WO1997025644A2 - Near-field light source - Google Patents

Near-field light source Download PDF

Info

Publication number
WO1997025644A2
WO1997025644A2 PCT/DE1997/000059 DE9700059W WO9725644A2 WO 1997025644 A2 WO1997025644 A2 WO 1997025644A2 DE 9700059 W DE9700059 W DE 9700059W WO 9725644 A2 WO9725644 A2 WO 9725644A2
Authority
WO
WIPO (PCT)
Prior art keywords
field light
light source
source according
carrier element
active material
Prior art date
Application number
PCT/DE1997/000059
Other languages
German (de)
French (fr)
Other versions
WO1997025644A3 (en
Inventor
Gerhard Müller
Jürgen BEUTHAN
Original Assignee
Laser- Und Medizin-Technologie Gmbh, Berlin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser- Und Medizin-Technologie Gmbh, Berlin filed Critical Laser- Und Medizin-Technologie Gmbh, Berlin
Publication of WO1997025644A2 publication Critical patent/WO1997025644A2/en
Publication of WO1997025644A3 publication Critical patent/WO1997025644A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders

Definitions

  • the invention relates to a near-field light source, in particular for backlighting a sample in a microscope according to the preamble of claim 1.
  • the so-called nano light source according to Prof. Aaron Lewis which consists of a glass capillary which is conically extended to 50 nm and which is filled with anthracite as exciton-active material, whereby the anthracene is emitted by an argon laser is excited.
  • the small illumination field is disadvantageous here.
  • the invention is therefore based on the object of creating a near-field light source, in particular for near-field microscopy, which has the largest possible illumination field and has as few moving parts as possible.
  • the invention includes the technical teaching of arranging a large number of near-field light sources next to one another in a grid and to excite the individual near-field light sources together or in succession.
  • the individual near-field light sources each consist of a hollow channel in a carrier element which preferably consists of semiconductor material, the individual hollow channels being at least partially filled with an exciton-active material.
  • the term hollow channel is to be understood here and in the following generally and is not restricted to continuous channels, but also includes cavities in the carrier element.
  • exciton-active material can be introduced into the carrier element and the exciton-active material is then accessible for excitation by a laser or electron beam, for which purpose a radiation source is provided which is provided the side of the carrier element facing away from the sample is arranged.
  • the semiconductor plate preferably consists of a gallium arsenide semiconductor, but it is also possible to implement the near-field light source according to the invention with other semiconductor connections.
  • Anthracene is particularly suitable as exciton-active material in the individual hollow channels, but the use of other excitone-active materials, such as amorphous or porous silicon, is also possible.
  • the radiation source used to excite the exciton-active material is a laser, the radiation generated by the laser being passed on to the individual near-field light sources by means of an optical fiber bundle.
  • the ends of the individual optical waveguides on the sample side each end in the region of a hollow channel, whereas the ends facing away from the sample are each connected to the laser.
  • the light guide bundle is preferably tapped in such a way that the distal end is matched in cross section and can be placed on the carrier element.
  • the excitation of the individual near-field light sources can take place jointly for all near-field light sources or sequentially by means of a laser scanner, which couples the light generated one after the other into the individual light guides of the light guide bundle.
  • the excitation of the individual near-field light sources does not take place optically, but by means of an electron beam.
  • an electron emitter is provided on the side of the carrier element facing away from the sample, a deflection device being arranged between the carrier element and the electron emitter, which deflects the electron beam one after the other at the individual near-field light sources.
  • the deflection device consists of capacitor plates, which are arranged in front of the electron emitter and deflect the electron beam on account of the electrical field existing between the capacitor plates, so that the deflection angle is caused by the electrical voltage to the Capacitor plates can be adjusted.
  • the deflection device has a coil which is arranged in front of the electron emitter and generates a magnetic field, so that the electron beam is deflected due to the Lorenz force.
  • the carrier element also serves to receive the sample and is flat on the sample side so that the sample can be applied directly to the carrier element serving as a slide.
  • FIG. 2 shows another near-field light source according to the invention with a laser and a deflection device for sequential excitation of the individual near-field light sources, likewise in a perspective view,
  • FIG. 3 shows a near-field light source according to the invention with a laser for excitation of the individual light sources and an optical fiber bundle for the common excitation of the individual near-field light sources and
  • FIG. 4 shows a cross-section of a near-field light source of one of the above-mentioned exemplary embodiments.
  • FIG. 1 shows a semiconductor plate 1 made of gallium arsenide as a carrier element for a large number of near-field light sources, which are shown in detail in FIG.
  • the semiconductor plate 1 has a multiplicity of continuous hollow channels 2, which are partially filled with anthracene 3 as exciton-active material.
  • SEW laser-induced electromagnetic surface waves
  • s- or p-polarized UV laser light is emitted onto the semiconductor plate 1 at an angle suitable for imaging via holographic gratings.
  • the individual near-field light sources are excited by an electron beam 5, which is emitted by an electron emitter 6 arranged on the side of the semiconductor plate 1 facing away from the sample.
  • the electron emitter 6 is shown here on a different imaging scale than the semiconductor plate 1 with the individual near-field light sources.
  • the semiconductor plate 1 thus appears greatly enlarged in relation to the electron emitter 6.
  • a deflection device is also arranged between the electron emitter 6 and the semiconductor plate 1, which deflects the electron beam 5 sequentially in the direction of the individual near-field light sources.
  • the deflection device has two pairs of capacitor plates 7.1, 7.2, 8.1, 8.2, which each surround the electron beam 5 in pairs and deflect due to the electric field between the capacitor plates 7.1, 7.2, 8.1, 8.2.
  • the deflection angle of the electron beam 5 can therefore be adjusted by the capacitor voltage.
  • the two pairs of capacitor plates 7.1, 7.2, 8.1, 8.2 are oriented differently and are controlled separately in order to be able to deflect the electron beam 5 in different directions.
  • the light generated by the individual near-field light sources then passes through the sample 4 and is fed via a lens 10, which is only shown schematically, to a detector array 11, which thus takes an image of the sample 4.
  • FIG. 2 shows a further exemplary embodiment of a near-field light source according to the invention, which largely corresponds to the exemplary embodiment described above, so that — as in the following — for details that are identical in construction and function, are identified by the same reference numerals.
  • the semiconductor plate 1 is - as already shown in FIG. 1 - greatly enlarged compared to the remaining details of the drawing.
  • the individual near-field light sources are excited by a laser beam 12, which is generated by an argon ion laser 13 arranged on the side of the semiconductor plate 1 facing away from the sample.
  • the excitation of the individual near-field light sources by the laser beam 12 also takes place sequentially, in that the laser beam 12 is deflected one after the other by a deflection device in the direction of the individual near-field light sources.
  • the deflection device essentially consists of a mirror 14 which can be adjusted by means of stepper motors, which is arranged in the beam path of the laser 13 and deflects the laser beam 12 onto one of the near-field light sources depending on the position of the mirror 14.
  • FIG. 3 finally shows a further exemplary embodiment of the invention, in which the excitation of the individual light sources also takes place with a laser 15.
  • the semiconductor board 1 is again the other components
  • FIG. 1 and 2 - shows greatly enlarged.
  • the excitation of the individual near field light sources does not take place sequentially, but simultaneously.
  • an optical fiber bundle 16 is provided, the individual fibers 16.1 to 16.6 of which each guide the light generated by the laser 15 to one of the near-field light sources.
  • the embodiment of the invention is not limited to the preferred exemplary embodiments described above. le. Rather, a number of variants are conceivable which make use of the solution shown even in the case of fundamentally different types.

