-scale production of detergents (1) for flexibility in the ultimate density of the final composition, and (2) for flexibility in terms of incorporating several different kinds of detergent ingredients (especially liquid ingredients) into the process.
The following references are directed to densifying spray-dried granules: Appel et al, U.S. Patent No. 5,133,924 (Lever); Bortolotti et al, U.S. Patent No. 5,160,657 (Lever); Johnson et al, British patent No. 1 ,517,713 (Unilever); and Curtis, European Patent Application 451 ,894. The following references are directed to producing detergents by agglomeration: Beujean et al, Laid-open No.WO93/23,523 (Henkel), Lutz et al, U.S. Patent No. 4,992,079 (FMC Corporation); Porasik et al, U.S. Patent No. 4,427,417 (Korex); Beerse et al, U.S. Patent No. 5,108,646 (Procter & Gamble); Capeci et al, U.S. Patent No. 5,366,652 (Procter & Gamble); Hollingsworth et al, European Patent Application 351,937 (Unilever); Swatling et al, U.S. Patent No. 5,205,958; Dhalewadikar et al, Laid Open No.WO96/04359 (Unilever).
For example, the Laid-open No.WO93/23,523 (Henkel) describes the process comprising pre-agglomeration by a low speed mixer and further agglomeration step by high speed mixer for obtaining high density detergent composition with less than 25 wt % of the granules having a diameter over 2 mm. The U.S. Patent No. 4,427,417 (Korex) describes continuous process for agglomeration which reduces caking and oversized agglomerates.
None of the existing art provides all of the advantages and benefits of the present invention. SUMMARY OF THE INVENTION
The present invention meets the aforementioned needs in the art by providing a process which produces a high density granular detergent composition. The present invention also meets the aforementioned needs in the art by providing a process which produces a granular detergent composition for flexibility in the ultimate density of the final composition from agglomeration (e.g., non-tower) process. The process does not use the conventional spray drying towers currently which is limited in producing high surfactant loading compositions. In addition, the process of the present invention is more efficient, economical and flexible with regard to the variety of detergent compositions which can be produced in the process. Moreover, the process is more amenable to environmental concerns in that it does not use spray drying towers which typically emit particulates and volatile organic compounds into the atmosphere.
As used herein, the term "agglomerates" refers to particles formed by agglomerating raw materials with binder such as surfactants and or inorganic solutions / organic solvents and polymer solutions. As used herein, the term
"mean residence time" refers to following definition: mean residence time (hr) = mass (kg) / flow throughput (kg/hr)
All percentages used herein are expressed as "percent-by-weight" unless indicated otherwise. All ratios are weight ratios unless indicated otherwise. As used herein, "comprising" means that other steps and other ingredients which do not affect the result can be added. This term encompasses the terms "consisting of and "consisting essentially of.
In accordance with one aspect of the invention, a process for preparing a granular detergent composition having a density at least about 600 g/l is provided. The process comprises the steps of:
(a) dispersing a surfactant, and coating the surfactant with fine powder having a diameter from 0.1 to 500 microns, in a mixer wherein conditions of the mixer include (i) from about 2 to about 50 seconds of mean residence time, (ii) from about 4 to about 25 m/s of tip speed, and (iii) from about 0.15 to about 7 kj/kg of energy condition wherein agglomerates are formed; and
(b) spraying finely atomized liquid onto the agglomerates in a mixer wherein conditions of the mixer include (i) from about 0.2 to about 5 seconds of mean residence time, (ii) from about 10 to about 30 m/s of tip speed, and (iii) from about 0.15 to about 5 kj/kg of energy condition. Also provided is a process for preparing a granular detergent composition having a density of at least about 600 g/l, the process comprises the steps of:
(a) dispersing a surfactant, and coating the surfactant with fine powder having a diameter from 0.1 to 500 microns, in a mixer wherein conditions of the mixer include (i) from about 2 to about 50 seconds of mean residence time, (ii) from about 4 to about 25 m/s of tip speed, and (iii) from about 0.15 to about 7 kj/kg of energy condition, wherein first agglomerates are formed;
(b) spraying finely atomized liquid onto the first agglomerates in a mixer wherein conditions of the mixer include (i) from about 0.2 to about 5 seconds of mean residence time, (ii) from about 10 to about 30 m/s of tip speed, and (iii) from about 0.15 to about 5 kj/kg of energy condition, wherein second agglomerates are formed; and
(c) thoroughly mixing the second agglomerates in a mixer wherein conditions of the mixer include (i) from about 0.5 to about 15 minutes of mean residence time and (ii) from about 0.15 to about 7 kj/kg of energy condition.
Also provided are the granular detergent compositions having a high density of at least about 600g/l, produced by any one of the process embodiments described herein.
Accordingly, it is an object of the invention to provide a process for continuously producing a detergent composition which has flexibility with respect to density of the final products by controlling energy input, residence time condition, and tip speed condition in the mixers. It is also an object of the invention to provide a process which is more efficient, flexible and economical to facilitate large-scale production. These and other objects, features and attendant advantages of the present invention will become apparent to those skilled in the art from a reading of the following detailed description of the preferred embodiment and the appended claims.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention is directed to a process which produces free flowing, granular detergent agglomerates having a density of at least about 600 g/l. The process produces granular detergent agglomerates from an aqueous and/or non-aqueous surfactant which is then coated with fine powder having a diameter from 0.1 to 500 microns, in order to obtain low density granules.
Process First Step (Step a)
In the first step of the process, one or more of aqueous and/or non- aqueous surfactant(s), which is/are in the form of powder, paste and/or liquid , and fine powder having a diameter from 0.1 to 500 microns, preferably from about 1 to about 100 microns are fed into a first mixer, so as to make agglomerates. (The definition of the surfactants and the fine powder are described in detail hereinafter.) Optionally, an internal recycle stream of powder, generally having a diameter of about 0.1 to about 300 microns, which can be generated from an "optional conditioning process (i.e., drying and/or cooling step)," which is an additional step after the process of present invention can be fed into the mixer in addition to the fine powder. The amount of such internal recycle stream of powder can be 0 to about 60 wt% of final product.
In another embodiment of the invention, the surfactant(s) can be initially fed into a mixer or pre-mixer (e.g. a conventional screw extruder or other similar mixer) prior to the above, after which the mixed detergent materials are fed into the first step mixer as described herein for agglomeration.
