WO1997024555A2 - Durchlaufdampferzeuger mit spiralförmig angeordneten verdampferrohren - Google Patents

Durchlaufdampferzeuger mit spiralförmig angeordneten verdampferrohren Download PDF

Info

Publication number
WO1997024555A2
WO1997024555A2 PCT/DE1996/002435 DE9602435W WO9724555A2 WO 1997024555 A2 WO1997024555 A2 WO 1997024555A2 DE 9602435 W DE9602435 W DE 9602435W WO 9724555 A2 WO9724555 A2 WO 9724555A2
Authority
WO
WIPO (PCT)
Prior art keywords
steam generator
tubes
continuous
flow
tube
Prior art date
Application number
PCT/DE1996/002435
Other languages
English (en)
French (fr)
Other versions
WO1997024555A3 (de
Inventor
Eberhard Wittchow
Rudolf Kral
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP52396897A priority Critical patent/JP4458552B2/ja
Priority to DK96946206T priority patent/DK0873489T3/da
Priority to EP96946206A priority patent/EP0873489B1/de
Priority to CA002241877A priority patent/CA2241877C/en
Priority to DE59604507T priority patent/DE59604507D1/de
Priority to AT96946206T priority patent/ATE189918T1/de
Publication of WO1997024555A2 publication Critical patent/WO1997024555A2/de
Publication of WO1997024555A3 publication Critical patent/WO1997024555A3/de
Priority to US09/109,582 priority patent/US5979369A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/14Supply mains, e.g. rising mains, down-comers, in connection with water tubes
    • F22B37/142Supply mains, e.g. rising mains, down-comers, in connection with water tubes involving horizontally-or helically-disposed water tubes, e.g. walls built-up from horizontal or helical tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/065Construction of tube walls involving upper vertically disposed water tubes and lower horizontally- or helically disposed water tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the invention relates to a continuous steam generator with a gas train formed from gas generator tubes welded together gas-tightly over fins, the steam generator tubes being connected in parallel for the flow of a flow medium and having a surface structure on their inside for generating a high heat transfer from their inner wall to the flow medium and are arranged approximately in a spiral winding in a firing area of the accelerator cable.
  • a steam generator tube with internal fins has a significantly higher friction pressure loss than a smooth tube.
  • Such an increased frictional pressure loss can lead to temperature differences between adjacent pipes - in particular at the outlet of an evaporator - when a steam generator pipe is heated more than once due to mass flow fluctuations in the medium flowing through the pipe. These temperature differences can cause damage due to inadmissible thermal stresses.
  • the invention is therefore based on the object of specifying a continuous steam generator of the type mentioned above, during its operation particularly small temperature differences occur at the outlet of adjacent steam generator tubes even at low load conditions of, for example, approximately 20% of the design load of the continuous steam generator.
  • each steam generator tube is designed in such a way that, through pairs of values for the tube length in the firing area and the tube outer diameter, certain points in a coordinate system are approximately on a straight line which are
  • the tube length is the length of the steam generator tube between an initial and an end value, the initial value being defined by the transition from an ash funnel attached below the gas flue to the gas flue to which a third of the height of the ash funnel is added.
  • the end value is defined in that the spirally arranged steam generator tubes either change into a vertical arrangement or are connected to one another in terms of pressure, for example by means of a collecting container.
  • the steam generator tubes of which have a particularly large or a particularly small wall thickness, or whose ash funnel has a particularly large or a particularly small angle of inclination of its outer walls at low load conditions of approximately 20% of its design load, the tube length of each steam generator tube expediently deviates by no more than 15% from the tube length defined by the respective straight line.
  • the tube length is expediently extrapolated or interpolated linearly with the fin width from the given straight lines.
