WO1997046272A1 - Blood treatment system - Google Patents

Blood treatment system Download PDF

Info

Publication number
WO1997046272A1
WO1997046272A1 PCT/US1997/009783 US9709783W WO9746272A1 WO 1997046272 A1 WO1997046272 A1 WO 1997046272A1 US 9709783 W US9709783 W US 9709783W WO 9746272 A1 WO9746272 A1 WO 9746272A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
media
cardiotomy
blood treatment
chamber
Prior art date
Application number
PCT/US1997/009783
Other languages
French (fr)
Inventor
Erin J. Lindsay
Original Assignee
Minnesota Mining And Manufacturing Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining And Manufacturing Company filed Critical Minnesota Mining And Manufacturing Company
Priority to EP97929812A priority Critical patent/EP0909188A1/en
Priority to AU33782/97A priority patent/AU3378297A/en
Priority to JP10500866A priority patent/JP2000512173A/en
Publication of WO1997046272A1 publication Critical patent/WO1997046272A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3627Degassing devices; Buffer reservoirs; Drip chambers; Blood filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3627Degassing devices; Buffer reservoirs; Drip chambers; Blood filters
    • A61M1/3632Combined venous-cardiotomy reservoirs

Definitions

  • the invention relates to a blood treatment system and a method of assembling the same.
  • the main volume of the patient's blood is typically withdrawn from the patient through a venous cannula inserted into the right atrium.
  • the blood handling system collects the volume of blood in a venous reservoir.
  • the blood handling system serves to pump the blood, regulate the carbon dioxide and oxygen content, regulate the temperature, defoam and remove emboli and particulate matter using one or more filters.
  • the blood is then returned to the patient through an aortic cannula inserted into the aorta distal to the heart.
  • cardiotomy blood Blood from the surgical field, known as cardiotomy blood, is typically drawn into a cardiotomy reservoir.
  • the cardiotomy blood typically contains gas bubbles, fragments of tissue, bone chips, blood clots, surgical debris and other dangerous and undesirable contaminants.
  • the cardiotomy reservoir defoams, filters and collects the cardiotomy blood prior to combining it with blood in the venous reservoir.
  • the level of filtration required for cardiotomy blood is typically greater than that required for the relatively clean venous return stream.
  • cardiotomy blood filtration is preferably performed separately from filtration of the relatively clean venous return stream.
  • Integrated cardiotomy reservoirs combine the treatment of both cardiotomy and venous blood streams.
  • Turbulent flow may develop at various locations within the blood handling system. Turbulent flow can cause bubbles to form in the blood and can increase the blood-to-air contact. Blood to air contact causes hemolysis of red blood cells. Hemolysis refers to the lysis or destruction of erythrocytes with the release of hemoglobin, resulting in a reduction in the ability of the blood to carry oxygen.
  • Blood handling systems can also have locations of blood stasis that can cause blood clotting or separation of blood components. Medical care providers are increasingly interested in viewing the condition of the blood throughout the entire blood circuit. Current blood treatment systems typically have internal regions that are not visible to the medical staff, such as the interior of cylindrically shaped filter media. Areas within the blood handling system that cannot be viewed by the medical staff may result in undetected blood stasis or clots. Typical blood handling systems have a large number of discrete parts, requiring manual assembly, increasing the risk of assembly errors and increasing manufacturing costs. Manufacturing a variety of distinct extracorporeal blood handling systems with different blood treatment elements increases manufacturing and inventory costs. Variability between products also raises the risk of errors in assembly or marking of finished products, resulting in a potentially detrimental medical impact on the patient.
  • the blood treatment system utilizes a blood treatment cartridge with a two-dimensional assembly process (i.e., along a single build axis) that facilitates automated assembly and substitution of a variety of blood treatment media.
  • the blood treatment system is provided with a high degree of biocompatibility and visibility.
  • a blood treatment system of the invention comprises a blood treatment cartridge having a chamber, and a blood-treatment-media-receiving opening defining an entrance to the chamber.
  • a cardiotomy manifold (36) is provided in fluid communication with the chamber, with at least one cardiotomy blood sucker port in fluid communication with the cardiotomy manifold
  • a venous blood inlet is also provided in fluid communication with the chamber, with the venous blood inlet being spaced along the build axis from the cardiotomy manifold.
  • a first generally planar blood treatment media is inserted along the build axis through the blood-treatment-media- receiving opening into the chamber.
  • the first blood treatment media divides the chamber into first and second interior spaces, with the cardiotomy manifold in fluid communication with the first interior space and the venous blood inlet in fluid communication with the second interior space.
  • a second generally planar blood treatment media is inserted along the build axis through the blood-treatment-media- receiving opening of the blood treatment cartridge to enclose the second interior space.
  • a blood outlet section is sealed to the blood treatment cartridge to form a housing enclosing the blood-treatment-media-receiving opening.
  • the blood outlet section has an outlet port.
  • the blood treatment cartridge and blood storage section form a housing comprising transparent plastic material, the housing being configured such that substantially the entire blood flow path is visible.
  • the blood treatment cartridge includes a ledge in the chamber configured and positioned to engage the first blood treatment media to limit insertion of the first blood treatment media into the chamber.
  • a ledge in the chamber configured and positioned to engage the first blood treatment media to limit insertion of the first blood treatment media into the chamber.
  • at least two ledges are provided, with the second ledge in the chamber between the blood- treatment-media-receiving opening and the first ledge.
  • the second ledge is configured to engage the second blood treatment media to limit insertion of the second blood treatment media into the chamber.
  • the second ledge defines a perimeter larger than the first ledge, and permits the first blood treatment media to be inserted into the chamber further than the second ledge.
  • the first blood treatment media comprises a filtration media for filtering cardiotomy blood entering the system through the cardiotomy blood sucker port
  • the second blood treatment media comprises a defoamer media for defoaming venous blood entering the system through the venous blood inlet and cardiotomy blood filtered by the filtration media.
  • a pre-filter defoamer may also be provided for defoaming cardiotomy blood entering the first interior space from the cardiotomy blood sucker port before that blood is filtered by the filtration media.
  • the filtration media may have, for example, an average pore size of about 20 to 40 microns.
  • a first frame extends around a perimeter of the filtration media, and a second frame extends around a perimeter of the defoamer media.
  • the blood-treatment-media-receiving opening of the blood treatment cartridge preferably has a perimeter forming means for snap-fit engagement with the blood outlet section.
  • the blood outlet section (100) defines a blood storage chamber.
  • a blood diverter may be provided within the blood storage chamber to form a pair of funnel-shaped blood flow channels diverging from one another as the channels extend from the blood-treatment-media-receiving opening toward the outlet port, and a pair of converging blood flow channels extending from the funnel-shaped blood flow channels to the outlet port.
  • the funnel-shaped and converging blood flow channels define: (a) a first flow axis extending downwardly in the direction away from the blood-treatment-media-receiving opening at an angle of about 20 to 24 degrees with respect to horizontal; and (b) a pair of second flow axii converging downwardly toward one another in the direction perpendicular to the first flow axis at an angle of about 3 to 7 degrees to the horizontal.
  • the cardiotomy manifold preferably defines a downward curving ledge extending from the cardiotomy blood sucker port to the first interior space, with the downward curving ledge having a radius of about 2.5 to 7.6 cm.
  • the cardiotomy blood sucker port extends along a tangent to the downward curving ledge.
  • a plurality of support veins support a pre-filter defoamer in the cardiotomy manifold.
  • the venous blood inlet includes a drop tube and a directionalized, velocity-reducing prime bowl downstream of the drop tube for directing a portion of the blood flow path outwardly toward the walls of the blood treatment cartridge and decelerating the blood flow.
  • the prime bowl has a cross-section at least four times greater than the cross-section of the drop tube.
  • the blood treatment system comprises a transparent housing defining a blood treatment chamber and a blood storage chamber downstream of the blood treatment chamber.
  • a cardiotomy manifold is in fluid communication with the blood treatment chamber, and at least one cardiotomy blood sucker port is in fluid communication with the cardiotomy manifold.
  • a venous blood inlet is in fluid communication with the blood treatment chamber, with the venous blood inlet being spaced from the cardiotomy manifold.
  • An outlet port is provided in fluid communication with the blood storage chamber.
  • a generally planar blood filtration media assembly has a periphery engaging the housing to divide the blood treatment chamber into first and second interior spaces that are visible through the transparent housing.
  • the cardiotomy manifold is in fluid communication with the first interior space, and the venous blood inlet is in fluid communication with the second interior space.
  • a generally planar blood defoamer media assembly is provided generally parallel with and spaced apart from the blood filtration media assembly.
  • the blood defoamer media assembly has a periphery engaging the housing to divide the second interior space from the blood storage chamber.
  • a pre-filter defoamer is provided for defoaming cardiotomy blood entering the first interior space from the cardiotomy blood sucker port before that blood is filtered by the filtration media
  • the blood filtration media assembly includes filtration media and a first frame extending around a perimeter of the filtration media
  • the blood defoamer media includes a defoamer media and a second frame extending around a perimeter of the defoamer media.
  • the blood treatment system comprises a housing defining a blood treatment chamber and blood storage chamber downstream of the blood treatment chamber.
  • a cardiotomy manifold is provided in fluid communication with the blood treatment chamber, with at least one cardiotomy blood sucker port in fluid communication with the cardiotomy manifold.
  • a venous blood inlet is provided in fluid communication with the blood treatment chamber, and an outlet port is provided in fluid communication with the blood storage chamber.
  • a blood filtration media assembly is provided for filtering blood entering the blood treatment chamber through the cardiotomy blood sucker port, and a blood defoamer media assembly is provided for defoaming blood entering the blood treatment chamber through the cardiotomy blood sucker port and venous blood inlet.
  • a blood diverter is provided within the blood storage chamber.
  • the diverter and the housing form a pair of funnel-shaped blood flow channels diverging from one another as the funnel-shaped blood flow channels extend from the blood-treatment-media-receiving opening toward the outlet port, and a pair of converging blood flow channels extending from the fiinnel-shaped blood flow channels to the outlet port.
  • the funnel-shaped and converging blood flow channels define: (a) a first flow axis extending downwardly in the direction away from the blood-treatment- media-receiving opening at an angle of about 20 to 24 degrees with respect to horizontal; and (b) a pair of second flow axii converging downwardly toward one another in the direction perpendicular to the first flow axis at an angle of about 3 to 7 degrees to the horizontal.
  • the cardiotomy manifold defines a downward curving ledge extending from the cardiotomy blood sucker port to the first interior space.
  • the downward curving ledge has a radius of about 2.5 to 7.6 cm, and the cardiotomy blood sucker port extends along a tangent to the downward curving ledge.
  • a pre-filter defoamer defoams cardiotomy blood entering the first interior space from the cardiotomy blood sucker port before that blood is filtered by the filtration media.
  • a plurality of support veins in the cardiotomy manifold supporting the pre-filter defoamer supporting the pre-filter defoamer.
  • the venous blood inlet includes drop tube, and a directionalized, velocity-reducing prime bowl downstream of the drop tube for directing a portion of the blood flow path outwardly toward the walls of the blood treatment cartridge and decelerating the blood flow
  • the prime bowl has a cross-section at least four times greater than the cross- section of the drop tube.
  • Biocompatibility refers to a low-turbulent flow path that minimizes hemolysis and blood-air contact.
  • Initial Break Through Volume refers to the volume of fluid required before the fluid penetrates the filter media and reaches the output port in the reservoir. Initial break through volume is typically most significant when priming the blood treatment system.
  • Sper Bypass refers to a condition where both the venous return stream and the cardiotomy blood stream both pass through the cardiotomy filters.
  • Figure 1 is an exploded view of an exemplary blood treatment system
  • Figure 2 is a top view of the blood treatment cartridge system of Figure i;
  • Figure 3 is a side sectional view of the blood treatment system of Figure i;
  • Figure 4 is an alternate side sectional view of the blood treatment system of Figure 1;
  • Figure 5 is a front view of the blood treatment system of Figure 1;
  • Figure 6 is a back view of the blood treatment system of Figure 1;
  • Figure 7 is an exploded view of an alternate blood treatment system for cardiotomy blood;
  • Figure 8 is a top view of an alternate cardiotomy blood treatment system
  • Figure 9 is side sectional view of the cardiotomy blood treatment system of Figure 8.
  • FIG 10 is side view of the cardiotomy blood treatment system of Figure 8.
  • Figure 11 is a schematic view of a method of assembling the blood treatment system.
  • Blood treatment cartridge 22 has a blood treatment media receiving opening 24 defining an entrance to a chamber 26.
  • a cartridge flange 28 extends around the perimeter of the blood treatment media opening 24 for engagement with a corresponding flange 30 on a front blood reservoir 32, as will be discussed in detail below.
  • a series of sucker ports 34 are located along a top edge of the blood treatment cartridge 22.
  • the sucker ports 34 are preferably connected to one or more lines of tubing conducting cardiotomy blood from the surgical site to the blood treatment system 20 (not shown).
  • the blood sucker ports 34 are in fluid communication with a cardiotomy manifold 36 that leads to a separation chamber 37.
  • the cardiotomy manifold 36 and sucker ports 34 define an arch 33 having a radius of curvature of about 3.8 cm (1.5 inches), and preferably in the range of 2.54 cm to 7.62 cm (1.0 inches to 3.0 inches).
  • the bores for the sucker ports 34 are preferably tangent to the surface of the arch 33.
  • the arch 33 directs the cardiotomy blood vertically downward into a first interior space 90 with minimal disturbance.
  • the gradual shape of the arch 33 causes bubbles in the cardiotomy blood stream to rise to the surface.
  • the bubbles may be broken when they contact pre-filter defoamer material 64 as the cardiotomy blood flows along the arch 33.
  • the bubbles in the cardiotomy blood collect at the bottom of the separation chamber 37, where they are broken or popped by the pre-filter defoamer material 64.
  • the cardiotomy blood preferably does not flow through the pre-filter defoamer material 64.