Generally speaking, preferably, the mean residence time of the first mixer is in range from about 2 to about 50 seconds and tip speed of the first mixer is in range from about 4 m/s to about 25 m/s, the energy per unit mass of the first mixer (energy condition) is in range from about 0.15 kj/kg to about 7 kj/kg, more preferably, the mean residence time of the first mixer is in range from about 5 to about 30 seconds and tip speed of the first mixer is in range from about 6 m/s to about 18 m/s, the energy per unit mass of the first mixer (energy condition) is in range from about 0.3 kj/kg to about 4 kj/kg, and most preferably, the mean residence time in the first mixer is in range from about 5 to about 20 seconds and tip speed of the first mixer is in range from about 8 m/s to about 18 m/s, the energy per unit mass of the first mixer (energy condition) is in range from about 0.3 kj/kg to about 4 kj/kg. The examples of the first mixer for the first step can be any types of mixer known to persons skilled in the art, as long as the mixer can maintain the above mentioned condition for the first step. An Example can be Lodige CB Mixer manufactured by the Lodige company (Germany). As the result of the first step, agglomerates having fine powder on the surface of the agglomerates (first agglomerates) are then obtained. Second Step (Step b)
The resultant (i.e., the first agglomerates) from the first step is fed into a second mixer. Finely atomized liquid is sprayed on the agglomerates in the second mixer. If excessive fine powder from the first step is optionally included in the product added to the second step, spraying the finely atomized liquid is useful in order to bind the excessive fine powder onto the agglomerates from the first step. About 0-10% , more preferably about 2-5% of powder detergent ingredients of the kind used in the first step and/or other detergent ingredients can be added to the second mixer.
Generally speaking, preferably, the mean residence time of the second mixer is in range from about 0.2 to about 5 seconds and tip speed of the second mixer is in range from about 10 m/s to about 30 m/s, the energy per unit mass (energy condition) of the second mixer is in range from about 0.15 kj/kg to about 5 kj/kg, more preferably, the mean residence time of the second mixer is in range from about 0.2 to about 5 seconds and tip speed of the second mixer is in range from about 10 m/s to about 30 m/s, the energy per unit mass of the second mixer (energy condition) is in range from about 0.15 kj/kg to about 5 kj/kg, the most preferably, the mean residence time of the second mixer is in range from about 0.2 to about 5 seconds, tip speed of the second mixer is in range from about 15 m/s to about 26 m/s, the energy per unit mass of the second mixer (energy condition) is in the range from about 0.15 kj/kg to about 2 kj/kg.
The examples of the second mixer can be any types of mixer known to persons skilled in the art, as long as the mixer can maintain the above mentioned condition for the second step. An Example can be Flexomic Model manufactured by the Schugi company (Netherlands). As the result of the second step, second agglomerates are then obtained. Third Step TStep (cn
If the second agglomerates are less than 600 g/l, or if further agglomeration is preferred to meet the optimum condition as the final product from the process of the present invention, the agglomerates from the second step (the second agglomerates) are fed into a third mixer. Namely, the second agglomerates are mixed and sheared thoroughly for rounding and growth of the agglomerates in the third mixer. Optionally, about 0-10% , more preferably about 2-5% of powder detergent ingredients of the kind used in the first step, second step, and/or other detergent ingredients can be added to the third step. Preferably, choppers which are attachable for the third mixer can be used to break up undesirable oversized agglomerates. Therefore, the process including the third mixer with choppers is useful in order to obtain reduced amount of oversized agglomerates as final products, and such process is one preferred embodiment of the present invention.
Generally speaking, preferably, the mean residence time of the third mixer is in range from about 0.5 to about 15 minutes and the energy per unit mass of the third mixer (energy condition) is in range from about 0.15 to about 7 kj/kg, more preferably, the mean residence time of the third mixer is from about 3 to about 6 minutes and the energy per unit mass of the third mixer (energy condition) is in range from about 0.15 to about 4kj/kg.
The examples of the third mixer can be any types of mixer known to persons skilled in the art, as long as the mixer can maintain the above mentioned condition for the third step. An Example can be Lodige KM Mixer manufactured by the Lodige company (Germany).
As the result of the second (or the third step), a resultant product having a density of at least 600 g/l, is then obtained. Optionally, the resultant can be further subjected to drying, cooling and/or grinding. In the case that the process of the present invention is proceeded by using (1) CB mixer which has flexibility to inject at least two liquid ingredients, (2) Schugi Mixer which has flexibility to inject at least two liquid ingredients, (3) KM mixer which has flexibility to inject at least a liquid ingredient, the process can incorporate five different kinds of liquid ingredients in the process. Therefore, the proposed process is beneficial for persons skilled in the art in order to incorporate into a granule making process starting detergent materials which are in liquid form and are rather expensive and sometimes more difficult in terms of handling and/or storage than solid materials. Starting Detergent Materials
The total amount of the surfactants in products made by the present invention, which are included in the following detergent materials, finely atomized liquid and adjunct detergent ingredients, is generally from about 5 % to about 60 %, more preferably from about 12% to about 40 %, more preferably, from about
15 to about 35%, in total amount of the final product obtained by the process of the present invention. The surfactants which should be included in the above can be from any part of the process of the present invention., e.g., from either one of the first step, the second step and/or the third step of the present invention.
Detergent Surfactant (Agueous /Non-agueous)
The amount of the surfactant of the present process can be from about 5 % to about 60 %, more preferably from about 12% to about 40 %, more preferably, from about 15 to about 35%, in total amount of the final product obtained by the process of the present invention.
The surfactant of the present process, which is used as the above mentioned starting detergent materials in the first step, is in the form of powdered, pasted or liquid raw materials.
The surfactant itself is preferably selected from anionic, nonionic, zwitterionic, ampholytic and cationic classes and compatible mixtures thereof. Detergent surfactants useful herein are described in U.S. Patent 3,664,961, Norris, issued May 23, 1972, and in U.S. Patent 3,929,678, Laughlin et al., issued December 30, 1975, both of which are incorporated herein by reference. Useful cationic surfactants also include those described in U.S. Patent 4,222,905, Cockrell, issued September 16, 1980, and in U.S. Patent 4,239,659, Muφhy, issued December 16, 1980, both of which are also incorporated herein by reference. Of the surfactants, anionics and nonionics are preferred and anionics are most preferred.
Nonlimiting examples of the preferred anionic surfactants useful in the present invention include the conventional Cι <|-C<|8 alkyl benzene sulfonates ("LAS"), primary, branched-chain and random C10-C20 alkyl sulfates ("AS"), the c10"c18 secondary (2,3) alkyl sulfates of the formula CH3(CH2)x(CHOSO3~M+) CH3 and CH3 (CH2)y(CHOSO3~M+) CH2CH3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, and the C10-C18 alky' alkoχy sulfates ("AEXS"; especially EO 1-7 ethoxy sulfates).
Useful anionic surfactants also include water-soluble salts of 2-acyloxy- alkane-1-sulfonic acids containing from about 2 to 9 carbon atoms in the acyl group and from about 9 to about 23 carbon atoms in the alkane moiety; water- soluble salts of olefin sulfonates containing from about 12 to 24 carbon atoms; and beta-alkyloxy alkane sulfonates containing from about 1 to 3 carbon atoms in the alkyl group and from about 8 to 20 carbon atoms in the alkane moiety .