  • the invention is based on the consideration that a temperature difference between the outlet of a multi-heated steam generator tube and the outlet of a normal or average heated steam generator tube is particularly small when the additional heating of the steam generator tube only slightly reduces the mass flow density flowing in it .
  • the mass flow density of a multi-heated steam generator tube drops because the increased pressure causes the friction pressure loss of the affected steam generator tube to increase. Since the total However, the pressure loss in a steam generator tube is made up of the pressure loss component "friction pressure loss" and the pressure loss component "geodetic pressure loss” is.
  • a sufficiently high pressure loss component "geodetic pressure loss" of, for example, more than 0.5 times the friction pressure loss can be achieved by appropriate design of the steam generator tubes.
  • the frictional pressure loss of a steam generator tube can be determined, for example, according to the documents Q. Zheng et al. , "Pressure loss in smooth and internally finned evaporator tubes", heat and material transfer 26, pages 232 to 330, Springer Verlag 1991 and Z. Rouhani, "Modified Correlations for Void-Fraction and Two-Phase Pressure Drop", AE-RTV- 841 (1969).
  • the inside diameter of the steam generator tubes is expediently larger in an upper region of the firing region of the combustion chamber than in a lower region.
  • FIG. 1 shows a simplified representation of a once-through steam generator with an almost spiral-shaped combustion chamber wall
  • Figure 2 shows a section of an oblique section through a combustion chamber wall
  • 3 shows a coordinate system with curves A, B and C.
  • FIG. 1 schematically shows a continuous steam generator 2 with a rectangular cross section, the vertical gas train of which is formed by a surrounding or combustion chamber wall 4 which merges into a funnel-shaped bottom 6 at the lower end.
  • a number of burners for a fossil fuel are installed in each opening 8, of which only two are visible, m of the combustion chamber wall 4 composed of steam generator tubes 10.
  • the steam generator tubes 10 are arranged in the firing area V, in which they are welded together gas-tight to form an evaporator heating surface 12, approximately in a spiral winding.
  • the steam generator tubes 10 are welded together gas-tight via fins 13 with the fin width b and form the gas-tight combustion chamber wall 4 in a tube-web-tube construction or in a fin tube construction.
  • the inside of the steam generator tubes have a surface structure Have a high heat transfer from its inner wall to the flow medium. Such surface structures are described, for example, in German Offenlegungsschrift 203281.
  • the flue gas RG serves as a heating medium for the water or water-steam mixture flowing in the steam generator tubes 10.
  • the steam generator tubes 10 are designed such that when the continuous steam generator 2 is operated, the geodetic pressure loss of the medium flowing through a steam generator tube 10 is at least 0.5 times its friction pressure loss.
  • the steam generator tubes 10 are designed such that pairs of values for the tube length L in the firing area V and the tube outer diameter d determine certain points in one Coordinate system approximately on one of the curves or straight lines A, B, or C shown in Figure 3.
  • Curve A indicates the design criterion for a once-through steam generator 2 with steam generator tubes 10, which are welded together gas-tight via fins 13 with a fin width b of 12 mm.
  • Curves B and C indicate the design criterion for the fin width b being 16 and 20 mm, respectively.
  • the pipe length L in the firing area V is the mean length of a steam generator pipe 10 between a starting point AP and an end point EP.
  • the starting point AP is defined on the basis of the lower edge U of the surrounding wall 4 plus a third of the height H of the funnel-shaped base 6.
  • the end point EP is defined by the point at which the steam generator tubes 10 change into a vertical arrangement or are connected to one another in terms of pressure.
  • the inside diameter of the steam pipe ducts 10 is larger in an upper area 21 of the lighting area V than in a lower area 22 of the lighting area V.