Abstract

The invention concerns a near-field light source, especially for background illumination of a probe (4) in a microscope, with a support member (1) with a hollow channel (2) which essentially runs parallel to the direction of light emission and is at least partly filled with an excitonically active material (3) as well as with a radiation source (6) which is on the observe side from the sample for exciting the excitonically active material (3) to emit light. The support member (1) exhibits a number of contiguous hollow channels (2) which run essentially parallel to the direction of light emission and which are at least partly filled with an excitonically active material (3).

Description

Nahfeldlichtquelle Near field light source
Beschreibungdescription
Die Erfindung betrifft eine Nahfeldlichtquelle, insbesonde¬ re zur Hintergrundbeleuchtung einer Probe in einem Mikro¬ skop gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a near-field light source, in particular for backlighting a sample in a microscope according to the preamble of claim 1.
Es ist bei der Nahfeldmikroskopie bekannt, zur Objektbe- leuchtung ultradunne optische Fasern zu verwenden, die eine Punktlichtquelle bilden, wobei die Fasern piezoelektrisch bewegt werden können, um verschiedene Bereiche zu beleuch¬ ten. Nachteilig ist hierbei, daß mechanisch bewegte Teile erforderlich sind.It is known in near field microscopy to use ultrathin optical fibers for object illumination which form a point light source, the fibers being able to be moved piezoelectrically in order to illuminate different areas. The disadvantage here is that mechanically moving parts are required.
Weiterhin ist die sogenannte Nano-Lichtquelle nach Prof. Aaron Lewis bekannt, die aus einer bis auf 50 nm konisch ausgezogenen Glaskapillare besteht, die endstandig mit An- thrazen als excitonenaktivem Material gefüllt ist, wobei das Anthrazen von einem Argon-Laser zur Lichtabgabe ange- regt wird. Nachteilig ist hierbei das kleine Beleuchtungs¬ feld.Furthermore, the so-called nano light source according to Prof. Aaron Lewis is known, which consists of a glass capillary which is conically extended to 50 nm and which is filled with anthracite as exciton-active material, whereby the anthracene is emitted by an argon laser is excited. The small illumination field is disadvantageous here.
Der Erfindung liegt somit die Aufgabe zugrunde, eine Nah- feldlichtquelle, insbesondere für die Nahfeldmikroskopie, zu schaffen, die über ein möglichst großes Beleuchtungsfeld verfugt und möglichst wenig bewegte Teile aufweist.The invention is therefore based on the object of creating a near-field light source, in particular for near-field microscopy, which has the largest possible illumination field and has as few moving parts as possible.
Die Aufgabe wird, ausgehend von einer Nahfeldlichtquelle gemäß dem Oberbegriff des Anspruchs, durch die kennzeich¬ nenden Merkmale des Anspruchs 1 gelost.Starting from a near-field light source according to the preamble of the claim, the object is achieved by the characterizing features of claim 1.
Die Erfindung schließt die technische Lehre ein, eine Viel- zahl von Nahfeldlichtquellen rasterformig nebeneinander an¬ zuordnen und die einzelnen Nahfeldlichtquellen gemeinsam oder nacheinander anzuregen. Die einzelnen Nahfeldlichtquellen bestehen jeweils aus ei¬ nem Hohlkanal in einem vorzugsweise aus Halbleitermaterial bestehenden Trägerelement, wobei die einzelnen Hohlkanäle mindestens teilweise mit einem excitonenaktiven Material gefüllt sind. Der Begriff Hohlkanal ist hierbei und im fol¬ genden allgemein zu verstehen und nicht auf durchgehende Kanäle beschränkt, sondern schließt auch Hohlräume in dem Trägerelement mit ein. Entscheidend für die erfindungsgemä¬ ße Funktion ist lediglich, daß in das Trägerelement excito- nenaktives Material eingebracht werden kann und das excito- nenaktive Material anschließend für eine Anregung durch ei¬ nen Laser- oder Elektronenstrahl zuganglich ist, wofür eine Strahlungsquelle vorgesehen ist, die auf der probenabge- wandten Seite des Trägerelements angeordnet ist.The invention includes the technical teaching of arranging a large number of near-field light sources next to one another in a grid and to excite the individual near-field light sources together or in succession. The individual near-field light sources each consist of a hollow channel in a carrier element which preferably consists of semiconductor material, the individual hollow channels being at least partially filled with an exciton-active material. The term hollow channel is to be understood here and in the following generally and is not restricted to continuous channels, but also includes cavities in the carrier element. The only decisive factor for the function according to the invention is that exciton-active material can be introduced into the carrier element and the exciton-active material is then accessible for excitation by a laser or electron beam, for which purpose a radiation source is provided which is provided the side of the carrier element facing away from the sample is arranged.