Optionally, other exemplary surfactants useful in the invention include C10-C18 a'kyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylat.es), the C-ιo-18 glycerol ethers, the C10-C18 alkyl polyglycosides and the corresponding sulfated polyglycosides, and C12-C18 alpha-sulfonated fatty acid esters. If desired, the conventional nonionic and amphoteric surfactants such as the C12- -I8 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C-JO-C-I S amine oxides, and the like, can also be included in the overall compositions. The C-JQ-CI S N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C12-C18 N- methylglucamides. See WO 9,206,154. Other sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C-J Q-CIS N_(3- methoxypropyl) glucamide. The N-propyl through N-hexyl C12-C18 glucamides can be used for low sudsing. C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C10-C16 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts.
Cationic surfactants can also be used as a detergent surfactant herein and suitable quaternary ammonium surfactants are selected from mono C6-C16, preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups. Ampholytic surfactants can also be used as a detergent surfactant herein, which include aliphatic derivatives of heterocyclic secondary and tertiary amines; zwitterionic surfactants which include derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds; water-soluble salts of esters of alpha-sulfonated fatty acids; alkyl ether sulfates; water-soluble salts of olefin sulfonates; beta-alkyloxy alkane sulfonates; betaines having the formula R(R1)2N+R2COO-, wherein R is a C6-C18 hydrocarbyl group, preferably a C10- C16 alkyl group or C10-C16 acylamido alkyl group, each R1 is typically C1-C3 alkyl, preferably methyl and R2 is a C1-C5 hydrocarbyl group, preferably a C1- C3 alkylene group, more preferably a C1-C2 alkylene group. Examples of suitable betaines include coconut acylamidopropyldimethyl betaine; hexadecyl dimethyl betaine; C12-14 acylamidopropylbetaine; C8-14 acylamidohexyldiethyl betaine; 4[C14-16 acylmethylamidodiethylammonio]-1-carboxybutane; C16-18 acylamidodimethylbetaine; C12-I6 acylamidopentanediethylbetaine; and [C12-I6 acylmethylamidodimethylbetaine. Preferred betaines are C12-I8 dimethyl-ammonio hexanoate and the C10-I8 acylamidopropane (or ethane) dimethyl (or diethyl) betaines; and the sultaines having the formula (R(R1)2N+R2SO3_ wherein R is a C6-C18 hydrocarbyl group, preferably a C10- C16 alkyl group, more preferably a C12-C13 alkyl group, each R1 is typically C1- C3 alkyl, preferably methyl, and R2 is a C1-C6 hydrocarbyl group, preferably a C1-C3 alkylene or, preferably, hydroxyalkylene group. Examples of suitable sultaines include C12-C14 dimethylammonio-2-hydroxypropyl sulfonate, C12- C14 amido propyl ammonio-2-hydroxypropyl sultaine, C12-C14 dihydroxyethylammonio propane sulfonate, and C16-I8 dimethylammonio hexane sulfonate, with C12-14 amido propyl ammonio-2-hydroxypropyl sultaine being preferred. Fine Powder
The amount of the fine powder of the present process, which is used in the first step, can be from about 94% to 30%, preferably from 86% to 54%, in total amount of starting material for the first step . The starting fine powder of the present process preferably selected from the group consisting of ground soda ash, powdered sodium tripolyphosphate (STPP), hydrated tripolyphosphate, ground sodium sulphates, aluminosilicates, crystalline layered silicates, nitrilotriacetates (NTA), phosphates, precipitated silicates, polymers, carbonates, citrates, powdered surfactants (such as powdered alkane sulfonic acids) and internal recycle stream of powder occurring from the process of the present invention, wherein the average diameter of the powder is from 0.1 to 500 microns, preferably from 1 to 300 microns, more preferably from 5 to 100 microns. In the case of using hydrated STPP as the fine powder of the present invention, STPP which is hydrated to a level of not less than 50% is preferable. The aluminosilicate ion exchange materials used herein as a detergent builder preferably have both a high calcium ion exchange capacity and a high exchange rate. Without intending to be limited by theory, it is believed that such high calcium ion exchange rate and capacity are a function of several interrelated factors which derive from the method by which the aluminosilicate ion exchange material is produced. In that regard, the aluminosilicate ion exchange materials used herein are preferably produced in accordance with Corkill et al, U.S. Patent No. 4,605,509 (Procter & Gamble), the disclosure of which is incorporated herein by reference. Preferably, the aluminosilicate ion exchange material is in "sodium" form since the potassium and hydrogen forms of the instant aluminosilicate do not exhibit as high of an exchange rate and capacity as provided by the sodium form. Additionally, the aluminosilicate ion exchange material preferably is in over dried form so as to facilitate production of crisp detergent agglomerates as described herein. The aluminosilicate ion exchange materials used herein preferably have particle size diameters which optimize their effectiveness as detergent builders. The term "particle size diameter" as used herein represents the average particle size diameter of a given aluminosilicate ion exchange material as determined by conventional analytical techniques, such as microscopic determination and scanning electron microscope (SEM). The preferred particle size diameter of the aluminosilicate is from about 0.1 micron to about 10 microns, more preferably from about 0.5 microns to about 9 microns. Most preferably, the particle size diameter is from about 1 microns to about 8 microns. Preferably, the aluminosilicate ion exchange material has the formula
Naz[(AIO2)z.(Siθ2)y]xH2O wherein z and y are integers of at least 6, the molar ratio of z to y is from about 1 to about 5 and x is from about 10 to about 264. More preferably, the aluminosilicate has the formula Na12[(Alθ2)i2-(Siθ2)l2]xH2θ wherein x is from about 20 to about 30, preferably about 27. These preferred aluminosilicates are available commercially, for example under designations Zeolite A, Zeolite B and Zeolite X. Alternatively, naturally-occurring or synthetically derived aluminosilicate ion exchange materials suitable for use herein can be made as described in Krummel et al, U.S. Patent No. 3,985,669, the disclosure of which is incorporated herein by reference.
The aluminosilicates used herein are further characterized by their ion exchange capacity which is at least about 200 mg equivalent of CaCO3 hardness/gram, calculated on an anhydrous basis, and which is preferably in a range from about 300 to 352 mg equivalent of CaCO3 hardness/gram.
Additionally, the instant aluminosilicate ion exchange materials are still further characterized by their calcium ion exchange rate which is at least about 2 grains
Ca++/gallon/minute/-gram/gallon, and more preferably in a range from about 2 grains Ca++/gallon/minute/-gram/gallon to about 6 grains Ca++/gallon/minute/
-gram/gallon.
Finely Atomized Liquid
The amount of the finely atomized liquid of the present process can be from about 1 % to about 10% (active basis), preferably from 2% to about 6% (active basis) in total amount of the final product obtained by the process of the present invention. The finely atomized liquid of the present process can be selected from the group consisting of liquid silicate, anionic or cationic surfactants which are in liquid form, aqueous or non-aqueous polymer solutions, water and mixtures thereof. Other optional examples for the finely atomized liquid of the present invention can be sodium carboxy methyl cellulose solution, polyethylene glycol (PEG), and solutions of dimethylene triamine pentamethyl phosphonic acid (DETMP),
The preferable examples of the anionic surfactant solutions which can be used as the finely atomized liquid in the present inventions are about 88 - 97% active HLAS, about 30 - 50% active NaLAS, about 28% active AE3S solution, about 40-50% active liquid silicate, and so on.
Cationic surfactants can also be used as finely atomized liquid herein and suitable quaternary ammonium surfactants are selected from mono C6-C-J6. preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
