WO1997020622A1 - Composite nanofiltration membrane - Google Patents

Composite nanofiltration membrane Download PDF

Info

Publication number
WO1997020622A1
WO1997020622A1 PCT/DE1996/002302 DE9602302W WO9720622A1 WO 1997020622 A1 WO1997020622 A1 WO 1997020622A1 DE 9602302 W DE9602302 W DE 9602302W WO 9720622 A1 WO9720622 A1 WO 9720622A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
nanofi
membrane
ether
crosslinked
Prior art date
Application number
PCT/DE1996/002302
Other languages
German (de)
French (fr)
Inventor
Matthias Schmidt
Klaus-Viktor Peinemann
Original Assignee
Gkss-Forschungszentrum Geesthacht Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gkss-Forschungszentrum Geesthacht Gmbh filed Critical Gkss-Forschungszentrum Geesthacht Gmbh
Priority to EP96946030A priority Critical patent/EP0865309A1/en
Publication of WO1997020622A1 publication Critical patent/WO1997020622A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/22Cellulose ethers

Definitions

  • the invention relates to a composite nanofusion membrane with a carrier membrane known per se and a selective separation layer made of cellulose hydroxyalkyl ether, and to a method for producing this membrane.
  • Nanofi 1 trati on has only recently been used as a membrane filtration process.
  • the nanofitration separation process is used in particular for the separation of components from material systems with average molar masses of 200 to 2000 g / mol.
  • nanofiltration is in many cases superior to conventional thermal and chemical processes.
  • Nanofi 1 kick membranes are generally manufactured as composite membranes using phase interface condensation, as described, for example, in US Pat. No. 5,049,167.
  • these known membranes which are referred to as interface composites, can only be produced in a very complex manner and in compliance with costly safety measures, since carcinogenic diamines and highly reactive acyl chlorides are used as starting materials for phase interface condensation.
  • Reverse osmosis membranes made from cellulose ether derivatives are also known.
  • Known cellulose ether membranes of this type are described, for example, in US Pat. No. 3,620,970. These known membranes have high retention with regard to sodium, chloride and sulfate ions.
  • ecologically questionable substances for example hexamethylene diisocyanate or toluene di i socyanate, are used in the production of these known membranes.
  • the object of the present invention is to provide a high-performance hydrophilic nanofiltration membrane which exhibits high thermal stability and good stability in organic solvents and which can be produced inexpensively, simply and without the use of organic solvents and ecologically questionable substances can.
  • Cel 1 ul oseethers are used which can be present in an aqueous phase. This saves costs and makes subsequent disposal of an organic solvent superfluous.
  • ecologically questionable compounds for example diamines, can be avoided, such as are used, for example, in the production of the membranes known from US Pat. No. 3,620,970.
  • the membrane according to the invention can be coated in a simple manner and can therefore be produced at favorable manufacturing parameters.
  • the membrane according to the invention is crosslinked with any dialdehyde or several dialdehydes until water insolubility by acetal formation.
  • Glutardialdehyde and glyoxal are preferably used as the crosslinking dialdehyde.
  • the membrane according to the invention by changing the crosslinking conditions, for example by Changes in the crosslinking kinetics, by varying the crosslinking temperature, by modifying the concentration of the catalyzing acid and by grading the concentration and the average molar mass of the various water-soluble cell u-1 ether ether derivatives possible to adjust the permeation and separation characteristics .
  • the membrane according to the invention can be adapted to the separation tasks placed on it by varying the crosslinking reactions or parameters.
  • the membrane according to the invention is used in particular for the separation of components with average molar masses between 300 and 2000 g / mol.
  • the separation problems to be solved are thus in the range typical for nanofibrillation membranes. This is particularly important when one considers that nanofiltration represents a link in the commercially important area between reverse osmosis and ultrafiltration.
  • the membrane according to the invention is also distinguished by its chemical stability towards a large number of organic solvents. Because of this stability, the membrane according to the invention can be used in a wide variety of applications for working up organically contaminated production streams in the chemical industry and in biotechnology, for example in systems in which residual amounts of alcohols, ethers, ketones, amines and esters are present .
  • the membrane according to the invention is also superior to the membranes known from US Pat. No. 4,895,691 based on polyvinyl alcohols because of the higher biocompatibility of Cel 1 ul oseether derivatives.
  • dialdehydes already mentioned as crosslinkers are also inexpensive. Acids, for example hydrochloric acid, sulfuric acid and phosphoric acid, are used as crosslinking catalysts.
  • asymmetric support membranes for example made of polyetherimide, polyvinylidene fluoride, polyacrylonitrile 1, polypropylene, polyethylene, polysulfone, polyether sulfone and polyetheretherketone, can be used.
  • hydroxyethyl cellulose is abbreviated with HEC and hydroxypropyl cellulose 1 ul with HPC.
  • Asymmetric polyetherimid carrier membranes were coated with different concentrations of aqueous hydroxyethyl cel 1 ul osel solution.
  • the hydroxyethyl cellulose used had an average molar mass of 250,000 g / mol.
  • Asymmetric polyetherimide membranes were coated with a 0.3% aqueous hydroxyethyl cel 1 ul osel solution.
  • the average molar mass of the HEC was again 250,000 g / mol.
  • 120 minutes was chosen as the crosslinking time.
  • Gl utardi al dehyd served as a crosslinker.
  • the permeation and separation data of the membranes obtained were determined as a function of the crosslinking time.
  • Asymmetric polyetherimembranes were coated with 0.3% aqueous hydroxyethyl cel 1 ul osel solution and then crosslinked with glutardi al dehyd at 50 ° C and 120 min crosslinking time. Two different hydroxyethyl cel 1 ul ose derivatives with approx. 250,000 and 540,000 g / mol average molar mass were used.
  • Asymmetric polyetherimide membranes were coated with 0.3% aqueous hydroxyethyl cel 1 ul osel solution (average molar mass 540,000 g / mol) and crosslinked for 2 hours at 50 ° C. with glutardi al dehyde. 30% hydrochloric acid was added to the polymer solution to catalyze the crosslinking. Depending on the pH (hydrogen ion concentration of the catalyzing acid) of the polymer solution, M. W. Cut-offs and material flows determined.
  • Asymmetric polyetherimide membranes were coated with a 0.3% aqueous hydroxypropyl cel 1 ul osel solution.
  • the crosslinking time selected was 2 hours.
  • Gl utardi al dehyd served as a crosslinker.
  • the permeation and separation data were determined depending on the crosslinking temperature.
  • the nanofitrations were carried out at process temperatures of 75 ° C. A value of approx. 1.1 l / m hbar was reached as material flow.
  • Asymmetric polymer carrier membranes were coated with aqueous 0.3 mass% hydroxypropyl cel 1 ul osel solutions.