Die Halbleiterplatte besteht vorzugsweise aus einem Galli- um-Arsenid-Halbleiter, jedoch ist die Realisierung der er¬ findungsgemäßen Nahfeldlichtquelle auch mit anderen Halbei¬ ter-Verbindungen möglich. Als excitonenaktives Material in den einzelnen Hohlkanälen eignet sich insbesondere Anthra- zen, jedoch ist auch die Verwendung von anderen excitonen¬ aktiven Materialien, wie beispielsweise amorphem oder porö¬ sem Silizium, möglich.The semiconductor plate preferably consists of a gallium arsenide semiconductor, but it is also possible to implement the near-field light source according to the invention with other semiconductor connections. Anthracene is particularly suitable as exciton-active material in the individual hollow channels, but the use of other excitone-active materials, such as amorphous or porous silicon, is also possible.
In einer Variante der Erfindung ist die zur Anregung des excitonenaktiven Materials dienende Strahlungsquelle ein Laser, wobei die Weiterleitung der von dem Laser erzeugten Strahlung zu den einzelnen Nahfeldlichtquellen durch ein Lichtleiterbündel erfolgt. Die probenseitigen Enden der einzelnen Lichtwellenleiter enden hierbei jeweils im Be¬ reich eines Hohlkanals, wohingegen die probenabgewandten Enden jeweils mit dem Laser verbunden sind. Zur Verbesse¬ rung der optischen Ankopplung der einzelnen Lichtleiter wird das Lichtleiterbündel vorzugsweise so getapert, daß das distale Ende querschnittsangeglichen ist und auf das Trägerelement aufgesetzt werden kann. Die Anregung der ein¬ zelnen Nahfeldlichtquellen kann hierbei gemeinsam für alle Nahfeldlichtquellen oder sequentiell mittels eines Laser- Scanners erfolgen, der das erzeugte Licht nacheinander in die einzelnen Lichtleiter des Lichtleiterbündels einkop¬ pelt.In a variant of the invention, the radiation source used to excite the exciton-active material is a laser, the radiation generated by the laser being passed on to the individual near-field light sources by means of an optical fiber bundle. The ends of the individual optical waveguides on the sample side each end in the region of a hollow channel, whereas the ends facing away from the sample are each connected to the laser. To improve the optical coupling of the individual light guides the light guide bundle is preferably tapped in such a way that the distal end is matched in cross section and can be placed on the carrier element. The excitation of the individual near-field light sources can take place jointly for all near-field light sources or sequentially by means of a laser scanner, which couples the light generated one after the other into the individual light guides of the light guide bundle.
In einer anderen Variante der Erfindung erfolgt die Anre- gung der einzelnen Nahfeldlichtquellen dagegen nicht op¬ tisch, sondern mittels eines Elektronenstrahls. Hierzu ist auf der probenabgewandten Seite des Trägerelements ein Elektronenstrahler vorgesehen, wobei zwischen dem Träger¬ element und dem Elektronenstrahler eine Ablenkvorrichtung angeordnet ist, die den Elektronenstrahl nacheinander auf die einzelnen Nahfeldlichtquellen richtet. In einer Ausfüh¬ rungsform dieser Variante der Erfindung besteht die Ablenk¬ vorrichtung aus Kondensatorplatten, die vor dem Elektronen¬ strahler angeordnet sind und den Elektronenstrahl aufgrund des zwischen den Kondensatorplatten bestehenden elektri¬ schen Feldes ablenken, so daß der Ablenkwinkel durch die elektrische Spannung an den Kondensatorplatten eingestellt werden kann. In einer anderen Ausführungsform weist die Ab¬ lenkvorrichtung dagegen eine Spule auf, die vor dem Elek- tronenstrahler angeordnet ist und ein magnetisches Feld er¬ zeugt, so daß der Elektronenstrahl aufgrund der Lorenzkraft abgelenkt wird.In another variant of the invention, on the other hand, the excitation of the individual near-field light sources does not take place optically, but by means of an electron beam. For this purpose, an electron emitter is provided on the side of the carrier element facing away from the sample, a deflection device being arranged between the carrier element and the electron emitter, which deflects the electron beam one after the other at the individual near-field light sources. In one embodiment of this variant of the invention, the deflection device consists of capacitor plates, which are arranged in front of the electron emitter and deflect the electron beam on account of the electrical field existing between the capacitor plates, so that the deflection angle is caused by the electrical voltage to the Capacitor plates can be adjusted. In another embodiment, however, the deflection device has a coil which is arranged in front of the electron emitter and generates a magnetic field, so that the electron beam is deflected due to the Lorenz force.