Preferable examples of the aqueous or non-aqueous polymer solutions which can be used as the finely atomized liquid in the present inventions are modified polyamines which comprise a polyamine backbone corresponding to the formula:
Figure imgf000016_0001
having a modified polyamine formula V(n+i)WmYnZ or a polyamine backbone corresponding to the formula:
Figure imgf000016_0002
having a modified polyamine formula V^.k+^WmYnY'kZ, wherein k is less than or equal to n, said polyamine backbone prior to modification has a molecular weight greater than about 200 daltons, wherein
i) V units are terminal units having the formula:
Figure imgf000016_0003
ii) W units are backbone units having the formula:
Figure imgf000016_0004
iii) Y units are branching units having the formula:
Figure imgf000016_0005
iv) Z units are terminal units having the formula:
Figure imgf000017_0001
wherein backbone linking R units are selected from the group consisting of C2- C-12 alkylene, C4-C12 alkenylene, C3-C12 hydroxyalkylene, C4-C12 dihydroxy- alkylene, C8-C12 dialkylarylene, -(R1O)xR1-, -(R1 O)XR5(OR1 )X-, -(CH2CH(OR2)CH2θ)z(Rl O)yRl (OCH2CH(OR2)CH2)W-,
-C(O)(R4)rC(0)-, -CH2CH(0R2)CH2-, and mixtures thereof; wherein R1 is C2- CQ alkylene and mixtures thereof; R2 is hydrogen, -(R1O)xB, and mixtures thereof; R3 is C1-C18 alkyl, C7-C-12 arylalkyi, C7-C12 alkyl substituted aryl, Cβ- C-12 aryl, and mixtures thereof; R4 is C<|-C<|2 alkylene, C4-C12 alkenylene, Cs- C12 arylalkylene,
Figure imgf000017_0002
arylene, and mixtures thereof; R§ is C-1-C12 alkylene, C3-C-12 hydroxyalkylene, C4-C12 dihydroxy-alkylene, C8-C12 dialkylarylene, -C(O)-, -C(O)NHR6NHC(O)-F -R1(0R1)-, -C(O)(R4)rC(O)-, -CH2CH(OH)CH2-, -CH2CH(OH)CH2O(R O)yR1OCH2CH(OH)CH2-, and mixtures thereof; R6 is C2-C12 alkylene or C6-C12 arylene; E units are selected from the group consisting of hydrogen, C-1-C22 alkyl, C3-C22 alkenyl, C7-C22 arylalkyi, C2-C22 hydroxyalkyl, -(CH2)pCO2M, -(CH2)qSO3M, -CH(CH2CO2M)CO2M, -(CH2)pP03M. -(R 0)xB, -C(O)R3, and mixtures thereof; oxide; B is hydrogen, C-i-Cβ alkyl, -(CH2)qSO3M, -(CH2)pCO2M, -(CH2)q(CHSθ3M)CH2Sθ3M, -(CH2)q-(CHSO2M)CH2S03M, -(CH2)pPO3M, -PO3M, and mixtures thereof; M is hydrogen or a water soluble cation in sufficient amount to satisfy charge balance; X is a water soluble anion; m has the value from 4 to about 400; n has the value from 0 to about 200; p has the value from 1 to 6, q has the value from 0 to 6; r has the value of 0 or 1 ; w has the value 0 or 1 ; x has the value from 1 to 100; y has the value from 0 to 100; z has the value 0 or 1. One example of the most preferred polyethyleneimines would be a polyethyleneimine having a molecular weight of 1800 which is further modified by ethoxylation to a degree of approximately 7 ethyleneoxy residues per nitrogen (PEI 1800, E7). It is preferable for the above polymer solution to be pre-complex with anionic surfactant such as NaLAS. Other preferable examples of the aqueous or non-aqueous polymer solutions which can be used as the finely atomized liquid in the present invention are polymeric polycarboxylate dispersants which can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form. Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid. The presence in the polymeric polycarboxylates herein of monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight of the polymer. Homo-polymeric polycarboxylates which have molecular weights above
4000, such as described next are preferred. Particularly suitable homo- polymeric polycarboxylates can be derived from acrylic acid. Such acrylic acid- based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid. The average molecular weight of such polymers in the acid form preferably ranges from above 4,000 to 10,000, preferably from above 4,000 to 7,000, and most preferably from above 4,000 to 5,000. Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts.
Co-polymeric polycarboxylates such as a Acrylic/maleic-based copolymers may also be used. Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid. The average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000. The ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1 :1 , more preferably from about 10:1 to 2:1. Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. It is preferable for the above polymer solution to be pre-complexed with anionic surfactant such as LAS . Adjunct Detergent Ingredients
The starting detergent material in the present process can include additional detergent ingredients and/or, any number of additional ingredients can be incorporated in the detergent composition during subsequent steps of the present process. These adjunct ingredients include other detergency builders, bleaches, bleach activators, suds boosters or suds suppressors, anti-tarnish and anticorrosion agents, soil suspending agents, soil release agents, germicides, pH adjusting agents, non-builder alkalinity sources, chelating agents, smectite clays, enzymes, enzyme-stabilizing agents and perfumes. See U.S. Patent 3,936,537, issued February 3, 1976 to Baskerville, Jr. et al., incorporated herein by reference.
Other builders can be generally selected from the various water-soluble, alkali metal, ammonium or substituted ammonium phosphates, polyphosphates, phosphonates, polyphosphonates, carbonates, borates, polyhydroxy sulfonates, polyacetates, carboxylates, and polycarboxylates. Preferred are the alkali metal, especially sodium, salts of the above. Preferred for use herein are the phosphates, carbonates, C<ιo-18 fatty acids, polycarboxylates, and mixtures thereof. More preferred are sodium tripolyphosphate, tetrasodium pyrophosphate, citrate, tartrate mono- and di-succinates, and mixtures thereof (see below). In comparison with amorphous sodium silicates, crystalline layered sodium silicates exhibit a clearly increased calcium and magnesium ion exchange capacity. In addition, the layered sodium silicates prefer magnesium ions over calcium ions, a feature necessary to insure that substantially all of the "hardness" is removed from the wash water. These crystalline layered sodium silicates, however, are generally more expensive than amorphous silicates as well as other builders. Accordingly, in order to provide an economically feasible laundry detergent, the proportion of crystalline layered sodium silicates used must be determined judiciously. Such crystalline layered sodium silicates are discussed in Corkill et al, U.S. Patent No. 4,605,509, previously incorporated herein by reference.
Specific examples of inorganic phosphate builders are sodium and potassium tripolyphosphate, pyrophosphate, polymeric metaphosphate having a degree of polymerization of from about 6 to 21 , and orthophosphates. Examples of polyphosphonate builders are the sodium and potassium salts of ethylene diphosphonic acid, the sodium and potassium salts of ethane 1-hydroxy-1 , 1 -diphosphonic acid and the sodium and potassium salts of ethane, 1,1 ,2-triphosphonic acid. Other phosphorus builder compounds are disclosed in U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,422,137; 3,400,176 and 3,400,148, all of which are incorporated herein by reference. Examples of nonphosphorus, inorganic builders are tetraborate decahydrate and silicates having a weight ratio of SiO2 to alkali metal oxide of from about 0.5 to about 4.0, preferably from about 1.0 to about 2.4. Water-soluble, nonphosphorus organic builders useful herein include the various alkali metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates and polyhydroxy sulfonates. Examples of polyacetate and polycarboxylate builders are the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylene diamine tetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid.
Polymeric polycarboxylate builders are set forth in U.S. Patent 3,308,067, Diehl, issued March 7, 1967, the disclosure of which is incorporated herein by reference. Such materials include the water-soluble salts of homo- and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylene malonic acid. Some of these materials are useful as the water-soluble anionic polymer as hereinafter described, but only if in intimate admixture with the non-soap anionic surfactant.