  • the cardiotomy manifold 36 can process at least six liters/minute (such as for example during sucker bypass) for an indefinite period of time.
  • Cardiotomy blood enters the blood treatment system 20 through the sucker ports 34 and cardiotomy manifold 36, and flows into the first interior space 90.
  • the portion of the chamber 26 between the first blood treatment media assembly 72 and the second blood treatment media assembly 82 defines a second interior space 92.
  • the venous blood stream and filtered cardiotomy blood stream are collected in the second interior space 92 prior to defoaming.
  • a swiveling venous inlet connector 40 on a venous drop tube 42 is fluidly connected to the cartridge 22.
  • a fluid line (not shown) carries the venous return stream from the patient to the inlet connector 40.
  • a 30-70 durometer, silicone O-ring 31 is preferably interposed between the venous inlet connector 40 and the venous drop tube 42.
  • the venous inlet connector 40 preferably is arranged at between 30 and 60 degrees with respect to the venous drop tube 42 and has an outside diameter of 12.6 mm.
  • a venous sampling luer site 54 is located on the venous inlet connector 40.
  • the venous inlet connector 40 preferably includes a connector flange 44 that engages with a semicircular ledge 46 on the back of the blood treatment cartridge 22.
  • An opening 50 is provided in the venous drop tube 42 for receiving a temperature sensor 48.
  • the stainless steel thimble 49 is preferably hermetically sealed across the opening 50 in fluid communication with the venous return stream.
  • the temperature sensor 48 is preferably located within the thimble 49.
  • the venous drop tube 42 preferably includes a cuvette tube 52 with a sensor window 43 (see Figure 6).
  • the sensor window 43 typically interfaces with an infrared sensor for measuring oxygen content and hematocrit in the venous return stream.
  • a suitable cuvette tube 52 is available from Minnesota Mining and
  • the blood treatment cartridge 22 preferably includes a series of ports along the top surface.
  • a pair of filtered luer ports 55 provide access to the cardiotomy manifold 36.
  • a 6.35 mm (0.25 inch) diameter prime port 58 in fluid communication with the cardiotomy manifold 36 is provided for priming the blood treatment system 20.
  • a vent port 53 is provided for releasing excess pressure from the chamber 26 during usage. The vent port 53 is preferably in fluid communication with the second interior space 92, although it will be understood that a series of vents may be provided for some applications.
  • a recirculation port 63 allows priming fluid, such as saline, to be recirculated between the blood treatment system 20 and an oxygenator (not shown) during the prime cycle.
  • a drug inlet port 51 provides access to the interior space 92 containing the venous return stream and the filtered cardiotomy blood stream.
  • An exemplary oxygenator is shown in U.S. Patent Nos. 5,149,318 (Lindsay) and 5,514,335 (Leonard et al.).
  • An auxiliary cardiotomy inlet 56 provides direct access to the chamber 92.
  • a secondary filter assembly In the event that the cardiotomy filter assembly 72 fails, a secondary filter assembly
  • a prime bowl 60 is located at the bottom of the venous drop tube 42 in fluid communication with the interior space 92 through an elongated inlet 59. Blood collects in the prime bowl 60 below chamber 26. In the event that the blood pumps fail, allowing blood in the drop tube 42 to travel backwards through the blood circuit, the prime bowl 60 operates as a trap to prevent air in the blood treatment system 20 from entering the venous blood stream.
  • a blood trap is shown in U.S. Patent Nos. 5,282,783 (Lindsay) and 5,403,273 (Lindsay).
  • the prime bowl 60 also operates as a velocity reducer.
  • the prime bowl 60 preferably has a cross-section about four to six times greater than the cross section of the drop tube 42. Consequently, the velocity of the venous return stream in the drop tube 42 is reduced to about 15-20% of its original velocity. For example, if the blood treatment system is operating at seven liters/min, the velocity of the venous return stream is reduced from 55 meters/min. to about 8.3 meters/min. The reduced velocity minimize splashing, foam-creating turbulent flow and contact with the air.
  • the elongated shape of the elongated inlet 59 cause the venous return stream to exit the prime bowl 60 primarily laterally toward the edges 22 A, 22B of the blood treatment cartridge 22 so that blood stasis in these regions is minimized.
  • a series of support veins 62 are formed along the chamber 26 proximate the cardiotomy manifold 36 for supporting the pre-filter defoamer material 64.
  • the pre- filter defoamer material 64 serves to dissipate bubbles on the surface of the cardiotomy blood stream without directly interrupting the flow.
  • the pre-filter defoamer material 64 is generally a planar sheet folded as shown best in Figure 4, it will be understood that a variety of shapes are possible, such as triangular a cross-section.
  • a pre-filter ledge 68 is located on each of the support veins 62 for retaining the pre-filter defoamer material 64 proximate the sucker ports 34.
  • the pre-filter defoamer material 64 is preferably inserted into the chamber 26 along a build axis "A".
  • a filter seal ledge 70 is located around the perimeter of the chamber 26 adjacent to the cardiotomy manifold 36.
  • the filter seal ledge 70 is configured to receive a first blood treatment media assembly 72.
  • the first blood treatment media assembly 72 is preferably a filtration media 76 supported by a media frame 74.
  • the media frame 74 is preferably inserted into the chamber 26 along the build axis "A" to engage with the filter seal ledge 70 adjacent to the cardiotomy manifold 36.
  • the first blood treatment media assembly 72 and cardiotomy manifold forms a first interior space 90 (see Figure 3).
  • a defoamer seal ledge 80 is located along the perimeter of the interior space 26 for receiving a second blood treatment media assembly 82.
  • the second blood treatment media assembly 82 is preferably a defoamer media 84 retained in a media frame 86.
  • a support screen 85 may optionally be positioned on one or both sides of the defoamer media 84.
  • the media frame 86 is preferably configured to engage with the defoamer seal ledge 80.
  • the filter seal ledge 70 preferably defines a smaller perimeter than the defoamer seal ledge 80 so that the blood treatment media assemblies 72, 82 can be easily inserted into the blood treatment cartridge 22 along the build axis "A."
  • the media 76, 84 may be retained in the frames 74, 86 by a urethane potting resin, mechanical gasket, UV cured adhesive, or a variety of other methods.
  • the first and second blood treatment media are preferably planar or some other discontinuous configuration that does not create enclosures that can not be viewed by the medical staff Discontinuous configuration generally refers to media material that does not form a self-contained enclosure or pocket, such as a cylinder or pouch configuration.
  • additional seal ledges may be included along the perimeter of the chamber 26 for receiving additional blood treatment media.
  • the perimeter of the seal ledges preferably increases in size closer to the cartridge flange 28 so that they can be automatically stacked in the chamber 26 along the build axis "A."
  • a single seal ledge is provided proximate the cardiotomy manifold 36. Spacers may then provided along the perimeter of the chamber 26 to maintain the appropriate separation between the blood treatment media 72, 82.
  • the front blood reservoir 32 preferably includes a blood storage section 100 and a drain port 102.
  • a handle 106 is preferably provided along the top of the front blood reservoir 32.
  • a series of alternate sampling ports 101 may be provided along the top of the reservoir 32. It will be understood that the handle 106 may be located along any surface of the blood treatment system 20.
  • the handle 106 may be used for carrying the blood treatment system 20, retaining sampling syringes or sampling lines during use.
  • the blood storage section 100 preferably has a capacity of 2.0-4.0 liters.
  • the treated blood exits the blood treatment system 20 via the drain port 102 prior to further handling and treatment, such as regulation of carbon dioxide content, oxygen content and temperature.
  • the blood is ultimately returned to the patient through an aortic cannula inserted into the aorta distal to the heart.
  • a diverter dome 104 may optionally be included in the front blood reservoir 32.
  • the diverter dome 104 reduces the volume retained in the storage section
  • the diverter dome 104 is configured to define funnel-shaped flow channels shown by arrows 105 on either side toward the outlet port 102 (see Figure 6).
  • the diverter dome 104 preferably has a radius of curvature along a leading edge 109 of about 9.53 mm (.375 inches). The radius along the leading edge 109 blends into a radius of about 6.35 cm (2.5 inches) and then 7.62 cm (3.0 inches) along the sides toward the trailing edges 107.
  • the radius of curvature for the trailing edges 107 is about 23.9 mm (0.94 inches).
  • bottom surface 108 of the funnel-shaped flow channels 105 defines a first flow axis B extending downward at an angle ⁇ of about 20 to 24 degrees from horizontal toward the outlet port 102.
  • the bottom surface 108 preferably defines a second flow axis C having a downward taper of approximately 3 to 7 degrees extending away from the diverter dome 104 and generally pe ⁇ endicular to the first flow axis B.
  • FIG. 7 is an exploded view of an alternate blood treatment system 120 for treating primarily cardiotomy blood.
  • a front blood reservoir 122 seals the blood treatment media receiving opening 24' on the blood treatment cartridge 22'.
  • the cartridge 22' is further discussed below in connection with Figures 8-10. It will be understood that the front blood reservoir 122 may be used with the cartridge 22 shown in Figures 1-6.
  • the blood treatment system 120 is preferably assembled along the build axis A', as discussed herein
  • the front blood reservoir 122 preferably has minimal volume for retaining blood.
  • An outlet port 124 diverts the treated blood through a tubing 126 to a secondary blood storage reservoir 128, such as a flexible pouch or bag.
  • the blood reservoir 128 preferably includes a pair of valves 130, 132 for venting air and adding drugs.
  • the venous return stream is delivered directly to the blood reservoir 128 by a venous input line 134, thereby bypassing the blood treatment system 120.
  • Check valves 131 may optionally be provided in the tubes 126, 134.
  • a cap 136 is preferably located in the venous inlet to seal the chamber 26 * .
  • the blood treatment system 120 treats only the cardiotomy blood drawn in through the sucker ports 34'.
  • FIGs 8-10 illustrate the cardiotomy blood treatment cartridge 22' of Figure 7 used with the front blood reservoir 32 of Figure 1. Since the venous return stream is not directed through the blood treatment system 20', the chamber 92' is significantly compressed as compared to the chamber 92 in Figure 4. The compressed chamber 90' reduces the initial break through volume to prime the system 20'.
  • the operation of the cardiotomy manifold 36', the first and second blood treatment media assemblies 72', 82' and the front blood reservoir 32' are substantially the same as discussed above.
  • the pre-filter defoamer material 64 is preferably constructed of an open cell, blood compatible, synthetic polymeric foam, such as a reticulated polyurethane foam, that collapses blood foam into liquid blood.
  • the pre-filter defoamer material 64 preferably has 5-20 pores per inch (PPI) and most preferably 10 pores per inch.
  • the pre-filters are preferably treated with an anti-foam compound such as silicone.
  • the filtration media may be constructed of fibrous polyester depth filter.
  • Commercially available filtration media include Dacron polyester felt having a mean aperture size in the range of about 20 to 50 microns, and preferably 30 microns.
  • the filtration media 76 is alternatively constructed of a pleated depth media with a pore size of about 20-40 microns and most preferably with pore size of 30 microns.
  • the defoamer media may be constructed from a woven screen of nylon, polyester or polypropylene.
  • the defoamer media 84 is preferably a mesh with 10-40 pores per inch and most preferably 26 pores per inch.
  • the defoamer media is preferably coated with silicone.
  • the defoamer media 84 is preferably supported on the downstream side by a support screen 85 having pore sizes of about 300-400 microns.
  • a suitable silicone coated, reticulated polyurethane foam with 26 PPI is available from Lydall Westex, Hamptonville, North Carolina USA.
  • the blood treatment systems 20, 20', 120 are preferably molded from a clear thermoplastic such as polycarbonate or PET-G (glycol modified polyethylene terephthalate).
  • the components have a nominal wall thickness of about 2.16 mm to 2.29 mm (0.085 inches to 0.090 inches).
  • the components of the blood treatment systems 20, 20', 120 are preferably treated with heparin.
  • Heparin is an acid mucopolysaccharide that acts as an anti-thrombin, anti- thromboplastin, and an anti-platelet factor to prolong clotting time of whole blood.
  • the blood treatment systems 20, 20', 120 are designed so that the blood stream is easily visible to the medical staff at all times. Visibility of the blood stream is necessary to monitor for potential filter failure, blood stasis, debris, color and other factors.
  • the drop tube 42, the blood treatment cartridge 22 and the front blood reservoir 32 are preferably constructed of a clear plastic material. Consequently, all sides of the pre-filter defoamer material are visible from either the top, back, bottom or sides of the cartridge 22.
  • the chambers 90, 90', 92, 92' are visible around the perimeter of the cartridges 22, 22' (see Figures 3, 4 and 9).
  • the contents of the front blood reservoirs 32, 32', 122 are visible from the front or sides thereof.
  • Figure 1 1 is a schematic illustration of a preferred method 200 of assembling the blood treatment systems 20, 20', 120.
  • a pick and place robot 202 locates a blood treatment cartridge on an assembly carousel 204.
  • the carousel 204 rotates to a second station 205 where a pick and place robot 206 installs a pre-filter foam material in the blood treatment cartridge along the build axis "A.”
  • a glue dispenser arm 208 applies a bead of glue along the filter seal ledge at station 207 in preparation for insertion of the first blood treatment media.
  • the carousel moves the assembly to station 209 where pick and place robot 210 inserts the first blood treatment media into the chamber along the build axes A or A'.
  • the glue is then cured at a UV curing station 212.
  • the carousel 204 then moves the partially assembled blood treatment system to an unload cart 213 where a pick and place robot 214 transfers the assembly to a second carousel 216.
  • a glue dispenser arm 218 at station 217 applies a bead of glue along the defoamer seal ledge in preparation for insertion of the second blood treatment media.
  • a pick and place robot 220 at station 219 installs the second blood treatment media along a build axes A or A' into the chamber.
  • the glue is cured at a UV curing station 222.
  • the carousel 216 then rotates to a second glue dispenser arm 224 at station 223 where glue is applied along the cartridge flange in preparation for installation of the front blood reservoir 32.
  • a pick and place robot 226 at station 225 installs the front blood reservoir along a build axis A or A'.
  • the glue is cured by a UV cure robot arm 228.
  • the carousel 216 then rotates to station 230 where a pick and place robot 232 removes the blood treatment system 20, where it is forwarded for inspection and packaging.
  • the structure of the blood treatment system permits each of the components to be inter-engaged along a single build axis, thus facilitating automated assembly. Additionally, the minimal number of components renders automated assembly a cost-effective alternative. Automated assembly provides a number of key advantages for medical devices of this type. First, assembly is extremely accurate and repeatabie.
  • the nature of the blood treatment system permits a variety of blood treatment media to be substituted automatically during the assembly process.
  • the automated assembly process permits the type of blood treatment media installed in a particular blood treatment system to be accurately tracked and recorded.