Besonders vorteilhaft ist die Anordnung der erfindungsgemä¬ ßen Nahfeldlichtquelle im Strahlengang eines inversen La- ser-Scan-Mikroskops, wobei die Anregung der einzelnen Nah¬ feldlichtquellen durch den Laser erfolgt. In der bevorzugten Ausführungsform der Erfindung der Erfin¬ dung dient das Tragerelement zusätzlich zur Aufnahme der Probe und ist hierzu auf der Probenseite plan, so daß die Probe direkt auf das als Objektträger dienende Tragerele- ment aufgebracht werden kann.The arrangement of the near-field light source according to the invention in the beam path of an inverse laser scan microscope is particularly advantageous, the excitation of the individual near-field light sources being effected by the laser. In the preferred embodiment of the invention of the invention, the carrier element also serves to receive the sample and is flat on the sample side so that the sample can be applied directly to the carrier element serving as a slide.
Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteranspruchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausfuhrung der Erfindung anhand der Figuren naher dargestellt. Es zei- gen:Other advantageous developments of the invention are characterized in the subclaims or are shown in more detail below together with the description of the preferred embodiment of the invention with reference to the figures. Show it:
Figur 1 als bevorzugtes Ausfuhrungsbeispiel der Erfindung eine Nahfeldlichtquelle zur Hintergrundbeleuchtung in einem Mikroskop mit einem Elektronenstrahler zur Anregung der einzelnen Nahfeldlichtquellen in perspektivischer Darstellung,1 as a preferred exemplary embodiment of the invention, a near-field light source for backlighting in a microscope with an electron beam for excitation of the individual near-field light sources in a perspective view,
Figur 2 eine weitere erfindungsgemäße Nahfeldlichtquelle mit einem Laser und einer Ablenkvorrichtung zur sequentiellen Anregung der einzelnen Nahfeldlicht¬ quellen ebenfalls in perspektivischer Darstellung,FIG. 2 shows another near-field light source according to the invention with a laser and a deflection device for sequential excitation of the individual near-field light sources, likewise in a perspective view,
Figur 3 eine erfindungsgemäße Nahfeldlichtquelle mit einem Laser zur Anregung der einzelnen Lichtquellen und einem Lichtleiterbundel zur gemeinsamen Anregung der einzelnen Nahfeldlichtquellen sowieFIG. 3 shows a near-field light source according to the invention with a laser for excitation of the individual light sources and an optical fiber bundle for the common excitation of the individual near-field light sources and
Figur 4 eine Nahfeldlichtquelle einer der vorstehend ge- nannten Ausfuhrungsbeispiele im Querschnitt.FIG. 4 shows a cross-section of a near-field light source of one of the above-mentioned exemplary embodiments.
Figur 1 zeigt eine Halbleiterplatte 1 aus Gallium-Arsenid als Tragerelement für eine Vielzahl von Nahfeldlichtquel¬ len, die detailliert in Figur 4 dargestellt sind. Zur Auf- nähme der einzelnen Nahfeldlichtquellen weist die Halblei¬ terplatte 1 eine Vielzahl von durchgehenden Hohlkanalen 2 auf, die teilweise mit Anthrazen 3 als excitonenaktivem Ma¬ terial gefüllt sind. Zur Herstellung der dargestellten An- Ordnung wird zunächst mit laserinduzierten elektromagneti¬ schen Oberflachenwellen (SEW) em photochemischer Atzprozeß auf einer massiven Halbleiterplatte 1 durchgeführt. Hierbei wird in Anwesenheit von He/CH3Br als Atzgas über hologra¬ phische Gitter s- bzw. p-polarisiertes UV-Laserlicht m ei- nem für die Abbildung geeigneten Winkel auf die Halbleiter¬ platte 1 gestrahlt. Hierdurch entsteht in der Halbleiter¬ platte 1 eine Vielzahl Mulden, die in der Halbleiterplatte 1 rasterformig angeordnet sind, wobei das Rastermaß 335 nm und die Muldentiefe 200 nm betragt. Anschließend erfolgt dann ein planparalleler Mikroanschliff der Halbleiterplatte 1 von der inversen Seite her so lange, bis der Atz-Mulden- Anschnitt