Abstract

Die Erfindung betrifft einen Durchlaufdampferzeuger (2) mit einem aus miteinander über Flossen (13) gasdicht verschweißten Dampferzeugerrohren (10) gebildeten Gaszug, dessen Dampferzeugerrohre (10) für den Durchfluß eines Strömungsmediums parallel geschaltet sind, auf ihrer Innenseite eine Oberflächenstruktur zum Erzeugen einer hohen Strömungsturbulenz im sie durchströmenden Medium aufweisen und in einem Befeuerungsbereich (V) des Gaszuges annähernd in einer Spiralwicklung angeordnet sind. Um einen derartigen Durchlaufdampferzeuger (2) auch bei niedrigen Lastzuständen von beispielsweise etwa 20 % der Auslegungslast betreiben zu können, ohne daß überhöhte Wärmespannungen auftreten, sind die Dampferzeugerrohre (10) des Durchlaufdampferzeugers (2) erfindungsgemäß derart ausgelegt, daß bei ihrem Betrieb der geodätische Druckverlust des es durchströmenden Mediums mindestens das 0,5-fache von dessen Reibungsdruckverlust beträgt.

Description

Beschreibung
Durchlaufdampferzeuger rrrit spiralförmig angeordneten Verdamp¬ ferrohren
Die Erfindung betrifft einen Durchlaufdampferzeuger mit einem aus miteinander über Flossen gasdicht verschweißten Dampfer¬ zeugerrohren gebildeten Gaszug, wobei die Dampferzeugerrohre für den Durchfluß eines Strömungsmediums parallel geschaltet sind, auf ihrer Innenseite eine Oberflächenstruktur zum Er¬ zeugen eines hohen Wärmeübergangs von ihrer Innenwand auf das Strömungsmedium aufweisen und in einem Befeuerungsbereich des Gaszuges annähernd in einer Spiralwicklung angeordnet sind.
In den Brennkammerwänden eines Durchlaufdampferzeugers, die in einem Befeuerungsbereich aus spiralförmig angeordneten Dampferzeugerrohren aufgebaut sind, werden üblicherweise Glattrohre eingesetzt. Aufgrund der Wärmeübergangseigenschaf¬ ten eines Glattrohres bei einer niedrigen Strömungsgesαhwin- digkeit eines in ihm strömenden Mediums ist eine derartige Anordnung jedoch nur für Laεtzustände von üblicherweise mehr als etwa 40 % der Auslegungslast des Durchlaufdampferzeugers geeignet. Unterhalb dieser Mindestlast von etwa 40 % der Aus- legungslast wird dem Durchlaufbetrieb des Dampferzeugers üb- licherweise ein Umwälzbetrieb überlagert, so daß eine ausrei¬ chende Kühlung der Dampferzeugerrohre gewährleistet ist. Eine derartige Zuschaltung eines Umwälzbetriebes führt jedoch zu einer Absenkung der Frischdampftemperatur des Durchlaufdamp- ferzeugers um etwa 80° C.
Insbesondere zur Vermeidung von Nachtstillständen einer von dem Durchlaufdampferzeuger bespeisten Kraftwerksanlage kann es jedoch erforderlich sein, den Durchlaufdampferzeuger der¬ art auszulegen, daß er bereits bei Lastzuständen von mehr als 20 % der Auslegungslast mit einer ausreichend hohen Frisch¬ dampftemperatur betreibbar ist. Dies ist durch den Einsatz von solchen Dampferzeugerrohren möglich, die auf ihrer Innen- seite eine Oberflächenstruktur, beispielsweise in Form von Rippen (innenberippte Rohre), zum Erzeugen eines hohen Wärme¬ übergangs von ihrer Innenwand auf das Strömungsmedium aufwei¬ sen. Der Einsatz derartiger Dampferzeugerrohre mit Innenbe- rippung in einem Durchlaufdampferzeuger mit vertikal angeord¬ neten Verdampferröhren ist beispielsweise aus der Europäi¬ schen Patentanmeldung 0 503 116 AI bekannt.
Allerdings weist ein Dampferzeugerrohr mit Innenberippung im Vergleich zu einem Glattrohr einen deutlich höheren Reibungs- druckveriust auf. Ein derartig erhöhter Reibungsdruckverlust kann bei Mehrbeheizung eines Dampferzeugerrohres aufgrund von Massenstromschwankungen des das Rohr durchströmenden Mediums zu Temperaturdifferenzen zwischen benachbarten Rohren - ins¬ besondere am Austritt eines Verdampfers - führen. Diese Tem- peraturdifferenzen können Schäden aufgrund von unzulässigen Wärmespannungen verursachen.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Durch¬ laufdampferzeuger der obengenannten Art anzugeben, bei dessen Betrieb auch bei niedrigen Lastzuständen von beispielsweise etwa 20 % der Auslegungslast des Durchlaufdampferzeugers be¬ sonders geringe Temperaturdifferenzen am Austritt benachbar¬ ter Dampferzeugerrohre auftreten.