Other suitable polycarboxylates for use herein are the polyacetal carboxylates described in U.S. Patent 4,144,226, issued March 13, 1979 to Crutchfield et al, and U.S. Patent 4,246,495, issued March 27, 1979 to Crutchfield et al, both of which are incorporated herein by reference. These polyacetal carboxylates can be prepared by bringing together under polymerization conditions an ester of glyoxylic acid and a polymerization initiator. The resulting polyacetal carboxylate ester is then attached to chemically stable end groups to stabilize the polyacetal carboxylate against rapid depolymerization in alkaline solution, converted to the corresponding salt, and added to a detergent composition. Particularly preferred polycarboxylate builders are the ether carboxylate builder compositions comprising a combination of tartrate monosuccinate and tartrate disuccinate described in U.S. Patent 4,663,071, Bush et al., issued May 5, 1987, the disclosure of which is incorporated herein by reference.
Bleaching agents and activators are described in U.S. Patent 4,412,934, Chung et al., issued November 1 , 1983, and in U.S. Patent 4,483,781 , Hartman, issued November 20, 1984, both of which are incorporated herein by reference. Chelating agents are also described in U.S. Patent 4,663,071 , Bush et al., from Column 17, line 54 through Column 18, line 68, incorporated herein by reference. Suds modifiers are also optional ingredients and are described in U.S. Patents 3,933,672, issued January 20, 1976 to Bartoletta et al., and 4,136,045, issued January 23, 1979 to Gault et al., both incorporated herein by reference.
Suitable smectite clays for use herein are described in U.S. Patent 4,762,645, Tucker et al, issued August 9, 1988, Column 6, line 3 through Column 7, line 24, incorporated herein by reference. Suitable additional detergency builders for use herein are enumerated in the Baskerville patent, Column 13, line 54 through Column 16, line 16, and in U.S. Patent 4,663,071 , Bush et al, issued May 5, 1987, both incorporated herein by reference.
Optional Process Steps Optionally, the process can comprise the step of spraying an additional binder in one or more than one of the first, second and/or the third mixers for the present invention. A binder is added for purposes of enhancing agglomeration by providing a "binding" or "sticking" agent for the detergent components. The binder is preferably selected from the group consisting of water, anionic surfactants, nonionic surfactants, liquid silicates, polyethylene glycol, polyvinyl pyrrolidone polyacrylates, citric acid and mixtures thereof. Other suitable binder materials including those listed herein are described in Beerse et al, U.S. Patent No. 5,108,646 (Procter & Gamble Co.), the disclosure of which is incorporated herein by reference. Other optional steps contemplated by the present process include screening the oversized detergent agglomerates in a screening apparatus which can take a variety of forms including but not limited to conventional screens chosen for the desired particle size of the finished detergent product. Other optional steps include conditioning of the detergent agglomerates by subjecting the agglomerates to additional drying by way of apparatus discussed previously.
Another optional step in the process entails finishing the resulting detergent agglomerates by a variety of processes including spraying and/or admixing other conventional detergent ingredients. For example, the finishing step encompasses spraying perfumes, brighteners and enzymes onto the finished agglomerates to provide a more complete detergent composition. Such techniques and ingredients are well known in the art.
Another optional step in the process involves surfactant paste structuring process, e.g., hardening an aqueous anionic surfactant paste by incorporating a paste-hardening material by using an extruder, prior to the process of the present invention. The details of the surfactant paste structuring process is disclosed co-application No. PCT/US96/15960 (filed October 4, 1996) .
In order to make the present invention more readily understood, reference is made to the following examples, which are intended to be illustrative only and not intended to be limiting in scope.
EXAMPLES Example 1 :
The following is an example for obtaining agglomerates having high density, using Lodige CB mixer (CB-30), followed by Schugi FX-160 Mixer.
[Step 1] 250 - 270 kg/hr of aqueous CFAS (coconut fatty alcohol sulfate surfactant) paste (C12-C18. 71.5% active) is dispersed by the pin tools of a CB- 30 mixer along with 220 kg/hr of powdered STPP (mean particle size of 40 - 75 microns), 160 - 200 kg/hr of ground soda ash (mean particle size of 15 microns), 80- 120 kg/hr of ground sodium sulfate (mean particle size of 15 microns), and the 200 kg/hr of internal recycle stream of powder. The surfactant paste is fed at about 40 to 52°C, and the powders are fed at room temperature. The condition of the CB-30 mixer is as follows:
Mean residence time : 10-18 seconds Tip speed : 7.5 - 14 m/s
Energy condition : 0.5 - 4 kj/kg Mixer speed : 550 - 900 rpm Jacket temperature : 30°C
[Step 2] The agglomerates from the CB-30 mixer are fed to the Schugi FX-160 mixer. 30 kg/hr of HLAS (an acid precursor of C<| π-C<|8 alkyl benzene sulfonate; 94 - 97% active) is dispersed as finely atomized liquid in the Schugi mixer at about 50 to 60°C. 20-80 kg/hr of soda ash (mean particle size of about 10 - 20 microns) is added in the Schugi mixer. The condition of the Schugi mixer is as follows: Mean residence time : 0.2 - 5 seconds Tip speed : 16 - 26 m/s
Energy condition : 0.15 - 2 kj/kg
Mixer speed : 2000 - 3200 rpm The resulting granules from the step 2 have a density of about 600g/l, and can be optionally subjected to the optional process of drying, cooling, sizing and/or grinding. Example 2:
The following is an example for obtaining agglomerates having high density, using Lodige CB mixer (CB-30), followed by Schugi FX-160 Mixer, then Lodige KM mixer (KM-600).
[Step 1] 15 kg/hr - 30kg/hr of HLAS (an acid precursor of C-J I-C-JS a'kyl benzene sulfonate; 95 % active) at about 50 °C, and 250 - 270 kg/hr of aqueous CFAS (coconut fatty alcohol sulfate surfactant) paste (C12-C18- 70 % active) is dispersed by the pin tools of a CB-30 mixer along with 220 kg/hr of powdered STPP (mean particle size of 40 - 75 microns), 160 - 200 kg/hr of ground soda ash (mean particle size of 15 microns), 80- 120 kg/hr of ground sodium sulfate (mean particle size of 15 microns), and the 200 kg/hr of internal recycle stream of powder. The surfactant paste is fed at about 45 to 52°C, and the powders are fed at room temperature. The condition of the CB-30 mixer is as follows: Mean residence time : 10-18 seconds
Tip speed : 7.5 - 14 m/s
Energy condition : 0.5 - 4 kj/kg
Mixer speed : 550 - 900 rpm
Jacket temperature : 30°C [Step 2] The agglomerates from the CB-30 mixer are fed to the Schugi
FX-160 mixer. 35 kg/hr of neutralized AE3S liquid (28 % active) is dispersed as finely atomized liquid in the Schugi mixer at about 30-40°C. 20-80 kg/hr of soda ash is added in the Schugi mixer. The condition of the Schugi mixer is as follows: Mean residence time : 0.2 - 5 seconds
Tip speed : 16 - 26 m/s
Energy condition : 0.15 - 2 kj/kg
Mixer speed : 2000 - 3200 rpm
[Step 3] The agglomerates from the Schugi mixer are fed to the KM-600 mixer for further agglomeration, rounding and growth of agglomerates. 60 kg/hr of ground soda ash (mean particle size of 15 microns) is also added in the KM mixer. Serrated plows are used as mixing elements in the KM mixer. Choppers for the KM mixer can be used to reduce the amount of oversized agglomerates. The condition of the KM mixer is as follows: Mean residence time : 3- 6 minutes
Energy condition : 0.15 - 2 kj/kg
Mixer speed : 100 - 150 rpm
Jacket temperature: 30 - 40°C The resulting granules from the step 3 have a density of about 700g/l, and can be optionally subjected to the optional process of cooling, drying, sizing an/or grinding.
Having thus described the invention in detail, it will be obvious to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is described in the specification.