Abstract

A blood treatment system (20; 120; 20') comprising a blood treatment cartridge (22) and a blood storage or outlet section (100). First and second planar blood treatment assemblies (70 and 80) can be inserted into the blood treatment cartridge (22) in spaced apart relationship along a single build axis (A), and the blood storage section (100) can be attached to the blood treatment cartridge along the single build axis (A), thus facilitating automated assembly of the system (20). The system (20) also facilitates observation of blood within its housing, in particular within the blood treatment cartridge (22).

Description

BLOOD TREATMENT SYSTEM
Field of the Invention The invention relates to a blood treatment system and a method of assembling the same.
Background of the Invention Various surgical procedures require interrupting the normal functioning of the heart and lungs of the patient. Some of the functions of these organs are temporarily replaced by an extracorporeal blood handling system. The main volume of the patient's blood, known as the venous return stream, is typically withdrawn from the patient through a venous cannula inserted into the right atrium. The blood handling system collects the volume of blood in a venous reservoir. The blood handling system serves to pump the blood, regulate the carbon dioxide and oxygen content, regulate the temperature, defoam and remove emboli and particulate matter using one or more filters. The blood is then returned to the patient through an aortic cannula inserted into the aorta distal to the heart.
Blood from the surgical field, known as cardiotomy blood, is typically drawn into a cardiotomy reservoir. The cardiotomy blood typically contains gas bubbles, fragments of tissue, bone chips, blood clots, surgical debris and other dangerous and undesirable contaminants. The cardiotomy reservoir defoams, filters and collects the cardiotomy blood prior to combining it with blood in the venous reservoir. The level of filtration required for cardiotomy blood is typically greater than that required for the relatively clean venous return stream.
The high level of filtration necessary for cardiotomy blood may cause damage to blood constituents, such as to due sheer stress. Consequently, cardiotomy blood filtration is preferably performed separately from filtration of the relatively clean venous return stream. Integrated cardiotomy reservoirs (ICR) combine the treatment of both cardiotomy and venous blood streams.
Turbulent flow may develop at various locations within the blood handling system. Turbulent flow can cause bubbles to form in the blood and can increase the blood-to-air contact. Blood to air contact causes hemolysis of red blood cells. Hemolysis refers to the lysis or destruction of erythrocytes with the release of hemoglobin, resulting in a reduction in the ability of the blood to carry oxygen.
Blood handling systems can also have locations of blood stasis that can cause blood clotting or separation of blood components. Medical care providers are increasingly interested in viewing the condition of the blood throughout the entire blood circuit. Current blood treatment systems typically have internal regions that are not visible to the medical staff, such as the interior of cylindrically shaped filter media. Areas within the blood handling system that cannot be viewed by the medical staff may result in undetected blood stasis or clots. Typical blood handling systems have a large number of discrete parts, requiring manual assembly, increasing the risk of assembly errors and increasing manufacturing costs. Manufacturing a variety of distinct extracorporeal blood handling systems with different blood treatment elements increases manufacturing and inventory costs. Variability between products also raises the risk of errors in assembly or marking of finished products, resulting in a potentially detrimental medical impact on the patient.
Summary of the Invention This invention relates to blood treatment cartridge and a method of assembling the same. The blood treatment system utilizes a blood treatment cartridge with a two-dimensional assembly process (i.e., along a single build axis) that facilitates automated assembly and substitution of a variety of blood treatment media. The blood treatment system is provided with a high degree of biocompatibility and visibility.
Generally, a blood treatment system of the invention comprises a blood treatment cartridge having a chamber, and a blood-treatment-media-receiving opening defining an entrance to the chamber. A cardiotomy manifold (36) is provided in fluid communication with the chamber, with at least one cardiotomy blood sucker port in fluid communication with the cardiotomy manifold A venous blood inlet is also provided in fluid communication with the chamber, with the venous blood inlet being spaced along the build axis from the cardiotomy manifold. A first generally planar blood treatment media is inserted along the build axis through the blood-treatment-media- receiving opening into the chamber. The first blood treatment media divides the chamber into first and second interior spaces, with the cardiotomy manifold in fluid communication with the first interior space and the venous blood inlet in fluid communication with the second interior space. A second generally planar blood treatment media is inserted along the build axis through the blood-treatment-media- receiving opening of the blood treatment cartridge to enclose the second interior space. A blood outlet section is sealed to the blood treatment cartridge to form a housing enclosing the blood-treatment-media-receiving opening. The blood outlet section has an outlet port.
Preferably, the blood treatment cartridge and blood storage section form a housing comprising transparent plastic material, the housing being configured such that substantially the entire blood flow path is visible.
Also, preferably, the blood treatment cartridge includes a ledge in the chamber configured and positioned to engage the first blood treatment media to limit insertion of the first blood treatment media into the chamber. Most preferably, at least two ledges are provided, with the second ledge in the chamber between the blood- treatment-media-receiving opening and the first ledge. The second ledge is configured to engage the second blood treatment media to limit insertion of the second blood treatment media into the chamber. The second ledge defines a perimeter larger than the first ledge, and permits the first blood treatment media to be inserted into the chamber further than the second ledge. Preferably, the first blood treatment media comprises a filtration media for filtering cardiotomy blood entering the system through the cardiotomy blood sucker port, and the second blood treatment media comprises a defoamer media for defoaming venous blood entering the system through the venous blood inlet and cardiotomy blood filtered by the filtration media. A pre-filter defoamer may also be provided for defoaming cardiotomy blood entering the first interior space from the cardiotomy blood sucker port before that blood is filtered by the filtration media. The filtration media may have, for example, an average pore size of about 20 to 40 microns.
Most preferably, a first frame extends around a perimeter of the filtration media, and a second frame extends around a perimeter of the defoamer media. The blood-treatment-media-receiving opening of the blood treatment cartridge preferably has a perimeter forming means for snap-fit engagement with the blood outlet section. Also, preferably, the blood outlet section (100) defines a blood storage chamber. A blood diverter may be provided within the blood storage chamber to form a pair of funnel-shaped blood flow channels diverging from one another as the channels extend from the blood-treatment-media-receiving opening toward the outlet port, and a pair of converging blood flow channels extending from the funnel-shaped blood flow channels to the outlet port. Most preferably, the funnel-shaped and converging blood flow channels define: (a) a first flow axis extending downwardly in the direction away from the blood-treatment-media-receiving opening at an angle of about 20 to 24 degrees with respect to horizontal; and (b) a pair of second flow axii converging downwardly toward one another in the direction perpendicular to the first flow axis at an angle of about 3 to 7 degrees to the horizontal.
The cardiotomy manifold preferably defines a downward curving ledge extending from the cardiotomy blood sucker port to the first interior space, with the downward curving ledge having a radius of about 2.5 to 7.6 cm. The cardiotomy blood sucker port extends along a tangent to the downward curving ledge. A plurality of support veins support a pre-filter defoamer in the cardiotomy manifold.
Also, preferably, the venous blood inlet includes a drop tube and a directionalized, velocity-reducing prime bowl downstream of the drop tube for directing a portion of the blood flow path outwardly toward the walls of the blood treatment cartridge and decelerating the blood flow. The prime bowl has a cross-section at least four times greater than the cross-section of the drop tube.
In a second embodiment of the invention, the blood treatment system comprises a transparent housing defining a blood treatment chamber and a blood storage chamber downstream of the blood treatment chamber. A cardiotomy manifold is in fluid communication with the blood treatment chamber, and at least one cardiotomy blood sucker port is in fluid communication with the cardiotomy manifold. A venous blood inlet is in fluid communication with the blood treatment chamber, with the venous blood inlet being spaced from the cardiotomy manifold. An outlet port is provided in fluid communication with the blood storage chamber. A generally planar blood filtration media assembly has a periphery engaging the housing to divide the blood treatment chamber into first and second interior spaces that are visible through the transparent housing. The cardiotomy manifold is in fluid communication with the first interior space, and the venous blood inlet is in fluid communication with the second interior space. A generally planar blood defoamer media assembly is provided generally parallel with and spaced apart from the blood filtration media assembly. The blood defoamer media assembly has a periphery engaging the housing to divide the second interior space from the blood storage chamber.
Preferably, a pre-filter defoamer is provided for defoaming cardiotomy blood entering the first interior space from the cardiotomy blood sucker port before that blood is filtered by the filtration media Most preferably, the blood filtration media assembly includes filtration media and a first frame extending around a perimeter of the filtration media, and the blood defoamer media includes a defoamer media and a second frame extending around a perimeter of the defoamer media.