Diese Aufgabe wird erfindungsgemäß durch einen Durchlaufdamp- ferzeuger der obengenannten Art gelöst, bei dem jedes Damp¬ ferzeugerrohr derart ausgelegt ist, daß durch Wertepaare der Rohrlänge im Befeuerungsbereich und des Rohraußendurchmessers bestimmte Punkte in einem Koordinatensystem annähernd auf ei- ner Geraden liegen, die
- für eine Flossenbreite von 12 mm durch die durch die Wertepaare L = 59,7 m, d = 31,8 mm und L = 93,6 m, d = 44,5 mm bestimmten Punkte,
- für eine Flossenbreite von 16 mm durch die durch die Wertepaare L = 64,7 m, d = 31,8 mm und L = 99,8 m, d = 44,5 mm bestimmten Punkte, oder - für eine Flossenbreite von 20 mm durch die durch die Wertepaare L = 70,6 m, d = 31,8 mm und L - 106,9 m, d = 44,5 mm bestimmten Punkte definiert ist.
Die Rohrlänge ist dabei die Länge des Dampferzeugerrohres zwischen einem Anfangs- und einem Endwert, wobei der Anfangs¬ wert definiert ist durch den Übergang eines unterhalb des Gaszuges angebrachten Aschetrichters in den Gaszug, zu dem ein Drittel der Höhe des Aschetrichters hinzuaddiert ist. Der Endwert ist dadurch definiert, daß die spiralförmig angeord¬ neten Dampferzeugerrohre entweder in eine senkrechte Anord¬ nung übergehen oder, beispielsweise durch einen Sammelbehäl¬ ter, druckmäßig miteinander verbunden sind.
Um auch einen Durchlaufdampferzeuger, dessen Dampferzeuger¬ rohre eine besonders große oder eine besonders geringe Wand¬ stärke aufweisen, oder dessen Aschetrichter einen besonders großen oder einen besonders geringen Neigungswinkel seiner Außenwände aufweist, sicher bei niedrigen Lastzuständen von etwa 20 % seiner Auslegungslast betreiben zu können, weicht die Rohrlänge jedes Dampferzeugerrohres zweckmäßigerweise um nicht mehr als 15 % von der durch die jeweilige Gerade defi¬ nierten Rohrlänge ab. Für eine andere als die genannten Flos- senbreiten ist die Rohrlänge zweckmäßigerweise linear mit der Flossenbreite aus den gegebenenen Geraden extra- oder inter¬ poliert.
Die Erfindung geht von der Überlegung aus, daß eine Tempera- turdifferenz zwischen dem Auslaß eines mehrbeheizten Dampfer¬ zeugerrohres und dem Auslaß eines normal oder durchschnitt¬ lich beheizten Dampferzeugerrohres dann besonders gering ist, wenn die Mehrbeheizung des Dampferzeugerrohres die in diesem strömende Massenstromdichte nur wenig herabsetzt. Die Massen- stromdichte eines mehrbeheizten Dampferzeugerrohres sinkt ab, weil sich aufgrund der Mehrbeheizung der Reibungsdruckverlust des betroffenen Dampferzeugerrohres erhöht. Da der Gesamt- druckverlust in einem Dampferzeugerrohr sich jedoch zusammen¬ setzt aus dem Druckverlustanteil "Reibungsdruckverlust" und dem Druckverlustanteil "geodätischer Druckverlust", ist die Auswirkung einer Mehrbeheizung eines Dampferzeugerrohres auf dessen Massenstromdichte verringerbar, indem der Druckver¬ lustanteil "geodätischer Druckverlust" des Gesamtdruckverlu¬ stes ausreichend hoch ist. Ein ausreichend hoher Druckver¬ lustanteil "geodätischer Druckverlust" von beispielsweise mehr als dem 0,5-fachen des Reibungsdruckverlustes ist durch eine entsprechende Auslegung der Dampferzeugerrohre erreich¬ bar.
Der Reibungsdruckverlust eines Dampferzeugerrohres iεt bei¬ spielsweise ermittelbar nach den Druckschriften Q. Zheng et al . , "Druckverlust in glatten und innenberippten Verdampfer¬ rohren", Wärme- und StoffÜbertragung 26, Seite 232 bis 330, Springer Verlag 1991 und Z. Rouhani, "Modified Correlations for Void-Fraction and Two-Phase Pressure Drop", AE-RTV-841 (1969) .
Um bei kleinen Temperaturdifferenzen zwischen mehrbeheizten und normal beheizten Dampferzeugerrohren die Durchströmungen aller Dampferzeugerrohre weiter zu verbessern, ist zweckmäßi¬ gerweise der Innendurchmesser der Dampferzeugerrohre in einem oberen Bereich des Befeuerungsbereiches der Brennkammer grö¬ ßer als in einem unteren Bereich.