realisiert ist. Der Mulden-Anschnitt durch den planparallelen Mikroanschliff wird so lange in die Tiefe gefuhrt, bis sich die Hohlkanale 2 in der Halbleiterplatte 1 gebildet haben und die gewünschte Apertur bei einer di¬ stalen Muldenoffnung von 100 nm erreicht ist. In die ein¬ zelnen Hohlkanale 2 wird dann jeweils Anthrazen 3 als exci- tonenaktives Material durch Losungsmittel-Verdampfung ein¬ gebracht. Durch den planparallelen Mikroanschliff ist gleichzeitig em mikroskopischer Objektträger geschaffen, so daß eine mikroskopisch zu untersuchende Probe 4 direkt auf die Halbleiterplatte aufgebracht werden kann.FIG. 1 shows a semiconductor plate 1 made of gallium arsenide as a carrier element for a large number of near-field light sources, which are shown in detail in FIG. For the Taking the individual near-field light sources, the semiconductor plate 1 has a multiplicity of continuous hollow channels 2, which are partially filled with anthracene 3 as exciton-active material. To produce the arrangement shown, a photochemical etching process is first carried out on a solid semiconductor plate 1 using laser-induced electromagnetic surface waves (SEW). In the presence of He / CH 3 Br as the etching gas, s- or p-polarized UV laser light is emitted onto the semiconductor plate 1 at an angle suitable for imaging via holographic gratings. This results in a large number of depressions in the semiconductor plate 1, which are arranged in a grid shape in the semiconductor plate 1, the grid dimension being 335 nm and the recess depth being 200 nm. This is followed by a plane-parallel micro-grinding of the semiconductor plate 1 from the inverse side until the Atz-trough cut is realized. The trough cut through the plane-parallel micro-grinding is guided into the depth until the hollow channels 2 have formed in the semiconductor plate 1 and the desired aperture has been reached with a diameter trough opening of 100 nm. Anthracene 3 is then introduced into the individual hollow channels 2 as excitone-active material by solvent evaporation. The plane-parallel micro-grinding simultaneously creates an microscopic slide, so that a sample 4 to be examined microscopically can be applied directly to the semiconductor plate.
Die Anregung der einzelnen Nahfeldlichtquellen erfolgt hierbei durch einen Elektronenstrahl 5, der von einem auf der probenabgewandten Seite der Halbleiterplatte 1 angeord¬ neten Elektronenstrahler 6 abgegeben wird. Zur Verdeutli- chung ist der Elektronenstrahler 6 hierbei in einem anderen Abbildungsmaßstab dargestellt als die Halbleiterplatte 1 mit den einzelnen Nahfeldlichtquellen. So erscheint die Halbleiterplatte 1 im Verhältnis zu dem Elektronenstrahler 6 stark vergrößert.The individual near-field light sources are excited by an electron beam 5, which is emitted by an electron emitter 6 arranged on the side of the semiconductor plate 1 facing away from the sample. For clarification The electron emitter 6 is shown here on a different imaging scale than the semiconductor plate 1 with the individual near-field light sources. The semiconductor plate 1 thus appears greatly enlarged in relation to the electron emitter 6.
Zwischen dem Elektronenstrahler 6 und der Halbleiterplatte 1 ist weiterhin eine Ablenkvorrichtung angeordnet, die den Elektronenstrahl 5 sequentiell in Richtung der einzelnen Nahfeldlichtquellen ablenkt. Die Ablenkvorrichtung weist hierzu zwei Paare von Kondensatorplatten 7.1, 7.2, 8.1, 8.2 auf, die den Elektronenstrahl 5 jeweils paarweise umgeben und aufgrund des elektrischen Feldes zwischen den Kondensa¬ torplatten 7.1, 7.2, 8.1, 8.2 ablenken. Der Ablenkwinkel des Elektronenstrahls 5 kann also durch die Kondensator- Spannung eingestellt werden. Die beiden Paare von Kondensa¬ torplatten 7.1, 7.2, 8.1, 8.2 sind hierbei unterschiedlich ausgerichtet und werden getrennt angesteuert, um den Elek¬ tronenstrahl 5 in unterschiedliche Richtungen ablenken zu können.A deflection device is also arranged between the electron emitter 6 and the semiconductor plate 1, which deflects the electron beam 5 sequentially in the direction of the individual near-field light sources. For this purpose, the deflection device has two pairs of capacitor plates 7.1, 7.2, 8.1, 8.2, which each surround the electron beam 5 in pairs and deflect due to the electric field between the capacitor plates 7.1, 7.2, 8.1, 8.2. The deflection angle of the electron beam 5 can therefore be adjusted by the capacitor voltage. The two pairs of capacitor plates 7.1, 7.2, 8.1, 8.2 are oriented differently and are controlled separately in order to be able to deflect the electron beam 5 in different directions.