In a third embodiment, the blood treatment system comprises a housing defining a blood treatment chamber and blood storage chamber downstream of the blood treatment chamber. A cardiotomy manifold is provided in fluid communication with the blood treatment chamber, with at least one cardiotomy blood sucker port in fluid communication with the cardiotomy manifold. A venous blood inlet is provided in fluid communication with the blood treatment chamber, and an outlet port is provided in fluid communication with the blood storage chamber. A blood filtration media assembly is provided for filtering blood entering the blood treatment chamber through the cardiotomy blood sucker port, and a blood defoamer media assembly is provided for defoaming blood entering the blood treatment chamber through the cardiotomy blood sucker port and venous blood inlet. A blood diverter is provided within the blood storage chamber. The diverter and the housing form a pair of funnel-shaped blood flow channels diverging from one another as the funnel-shaped blood flow channels extend from the blood-treatment-media-receiving opening toward the outlet port, and a pair of converging blood flow channels extending from the fiinnel-shaped blood flow channels to the outlet port. The funnel-shaped and converging blood flow channels define: (a) a first flow axis extending downwardly in the direction away from the blood-treatment- media-receiving opening at an angle of about 20 to 24 degrees with respect to horizontal; and (b) a pair of second flow axii converging downwardly toward one another in the direction perpendicular to the first flow axis at an angle of about 3 to 7 degrees to the horizontal. Most preferably, the cardiotomy manifold defines a downward curving ledge extending from the cardiotomy blood sucker port to the first interior space. The downward curving ledge has a radius of about 2.5 to 7.6 cm, and the cardiotomy blood sucker port extends along a tangent to the downward curving ledge. A pre-filter defoamer defoams cardiotomy blood entering the first interior space from the cardiotomy blood sucker port before that blood is filtered by the filtration media. A plurality of support veins in the cardiotomy manifold supporting the pre-filter defoamer. The venous blood inlet includes drop tube, and a directionalized, velocity-reducing prime bowl downstream of the drop tube for directing a portion of the blood flow path outwardly toward the walls of the blood treatment cartridge and decelerating the blood flow The prime bowl has a cross-section at least four times greater than the cross- section of the drop tube.
As used herein:
"Biocompatibility" refers to a low-turbulent flow path that minimizes hemolysis and blood-air contact.
"Initial Break Through Volume" refers to the volume of fluid required before the fluid penetrates the filter media and reaches the output port in the reservoir. Initial break through volume is typically most significant when priming the blood treatment system. "Sucker Bypass" refers to a condition where both the venous return stream and the cardiotomy blood stream both pass through the cardiotomy filters.
Brief Description of the Drawing Figure 1 is an exploded view of an exemplary blood treatment system; Figure 2 is a top view of the blood treatment cartridge system of Figure i;
Figure 3 is a side sectional view of the blood treatment system of Figure i;
Figure 4 is an alternate side sectional view of the blood treatment system of Figure 1;
Figure 5 is a front view of the blood treatment system of Figure 1;
Figure 6 is a back view of the blood treatment system of Figure 1; Figure 7 is an exploded view of an alternate blood treatment system for cardiotomy blood;
Figure 8 is a top view of an alternate cardiotomy blood treatment system;
Figure 9 is side sectional view of the cardiotomy blood treatment system of Figure 8;
Figure 10 is side view of the cardiotomy blood treatment system of Figure 8; and
Figure 11 is a schematic view of a method of assembling the blood treatment system.
Detailed Description of Preferred Embodiments Figures 1-6 illustrate one embodiment of the blood treatment system 20. Blood treatment cartridge 22 has a blood treatment media receiving opening 24 defining an entrance to a chamber 26. A cartridge flange 28 extends around the perimeter of the blood treatment media opening 24 for engagement with a corresponding flange 30 on a front blood reservoir 32, as will be discussed in detail below.
A series of sucker ports 34 are located along a top edge of the blood treatment cartridge 22. The sucker ports 34 are preferably connected to one or more lines of tubing conducting cardiotomy blood from the surgical site to the blood treatment system 20 (not shown). As best seen in Figure 4, the blood sucker ports 34 are in fluid communication with a cardiotomy manifold 36 that leads to a separation chamber 37. The cardiotomy manifold 36 and sucker ports 34 define an arch 33 having a radius of curvature of about 3.8 cm (1.5 inches), and preferably in the range of 2.54 cm to 7.62 cm (1.0 inches to 3.0 inches). The bores for the sucker ports 34 are preferably tangent to the surface of the arch 33. The arch 33 directs the cardiotomy blood vertically downward into a first interior space 90 with minimal disturbance. The gradual shape of the arch 33 causes bubbles in the cardiotomy blood stream to rise to the surface. The bubbles may be broken when they contact pre-filter defoamer material 64 as the cardiotomy blood flows along the arch 33. Alternatively, the bubbles in the cardiotomy blood collect at the bottom of the separation chamber 37, where they are broken or popped by the pre-filter defoamer material 64. The cardiotomy blood preferably does not flow through the pre-filter defoamer material 64. The cardiotomy manifold 36 can process at least six liters/minute (such as for example during sucker bypass) for an indefinite period of time.
Cardiotomy blood enters the blood treatment system 20 through the sucker ports 34 and cardiotomy manifold 36, and flows into the first interior space 90. The portion of the chamber 26 between the first blood treatment media assembly 72 and the second blood treatment media assembly 82 defines a second interior space 92. The venous blood stream and filtered cardiotomy blood stream are collected in the second interior space 92 prior to defoaming.
As best illustrated in Figure 3, a swiveling venous inlet connector 40 on a venous drop tube 42 is fluidly connected to the cartridge 22. A fluid line (not shown) carries the venous return stream from the patient to the inlet connector 40. A 30-70 durometer, silicone O-ring 31 is preferably interposed between the venous inlet connector 40 and the venous drop tube 42. The venous inlet connector 40 preferably is arranged at between 30 and 60 degrees with respect to the venous drop tube 42 and has an outside diameter of 12.6 mm. A venous sampling luer site 54 is located on the venous inlet connector 40. The venous inlet connector 40 preferably includes a connector flange 44 that engages with a semicircular ledge 46 on the back of the blood treatment cartridge 22. An opening 50 is provided in the venous drop tube 42 for receiving a temperature sensor 48. The stainless steel thimble 49 is preferably hermetically sealed across the opening 50 in fluid communication with the venous return stream. The temperature sensor 48 is preferably located within the thimble 49.
The venous drop tube 42 preferably includes a cuvette tube 52 with a sensor window 43 (see Figure 6). The sensor window 43 typically interfaces with an infrared sensor for measuring oxygen content and hematocrit in the venous return stream. A suitable cuvette tube 52 is available from Minnesota Mining and
Manufacturing Company, St. Paul, Minnesota USA, under product designation CDI 100.
Turning to Figure 2, the blood treatment cartridge 22 preferably includes a series of ports along the top surface. A pair of filtered luer ports 55 provide access to the cardiotomy manifold 36. A 6.35 mm (0.25 inch) diameter prime port 58 in fluid communication with the cardiotomy manifold 36 is provided for priming the blood treatment system 20. A vent port 53 is provided for releasing excess pressure from the chamber 26 during usage. The vent port 53 is preferably in fluid communication with the second interior space 92, although it will be understood that a series of vents may be provided for some applications. A recirculation port 63 allows priming fluid, such as saline, to be recirculated between the blood treatment system 20 and an oxygenator (not shown) during the prime cycle. Finally a drug inlet port 51 provides access to the interior space 92 containing the venous return stream and the filtered cardiotomy blood stream. An exemplary oxygenator is shown in U.S. Patent Nos. 5,149,318 (Lindsay) and 5,514,335 (Leonard et al.).
An auxiliary cardiotomy inlet 56 provides direct access to the chamber 92. In the event that the cardiotomy filter assembly 72 fails, a secondary filter assembly
(not shown) for filtering the cardiotomy blood stream can be inserted into the blood circuit with minimal disruption to the surgery procedure. The filtered blood stream from the secondary filter assembly can then be directed to the chamber 92, thereby bypassing the failed filter assembly 72. An alternate system for handling medical fluids is shown in U.S. Patent No. 5,254,080 (Lindsay).
As shown best in Figures 1 and 3, a prime bowl 60 is located at the bottom of the venous drop tube 42 in fluid communication with the interior space 92 through an elongated inlet 59. Blood collects in the prime bowl 60 below chamber 26. In the event that the blood pumps fail, allowing blood in the drop tube 42 to travel backwards through the blood circuit, the prime bowl 60 operates as a trap to prevent air in the blood treatment system 20 from entering the venous blood stream. A blood trap is shown in U.S. Patent Nos. 5,282,783 (Lindsay) and 5,403,273 (Lindsay).
The prime bowl 60 also operates as a velocity reducer. The prime bowl 60 preferably has a cross-section about four to six times greater than the cross section of the drop tube 42. Consequently, the velocity of the venous return stream in the drop tube 42 is reduced to about 15-20% of its original velocity. For example, if the blood treatment system is operating at seven liters/min, the velocity of the venous return stream is reduced from 55 meters/min. to about 8.3 meters/min. The reduced velocity minimize splashing, foam-creating turbulent flow and contact with the air. The elongated shape of the elongated inlet 59 cause the venous return stream to exit the prime bowl 60 primarily laterally toward the edges 22 A, 22B of the blood treatment cartridge 22 so that blood stasis in these regions is minimized. A series of support veins 62 are formed along the chamber 26 proximate the cardiotomy manifold 36 for supporting the pre-filter defoamer material 64. The pre- filter defoamer material 64 serves to dissipate bubbles on the surface of the cardiotomy blood stream without directly interrupting the flow. Although the pre-filter defoamer material 64 is generally a planar sheet folded as shown best in Figure 4, it will be understood that a variety of shapes are possible, such as triangular a cross-section. A pre-filter ledge 68 is located on each of the support veins 62 for retaining the pre-filter defoamer material 64 proximate the sucker ports 34. The pre-filter defoamer material 64 is preferably inserted into the chamber 26 along a build axis "A". A filter seal ledge 70 is located around the perimeter of the chamber 26 adjacent to the cardiotomy manifold 36. The filter seal ledge 70 is configured to receive a first blood treatment media assembly 72. The first blood treatment media assembly 72 is preferably a filtration media 76 supported by a media frame 74. The media frame 74 is preferably inserted into the chamber 26 along the build axis "A" to engage with the filter seal ledge 70 adjacent to the cardiotomy manifold 36. As discussed above, the first blood treatment media assembly 72 and cardiotomy manifold forms a first interior space 90 (see Figure 3).