Ausführungsbeispiele der Erfindung werden anhand einer Zeich¬ nung näher erläutert. Darin zeigen:
Figur 1 in vereinfachter Darstellung einen Durchlaufdamp- ferzeuger mit annähernd spiralförmig berohrter Brennkammerwand,
Figur 2 einen Ausschnitt aus einem Schrägschnitt durch eine Brennkammerwand, und Figur 3 ein Koordinatensystem mit Kurven A, B und C.
Gleiche Teile sind m allen Figuren mit den gleichen Bezugs¬ zeichen versehen.
In Figur 1 ist schematisch ein Durchlaufdampferzeuger 2 mit rechteckigem Querschnitt dargestellt, dessen vertikaler Gas¬ zug durch eine Umfassungs- oder Brennkammerwand 4 gebildet ist, die am unteren Ende in einen trichterförmigen Boden 6 übergeht .
In einem Befeuerungsbereich V des Gaszugs sind eine Anzahl von Brennern für einen fossilen Brennstoff in jeweils einer Öffnung 8, von denen nur zwei sichtbar sind, m der aus Damp- ferzeugerrohren 10 zusammengesetzten Brennkammerwand 4 ange¬ bracht. Die Dampferzeugerrohre 10 sind in dem Befeuerungsbe¬ reich V, m dem sie zu einer Verdampferheizflache 12 gasdicht miteinander verschweißt sind, annähernd m einer Spiralwick- lung angeordnet .
Wie in Figur 2 dargestellt, sind die Dampferzeugerrohre 10 über Flossen 13 mit der Flossenbreite b gasdicht miteinander verschweißt und bilden beispielsweise in einer Rohr-Steg- Rohr-Konstruktion oder in einer Flossenrohrkonstruktion die gasdichte BrennKammerwand 4. Die Dampferzeugerrohre weisen auf ihrer Innenseite eine Oberflachenstruktur zum Erzeugen eines hohen Wärmeübergangs von ihrer Innenwand auf das Strö¬ mungsmedium aufweisen. Derartige Oberflächenstrukturen sind beispielsweise in der Deutschen Offenlegungsschrift 203281 beschrieben.
Oberhalb des Befeuerungsbereiches V des Gaszugs befinden sich Konvektionsheizflachen 14, 16 und 18. Darüber befindet sich ein Rauchgasaustπttskanal 20, über den das durch Verbrennung eines fossilen Brennstoffs erzeugte Rauchgas RG den vertika¬ len Gaszug verlaßt. Das Rauchgas RG dient als Heizmedium für das in den Dampferzeugerohren 10 strömende Wasser oder Was¬ ser-Dampf-Gemisch.
Die Dampferzeugerrohre 10 sind derart ausgelegt, daß beim Be- trieb des Durchlaufdampferzeugers 2 der geodätische Druckver¬ lust des ein Dampferzeugerrohr 10 durchströmenden Mediums mindestens das 0,5-fache von dessen Reibungsdruckverlust be¬ trägt. Um dazu unabhängig von der Dampfleistung des Durch¬ laufdampferzeugers 2 einen ausreichend hohen geodätischen Druckverlust im Dampferzeugerrohr 10 zu gewährleisten, sind die Dampferzeugerrohre 10 derart ausgelegt, daß durch Werte¬ paare der Rohrlänge L im Befeuerungsbereich V und des Rohrau¬ ßendurchmessers d bestimmte Punkte in einem Koordinatensystem annähernd auf einer der in Figur 3 dargestellten Kurven oder Geraden A, B, oder C liegen. Die Kurve A gibt dabei das Auε- legungskriterium für einen Durchlaufdampferzeuger 2 mit Damp¬ ferzeugerrohren 10 an, die über Flossen 13 mit einer Flossen¬ breite b von 12 mm gasdicht miteinander verschweißt sind. Die Kurven B und C hingegen geben das Auslegungskriterium dafür an, daß die Flossenbreite b 16 bzw. 20 mm beträgt.
Die Rohrlänge L im Befeuerungsbereich V ist dabei die mitt¬ lere Länge eines Dampferzeugerrohres 10 zwischen einem An¬ fangspunkt AP und einem Endpunkt EP. Der Anfangspunkt AP ist festgelegt anhand der Unterkante U der Umfassungswand 4 zu¬ züglich eines Drittels der Höhe H des trichterförmigen Bodens 6. Der Endpunkt EP ist definiert durch diejenige Stelle, an der die Dampferzeugerrohre 10 in eine senkrechte Anordnung übergehen oder druckmäßig miteinander verbunden sind. In nicht näher dargestellter Art und Weise ist in einem obe¬ ren Bereich 21 des Befeuerungsbereichs V der Innendurchmesser der Dampferr.eugerrohre 10 größer als in einem unteren Bereich 22 des Befeuerungsbereichs V.