Claims

What is claimed is:
1. A non-tower process for preparing a granular detergent composition having a density of at least about 600 g/l, comprising the steps of:
(a) dispersing a surfactant, and coating the surfactant with fine powder having a diameter from 0.1 to 500 microns, in a mixer wherein conditions of the mixer include (i) from about 2 to about 50 seconds of mean residence time, (ii) from about 4 to about 25 m/s of tip speed, and (iii) from about 0.15 to about 7 kj/kg of energy condition wherein agglomerates are formed; and
(b) spraying finely atomized liquid onto the agglomerates in a mixer wherein conditions of the mixer include (i) from about 0.2 to about 5 seconds of mean residence time, (ii) from about 10 to about 30 m/s of tip speed, and (iii) from about 0.15 to about 5 kj/kg of energy condition.
2. A non-tower process for preparing a granular detergent composition having a density of at least about 600 g/l, comprising the steps of:
(a) dispersing a surfactant, and coating the surfactant with fine powder having a diameter from 0.1 to 500 microns, in a mixer wherein conditions of the mixer include (i) from about 2 to about 50 seconds of mean residence time, (ii) from about 4 to about 25 m/s of tip speed, and (iii) from about 0.15 to about 7 kj/kg of energy condition, wherein first agglomerates are formed;
(b) spraying finely atomized liquid onto the first agglomerates in a mixer wherein conditions of the mixer include (i) from about 0.2 to about 5 seconds of mean residence time, (ii) from about 10 to about 30 m/s of tip speed, and (iii) from about 0.15 to about 5 kj/kg of energy condition, wherein second agglomerates are formed; and (c) thoroughly mixing the second agglomerates in a mixer wherein conditions of the mixer include (i) from about 0.5 to about 15 minutes of mean residence time and (ii) from about 0.15 to about 7 kj/kg of energy condition.
3. A process according to claims 1 or 2 wherein said surfactant is selected from the group consisting of anionic surfactant, nonionic surfactant, cationic surfactant, zwitterionic, ampholytic and mixtures thereof.
4. A process according to claims 1 or 2 wherein said surfactant is selected from the group consisting of alkyl benzene sulfonates, alkyl alkoxy sulfates, alkyl ethoxylates, alkyl sulfates, coconut fatty alcohol sulfates and mixtures thereof.
5. The process according to claims 1 or 2 wherein excessive fine powder is formed in step (a), and wherein the excessive fine powder is added to step (b).
6. A process according to claims 1 or 2 wherein an aqueous or non-aqueous polymer solution is dispersed with said surfactant in step (a).
7. A process according to claims 1 or 2 wherein the fine powder is selected from the group consisting of soda ash, powdered sodium tripolyphosphate, hydrated tripolyphosphate, sodium sulphates, aluminosilicates, crystalline layered silicates, phosphates, precipitated silicates, polymers, carbonates, citrates, nitrilotriacetates, powdered surfactants and mixtures thereof.
8. A process according to claims 1 or 2 wherein the finely atomized liquid is selected from the group consisting of liquid silicates, anionic surfactants, cationic surfactants, aqueous polymer solutions, non-aqueous polymer solutions, water and mixtures thereof.
9. A process according to claim 1 wherein the process is a continuous process, wherein the resultant from step (b) is further subjected to cooling and/ or drying step, wherein the step creates an internal recycle stream of powder, wherein the internal recycle stream of powder is further added to step (a).
10. A process according to claim 2 wherein the process is a continuous process, wherein the resultant from step (c) is further subjected to cooling and/ or drying step, wherein the step creates an internal recycle stream of powder, wherein the internal recycle stream of powder is further added to step (a).
11. A granular detergent composition made according to the process of claims 1 or 2.
PCT/US1997/009793 1996-01-05 1997-06-05 Process for making a detergent composition by non-tower process WO1998014555A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/269,851 US6121229A (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
JP51649398A JP3299984B2 (en) 1996-10-04 1997-06-05 Method for producing detergent composition by non-tower process
BR9713251-9A BR9713251A (en) 1996-01-05 1997-06-05 Process for obtaining a detergent composition by a non-tower process
CA002268063A CA2268063C (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
EP97932153A EP0929655A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
AU35683/97A AU3568397A (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
USPCT/US96/15881 1996-10-04
PCT/US1996/015881 WO1998014549A1 (en) 1996-10-04 1996-10-04 Process for making a low density detergent composition by non-tower process

Publications (1)

Publication Number Publication Date
WO1998014555A1 true WO1998014555A1 (en) 1998-04-09

Family

ID=22255901

Family Applications (9)

Application Number Title Priority Date Filing Date
PCT/US1996/015881 WO1998014549A1 (en) 1996-10-04 1996-10-04 Process for making a low density detergent composition by non-tower process
PCT/US1997/009790 WO1998014552A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
PCT/US1997/009794 WO1998014556A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
PCT/US1997/009789 WO1998014551A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
PCT/US1997/009796 WO1998014558A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
PCT/US1997/009795 WO1998014557A1 (en) 1996-01-05 1997-06-05 Process for making a detergent composition by non-tower process
PCT/US1997/009793 WO1998014555A1 (en) 1996-01-05 1997-06-05 Process for making a detergent composition by non-tower process
PCT/US1997/009792 WO1998014554A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
PCT/US1997/009791 WO1998014553A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process

Family Applications Before (6)

Application Number Title Priority Date Filing Date
PCT/US1996/015881 WO1998014549A1 (en) 1996-10-04 1996-10-04 Process for making a low density detergent composition by non-tower process
PCT/US1997/009790 WO1998014552A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
PCT/US1997/009794 WO1998014556A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
PCT/US1997/009789 WO1998014551A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
PCT/US1997/009796 WO1998014558A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
PCT/US1997/009795 WO1998014557A1 (en) 1996-01-05 1997-06-05 Process for making a detergent composition by non-tower process

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/US1997/009792 WO1998014554A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process
PCT/US1997/009791 WO1998014553A1 (en) 1996-10-04 1997-06-05 Process for making a detergent composition by non-tower process

Country Status (12)