A defoamer seal ledge 80 is located along the perimeter of the interior space 26 for receiving a second blood treatment media assembly 82. The second blood treatment media assembly 82 is preferably a defoamer media 84 retained in a media frame 86. A support screen 85 may optionally be positioned on one or both sides of the defoamer media 84. The media frame 86 is preferably configured to engage with the defoamer seal ledge 80. The filter seal ledge 70 preferably defines a smaller perimeter than the defoamer seal ledge 80 so that the blood treatment media assemblies 72, 82 can be easily inserted into the blood treatment cartridge 22 along the build axis "A." The media 76, 84 may be retained in the frames 74, 86 by a urethane potting resin, mechanical gasket, UV cured adhesive, or a variety of other methods. The first and second blood treatment media are preferably planar or some other discontinuous configuration that does not create enclosures that can not be viewed by the medical staff Discontinuous configuration generally refers to media material that does not form a self-contained enclosure or pocket, such as a cylinder or pouch configuration. -l i¬ lt will be understood that additional seal ledges may be included along the perimeter of the chamber 26 for receiving additional blood treatment media. The perimeter of the seal ledges preferably increases in size closer to the cartridge flange 28 so that they can be automatically stacked in the chamber 26 along the build axis "A." In an alternate embodiment, a single seal ledge is provided proximate the cardiotomy manifold 36. Spacers may then provided along the perimeter of the chamber 26 to maintain the appropriate separation between the blood treatment media 72, 82.
The front blood reservoir 32 preferably includes a blood storage section 100 and a drain port 102. A handle 106 is preferably provided along the top of the front blood reservoir 32. A series of alternate sampling ports 101 may be provided along the top of the reservoir 32. It will be understood that the handle 106 may be located along any surface of the blood treatment system 20. The handle 106 may be used for carrying the blood treatment system 20, retaining sampling syringes or sampling lines during use. The blood storage section 100 preferably has a capacity of 2.0-4.0 liters. The treated blood exits the blood treatment system 20 via the drain port 102 prior to further handling and treatment, such as regulation of carbon dioxide content, oxygen content and temperature. The blood is ultimately returned to the patient through an aortic cannula inserted into the aorta distal to the heart.
A diverter dome 104 may optionally be included in the front blood reservoir 32. The diverter dome 104 reduces the volume retained in the storage section
100 proximate the outlet port 102. In the preferred embodiment, the volume of the storage section 100 below the level of the bottom of the second filter media assembly 82 is approximately 300 cc. The diverter dome 104 is configured to define funnel-shaped flow channels shown by arrows 105 on either side toward the outlet port 102 (see Figure 6). The diverter dome 104 preferably has a radius of curvature along a leading edge 109 of about 9.53 mm (.375 inches). The radius along the leading edge 109 blends into a radius of about 6.35 cm (2.5 inches) and then 7.62 cm (3.0 inches) along the sides toward the trailing edges 107. The radius of curvature for the trailing edges 107 is about 23.9 mm (0.94 inches). The portion of the diverter dome 104 about 22.6 mm (.89 inches) long between the two trailing edges 107 is straight. The diverter dome 104 has an overall length of about 12.6 cm (4.95 inches). The distance between the two trailing edges 107 is about 10.1 cm (4.0 inches). As best seen in Figures 3 and 6, bottom surface 108 of the funnel-shaped flow channels 105 defines a first flow axis B extending downward at an angle α of about 20 to 24 degrees from horizontal toward the outlet port 102. The bottom surface 108 preferably defines a second flow axis C having a downward taper of approximately 3 to 7 degrees extending away from the diverter dome 104 and generally peφendicular to the first flow axis B. The resulting flow is away from the diverter dome 104 toward the curved edges 111 on either side of the outlet port 102. The compound curves along the bottom surface 108 results in a low-turbulent, sheet-flow of blood through the front blood reservoir 32. Figure 7 is an exploded view of an alternate blood treatment system 120 for treating primarily cardiotomy blood. A front blood reservoir 122 seals the blood treatment media receiving opening 24' on the blood treatment cartridge 22'. The cartridge 22' is further discussed below in connection with Figures 8-10. It will be understood that the front blood reservoir 122 may be used with the cartridge 22 shown in Figures 1-6. The blood treatment system 120 is preferably assembled along the build axis A', as discussed herein
The front blood reservoir 122 preferably has minimal volume for retaining blood. An outlet port 124 diverts the treated blood through a tubing 126 to a secondary blood storage reservoir 128, such as a flexible pouch or bag. The blood reservoir 128 preferably includes a pair of valves 130, 132 for venting air and adding drugs. The venous return stream is delivered directly to the blood reservoir 128 by a venous input line 134, thereby bypassing the blood treatment system 120. Check valves 131 may optionally be provided in the tubes 126, 134. A cap 136 is preferably located in the venous inlet to seal the chamber 26*. In the configuration of Figure 7, the blood treatment system 120 treats only the cardiotomy blood drawn in through the sucker ports 34'.
Figures 8-10 illustrate the cardiotomy blood treatment cartridge 22' of Figure 7 used with the front blood reservoir 32 of Figure 1. Since the venous return stream is not directed through the blood treatment system 20', the chamber 92' is significantly compressed as compared to the chamber 92 in Figure 4. The compressed chamber 90' reduces the initial break through volume to prime the system 20'. The operation of the cardiotomy manifold 36', the first and second blood treatment media assemblies 72', 82' and the front blood reservoir 32' are substantially the same as discussed above.
The pre-filter defoamer material 64 is preferably constructed of an open cell, blood compatible, synthetic polymeric foam, such as a reticulated polyurethane foam, that collapses blood foam into liquid blood. The pre-filter defoamer material 64 preferably has 5-20 pores per inch (PPI) and most preferably 10 pores per inch. The pre-filters are preferably treated with an anti-foam compound such as silicone.
The filtration media may be constructed of fibrous polyester depth filter. Commercially available filtration media include Dacron polyester felt having a mean aperture size in the range of about 20 to 50 microns, and preferably 30 microns. The filtration media 76 is alternatively constructed of a pleated depth media with a pore size of about 20-40 microns and most preferably with pore size of 30 microns.
The defoamer media may be constructed from a woven screen of nylon, polyester or polypropylene. The defoamer media 84 is preferably a mesh with 10-40 pores per inch and most preferably 26 pores per inch. The defoamer media is preferably coated with silicone. The defoamer media 84 is preferably supported on the downstream side by a support screen 85 having pore sizes of about 300-400 microns. A suitable silicone coated, reticulated polyurethane foam with 26 PPI is available from Lydall Westex, Hamptonville, North Carolina USA. The blood treatment systems 20, 20', 120 are preferably molded from a clear thermoplastic such as polycarbonate or PET-G (glycol modified polyethylene terephthalate). In a preferred embodiment, the components have a nominal wall thickness of about 2.16 mm to 2.29 mm (0.085 inches to 0.090 inches). The components of the blood treatment systems 20, 20', 120 are preferably treated with heparin. Heparin is an acid mucopolysaccharide that acts as an anti-thrombin, anti- thromboplastin, and an anti-platelet factor to prolong clotting time of whole blood.
The blood treatment systems 20, 20', 120 are designed so that the blood stream is easily visible to the medical staff at all times. Visibility of the blood stream is necessary to monitor for potential filter failure, blood stasis, debris, color and other factors. In particular, the drop tube 42, the blood treatment cartridge 22 and the front blood reservoir 32 are preferably constructed of a clear plastic material. Consequently, all sides of the pre-filter defoamer material are visible from either the top, back, bottom or sides of the cartridge 22. The chambers 90, 90', 92, 92' are visible around the perimeter of the cartridges 22, 22' (see Figures 3, 4 and 9). The contents of the front blood reservoirs 32, 32', 122 are visible from the front or sides thereof.
Figure 1 1 is a schematic illustration of a preferred method 200 of assembling the blood treatment systems 20, 20', 120. A pick and place robot 202 locates a blood treatment cartridge on an assembly carousel 204. The carousel 204 rotates to a second station 205 where a pick and place robot 206 installs a pre-filter foam material in the blood treatment cartridge along the build axis "A." A glue dispenser arm 208 applies a bead of glue along the filter seal ledge at station 207 in preparation for insertion of the first blood treatment media. The carousel moves the assembly to station 209 where pick and place robot 210 inserts the first blood treatment media into the chamber along the build axes A or A'. The glue is then cured at a UV curing station 212. The carousel 204 then moves the partially assembled blood treatment system to an unload cart 213 where a pick and place robot 214 transfers the assembly to a second carousel 216.
A glue dispenser arm 218 at station 217 applies a bead of glue along the defoamer seal ledge in preparation for insertion of the second blood treatment media. A pick and place robot 220 at station 219 installs the second blood treatment media along a build axes A or A' into the chamber. The glue is cured at a UV curing station 222. The carousel 216 then rotates to a second glue dispenser arm 224 at station 223 where glue is applied along the cartridge flange in preparation for installation of the front blood reservoir 32. A pick and place robot 226 at station 225 installs the front blood reservoir along a build axis A or A'. The glue is cured by a UV cure robot arm 228. The carousel 216 then rotates to station 230 where a pick and place robot 232 removes the blood treatment system 20, where it is forwarded for inspection and packaging.
The structure of the blood treatment system permits each of the components to be inter-engaged along a single build axis, thus facilitating automated assembly. Additionally, the minimal number of components renders automated assembly a cost-effective alternative. Automated assembly provides a number of key advantages for medical devices of this type. First, assembly is extremely accurate and repeatabie.
Secondly, the nature of the blood treatment system permits a variety of blood treatment media to be substituted automatically during the assembly process. The automated assembly process permits the type of blood treatment media installed in a particular blood treatment system to be accurately tracked and recorded.
The invention has now been described with reference to several embodiments described herein. It will be apparent to those skilled in the art that many changes can be made in the embodiments without departing from the scope of the invention as defined by the claims.