Das von den einzelnen Nahfeldlichtquellen erzeugte Licht durchtritt dann die Probe 4 und wird über eine nur schema¬ tisch dargestellte Optik 10 einem Detektor-Array 11 zuge¬ führt, das somit ein Bild der Probe 4 aufnimmt.The light generated by the individual near-field light sources then passes through the sample 4 and is fed via a lens 10, which is only shown schematically, to a detector array 11, which thus takes an image of the sample 4.
Figur 2 zeigt em weiteres Ausfuhrungsbeispiel einer erfin- dungsgemaßen Nahfeldlichtquelle, das mit dem vorstehend be¬ schriebene Ausfuhrungsbeispiel weitgehend übereinstimmt, so daß - wie auch im folgenden - für bau- und funktionsgleiche Details durch dieselben Bezugszeichen gekennzeichnet sind. Hierbei ist die Halbleiterplatte 1 - wie bereits in Figur 1 - gegenüber den restlichen Details der Zeichnung stark ver¬ größert.FIG. 2 shows a further exemplary embodiment of a near-field light source according to the invention, which largely corresponds to the exemplary embodiment described above, so that — as in the following — for details that are identical in construction and function, are identified by the same reference numerals. Here, the semiconductor plate 1 is - as already shown in FIG. 1 - greatly enlarged compared to the remaining details of the drawing.
Im Gegensatz zu dem vorstehend beschriebenen Ausfuhrungs¬ beispiel erfolgt die Anregung der einzelnen Nahfeldlicht- quellen hierbei jedoch durch einen Laserstrahl 12, der von einem auf der probenabgewandten Seite der Halbleiterplatte 1 angeordneten Argon-Ionen-Laser 13 erzeugt wird. Die Anre¬ gung der einzelnen Nahfeldlichtquellen durch den Laser¬ strahl 12 erfolgt hierbei ebenfalls sequentiell, indem der Laserstrahl 12 von einer Ablenkvorichtung nacheinander m Richtung der einzelnen Nahfeldlichtquellen abgelenkt wird. Die Ablenkvorrichtung besteht im wesentlichen aus einem durch Schrittmotoren verstellbaren Spiegel 14, der im Strahlengang des Lasers 13 angeordnet ist und den Laser- strahl 12 in Abhängigkeit von der Stellung des Spiegels 14 auf eine der Nahfeldlichtquellen ablenkt.In contrast to the exemplary embodiment described above, the individual near-field light sources are excited by a laser beam 12, which is generated by an argon ion laser 13 arranged on the side of the semiconductor plate 1 facing away from the sample. The excitation of the individual near-field light sources by the laser beam 12 also takes place sequentially, in that the laser beam 12 is deflected one after the other by a deflection device in the direction of the individual near-field light sources. The deflection device essentially consists of a mirror 14 which can be adjusted by means of stepper motors, which is arranged in the beam path of the laser 13 and deflects the laser beam 12 onto one of the near-field light sources depending on the position of the mirror 14.
Figur 3 zeigt schließlich ein weiteres Ausfuhrungsbeispiel der Erfindung, bei dem die Anregung der einzelnen Licht¬ quellen ebenfalls mit einem Laser 15 erfolgt. Die Halblei- terplatte 1 ist gegenüber den restlichen Bauteilen wiederumFIG. 3 finally shows a further exemplary embodiment of the invention, in which the excitation of the individual light sources also takes place with a laser 15. The semiconductor board 1 is again the other components
- wie m den Figuren 1 und 2 - stark vergrößert darge¬ stellt. Im Gegensatz zu den vorstehend beschriebenen Aus¬ fuhrungsbeispielen erfolgt die Anregung der einzelnen Nah¬ feldlichtquellen hierbei jedoch nicht sequentiell, sondern gleichzeitig. Hierzu ist em Lichtleiterbundel 16 vorgese¬ hen, dessen einzelne Fasern 16.1 bis 16.6 das von dem Laser 15 erzeugte Licht jeweils zu einer der Nahfeldlichtquellen fuhren.- As shown in Figures 1 and 2 - shows greatly enlarged. In contrast to the exemplary embodiments described above, the excitation of the individual near field light sources does not take place sequentially, but simultaneously. For this purpose, an optical fiber bundle 16 is provided, the individual fibers 16.1 to 16.6 of which each guide the light generated by the laser 15 to one of the near-field light sources.
Die Erfindung beschrankt sich in ihrer Ausfuhrung nicht auf die vorstehend angegebenen bevorzugten Ausfuhrungsbeispie- le. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Losung auch bei grundsatzlich anders gearteten Ausfuhrungen Gebrauch macht. The embodiment of the invention is not limited to the preferred exemplary embodiments described above. le. Rather, a number of variants are conceivable which make use of the solution shown even in the case of fundamentally different types.