Country Link
EP (9) EP0929645A1 (en)
JP (9) JP3305327B2 (en)
CN (8) CN1133738C (en)
AR (6) AR010507A1 (en)
AT (5) ATE238409T1 (en)
AU (9) AU7388196A (en)
BR (7) BR9612732A (en)
CA (9) CA2267291C (en)
DE (5) DE69726440T2 (en)
ES (5) ES2178778T3 (en)
MX (2) MX219076B (en)
WO (9) WO1998014549A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056905A (en) * 1997-06-16 2000-05-02 Lever Brothers Company Division Of Conopco, Inc. Production of detergent granulates
US6077820A (en) * 1995-12-20 2000-06-20 Lever Brothers Company Division Of Conopco, Inc. Process for preparing a granular detergent
US6133223A (en) * 1997-06-27 2000-10-17 Lever Brothers Company, Division Of Conopco, Inc. Production of detergent granulates
US6258773B1 (en) 1997-07-14 2001-07-10 The Procter & Gamble Company Process for making a low density detergent composition by controlling agglomeration via particle size
US6274544B1 (en) 1997-06-16 2001-08-14 Lever Brothers Company, Division Of Conopco, Inc. Production of detergent granulates
US6355606B1 (en) 1997-07-14 2002-03-12 The Procter & Gamble Company Process for making a low density detergent composition by controlled agglomeration in a fluid bed dryer
US6423679B1 (en) 1997-07-15 2002-07-23 The Procter & Gamble Company Process for making high-active detergent agglomerates by multi-stage surfactant paste injection
US6440342B1 (en) 1998-07-08 2002-08-27 The Procter & Gamble Company Process for making a low density detergent composition by controlling nozzle height in a fluid bed dryer
US6492319B1 (en) 1998-08-20 2002-12-10 The Procter & Gamble Company High density detergent-making process involving a moderate speed mixer/densifier
US6794354B1 (en) * 1998-09-18 2004-09-21 The Procter & Gamble Company Continuous process for making detergent composition

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0819129B1 (en) * 1995-04-03 2000-08-02 Novartis AG Pyrazole derivatives and processes for the preparation thereof
DE69904499T2 (en) * 1998-10-26 2003-10-30 Procter & Gamble METHOD FOR PRODUCING A GRANULAR DETERGENT WITH IMPROVED APPEARANCE AND INCREASED SOLUBILITY
GB9825558D0 (en) * 1998-11-20 1999-01-13 Unilever Plc Granular detergent components and particulate detergent compositions containing them
GB9913546D0 (en) 1999-06-10 1999-08-11 Unilever Plc Granular detergent component containing zeolite map and laundry detergent compositions containing it
AU5625800A (en) * 1999-06-21 2001-01-09 Procter & Gamble Company, The Process for making a granular detergent composition
US6894018B1 (en) 1999-06-21 2005-05-17 The Procter & Gamble Company Process for making granular detergent in a fluidized bed granulator having recycling of improperly sized particles
GB0009877D0 (en) 2000-04-20 2000-06-07 Unilever Plc Granular detergent component and process for its preparation
EP2123742A1 (en) 2008-05-14 2009-11-25 The Procter and Gamble Company A solid laundry detergent composition comprising light density silicate salt
WO2011061045A1 (en) 2009-11-20 2011-05-26 Unilever Nv Detergent granule and its manufacture
CN114774206A (en) 2014-04-10 2022-07-22 宝洁公司 Composite detergent particles and laundry detergent composition comprising the same
BR112020015098A2 (en) * 2018-01-26 2020-12-08 Ecolab Usa Inc. COMPOSITION OF SOLIDIFIED LIQUID SURFACE, METHOD FOR PREPARING A SOLIDIFIED SURFACE COMPOSITION AND TO CLEAN A SURFACE, AND, SOLID CLEANING COMPOSITION.
CA3089624A1 (en) 2018-01-26 2019-08-01 Ecolab Usa Inc. Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a binder and optional carrier
KR20200110683A (en) 2018-01-26 2020-09-24 에코랍 유에스에이 인코퍼레이티드 Solidification of liquid amine oxides, betaines, and/or sultaines surfactants using carriers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169806A (en) * 1978-08-09 1979-10-02 The Procter & Gamble Company Agglomeration process for making granular detergents
US4992079A (en) * 1986-11-07 1991-02-12 Fmc Corporation Process for preparing a nonphosphate laundry detergent
US5554587A (en) * 1995-08-15 1996-09-10 The Procter & Gamble Company Process for making high density detergent composition using conditioned air

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625902A (en) * 1968-10-11 1971-12-07 Stauffer Chemical Co Method of preparing agglomerated detergent composition
GB2209172A (en) * 1987-08-28 1989-05-04 Unilever Plc Preparation of solid particulate components for detergents
KR0170424B1 (en) * 1990-07-05 1999-01-15 호르스트 헤를레,요한 글라슬 Process for making washing and cleaning active tensile granulates
DE69108927T2 (en) * 1990-11-14 1995-12-14 Procter & Gamble METHOD FOR PRODUCING OXYGEN BLEACHING SYSTEMS CONTAINING PHOSPHATE-FREE DISHWASHER COMPOSITIONS.
WO1993025378A1 (en) * 1992-06-15 1993-12-23 The Procter & Gamble Company Process for making compact detergent compositions
JPH09503817A (en) * 1993-10-15 1997-04-15 ザ、プロクター、エンド、ギャンブル、カンパニー Continuous production method of high-density detergent granules
GB9322530D0 (en) * 1993-11-02 1993-12-22 Unilever Plc Process for the production of a detergent composition
PT663439E (en) * 1994-01-17 2000-12-29 Procter & Gamble PROCESS FOR THE PREPARATION OF DETERGENT GRANULES
US5489392A (en) * 1994-09-20 1996-02-06 The Procter & Gamble Company Process for making a high density detergent composition in a single mixer/densifier with selected recycle streams for improved agglomerate properties
US5516448A (en) * 1994-09-20 1996-05-14 The Procter & Gamble Company Process for making a high density detergent composition which includes selected recycle streams for improved agglomerate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169806A (en) * 1978-08-09 1979-10-02 The Procter & Gamble Company Agglomeration process for making granular detergents
US4992079A (en) * 1986-11-07 1991-02-12 Fmc Corporation Process for preparing a nonphosphate laundry detergent
US5554587A (en) * 1995-08-15 1996-09-10 The Procter & Gamble Company Process for making high density detergent composition using conditioned air

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077820A (en) * 1995-12-20 2000-06-20 Lever Brothers Company Division Of Conopco, Inc. Process for preparing a granular detergent
US6056905A (en) * 1997-06-16 2000-05-02 Lever Brothers Company Division Of Conopco, Inc. Production of detergent granulates
US6274544B1 (en) 1997-06-16 2001-08-14 Lever Brothers Company, Division Of Conopco, Inc. Production of detergent granulates
US6429184B1 (en) 1997-06-16 2002-08-06 Lever & Brothers Company, Division Of Conopco, Inc. Production of detergent granulates
US6133223A (en) * 1997-06-27 2000-10-17 Lever Brothers Company, Division Of Conopco, Inc. Production of detergent granulates
US6258773B1 (en) 1997-07-14 2001-07-10 The Procter & Gamble Company Process for making a low density detergent composition by controlling agglomeration via particle size
US6355606B1 (en) 1997-07-14 2002-03-12 The Procter & Gamble Company Process for making a low density detergent composition by controlled agglomeration in a fluid bed dryer
US6423679B1 (en) 1997-07-15 2002-07-23 The Procter & Gamble Company Process for making high-active detergent agglomerates by multi-stage surfactant paste injection
US6440342B1 (en) 1998-07-08 2002-08-27 The Procter & Gamble Company Process for making a low density detergent composition by controlling nozzle height in a fluid bed dryer
US6492319B1 (en) 1998-08-20 2002-12-10 The Procter & Gamble Company High density detergent-making process involving a moderate speed mixer/densifier
US6794354B1 (en) * 1998-09-18 2004-09-21 The Procter & Gamble Company Continuous process for making detergent composition