Claims

Patentansprüche
1. Durchlaufdampferzeuger mit einem aus miteinander über Flossen (13) gasdicht verschweißten Dampferzeugerrohren (10) gebildeten Gaszug (4), wobei die Dampferzeugerrohre (10) für den Durchfluß eines Stromungsmediums parallel geschaltet sind, auf ihrer Innenseite eine Oberflächenstruktur zum Er¬ zeugen eines hohen Wärmeübergangs von ihrer Innenwand auf das Stromungsmedium aufweisen und in einem Befeuerungsbereich (V) des Gaszuges (4) annähernd in einer Spiralwicklung angeordnet sind, wobei jedes Dampferzeugerrohr (10) derart ausgelegt ist, daß durch Wertepaare der Ronrlange (L) im Befeuerungsbe¬ reich (V) und des Rohraußendurchmessers (d) bestimmte Punkte in einem Koordinatensystem annähernd auf einer Geraden (A, B, C) liegen, die
- für eine Flossenbreite von 12 mm durch die durch die Werte¬ paare L = 59,7 m, d = 31,8 mm und L = 93,6 m, d = 44,5 mm be¬ stimmten Punkte,
- für eine Flossenbreite von 16 mm durch die durch die Werte- paare L = 64,7 m, d = 31,8 mm und L = 99,8 m, d = 44,5 mm be¬ stimmten Punkte, oder
- für eine Flossenbreite von 20 mm durch die durch die Werte¬ paare L = 70,6 m, d = 31,8 mm und L = 106,9 m, d = 44,5 mm bestimmten Punkte definiert ist.
2. Durchlaufdampferzeuger nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß der In¬ nendurchmesser der Dampferzeugerrohre (10) in einem oberen Bereich (21) des Befeuerungsbereichs (V) großer ist als in einem unteren Bereich (22).
PCT/DE1996/002435 1996-01-02 1996-12-17 Durchlaufdampferzeuger mit spiralförmig angeordneten verdampferrohren WO1997024555A2 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP52396897A JP4458552B2 (ja) 1996-01-02 1996-12-17 スパイラル状に配置された蒸発器管を備えた貫流ボイラ
DK96946206T DK0873489T3 (da) 1996-01-02 1996-12-17 Gennemløbsdampgenerator med fordamperrør, som er anbragt i spiralform
EP96946206A EP0873489B1 (de) 1996-01-02 1996-12-17 Durchlaufdampferzeuger mit spiralförmig angeordneten verdampferrohren
CA002241877A CA2241877C (en) 1996-01-02 1996-12-17 Continuous-flow steam generator with spiral evaporation tubes
DE59604507T DE59604507D1 (de) 1996-01-02 1996-12-17 Durchlaufdampferzeuger mit spiralförmig angeordneten verdampferrohren
AT96946206T ATE189918T1 (de) 1996-01-02 1996-12-17 Durchlaufdampferzeuger mit spiralförmig angeordneten verdampferrohren
US09/109,582 US5979369A (en) 1996-01-02 1998-07-02 Once-through steam generator having spirally disposed evaporator tubes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19600004A DE19600004C2 (de) 1996-01-02 1996-01-02 Durchlaufdampferzeuger mit spiralförmig angeordneten Verdampferrohren
DE19600004.1 1996-01-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/109,582 Continuation US5979369A (en) 1996-01-02 1998-07-02 Once-through steam generator having spirally disposed evaporator tubes