Abstract

A composite nanofiltration membrane is proposed with a carrier membrane, in itself known, and a selective separating layer of cellulose-hydroxyalkyl ether. The membrane can be obtained in the following way: the carrier membrane is coated with an aqueous solution of the cellulose-hydroxyalkyl ether which is then cross-linked with an aldehyde to form acetal. Cross-linking is done preferably with the aid of a dialdehyde to the point of water-insolubility.

Description

Komposit-NanofiltrationsmembranComposite nanofiltration membrane
Beschreibungdescription
Die Erfindung betrifft eine Komposit-Nanofi 1 trationsmem- bran mit einer per se bekannten Trägermembran und einer selektiven Trennschicht aus Cellulose-hydroxyalkylether sowie ein Verfahren zur Herstellung dieser Membran.The invention relates to a composite nanofusion membrane with a carrier membrane known per se and a selective separation layer made of cellulose hydroxyalkyl ether, and to a method for producing this membrane.
Die Nanofi 1 trati on wird als Membranfiltrationsverfahren erst seit kurzem eingesetzt. Das Nanofi 1 tration-Trenn- verfahren findet insbesondere bei der Separation von Komponenten aus StoffSystemen mit mittleren molaren Massen von 200 bis 2000 g/Mol Anwendung. In diesem Anwendungsbereich ist die Nanofi 1 trati on in vielen Fällen herkömmlichen thermischen und chemischen Verfah¬ ren überlegen. Interessant sind dabei vor allem Mem¬ branen, die über geringe Salzrückhaltungen, insbesondere hinsichtlich einwertiger Salze verfügen. Hohe Rückhaltungswerte von beispielsweise Natriumchlorid führen zu steigenden osmotischen Drücken, so daß dadurch Verfahren in der Lebensmittelindustrie negativ beein¬ flußt werden können.The Nanofi 1 trati on has only recently been used as a membrane filtration process. The nanofitration separation process is used in particular for the separation of components from material systems with average molar masses of 200 to 2000 g / mol. In this area of application, nanofiltration is in many cases superior to conventional thermal and chemical processes. Of particular interest here are membranes which have low salt retention, particularly with regard to monovalent salts. Height Retention values of, for example, sodium chloride lead to increasing osmotic pressures, so that processes in the food industry can be adversely affected.
Kommerziell verfügbare Nanofi 1 trat i onsmembranen werden im allgemeinen als Kompositmembranen mit Hilfe der Phasengrenzflächenkondensation hergestellt, wie es beispielsweise in der US-PS 5 049 167 beschrieben ist. Diese bekannten Membranen, die als Interfaci al -Compo¬ sites bezeichnet werden, können jedoch nur sehr aufwen¬ dig und unter Einhaltung von kostenträchtigen Sicher¬ heitsmaßnahmen hergestellt werden, da als Edukte der Phasengrenzflächenkondensation cancerogene Diamine und hochreaktive Acylchloride eingesetzt werden.Commercially available Nanofi 1 kick membranes are generally manufactured as composite membranes using phase interface condensation, as described, for example, in US Pat. No. 5,049,167. However, these known membranes, which are referred to as interface composites, can only be produced in a very complex manner and in compliance with costly safety measures, since carcinogenic diamines and highly reactive acyl chlorides are used as starting materials for phase interface condensation.
Weiterhin gewähren kommerzielle Nanofi 1 trat i onsmembranen in der Regel nur Prozeßtemperaturen von ca 50°C. Infolge der thermischen Aggregation der hochmolekularen Hydroxy- propyl cel 1 ul ose sind jedoch Membranfiltrationen bei¬ spielhaft mit 70°C führbar.Furthermore, commercial nanofi 1 step membranes generally only allow process temperatures of about 50 ° C. As a result of the thermal aggregation of the high molecular weight hydroxypropyl cellulose 1 ul, however, membrane filtrations can be carried out at 70 ° C., for example.
Es sind auch bereits Reversosmosemembranen aus Cellu- 1 oseether-Deri vaten bekannt. Derartige bekannte Cellu- 1 oseether-Membranen sind beispielsweise in der US-PS 3 620 970 beschrieben. Diese bekannten Membrane verfügen über hohe Rückhaltungen bezüglich Natrium-, Chlorid- und Sulfationen. Zudem werden zur Vernetzung der Cellulose- ether bei der Herstellung dieser bekannten Membranen ökologisch bedenkliche Substanzen, beispielsweise Hexamethylendiisocyanat oder Toi uol di i socyanat , einge¬ setzt .Reverse osmosis membranes made from cellulose ether derivatives are also known. Known cellulose ether membranes of this type are described, for example, in US Pat. No. 3,620,970. These known membranes have high retention with regard to sodium, chloride and sulfate ions. In addition, to crosslink the cellulose ethers, ecologically questionable substances, for example hexamethylene diisocyanate or toluene di i socyanate, are used in the production of these known membranes.