Claims

CLAIMS:
1. A blood treatment system (20; 120; 20') assembled along a single build axis (A; A'), the system (20; 120; 20') comprising: a blood treatment cartridge (22; 22') having a chamber (26; 26'), a blood-treatment-media-receiving opening (24; 24') defining an entrance to the chamber (26; 26'), a cardiotomy manifold (36; 36') in fluid communication with the chamber (26; 26'), and at least one cardiotomy blood sucker port (34, 34') in fluid communication with the cardiotomy manifold (36; 36'); a first generally planar blood treatment media (76) inserted along the build axis (A; A') through the blood-treatment-media-receiving opening (24; 24') into the chamber (26; 26'), the first blood treatment media (76) dividing the chamber (26; 26') into first and second interior spaces (90 and 92; 90' and 92'), with the cardiotomy manifold (36; 36') in fluid communication with the first interior space (90; 90'); a second generally planar blood treatment media (84) inserted along the build axis (A; A') through the blood-treatment-media-receiving opening (24; 24') of the blood treatment cartridge (22; 22') to enclose the second interior space (92; 92'); and a blood outlet section (100; 122) sealed to the blood treatment cartridge (22; 22') to form a housing enclosing the blood-treatment-media-receiving opening (24; 24'), the blood outlet section (100; 122) having an outlet port (102; 124).
2. A blood treatment system (20; 120; 20') according to claim 1 further characterized the blood treatment cartridge (22; 22') and blood storage section (100; 122) form a housing comprising transparent plastic material, the housing being configured such that substantially the entire blood flow path is visible.
3. A blood treatment system (20; 120; 20') according to claim 1 or 2 further characterized in that the blood treatment cartridge (22; 22') includes at least one ledge (72) in the chamber (26; 26') configured and positioned to engage the first blood treatment media (76) to limit insertion of the first blood treatment media (76) into the chamber (26).
4. A blood treatment system (20; 120; 20') according to claim 3 further characterized in that the ledge (70) constitutes a first ledge (70), the blood treatment cartridge (22) further including a second ledge (80) in the chamber (26) between the blood-treatment-media-receiving opening (24) and the first ledge (70) and configured to engage the second blood treatment media (82) to limit insertion of the second blood treatment media (82) into the chamber (26), the second ledge (80) defining a perimeter larger than the first ledge (70) and permitting the first blood treatment media (72) to be inserted into the chamber (26) further than the second ledge (80).
5. A blood treatment system (20) according to any of claims 1-4 further characterized in that a venous blood inlet (40) is provided in fluid communication with the second interior space (92) of the chamber (26), with the venous blood inlet (40) being spaced along the build axis (A) from the cardiotomy manifold (36).
6. A blood treatment system (20) according to any of claims 1-5 further characterized in that: the first blood treatment media (70) comprises a filtration media (76) for filtering cardiotomy blood entering the system (20) through the cardiotomy blood sucker port (34); the second blood treatment media (80) comprises a defoamer media (84) for defoaming venous blood entering the system (20) through the venous blood inlet
(40) and cardiotomy blood filtered by the filtration media (76); and the system (20) further includes a pre-filter defoamer (64) for defoaming cardiotomy blood entering the first interior space (90) from the cardiotomy blood sucker port (34) before that blood is filtered by the filtration media (76).
7. A blood treatment system (20) according to claim 6 further characterized in that the filtration media (76) has an average pore size of about 20 to 40 microns.
8. A blood treatment system (20) according to claim 6 or 7 further characterized in that a first frame (74) extends around a perimeter of the filtration media (76), and a second frame (86) extends around a perimeter of the defoamer media (84).
9. A blood treatment system (20) according to any of claims 5-8 further characterized in that: the cardiotomy manifold (36) defines a downward curving ledge (68) extending from the cardiotomy blood sucker port (34) to the first interior space (90), the downward curving ledge (68) having a radius of about 2.5 to 7.6 cm, the cardiotomy blood sucker port (34) extending along a tangent to the downward curving ledge (68); the cardiotomy manifold (36) further including a plurality of support veins (62) supporting a pre-filter defoamer (64); and the venous blood inlet includes drop tube (42) and a directionalized, velocity-reducing prime bowl (60) downstream of the drop tube (42) for directing a portion of the blood flow path outwardly toward the walls of the blood treatment cartridge (22) and decelerating the blood flow, the prime bowl (60) having a cross- section at least four times greater than the cross-section of the drop tube (42).
10. A blood treatment system (20; 120; 20') according to any of claims 1 -9 further characterized in that the blood-treatment-media-receiving opening (24) of the blood treatment cartridge (22) has a perimeter forming means for snap-fit engagement with the blood outlet section (100).
11. A blood treatment system (20; 120; 20') according to any of claims 1-10 further characterized in that the blood outlet section (100) defines a blood storage chamber.
12. A blood treatment system (20; 120; 20') according to claim 11 further characterized in that the blood outlet section (100) further includes a blood diverter (104) within the blood storage chamber forming a pair of funnel-shaped blood flow channels (105) diverging from one another as the channels (105) extend from the blood -treatment-media-receiving opening (24) toward the outlet port (102), and a pair of converging blood flow channels (108) extending from the funnel-shaped blood flow channels (105) to the outlet port (102).
13. A blood treatment system (20; 120; 20') according to claim 12 further characterized in that the fiinnel-shaped and converging blood flow channels (105 and 108) define: a first flow axis extending downwardly in the direction away from the blood-treatment-media-receiving opening (24) at an angle (α) of about 20 to 24 degrees with respect to horizontal; and a pair of second flow axii (C) converging downwardly toward one another in the direction peφendicular to the first flow axis at an angle of about 3 to 7 degrees to the horizontal.
14. A blood treatment system (20) comprising: a transparent housing defining a blood treatment chamber (26) and blood storage chamber downstream of the blood treatment chamber (26), a cardiotomy manifold (36) in fluid communication with the blood treatment chamber (26), at least one cardiotomy blood sucker port (34) in fluid communication with the cardiotomy manifold (36), a venous blood inlet (40) in fluid communication with the blood treatment chamber (26), with the venous blood inlet (40) being spaced from the cardiotomy manifold (36), and an outlet port (102) in fluid communication with the blood storage chamber; a generally planar blood filtration media assembly (70) having a periphery engaging the housing to divide the blood treatment chamber (26) into first and second interior spaces (90 and 92) that are visible through the transparent housing, with the cardiotomy manifold (36) in fluid communication with the first interior space (90) and the venous blood inlet (40) in fluid communication with the second interior space (92); a generally planar blood defoamer media assembly (80) generally parallel with and spaced apart from the blood filtration media assembly (70), the blood defoamer media assembly (80) having a periphery engaging the housing to divide the second interior space (92) from the blood storage chamber.
15. A blood treatment system (20) according to claim 14 further characterized in that a pre-filter defoamer (64) is provided for defoaming cardiotomy blood entering the first interior space (90) from the cardiotomy blood sucker port (34) before that blood is filtered by the filtration media (76).
16. A blood treatment system (20) according to claim 14 or 15 further characterized in that the blood filtration media assembly (70) includes filtration media (76) and a first frame (74) extending around a perimeter of the filtration media (76), and the blood defoamer media (80) includes a defoamer media (84) and a second frame (86) extending around a perimeter of the defoamer media (84).
17. A blood treatment system (20) according to claim 16 further characterized in that the filtration media (76) having an average pore size of about 20 to 40 microns.
18. A blood treatment system (20) comprising: a housing defining a blood treatment chamber (26) and blood storage chamber downstream of the blood treatment chamber (26), a cardiotomy manifold (36) in fluid communication with the blood treatment chamber (26), at least one cardiotomy blood sucker port (34) in fluid communication with the cardiotomy manifold (36), a venous blood inlet (40) in fluid communication with the blood treatment chamber (26), and an outlet port (102) in fluid communication with the blood storage chamber; a blood filtration media assembly (70) for filtering blood entering the blood treatment chamber (26) through the cardiotomy blood sucker port (34); a blood defoamer media assembly (84) for defoaming blood entering the blood treatment chamber (26) through the cardiotomy blood sucker port (34) and venous blood inlet (40); a blood diverter (104) within the blood storage chamber forming, together with the housing, a pair of funnel-shaped blood flow channels (105) diverging from one another as the channels (105) extend from the blood-treatment-media- receiving opening (24) toward the outlet port (102), and a pair of converging blood flow channels (108) extending from the fiinnel-shaped blood flow channels (105) to the outlet port (102), the funnel-shaped and converging blood flow channels (105 and 108) defining: a first flow axis extending downwardly in the direction away from the blood-treatment-media-receiving opening (24) at an angle (α) of about 20 to 24 degrees with respect to horizontal; and a pair of second flow axii (C) converging downwardly toward one another in the direction peφendicular to the first flow axis at an angle of about 3 to 7 degrees to the horizontal.
19. A blood treatment system (20) according to claim 18 further characterized in that: the cardiotomy manifold (36) defines a downward curving ledge (68) extending from the cardiotomy blood sucker port (34) to the first interior space (90), the downward curving ledge (68) having a radius of about 2.5 to 7.6 cm, the cardiotomy blood sucker port (34) extending along a tangent to the downward curving ledge (68); the system (20) further includes a pre-filter defoamer (64) for defoaming cardiotomy blood entering the first interior space (90) from the cardiotomy blood sucker port (34) before that blood is filtered by the filtration media (76); the cardiotomy manifold (36) further including a plurality of support veins (62) supporting the pre-filter defoamer (64); and the venous blood inlet includes drop tube (42) and a directionalized, velocity-reducing prime bowl (60) downstream of the drop tube (42) for directing a portion of the blood flow path outwardly toward the walls of the blood treatment cartridge (22) and decelerating the blood flow, the prime bowl (60) having a cross- section at least four times greater than the cross-section of the drop tube (42).
PCT/US1997/009783 1996-06-07 1997-06-05 Blood treatment system WO1997046272A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97929812A EP0909188A1 (en) 1996-06-07 1997-06-05 Blood treatment system
AU33782/97A AU3378297A (en) 1996-06-07 1997-06-05 Blood treatment system
JP10500866A JP2000512173A (en) 1996-06-07 1997-06-05 Blood processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/659,808 1996-06-07
US08/659,808 US5871693A (en) 1996-06-07 1996-06-07 Modular blood treatment cartridge