Publications (2)

Publication Number Publication Date
WO1997024555A2 true WO1997024555A2 (de) 1997-07-10
WO1997024555A3 WO1997024555A3 (de) 1997-08-21

Family

ID=7782046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/002435 WO1997024555A2 (de) 1996-01-02 1996-12-17 Durchlaufdampferzeuger mit spiralförmig angeordneten verdampferrohren

Country Status (13)

Country Link
US (1) US5979369A (de)
EP (1) EP0873489B1 (de)
JP (1) JP4458552B2 (de)
KR (1) KR100472112B1 (de)
CN (1) CN1119556C (de)
AT (1) ATE189918T1 (de)
CA (1) CA2241877C (de)
DE (2) DE19600004C2 (de)
DK (1) DK0873489T3 (de)
ES (1) ES2143808T3 (de)
IN (1) IN191562B (de)
RU (1) RU2164322C2 (de)
WO (1) WO1997024555A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533565A1 (de) * 2003-11-19 2005-05-25 Siemens Aktiengesellschaft Durchlaufdampferzeuger
EP1701091A1 (de) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Durchlaufdampferzeuger
DE102009012321A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102010038883C5 (de) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Zwangdurchlaufdampferzeuger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2007340A (en) * 1977-11-07 1979-05-16 Foster Wheeler Energy Corp Vapour generating system utilizing intergral separators and angulary arranged furnace boundary wall fluid flow tubeshaving rifled bores
EP0349834A1 (de) * 1988-07-04 1990-01-10 Siemens Aktiengesellschaft Durchlaufdampferzeuger
DE4236835A1 (de) * 1992-11-02 1994-05-05 Siemens Ag Dampferzeuger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0503116T4 (da) * 1991-03-13 1998-08-31 Siemens Ag Rør med ribber, som på dets inderside danner et flergænget gevind, samt dampgenerator til dets anvendelse
UA27775C2 (uk) * 1991-04-18 2000-10-16 Сіменс Аг Проточний парогенератор з вертикальним, утвореним із герметично зварених одна з одною труб газоходом
DE4142376A1 (de) * 1991-12-20 1993-06-24 Siemens Ag Fossil befeuerter durchlaufdampferzeuger
DE4333404A1 (de) * 1993-09-30 1995-04-06 Siemens Ag Durchlaufdampferzeuger mit vertikal angeordneten Verdampferrohren
US5701508A (en) * 1995-12-19 1997-12-23 Intel Corporation Executing different instructions that cause different data type operations to be performed on single logical register file