Claims

Ansprüche Expectations
1. Nahfeldlichtquelle, insbesondere zur Hintergrundbe¬ leuchtung einer Probe (4) in einem Mikroskop, mit einem Tragerelement (1) mit einem im wesentlichen par¬ allel zur Lichtaustrittsrichtung verlaufenden Hohlkanal (2), der mindestens teilweise mit einem excitonenaktiven Material (3) gefüllt ist sowie einer auf der probenabgewandten Seite des Tragerelements (1) angeordneten Strahlungsquelle (6, 13, 15) zur Anregung des excitonenaktiven Materials (3) zur Lichtabgabe, dadurch gekennzeichnet, daß das Tragerelement (1) zur Vergrößerung des Beleuch¬ tungsfeldes eine Vielzahl von nebeneinander angeordneten, jeweils im wesentlichen parallel zur Lichtaustrittsrichtung verlaufenden Hohlkanalen (2) aufweist, die mindestens teil- weise mit einem excitonenaktiven Material (3) gefüllt sind.1. Near-field light source, in particular for background illumination of a sample (4) in a microscope, with a carrier element (1) with a hollow channel (2) which runs essentially parallel to the light exit direction and which is at least partially filled with an exciton-active material (3) and a radiation source (6, 13, 15) arranged on the side of the carrier element (1) facing away from the sample for excitation of the exciton-active material (3) for emitting light, characterized in that the carrier element (1) for enlarging the illumination field has a multiplicity of has hollow channels (2) which are arranged next to one another and run essentially parallel to the light exit direction and which are at least partially filled with an exciton-active material (3).
2. Nahfeldlichtquelle nach Anspruch 1, dadurch gekenn¬ zeichnet, daß das Tragerelement (1) plattenformig ist.2. Near-field light source according to claim 1, characterized gekenn¬ characterized in that the carrier element (1) is plate-shaped.
3. Nahfeldlichtquelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Tragerelement (1) aus einem Halb- leitermaterial besteht.3. Near field light source according to claim 1 or 2, characterized in that the carrier element (1) consists of a semiconductor material.
4. Nahfeldlichtquelle nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß die zur Anregung des excitonenaktiven Materials (3) dienende Strahlungsquelle4. Near field light source according to one of the preceding claims, characterized in that the radiation source used to excite the exciton-active material (3)
ERSATZBLAπ (REGEL26) em Laser (15) ist und zur Weiterleitung der von dem Laser (15) abgegebenen Strahlung zu den einzelnen Hohlkanalen (2) em Lichtleiterbundel (16) vorgesehen ist, wobei die pro- benseitigen Enden der einzelnen Lichtleiter (16.1 bis 16.6) jeweils im Bereich eines der Hohlkanale (2) enden und die probenabgewandten Enden der einzelnen Lichtleiter (16.1 bis 16.6) der Strahlungsquelle (15) zugewandt sind.REPLACEMENT BLAπ (RULE 26) A laser (15) is provided and for forwarding the radiation emitted by the laser (15) to the individual hollow channels (2) one of the hollow channels (2) ends and the ends of the individual light guides (16.1 to 16.6) facing away from the sample face the radiation source (15).
5. Nahfeldlichtquelle nach Anspruch 4, dadurch gekenn¬ zeichnet, daß zur optischen Ankopplung des Lichtleiterbun- dels (16) an die Hohlkanale (2) em Taper-Koppler vorgese¬5. Near-field light source according to claim 4, characterized gekenn¬ characterized in that for optical coupling of the optical fiber bundle (16) to the hollow channels (2) em taper coupler
6. Nahfeldlichtquelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Strahlungsquelle em Elek¬ tronenstrahler (6) oder em Laser (13) ist und zur Ablen- kung des Elektronenstrahls (5) bzw. des Laserstrahls (12) auf die verschiedenen Hohlkanale (2) zwischen dem Elektro¬ nenstrahler (6) bzw. dem Laser (13) und dem Tragerelement (1) eine Ablenkvorrichtung (7.1, 7.2, 8.1, 8.2 bzw. 14) an¬ geordnet ist.6. Near-field light source according to one of claims 1 to 3, characterized in that the radiation source is em electron beam (6) or em laser (13) and for deflecting the electron beam (5) or the laser beam (12) on the Different hollow channels (2) between the electron emitter (6) or the laser (13) and the support element (1) a deflection device (7.1, 7.2, 8.1, 8.2 or 14) is arranged.
7. Nahfeldlichtquelle nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß das Tragerelement (1) zur direkten Aufbringung der Probe (4) mindestens proben- seitig plan ist.7. Near-field light source according to one of the preceding claims, characterized in that the carrier element (1) for direct application of the sample (4) is at least flat on the sample side.
8. Nahfeldlichtquelle nach einem der vorhergehenden An- Spruche, dadurch gekennzeichnet, daß die Hohlkanale (2) in dem Trägerelement (1) in Form eines Rasters mit einem vor¬ gegebenen Rastermaß angeordnet sind.8. Near field light source according to one of the preceding claims, characterized in that the hollow channels (2) in the carrier element (1) are arranged in the form of a grid with a predetermined grid dimension.
9. Nahfeldlichtquelle nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß der Querschnitt der einzelnen Hohlkanäle (2) in Lichtaustrittsrichtung abnimmt.9. Near field light source according to one of the preceding claims, characterized in that the cross section of the individual hollow channels (2) decreases in the light exit direction.
10. Nahfeldlichtquelle nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß das excitonenaktive Material (3) amorphes oder poröses Silizium oder Anthrazen ist.10. Near field light source according to one of the preceding claims, characterized in that the excitone-active material (3) is amorphous or porous silicon or anthracene.
* * * * * * * * * *
PCT/DE1997/000059 1996-01-13 1997-01-10 Near-field light source WO1997025644A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19601109A DE19601109A1 (en) 1996-01-13 1996-01-13 Two-dimensional optical near-field light source
DE19601109.4 1996-01-13