Publications (1)

Publication Number Publication Date
WO1997046272A1 true WO1997046272A1 (en) 1997-12-11

Family

ID=24646925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/009783 WO1997046272A1 (en) 1996-06-07 1997-06-05 Blood treatment system

Country Status (5)

Country Link
US (2) US5871693A (en)
EP (1) EP0909188A1 (en)
JP (1) JP2000512173A (en)
AU (1) AU3378297A (en)
WO (1) WO1997046272A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMO20130194A1 (en) * 2013-07-01 2015-01-02 Eurosets Srl BLOOD BLOOD FILTERING DEVICE

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6481980B1 (en) 1999-09-03 2002-11-19 Baxter International Inc. Fluid flow cassette with pressure actuated pump and valve stations
US20060178612A9 (en) * 1999-09-03 2006-08-10 Baxter International Inc. Blood processing systems with fluid flow cassette with a pressure actuated pump chamber and in-line air trap
US7041076B1 (en) 1999-09-03 2006-05-09 Baxter International Inc. Blood separation systems and methods using a multiple function pump station to perform different on-line processing tasks
US6723062B1 (en) 1999-09-03 2004-04-20 Baxter International Inc. Fluid pressure actuated blood pumping systems and methods with continuous inflow and pulsatile outflow conditions
US6875191B2 (en) 1999-09-03 2005-04-05 Baxter International Inc. Blood processing systems and methods that alternate flow of blood component and additive solution through an in-line leukofilter
US6949079B1 (en) * 1999-09-03 2005-09-27 Baxter International Inc. Programmable, fluid pressure actuated blood processing systems and methods
US6759007B1 (en) 1999-09-03 2004-07-06 Baxter International Inc. Blood processing systems and methods employing fluid pressure actuated pumps and valves
US6709412B2 (en) 1999-09-03 2004-03-23 Baxter International Inc. Blood processing systems and methods that employ an in-line leukofilter mounted in a restraining fixture
US20080027368A1 (en) * 2000-09-27 2008-01-31 Sorin Group Usa, Inc. Disposable cartridge for a blood perfusion system
EP1322352A4 (en) 2000-09-27 2010-06-16 Sorin Group Usa Inc Disposable cartridge for a blood perfusion system
AU2002230462A1 (en) * 2000-11-13 2002-05-21 Amir Belson Improved hemodialysis treatment apparatus and method
EP1519764B1 (en) * 2002-06-24 2009-03-25 Gambro Lundia AB Gas separation devices
US6846161B2 (en) * 2002-10-24 2005-01-25 Baxter International Inc. Blood component processing systems and methods using fluid-actuated pumping elements that are integrity tested prior to use
US20050049539A1 (en) * 2003-09-03 2005-03-03 O'hara Gerald P. Control system for driving fluids through an extracorporeal blood circuit
US7056286B2 (en) * 2003-11-12 2006-06-06 Adrian Ravenscroft Medical device anchor and delivery system
GB2437254B (en) * 2006-04-13 2010-11-17 Haemair Ltd Blood/air mass exchange apparatus
US10092427B2 (en) * 2009-11-04 2018-10-09 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US9649211B2 (en) * 2009-11-04 2017-05-16 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
EP2782613A1 (en) * 2011-11-21 2014-10-01 Haemonetics Corporation Single stage filtration system and method for use with blood processing systems
DE102013102281A1 (en) * 2013-03-07 2014-09-11 B. Braun Avitum Ag Dialysis machine with self-supporting machine housing
JP6132137B2 (en) * 2013-03-22 2017-05-24 株式会社ジェイ・エム・エス Blood reservoir
EP3131663A2 (en) 2014-03-29 2017-02-22 Princeton Trade and Technology Inc. Blood processing cartridges and systems, and methods for extracorporeal blood therapies
US10426884B2 (en) 2015-06-26 2019-10-01 Novaflux Inc. Cartridges and systems for outside-in flow in membrane-based therapies
EP3352888B8 (en) 2015-09-24 2022-01-12 Princeton Trade and Technology Inc. Cartridges for hollow fibre membrane-based therapies
WO2018226991A1 (en) 2017-06-07 2018-12-13 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
WO2019094963A1 (en) 2017-11-13 2019-05-16 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
CN112004563A (en) 2018-02-01 2020-11-27 施菲姆德控股有限责任公司 Intravascular blood pump and methods of use and manufacture
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
EP4034192A4 (en) 2019-09-25 2023-11-29 Shifamed Holdings, LLC Intravascular blood pump systems and methods of use and control thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355785A2 (en) * 1988-08-26 1990-02-28 Terumo Kabushiki Kaisha Blood storage container
EP0437957A1 (en) * 1989-12-19 1991-07-24 Medtronic, Inc. Cardiotomy reservoir
US5149318A (en) 1990-03-14 1992-09-22 Minnesota Mining And Manufacturing Company Quick-changeover blood handling apparatus
US5158533A (en) * 1991-03-26 1992-10-27 Gish Biomedical, Inc. Combined cardiotomy/venous/pleural drainage autotransfusion unit with filter and integral manometer and water seal
US5254080A (en) 1990-03-14 1993-10-19 Minnesota Mining And Manufacturing Company Quick-changeover apparatus for handling medical fluid
US5282783A (en) 1991-12-17 1994-02-01 Minnesota Mining And Manufacturing Company Blood reservoir
US5403273A (en) 1991-12-17 1995-04-04 Minnesota Mining And Manufacturing Company Blood reservoir
WO1996000593A1 (en) * 1994-06-30 1996-01-11 Polystan Holding A/S A device for filtration and collection of blood
US5514335A (en) 1993-10-25 1996-05-07 Minnesota Mining And Manufacturing Company Blood oxygenation system and reservoir and method of manufacture