Ferner sind aus der US-PS 4 895 691 Hyperfi 1 trati onsmem¬ branen bekannt, deren Grundpolymere aus Polyvi nyl al kohol en aufgebaut sind, die über eine Acetal¬ bildung mit Aldehyden vernetzt wurden.Furthermore, from US Pat. No. 4,895,691 Hyperfitration membrane membranes, the base polymers of which are known Polyvinyl alcohol nyl al s are constructed, which were education through a acetal ¬ linked with aldehydes.
Aufgabe der vorliegenden Erfindung ist es, eine lei¬ stungsfähige hydrophile Nanofi 1 trati onsmembran bereit¬ zustellen, die eine hohe thermische Belastbarkeit und eine gute Stabilität in organischen Lösemitteln zeigt, die kostengünstig, einfach und ohne Verwendung von organischen Lösungsmitteln und ökologisch bedenklichen Substanzen hergestellt werden kann.The object of the present invention is to provide a high-performance hydrophilic nanofiltration membrane which exhibits high thermal stability and good stability in organic solvents and which can be produced inexpensively, simply and without the use of organic solvents and ecologically questionable substances can.
Gelöst wird diese Aufgabe durch die Lehre der Ansprüche.This task is solved by teaching the claims.
Erfindungsgemäß werden nur solche Cel 1 ul oseether einge¬ setzt, die in einer wäßrigen Phase vorliegen können. Dies spart Kosten und macht eine nachfolgende Entsorgung eines organischen Lösungsmittels überflüssig. Durch die Vernetzung der Cel 1 ul osehydroxyal kyl ether über eine Acetalbildung können ökologisch bedenkliche Verbin¬ dungen, beispielsweise Diamine, vermieden werden, wie sie beispielsweise bei der Herstellung der aus der US-PS 3 620 970 bekannten Membranen eingesetzt werden. Dadurch können die erfindungsgemäßen Membrane einfach beschich¬ tet und somit zu günstigen fertigungstechnischen Para¬ metern hergestellt werden.According to the invention, only those Cel 1 ul oseethers are used which can be present in an aqueous phase. This saves costs and makes subsequent disposal of an organic solvent superfluous. By crosslinking the Cel 1 ul osehydroxyal kyl ether via acetal formation, ecologically questionable compounds, for example diamines, can be avoided, such as are used, for example, in the production of the membranes known from US Pat. No. 3,620,970. As a result, the membrane according to the invention can be coated in a simple manner and can therefore be produced at favorable manufacturing parameters.
Nach einer bevorzugten Ausführungsform wird die erfin¬ dungsgemäße Membran mit einem beliebigen Dialdehyd oder mehreren beliebigen Dialdehyden bis zur Wasserunlös¬ lichkeit durch eine Acetalbildung vernetzt. Als vernet¬ zendes Dialdehyd werden dabei vorzugsweise Glutardial- dehyd und Glyoxal eingesetzt.According to a preferred embodiment, the membrane according to the invention is crosslinked with any dialdehyde or several dialdehydes until water insolubility by acetal formation. Glutardialdehyde and glyoxal are preferably used as the crosslinking dialdehyde.
Ferner ist es erfindungsgemäß, durch Veränderungen der Vernetzungsbedingungen, beispielsweise durch Veränderungen der Vernetzungskinetik, durch Variation der Vernetzungstemperatur, durch Modifikationen der Konzentration der katalysierenden Säure und durch Abstufungen an der Konzentration und an der mittleren molaren Masse der verschiedenen wasserlösl ichen Cell u- 1 oseether-Deri vate möglich, die Permeations- und Trenn- charakteristika einzustellen. Durch die Variation der Vernetzungsreak-t i onen bzw. -parameter kann man die erfindungsgemäße Membran an die an sie gestellten Trennaufgaben anpassen. Die erfindungsgemäße Membran wird insbesondere bei der Abtrennung von Komponenten mit mittleren molaren Massen zwischen 300 und 2000 g/Mol eingesetzt. Damit liegen die zu lösenden Separations¬ probleme in dem für Nanofi 1 trati onsmembranen typischen Bereich. Dies ist vor allem von Bedeutung, wenn man bedenkt, daß die Nanofi 1 trati on ein Bindeglied im kommerziell bedeutenden Bereich zwischen der Reversos¬ mose und der Ultrafiltration darstellt.Furthermore, it is according to the invention by changing the crosslinking conditions, for example by Changes in the crosslinking kinetics, by varying the crosslinking temperature, by modifying the concentration of the catalyzing acid and by grading the concentration and the average molar mass of the various water-soluble cell u-1 ether ether derivatives possible to adjust the permeation and separation characteristics . The membrane according to the invention can be adapted to the separation tasks placed on it by varying the crosslinking reactions or parameters. The membrane according to the invention is used in particular for the separation of components with average molar masses between 300 and 2000 g / mol. The separation problems to be solved are thus in the range typical for nanofibrillation membranes. This is particularly important when one considers that nanofiltration represents a link in the commercially important area between reverse osmosis and ultrafiltration.