Also Published As

Publication number Publication date
WO1998014554A1 (en) 1998-04-09
EP0929645A1 (en) 1999-07-21
AU3478397A (en) 1998-04-24
AR010507A1 (en) 2000-06-28
BR9712490A (en) 1999-10-19
JP3299984B2 (en) 2002-07-08
CA2268068C (en) 2003-06-03
CA2268062C (en) 2002-11-12
JP3299987B2 (en) 2002-07-08
DE69726439T2 (en) 2004-09-09
DE69723986D1 (en) 2003-09-11
CA2268062A1 (en) 1998-04-09
MX9903195A (en) 1999-09-30
JP3299981B2 (en) 2002-07-08
DE69723986T2 (en) 2004-06-03
AU7388196A (en) 1998-04-24
DE69726440D1 (en) 2004-01-08
DE69715224T2 (en) 2003-08-07
AR010509A1 (en) 2000-06-28
JP2000503715A (en) 2000-03-28
ES2212109T3 (en) 2004-07-16
CA2268060C (en) 2003-04-22
BR9713246A (en) 1999-11-03
BR9712492A (en) 1999-10-19
EP0929653A1 (en) 1999-07-21
EP0929655A1 (en) 1999-07-21
DE69721287T2 (en) 2004-03-11
DE69726440T2 (en) 2004-09-09
ES2210544T3 (en) 2004-07-01
CN1239508A (en) 1999-12-22
EP0929651B1 (en) 2003-11-26
EP0929648B1 (en) 2002-09-04
CA2268055C (en) 2004-02-03
CN1156562C (en) 2004-07-07
JP3299983B2 (en) 2002-07-08
CN1239507A (en) 1999-12-22
AR010508A1 (en) 2000-06-28
CA2267291A1 (en) 1998-04-09
ES2193386T3 (en) 2003-11-01
JP2000507632A (en) 2000-06-20
EP0929648A1 (en) 1999-07-21
AU3568397A (en) 1998-04-24
CN1239991A (en) 1999-12-29
WO1998014556A1 (en) 1998-04-09
AU3378597A (en) 1998-04-24
JP3299982B2 (en) 2002-07-08
WO1998014549A1 (en) 1998-04-09
CN1156560C (en) 2004-07-07
EP0929651A1 (en) 1999-07-21
JP3299986B2 (en) 2002-07-08
JP2000504062A (en) 2000-04-04
ES2178778T3 (en) 2003-01-01
AU3478497A (en) 1998-04-24
JP2000503720A (en) 2000-03-28
ES2201305T3 (en) 2004-03-16
CA2267291C (en) 2002-12-10
CA2268068A1 (en) 1998-04-09
JP2000503717A (en) 2000-03-28
BR9612732A (en) 1999-08-24
WO1998014557A1 (en) 1998-04-09
EP0929650A1 (en) 1999-07-21
CA2268067A1 (en) 1998-04-09
CN1239995A (en) 1999-12-29
AR010729A1 (en) 2000-07-12
CA2267424A1 (en) 1998-04-09
CN1133738C (en) 2004-01-07
BR9713249A (en) 1999-11-03
CA2268055A1 (en) 1998-04-09
CA2268060A1 (en) 1998-04-09
ATE255159T1 (en) 2003-12-15
JP2000503721A (en) 2000-03-28
CA2268052A1 (en) 1998-04-09
AR010510A1 (en) 2000-06-28
JP2000503716A (en) 2000-03-28
CA2268067C (en) 2004-01-06
CA2268063A1 (en) 1998-04-09
CN1239993A (en) 1999-12-29
WO1998014552A1 (en) 1998-04-09
BR9711861A (en) 1999-08-24
MX219076B (en) 2004-02-10
WO1998014551A1 (en) 1998-04-09
JP3345022B2 (en) 2002-11-18
CN1239992A (en) 1999-12-29
EP0929650B1 (en) 2003-08-06
CN1133739C (en) 2004-01-07
MX219077B (en) 2004-02-10
AR010511A1 (en) 2000-06-28
EP0929654A1 (en) 1999-07-21
ATE238409T1 (en) 2003-05-15
JP3305327B2 (en) 2002-07-22
AU3478597A (en) 1998-04-24
BR9711865A (en) 1999-08-24
MX9903193A (en) 2000-01-31
WO1998014553A1 (en) 1998-04-09
CA2268063C (en) 2002-10-29
EP0929652A1 (en) 1999-07-21
DE69715224D1 (en) 2002-10-10
JP2000503718A (en) 2000-03-28
CN1239506A (en) 1999-12-22
EP0929649B1 (en) 2003-11-26
WO1998014558A1 (en) 1998-04-09
DE69726439D1 (en) 2004-01-08
AU3303197A (en) 1998-04-24
EP0929649A1 (en) 1999-07-21
AU3478297A (en) 1998-04-24
ATE255160T1 (en) 2003-12-15
ATE246726T1 (en) 2003-08-15
ATE223476T1 (en) 2002-09-15
DE69721287D1 (en) 2003-05-28
JP2000503719A (en) 2000-03-28
AU3303097A (en) 1998-04-24
CA2267424C (en) 2004-01-06
CA2268052C (en) 2003-12-30
CN1239994A (en) 1999-12-29
CN1156563C (en) 2004-07-07
CN1156561C (en) 2004-07-07
JP3299985B2 (en) 2002-07-08
EP0929653B1 (en) 2003-04-23

Similar Documents

Publication Publication Date Title
CA2268062C (en) Process for making a detergent composition by non-tower process
CA2268057C (en) Process for making a low density detergent composition
US6143711A (en) Process for making a detergent composition by non-tower process
US6211138B1 (en) Process for making a detergent composition by non-tower process
US6391844B1 (en) Process for making a detergent composition by non-tower process
US6121229A (en) Process for making a detergent composition by non-tower process
US6172034B1 (en) Process for making a detergent composition by non-tower process
US6136777A (en) Process for making a detergent composition by non-tower process
US6211137B1 (en) Process for making a detergent composition by non-tower process
US6150323A (en) Process for making a detergent composition by non-tower process
US6281188B1 (en) Process for making a low density detergent composition
US6156719A (en) Process for making a low density detergent composition by non-tower process
EP1025196A1 (en) Process for making a detergent composition by adding co-surfactants
MXPA99003194A (en) Process for making a detergent composition by non-tower process
MXPA99003196A (en) Process for making a detergent composition by non-tower process
MXPA99003200A (en) Process for making a detergent composition by non-tower process

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97180293.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2268063

Country of ref document: CA

Ref document number: 2268063

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09269851

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/003194

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1997932153

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997932153

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWR Wipo information: refused in national office

Ref document number: 1997932153

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997932153

Country of ref document: EP