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2007340A (en) * 1977-11-07 1979-05-16 Foster Wheeler Energy Corp Vapour generating system utilizing intergral separators and angulary arranged furnace boundary wall fluid flow tubeshaving rifled bores
EP0349834A1 (de) * 1988-07-04 1990-01-10 Siemens Aktiengesellschaft Durchlaufdampferzeuger
DE4236835A1 (de) * 1992-11-02 1994-05-05 Siemens Ag Dampferzeuger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VGB KRAFTWERKSTECHNIK, Bd. 73, Nr. 4, 1993, ESSEN DE, Seiten 352-361, XP002032730 J. FRANKE, W K\HLER, E. WITTCHOW: "Verdampferkonzepte f}r Benson-Dampferzeuger" *

Also Published As

Publication number Publication date
DE19600004A1 (de) 1997-07-10
ATE189918T1 (de) 2000-03-15
JP4458552B2 (ja) 2010-04-28
US5979369A (en) 1999-11-09
CN1119556C (zh) 2003-08-27
KR19990076766A (ko) 1999-10-15
ES2143808T3 (es) 2000-05-16
CA2241877A1 (en) 1997-07-10
KR100472112B1 (ko) 2005-03-16
EP0873489B1 (de) 2000-02-23
WO1997024555A3 (de) 1997-08-21
EP0873489A2 (de) 1998-10-28
RU2164322C2 (ru) 2001-03-20
IN191562B (de) 2003-12-06
JP2000502787A (ja) 2000-03-07
CN1204390A (zh) 1999-01-06
DK0873489T3 (da) 2000-07-31
DE19600004C2 (de) 1998-11-19
CA2241877C (en) 2006-01-24
DE59604507D1 (de) 2000-03-30

Similar Documents

Publication Publication Date Title
EP0944801B1 (de) Dampferzeuger
EP0349834B1 (de) Durchlaufdampferzeuger
EP0657010B2 (de) Dampferzeuger
EP0617778B1 (de) Fossil befeuerter durchlaufdampferzeuger
EP0720714B1 (de) Durchlaufdampferzeuger und Verfahren zu dessen Betrieb
DE19510033C2 (de) Zwangsdurchlauf-Dampferzeuger, insbesondere für einen Gleitdruckbetrieb
EP0581760B2 (de) Durchlaufdampferzeuger mit einem vertikalen gaszug aus im wesentlichen vertikal angeordneten rohren
DE2102024C3 (de) Dampferzeuger
DE2953704T1 (de) Röhren-Platten-Wärmeaustauscher
EP0937218B1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers und durchlaufdampferzeuger zur durchführung des verfahrens
DE19602680C2 (de) Durchlaufdampferzeuger
EP1166014B1 (de) Fossilbeheizter durchlaufdampferzeuger
EP0873489B1 (de) Durchlaufdampferzeuger mit spiralförmig angeordneten verdampferrohren
EP1144910B1 (de) Fossilbeheizter dampferzeuger
CH686741A5 (de) Dampferzeuger.
EP0217079B2 (de) Dampferzeuger mit einer Feuerung für fossile Brennstoffe
DE4427859A1 (de) Rohr mit auf seiner Innenseite ein mehrgängiges Gewinde bildenden Rippen sowie Dampferzeuger zu seiner Verwendung
WO1994010501A1 (de) Dampferzeuger
AT86595B (de) Rauchgasröhrenvorwärmer mit unteren und oberen Sammelkasten.
WO1998019107A1 (de) Dampferzeugerrohr
EP0405087B1 (de) Dampfkessel zur Verbrennung fossiler Brennstoffe unter reduzierter Bildung von Stickoxiden
EP0720713A1 (de) Dampferzeugerrohr mit innenberippung sowie dampferzeuger zu seiner verwendung
DE3010773A1 (de) Waermetauscher
DE4106868A1 (de) Naturumlauf-abhitzekessel hinter gasturbine mit zusatzfeuerung
DE1013661B (de) Erstkessel fuer Heizkessel mit mittelbarer Dampferzeugung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96198996.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP KR KZ RU US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): CA CN JP KR KZ RU US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996946206

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980704889

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2241877

Country of ref document: CA

Ref document number: 2241877

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09109582

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996946206

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980704889

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996946206

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019980704889

Country of ref document: KR