Die erfindungsgemäße Membran zeichnet sich ferner durch ihre chemische Stabilität gegenüber einer Vielzahl von organischen Lösungsmitteln aus. Aufgrund dieser Stabi¬ lität kann die erfindungsgemäße Membran bei vielfältigen Anwendungen zur Aufarbeitung von organisch belasteten Produkt i onsströmen in der chemischen Industrie und in der Biotechnologie eingesetzt werden, beispielsweise in Systemen, in denen Restmengen von Alkoholen, Ethern, Ketonen, Aminen und Estern vorhanden sind.The membrane according to the invention is also distinguished by its chemical stability towards a large number of organic solvents. Because of this stability, the membrane according to the invention can be used in a wide variety of applications for working up organically contaminated production streams in the chemical industry and in biotechnology, for example in systems in which residual amounts of alcohols, ethers, ketones, amines and esters are present .
Die erfindungsgemäße Membran ist zudem aufgrund der höheren Biokompatibilität von Cel 1 ul oseether-Deri vaten den aus der US-PS 4 895 691 bekannten Membranen auf Basis von Polyvinylalkoholen überlegen. Durch die Modifizierung der Vernetzungsbedingungen der wasserlöslichen Cellulose-hydroxyalkylether ist es möglich, membranspezifische Größen, wie M.W. Cut-Offs und Stoffströme, zu variieren.The membrane according to the invention is also superior to the membranes known from US Pat. No. 4,895,691 based on polyvinyl alcohols because of the higher biocompatibility of Cel 1 ul oseether derivatives. By modifying the crosslinking conditions of the water-soluble cellulose hydroxyalkyl ethers, it is possible to vary membrane-specific sizes, such as MW cut-offs and material flows.
Die als Vernetzer bereits genannten Dialdehyde sind zudem kostengünstig. Als Vernetzungskatalysatoren setzt man Säuren, beispielsweise Salzsäure, Schwefelsäure und Phosphorsäure ein.The dialdehydes already mentioned as crosslinkers are also inexpensive. Acids, for example hydrochloric acid, sulfuric acid and phosphoric acid, are used as crosslinking catalysts.
Als Basispolymere bzw. als Trägermembran kann man asymmetrische Trägermembranen, beispielsweise aus Pol yetherimid , Polyvinyl idenfluorid, Polyacryl ni tri 1 , Polypropylen, Polyethylen, Polysulfon, Polyethersul fon und Pol yetheretherketon einsetzen.As the base polymer or as the support membrane, asymmetric support membranes, for example made of polyetherimide, polyvinylidene fluoride, polyacrylonitrile 1, polypropylene, polyethylene, polysulfone, polyether sulfone and polyetheretherketone, can be used.
Die Erfindung wird im folgenden anhand verschiedener, bevorzugte Ausführungsformen näher erläuternder Bei¬ spiele weiter beschrieben. Darin wird Hydroxyethylcel¬ lulose mit HEC und Hydroxypropyl cel 1 ul ose mit HPC abgekürzt .The invention is further described in the following with the aid of various preferred embodiments, which are explained in more detail. In it, hydroxyethyl cellulose is abbreviated with HEC and hydroxypropyl cellulose 1 ul with HPC.
Die mit den erfindungsgemäßen Membranen durchgeführten Messungen erfolgten als Dead-End-Fi 1 trati on bei einer Prozeßtemperatur von T = 20°C und einer transmembranen Druckdifferenz von Δ p = 10 bar. Andere Prozeßtempera¬ turen werden gesondert erwähnt (siehe Beispiel 8) . Aus den Messungen wurden die M.W. Cut-Off' s , die Stoffströme im Wasser Iw und die Stoffströme bei der Abtrennung von Komponenten definierter molarer Massen Ir bestimmt. Alle erzielten Stoffströme wurden auf eine Druckdifferenz von Δ p = 1 bar bezogen . B E I S P I E L 1The measurements carried out with the membranes according to the invention were carried out as dead-end filter at a process temperature of T = 20 ° C. and a transmembrane pressure difference of Δ p = 10 bar. Other process temperatures are mentioned separately (see example 8). The MW cut-offs, the material flows in the water I w and the material flows during the separation of components of defined molar masses Ir were determined from the measurements. All material flows achieved were related to a pressure difference of Δ p = 1 bar. EXAMPLE 1
Asymmetrische Polyetherimidmembranen wurden mit 0,1 Ma.-% wäßriger Hydroxypropyl cel 1 ul osel ösung beschichtet und anschließend mit Gl utardi al dehyd bei einer Vernet¬ zungstemperatur von ly = 70°C und einer Vernetzungsdauer von t = 120 min vernetzt.Asymmetric polyetherimide membranes were coated with 0.1% by mass of aqueous hydroxypropyl cel 1 ul osel solution and then crosslinked with glutardi al dehyde at a crosslinking temperature of ly = 70 ° C. and a crosslinking time of t = 120 min.
Anschließend erfolgten Membranfiltrationsversuche zur Abtrennung niederer molekularer Verbindungen, die in wäßrigen, mit je 10 Ma.-% organischen Lösungsmitteln kontaminierten Systemen gelöst waren.This was followed by membrane filtration tests for the separation of lower molecular compounds which were dissolved in aqueous systems contaminated with 10% by mass of organic solvents.
Zugesetzte organische M.W.Cut-Off Komponente ro/mol 1 l"l/m'hbarlAdded organic MWCut-Off component ro / mol 1 l " l / m'hbarl
Aceton 600 1,25Acetone 600 1.25
Ethyl methyl keton 610 1,32Ethyl methyl ketone 610 1.32
Ethanol 590 1,22Ethanol 590 1.22
Isopropanol 575 1,19Isopropanol 575 1.19
Tetrahydrofuran 620 1 ,46Tetrahydrofuran 620 1, 46
Ethylacetat1) 525 1,11Ethyl acetate 1 ) 525 1.11
D 5 Ma-% Ethylacetat im WasserD 5% by mass of ethyl acetate in the water
BEISPIEL 2EXAMPLE 2
Asymmetrische Polyetherimi dträgermembranen wurden mit unterschiedlichen Konzentrationen an wäßriger Hydroxy¬ ethyl cel 1 ul osel ösung beschichtet. Dabei besaß die verwendete Hydroxyethylcellulose eine mittlere molare Masse von 250.000 g/mol . Nach erfolgter Vernetzung bei einer Vernetzungstempera¬ tur von Ty = 50°C und einer Vernetzungsdauer von t 120 min mittels Gl utard i al dehyd erfolgten die Ermitt¬ lungen der M. W . Cut-Off ' s und der Stoffströme, die in όer folgenden Tabelle aufgeführt sind.Asymmetric polyetherimid carrier membranes were coated with different concentrations of aqueous hydroxyethyl cel 1 ul osel solution. The hydroxyethyl cellulose used had an average molar mass of 250,000 g / mol. After crosslinking at a crosslinking temperature of Ty = 50 ° C. and a crosslinking time of t 120 min using glutard i al dehyde, the M. W. Cut-offs and the material flows, which are listed in the following table.
HEC-Konzentrati on M.W.Cut-Off I TMa.-Xl [g/mol 1 M/m' hbarl M/wi* hbarlHEC concentration M.W.Cut-Off I TMa.-Xl [g / mol 1 M / m 'hbarl M / wi * hbarl
0,2 3,551 5,84 6,26 0,3 1,269 3,04 4,02 0,4 977 1,24 1 ,28 0,5 941 0,97 1,310.2 3.551 5.84 6.26 0.3 1.269 3.04 4.02 0.4 977 1.24 1.28 0.5 941 0.97 1.31
BEISPIEL 3EXAMPLE 3
Asymmetrische Pol yetherimidmembranen wurden mit einer 0,3%-igen wäßrigen Hydroxyethyl cel 1 ul osel ösung be¬ schichtet. Die mittlere molare Masse der HEC betrug wiederum 250.000 g/mol . Als Vernetzungsdauer wurde analog zum Beispiel 1 120 min gewählt. Gl utardi al dehyd diente als Vernetzer. In Abhängigkeit von der Vernet¬ zungsdauer wurden Permeations- und Trenndaten der erhaltenen Membranen ermittelt.Asymmetric polyetherimide membranes were coated with a 0.3% aqueous hydroxyethyl cel 1 ul osel solution. The average molar mass of the HEC was again 250,000 g / mol. Analogously to Example 1, 120 minutes was chosen as the crosslinking time. Gl utardi al dehyd served as a crosslinker. The permeation and separation data of the membranes obtained were determined as a function of the crosslinking time.
Vernetzungs- M.W.Cut-Off Ir Iy temperatur TK1 fg/mol 1 [1 /m' hbarl fl /m2 hbarlCrosslinking MWCut-Off I r I y temperature TK1 fg / mol 1 [1 / m 'hbarl fl / m 2 hbarl
323 1,269 3,04 4,02323 1,269 3.04 4.02
333 400 0,48 0,78333 400 0.48 0.78
343 120 0,09 0,10 BEISPIEL 4343 120 0.09 0.10 EXAMPLE 4
Asymmetrische Polyetherimi dmembranen wurden mit 0,3 % wäßriger Hydroxyethyl cel 1 ul osel ösung beschichtet und anschließend bei 50°C und 120 min Vernetzungsdauer mit Gl utardi al dehyd vernetzt. Dabei wurden zwei verschiedene Hydroxyethyl cel 1 ul ose-Deri vate mit ca. 250.000 und 540.000 g/mol mittlerer molarer Masse verwendet.Asymmetric polyetherimembranes were coated with 0.3% aqueous hydroxyethyl cel 1 ul osel solution and then crosslinked with glutardi al dehyd at 50 ° C and 120 min crosslinking time. Two different hydroxyethyl cel 1 ul ose derivatives with approx. 250,000 and 540,000 g / mol average molar mass were used.
Mittlere molare M.W.Cut-Off I F I A,W Masse der HEC- [g/mol] [l/m*hbar] [l/m2 hbar] Deri vate fg/mol 1Mean molar MWCut-Off IFI A , W mass of HEC- [g / mol] [l / m * hbar] [l / m 2 hbar] derivatives fg / mol 1
250.000 1,269 3,04 4,02 540.000 900 2,17 3,26250,000 1,269 3.04 4.02 540,000 900 2.17 3.26
BEISPIEL 5EXAMPLE 5
Asymmetrische Polyetherimidmembranen wurden mit 0,3%- iger wäßriger Hydroxyethyl cel 1 ul osel ösung (mittlere molare Masse 540.000 g/mol) beschichtet und 2 h bei 50°C mit Gl utardi al dehyd vernetzt. Zur Katalysierung der Vernetzung wurde 30%-ige Salzsäure zur Polymerlösung zugegeben. In Abhängigkeit vom pH-Wert (Wasserstoffi o- nen-Konzentrati on der katalysierenden Säure) der Poly¬ merlösung wurde M. W . Cut-Off' s und Stoffströme bestimmt.Asymmetric polyetherimide membranes were coated with 0.3% aqueous hydroxyethyl cel 1 ul osel solution (average molar mass 540,000 g / mol) and crosslinked for 2 hours at 50 ° C. with glutardi al dehyde. 30% hydrochloric acid was added to the polymer solution to catalyze the crosslinking. Depending on the pH (hydrogen ion concentration of the catalyzing acid) of the polymer solution, M. W. Cut-offs and material flows determined.
pH-We rt M. .W .Cut-OffpH value M. .W. Cut-Off
*W h* W h
M/m'hbarl π/m2hbarl [< 3/mol 1M / m'hbarl π / m 2 hbarl [<3 / mol 1
5,4 3,26 2,17 9005.4 3.26 2.17 900
3,5 3,5 2,42 8973.5 3.5 2.42 897
2,6 2,21 1,78 6552.6 2.21 1.78 655
2,1 0,87 0,75 3562.1 0.87 0.75 356
1,7 0,07 0,0645 100 BEISPIEL 61.7 0.07 0.0645 100 EXAMPLE 6
In analoger Vorgehensweise zu Beispiel 5, jedoch mit 0,1 % wäßriger Hydroxyethyl cel 1 ul osel ösung wurde M.W.Cut- Offs und Stoffströme in Abhängigkeit vom pH-Wert der Polymerlösung bestimmt.In an analogous procedure to Example 5, but with 0.1% aqueous hydroxyethyl cel 1 ul osel solution, M.W. cut-offs and material flows were determined as a function of the pH of the polymer solution.
pH-Wert W I F M.W.Cut-Off π/m'hbarl π/m'hbarl [g/mol 1pH W I F M.W.Cut-Off π / m'hbarl π / m'hbarl [g / mol 1
5 45 8,47 5,35 1,619 3 45 6,93 4,77 1,962 2 5 6,83 4,65 1,390 2 1 3,91 3, 11 903 1 6 0,61 0,47 229 1 0,51 0,41 1305 45 8.47 5.35 1.619 3 45 6.93 4.77 1.962 2 5 6.83 4.65 1.390 2 1 3.91 3, 11 903 1 6 0.61 0.47 229 1 0.51 0 , 41 130
BEISPIEL 7EXAMPLE 7
Asymmetrische Polyetherimidmembranen wurden mit einer 0,3%-igen wäßrigen Hydroxypropyl cel 1 ul osel ösung be¬ schichtet. Als Vernetzungsdauer wurde 2 h gewählt. Gl utardi al dehyd diente als Vernetzer.Asymmetric polyetherimide membranes were coated with a 0.3% aqueous hydroxypropyl cel 1 ul osel solution. The crosslinking time selected was 2 hours. Gl utardi al dehyd served as a crosslinker.
In Abhängigkeit von der Vernetzungstemperatur erfolgten die Bestimmungen der Permeations- und Trenndaten.The permeation and separation data were determined depending on the crosslinking temperature.
Vernetzungs- M.W.Cut-Off I F I * L temperatur ,Tv TK1 [g/mol! π /m' h b a r l [ 1 /m2 h b a r lCrosslinking MWCut-Off IFI * L temperature, Tv TK1 [g / mol! π / m 'hbarl [1 / m 2 hbarl
3 1 3 3,388 4,11 8,68 323 1,184 2,74 3,31 333 600 0,79 1,1 343 120 0,1 0,19 BEISPIEL 83 1 3 3.388 4.11 8.68 323 1.184 2.74 3.31 333 600 0.79 1.1 343 120 0.1 0.19 EXAMPLE 8
Asymmetrische Polyetherimidmembranen wurden mit 0,3%- igen wäßrigen Hydroxypropyl cel 1 ul osel ösungen beschichtet und anschließend bei einer Vernetzungstemperatur von T = 60°C und 120 Minuten Vernetzungsdauer mit Glutardial- dehyd vernetzt. Die Nanofi 1 trati onen wurden bei Proze߬ temperaturen von 75°C durchgeführt. Als Stoffstrom wurde ein Wert von ca. 1,1 1/m hbar erreicht.Asymmetric polyetherimide membranes were coated with 0.3% aqueous hydroxypropyl cel 1 ul osel solutions and then crosslinked with glutardialdehyde at a crosslinking temperature of T = 60 ° C. and 120 minutes crosslinking time. The nanofitrations were carried out at process temperatures of 75 ° C. A value of approx. 1.1 l / m hbar was reached as material flow.
BEISPIEL 9EXAMPLE 9
Asymmetrische Pol yetherimi dträgermembranen wurden mit wäßrigen 0,3 Ma.-%igen Hydroxypropyl cel 1 ul osel ösungen beschichtet. Dabei besitzt die verwendete Hydroxypropyl - cellulose eine mittlere molare Masse von 540.000 g/mol . Nach erfolgter Vernetzung bei einer Vernetzungstempera¬ tur von T = 50°C und einer Vernetzungsdauer von t v 3 vAsymmetric polymer carrier membranes were coated with aqueous 0.3 mass% hydroxypropyl cel 1 ul osel solutions. The hydroxypropyl cellulose used has an average molar mass of 540,000 g / mol. After crosslinking has taken place at a crosslinking temperature of T = 50 ° C. and a crosslinking time of tv 3 %
120 Minuten mittels Gl utardi al dehyd erfolgten die Ermittlungen der Rückhaltungen gegenüber Natriumchlorid (Feed: wäßrige 2g/1 NaCl -Lösung) , die einen Wert von 9,64 % errei chte . For 120 minutes by means of glutardi al dehyd, the retention of sodium chloride (feed: aqueous 2 g / 1 NaCl solution) was determined, which reached a value of 9.64%.

Claims

Komposit-Nanofil trati onsmembranPatentansprüche Composite nanofiltration membrane
1. Komposi t-Nanofi 1 trati onsmembran mit einer per se bekannten Trägermembran und einer selektiven Trenn¬ schicht aus Cellulose-hydroxyalkylether, dadurch er¬ hältlich, daß die Trägermembran mit einer wässrigen Lösung des Cellulose-hydroxyalkylethers beschichtet und der Cellulose-hydroxyalkylether mit Aldehyd(en) unter Acetalbildung vernetzt werden.1. Komposi t-Nanofi 1 trati onsmembran with a carrier membrane known per se and a selective separation layer of cellulose hydroxyalkyl ether, thereby available that the carrier membrane is coated with an aqueous solution of the cellulose hydroxyalkyl ether and the cellulose hydroxyalkyl ether with aldehyde (s) can be crosslinked with acetal formation.
2. Komposi t-Nanofi 1 trati onsmembran nach Anspruch 1, dadurch erhältlich, daß der Cellulose-hydroxyalkylether mit Di aldehyd (en) bis zur Wasserunlöslichkeit vernetzt wi rd .2. Komposi t-Nanofi 1 trati onmembran according to claim 1, obtainable in that the cellulose hydroxyalkyl ether with di aldehyde (s) cross-linked to water insolubility.
3. Komposi t-Nanofi 1 trati onsmembran nach Anspruch 1 oder 2, dadurch erhältlich, daß der Cellulose-hydroxyalkyl¬ ether mit Glyoxal oder Gl utardi al dehyd vernetzt wird. 3. Komposi t-Nanofi 1 trati onmembran according to claim 1 or 2, obtainable in that the cellulose-hydroxyalkyl¬ ether is crosslinked with glyoxal or Gl utardi al dehyd.
4. Komposi t-Nanofi 1 trati onsmembran nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Trägermembran aus Polyetherimid , Pol yacryl ni tri 1 , Polysulfon oder Polyvinylidenfluorid aufgebaut ist.4. Komposi t-Nanofi 1 trati onsmembran according to any one of claims 1 to 3, characterized in that the carrier membrane is composed of polyetherimide, poly acrylic ni tri 1, polysulfone or polyvinylidene fluoride.
5. Komposi t-Nanofi 1 trati onsmembran nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dicke der Cel 1 ul ose-hydroxyal kyl ether-Trennschi cht 0,01 bis 0,5 μm beträgt .5. Komposi t-Nanofi 1 trati onsmembran according to any one of the preceding claims, characterized in that the thickness of the Cel 1 ul ose-hydroxyal kyl ether separation layer is 0.01 to 0.5 microns.
6. Kompos i t-Nanofi 1 trat i onsmembran nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie über eine hohe Rückhaltung für Substanzen mit einem Molekulargewicht ab 300 g/mol verbunden mit einer NaCl -Rückhai tung kleiner 20 % verfügt.6. Kompos i t-Nanofi 1 kicked on membrane according to one of the preceding claims, characterized in that it has a high retention for substances with a molecular weight from 300 g / mol associated with a NaCl backing device less than 20%.
7. Kompos i t-Nanofi 1 trat i onsmembran nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie in wäßrigen Lösungen mit mehr als 5 Gew.-% an organischen Lösungsmitteln, z. B. Alkohole, Ether, Amine oder Ester , stabi 1 ist.7. Kompos i t-Nanofi 1 kicked on membrane according to one of the preceding claims, characterized in that it contains more than 5% by weight of organic solvents, eg. B. alcohols, ethers, amines or esters, stabi 1.
8. Kompos i t-Nanofi 1 trat i onsmembran nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Arbeitstemperatur zur Separation von Komponenten aus Stoffsystemen > 70°C ist.8. Kompos i t-Nanofi 1 stepped on membrane according to one of the preceding claims, characterized in that the working temperature for separating components from material systems is> 70 ° C.
9. Verfahren zur Herstellung einer Komposi t-Nanofi 1 tra¬ ti onsmembran mit einer per se bekannten Trägermembran und einer selektiven Trennschicht aus Cellulose-hydroxy¬ alkylether, dadurch gekennzeichnet, daß man die Träger¬ membran mit einer wäßrigen Lösung des Cellulose-hydroxy¬ alkylethers beschichtet und den Cellulose-hydroxyalkyl¬ ether mit Aldehyd(en) unter Acetalbildung vernetzt. 9. A process for producing a composite Nanofi 1 tra¬ ti onmembran with a carrier membrane known per se and a selective separation layer of cellulose-hydroxy¬ alkyl ether, characterized in that the carrier membrane with an aqueous solution of cellulose-hydroxy¬ coated alkyl ether and crosslinked the cellulose hydroxyalkyl ether with aldehyde (s) with acetal formation.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man den Cellulose-hydroxyalkylether mit Di a1 de¬ hyd (en) bis zur Wasserunlöslichkeit vernetzt.10. The method according to claim 9, characterized in that the cellulose hydroxyalkyl ether with Di a1 de¬ hyd (en) crosslinked to water insolubility.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekenn¬ zeichnet, daß man den Cellulose-hydroxyalkylether mit Glyoxal oder Gl utardi al dehyd vernetzt. 11. The method according to claim 9 or 10, characterized gekenn¬ characterized in that the cellulose hydroxyalkyl ether with glyoxal or Gl utardi al dehyd crosslinked.
PCT/DE1996/002302 1995-12-07 1996-12-02 Composite nanofiltration membrane WO1997020622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96946030A EP0865309A1 (en) 1995-12-07 1996-12-02 Composite nanofiltration membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19545701A DE19545701C1 (en) 1995-12-07 1995-12-07 Composite nanofiltration membrane
DE19545701.3 1995-12-07

Publications (1)

Publication Number Publication Date
WO1997020622A1 true WO1997020622A1 (en) 1997-06-12

Family

ID=7779474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/002302 WO1997020622A1 (en) 1995-12-07 1996-12-02 Composite nanofiltration membrane

Country Status (3)

Country Link
EP (1) EP0865309A1 (en)
DE (1) DE19545701C1 (en)
WO (1) WO1997020622A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1889653A1 (en) 2006-08-11 2008-02-20 Millipore Corporation Crosslinked cellulosic nanofiltration membranes
US9623352B2 (en) 2010-08-10 2017-04-18 Emd Millipore Corporation Method for retrovirus removal
US9750829B2 (en) 2009-03-19 2017-09-05 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US10675588B2 (en) 2015-04-17 2020-06-09 Emd Millipore Corporation Method of purifying a biological material of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode
US11154821B2 (en) 2011-04-01 2021-10-26 Emd Millipore Corporation Nanofiber containing composite membrane structures

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19910466C2 (en) * 1999-03-10 2001-03-15 Geesthacht Gkss Forschung Process for producing a hydrophilic hollow fiber composite membrane
AUPR340701A0 (en) * 2001-02-27 2001-03-22 Life Therapeutics Limited Polymeric membranes and uses thereof
FR3025726B1 (en) * 2014-09-15 2018-07-20 Universite De Montpellier FILTERING MEMBRANES BASED ON CELLULOSE ETHER

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB592210A (en) * 1940-10-19 1947-09-11 Carbide & Carbon Chem Corp Improvements in the manufacture of cellulose and other carbohydrate ethers and of materials made of or containing them
CH508895A (en) * 1966-11-17 1971-06-15 Bexford Ltd Diazotype sheet material having a layer of cross-linked
EP0490863A1 (en) * 1990-12-13 1992-06-17 Monsanto Company Surface-modified support membrane and process therefor
WO1996032178A1 (en) * 1995-04-13 1996-10-17 Travenol Laboratories (Israel) Ltd. Leukocyte filtration method and apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895924A (en) * 1987-05-15 1990-01-23 Kureha Kagaku Kogyo K. K. Poly(arylene thioether-ketone) fibers and production process thereof
US5049167A (en) * 1989-12-13 1991-09-17 Membrane Technology & Research, Inc. Multilayer interfacial composite membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB592210A (en) * 1940-10-19 1947-09-11 Carbide & Carbon Chem Corp Improvements in the manufacture of cellulose and other carbohydrate ethers and of materials made of or containing them
CH508895A (en) * 1966-11-17 1971-06-15 Bexford Ltd Diazotype sheet material having a layer of cross-linked
EP0490863A1 (en) * 1990-12-13 1992-06-17 Monsanto Company Surface-modified support membrane and process therefor
WO1996032178A1 (en) * 1995-04-13 1996-10-17 Travenol Laboratories (Israel) Ltd. Leukocyte filtration method and apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1889653A1 (en) 2006-08-11 2008-02-20 Millipore Corporation Crosslinked cellulosic nanofiltration membranes
EP2269717A1 (en) 2006-08-11 2011-01-05 Millipore Corporation Solvent resistant nanofiltration membranes
US9623353B2 (en) 2006-08-11 2017-04-18 Emd Millipore Corporation Crosslinked cellulosic nanofiltration membranes
US9750829B2 (en) 2009-03-19 2017-09-05 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US9889214B2 (en) 2009-03-19 2018-02-13 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US9943616B2 (en) 2009-03-19 2018-04-17 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US10064965B2 (en) 2009-03-19 2018-09-04 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US10722602B2 (en) 2009-03-19 2020-07-28 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US9623352B2 (en) 2010-08-10 2017-04-18 Emd Millipore Corporation Method for retrovirus removal
US11154821B2 (en) 2011-04-01 2021-10-26 Emd Millipore Corporation Nanofiber containing composite membrane structures
US10675588B2 (en) 2015-04-17 2020-06-09 Emd Millipore Corporation Method of purifying a biological material of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode

Also Published As

Publication number Publication date
EP0865309A1 (en) 1998-09-23
DE19545701C1 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
EP0096339B2 (en) Use of a multilayer membrane in the separation of liquids by pervaporation
DE69814891T2 (en) COMPOSED REVERSE OSMOSMEMBRANE AND METHOD FOR THE PRODUCTION THEREOF
DE69534096T2 (en) High permeability reverse osmosis composite membrane, process for its preparation and method of use
DE3129702C2 (en)
DE2837845C2 (en)
DE60220740T2 (en) Composite membranes
EP2172258A1 (en) Composite membrane for separating out water and method for its production
DE3801690A1 (en) POLYMER MEMBRANE AND METHOD FOR THEIR PRODUCTION
DE102015213801A1 (en) Complex nanofiltration membrane and preparation thereof
WO2014023380A1 (en) Method for producing a thermoresponsive filtration membrane and thermoresponsive filtration membrane
DE2539408B2 (en) MEMBRANES, THE METHOD OF MANUFACTURING IT AND THEIR USE FOR REVERSE OSMOSIS AND ULTRAFILTRATION
DE69924085T2 (en) Highly permeable composite reverse osmosis membrane and process for its preparation
DE2838665A1 (en) ETHYLENE / VINYL ALCOHOL COPOLYMER MEMBRANE AND METHOD FOR MANUFACTURING IT
WO1997020622A1 (en) Composite nanofiltration membrane
EP1807175B1 (en) Membrane for the separation of material mixtures and method for production thereof
EP0003829A1 (en) Process for making composite membranes
EP0674940B1 (en) Use of a membrane for pervaporation or vapour permeation
DE60217065T2 (en) Silicone-coated organic solvent-resistant nanofiltration composite membrane of polyamide and process for its preparation
DE19925475B4 (en) Composite membrane made of a porous carrier membrane, process for its production and its use
EP1083981B1 (en) Composite membrane made of a microporous support membrane and interlayer made of regenerated cellulose and method for the production of the same
WO2011026541A1 (en) Composite membrane
DE19934737C2 (en) Polyamide reverse osmosis membrane
DE19836418B4 (en) Membrane for separating mixtures of substances and process for their production
DE4091840B4 (en) Polyparabanic acid membrane for selective separation
DE4437869B4 (en) Surfactant-containing membranes for pervaporation, process for their preparation and use of a surfactant-containing membrane

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996946030

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996946030

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996946030

Country of ref document: EP