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR777243A (en) * 1933-11-03 1935-02-14 Le Mondial Improvements to extinguishers in which the charge is enclosed in an ampoule or glass container
US3507395A (en) * 1967-12-01 1970-04-21 Bentley Lab Cardiotomy reservoir
US3701433A (en) * 1970-11-10 1972-10-31 Pall Corp Filter for use in the filtration of blood
US3742934A (en) * 1971-08-12 1973-07-03 Medical Dev Corp Body fluid collection bottle for pediatric use
US3768653A (en) * 1972-03-21 1973-10-30 R Brumfield Filtering cardiotomy reservoir
US3803810A (en) * 1972-05-01 1974-04-16 Pall Corp Liquid-gas separator and filter
US4054523A (en) * 1973-07-10 1977-10-18 General Electric Company Cardiotomy reservoir with integral filter
US3993461A (en) * 1973-07-20 1976-11-23 Baxter Laboratories, Inc. Cardiotomy reservoir
US3891416A (en) * 1973-07-20 1975-06-24 Baxter Laboratories Inc Cardiotomy reservoir
US3927980A (en) * 1973-08-22 1975-12-23 Baxter Laboratories Inc Oxygen overpressure protection system for membrane-type blood oxygenators
AR207768A1 (en) * 1974-01-02 1976-10-29 Baxter Laboratories Inc AN IMPROVED BLOOD OXYGENER
US4157965A (en) * 1975-01-20 1979-06-12 Bentley Laboratories, Inc. Blood treating device
US4164468A (en) * 1975-01-20 1979-08-14 Bentley Laboratories, Inc. Blood treating device and method of operation
US4183961A (en) * 1976-02-03 1980-01-15 Shiley Incorporated Method of oxygenating blood
US4151088A (en) * 1978-01-23 1979-04-24 Baxter Travenol Laboratories, Inc. Membrane diffusion device with integral heat exchanger and reservoir
FR2418651A1 (en) * 1978-03-02 1979-09-28 Dso Metalchim BLOOD OXYGENATION APPARATUS
US4208193A (en) * 1978-11-09 1980-06-17 Baxter Travenol Laboratories, Inc. Cardiotomy reservoir having two-stage defoaming means
US4243531A (en) * 1978-05-30 1981-01-06 Baxter Travenol Laboratories, Inc. Cardiotomy reservoir
US4336224A (en) * 1979-01-16 1982-06-22 Travenol Laboratories, Inc. Bubble oxygenator
US4422939A (en) * 1979-11-07 1983-12-27 Texas Medical Products, Inc. Blood and perfusate filter
DE3172813D1 (en) * 1980-05-20 1985-12-12 Haemonetics Corp Suction liquid collection assembly and flexible liquid collection bag suitable for use therein
US4440723A (en) * 1981-07-10 1984-04-03 Bentley Laboratories, Inc. Blood oxygenator
US4490331A (en) * 1982-02-12 1984-12-25 Steg Jr Robert F Extracorporeal blood processing system
US4424190A (en) * 1982-02-22 1984-01-03 Cordis Dow Corp. Rigid shell expansible blood reservoir, heater and hollow fiber membrane oxygenator assembly
US4517090A (en) * 1982-03-30 1985-05-14 Baxter Travenol Laboratories, Inc. Low volume, large area filters for IV or blood filtration
US4818490A (en) * 1982-04-26 1989-04-04 Cobe Laboratories, Inc. Integral blood oxygenator
US4469659B1 (en) * 1982-04-26 1997-07-29 Cobe Lab Sampling device for blood oxygenator
US4568367A (en) * 1982-11-15 1986-02-04 Shiley Incorporated Blood defoamer with improved liquid seal
US4668394A (en) * 1983-01-10 1987-05-26 Mcneilab, Inc. Filtration media and supporting frame
US4743371A (en) * 1983-04-08 1988-05-10 Shiley, Inc. Blood filter
DE3485551D1 (en) * 1983-11-11 1992-04-09 Terumo Corp DEVICE FOR TAKING AND TREATING BLOOD.
EP0313107B1 (en) * 1983-11-11 1992-03-04 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Device for receiving and treating blood
US4585056A (en) * 1984-04-18 1986-04-29 Norton Company Heat exchanger
US4606698A (en) * 1984-07-09 1986-08-19 Mici Limited Partnership Iv Centrifugal blood pump with tapered shaft seal
US4589822A (en) * 1984-07-09 1986-05-20 Mici Limited Partnership Iv Centrifugal blood pump with impeller
US4643641A (en) * 1984-09-10 1987-02-17 Mici Limited Partnership Iv Method and apparatus for sterilization of a centrifugal pump
US4737139A (en) * 1985-01-29 1988-04-12 Shiley Inc. Unitary venous return reservoir with cardiotomy filter
US4642089A (en) * 1985-01-29 1987-02-10 Shiley, Inc. Unitary venous return reservoir with cardiotomy filter
US4656004A (en) * 1985-05-17 1987-04-07 Cobe Laboratories, Inc. Medical heat exchange
JPS61276562A (en) * 1985-05-31 1986-12-06 テルモ株式会社 Blood storage tank
SE452405B (en) * 1985-12-19 1987-11-30 Gambro Cardio Ab HEART-LUNGE SYSTEM PROVIDED FOR ACIDING A PATIENT'S BLOOD
US4876066A (en) * 1986-07-14 1989-10-24 Baxter International Inc. Integrated membrane oxygenator, heat exchanger and reservoir
US5167921A (en) * 1986-07-14 1992-12-01 Baxter International Inc. Liquid and gas separation system
JPH0342927Y2 (en) * 1987-02-09 1991-09-09
JPS6411560A (en) * 1987-07-07 1989-01-17 Terumo Corp Blood storage tank
JPS6411561A (en) * 1987-07-07 1989-01-17 Terumo Corp Blood storage tank
US5078677A (en) * 1987-09-29 1992-01-07 Conmed Corporation Apparatus for collecting blood from a chest drainage unit and reinfusion of the blood
US4846800A (en) * 1987-10-14 1989-07-11 Kenneth Ouriel Two chambered autotransfuser device and method of use
US4909780A (en) * 1987-10-14 1990-03-20 Kenneth Ouriel Two chambered autotransfuser device and method of use
IT1223470B (en) * 1987-12-15 1990-09-19 Dideco Spa INTEGRATED UNIT IN EXTRACORPOREAL BLOOD CIRCUIT
AU611244B2 (en) * 1987-12-25 1991-06-06 Terumo Kabushiki Kaisha Medical instrument
US4923438A (en) * 1988-07-18 1990-05-08 Pfizer Hospital Products Group, Inc. Blood recovery system and method
US5087250A (en) * 1988-07-26 1992-02-11 Gish Biomedical, Inc. Autotransfusion unit with vacuum regulation and cardiotomy reservoir
US4883455A (en) * 1988-09-13 1989-11-28 Minnesota Mining And Manufacturing Company Cardioplegia administration set
US5382407A (en) * 1988-12-14 1995-01-17 Minnesota Mining And Manufacturing Company Membrane blood oxygenator
CA2001956A1 (en) * 1988-12-14 1990-06-14 Ronald J. Leonard Membrane blood oxygenator
DE68922908T2 (en) * 1989-01-13 1995-11-02 Minntech Corp WEDGE FOR AN OXYGEN DEVICE.
US4936759A (en) * 1989-01-23 1990-06-26 Minnesota Mining And Manufacturing Company Blood reservoir/pump
US5043140A (en) * 1989-05-26 1991-08-27 A. Jorrdan Medical, Inc. Blood oxygenator
US5049146A (en) * 1989-05-31 1991-09-17 Baxter International, Inc. Blood/gas separator and flow system
IT1231024B (en) * 1989-07-31 1991-11-08 Dideco Spa BLOOD CONTAINER FOR MEDICAL APPARATUS
US5039430A (en) * 1989-11-20 1991-08-13 Medtronic, Inc. Method and apparatus for combining cardiotomy and venous blood
US5399156A (en) * 1990-03-14 1995-03-21 Minnesota Mining And Manufacturing Company Quick-changeover blood handling apparatus
US5270005A (en) * 1990-09-07 1993-12-14 Baxter International Inc. Extracorporeal blood oxygenation system incorporating integrated reservoir-membrane oxygenerator-heat exchanger and pump assembly
US5192439A (en) * 1992-02-03 1993-03-09 Electromedics, Inc. Blood collection reservoir and filter device
US5328461A (en) * 1992-04-30 1994-07-12 Utterberg David S Blow molded venous drip chamber for hemodialysis
WO1993025249A1 (en) * 1992-06-15 1993-12-23 Minnesota Mining And Manufacturing Company Quick-changeover blood handling apparatus
DE69324754T2 (en) * 1992-10-07 2000-01-13 Asahi Medical Co Filter and system for the separation of leukocytes
US5580349A (en) * 1993-09-17 1996-12-03 Avecor Cardiovascular, Inc. Blood reservoir
US5411705A (en) * 1994-01-14 1995-05-02 Avecor Cardiovascular Inc. Combined cardiotomy and venous blood reservoir
US5472605A (en) * 1994-03-10 1995-12-05 Hemasure, Inc. Filtration device useable for removal of leukocytes and other blood components
US5667485A (en) 1995-05-01 1997-09-16 Minnesota Mining And Manufacturing Company Blood reservoir with visible inlet tube
CA2177442A1 (en) * 1995-05-29 1996-11-30 Massimo Fini Cardiotomy reservoir with internal filter
US5770073A (en) * 1996-03-15 1998-06-23 Minntech Corporation Combined cardiotomy and venous reservoir

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355785A2 (en) * 1988-08-26 1990-02-28 Terumo Kabushiki Kaisha Blood storage container
EP0437957A1 (en) * 1989-12-19 1991-07-24 Medtronic, Inc. Cardiotomy reservoir
US5149318A (en) 1990-03-14 1992-09-22 Minnesota Mining And Manufacturing Company Quick-changeover blood handling apparatus
US5254080A (en) 1990-03-14 1993-10-19 Minnesota Mining And Manufacturing Company Quick-changeover apparatus for handling medical fluid
US5158533A (en) * 1991-03-26 1992-10-27 Gish Biomedical, Inc. Combined cardiotomy/venous/pleural drainage autotransfusion unit with filter and integral manometer and water seal
US5282783A (en) 1991-12-17 1994-02-01 Minnesota Mining And Manufacturing Company Blood reservoir
US5403273A (en) 1991-12-17 1995-04-04 Minnesota Mining And Manufacturing Company Blood reservoir
US5514335A (en) 1993-10-25 1996-05-07 Minnesota Mining And Manufacturing Company Blood oxygenation system and reservoir and method of manufacture
WO1996000593A1 (en) * 1994-06-30 1996-01-11 Polystan Holding A/S A device for filtration and collection of blood

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMO20130194A1 (en) * 2013-07-01 2015-01-02 Eurosets Srl BLOOD BLOOD FILTERING DEVICE
WO2015001474A1 (en) * 2013-07-01 2015-01-08 Eurosets S.R.L. Device for filtering venous blood
CN105555332A (en) * 2013-07-01 2016-05-04 优罗塞斯有限责任公司 Device for filtering venous blood

Also Published As

Publication number Publication date
JP2000512173A (en) 2000-09-19
US5871693A (en) 1999-02-16
EP0909188A1 (en) 1999-04-21
AU3378297A (en) 1998-01-05
US6180058B1 (en) 2001-01-30

Similar Documents

Publication Publication Date Title
US5871693A (en) Modular blood treatment cartridge
EP0190020B1 (en) Unitary venous return reservoir with cardiotomy filter
CA2063790C (en) Biological fluid processing
US4737139A (en) Unitary venous return reservoir with cardiotomy filter
EP0745397B1 (en) Blood filter and extracorporeal circuit
KR101122872B1 (en) Integrated blood treatment module
JP4623909B2 (en) Sterile liquid filtration cartridge and method using the same
US20100096311A1 (en) Blood treatment dialyzer/filter design to trap entrained air in a fluid circuit
EP0588965B1 (en) Collection device
JP4050808B2 (en) Composite device for extracorporeal circuit comprising venous blood reservoir and cardiotomy blood reservoir
JP2004512872A (en) Dual stage type filtration cartridge
EP0946243A1 (en) Integrated cardiotomy and venous blood reservoir
JP2004130085A (en) Selective deleukocytation unit for platelet product
CA2072414A1 (en) Biological semi-fluid processing assembly
US20030057147A1 (en) Filtration device and system for biological fluids
EP0767682B1 (en) A device for filtration and collection of blood
WO2019155895A1 (en) Implantable hemodialysis device
JP3272782B2 (en) Liquid processor
JP2799179B2 (en) Liquid processor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997929812

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997929812

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1997929812

Country of ref document: EP