Publications (2)

Publication Number Publication Date
WO1997025644A2 true WO1997025644A2 (en) 1997-07-17
WO1997025644A3 WO1997025644A3 (en) 1997-09-04

Family

ID=7782716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000059 WO1997025644A2 (en) 1996-01-13 1997-01-10 Near-field light source

Country Status (2)

Country Link
DE (1) DE19601109A1 (en)
WO (1) WO1997025644A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072076A1 (en) * 1999-05-21 2000-11-30 Brugger Juergen Probe tip that is transparent to light and method for producing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19929875A1 (en) * 1999-06-29 2001-01-04 Laser & Med Tech Gmbh Method and device for the rapid near-field optical examination of biological objects by means of a light source excited by particle beams
US6621575B1 (en) 2000-01-20 2003-09-16 Laser- Und Medizin Technologie Gmbh Berlin Method and device for analyzing molecular reaction products in biological cells
EP2296027A4 (en) * 2008-06-03 2014-02-26 Univ Shizuoka Nat Univ Corp Optical microscope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659429A (en) * 1983-08-03 1987-04-21 Cornell Research Foundation, Inc. Method and apparatus for production and use of nanometer scale light beams
US5148307A (en) * 1988-07-17 1992-09-15 Raoul Kopelman Nanometer dimension optical device with microimaging and nanoillumination capabilities

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659429A (en) * 1983-08-03 1987-04-21 Cornell Research Foundation, Inc. Method and apparatus for production and use of nanometer scale light beams
US5148307A (en) * 1988-07-17 1992-09-15 Raoul Kopelman Nanometer dimension optical device with microimaging and nanoillumination capabilities

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072076A1 (en) * 1999-05-21 2000-11-30 Brugger Juergen Probe tip that is transparent to light and method for producing the same

Also Published As

Publication number Publication date
DE19601109A1 (en) 1997-07-17
WO1997025644A3 (en) 1997-09-04

Similar Documents

Publication Publication Date Title
DE19520187C1 (en) Optical system for excimer laser
EP0977069B1 (en) Method and apparatus for confocal microscopy
DE10393608B4 (en) Scanning method and device, confocal fiber optic endoscope, microscope or endomicroscope with a scanning device, and fiber optic endoscope, microscope or endomicroscope with a scanning device
DE10056382B4 (en) scanning microscope
DE10340964A1 (en) Light source with a microstructured optical element
DE102007026847A1 (en) Particle beam apparatus and method of use in a particle beam apparatus
EP1277221B1 (en) Electron/ion gun for electron or ion beams with high monochromasy or high current density
EP0166328A2 (en) Method of and device for imaging an object or the diffraction diagram of an object through electron energy filtering with a transmission electron microscope
DE10043992B4 (en) Method for examining a sample and confocal scanning microscope
DE10043986A1 (en) Procedure for examining a sample and confocal scanning microscope
EP3712924B1 (en) Device and method for electron transfer from a sample to an energy analyser and an electron spectrometer device
WO1998023944A1 (en) Fluorescence correlation spectroscopy module for a microscope
EP1122574B1 (en) Microscope arrangement
DE102004017956A1 (en) Microscope to study the lifetime of excited states in a sample
DE602004007319T2 (en) Fast multispectral confocal scanning microscope
DE19647975C2 (en) Reflection electron microscope
DE102010029612A1 (en) Coupling device for coupling light into a planar waveguide
WO1997025644A2 (en) Near-field light source
DE2309181A1 (en) ANALYSIS DEVICE WORKING WITH ELECTRON BEAM SCANNER
EP1216483A1 (en) Electron-optical lens arrangement with an axis that can be largely displaced
DE19834279C2 (en) Compact single lens theta microscope
EP0401658A1 (en) Scanning tunneling microscope with arrangements for detecting electrons coming from the sample
EP1573378A1 (en) Method and arrangement for optical examination or processing of a sample
DE10056384A1 (en) Method and device for measuring the lifespan of an excited state in a sample
DE2742264C3 (en) Method for imaging an object with low magnification by means of a particle beam device, in particular an electron microscope and particle beam device for carrying out the method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase