WO1997018755A1 - Instrument for optical measurement of living body - Google Patents

Instrument for optical measurement of living body Download PDF

Info

Publication number
WO1997018755A1
WO1997018755A1 PCT/JP1996/003365 JP9603365W WO9718755A1 WO 1997018755 A1 WO1997018755 A1 WO 1997018755A1 JP 9603365 W JP9603365 W JP 9603365W WO 9718755 A1 WO9718755 A1 WO 9718755A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
irradiation
positions
detection
measurement
Prior art date
Application number
PCT/JP1996/003365
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Yamashita
Atsushi Maki
Hideaki Koizumi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP29954295A external-priority patent/JP3588880B2/en
Priority claimed from JP31199395A external-priority patent/JP3682793B2/en
Priority claimed from JP31419595A external-priority patent/JP3543453B2/en
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to DE19681107T priority Critical patent/DE19681107B4/en
Priority to CA002210703A priority patent/CA2210703C/en
Priority to GB9713004A priority patent/GB2311854B/en
Priority to US08/875,081 priority patent/US6240309B1/en
Publication of WO1997018755A1 publication Critical patent/WO1997018755A1/en
Priority to US10/689,760 priority patent/US7142906B2/en
Priority to US11/371,916 priority patent/US7774047B2/en
Priority to US11/371,918 priority patent/US20060184046A1/en
Priority to US11/371,919 priority patent/US20060184047A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • B60K28/06Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver
    • B60K28/066Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver actuating a signalling device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0242Special features of optical sensors or probes classified in A61B5/00 for varying or adjusting the optical path length in the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • G01N2021/4742Details of optical heads therefor, e.g. using optical fibres comprising optical fibres

Definitions

  • the present invention relates to an apparatus for measuring information inside a living body using light.
  • the development of a technology that can easily measure information inside a living body without harming the living body is expected in fields such as clinical medicine and brain science.
  • brain diseases such as cerebral infarction and intracerebral hemorrhage
  • measurement of higher brain functions such as thinking, language and movement.
  • the measurement target is not limited to the head, but also includes preventive diagnosis for heart diseases such as myocardial infarction in the chest and visceral diseases such as kidney and liver damage in the abdomen.
  • optical metrology is very promising.
  • the first reason The normal and abnormal organs in the living body, and the activation of the brain for higher brain functions are closely related to oxygen metabolism and blood circulation in the living body.
  • the oxygen metabolism and blood circulation, certain dyes in biological corresponds to the concentration of the dye concentration, absorption of light of a wavelength in the infrared region from the visible Because it can be obtained from
  • the second and third reasons that optical measurement technology is effective are that light is easy to handle with an optical fiber and that it does not cause any harm to living organisms when used within the safety standards. No.
  • optical measurement technology has advantages that PET and fMRI do not have in real-time measurement and quantification of dye concentration in living organisms, and is suitable for miniaturization of equipment and simplicity of handling. .
  • the living body is irradiated with light having a wavelength in the visible to infrared region, and the light (reflected light) that is absorbed and scattered in the living body and comes out of the living body again is detected.
  • Japanese Patent Application Laid-Open No. 57-11532, Japanese Patent Application Laid-Open No. 63-260532, Japanese Patent Application Laid-Open No. This is described in, for example, Japanese Patent Application Laid-Open No. 27532/23, Japanese Patent Application Laid-Open No. Hei 5-3-172595, and the like.
  • the above-described conventional biological measurement technique using light can measure only a specific position or a limited narrow area in a living body, and does not consider imaging measurement of a wide space area in the living body.
  • the optical measurement method For imaging measurement in a large space area, light irradiation and light detection at multiple points are required.
  • An example of this multi-point measurement will be briefly described with reference to FIG.
  • light is emitted from three places (irradiation position 1, irradiation position 2, and irradiation position 3) on the subject surface, and reflected light is reflected from three places (detection position 1, detection position 2, and detection position 3) on the subject surface. ) Shows the case of detection.
  • the measurement position In the case of imaging measurement, the measurement position must be specified.
  • the light detected at the detection position 2 includes not only the reflected light of the light irradiated from the irradiation position 2 but also the reflected light of the light irradiated from the irradiation position 1 and the irradiation position 3. Especially, so-called crosstalk occurs. Therefore, only the reflected light of the light irradiated at the irradiation position 2 cannot be separated and detected at the detection position 2, and accurate measurement at the measurement position 2 cannot be performed.
  • an object of the present invention is to provide a biological light measurement technique that enables highly efficient and accurate light measurement in a wide space area within a subject (living body).
  • Another object of the present invention is to enable optical measurement over a large spatial area in a subject.
  • An object of the present invention is to provide a small and easy-to-handle biological optical measurement device.
  • Still another object of the present invention is to provide a multi-channel simultaneous measurement method capable of simultaneously performing optical measurement at a plurality of measurement positions in a subject without crosstalk.
  • Still another object of the present invention is to provide a biological optical measurement device capable of measuring information in a deep part inside a subject with high sensitivity.
  • Still another object of the present invention is to use a biological measurement signal having a high spatial resolution obtained from the above-described biological optical measurement device as an input signal to control various external devices with high accuracy. It is to provide a high biological input device and a high biological control device.
  • light having a wavelength in the visible to infrared region is simultaneously irradiated into the subject from a plurality of irradiation sites on the surface of the subject (living body), passed through the subject, and re-transmitted.
  • a biological optical measurement device for simultaneously detecting light emitted outside the subject at a plurality of detection sites on the surface of the subject and imaging and measuring biological information inside the subject using the detection signals, Irradiation light from the irradiation part is intensity-modulated at a different modulation frequency for each irradiation part, and at the plurality of detection parts, light having a different modulation frequency is detected for each detection part. are doing.
  • the detection light of the specific modulation frequency detected at the specific detection part corresponds to only the irradiation light from the specific irradiation part irradiated with the light of the specific modulation frequency. Therefore, it is possible to obtain biological information at a specific measurement site in the subject that is determined corresponding to the specific irradiation site and the specific detection site without crosstalk. As a result, biological information on a plurality of measurement sites in the subject can be obtained simultaneously and without crosstalk, and multi-channel simultaneous measurement becomes possible. In addition, highly efficient and accurate optical measurement can be performed on a wide spatial area including a plurality of measurement sites in the subject.
  • the light selectively detected at each detection site is converted into another light.
  • the biological information at another measurement part in the subject determined in correspondence with the irradiation part irradiated with the light of the other modulation frequency and the detection part detecting the same can be obtained without crosstalk. be able to.
  • the number of irradiation sites and detection sites required for measurement of a predetermined number of measurement sites can be reduced. Therefore, the number of light sources for light irradiation and the number of detectors for light detection can be reduced, and a compact and easy-to-handle device configuration can be obtained.
  • the present invention it is possible to perform measurements on a plurality of measurement channels formed between a plurality of light irradiation points and a plurality of light detection points simultaneously and without crosstalk.
  • the plurality of pairs of light irradiation points and light detection points are arranged on a circumference surrounding a specific measurement site in the deep part of the subject, and the midpoint position (measurement position) of each pair is determined by this specific measurement site.
  • a biological optical measurement device capable of measuring biological information about a wide spatial region in a subject (living body) with high efficiency, high accuracy, and high spatial resolution can be realized.
  • a biological optical measurement device capable of measuring biological information about a wide spatial region in a subject (living body) with high efficiency, high accuracy, and high spatial resolution.
  • FIG. 1 is a diagram showing a schematic configuration of a biological light measurement device according to a first embodiment of the present invention
  • FIG. 2 is a diagram showing a positional relationship between a light irradiation position, a light detection position, and a measurement position in biological light measurement.
  • FIG. 3 is a diagram showing light propagation in a living body (light scattering body) in living body light measurement.
  • FIG. 4 is a light irradiation position for realizing more efficient living body light measurement according to the present invention. Diagram showing the positional relationship between the light detection position and the measurement position,
  • FIG. 5 is a diagram showing a specific configuration of each optical module in the embodiment shown in FIG. 1, and FIG. 6 is a light irradiation position, a light detection position, and a measurement position on the surface of the subject in the embodiment shown in FIG. Diagram showing the positional relationship between positions,
  • FIG. 7 shows a specific configuration of the lock-in amplifier module in the embodiment shown in FIG. .
  • FIG. 8 is a diagram showing the shape of the probe in the embodiment shown in FIG.
  • FIG. 9 is a diagram showing a specific configuration of the probe in the embodiment shown in FIG. 1
  • FIG. 10 is a diagram showing a configuration of a light source unit in the biological optical measurement device according to the second embodiment of the present invention.
  • FIG. 11 is a diagram showing the specific configuration of the optical modulator in the embodiment shown in FIG. 10, and FIGS. 12, 13, and 14 are diagrams showing the measurement sensitivity distribution and the production sensitivity in the in-vivo measurement according to the conventional technology. Diagram showing the relationship with body depth,
  • FIG. 15 is a diagram showing a schematic configuration of a biological optical measurement device S according to a third embodiment of the present invention.
  • FIG. 16 is another configuration example of the data collection unit in the embodiment shown in FIG. Figure showing
  • FIG. 17 is a diagram showing still another configuration example of the data collection unit in the embodiment shown in FIG.
  • FIG. 18 is a diagram showing still another configuration example of the data collection unit in the embodiment shown in FIG.
  • FIG. 19 is a diagram showing still another configuration example of the data collection unit in the embodiment shown in FIG.
  • FIG. 20 is a diagram showing still another configuration example of the data collection unit in the embodiment shown in FIG.
  • FIG. 21 is a diagram showing another example of the positional relationship between the irradiation optical fiber and the condensing optical fiber in the embodiment shown in FIG. 15,
  • FIG. 22 is a diagram showing still another example of the positional relationship between the irradiation optical fiber and the converging optical fiber in the embodiment shown in FIG.
  • FIG. 23 is a diagram showing still another example of the arrangement relationship between the irradiation optical fiber and the condensing optical fiber in the embodiment shown in FIG.
  • FIG. 24 is a diagram showing a schematic configuration of a living body optical measurement device suitable for measuring deep in-vivo information according to a fourth embodiment of the present invention.
  • FIGS. 25, 26 and 27 are diagrams showing the relationship between the measurement sensitivity distribution and the depth in the living body in the in-vivo measurement using the device S configuration shown in FIG.
  • FIG. 28 is a diagram showing a schematic configuration of a brain function activity measuring device used in a living human power device according to a fifth embodiment of the present invention.
  • FIG. 29 is a diagram showing an example of a change in the concentration of the mog mouth bin into the brain during right finger movement measured by the apparatus configuration shown in FIG.
  • FIG. 30 is a diagram showing an example of a change in the concentration of the mog mouth bin into the brain during the movement of the left finger measured by the device configuration shown in FIG.
  • Fig. 31 is a contour map showing an example of changes in total hemoglobin concentration in the brain during right finger movement measured by the device configuration shown in Fig. 28.
  • Fig. 32 is a contour map showing an example of the change in the total concentration of the hemagglutinating bin in the brain at the time of recalling the language measured by the device configuration shown in Fig. 28.
  • FIG. 33 is a diagram showing a schematic configuration of a biological control device according to a fifth embodiment of the present invention.
  • FIG. 34 is a first example of an arithmetic procedure in the arithmetic device in the embodiment shown in FIG. Flow chart showing
  • FIG. 35 is a flowchart showing a second operation procedure example in the operation device in the embodiment shown in FIG.
  • FIG. 36 is a diagram showing the data structure of learning data used in the second example of the operation procedure shown in FIG.
  • FIG. 37 is a diagram showing a schematic configuration of a biological control device according to a sixth embodiment of the present invention. , The best mode for carrying out the invention
  • optical measurements at a plurality of measurement positions in the subject are performed simultaneously and without crosstalk.
  • a multi-channel simultaneous measurement technique that can be performed is provided.
  • the present invention in order to solve the above-described crosstalk problem, light having a wavelength in the visible to infrared region is simultaneously irradiated into the subject from a plurality of irradiation positions on the surface of the subject (living body).
  • Biological light measurement that simultaneously detects light that passes through the sample and is emitted outside the subject again at multiple detection positions on the surface of the subject, and uses this detection signal to image and measure biological information inside the subject.
  • the modulation frequency of the light radiated into the subject from the plurality of irradiation positions is made different for each irradiation position, and at the plurality of detection positions, the light having the different modulation frequency is different for each detection site. It is configured to selectively separate and detect.
  • the detection light at the detection position 2 includes only the light component emitted from the irradiation position 2 and does not include the light component emitted from the other irradiation positions 3 at all. Therefore, the light with the modulation frequency f 2 selectively detected at the detection position 2 (light passing through the living body) Is a force that includes much in-vivo information at measurement position 2 between irradiation position 2 and detection position 2, and hardly includes in-vivo information at measurement positions 1 and 3. In other words, information about the other measurement positions 1 and 3 is not mixed in the information about the measurement position 2 to be measured at the detection position 2. This is exactly the same for the other detection positions 1 and 3. Thus, measurement without crosstalk can be performed at each measurement position.
  • multiple light beams with different wavelengths are used as the irradiation light to the living body and pass through the living body.
  • the measured light is spectrally measured by wavelength
  • the light of multiple wavelengths can be reflected and scattered by optical filters, diffraction gratings, prisms, and the like. Electrical spectrometry can be performed without using optical spectroscopy with loss.
  • the irradiation frequency from different irradiation positions is also detected at each detection position by changing the modulation frequency of the light selectively detected at each detection position. can do. For example, in FIG.
  • the modulation frequencies of the irradiation light from irradiation positions 1, 2, and 3 are f1, f2, and f3, respectively, the modulation frequency of the detection light at the detection position g2 is f2. If they are matched, only the irradiation light from the irradiation position 2 is selected and detected at the detection position 2. However, if the modulation frequency of the detection light at the detection position 2 is changed to f1 and f3, the irradiation position S Only the irradiation light from 1 and 3 can be selectively detected. The same applies to detection positions 2 and 3. This advantage is related to more efficient light irradiation and detection point arrangement.
  • a specific irradiation position and detection position are exclusively assigned to each measurement position for a plurality of measurement positions, i.e., when there are three measurement positions as shown in Fig. 2, the irradiation position and the detection position Three positions are required for each. So, for example, As shown in Fig.
  • the irradiation position 2 and the detection positions 1 and 2 are alternately arranged in a grid pattern, and the irradiation position 1 is shared by the measurement positions 1 and 4 and the irradiation position 2 is shared by the measurement positions 2 and 3 If the force, force, and detection position 1 can be shared with measurement position 2 and detection position 2 can be shared with measurement positions 3 and 4, the required irradiation position and detection position for a total of 4 measurement positions can be obtained. In two places each. That is, according to the modulation measurement method described above, the modulation frequencies of the irradiation light from the irradiation positions 1 and 2 in FIG. 4 are set to f 1 and f 2, and the modulation frequencies of the detection light at the detection positions 1 and 2 are set.
  • the detection position 1 , 2 can select and measure information about measurement positions 2 and 3, respectively.
  • the number of irradiation positions (and thus the number of light sources associated therewith) and the number of detection positions (and therefore the number of detectors associated therewith) can be greatly reduced, thereby improving system efficiency and reducing the size of the device configuration.
  • the handling can be simplified.
  • FIG. 1 shows a schematic configuration of a biological optical measurement device according to a first embodiment of the present invention.
  • the number of measurement channels (that is, the number of measurement positions [the number of S]) was set to 64, assuming that the inside of the cerebrum was imaged and measured by irradiating and detecting light from the skin of the human head, for example.
  • the device configuration will be described.
  • the light source unit 1 is composed of 16 optical modules 2 (1), 2 (2),... 2 (16). Each optical module is composed of three semiconductor lasers that individually emit light of multiple wavelengths within the visible to infrared wavelength range (for example, three wavelengths of 770 nm, 805 nm, and 830 nm). It is configured. All (48 total) semiconductor lasers included in the light source unit 1 receive modulation signals from the oscillation unit 3 composed of 48 oscillators having different oscillation frequencies, and receive different modulation frequencies. Emit laser light modulated by.
  • Fig. 5 shows the specific configuration inside each optical module.
  • semiconductor lasers 3 (1-a), 3 (1-b), 3 (1-c) and driving circuits 4 (Ia), 4 (1-b), 4 (1-c) is included.
  • the number (1) in parentheses indicates that the element belongs to the optical module of module number 1, and the alphabetic characters (a, b, c) indicate the wavelength, respectively.
  • Drive circuits 4 (1-a), 4 (l ⁇ b), and 4 (1-c) output different modulation frequencies f (Ia) and f (1-b) from the respective oscillators in the oscillator 3.
  • f (1-c) the modulation frequency corresponding to the output laser light from semiconductor lasers 3 (1-a), 3 (1-b), and 3 (1-c) is supplied.
  • the modulation in Output laser beams from the respective semiconductor lasers are individually introduced into the optical fiber 6 via the condenser lens 5.
  • the light introduced into each optical fiber 6 is introduced into one irradiation optical fiber 8-1 via an optical fiber coupler 7.
  • the reflected light from the subject 9 (the light that is absorbed and scattered by passing through the subject and emitted from the subject surface to the outside) is detected at a total of 25 locations on the subject surface. It is taken into the detection optical fibers 10 0-1, 10-2,.
  • FIG. 6 shows an example of the geometric arrangement of the irradiation positions (IP) 1 to 16 and the detection positions (DP) 1 to 25 on the surface of the subject 9.
  • the irradiation position (IP) and the detection position (DP) are alternately arranged in a square lattice.
  • the irradiation position (! P) and the detection position adjacent to each other Assuming that the midpoint of (DP) is the measurement position (MP), in this example, there are 64 combinations of the irradiation position (IP) and the detection position (DP) that are adjacent to each other.
  • the number, that is, the number of measurement channels is 64.
  • the detection light at each irradiation position has information in the cerebrum, It is reported in ⁇ f "PW McCormic;” Intracerebral penetration of infrared light ", J. Neurosurg., Vol.76, pp.315-318, (1992). Therefore, if a total of 64 measurement channels are set in the arrangement shown in FIG. 6, it is possible to measure intracerebral information in a wide area of about 15 cm ⁇ 15 cm as a whole.
  • the reflected light captured by each detection optical fiber 10-1 to 10-25 is a total of 25 photodetectors (for example, photodiodes) 11-1-1, 11-2, ...
  • detection is performed independently for each detection position (that is, for each detection optical fiber).
  • the output electric signal from each photodetector is measured separately by a lock-in amplifier module 12 composed of a plurality of lock-in amplifiers for each modulation frequency corresponding to the irradiation position and the wavelength of the irradiation light.
  • the signal separation method will be described with reference to FIG. 7, taking the detection signal at the detection position (DP) 7 in FIG. 6, that is, the detection signal at the photodetector (photodiode) 11-17 as an example. .
  • the detection position (DP) 7 the light irradiated from the four irradiation positions (1P) 2, 5, and 6 adjacent to it, that is, the measurement positions (MP) 10, 11, 18, 18,
  • the light passing through 19 is targeted for detection.
  • the light detected by the photodetectors 11-17 mainly consists of the modulation frequencies ⁇ ⁇ (1 a), f (1-b) radiated from the irradiation positions (] P) 1, 2, 5, and 6.
  • f (1-c), f (2-a), f (2-b), f (2-c), f (5-a), f (5-b), f (5-c), f (6-a), f (6-b) and f (6-c) are included. Therefore, the output signals of the photodetectors 11 and 17 are used as reference signals for the corresponding modulation frequencies.
  • lock-in amplifier 1 3 In 3 1, since the reference signal frequency is set to f (1-a), the wavelength from the irradiation position (IP) 1 is 7770 nm from the optical signal detected by the photodetector 11. Only the signal components corresponding to the irradiating light (that is, the light whose modulation frequency is f (1-a)) are separated and selected and amplified. That is, the output signal from the lock-in amplifier 13-31 is applied to the light of wavelength 770 nm at the measurement position (MP) 10 existing between the irradiation position (IP) 1 and the detection position (DP) 7. It contains only biological reaction information such as absorption and scattering. Similarly, in other lock-in amplifiers, only light of a specific wavelength irradiated from a specific irradiation position is selectively detected.
  • MP measurement position
  • DP detection position
  • the optical signals detected at other detection positions are also modulated at the specific modulation frequencies determined corresponding to the light irradiation position and the irradiation light wavelength, respectively.
  • the mouth lock-in detection it becomes possible to separately measure the amount of light detected for all measurement positions and the irradiation light wavelength.
  • a total of 19 2 lock-in amplifiers 1 3— 1, 1 3—2, ⁇ ' ⁇ ⁇ 1 3— 19 2 are included.
  • the analog output signals from these 192-channel lock-in amplifiers are converted into digital signals by a 192-channel AZD converter 14, passed through a control unit 18, and recorded in a data recording unit 15. You.
  • these recorded signals are used in the data processing unit 16 by using the detected light amount of three waves at each measurement position, to obtain the oxygen concentration in the oxygenated hemoglobin, the oxygenated hemoglobin concentration, and the oxygenated hemoglobin concentration.
  • the total hemoglobin concentration as a total amount was calculated using the method described in the book, ⁇ Two-Wavelength Spectrophotometry and Its Applications, '' edited by Shodan Shibata et al., Published in 1979 by Kodansha. Ask.
  • the oxygenated hemoglobin concentration, the deoxygenated hemoglobin concentration, and the total hemoglobin concentration determined for each measurement position are displayed on the display unit 17, for example, in topography. Display as an image.
  • the data for displaying the topography image is obtained by, for example, interpolating (for example, linearly interpolating) the densities of the bins at each measurement position between the measurement positions.
  • the operation of each unit of the apparatus described above is controlled by the control unit 18.
  • a helmet or cap-shaped probe 21 as shown in FIG. 8 is used for light irradiation and light detection on the subject (human head).
  • a thermoplastic resin sheet having a thickness of about 3 mm is used as a base material, and a mold is formed in advance with the base material to match the external dimensions in the measurement region of the subject. This is fixedly mounted on the outer surface of the subject with, for example, a rubber cord 22 or the like.
  • Holes are provided in the probe base 23 at a plurality of positions corresponding to the irradiation position of the light on the subject 9 and the detection position of the reflected light from the subject 9, and the optical fiber holder 24 is fixedly mounted in each hole.
  • the optical fiber holder 24 includes a hollow cylindrical holder main body 24, a main body fixing screw 25 and an optical fiber fixing screw 26, and the holder main body 24 is inserted into each hole provided in the probe base 23. Then, the holder main body 23 is fastened and fixed to the probe base 23 with the main body fixing screws 25. Then, an irradiation optical fiber or a detection optical fiber is inserted into the center hole of the holder body 23, and the end of the optical fiber is lightly brought into contact with the surface of the subject 9; Fix it with it.
  • the present invention is not limited to this number of channels.
  • the present embodiment can be easily applied to a so-called optical CT device in which tomography of the inside of a living body is performed using light, and the obtained data is image-processed by a computer.
  • FIG. 10 shows a schematic configuration of a biological light measurement device according to a second embodiment of the present invention.
  • the basic configuration of the measurement system is the same as that of the first embodiment.
  • FIG. 10 shows the configuration of the light source unit 1 in the second embodiment.
  • a light source having a wavelength of 770 nm, for example, a semiconductor laser 31 is driven by a laser drive circuit 41 and emits continuous light without modulation. This light is introduced into the optical fiber 61, and is distributed through the optical fiber coupler 51 to 16 optical fibers 61-1-1 to 61-1-16.
  • Each of these 16 optical fibers includes an optical modulator 71-1 to 71-16 in its path.
  • the configuration of these optical modulators is shown in FIG. 11 using the optical modulator 71-1 as an example.
  • a liquid crystal filter 101 is built in the optical modulator 711, and the liquid crystal filter 101 is periodically turned on and off when a modulation voltage signal is applied from an oscillator in the oscillation unit 3. Is to repeat.
  • a modulation voltage signal having a modulation frequency of f (1 ⁇ a) is applied to the liquid crystal filter 101.
  • the light from the optical fiber 6 1-1 is applied to the liquid crystal filter 101 via the lens 5, and the light transmitted through the liquid crystal filter 1 1 is condensed by the lens 5 to form the optical fiber 8 1-1.
  • the optical modulators 7 1-1 to 7 1 _ 16 have different modulation frequencies, for example, f (1- a ), f (2-a), f (16-a)
  • the LCD filter is turned on and off.
  • a device using a rotary mechanical optical disc may be used in addition to the liquid crystal filter. In this way, the light beams modulated at the different modulation frequencies by the optical modulators 71-1-1 to 71-1-16 are introduced into the optical fibers 81-1 to 81-1-16 and transmitted.
  • light sources of other wavelengths in the light source unit 1 are driven by laser driving circuits 42 and 43, respectively.
  • Output lights from these light sources 32 and 33 are sent to fiber couplers 52 and 53 via optical fibers 6-2 and 6-3, respectively, and 16 optical fibers 62-1 to 16 are respectively provided. It is distributed to 6 2—16, 6 3—1 to 6 3—16.
  • the light distributed to the optical fibers 6 2—1 to 6 2—16, 6 3—1 to 6 3—16 is converted to optical modulators 7 2—1 to 7 2—16,
  • each of the optical modulators 72-1 to 72-16 has a different modulation frequency f (l-b), f (2-b),... F (16-b)
  • the signal is applied and the optical modulator 7 3— 1
  • the modulation signals having different modulation frequencies f (l-c), f (2-c) and f (16-c) are applied to.
  • the light that passed through the optical modulators 7 2—1 to 7 2—16 passed to the optical fibers 8 2—1 to 8 2—16 and the optical modulators 7 3—1 to 7 3—1 16 respectively.
  • the light is respectively introduced into optical fibers 83-1 to 83-16 and transmitted.
  • a total of 48 optical modulators 7 1-1 to 7 1-16, 7 2-1 to 7 2-16 and 7 3-1 to 7 3-16 are individually modulated, Total 4 8 optical fibers 8 1-1 to 8 1-16, 8 2-1 to 8 2-16 and 8 3-1 to 8 3-16 Independently transmitted and modulated respectively
  • a total of 48 types of light having different frequencies are grouped for each wavelength and introduced into one (total of 16) optical fibers in the following way: Optical fiber 8 1 — 1, 8 2-1 and
  • the light transmitted by 83-1 is collectively introduced into one irradiation optical fiber 8-1 via the optical fiber coupler 911.
  • the light transmitted through the optical fibers 8 1-16, 8 2-16 and 8 3-16 is converted into one irradiation optical fiber 8 by the optical fiber coupler 9 1 1 16. Introduced together in 16.
  • 16 types of irradiation optical fibers 8-1 to 8-16 are used to carry out three types of light (48 types in total) with different wavelengths and modulation frequencies.
  • the surface of the subject 9 is irradiated in the same manner as in the example. Note that the method of measuring the reflected light from the subject 9 is the same as in the first embodiment.
  • a biological optical measurement device capable of measuring information in a very small area in a deep city in a subject (living body) with high sensitivity and high resolution.
  • a living body is irradiated with light having a wavelength in the visible to infrared region, and reflected light from a deep region in the living body at a distance of about 10 to 50 mm from the irradiation position is detected, and biological information on the deep region is obtained.
  • a living body optical measuring device is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 63-277038 and 5-30087.
  • Japanese Patent Application Laid-Open Nos. 63-277038 and 5-30087 it is difficult to obtain biological information on a minute region deep inside the living body with sufficient measurement accuracy.
  • the measurement results include information over a wide area in the living body.
  • the spatial characteristics of the detection sensitivity are such that the sensitivity in a shallow part of a living body near the light irradiation position and the light detection position is greater than the sensitivity in a deep part. For this reason, it is difficult to accurately measure a change in the concentration of a light absorbing substance in a deep region in a living body by a method that has been conventionally proposed.
  • the hemodynamic change in a relatively shallow region immediately below the scalp is largely reflected in the measured value for the above-described reason.
  • Figs. 12 to 14 show examples of the results of obtaining the relative sensitivity distribution with respect to the change in the concentration of the light absorbing substance in the living body using the above-mentioned conventional technology.
  • the present invention when irradiating light into the subject from a plurality of light irradiation positions on the subject surface, and condensing and detecting light transmitted through the subject at a plurality of light detection positions on the subject surface,
  • the plurality of light irradiation positions and the plurality of light irradiation positions are so set that the respective light paths of the light (transmitted light) irradiated from each of the plurality of light irradiation positions and transmitted through the subject overlap each other in a desired measurement region in the subject.
  • An arrangement relationship with the plurality of light detection positions is set, and light detection signals at the plurality of light detection positions are arithmetically processed, thereby increasing the detection sensitivity to the optical information in the desired measurement area. (The detection sensitivity for optical information in other areas is relatively reduced.)
  • the biological optical measurement device for deep information measurement inside a subject (living body) is basically for irradiating a plurality of irradiation lights having different wavelengths from a plurality of irradiation positions on the surface of the subject into the subject.
  • a light irradiating means having a plurality of irradiating portions; and a light irradiating means for condensing light (transmitted light) irradiated from each of the plurality of light irradiating positions and transmitted through the subject at a plurality of detecting positions on the surface of the subject.
  • a plurality of collections provided in an arrangement such that the optical paths of the respective lights (transmitted light) emitted from each of the plurality of irradiation units and transmitted through the subject overlap with each other in a predetermined measurement region in the subject.
  • a light condensing means having an optical part; and a plurality of light detectors for detecting light intensities of the respective transmitted lights condensed by the plurality of light condensing parts at each of the plurality of irradiation positions and each of the plurality of wavelengths.
  • the above-mentioned plurality of irradiation lights are subjected to intensity modulation at different modulation frequencies for each irradiation position and each wavelength, and a predetermined modulation frequency is obtained from the transmitted light condensed by each of the condensing sections.
  • a predetermined modulation frequency is obtained from the transmitted light condensed by each of the condensing sections.
  • the transmitted light condensed by each of the condensing sections is separated by a spectroscope for each wavelength, and only the light component intensity-modulated at a predetermined modulation frequency is separated and detected from the separated wavelength components ( By performing lock-in detection, the light intensity of the transmitted light component for each irradiation position and each wavelength may be obtained.
  • the optical information to be measured is a light absorption coefficient in the subject (living body).
  • a photoelectric conversion device that converts transmitted light having a predetermined intensity modulation frequency (or transmitted light having a predetermined wavelength having a predetermined intensity modulation frequency) into a transmitted light intensity signal having the predetermined intensity modulation frequency by photoelectric conversion.
  • the transmitted light intensity signal from the photoelectric conversion unit is transmitted to the AZD conversion unit.
  • Input and obtain a transmitted light intensity signal in the frequency space by Fourier transform, and a signal corresponding to the intensity modulation frequency given for each predetermined light irradiation position or for each predetermined wavelength is sent to the A / D converter.
  • a signal component having a frequency equal to the above-mentioned predetermined reference frequency may be calculated from the transmitted light intensity signal in the frequency space, and this may be used as an intensity signal of the transmitted light component having a predetermined intensity modulation frequency.
  • the plurality of irradiating units and the plurality of condensing units have at least one predetermined diameter centered on a point at which a perpendicular (a straight line perpendicular to the surface of the subject) passing substantially at the center of the predetermined measurement area intersects the surface of the subject.
  • the transmitted light intensity corresponding to the irradiation light for each wavelength from each light irradiation position is detected for each condensing position and each wavelength, and the transmitted light intensity for each wavelength from each light irradiation position is detected.
  • Select the transmitted light intensity for each wavelength from the light irradiation position that is in point symmetry with the condensing position, and select the transmitted light intensity detected on the same circle from the selected transmitted light intensity is performed.
  • the intensity of the transmitted light condensed by the light condensing part set on the circle with the smaller diameter is used as information from the shallow part of the subject, and the intensity is set on the circle with the larger diameter.
  • the transmitted light intensity condensed by the condensing portion is used as information from the deep part of the subject, and the transmitted light intensity is subjected to arithmetic processing. It can be arranged in a shape. In this case, the irradiating section and the condensing section are arranged on the grid points of the respective rows of the square lattice so that the row where the irradiating section is arranged and the row where the condensing section are arranged alternately. It is.
  • the plurality of irradiation units and the plurality of light collection units described above can be arranged in a regular hexagonal lattice.
  • the irradiating section and the condensing section are alternately arranged on each lattice point of the regular hexagonal lattice.
  • Light having a wavelength near 805 nm is used as light to irradiate the subject (living body). Based on the transmitted light intensity, changes in oxyhemoglobin concentration, changes in reduced hemoglobin concentration, and oxyhemoglobin concentration in the living body can be determined. The change in total hemoglobin concentration calculated as the sum of the change and the reduced hemoglobin concentration change is determined, and the total hemoglobin concentration change is calculated. Change over time can be displayed. Still, the total change in the concentration of moglobin may be obtained directly from the transmitted light intensity. In addition, as irradiation light to the inside of the subject (living body), irradiation light of a plurality of wavelengths (at least two wavelengths) in a wavelength range of 700 nm to 110 nm can be used.
  • the change in total hemoglobin concentration, the change in oxyhemoglobin concentration, or the change in reduced hemoglobin concentration, which is calculated as the sum of the change in oxyhemoglobin concentration and the change in reduced hemoglobin concentration, is represented by the color of the line, the type of line, or the line shape, respectively.
  • changes in oxyhemoglobin concentration may be displayed in red or orange
  • changes in reduced hemoglobin may be displayed in blue, indigo or green
  • changes in total hemoglobin concentration may be displayed in black or brown.
  • the images of total hemoglobin concentration change, oxyhemoglobin concentration change, or reduced hemoglobin concentration change calculated as the sum of the oxidized hemoglobin mouth concentration change and the reduced hemoglobin concentration change corresponded to the respective concentration changes. It may be displayed in color or brightness.When the density change is positive, the display is displayed in darker red or higher brightness as the absolute value of the density change value becomes larger, and when the density change is negative, As the absolute value of the value of the density change becomes smaller, the image may be displayed in dark blue or lower luminance.
  • the intensity of transmitted light having a predetermined wavelength detected on the circle is set to the surface of the subject through the center of the circle.
  • the change in the oxyhemoglobin concentration change and the reduction in the mog vine bottle concentration change in a predetermined range region of a predetermined depth in the subject on a perpendicular line perpendicular to the predetermined range or a predetermined range region of a predetermined rotating body having the perpendicular as a rotation axis.
  • the calculation can be performed assuming that the change in total hemoglobin concentration, the change in oxyhemoglobin concentration, or the change in reduced hemoglobin concentration calculated as the sum is reflected.
  • the diameter of the circle can be in the range of 25 mm to 35 mm, and the depth can be in the range of 12 mm to 25 mm. Also, by covering the contact surface of the irradiating section or the condensing section with the object surface with a flexible and highly transmissive member to the irradiation light, the irradiating section or the condensing section is The stimulus given to the subject can be softened.
  • the plurality of irradiation units and the plurality of light collection units are arranged on a circle having a predetermined diameter such that the optical paths of the irradiation light from the plurality of irradiation units in the subject overlap each other,
  • At each condensing part only the transmitted light of the irradiation light from the irradiating part located opposite to it is selectively detected, and the intensity of the transmitted light detected at each condensing part is multiplied to obtain the object surface. It is possible to improve the measurement sensitivity for a region (measurement region) located at a predetermined depth position inside the subject from the center position of the above circle.
  • two types of light having different wavelengths were used as irradiation light for the purpose of measuring changes in oxidized and reduced hemoglobin concentrations in a subject (living body).
  • Light detection positions are set at two locations, respectively. It is easy to further increase the number (wavelength number) of these irradiation lights, light irradiation positions, and light detection positions.
  • by increasing the number of irradiation light (number of wavelengths) it is possible to measure not only changes in the concentration of redox hemoglobin but also changes in the concentration of other light-absorbing substances in the living body such as cytochrome and myoglobin. Needless to say.
  • FIG. 15 shows a schematic configuration of the biological optical measurement device according to the present embodiment.
  • Output light from a plurality (four in this embodiment) of light sources 111, 1-1, 1-3, 114 are respectively illuminated optical fibers 2-i, 2--2, 2-3-3, 2 — Guided to 4.
  • the wavelength of the output light from the light sources 1-1, 1-3 is f1
  • the wavelength of the output light from the light sources 1-1, 1-4 is L2.
  • the wavelengths 1 and 2 are selected from the range of 400 nm to 2400 nm.
  • the output light from the light sources 111, 112, 113, and 114 is output from 100 Hz by the light source driving circuits 41, 4-2, 4-3, and 4-4, respectively.
  • Intensity modulation is performed at different modulation frequencies f 1, f 2, f 3, and f 4, respectively, during 1 OMHz.
  • the modulation frequency signals A, B, C, and D from the light source driving circuits 4-1, 4-1-2, 4-3, and 4-4 are used as reference frequency signals as phase detectors 27-1 and 27-. 2, 27-3, 27-4 are input.
  • the optical fibers 2-1 and 2-2 are connected to the optical directional coupler 3-1.
  • the optical fibers 2-3 and 2-4 are connected to the optical directional coupler 2-2.
  • Light from the light sources 1-1, 1-2 is mixed in the optical directional coupler 3-1 and introduced into the irradiation optical fiber 8-1, and light from the light sources 1-3, 1-4 is Are mixed in the optical directional coupler 3-2 and introduced into the irradiation optical fiber 8-2.
  • the irradiation optical fibers 8-1 and 8-2 and the condensing optical fibers 10-1 and 10-2 are fixed by the optical fiber holder 21 and applied to the surface of the subject (human head) 9. Touched.
  • the object 9 is irradiated with light from the irradiation optical fibers 8-1, 8-2, and the light transmitted through the object 9 through the condensing optical fibers 10-1 and 10-2 (transmitted light). Focus).
  • the irradiation optical fibers 8-1 and 8-2 and the condensing optical fibers 10-1 and 10-2 are arranged on the circumference of one circle set on the optical fiber holder 21.
  • the light-collecting optical fibers 10-1 and 10-2 are arranged at intervals and opposite to the irradiation optical fibers 8-1 and 8-2 with the center of the circle interposed therebetween. Have been.
  • the eyeba holder 21 is preferably formed of a black material or coated with a black material in order to enhance the light-shielding property, and preferably has a hollow structure as shown in the figure.
  • the irradiation optical fibers 8-1, 8-2 and the condensing optical fibers 10-1, 10-2 are also covered with a black material on the surface portions other than the contact surface with the subject 9. Is desirable.
  • the contact surfaces of the irradiation optical fibers 8-1, 8-2 and the condensing optical fibers 10-1, 10-2 with the subject 9 are brought into contact with the subject 9 so that the subject 9 It is desirable to apply a coating made of a material that is flexible and has good permeability to irradiation light, such as vinyl resin, for the purpose of reducing the stimulus that will endure.
  • the light transmitted through the subject (living body) condensed by the converging optical fibers 10 0-1 10-2 is guided to the photodetectors 1 1 1 1 1 and 1 1-2, respectively, and photoelectrically converted. Is detected. Photomultiplier tubes and avalanche photodiodes are used for the photodetectors 10-1 and 10-2.
  • the output signal from the photodetector 10-1 is divided into two and then input to the phase detectors 27-1 and 27-2, respectively, and the output signal from the photodetector 11-2 is also 2 After being divided into two, they are input to the phase detectors 27-3 and 27-4, respectively.
  • the signals input to the phase detectors 27-1, 27-2, 27-3, and 27-4 include the transmitted light intensity signals of all wavelengths of light radiated into the subject (living body).
  • the phase detectors 27-1, 27-2, 27-3, 27-4 have light source driving circuits 4-1, 4, 1-2, 4-3, 4-4 Since the reference frequency signals A, B, C, and D from 4 are respectively input, the phase detector 27-1 applies the wavelength 1 from the light source 111 and the irradiation light with the modulation frequency f 1 Only the corresponding transmitted light intensity component is detected by the phase detector 27-2. Only the transmitted light intensity component corresponding to the irradiation light having the wavelength ⁇ 2 and the modulation frequency ⁇ 2 from the light source 1-2 is detected by the phase detector 27.
  • the transmitted light intensity signal component of the wavelength 1 detected by the phase detectors 27-1 and 27-3 is The signal is input to the multiplier 28 1 and multiplied by both signal components, and the wavelengths detected by the phase detectors 27-2 and 27-4; the transmitted light intensity signal component of I 2 is calculated by the multiplier 28 The signal is input to —2 to multiply both signal components.
  • the output signals from multipliers 28-1 and 28-2 are input to log amplifiers 29-1 and 29-2, respectively. Further, the output signals from the log amplifiers 291-1 and 29-2 are input to AZD (analog-digital) converters 141-1 and 14-12, respectively, where they are converted into digital signals. After that, it is taken into the arithmetic unit 30.
  • the arithmetic unit 30 changes the oxyhemoglobin concentration, changes the reduced hemoglobin concentration, and expresses the blood volume to the oxidized to mog-to-bin concentration change and the reduced to the oxidized hemoglobin concentration based on the time-series signals of the transmitted two-wavelength transmitted light intensities.
  • the sum with the mouth bottle density change is calculated, and the calculation result is displayed on the display device 17 as a time series change graph. Further, when multipoint measurement (measurement for a plurality of measurement regions in the subject 9) is performed by the same device, the measurement result can be displayed on the display device 17 as an image.
  • the display device 17 When displaying the change of each hemoglobin concentration as a time-series change graph, if the display device 17 can display color, the display color is changed for each change graph of each hemoglobin concentration, and the display device 17 is displayed. When color display is not possible, the type or thickness of the display line can be changed for each change graph of hemoglobin concentration and displayed. For example, if the display device 17 can display color, the change in oxyhemoglobin concentration is red or orange, the change in reduced hemoglobin concentration is blue, indigo or green, and the change in total hemoglobin concentration is black, gray or brown. To display.
  • the result When displaying the result of the multipoint measurement as an image, the result may be displayed as a contour image, or the display color or the display brightness may be changed in accordance with the change in the density change value. Furthermore, the display may be displayed in deep red or dark gray as the absolute value of the positive density change value increases, and may be displayed in dark blue or pale white as the absolute value of the negative density change value increases.
  • FIGS. 16 to 20 show modified examples of the configuration of these data collection units.
  • FIG. 16 shows a first modified configuration example of the data collection unit.
  • the light source 11-1, 1-2, 1-3, 114 to the optical fibers 10-1 and 10-2 for condensing (the light irradiating section and condensing section) The configuration is the same as that in Fig. 15 and those parts are omitted for simplicity.
  • the encircled symbols A, B, C, and D in the figure represent reference frequency signals, as in the case of FIG. These points are the same for the following Figures 17 to 2 ⁇ .
  • the data collection unit consists of a photodetector 11-1, 1-11, and a phase detector 27-1,
  • phase detector 27-1, 27-2, 27-3, 27-4 The configuration up to the phase detector 27-1, 27-2, 27-3, 27-4 is the same as that in Fig. 15.
  • the force here is the phase detector 27-1, 27-2, Output signals (transmitted light intensity signals) from 27-3 and 27-4 were converted to digital signals by A / D converters 14-1, 14-14, 1-3 and 14-14, respectively. Later, arithmetic unit
  • the arithmetic unit 30 first multiplies the input transmitted light intensity signals of all the wavelengths between the transmitted light intensity signals of the same wavelength, and then calculates the natural logarithm of the result of the multiplication, or The natural logarithm operation is performed on all the transmitted light intensity signals thus obtained, and then the result of the natural logarithm operation is added between the same wavelengths.
  • the combination of the transmitted light intensity signals of the same wavelength described above is the combination of the output signals from the AZD converters 14-1 and 14-13 and the A / D converters 14-1 and 14-4 And two sets of output signals from.
  • FIG. 17 shows a second modified configuration example of the data collection unit.
  • the data collection unit of this configuration example includes a photodetector 111, a phase detector 27-11, 27-2, 27-3, 27-4, and a multiplier 28-1, 28. —2, AZD converters 14 1, 14 — 2, and an arithmetic unit 30. Up to the multipliers 28-1 and 28-2, the power is the same as that of the configuration shown in FIG. Output signals from 28-1 and 28-2 are converted into digital signals by the AZD converters 14-1 and 14-2, and then input to the arithmetic unit 30. The arithmetic unit 30 performs a natural logarithmic operation on the signals from the AZD converters 141-1 and 14-12, respectively.
  • FIG. 18 shows a third modification of the data collection unit.
  • the data acquisition section of this configuration example consists of a photodetector 1 1 1 1 1, 1 1 2, a phase detector 27-1, 27-2, 27-3, 27-4, and a log amp 29-1, 29- 2, 29-3, 29-4, adders 40-1, 40-2, AZD converters 14-1, 14-2, and an arithmetic unit 30.
  • Phase detectors 27-2, 27-3, 27-4 are the same as the configuration shown in FIG. 15. In this configuration example, the phase detectors 27-1, 27-2, Output signals from 27-3, 27-4 are input to log amps 29-1, 29-2, 29-3, and 29-4, respectively, and are subjected to natural logarithmic conversion.
  • the transmitted light intensity signals (the transmitted light intensity signals of wavelength ⁇ 1) from the log amplifiers 29-1 and 29-3 are input to the adder 40-1 and added together, and the log amplifiers 29-1 2, 29-4
  • the transmitted light intensity signal (the intensity signal of the transmitted light of wavelength 2) is input to the adder 40-2 and added together.
  • Output signals from the adders 40-1 and 40-2 are input to the AZD converters 141-1 and 144-2, respectively, converted into digital signals, and then input to the arithmetic unit 30.
  • FIG. 19 shows a fourth modification of the data collection unit.
  • the data acquisition unit of this configuration example consists of a photodetector 11 1 1 1 1 1 1 1 1 2, a phase detector 27 1 1, 27 2, 27-3, 27 4 2, 29-3, 29-4, an AZD converter 14-1, 14-2, 14-3, 14-14, and an arithmetic unit 30.
  • the configuration up to the phase detector 27-1, 27-2, 27-3, 27-4 is the same as that of Fig. 15, but in this example, the phase detector 27-1, 27-2, 27-
  • the output signals from 3, 27_4 are input to log amplifiers 29-11, 29-2, 29-3, and 29_4, respectively, and are first subjected to natural logarithmic conversion.
  • the output signals from amplifiers 29-1, 29-2, 29-3, and 29-4 were converted to digital signals by AZD converters 14-1, 1, 14-2, 14-3, and 14-4, respectively. Later, it is input to the arithmetic unit 30.
  • the input transmitted light intensity signal is added between transmitted light intensity signals of the same wavelength for all wavelengths.
  • the combination of the transmitted light intensity signals of the same wavelength described above is determined by the combination of the output signals from the AZD converters 14-1 and 14-3, the AZD converters 14-1 and the A / D converter 13-3 This is a total of two sets including the set of output signals from 4.
  • FIG. 20 shows a fifth modified configuration example of the data collection unit.
  • the data collection unit consists of a photodetector 1 1 1 1, 1 1 1 1 2 and an AZD converter 14 1
  • the configuration up to the photodetectors 1 1 1 1 and 1 1 1 1 2 is the same as that shown in Fig. 15. In this example, the power from the photo detectors 1 1 1 1 1 1 1 1 1 2
  • the output signals are input to the AZD converters 14-11 and 144-2, respectively, and are first subjected to AZD conversion.
  • the output signals from the AZD converters 141-1 and 14-12 are directly input to the arithmetic unit 30.
  • reference frequency signals (modulation frequency signals of each irradiation light) ⁇ , B, C, and D are respectively input and converted into digital signals, and then input to the arithmetic unit 30.
  • the arithmetic unit 30 Fourier-transforms the input signals from the AZD converters 14-1, 1, -2, 14-3, 14-1, 4, 1-5, 14-16, respectively. Then, the input signals from the AZD converters 14-13, 1-4, 14-5, and 14-16 are subjected to Fourier transform, respectively, and the highest-intensity frequencies obtained are fI, f2, f, respectively.
  • the signal strengths corresponding to the frequencies fl and f2 from the signal obtained by Fourier transforming the input signal from the A / D converter 14-1 are I (f1) and I (f 2), and the signal strengths corresponding to the frequencies f 3 and f 4 from the signals obtained by Fourier transforming the input signal from the AZD converters 14 and 1 are defined as I (f 3) and I (f 4) .
  • I (f 1) and I (f 3) are irradiation lights of the same wavelength. Since the signal is a transmitted light intensity signal corresponding to the wavelength of 1), a natural logarithm operation is performed after multiplying the two, and I (f 2) and I (f 4) also have the same wavelength. Irradiation light
  • the transmitted light intensity signal corresponds to (the light of wavelength 2 from the light sources 1-2 and 1-4 in FIG. 15)
  • natural logarithm calculation is performed after multiplying the two.
  • FIG. 21 shows a first arrangement example in which a large number of irradiation optical fibers and light collecting optical fibers are arranged.
  • this arrangement example three irradiating optical fibers and three concentrating optical fibers are arranged on each circumference of the double concentric circle, but the irradiating optical fiber and the concentrating optical fiber are arranged.
  • the measurement sensitivity for the deep part inside the subject (living body) can be increased. Furthermore, concentric circles in which the irradiation optical fiber and the condensing optical fiber are arranged are further multiplexed. It is needless to say that the measurement sensitivity at various depth positions in the subject (living body) can be enhanced by providing the information.
  • the irradiation optical fibers 8-1, 8-2, and 8-3 are arranged at regular intervals of 120 degrees on the circumference of the circle 50-1 outside the double concentric circle.
  • the converging optical fins 10-1, 10-2, and 10-3 are located at positions opposite to the irradiation optical fibers 8-1, 8-2, and 8-3 on the same circumference.
  • Each is arranged S.
  • the irradiating optical fibers 8-4, 8-5, and 8-6 are arranged at regular intervals of 120 degrees on the circumference of the circle 50-2 inside the double concentric circle.
  • the condensing optical fiber 10- is located at a position facing the irradiation optical fibers 8-4, 8-5, and 8-6 on the same circumference.
  • the transmitted light intensity detected on the circumference of the outer circle 50-1 is assigned as in-vivo deep part information.
  • To calculate the change in hemoglobin concentration in the deep part of the living body and assign the transmitted light intensity detected on the circumference of the inner circle 50-2 as shallow part information in the living body to perform the processing. This makes it possible to determine the change in hemoglobin concentration in the shallow part of the body.
  • the hemoglobin concentration change obtained by multiplying the hemoglobin concentration change calculated from the transmitted light intensity detected on the circumference of the inner circle 50-2 by a predetermined weighting factor estimated from the sensitivity distribution. Is subtracted from the hemoglobin concentration change calculated from the transmitted light intensity detected on the circumference of the outer circle 50-1 to further improve the relative sensitivity of the deep part of the body to the shallow part of the body. It is also possible.
  • FIG. 22 shows a second arrangement example in which a large number of irradiation optical fibers and light collecting optical fibers are arranged.
  • an optical fiber arrangement that is more efficient when measuring at various measurement positions in a subject (living body) based on the present invention will be described.
  • two pairs of one converging optical fiber for irradiation are arranged on the circumference of one circle as a basic fiber unit, and the basic fiber unit is set according to the desired measurement area size. Is provided in multiple units.
  • a square lattice An irradiation optical fiber and a condensing optical fiber are arranged on each of the lattice points, and the irradiation optical fiber and the condensing optical fiber are arranged alternately in the diagonal direction of the square lattice.
  • nine measurement positions are set, and nine circles 60-1 to 60-9 are set around each measurement position, and the irradiation optical fiber 8-1 to 8-8 and the condensing optical fiber 10-1 to 10-8 are arranged on the circumference of the circle and on the lattice points of the square lattice.
  • FIG. 23 shows a third arrangement configuration example in which a large number of irradiation optical fibers and condensing optical fibers are arranged.
  • three pairs of irradiating and condensing optical fiber pairs are arranged on the circumference of one circle as the basic fiber unit, and the basic fiber unit is divided into multiple units according to the desired measurement area. Attached.
  • the irradiating optical fiber and the converging optical fiber are alternately arranged on each grid point of the rectangular lattice, and the irradiating optical fiber and the converging optical fiber are alternately positioned in the diagonal direction of each lattice.
  • the irradiation optical fiber and the condensing optical fiber arranged on the intersection of the mutually adjacent circles have the number of intersecting circles (the lattice points inside the lattice) at the lattice points where they are arranged.
  • it works for the same number of measurement positions as 3), so measurement with fewer optical fibers is possible.
  • FIG. 24 shows a fourth embodiment of the present invention suitable for measuring in-vivo deep information. A biological light measurement device will be described.
  • light in an appropriate wavelength range is selected from white light, and the subject is irradiated with the light, and transmitted from the subject.
  • a method of detecting transmitted light of two different wavelengths required for measurement by spectroscopy of light with a spectroscope is adopted.
  • the light irradiation position and the light detection position on the subject are set at two cylinders each. However, it is easy to further increase the number (the number of wavelengths) of these irradiation lights, light irradiation positions, and light detection positions.
  • white light (light having a continuous wavelength spectrum) output from white light sources 80-1 and 80-2 passes through glass filters 84-1 and 84-2, respectively, for measurement. After being converted to light in the required wavelength range, they are introduced into the irradiation optical fibers 8-1 and 8-2 via the lenses 85-1 and 85-2, respectively, and transmitted to the subject (living body). 9 is irradiated.
  • the wavelength of the light irradiating the subject (living body) 9 is set within a range of 400 to 2400 nm. In particular, when measuring hemodynamics during vacation, the wavelength of the irradiated light is 7 ° ⁇ ! It is desirable to select the glass filters 84-1, 84-2 so as to be within the range of 1 to 100 nm.
  • output light from the light sources 80-1 and 80-2 are modulated by the light source driving circuits 4-1 and 4-2, respectively, so that the modulation frequencies f 1 and f 2 different from 100 Hz to 10 MHz are different from each other. Are intensity-modulated.
  • the modulating frequency signals A and B from the light source driving circuits 4-1 and 4-2 are applied to the phase detectors 27-I and 27--2, 27--3 and 27--4 as reference frequency signals, respectively.
  • the irradiation optical fibers 8-1 and 8-2 are fixed to the optical fiber holder 21 together with the condensing optical fibers 10-1 and 10-2 and are in contact with the surface of the subject 9.
  • the subject 9 is irradiated with light from the irradiation optical fibers 8-1 and 8-2, and the converging optical fiber is irradiated.
  • the light transmitted through the subject 9 (transmitted light) at the optical fibers 10-1 and 10-2 is collected.
  • the irradiation optical fibers 8-1 and 8-2 and the condensing optical fibers 10-1 and 10-2 are arranged on the circumference of one circle set on the optical fiber holder 21.
  • the optical fibers 10-1 and 10-2 are located alternately at intervals and are opposite to the optical fibers 8-1 and 8-2 for irradiation with the center of the circle interposed therebetween. Are set to be located respectively.
  • the light transmitted through the subject (living body) condensed by the condensing optical fibers 10-1 and 10-2 is guided to the spectrometers 86-1 and 86-2, respectively, and separated (wavelength separated). You. In the spectrometers 86-1 and 86-2, only component light having the wavelengths ⁇ 1 and ⁇ 2 required for measurement are selected from the component light of various wavelengths that have been separated.
  • the transmitted light components at wavelengths ⁇ 1 and ⁇ 2 from the spectrometer 86-1 are transmitted by the photodetectors 11-1 and 11-12, respectively, and transmitted at wavelengths 1 and ⁇ 2 from the spectrometer 86-1 and 2.
  • the light components are detected (photoelectric conversion and amplification) by the photodetectors 11-3 and 11-4, respectively.
  • a photomultiplier tube or an avalanche photodiode is used as the photodetector 11-1 to 11-14.
  • Output signals (transmitted light intensity signals) from the photodetectors 11 1 to 11 to 11 are input to the phase detectors 27-1 to 27-4, respectively.
  • the signals input to each phase detector are mixed with transmitted light intensity signals having the same wavelength but different modulation frequencies, but the phase detectors 27-1 and 2-7-2, 2 Since the reference frequency signals A and B having the frequencies fl and f2 from the light source drive circuits 4-1 and 4-2 are input to 7-3 and 27-4, respectively, the phase detector 2 7 1 1 In the phase detector 271-2, only the transmitted light intensity component corresponding to the irradiating light of wavelength 1 from the irradiating optical fiber 8-1 is applied to the irradiating light of wavelength ⁇ 2 from the irradiating optical fiber 8-1. In the phase detector 27-3, only the corresponding transmitted light intensity component is transmitted.
  • the change in oxyhemoglobin concentration, the change in reduced hemoglobin concentration, and the change in oxidized hemoglobin concentration and the change in reduced hemoglobin concentration, which indicate blood volume, are obtained from the time-series signals of the transmitted light intensities of the two wavelengths taken in. (Total hemoglobin concentration change) is calculated, and the calculation result is displayed on the display device 17 as a time-series change graph.
  • Embodiment 3 (FIG. 15) and Embodiment 4 (FIG. 24) described above, an example is shown in which the optical fiber holder 1 is provided with two pairs of light-collecting optical fibers for irradiation.
  • the measurement sensitivity in the deep part inside the subject (living body) can be dramatically increased.
  • the measurement results obtained when four pairs of irradiating optical fibers were provided in the outgoing fiber holder 21 are shown in Figs. 25, 26, and 27. Show.
  • a circle with a diameter of 30 mm at the position of mm is set, and four irradiation optical fibers and four focusing optical fibers are alternately set on the circumference of the circle, and the center of each circle is set.
  • the results of measurement using four pairs of one light-collecting optical fiber pair consisting of an irradiation optical fiber and a condensing optical fiber that are point-symmetrical to each other as the center of point symmetry The relative sensitivity distribution at a depth of 2.5 mm (Fig.
  • the transmitted light in the subject of a plurality of wavelengths emitted from a plurality of light irradiation positions on a predetermined circle interposes the center of the circle with each of the plurality of light irradiation positions on the circle.
  • a configuration example was shown in which detection was performed at a plurality of light collection positions set at point-symmetric relational positions, and the intensity of transmitted light detected at these plurality of light collection positions was all multiplied for each same wavelength.
  • a device configuration in which all additions are performed for each of the same wavelengths has a reduced physical meaning, but it is possible to improve the relative sensitivity of a deep part in a subject (living body).
  • the measurement sensitivity of the target measurement area may be improved by using an apparatus configuration that performs four arithmetic operations on the transmitted light intensity in the subject (living body) detected at a plurality of light condensing positions.
  • region of predetermined depth in a test object (living body) can be measured with high precision.
  • An example of a measurement that requires sufficient measurement sensitivity deep inside the subject (living body) is, for example, measurement of changes in hemodynamics due to cerebral function activity.
  • Force according to the present invention ⁇ According to the present invention, Hemodynamic changes can be measured from above the scalp.
  • a living body light measuring device capable of measuring biological information with respect to a wide spatial region within a subject (living body) with high efficiency, high accuracy, and high spatial resolution can be realized. Therefore, by using the measurement signal from the biological optical measurement device directly as an input signal of various external devices, a highly practical biological input device and a biological device capable of controlling these various external devices quickly and with high accuracy.
  • a control device can be realized.
  • Various input devices such as a keyboard, a mouse, and a steering wheel are used to operate devices such as a computer and a game machine.
  • such input devices operated by humans with limbs reduce the sense of presence in game machines, for example, or make it difficult for persons with physical disabilities to operate.
  • a device for performing direct input from the brain using brain waves has been proposed, for example, in Japanese Patent Application Laid-Open No. 7-124331.
  • This device attempts to control a computer, especially a game machine, by inputting brain waves directly to the computer, such as when measuring an electrocardiogram.
  • Such a direct input device from the brain facilitates the control of external devices even for persons with impaired motor function, and is expected to contribute to the social participation of physically handicapped persons. .
  • the human brain is divided into regions with different cell structures, and each region has a different function.
  • the area involved in spontaneous movements is at the top
  • the area involved in sensation and vision is the occipital area
  • the area involved in language is the left half. It is located in the designated part.
  • a living body optical measurement device capable of measuring biological information in a wide spatial region within a subject (living body) with high efficiency, high accuracy, and high spatial resolution can be realized.
  • Directly input measurement signals from optical measurement devices to various external devices By using the signal as a signal, it is possible to provide a highly practical biological input device and a biological control device capable of controlling these various external devices quickly and with high accuracy.
  • the living body input device using the living body light measurement method according to the present invention comprises: a light irradiating means for irradiating light from outside the scalp of the human head into the brain; and irradiating the light into the brain by the light irradiating means.
  • Light collecting means for collecting the light passing through the brain by the light collecting means; light measuring means for measuring the intensity of the light passing through the brain collected by the light collecting means; and the light measuring means From the intensity of the light passing through the brain measured by the above, the oxyhemoglobin concentration change value, the reduced hemoglobin concentration change value, or the total hemoglobin concentration change value in a predetermined region in the brain is calculated and further calculated.
  • Calculating means for calculating a desired characteristic parameter value from the hemoglobin concentration change value obtained as described above, and determining and outputting the type of output signal based on the calculated characteristic parameter value; and Equipped with It becomes Te.
  • the biological input device may further include, as reference data for the characteristic parameter value, a change rate of the hemoglobin concentration at an arbitrary time interval, an intensity of the time change of the hemoglobin concentration at an arbitrary frequency, which is to be calculated by the arithmetic means, and the like. It may include storage means for setting and storing in advance. In this case, the calculating means determines the type of the output signal from the characteristic parameter value obtained by the above calculation and the reference data stored in the storage means and outputs it.
  • the biological control device using the optical biological measurement method according to the present invention includes the biological input device, and an output signal determined by the biological input device as an input signal, and a predetermined functional operation according to the type of the input signal. And an external device for performing the following.
  • the light condensed by the above-mentioned condensing means is a force classified into reflected light and transmitted light in a living body (brain). In the present invention, both of these are transmitted light (transmitted light). .
  • brain function activity localized in a living body (brain) is measured using light, and this measurement signal is used as an input signal to an external device such as a computer. That is, the irradiation optical fiber and the condensing optical fiber are connected to a desired measurement area in the brain (for example, (Right finger motor area, left finger motor area, language area, etc.) at the position on the head surface, irradiate light into the brain, collect and measure the light passing through the brain, and measure this signal.
  • a desired measurement area in the brain for example, (Right finger motor area, left finger motor area, language area, etc.
  • the arithmetic unit In the arithmetic unit, the cursor is moved to the left for signals from the right finger motor area, for example, the cursor is moved to the right for signals from the left finger motor area,
  • the type of output signal for performing a click operation or the like is determined, and the output signal is input to an external device such as a computer, a word processor, or a game machine.
  • the external device performs an operation according to the type of the input signal.
  • a change in the oxidized hemoglobin concentration, a change in the reduced hemoglobin concentration, or a change in the total hemoglobin concentration in the brain is calculated from the measured intensity of the light passing through the brain.
  • the type of the output signal is determined by comparing the calculated characteristic parameter value with the calculated characteristic parameter value and the characteristic parameter value (reference data) previously stored in the storage device. Input the output signal to the external device.
  • the operation content such as “cursor right”, “force cursor left”, “click”, etc.
  • the operator remembers the standard deviation value and average value for each feature parameter in each measurement area at that time as learning data in the storage device, and compares the actual measurement value with those learning data. Then, if they match within the allowable range, a signal instructing execution of the operation content corresponding to the learning data is output.
  • the Mahalanobis distance can be used to determine the type of output signal using the feature parameters, and a neural network can also be used.
  • the Mahalanobis distance is an index for determining whether an actual measurement value belongs to the distribution when the measurement value or the like is represented by a normal distribution having a variance.
  • the driver's dozing alarm device by arranging light irradiating means and condensing means at a number of points on the surface of the subject (living body), the driver's dozing alarm device, environmental control device, learning degree determination device, sick person, infant, animal, etc. It can also be applied to an intention display device, an information transmission device, or a lie detector.
  • FIG. 28 shows a schematic configuration of a brain function activity measuring device used in the biological input device according to the fifth embodiment of the present invention.
  • the localized brain function activity is measured using light, and the resulting signal is used as an input signal to a computer or an external device.
  • the purpose of this study was to measure changes in oxidized hemoglobin concentration and reduced hemoglobin concentration in the brain.
  • the changes in oxidized hemoglobin concentration and reduced hemoglobin concentration were independent.
  • the oxyhemoglobin concentration and the reduced hemoglobin concentration are measured separately. If the number of wavelengths of the irradiation light is further increased, the measurement accuracy will be further improved, and the concentration of substances other than oxidized and reduced hemoglobin can be measured.
  • the light irradiation position and the light detection position are each set to one position will be described. However, it is easy to expand the measurement area by increasing the number of each.
  • light beams with specific wavelengths 1 and 2 are output from light sources 1-1 and 1-2, respectively, and introduced into optical fibers 2-1 and 2-2, respectively.
  • the wavelengths 1 and ⁇ 2 of the output light from the light sources 1-1 and 1-2 are respectively selected from the wavelength range of 400 nm to 240 nm.
  • the measurement accuracy is selected from within the wavelength range of 700 nm to 110 nm so that the wavelength difference between them is within 50 nm. Desirable to raise.
  • this wavelength In the region, light transmission in the living body is high. At longer wavelengths, light absorption by moisture increases, and at shorter wavelengths, hemoglobin itself also increases light absorption, which is not convenient.
  • the output lights from the light sources 111 and 112 are intensity-modulated by the drive circuits 411 and 4-2 at different modulation frequencies f1 and f2, respectively.
  • the modulation frequency signals A and B from the drive circuits 4-1 and 4-2 are input to the phase detectors 27-1 and 27-2, respectively, as reference frequency signals. This is to separate and extract each signal component from the detection signal in which the signal component corresponding to the oxidized hemoglobin concentration value and the signal component corresponding to the reduced hemoglobin concentration value are mixed.
  • the optical fibers 2-1 and 2-2 are connected to the optical directional coupler 3-1.
  • the light of wavelengths 1 and 2 from the light sources 111 and ⁇ -2 are mixed here for irradiation. Is introduced into the optical fiber 8-1, and transmitted to the surface of the subject (living body) 9.
  • the irradiation optical fiber 8-1 Light is emitted from the irradiation optical fiber 8-1 into the subject (living body) 9, and the light passing through the living body is collected and detected by the collecting optical fiber 10-1.
  • changes in the oxidized and reduced hemoglobin concentrations in blood can be measured as changes in the respective colors (changes in the light absorption wavelength).
  • Oxygen saturation is high in arteries (the proportion of oxyhemoglobin occupied in total hemoglobin), but oxygen saturation is lower in veins than in arteries.
  • the distance between the irradiation optical fiber 8-1 and the light condensing optical fin 10-1 is in the range of 10 to 50 mm depending on the desired depth of the measurement area in the living body and the like. Is set to 30 mm in this embodiment.
  • the light passing through the living body condensed by the condensing optical fiber 10-1 is sent to the photodetector 11-1 where it is photoelectrically converted and amplified. Photomultipliers and avalanche photodiodes are used for the photodetectors.
  • the output signal from the photodetector 11 is divided into two and then input to the phase detectors 27-1, 27-2.
  • the signals input to the phase detectors 27-1 and 27-2 include the two wavelengths irradiated into the living body 9 from the irradiation optical fiber 8-1; corresponding to the light of I 1 and E 2, respectively.
  • Living body The phase detector 27-2 27-2 receives the reference frequency signal from the drive circuits 41-1 and 42-2, respectively.
  • the intensity signal of the light passing through the living body corresponding to the irradiation light having the wavelength ⁇ 1 (modulation frequency f1) from the light source 1_i is obtained.
  • the phase detector 27-2 the light source 1 2, the intensity signal of the light passing through the living body corresponding to the irradiation light having the wavelength ⁇ 2 (modulation frequency f 2) is separated and selected and output.
  • the in-vivo transmitted light intensity signals separated and selected by the phase detectors 27-1 and 27-2 are then input to the ⁇ / D converters 14 1 and 14-2, respectively. After being converted into a digital signal, it is taken into the arithmetic unit [130].
  • the arithmetic unit 3 ⁇ calculates the oxyhemoglobin concentration, the reduced hemoglobin concentration, and the sum of the oxidized hemoglobin concentration and the reduced hemoglobin concentration representing the blood volume from the time-series signals of the transmitted light intensities at the two wavelengths.
  • the calculation result is displayed on the display device 17 as a time-series change graph.
  • the total amount (volume) of hemoglobin in the blood is constant, so simply adding the amount of oxidized hemoglobin and the amount of reduced hemoglobin gives the total blood *.
  • a method of calculating changes in oxyhemoglobin, reduced hemoglobin, and total hemoglobin concentration accompanying brain activity is described in, for example, a patent application by the present applicant (Japanese Patent Application No. Hei 7-309). 72 application) in the specification and drawings (arithmetic processing method). Although only the amount of change in hemoglobin concentration is calculated here, the absolute amount of hemoglobin concentration can be measured by performing calculation excluding the influence of light scattering in a living body.
  • FIG. 29 is a graph illustrating an example of a change in hemoglobin concentration during right finger movement measured using the brain function activity measurement device of this example.
  • the region in the brain the right finger motor area
  • the changes in the oxyhemoglobin concentration (a), the reduced hemoglobin concentration (b), and The time series change of the total hemoglobin concentration change (c) is shown. Note that the time indicated by diagonal lines in the figure
  • the area (T:) is the period during which the right finger exercises.
  • FIG. 30 is a graph showing an example of a change in hemoglobin concentration during left finger movement measured using the brain function activity measurement device of the present example.
  • the region in the brain related to the movement of the left finger (the left finger speed field) is used as the measurement region, and the change in oxyhemoglobin concentration (d), the change in reduced hemoglobin concentration (e), And changes in total hemoglobin concentration).
  • the hatched time region (T 2 ) in the figure is the exercise period of the left finger.
  • FIG. 31 is a contour graph showing an example of a change in total hemoglobin concentration during right finger movement measured by the brain function activity measuring device of the present embodiment.
  • measurement is performed at multiple points in the brain so as to encompass the right finger motor area, and the amount of change in the total hemoglobin concentration during right finger movement is shown as a contour graph.
  • the vertical direction corresponds to the vertical direction of the brain
  • the left side corresponds to the front side of the brain
  • the right side corresponds to the back side of the brain. From this figure, it can be seen that the brain function activity measuring device of the present embodiment can measure brain function activity at a local site in the brain showing such a remarkable change.
  • FIG. 32 is a contour graph showing an example of a change in the total hemoglobin concentration at the time of recalling a language measured by the brain function activity measuring device of the present embodiment.
  • measurements are made at multiple points in the brain so as to encompass the brain area (language area) involved in language activity, and the amount of change in oxidized hemoglobin concentration when words are recalled is shown in a contour graph.
  • the language field is It is located in the brain near the temple on the left side of the head.
  • the brain function activity measuring apparatus of this embodiment measures the brain function activity at a local site in the brain showing a remarkable change. According to the brain function activity measuring device of the present embodiment, it is possible to measure such a language recall activity in the brain.
  • a highly accurate and practical direct input method from the brain is realized by using a highly accurate measurement signal measured by the brain function activity measuring device as an input signal to an external device. Can be.
  • FIG. 33 is a schematic configuration diagram of a biological control device according to a fifth embodiment of the present invention.
  • the biological control device according to the present embodiment includes a biological input device 100 and an external device 200.
  • the brain function activity measuring device 110 having the configuration shown in FIG. 28 is used to receive light through the irradiation optical fibers 8-1, 8-2, and 8-3.
  • the specimen (human head) 9 is irradiated with light, and the transmitted light from the subject 9 is condensed by the condensing optical fibers 10-1, 10-2 and 10-3 to reduce the transmitted light intensity. measure.
  • the irradiation and collection optical fibers are composed of a pair of irradiation optical fiber 8-1 and collection optical fiber 10-1 in the first measurement area, and a pair of irradiation optical fiber 8-2 and collection optical fiber 8-1.
  • the pair of optical fibers 10 and 12 correspond to the second measurement region, and the pair of the irradiation optical fiber 8-3 and the collection optical fiber 10 and 13 correspond to the third measurement region, respectively. It is fixed to the helmet 21 for fixing the optical fiber.
  • Passing light intensity for each measurement area measured by the brain function activity measurement device 110 Is input to the arithmetic unit 120.
  • the arithmetic unit 120 receives the input transmitted light intensity for each measurement area, the light absorption coefficient of the oxidation and reduction hemo-mouth bottles stored in the storage device 130 in advance, and other arithmetic data. Then, an arithmetic operation according to an arithmetic method described later is performed, and a desired signal is specified and input to the external device 200.
  • the storage device 130 stores in advance the results of the learning (light absorption coefficient and various calculation data) in order to determine the meaning of each signal. Is stored.
  • the external concealment 200 operates according to the type of the signal manually input from the arithmetic unit 120.
  • Examples of the external device 200 include a computer, a word processor, a game machine, and a communication device.
  • FIG. 34 is a flowchart illustrating an example of a first calculation procedure in the calculation device 120.
  • a pair of the irradiation optical fiber 8-1 and the condensing optical fiber 10-1 is placed in the left finger motor area (measurement area 1), and the irradiation optical fiber 8-2 and the condensing optical fiber 10 0 —
  • the pair of 2 and 3 correspond to the right finger motor area (measurement area 2), and the pair of irradiation optical fiber 8-3 and condensing optical fiber 10-3 correspond to the language area (measurement area 3).
  • the in-vivo light intensity in each measurement area is measured, and the measurement result is input to the arithmetic unit 120.
  • the characteristic parameters include, for example, the integrated value of each or any hemoglobin concentration at an arbitrary time interval, The rate of change of the hemoglobin concentration and the intensity of the arbitrary frequency of the time change of each or any hemoglobin concentration are used, and these can be variously determined.
  • the feature parameter value calculated in step 1-2 is compared with the learning value stored in the storage device 130 to determine whether or not the feature parameter value is within a predetermined threshold range. Is determined, and if it is within the range (yes), the output is Nobuy ⁇ 1 ( , and if it is outside the range ( ⁇ 0), the process proceeds to ste ⁇ 14.
  • the characteristic parameters include, for example, an integrated value of each or any hemoglobin concentration at an arbitrary time interval, a change rate of each or any hemoglobin concentration at an arbitrary time, and a time of each or any hemoglobin concentration.
  • the intensity at any frequency of change is used and these can be determined variously.
  • a characteristic parameter value is calculated from each or any hemoglobin concentration value calculated in step 1-7 to obtain a value.
  • the feature parameters for example, arbitrary time intervals Of each or any hemoglobin concentration, the rate of change of each or any hemoglobin concentration at any time, and the intensity of the time change of each or any hemoglobin concentration at any frequency. Used, and these can be determined in various ways.
  • Step 1 Feature parameter value calculated by 1-8 Determine whether it is within a predetermined threshold range, and if it is within the range (yes), output signal 3 c If out of range (no), return to step 1-1.
  • the external device 200 is a computer
  • the external device 200 is always kept in an input waiting state.
  • move the cursor to the left for signal 1 input move the cursor right for signal 2 input, and click for signal 3 input. It is also possible to make the response function of the device 200 correspond.
  • step 1-3 step 1-6 and step 1-19
  • a “0” signal is output when the signal is within the threshold range
  • a “1” signal is output when the signal is outside the threshold value
  • eight combinations (0 00 to 11 1) can be made as signals output from the arithmetic unit 120.
  • the arithmetic unit 120 may output signals 1 to 8, and the response function of the external device 200 corresponding to each output signal may be determined in advance.
  • the measurement areas are determined in advance as the right finger motor area, the left finger motor area, and the language area, and the measurement signal from each measurement area and the response function of the external device are one-to-one. I described the case where it was made to correspond to.
  • FIG. 35 is a flowchart showing a second example of the calculation procedure in the arithmetic unit 120.
  • This second example of the calculation procedure is a measurement of the oxidation, reduction, or change in the concentration of total hemoglobin in each measurement region. This is the case where the value and the signal input to the external device 200 do not have a one-to-one correspondence.
  • the predetermined measurement area specifically Signals from specific brain regions involved in functional movements
  • this signal is associated one-to-one with the specific functional movements described above. If you have a willingness to move it, you must remind yourself to move your left hand accordingly, and the actual function of the external device and the intention of the operator may be far apart.
  • the second operation procedure example described below takes into consideration the above-mentioned problems in the first operation procedure example.
  • the measurement area is set at a plurality of arbitrary locations (i locations), an irradiation optical fiber and a condensing optical fiber are arranged in each measurement area, and the in-vivo light intensity in each measurement area is measured.
  • the result is input to the arithmetic unit 120.
  • the purpose is to target a predetermined specific measurement area (a specific brain area involved in a specific functional operation) and selectively measure signals from only these specific measurement areas.
  • the measurement optical fiber pair is placed at arbitrary positions K on the surface of the subject (human head) without specifying the measurement area, and the operator connects to an external device (for example, a computer).
  • the learning is performed by repeatedly measuring the change in the concentration of hemoglobin at these multiple positions accompanying the brain function activity when recalling the input operation, and the learning result is stored in the storage device 130 in advance. is there. Then, hemoglobin concentration and characteristic parameters are calculated and obtained from the actually measured signals, and it is searched whether or not there is a similar characteristic parameter in the data stored in the storage device 130. The signal to be input to the device is determined.
  • the value P i, j (matrix value) of each feature parameter j for each measurement area i is calculated and obtained.
  • the characteristic parameter j is, for example, an integrated value of each or any hemoglobin concentration at any time interval, a change rate of each or any hemoglobin concentration at any time, or a time change of each or any hemoglobin concentration.
  • the intensity at an arbitrary frequency is used, which can be determined variously.
  • the storage device 130 stores learning data about general or individual operators in advance.
  • the learning data structure is a standard deviation value and an average value for each feature parameter j for each measurement area i having the same structure for each output signal k. That is, it is assumed that the probability variance of the feature parameters is a Gaussian distribution.
  • the Gaussian function can be described by the standard deviation and the mean.
  • the cursor is set to move to the right when the signal k from the arithmetic device 12 ° is input to the computer in advance.
  • the operator wears the brain function activity measuring device 110 and repeatedly remembers “moving the force sol right” a plurality of times in advance.
  • a standard deviation value and an average value are calculated for each feature parameter j for each measurement area i to be measured.
  • the obtained standard deviation value and average value for each feature parameter j for each measurement area i are stored in the storage device 130 as learning data of the signal k.
  • the stored learning data Di, j, k are read into the arithmetic unit 120.
  • Figure 36 shows the data structure of the learning data Di, j, k.
  • S represents the standard deviation value
  • A represents the average value
  • the dotted line ( ⁇ ) means omission.
  • the measurement area i is set to n places, and the number of types of the characteristic parameter j is set to m.
  • the Mahalanobis is used for each signal k using all stored learning data D i, j, k and the value P i, j of each characteristic parameter j for each measurement area i calculated by ste ⁇ 2-2.
  • the distance MD k is calculated and found. This Mahalanobis distance is represented by a well-known simple equation.
  • the signal k obtained as described above is output and sent to an external device (computer) 200.
  • the above-mentioned second example of the operation procedure is an application of the Mahalanobis estimation method, but there is also a method of applying a neural network as a third operation method in order to perform a similar estimation.
  • the neural network learns in advance by each operator or a plurality of operations by a general operator so as to output an arbitrary signal k according to the value of each feature parameter j for each measurement area i.
  • the same function as that obtained by the Mahalanobis estimation shown in Fig. 35 can be obtained, and a signal corresponding to the user's recall can be output.
  • a neural network is connected to the subsequent stage of the arithmetic unit 120, characteristic parameters are input to input terminals of the network, and output terminals of the network are connected to the external device 200.
  • the arithmetic device determines the type of output signal by directly using the signal measured by the detector for measuring brain function activity. It is of course possible to do so.
  • FIG. 37 shows a schematic configuration of a biological control device according to a sixth embodiment of the present invention.
  • This embodiment is an example in which a signal from the brain function activity measuring device according to the present invention is used to give a drowsiness warning to a car driver.
  • 9 is the driver (subject), 102 is the steering wheel, 103 is the seat, 104 is the car, 105 is the driving circuit, 106 is the speaker, and 107 is the light.
  • Fiber fixing device or helmet for fixing optical fiber 108 is optical fino for light irradiation, ', 109 is optical fiber for condensing light
  • 111 is input device
  • 112 is biological light measurement Unit (brain function measurement device)
  • 113 is an input signal judgment unit
  • 114 is a signal line
  • 115 is a microcomputer
  • 116 is a storage device.
  • a drowsiness warning is issued to the driver 9 using the living body measurement signal from the living body light measuring unit 112.
  • the input device 1 1 1 biological light measuring unit 1 1 2, input signal judging unit 1 1 3, light irradiating optical fiber 108, light condensing optical fiber 109, and light (Including a fiber fixing device or an optical fiber fixing helmet 107)
  • Force A living body input device according to the present invention is constituted, and a microcomputer 115 is used as an external device.
  • FIG. 37 shows a state in which the driver 9 is driving the automobile 104 by operating the steering wheel 102 while sitting in the seat 103.
  • Driver 9 wears an optical fiber fixing device (Hellmet) 107.
  • One or more pairs of light irradiation optical fibers 108 and light condensing optical fibers 109 are fixed to this optical fiber fixing device (helmet) 107.
  • Light is constantly radiated to the head of the driver 9 from the optical fiber for light irradiation 108, and the light is fixed to a condensing position at an arbitrary distance (for example, about 30 mm) from the light irradiation position.
  • the light passing through the living body is collected by the light collecting optical fiber 109.
  • the light source of the light emitted from the optical fiber for light irradiation 108 is installed in the biological light measurement unit 112.
  • a photodetector for detecting the light condensed by the light condensing optical fiber 109 is provided in the biological light measurement unit 112 similarly.
  • modulation at different modulation frequencies is given to each irradiation light intensity for each different light irradiation position and each different irradiation light wavelength, and the light detectors use If the detected in-vivo transmitted light intensity signal is phase-detected and the transmitted light intensity components for each modulation frequency are separated and measured, the effect of stray light from other than the desired measurement position can be removed, It is possible to separate and measure the in-vivo light intensity components for each wavelength at each measurement position.
  • the measurement position defined by a pair of optical fins for irradiating light, '108, and optical fins for condensing light 109, can be set to any arbitrary number of positions for each driver 9. If characteristic regions such as the frontal region with high permeability and the region where hemodynamics are significantly changed by drowsiness are known in advance, the measurement position is selectively set to these characteristic regions. Is good.
  • a drowsiness signal is extracted in the input signal determination unit 113 based on the measurement signal indicating the blood circulation of the head measured by the living body light measurement unit 112.
  • the input signal determination unit 112 includes a storage device that stores constant data necessary for hemodynamic calculation such as optical parameters such as hemoglobin and learning data on the driver 9, and calculates hemodynamics. And an arithmetic unit for determining the input signal. Further, as shown in the third example of the operation procedure, it is also possible to use a neural network to determine the input signal.
  • this sleepiness detection output signal is input to the microcomputer 115 via the signal line 114, and the microcomputer 1 From 15, a signal is sent to the drowsy alarm system consisting of the drive circuit 105 and the speaker 106 to issue an alarm.
  • the drowsiness alarm system sends an alarm sound signal from the drive circuit 105 to the speaker 106 to generate an alarm sound.
  • a light stimulating means or a seat stimulating means Various means, such as one that vibrates 103, can be considered.
  • the voice signal data stored in the storage device 116 is selected according to the alarm level, and for example, “Danger! , Danger! , ⁇ ⁇ ⁇ ] Can be output as an audio alert indicating the content of the alert.
  • the input device 111 in the optical fiber fixing device 107 and send a signal to the dozing alarm system by electromagnetic waves without using the signal line 114.
  • the microcomputer 115 determines that the alarm level has risen, the microcomputer 115, for example, applies a brake or stops the engine as indicated by a downward arrow. Can be directly output.
  • the alarm generation method using such a biological measurement signal can be applied not only to the driving of a car shown in Fig. 37 but also to the driving of all means of transportation such as an airplane and a train.
  • the system can be applied as a device that automatically determines the drowsiness, fatigue, annoyance, redout, blackout, and other sensational conditions that may interfere with driving while the vehicle is operating.
  • redout and blackout are symptoms in which blood flow in the brain concentrates locally due to large acceleration during operation of an airplane or the like, causing visual abnormalities and loss of consciousness.
  • the biological input device according to the present invention as an input device to a microcomputer, it can be applied, for example, as an environment control device.
  • it is used as a device that can judge the subjective sensation state of the environment such as cold, hot, relaxed, etc., and control the environmental conditions such as environmental temperature, environmental music, brightness, and image state. be able to.
  • epilepsy It can also be applied as a diagnostic and alarm device in medical treatment. That is, epilepsy It can be applied to diagnostic devices for determining epileptic focus in patients, brain function testing devices for brain disease patients, and alarm devices for epileptic seizures.
  • the present invention can be applied as a device for displaying sensations and thoughts of those who cannot communicate their intentions to the outside such as patients, infants, animals, etc. with muscular diseases or vegetative states, or who originally cannot communicate. More specifically, an infant captures what he or she thinks, converts it into a digital electric signal, inputs it to a microcomputer, and registers meaningful words in memory beforehand. Select it and output it by voice. In addition, the information in the brain of the infant is captured by a biological input device, and changes in brain activity are detected every moment, and the changes are input to the speech synthesis circuit as phonemes, and the intention of the infant is conveyed as speech. Furthermore, by attaching the living body input device according to the present invention to animals, pets, and the like, it is possible to know what these animals want.
  • the present invention can be applied to a device that determines emotions such as emotions and emotions and transmits emotion information by videophone or the like.
  • An expression can be added to the computer graphics image of the sender's face displayed on the receiver side from the sender's emotion information transmitted by this device.
  • the present invention can be applied to a device that determines the concentration and displays the same. Furthermore, it can also be applied to a lie detector.
  • localized brain function information is measured by a brain function measurement device, and this measurement signal is used as an input signal to an external device.
  • a brain function measurement device In addition to being able to control external devices without using a steering wheel, a vehicle alarm device, an environmental control device, a learning level determination device, a medical diagnostic and alarm device, a willingness display device, an information transmission device, It can also be applied to force judgment devices and lie detectors. Therefore, communication between persons who do not have the information transmission means, which has not been possible in the past, becomes possible.
  • the biological optical measurement device can be directly used as a device for measuring in-vivo information for medical use or the like, and indirectly, based on the measured in-vivo information. It can be used as a control device to activate an alarm device, a braking device, etc. of an automobile.

Abstract

An instrument for efficient optical measurements of a living body at various points in its wide spatial region to obtain internal information of the living body while eliminating crosstalk. A light source (1) includes a plurality of light modules (2(1) to 2(16)) to emit intensity-modulated beams of light at different frequencies through optical fibers (8-1 to 8-16) so that they can be introduced into the living body (9) at a plurality of points. The beams of light passing through the body are picked up on the surface of the living body (9) and guided to photodetectors (11-1 to 11-25) through optical fibers (10-1 to 10-25). The signals from the photodetector (11-1 to 11-25) are inputted to a lock-in amplifier module (12), where the intensity of the return beam detected by each of the photodetectors and having the same modulation frequency as that of its corresponding input beam is selectively measured. The intensities of beams of light picked up at a plurality of positions are processed by a data processor (16) and the internal information of the living body for a plurality of pickup positions can be obtained without crosstalk.

Description

明 細 書 生体光計測装置 技術分野  Description Bio-optical measurement equipment Technical field
本発明は. 生体内部の情報を光を用いて計測する装置に関する 背景技術  The present invention relates to an apparatus for measuring information inside a living body using light.
生体内部の情報を簡便かつ生体に害を- 5-えずに計測することのできる技術の^ 発が臨床医学及び脳科学などの分野で待望されている。 例えば、 具体的に頭部を 計測対象とした場合、 脳梗塞 ·脳内出血等の脳疾患の計測、 及び、 思考,言語 - 運動等の高次脳機能の計測などが挙げられる。 また、 計測対象は頭部に限らず、 胸部では心筋梗塞等の心臓疾患、 腹部では腎臓 ·肝臓障害等の内臓疾患に対する 予防診断等が挙げられる。  The development of a technology that can easily measure information inside a living body without harming the living body is expected in fields such as clinical medicine and brain science. For example, when the head is specifically targeted for measurement, there are measurement of brain diseases such as cerebral infarction and intracerebral hemorrhage, and measurement of higher brain functions such as thinking, language and movement. The measurement target is not limited to the head, but also includes preventive diagnosis for heart diseases such as myocardial infarction in the chest and visceral diseases such as kidney and liver damage in the abdomen.
頭部を計測対象として脳内疾患もしくは高次脳機能を計測する場合、 疾患部ま たは機能領域を明確に特定する必要がある。 このため、 頭部内の広い領域を画像 情報として計測することが非常に重要である。 この重要性を示す例として、 脳内 の画像計測装置としてのポジトロンェミッション断層装置 ( P E T ) 及び機能的 核磁気共鳴断層装置 ( f M R I ) が現在広く用いられていることが挙げられる。 これらの装置は、 生体内部の広い領域を画像情報として計測可能であると云う利 点を有する一方、 装置が大型で、 その取り扱いが煩雑であると云う難点をもって いる。 例えば、 これらの装置の設置には専用の部屋が必要となり、 もちろん装置 の移動は容易でなく、 従って被験者に対する拘束性が高い。 さらに、 保守管理の 専任者も必要になることから、 これら装置の運用には莫大なコストを要すること になる。  When measuring brain disease or higher brain function with the head as the measurement target, it is necessary to clearly identify the diseased part or functional area. Therefore, it is very important to measure a wide area in the head as image information. An example of this importance is the widespread use of positron emission tomography (PET) and functional nuclear magnetic resonance tomography (fMRI) as image measuring devices in the brain. These devices have the advantage of being able to measure a wide area inside a living body as image information, but have the disadvantage that the devices are large and their handling is complicated. For example, installation of these devices requires a dedicated room, and of course it is not easy to move the devices, and therefore has high restraint on the subject. In addition, the need for dedicated maintenance personnel requires enormous costs to operate these devices.
上述の観点からして、 光計測技術が非常に有望視されている。 その第 1の理由 は、 生体内器官の正常及び異常、 さらには、 高次脳機能に関する脳の活性化は、 生体内部での酸素代謝及び血液循環と密接に関係している。 この酸素代謝と血液 循環は、 生体中の特定色素(ヘモグロビン, チ卜クローム a a 3 , ミオグロビン等) の濃度に対応しており、 この色素濃度は、 可視から赤外領域の波長の光の吸収量 から求めることができるからである。 また、 光計測技術が有効である第 2、 第 3 の理由としては . 光は光ファィバによって扱いが簡便であリ、 さらに安全基準の 範囲内での使用により生体に全く害を与えないことが挙げられる。 このように、 光計測技術は、 実時間計測及び生体中の色素濃度の定量化等に関して P E T及び f M R I には無い利点を有し、 また、 装置の小型化、 取り扱いの簡便化に適して いる。 In view of the above, optical metrology is very promising. The first reason The normal and abnormal organs in the living body, and the activation of the brain for higher brain functions are closely related to oxygen metabolism and blood circulation in the living body. The oxygen metabolism and blood circulation, certain dyes in biological (hemoglobin, Ji Bok chrome aa 3, myoglobin, etc.) corresponds to the concentration of the dye concentration, absorption of light of a wavelength in the infrared region from the visible Because it can be obtained from The second and third reasons that optical measurement technology is effective are that light is easy to handle with an optical fiber and that it does not cause any harm to living organisms when used within the safety standards. No. Thus, optical measurement technology has advantages that PET and fMRI do not have in real-time measurement and quantification of dye concentration in living organisms, and is suitable for miniaturization of equipment and simplicity of handling. .
上記した光計測技術の利点を利用して、 可視から赤外領域の波長の光を生体に 照射し、 生体内で吸収,散乱を受けて再び生体外に出てくる光 (反射光) を検出 することで生体内部の情報を計測する装置が、 例えば特開昭 5 7 - 1 1 5 2 3 2 号公報、 特開昭 6 3— 2 6 0 5 3 2号公報、 特開昭 6 3— 2 7 5 3 2 3号公報、 特開平 5— 3 1 7 2 9 5号公報等に記載されている。  Utilizing the advantages of the above-mentioned optical measurement technology, the living body is irradiated with light having a wavelength in the visible to infrared region, and the light (reflected light) that is absorbed and scattered in the living body and comes out of the living body again is detected. For example, Japanese Patent Application Laid-Open No. 57-11532, Japanese Patent Application Laid-Open No. 63-260532, Japanese Patent Application Laid-Open No. This is described in, for example, Japanese Patent Application Laid-Open No. 27532/23, Japanese Patent Application Laid-Open No. Hei 5-3-172595, and the like.
しかしながら、 前述した従来の光による生体計測技術では、 生体内の特定位置 もしくは限られた狭い領域しか計測できず、 生体内部の広い空問領域についての 画像化計測については考慮されていない。  However, the above-described conventional biological measurement technique using light can measure only a specific position or a limited narrow area in a living body, and does not consider imaging measurement of a wide space area in the living body.
ここで、 従来技術における光計測方法及び光照射点及び光検出点の配置構成に つレ、ての具体的な問題点を示す。  Here, the specific problems in the light measurement method and the arrangement of the light irradiation point and the light detection point in the conventional technology will be described.
まず、 光計測方法について示す。 広い空間領域での画像化計測には、 多点での 光照射及び光検出が必要になる。 この多点計測の一例を図 2で簡単に説明する。 この例では、 被検体表面の 3個所 (照射位置 1 , 照射位置 2 , 照射位置 3 ) から 光を照射し、 反射光を被検体表面の 3個所 (検出位置 1 , 検出位置 2 , 検出位置 3 ) で検出する場合を示している。 画像化計測の場合には、 計測位置を特定しな ければならない。 光散乱体中 (例えば生体中) での光伝播については、 例えば、 「N. C. Bruce; " Experimental study of the effect of absorbing and trans- mi t ting inclusions in highly scattering media" , Applied Optics, vol.33, no.28, pp.6692-6698, (Oct. 1994) J によって報告されており、 その実験結果を 図 3に示す。 この図 3より、 光照射位置と光検出位置との中点近傍が、 表面から 深い場所の情報を多く含んでいることが知られる。 そこで、 生体の深部、 例えば 皮膚や骨のさらに深部を皮庙上から計測する場合には、 この照射位置と検出位^ との中点位置が計測対象位 Kとなる。 このような計測では、 照射位置と検出位置 とを一つずつ対にして、 個々の対ごとに特定される計測位 S (計測位置 1, 計測 位置 2, 計測位置 3 ) での情報を求める必要がある。 First, the optical measurement method will be described. For imaging measurement in a large space area, light irradiation and light detection at multiple points are required. An example of this multi-point measurement will be briefly described with reference to FIG. In this example, light is emitted from three places (irradiation position 1, irradiation position 2, and irradiation position 3) on the subject surface, and reflected light is reflected from three places (detection position 1, detection position 2, and detection position 3) on the subject surface. ) Shows the case of detection. In the case of imaging measurement, the measurement position must be specified. For light propagation in a light scatterer (for example, in a living body), for example, "NC Bruce;" Experimental study of the effect of absorbing and transmitting inclusions in highly scattering media ", Applied Optics, vol.33, no.28, pp.6692-6698, (Oct. 1994) J The experimental results are shown in Fig. 3. From Fig. 3, it is known that the vicinity of the midpoint between the light irradiation position and the light detection position contains a lot of information deep in the surface. When measuring a deep part of a living body, for example, a deeper part of skin or bone, from above the skin, the midpoint position between the irradiation position and the detection position is the measurement target position K. In such a measurement, the irradiation position is It is necessary to determine the information at the measurement position S (measurement position 1, measurement position 2, measurement position 3) specified for each pair by pairing the detection position with the detection position.
例えば図 2の配置構成において、 3つの光照射点 (照射位置 1 , 2, 3 ) から 同時に光を照射して、 3つの光検出点 (検出位置 1, 2 , 3 ) で同時に反射光を 検出する場合を考える。 この場合、 照射位置 2と検出位置 2との中点である計測 位置 2についての計測では、 検出位 S 2では照射位置 2で照射された光の反射光 のみを正確に計測する必要がある。 しかし、 実際には、 検出位置 2で検出される 光には、 照射位置 2から照射された光の反射光だけではなく、 照射位置 1や照射 位置 3から照射された光の反射光も含まれることになリ、 いわゆるクロストーク が生じる。 従って、 照射位置 2で照射された光の反射光のみを検出位置 2で分離 検出することができず、 計測位置 2についての正確な計測ができない。  For example, in the arrangement shown in Fig. 2, light is emitted simultaneously from three light irradiation points (irradiation positions 1, 2, 3), and reflected light is detected at three light detection points (detection positions 1, 2, 3) simultaneously. Think about it. In this case, in the measurement at the measurement position 2 which is the midpoint between the irradiation position 2 and the detection position 2, it is necessary to accurately measure only the reflected light of the light irradiated at the irradiation position 2 at the detection position S2. However, actually, the light detected at the detection position 2 includes not only the reflected light of the light irradiated from the irradiation position 2 but also the reflected light of the light irradiated from the irradiation position 1 and the irradiation position 3. Especially, so-called crosstalk occurs. Therefore, only the reflected light of the light irradiated at the irradiation position 2 cannot be separated and detected at the detection position 2, and accurate measurement at the measurement position 2 cannot be performed.
そこで、 切替スィツチなどを用いて、 計測位置毎に照射位置を時系列的に順次 切替えるようにすれば、 このようなクロス卜一クは生じなくなる力 しかし多数 の照射位置を順次切替えるためには、 それだけ切替えに多くの時間を要するため、 計測に長時間を要することになリ非効率的である。  Therefore, if the irradiation positions are sequentially switched in time series for each measurement position by using a switching switch or the like, such crosstalk does not occur.However, in order to sequentially switch a large number of irradiation positions, It takes a lot of time to switch, which is inefficient because it takes a long time to measure.
従って、 被検体内の広い空間領域についての画像化計測のためには、 被検体内 の多数の計測位置についての計測を、 同時にかつクロストークなく行なうことの できる多チヤンネル同時計測技術の開発が強く要望されるところである。  Therefore, for imaging measurement of a large spatial area within the subject, the development of multi-channel simultaneous measurement technology that can perform measurement at many measurement positions inside the subject simultaneously and without crosstalk is strongly required. It is where it is requested.
また、 生体内計測、 特に脳機能計測においては、 頭皮や頭蓋骨で蓋われた脳内 の情報を高感度かつ効率良く計測する必要がある。 光計測法では、 かかる生体内 深部の情報は光照射点と光検出点との中点で検出される。 ここで、 この深部情報 を高感度で、 すなわち深部情報をより多く含むように計測する方法として、 複数 対の光照射点および光検出点を被測定部を取り囲む円周上に配置し、 それぞれの 対の中点位置を共通にすれば、 この共通の中点位置に対応する生体内深部の情報 を高感度で計測できることになる。 しかし、 この場合にも、. 短時間で精度の良い 計測を行なうためには、 上述した複数対の光照射点 ·光検出点についての同時計 測、 すなわち多チャンネルの同時計測をクロストークなく実行しなければならな い。 In addition, in vivo measurement, especially brain function measurement, in the brain covered with the scalp or skull Information needs to be measured with high sensitivity and efficiency. In the optical measurement method, such information on a deep part in a living body is detected at a middle point between a light irradiation point and a light detection point. Here, as a method of measuring this deep information with high sensitivity, that is, so as to include more deep information, a plurality of pairs of light irradiation points and light detection points are arranged on the circumference surrounding the part to be measured. If the midpoint position of the pair is made common, it will be possible to measure the information of the deep part in the living body corresponding to the common midpoint position with high sensitivity. However, in this case, too. In order to perform accurate measurement in a short time, the above-mentioned clock measurement of multiple pairs of light irradiation points and light detection points, that is, simultaneous measurement of multiple channels is performed without crosstalk. Must.
さらにまた、 現在では、 コンピュータを代表とする各種装置の操作及び情報の 入力は、 キーボードやスィッチ類を介して行なわれているが、 このような操作お よび情報入力作業は身体障害者では困難な場合が多い。 また、 健常者であっても、 例えば自動車の運転や大規模プラン卜の操作における緊急事態時などにおいては 必ずしも迅速かつ的確な措置がとれない場合がある。 このような場合、 操作者の 手足が反応するよりも前に、 よリ迅速でより的確な措置をとることができれば、 重大事故の発生を未然に防止することができる υ そこで、 操作者の脳内における 知覚 ·認識機能の活動状態をリアルタイムで計測し、 この脳活動の変化に関する 信号を直接上記各種装置へ入力する方法が考えられる。 しかし、 このような方法 での操作を確実に行なわせるためには、 脳活動の高感度 ·高精度の計測が不可欠 であり、 そのためにもやはり、 上述したような多チャンネルの同時計測をクロス トークなく行なうための技術が必要である。 発明の開示 Furthermore, at present, operations and input of information of various devices represented by computers are performed through keyboards and switches, but such operations and information input operations are difficult for persons with physical disabilities. Often. In addition, even a healthy person may not always be able to take prompt and accurate measures, for example, in the event of an emergency in driving a car or operating a large-scale plant. In such a case, prior to the limbs of the operator to react, if it is possible to take a more accurate measure a good Li quickly, where υ it is possible to prevent the occurrence of serious accidents, the operator of the brain One possible method is to measure the activity of the perception and cognition functions in the real-time, and to directly input signals related to changes in brain activity to the above devices. However, high-sensitivity and high-precision measurement of brain activity is indispensable to ensure that operations are performed in such a way. For this reason, simultaneous measurement of multiple channels as described above requires crosstalk. There is a need for a technology to do this without. Disclosure of the invention
従って、 本発明の目的は、 被検体(生体)内の広い空間領域についての高効率で 精度の良い光計測を可能にする生体光計測技術を提供することである。  Therefore, an object of the present invention is to provide a biological light measurement technique that enables highly efficient and accurate light measurement in a wide space area within a subject (living body).
本発明の他の.目的は、 被検体内の広い空間領域についての光計測を可能にする 小型で取り扱いの簡便な生体光計測装置を提供することである。 Another object of the present invention is to enable optical measurement over a large spatial area in a subject. An object of the present invention is to provide a small and easy-to-handle biological optical measurement device.
本発明のさらに他の目的は、 被検体内での複数の計測位置についての光計測を 同時にかつクロストークなく行なうことのできる多チャンネル同時計測法を提供 することである。  Still another object of the present invention is to provide a multi-channel simultaneous measurement method capable of simultaneously performing optical measurement at a plurality of measurement positions in a subject without crosstalk.
本発明のさらに他の目的は、 被検体内の深部における情報をも高感度で計測で きる生体光計測装置を提供することである。  Still another object of the present invention is to provide a biological optical measurement device capable of measuring information in a deep part inside a subject with high sensitivity.
本発明のさらに他の目的は、 上記の生体光計測装置から得られる空間分解能の 高い生体計測信号を入力信号として用いることにより、 各種の外部装置を高精度 で制御することのできる、 実用性の高い生体入力装置および生体制御装置を提供 することである。  Still another object of the present invention is to use a biological measurement signal having a high spatial resolution obtained from the above-described biological optical measurement device as an input signal to control various external devices with high accuracy. It is to provide a high biological input device and a high biological control device.
上記目的を達成するため、 本発明においては、 可視から赤外領域の波長の光を 被検体(生体)表面の複数の照射部位から被検体内に同時照射し、 被検体内を通過 して再び被検体外に放出される光を被検体表面の複数の検出部位で同時検出し、 この検出信号を用いて被検体内部の生体情報を画像化計測する生体光計測装置に おいて、 上記複数の照射部位からの照射光を各照射部位毎にそれぞれ異なる変調 周波数で強度変調させると共に、 上記複数の検出部位においては各検出部位毎に それぞれ異なる変調周波数の光を分離 ·選択して検出するよう構成している。 上記した本発明の構成によれば、 特定検出部位で検出された特定変調周波数の 検出光は、 この特定変調周波数の光を照射した特定照射部位からの照射光のみに 対応したものとなる。 従って、 上記特定照射部位と上記特定検出部位に対応して 定まる被検体内の特定計測部位における生体情報をクロストークなく得ることが できる。 これにより、 被検体内の複数の計測部位についての生体情報を同時かつ クロストークなく得ることができ、 多チャンネル同時計測が可能になる。 また、 被検体内の複数の計測部位を含む広い空間領域についての高効率で、 精度の良い 光計測が可能になる。  In order to achieve the above object, according to the present invention, light having a wavelength in the visible to infrared region is simultaneously irradiated into the subject from a plurality of irradiation sites on the surface of the subject (living body), passed through the subject, and re-transmitted. In a biological optical measurement device for simultaneously detecting light emitted outside the subject at a plurality of detection sites on the surface of the subject and imaging and measuring biological information inside the subject using the detection signals, Irradiation light from the irradiation part is intensity-modulated at a different modulation frequency for each irradiation part, and at the plurality of detection parts, light having a different modulation frequency is detected for each detection part. are doing. According to the configuration of the present invention described above, the detection light of the specific modulation frequency detected at the specific detection part corresponds to only the irradiation light from the specific irradiation part irradiated with the light of the specific modulation frequency. Therefore, it is possible to obtain biological information at a specific measurement site in the subject that is determined corresponding to the specific irradiation site and the specific detection site without crosstalk. As a result, biological information on a plurality of measurement sites in the subject can be obtained simultaneously and without crosstalk, and multi-channel simultaneous measurement becomes possible. In addition, highly efficient and accurate optical measurement can be performed on a wide spatial area including a plurality of measurement sites in the subject.
また、 上記した本発明の構成において、 各検出部位で選択検出する光を別の変 調周波数の光に変えれば、 この別の変調周波数の光を照射した照射部位とそれを 検出した検出部位とに対応して定まる被検体内の別の計測部位における生体情報 を同じくクロストークなく得ることができる。 これにより、 所定数の計測部位に ついての計測のために要する照射部位および検出部位の数を減らすことができる。 従って、 光照射用の光源および光検出用の検出器の数も少なくでき、 小型で取り 扱いの簡便な装 構成が得 れる In the configuration of the present invention described above, the light selectively detected at each detection site is converted into another light. By changing to the light of the modulation frequency, the biological information at another measurement part in the subject determined in correspondence with the irradiation part irradiated with the light of the other modulation frequency and the detection part detecting the same can be obtained without crosstalk. be able to. As a result, the number of irradiation sites and detection sites required for measurement of a predetermined number of measurement sites can be reduced. Therefore, the number of light sources for light irradiation and the number of detectors for light detection can be reduced, and a compact and easy-to-handle device configuration can be obtained.
また、 本発明によれば、 上述したように複数の光照射点及び複数の光検出点間 に形成される複数の計測チャンネルについての計測を同時かつクロス卜ークなく 実行することができるので、 これら複数対の光照射点および光検出点を被検体内 の深部の特定の被計測部位を取り囲む円周上に配置し、 それぞれの対の中点位置 (計測位置)をこの特定の被計測部位に一致させることにより、 この特定の被計測 部位における情報のみを選択的に集中検出することができる。 従って、 被検体内 深部の特定部位における生体情報を高感度で計測することができる。  Further, according to the present invention, as described above, it is possible to perform measurements on a plurality of measurement channels formed between a plurality of light irradiation points and a plurality of light detection points simultaneously and without crosstalk. The plurality of pairs of light irradiation points and light detection points are arranged on a circumference surrounding a specific measurement site in the deep part of the subject, and the midpoint position (measurement position) of each pair is determined by this specific measurement site. By this, only the information on the specific measurement site can be selectively and intensively detected. Therefore, it is possible to measure biological information at a specific site deep inside the subject with high sensitivity.
さらにまた、 本発明によれば、 上述したように被検体(生体)内の広い空間領域 についての生体情報を高効率 ·高精度でかつ高い空間分解能で計測できる生体光 計測装置が実現できるので、 該生体光計測装置からの計測 β号を直接各種の外部 装置の入力信号として用いることにより、 これら各種外部装置を迅速かつ高精度 で制御することのできる、 実用性の高い生体入力装置および生体制御装置を実現 できる。 図面の簡単な説明  Furthermore, according to the present invention, as described above, a biological optical measurement device capable of measuring biological information about a wide spatial region in a subject (living body) with high efficiency, high accuracy, and high spatial resolution can be realized. By using the measurement β from the biological optical measurement device directly as an input signal of various external devices, a highly practical biological input device and a biological control device capable of controlling these various external devices quickly and with high accuracy. The device can be realized. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施例になる生体光計測装置の概略構成を示す図, 図 2は、 生体光計測における光照射位置, 光検出位置および計測位置の配置関 係を示す図,  FIG. 1 is a diagram showing a schematic configuration of a biological light measurement device according to a first embodiment of the present invention, and FIG. 2 is a diagram showing a positional relationship between a light irradiation position, a light detection position, and a measurement position in biological light measurement. ,
図 3は、 生体光計測における生体(光散乱体)中での光伝播の様子を示す図, 図 4は、 本発明によるより効率的な生体光計測を実現するための光照射位置, 光検出位置および計測位置の配置関係を示す図, FIG. 3 is a diagram showing light propagation in a living body (light scattering body) in living body light measurement. FIG. 4 is a light irradiation position for realizing more efficient living body light measurement according to the present invention. Diagram showing the positional relationship between the light detection position and the measurement position,
図 5は、 図 1に示した実施例における各光モジュールの具体的構成を示す図, 図 6は、 図 1に示した実施例における被検体表面上における光照射位置, 光検 出位置および計測位置の配置関係を示す図,  FIG. 5 is a diagram showing a specific configuration of each optical module in the embodiment shown in FIG. 1, and FIG. 6 is a light irradiation position, a light detection position, and a measurement position on the surface of the subject in the embodiment shown in FIG. Diagram showing the positional relationship between positions,
図 7は、 図 1に示した実施例におけるロックインアンプモジユールの具体的構 成を示す^!,  FIG. 7 shows a specific configuration of the lock-in amplifier module in the embodiment shown in FIG. ,
図 8は、 図 1に示した実施例におけるプロ一ブの形状を示す図,  FIG. 8 is a diagram showing the shape of the probe in the embodiment shown in FIG.
図 9は、 図 1に示した実施例におけるプローブの具体的構成を示す図, 図 1 0は、 本発明の第 2の実施例になる生体光計測装置における光源部の構成 を示す図,  FIG. 9 is a diagram showing a specific configuration of the probe in the embodiment shown in FIG. 1, and FIG. 10 is a diagram showing a configuration of a light source unit in the biological optical measurement device according to the second embodiment of the present invention.
図 1 1は、 図 1 0に示した実施例における光変調器の具体的構成を示す図, 図 1 2, 図 1 3および図 1 4は、 従来技術による生体内計測における計測感度 分布と生体内深さとの関係を示す図,  FIG. 11 is a diagram showing the specific configuration of the optical modulator in the embodiment shown in FIG. 10, and FIGS. 12, 13, and 14 are diagrams showing the measurement sensitivity distribution and the production sensitivity in the in-vivo measurement according to the conventional technology. Diagram showing the relationship with body depth,
図 1 5は、 本発明の第 3の実施例になる生体光計測装 Sの概略構成を示す図, 図 1 6は、 図 1 5に示した実施例におけるデータ収集部の他の一構成例を示す 図,  FIG. 15 is a diagram showing a schematic configuration of a biological optical measurement device S according to a third embodiment of the present invention. FIG. 16 is another configuration example of the data collection unit in the embodiment shown in FIG. Figure showing
図 1 7は、 図 i 5に示した実施例におけるデータ収集部のさらに他の一構成例 を示す図,  FIG. 17 is a diagram showing still another configuration example of the data collection unit in the embodiment shown in FIG.
図 1 8は、 図 1 5に示した実施例におけるデータ収集部のさらに他の一構成例 を示す図,  FIG. 18 is a diagram showing still another configuration example of the data collection unit in the embodiment shown in FIG.
図 1 9は、 図 1 5に示した実施例におけるデータ収集部のさらに他の一構成例 を示す図,  FIG. 19 is a diagram showing still another configuration example of the data collection unit in the embodiment shown in FIG.
図 2 0は、 図 1 5に示した実施例におけるデータ収集部のさらに他の一構成例 を示す図,  FIG. 20 is a diagram showing still another configuration example of the data collection unit in the embodiment shown in FIG.
図 2 1は、 図 1 5に示した実施例における照射用光ファイバと集光用光フアイ バとの配置関係の他の一例を示す図, 図 2 2は、 図 1 5に示した実施例における照射用光ファイバと集光用光フアイ バとの配置関係のさらに他の一例を示す図, FIG. 21 is a diagram showing another example of the positional relationship between the irradiation optical fiber and the condensing optical fiber in the embodiment shown in FIG. 15, FIG. 22 is a diagram showing still another example of the positional relationship between the irradiation optical fiber and the converging optical fiber in the embodiment shown in FIG.
図 2 3は、 図 1 5に示した実施例における照射用光ファイバと集光用光フアイ バとの配置関係のさらに他の一例を示す図,  FIG. 23 is a diagram showing still another example of the arrangement relationship between the irradiation optical fiber and the condensing optical fiber in the embodiment shown in FIG.
図 2 4は、 本発明の第 4の実施例になる生体内深部情報を計測するのに適した 生体光計測装置の概略構成を示す図,  FIG. 24 is a diagram showing a schematic configuration of a living body optical measurement device suitable for measuring deep in-vivo information according to a fourth embodiment of the present invention.
図 2 5 , 図 2 6および図 2 7は、 図 2 4に示した装 S構成による生体内計測に おける計測感度分布と生体内深さとの関係を示す図,  FIGS. 25, 26 and 27 are diagrams showing the relationship between the measurement sensitivity distribution and the depth in the living body in the in-vivo measurement using the device S configuration shown in FIG.
図 2 8は、 本発明の第 5の実施例になる生体人力装置に用いられる脳機能活動 計測装置の概略構成を示す図,  FIG. 28 is a diagram showing a schematic configuration of a brain function activity measuring device used in a living human power device according to a fifth embodiment of the present invention.
図 2 9は、 図 2 8に示した装置構成により計測された右手指運動時の脳内へモ グ口ビン濃度変化の一例を示す線図,  FIG. 29 is a diagram showing an example of a change in the concentration of the mog mouth bin into the brain during right finger movement measured by the apparatus configuration shown in FIG.
図 3 0は、 図 2 8に示した装置構成により計測された左手指運動時の脳内へモ グ口ビン濃度変化の一例を示す線図,  FIG. 30 is a diagram showing an example of a change in the concentration of the mog mouth bin into the brain during the movement of the left finger measured by the device configuration shown in FIG.
図 3 1は、 図 2 8に示した装置構成により計測された右手指運動時の脳内総へ モグロビン濃度変化の一例を示す等高線図,  Fig. 31 is a contour map showing an example of changes in total hemoglobin concentration in the brain during right finger movement measured by the device configuration shown in Fig. 28.
図 3 2は、 図 2 8に示した装置構成により計測された言語想起時の脳内総へモ グ口ビン濃度変化の一例を示す等高線図,  Fig. 32 is a contour map showing an example of the change in the total concentration of the hemagglutinating bin in the brain at the time of recalling the language measured by the device configuration shown in Fig. 28.
図 3 3は、 本発明の第 5の実施例になる生体制御装置の概略構成を示す図, 図 3 4は、 図 3 3に示した実施例における演算装置内での第 1の演算手順例を 示すフローチヤ一卜図,  FIG. 33 is a diagram showing a schematic configuration of a biological control device according to a fifth embodiment of the present invention. FIG. 34 is a first example of an arithmetic procedure in the arithmetic device in the embodiment shown in FIG. Flow chart showing
図 3 5は、 図 3 3に示した実施例における演算装置内での第 2の演算手順例を 示すフローチヤ一卜図,  FIG. 35 is a flowchart showing a second operation procedure example in the operation device in the embodiment shown in FIG.
図 3 6は、 図 3 5に示した第 2の演算手順例において用いられる学習データの データ構造を示す図,  FIG. 36 is a diagram showing the data structure of learning data used in the second example of the operation procedure shown in FIG.
図 3 7は、 本発明の第 6の実施例になる生体制御装置の概略構成を示す図, である, 発明を実施するための最良の形態 FIG. 37 is a diagram showing a schematic configuration of a biological control device according to a sixth embodiment of the present invention. , The best mode for carrying out the invention
以下、 本発明につき、 図面を参照して詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the drawings.
《多チャンネル同時計測》  《Multi-channel simultaneous measurement》
本発明では、 被検体(牛体)内の広い空間領域についての高効率で精度の良い光 計測を可能にするために、 被検体内の複数の計測位置についての光計測を同時に かつクロストークなく行なうことのできる多チャンネル同時計測技術が提供され る。  In the present invention, in order to enable high-efficiency and high-precision optical measurement in a wide space area within a subject (cow), optical measurements at a plurality of measurement positions in the subject are performed simultaneously and without crosstalk. A multi-channel simultaneous measurement technique that can be performed is provided.
すなわち、 本発明においては、 前述したクロストークの問題を解決するために、 可視から赤外領域の波長の光を被検体(生体)表面の複数の照射位置から被検体内 に同時照射し、 被検体内を通過して再び被検体外に放出される光を被検体表面の 複数の検出位置で同時検出し、 この検出信号を用いて被検体内部の生体情報を画 像化計測する生体光計測装置において、 上記複数の照射位置から被検体内に照射 する光の変調周波数を各照射位置毎に異ならせると共に、 上記複数の検出位置に おいては各検出部位毎にそれぞれ異なる変調周波数の光を選択的に分離して検出 するよう構成している。  That is, in the present invention, in order to solve the above-described crosstalk problem, light having a wavelength in the visible to infrared region is simultaneously irradiated into the subject from a plurality of irradiation positions on the surface of the subject (living body). Biological light measurement that simultaneously detects light that passes through the sample and is emitted outside the subject again at multiple detection positions on the surface of the subject, and uses this detection signal to image and measure biological information inside the subject. In the apparatus, the modulation frequency of the light radiated into the subject from the plurality of irradiation positions is made different for each irradiation position, and at the plurality of detection positions, the light having the different modulation frequency is different for each detection site. It is configured to selectively separate and detect.
例えば、 図 2において、 照射位置 1, 2 , 3から、 それぞれ異なる変調周波数 f 1 , f 2 , f 3で強度変調された光を同時に照射する。 そして、 検出位置 1 , 2 , 3では、 照射位置 1 , 2、 3に対応させて、 それぞれ変調周波数 ί 1 , f 2 , f 3の光のみを選択的に分離 ·検出する。 これにより、 例えば検出位置 2では、 照射位置 2から照射されて被検体(生体)内を通過した変調周波数 f 2の光のみを 照射位置し 3から照射された変調周波数 ί 1 , ί 3の光から分離して選択的に 検出できる。 つまり、 検出位置 2での検出光中には、 照射位置 2から照射された 光成分のみが含まれ、 他の照射位置し 3から照射された光成分は全く含まれな い。 従って、 検出位置 2で選択検出された変調周波数 f 2なる光 (生体内通過光) は、 照射位置 2と検出位置 2との間の計測位置 2における生体内情報を多く含む 力、 計測位置 1 , 3における生体内情報を殆ど含まなくなる。 つまり、 検出位置 2で計測すべき計測位置 2についての情報中に、 他の計測位置 1, 3についての 情報が混入しなくなる。 このことは、 他の検出位置 1 , 3についても全く同様で ある。 かく して、 各計測位置についてクロス卜一クのない計測が可能になる。 また、 牛体中のへモゲロビン, チ卜クローム a a :, , ミオグロビン等の色素の 濃度を定量計測するために、 生体中への照射光として波長の異なる複数の光を用 い、 生体中を通過した光を波長別に分光して計測する場合には、 上記複数の照射 光に波長毎に異なる変調周波数を割り当てて照射することができる このように すると、 同一計測位置を通過して同一検出位 Εに到達した波長の異なる複数の光 をそれぞれの変調周波数ごとに分離して検出(ロックイン検出)することにより、 複数波長の光を、 光学フィルタ, 回折格子, プリズム等の反射, 散乱等の光損失 を伴なう光学的分光手段に依らずに、 電気的に分光計測することが可能となる。 また、 上記した照射光を異なる変調周波数で変調する方式を用いると、 各検出 位置において選択検出する光の変調周波数を変えることによって、 各検出位置で それぞれ別の照射位置からの照射光をも検出することができる。 例えば、 図 2に おいて、 照射位置 1 , 2 , 3からの照射光の変調周波数がそれぞれ f 1, f 2 , f 3である場合、 検出位 g 2における検出光の変調周波数を f 2に合わせておけ ば、 検出位置 2では照射位置 2からの照射光のみを選択検出するが、 検出位置 2 における検出光の変調周波数を f 1, f 3に変えれば、 検出位置 2ではそれぞれ 照射位 S 1 , 3からの照射光のみを選択検出できる。 これは、 検出位置 2, 3に おいても同様である。 この利点は、 さらに、 より効率的な光照射 ·検出点配置に 関連するので、 その詳細を次に示す。 For example, in FIG. 2, light whose intensity is modulated at different modulation frequencies f 1, f 2, and f 3 is simultaneously irradiated from irradiation positions 1, 2, and 3, respectively. Then, at the detection positions 1, 2, and 3, only the lights of the modulation frequencies ί1, f2, and f3 are selectively separated and detected corresponding to the irradiation positions 1, 2, and 3, respectively. Thus, for example, at the detection position 2, only the light of the modulation frequency f2 irradiated from the irradiation position 2 and passed through the subject (living body) is irradiated, and the light of the modulation frequencies ί1 and ί3 radiated from the irradiation position 3 And can be selectively detected. That is, the detection light at the detection position 2 includes only the light component emitted from the irradiation position 2 and does not include the light component emitted from the other irradiation positions 3 at all. Therefore, the light with the modulation frequency f 2 selectively detected at the detection position 2 (light passing through the living body) Is a force that includes much in-vivo information at measurement position 2 between irradiation position 2 and detection position 2, and hardly includes in-vivo information at measurement positions 1 and 3. In other words, information about the other measurement positions 1 and 3 is not mixed in the information about the measurement position 2 to be measured at the detection position 2. This is exactly the same for the other detection positions 1 and 3. Thus, measurement without crosstalk can be performed at each measurement position. In addition, in order to quantitatively measure the concentration of pigments such as hemoglobin, cytochrome aa :,, and myoglobin in the bovine body, multiple light beams with different wavelengths are used as the irradiation light to the living body and pass through the living body. In the case where the measured light is spectrally measured by wavelength, it is possible to irradiate the plurality of irradiation lights by assigning different modulation frequencies to the respective wavelengths. In this case, the light passes through the same measurement position and passes through the same detection position. By separating and detecting (lock-in detection) a plurality of light beams having different wavelengths that have arrived at each modulation frequency, the light of multiple wavelengths can be reflected and scattered by optical filters, diffraction gratings, prisms, and the like. Electrical spectrometry can be performed without using optical spectroscopy with loss. In addition, if the above-described method of modulating the irradiation light with different modulation frequencies is used, the irradiation frequency from different irradiation positions is also detected at each detection position by changing the modulation frequency of the light selectively detected at each detection position. can do. For example, in FIG. 2, if the modulation frequencies of the irradiation light from irradiation positions 1, 2, and 3 are f1, f2, and f3, respectively, the modulation frequency of the detection light at the detection position g2 is f2. If they are matched, only the irradiation light from the irradiation position 2 is selected and detected at the detection position 2. However, if the modulation frequency of the detection light at the detection position 2 is changed to f1 and f3, the irradiation position S Only the irradiation light from 1 and 3 can be selectively detected. The same applies to detection positions 2 and 3. This advantage is related to more efficient light irradiation and detection point arrangement.
複数の計測位置に対して、 各計測位置毎に専属的に特定の照射位置および検出 位置を割り当てた場合、 すなわち、 図 2に示したように例えば計測位置が 3個所 の場合、 照射位置および検出位置もそれぞれ 3個所必要になる。 そこで、 例えば 図 4に示すように、 照射位置し 2および検出位置 1, 2を格子状に交互に配置 して、 照射位置 1を計測位置 1 , 4に、 照射位置 2を計測位置 2 , 3にそれぞれ 共用可能にし、 力、つ、 検出位置 1を計測位置し 2に、 検出位置 2を計測位置 3, 4にそれぞれ共用可能にすれば、 合計 4個所の計測位置に対して必要な照射位置 および検出位置をそれぞれ 2個所にできる。 すなわち、 前述した変調計測方式に 従って、 図 4の照射位置 1, 2からの照射光の変調周波数を f 1, f 2に設定し ておき、 検出位置 1, 2での検出光の変調周波数を f 1に合わせた時には、 検出 位置 2ではそれぞれ計測位置 1 , 4についての情報が選択計測でき、 また、 検出位置 1 , 2での検出光の変調周波数を f 2に合わせた時には、 検出位置 1, 2ではそれぞれ計測位置 2, 3についての情報が選択計測できる。 これにより、 照射位置数 (従ってそれに付随する光源数) 及び検出位置数 (従ってそれに付随 する検出器数) を大幅に減らすことが可能となり、 システム的な効率を向上させ 得ると共に、 装置構成を小型で取リ扱いの簡便なものとすることができる。 When a specific irradiation position and detection position are exclusively assigned to each measurement position for a plurality of measurement positions, i.e., when there are three measurement positions as shown in Fig. 2, the irradiation position and the detection position Three positions are required for each. So, for example, As shown in Fig. 4, the irradiation position 2 and the detection positions 1 and 2 are alternately arranged in a grid pattern, and the irradiation position 1 is shared by the measurement positions 1 and 4 and the irradiation position 2 is shared by the measurement positions 2 and 3 If the force, force, and detection position 1 can be shared with measurement position 2 and detection position 2 can be shared with measurement positions 3 and 4, the required irradiation position and detection position for a total of 4 measurement positions can be obtained. In two places each. That is, according to the modulation measurement method described above, the modulation frequencies of the irradiation light from the irradiation positions 1 and 2 in FIG. 4 are set to f 1 and f 2, and the modulation frequencies of the detection light at the detection positions 1 and 2 are set. When the frequency is adjusted to f1, information on the measurement positions 1 and 4 can be selectively measured at the detection position 2, and when the modulation frequency of the detection light at the detection positions 1 and 2 is adjusted to f2, the detection position 1 , 2 can select and measure information about measurement positions 2 and 3, respectively. As a result, the number of irradiation positions (and thus the number of light sources associated therewith) and the number of detection positions (and therefore the number of detectors associated therewith) can be greatly reduced, thereby improving system efficiency and reducing the size of the device configuration. Thus, the handling can be simplified.
以下、 本発明の実施例を挙げて詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to examples.
〈実施例 1〉  <Example 1>
図 1に、 本発明の第 1の実施例になる生体光計測装置の概略構成を示す。  FIG. 1 shows a schematic configuration of a biological optical measurement device according to a first embodiment of the present invention.
本実施例では、 例えば人頭部の皮膚上から光を照射 ·検出することにより大脳 内部を画像化計測する場合を想定して、 計測チャンネル数(すなわち計測位 [S数) を 6 4とした装置構成について示す。  In the present embodiment, the number of measurement channels (that is, the number of measurement positions [the number of S]) was set to 64, assuming that the inside of the cerebrum was imaged and measured by irradiating and detecting light from the skin of the human head, for example. The device configuration will be described.
光源部 1は、 1 6個の光モジュール 2 ( 1 ), 2 (2), · · · · 2 ( 16)から構成されて いる。 各光モジュールは、 可視から赤外の波長領域内の複数波長 (例えば 7 7 0 n m , 8 0 5 n m , 8 3 0 n mの 3波長) の光をそれぞれ個別に放射する 3個の 半導体レーザから構成されている。 この光源部 1に含まれる全ての (合計 4 8個 の) 半導体レーザは、 それぞれ発振周波数の異なる 4 8個の発振器で構成されて いる発振部 3からの変調信号を受けて、 それぞれ異なる変調周波数で変調された レーザ光を放射する。 図 5に、 各光モジュール内の具体的構成を示す。 光モジュール 2 (1)内には、 半導体レーザ 3 (1- a), 3 (1- b), 3 (1-c)及びこれらレーザの駆動回路 4 (I-a), 4 (1- b), 4 (1 - c)が含まれている。 ここで、 各構成要素に付された符号中、 括弧 内の数字(1)は モジュール番号 1の光モジュール内に所属する要素であることを 示し、 英文字(a, b, c)は それぞれ波長 a (7 7 0 nm), 波長 b (80 5 nm), 波長 c (8 3 0 nm)のレーザ光を出力する回路系に含まれる要素であることを表 わしている。 駆動回路 4 (1- a), 4 (l~b), 4 (1-c) に、 発振部 3内の各対応する 発振器から、 それぞれ異なる変調周波数 f (I-a), f (1-b), f (1- c) の変調信号 を供給することによって、 半導体レーザ 3 (1- a), 3 (1-b), 3 (1-c) からの出力 レーザ光に、 それぞれ対応する変調周波数での変調を与える。 それぞれの半導体 レーザからの出力レーザ光は、 個別に集光レンズ 5を介して、 光ファイバ 6内に 導入される。 個々の光ファイバ 6内に導入された光は、 光ファイバ結合器 7を介 して 1本の照射用光ファイバ 8— 1内に導入される。 The light source unit 1 is composed of 16 optical modules 2 (1), 2 (2),... 2 (16). Each optical module is composed of three semiconductor lasers that individually emit light of multiple wavelengths within the visible to infrared wavelength range (for example, three wavelengths of 770 nm, 805 nm, and 830 nm). It is configured. All (48 total) semiconductor lasers included in the light source unit 1 receive modulation signals from the oscillation unit 3 composed of 48 oscillators having different oscillation frequencies, and receive different modulation frequencies. Emit laser light modulated by. Fig. 5 shows the specific configuration inside each optical module. In the optical module 2 (1), semiconductor lasers 3 (1-a), 3 (1-b), 3 (1-c) and driving circuits 4 (Ia), 4 (1-b), 4 (1-c) is included. Here, in the code given to each component, the number (1) in parentheses indicates that the element belongs to the optical module of module number 1, and the alphabetic characters (a, b, c) indicate the wavelength, respectively. This indicates that the element is included in the circuit system that outputs laser light with a (770 nm), wavelength b (805 nm), and wavelength c (830 nm). Drive circuits 4 (1-a), 4 (l ~ b), and 4 (1-c) output different modulation frequencies f (Ia) and f (1-b) from the respective oscillators in the oscillator 3. , f (1-c), the modulation frequency corresponding to the output laser light from semiconductor lasers 3 (1-a), 3 (1-b), and 3 (1-c) is supplied. Gives the modulation in Output laser beams from the respective semiconductor lasers are individually introduced into the optical fiber 6 via the condenser lens 5. The light introduced into each optical fiber 6 is introduced into one irradiation optical fiber 8-1 via an optical fiber coupler 7.
このようにして、 各光モジュール毎に、 波長の異なる 3つの光が照射用光ファ ィバ 8— 1 , 8 - 2, ···.8— 1 6内に導入され、 これら 1 6本の照射用光ファ ィバを通った光が、 それぞれ被検体 9の表面上の異なる 1 6個所の照射位置から 被検体 9内に同時に照射される。 各照射位置からは、 波長および変調周波数の異 なる 3種類の光が同時照射されるので、 被検体 9内には合計 4 8種類の光が同時 照射されることになる。  In this way, for each optical module, three lights having different wavelengths are introduced into the irradiating optical fibers 8-1, 8-2,. Light having passed through the irradiation optical fiber is simultaneously irradiated into the subject 9 from 16 different irradiation positions on the surface of the subject 9. From each irradiation position, three types of light having different wavelengths and modulation frequencies are simultaneously irradiated, so that a total of 48 types of light are simultaneously irradiated into the subject 9.
次に、 被検体 9からの反射光 (被検体中を通過することによって吸収 ·散乱を 受けて、 被検体表面から外部に放射される光) は、 被検体表面上の合計 2 5個所 の検出位置に配置された検出用光ファイバ 1 0— 1 , 1 0— 2, ···· 1 0 - 2 5 内に取り込まれる。  Next, the reflected light from the subject 9 (the light that is absorbed and scattered by passing through the subject and emitted from the subject surface to the outside) is detected at a total of 25 locations on the subject surface. It is taken into the detection optical fibers 10 0-1, 10-2,.
図 6に、 被検体 9表面上における照射位置(IP) 1〜 1 6および検出位置(DP) 1 〜 2 5の幾何学的配置例を示す。 本実施例では、 照射位置(IP)と検出位置(DP)を 交互に正方格子状に配置する。 ここで、 互いに隣接する照射位置(!P)と検出位置 (DP)との中点を計測位置 (MP)とすると、 本例では、 互いに隣接する照射位置(IP) と検出位置(DP)との組合わせが 64通り存在するので、 計測位置 (MP)数すなわち 計測チヤンネル数は 64となる。 FIG. 6 shows an example of the geometric arrangement of the irradiation positions (IP) 1 to 16 and the detection positions (DP) 1 to 25 on the surface of the subject 9. In this embodiment, the irradiation position (IP) and the detection position (DP) are alternately arranged in a square lattice. Here, the irradiation position (! P) and the detection position adjacent to each other Assuming that the midpoint of (DP) is the measurement position (MP), in this example, there are 64 combinations of the irradiation position (IP) and the detection position (DP) that are adjacent to each other. The number, that is, the number of measurement channels is 64.
ここで、 被検体 9が人頭部である場合、 互いに隣接する照射位置と検出位置と の間隔を約 3 cmに設定すると、 各照射位置での検出光は大脳内の情報を有して 、ること力く, \f 「P. W. McCormic; " Intracerebral penetration of infrared light", J. Neurosurg. , vol.76, pp.315-318, ( 1992)」に報告されている。 従って、 図 6に示した配置構成で合計 64の計測チャンネルを設定すれば、 全体 として約 1 5 c mx 1 5 c mの広領域において大脳内情報の計測が可能となる。 それぞれの検出用光ファイバ 1 0— 1〜 1 0— 25で捕らえられた反射光は、 合計 25個の光検出器 (例えば、 フォトダイオード) 1 1— 1, 1 1一 2, ···· Here, when the subject 9 is a human head, if the distance between the irradiation position and the detection position adjacent to each other is set to about 3 cm, the detection light at each irradiation position has information in the cerebrum, It is reported in \ f "PW McCormic;" Intracerebral penetration of infrared light ", J. Neurosurg., Vol.76, pp.315-318, (1992). Therefore, if a total of 64 measurement channels are set in the arrangement shown in FIG. 6, it is possible to measure intracerebral information in a wide area of about 15 cm × 15 cm as a whole. The reflected light captured by each detection optical fiber 10-1 to 10-25 is a total of 25 photodetectors (for example, photodiodes) 11-1-1, 11-2, ...
1 1一 2 5によって、 各検出位置毎 (すなわち、 各検出用光ファイバ毎) に独立 に検出される。 各光検出器からの出力電気信号は、 複数のロックインアンプから 構成されるロックインアンプ ·モジュール 1 2で、 照射位置および照射光の波長 に対応した変調周波数毎に分離して計測される。 According to 1 1 1 2 5, detection is performed independently for each detection position (that is, for each detection optical fiber). The output electric signal from each photodetector is measured separately by a lock-in amplifier module 12 composed of a plurality of lock-in amplifiers for each modulation frequency corresponding to the irradiation position and the wavelength of the irradiation light.
ここで、 図 6の検出位置(DP) 7における検出信号、 すなわち光検出器 (フォ ト ダイオード) 1 1一 7における検出信号を例にとって、 信号分離方式の具体例を 図 7を用いて説明する。 検出位置(DP) 7では、 それに隣接している 4つの照射位 置(1P) 2 , 5 , 6から照射された光すなわち計測位置 (MP) 10, 1 1, 1 8, Here, a specific example of the signal separation method will be described with reference to FIG. 7, taking the detection signal at the detection position (DP) 7 in FIG. 6, that is, the detection signal at the photodetector (photodiode) 11-17 as an example. . At the detection position (DP) 7, the light irradiated from the four irradiation positions (1P) 2, 5, and 6 adjacent to it, that is, the measurement positions (MP) 10, 11, 18, 18,
1 9を通過してきた光を検出対象としている。 ここで、 光検出器 1 1一 7で検出 される光は、 主として、 照射位置(】P) 1, 2, 5, 6から照射された変調周波数 ί (1 a), f (1-b), f (1-c), f (2-a), f (2-b) , f (2-c) , f (5 - a) , f (5-b) , f (5- c), f (6-a), f (6-b), f (6- c)なる 1 2種類の変調信号を含んでいる。 そ こで、 光検出器 1 1一 7の出力信号を、 それぞれ対応する変調周波数を参照信号 とした 1 2個のロックインアンプ 1 3— 3 1, 1 3 -32, .'.' 1 3—42に分 配入力して、 変調周波数毎に分離 ·増幅する。 例えば、 ロックインアンプ 1 3— 3 1では、 参照信号周波数が f ( 1-a) に設定されているため、 光検出器 1 1 一 7 で検出されだ光信号中から、 照射位置(I P) 1からの波長 7 7 0 n mの照射光 (す なわち変調周波数が f ( 1-a) の光) に対応した信号成分のみが分離選択れて増幅 される。 すなわち、 ロックインアンプ 1 3— 3 1からの出力信号は照射位置(I P) 1と検出位置(DP) 7との間に存在する計測位置(MP) 1 0における波長 7 7 0 n m の光に対する吸収 ·散乱等の生体反応情報のみを含んだものとなる。 同様にして、 他のロックインアンプにおいても、 それぞれ特定の照射位置から照射された特定 波長の光のみが選択的に検出される。 The light passing through 19 is targeted for detection. Here, the light detected by the photodetectors 11-17 mainly consists of the modulation frequencies か ら (1 a), f (1-b) radiated from the irradiation positions (] P) 1, 2, 5, and 6. , f (1-c), f (2-a), f (2-b), f (2-c), f (5-a), f (5-b), f (5-c), f (6-a), f (6-b) and f (6-c) are included. Therefore, the output signals of the photodetectors 11 and 17 are used as reference signals for the corresponding modulation frequencies. The two lock-in amplifiers 13—31, 13-32,. Divided and input to -42 to separate and amplify each modulation frequency. For example, lock-in amplifier 1 3— In 3 1, since the reference signal frequency is set to f (1-a), the wavelength from the irradiation position (IP) 1 is 7770 nm from the optical signal detected by the photodetector 11. Only the signal components corresponding to the irradiating light (that is, the light whose modulation frequency is f (1-a)) are separated and selected and amplified. That is, the output signal from the lock-in amplifier 13-31 is applied to the light of wavelength 770 nm at the measurement position (MP) 10 existing between the irradiation position (IP) 1 and the detection position (DP) 7. It contains only biological reaction information such as absorption and scattering. Similarly, in other lock-in amplifiers, only light of a specific wavelength irradiated from a specific irradiation position is selectively detected.
このようにして、 他の検出位置で検出された光信号、 すなわち、 他の光検出器 からの検出信号についても、 それぞれ光照射位置及び照射光波長に対応して定め られた固有の変調周波数でもって個別に口ックイン検出を行なうことによリ、 全 ての計測位置及び照射光波長に対する検出光量をそれぞれ分離して計測すること が可能となる。 本実施例で示した 6 4個所の計測位置についてそれぞれ 3波長光 での計測を行なう場合には、 ロックインアンプ 'モジュール 1 2内には、 合計で 1 9 2個のロックインアンプ 1 3— 1, 1 3— 2, · ' · · 1 3— 1 9 2が含まれる ことになる。  In this way, the optical signals detected at other detection positions, that is, the detection signals from the other photodetectors, are also modulated at the specific modulation frequencies determined corresponding to the light irradiation position and the irradiation light wavelength, respectively. By separately performing the mouth lock-in detection, it becomes possible to separately measure the amount of light detected for all measurement positions and the irradiation light wavelength. In the case of performing measurement with three wavelengths at the 64 measurement positions shown in the present embodiment, a total of 19 2 lock-in amplifiers 1 3— 1, 1 3—2, · '· · 1 3— 19 2 are included.
これら 1 9 2個の口ックインアンプからのアナログ出力信号は、 1 9 2チャン ネルの A Z D変換器 1 4によりそれぞれデジタル信号に変換されて、 制御部 1 8 を経て、 データ記録部 1 5に記録される。 また、 これら記録された信号はデータ 処理部 1 6において、 各計測位置毎に 3波畏の検出光量を用いて、 酸素化へモグ 口ビン濃度及び脱酸素化ヘモグロビン濃度、 さらにはこれらへモグロビン濃度の 総量としての全ヘモグロビン濃度を、 例えば講談社から 1 9 7 9年に発行された 柴田正三等の編集による著書 「二波長分光光度法とその応用」 に記載の方法を用 いて、 演算処理して求める。  The analog output signals from these 192-channel lock-in amplifiers are converted into digital signals by a 192-channel AZD converter 14, passed through a control unit 18, and recorded in a data recording unit 15. You. In addition, these recorded signals are used in the data processing unit 16 by using the detected light amount of three waves at each measurement position, to obtain the oxygen concentration in the oxygenated hemoglobin, the oxygenated hemoglobin concentration, and the oxygenated hemoglobin concentration. The total hemoglobin concentration as a total amount was calculated using the method described in the book, `` Two-Wavelength Spectrophotometry and Its Applications, '' edited by Shodan Shibata et al., Published in 1979 by Kodansha. Ask.
また、 各計測位置について求めた酸素化ヘモグロビン濃度, 脱酸素化へモグロ ビン濃度及び全ヘモグロビン濃度を、 表示部 1 7において、 例えばトポグラフィ 画像として表示させる。 なお、 このトポグラフィ画像表示用のデータは、 例えば 各計測位置における各へモグ口ビン濃度を計測位置間で補間 (例えば、 線形補間) して求める。 以上の装置各部の動作は、 制御部 1 8によって制御されている。 また、 被検体(人頭部)への光照射および光検出には、 例えば図 8に示すような ヘルメッ 卜もしくはキャップ形状のプローブ 2 1を用いる。 このプロ一ブ 2 1に は, 例えば厚さ 3 m m程度の熱可塑性プラスチックシートを基盤材料として用い、 該基盤材料で予め被検体の測定領域における外形寸法にマツチしたモールド型を 形成しておき、 これを被検体外面に例えばゴムひも 2 2等で固定装着する。 この プローブ 2 1のよリ 体的な構造例を図 9を用いて説明する。 プローブ基盤 2 3 には、 被検体 9への光の照射位置および被検体 9からの反射光の検出位置に対応 する複数位置に穴を設け、 各穴内に光ファイバホルダ 2 4を固定装着する。 この 光フアイバホルダ 2 4は、 中空筒状のホルダ本体 2 4 , 本体固定ネジ 2 5および 光ファイバ固定ネジ 2 6から構成され、 プローブ基盤 2 3に設けられた各穴内に ホルダ本体 2 4を挿通してから、 本体固定ネジ 2 5によってプローブ基盤 2 3に ホルダ本体 2 3を締付固定する。 その上で、 ホルダ本体 2 3の中心孔内に照射用 光ファイバまたは検出用光ファイバを挿通し、 被検体 9表面に光ファイバの端部 を軽く接触させた状態で、 光ファイバ固定ネジ 2 6でもって固定する。 In addition, the oxygenated hemoglobin concentration, the deoxygenated hemoglobin concentration, and the total hemoglobin concentration determined for each measurement position are displayed on the display unit 17, for example, in topography. Display as an image. Note that the data for displaying the topography image is obtained by, for example, interpolating (for example, linearly interpolating) the densities of the bins at each measurement position between the measurement positions. The operation of each unit of the apparatus described above is controlled by the control unit 18. For light irradiation and light detection on the subject (human head), for example, a helmet or cap-shaped probe 21 as shown in FIG. 8 is used. For this probe 21, for example, a thermoplastic resin sheet having a thickness of about 3 mm is used as a base material, and a mold is formed in advance with the base material to match the external dimensions in the measurement region of the subject. This is fixedly mounted on the outer surface of the subject with, for example, a rubber cord 22 or the like. An example of a more specific structure of the probe 21 will be described with reference to FIG. Holes are provided in the probe base 23 at a plurality of positions corresponding to the irradiation position of the light on the subject 9 and the detection position of the reflected light from the subject 9, and the optical fiber holder 24 is fixedly mounted in each hole. The optical fiber holder 24 includes a hollow cylindrical holder main body 24, a main body fixing screw 25 and an optical fiber fixing screw 26, and the holder main body 24 is inserted into each hole provided in the probe base 23. Then, the holder main body 23 is fastened and fixed to the probe base 23 with the main body fixing screws 25. Then, an irradiation optical fiber or a detection optical fiber is inserted into the center hole of the holder body 23, and the end of the optical fiber is lightly brought into contact with the surface of the subject 9; Fix it with it.
本実施例では計測チャンネル数が 6 4の場合について示したが、 本発明の実施 に際しては、 何らこのチヤンネル数に限定されるものではないことは云うまでも ない。 なお、 本実施例は、 光を用いて生体内部の断層撮影を行なって、 得られた データを計算機にて画像処理する所謂光 C T装置に対しても容易に適用すること ができる。  In this embodiment, the case where the number of measurement channels is 64 has been described. However, it goes without saying that the present invention is not limited to this number of channels. The present embodiment can be easily applied to a so-called optical CT device in which tomography of the inside of a living body is performed using light, and the obtained data is image-processed by a computer.
本実施例により、 生体内部の情報を、 広い空間領域で、 時間的及びシステム的 に効率良く画像計測することができ、 かつ、 装置構成が小型 ·簡便な生体光計測 装置が得られる。  According to this embodiment, it is possible to efficiently and temporally and systematically perform image measurement of information inside a living body in a wide space area, and to obtain a small-sized and simple biological light measuring apparatus.
く実施例 2〉 図 1 0に、 本発明の第 2の実施例になる生体光計測装置の概略構成を示す。 本実施例では、 計測系の基本的構成は先の第 1の実施例と同様であり、 光源部Example 2> FIG. 10 shows a schematic configuration of a biological light measurement device according to a second embodiment of the present invention. In this embodiment, the basic configuration of the measurement system is the same as that of the first embodiment.
1の構成が異なつている。 図 1 0は、 この第 2の実施例における光源部 1の構成 を示している。 The configuration of 1 is different. FIG. 10 shows the configuration of the light source unit 1 in the second embodiment.
波長 7 7 0 n mの光源例えば半導体レーザ 3 1は、 レーザ駆動回路 4 1により 駆動され、 変調が加えられない速続した光を放射する。 この光は、 光ファイバ 6 一 1に導入され、 光ファイバ結合器 5 1を介して 1 6本の光フアイバ 6 1— 1〜 6 1— 1 6に分配される。  A light source having a wavelength of 770 nm, for example, a semiconductor laser 31 is driven by a laser drive circuit 41 and emits continuous light without modulation. This light is introduced into the optical fiber 61, and is distributed through the optical fiber coupler 51 to 16 optical fibers 61-1-1 to 61-1-16.
これら 1 6本の光ファイバは、 それぞれその経路中に光変調器 7 1— 1〜7 1 一 1 6を含んでいる。 これらの光変調器の構成を、 光変調器 7 1— 1 を例にして、 図 1 1に示す。 光変調器 7 1 一 1内には、 例えば液晶フィルタ 1 0 1が内蔵され ており、 該液晶フィルタ 1 0 1は、 発振部 3内の発振器から変調電圧信号を印加 されて、 周期的にオンオフを繰り返すようになつている。 例えば、 光変調器 7 1 一 1では、 変調周波数が f ( 1 -a) なる変調電圧信号を液晶フィルタ 1 0 1に印加 する。 光ファイバ 6 1 — 1からの光は、 レンズ 5を介して液晶フィルタ 1 0 1に 照射され、 該液晶フィルタ 1 ◦ 1 を透過した光は、 レンズ 5により集光されて光 ファイバ 8 1— 1に導入される。 ここで、 光変調器 7 1— 1〜 7 1 _ 1 6は互い に異なる変調周波数、 例えば f ( 1- a), f (2-a) , · · · · f ( 16- a)で、 液晶フィルタ をオンオフされる。 なお、 この光変調器としては、 液晶フィルタの他に、 回転式 の機械的光チヨツバを用いたものでもよい。 このようにして、 光変調器 7 1— 1 〜 7 1— 1 6によってそれぞれ異なる変調周波数で変調された光は、 光ファイバ 8 1— 1〜8 1— 1 6に導入され、 伝送される。 Each of these 16 optical fibers includes an optical modulator 71-1 to 71-16 in its path. The configuration of these optical modulators is shown in FIG. 11 using the optical modulator 71-1 as an example. For example, a liquid crystal filter 101 is built in the optical modulator 711, and the liquid crystal filter 101 is periodically turned on and off when a modulation voltage signal is applied from an oscillator in the oscillation unit 3. Is to repeat. For example, in the optical modulator 711, a modulation voltage signal having a modulation frequency of f (1−a) is applied to the liquid crystal filter 101. The light from the optical fiber 6 1-1 is applied to the liquid crystal filter 101 via the lens 5, and the light transmitted through the liquid crystal filter 1 1 is condensed by the lens 5 to form the optical fiber 8 1-1. Will be introduced. Here, the optical modulators 7 1-1 to 7 1 _ 16 have different modulation frequencies, for example, f (1- a ), f (2-a), f (16-a) The LCD filter is turned on and off. It should be noted that, as the optical modulator, a device using a rotary mechanical optical disc may be used in addition to the liquid crystal filter. In this way, the light beams modulated at the different modulation frequencies by the optical modulators 71-1-1 to 71-1-16 are introduced into the optical fibers 81-1 to 81-1-16 and transmitted.
同様にして、 光源部 1内の他の波長の光源 (例えば、 波長 8 0 5 , 8 3 0 n m の半導体レーザ) 3 2, 3 3は、 それぞれレーザ駆動回路 4 2 , 4 3により駆動 され、 これら光源 3 2 , 3 3からの出力光は、 光ファイバ 6— 2, 6— 3を経て ファイバ結合器 5 2 , 5 3に送られ、 それぞれ、 1 6本の光ファイバ 6 2— 1〜 6 2— 1 6 , 6 3— 1 〜6 3— 1 6に分配される。 光ファイバ 6 2— 1〜6 2— 1 6 , 6 3— 1〜 6 3— 1 6に分配された光は、 光変調器 7 2— 1〜 7 2— 1 6 ,Similarly, light sources of other wavelengths in the light source unit 1 (for example, semiconductor lasers with wavelengths of 805 and 830 nm) 32 and 33 are driven by laser driving circuits 42 and 43, respectively. Output lights from these light sources 32 and 33 are sent to fiber couplers 52 and 53 via optical fibers 6-2 and 6-3, respectively, and 16 optical fibers 62-1 to 16 are respectively provided. It is distributed to 6 2—16, 6 3—1 to 6 3—16. The light distributed to the optical fibers 6 2—1 to 6 2—16, 6 3—1 to 6 3—16 is converted to optical modulators 7 2—1 to 7 2—16,
7 3— 1〜7 3— 1 6によってそれぞれ異なる変調周波数でもって変調される。 すなわち、 光変調器 7 2— 1〜 7 2— 1 6には、 それぞれ互いに異なる変調周波 数 f (l- b), f (2-b), ···· f (16- b)なる変調信号が印加され、 光変調器 7 3— 17 3-1 to 7 3-16 are modulated at different modulation frequencies. That is, each of the optical modulators 72-1 to 72-16 has a different modulation frequency f (l-b), f (2-b),... F (16-b) The signal is applied and the optical modulator 7 3— 1
〜 7 3— 1 6には、 それぞれ互いに異なる変調周波数 f (l-c), f (2-c) , f (16-c)なる変調信号が印加される。 光変調器 7 2— 1〜 7 2— 1 6を通過した 光はそれぞれ光ファイバ 8 2— 1〜8 2— 1 6へ、 また光変調器 7 3— 1〜7 3 一 1 6を通過した光はそれぞれ光フアイバ 8 3— 1〜8 3— 1 6へ導入されて、 伝送される。 The modulation signals having different modulation frequencies f (l-c), f (2-c) and f (16-c) are applied to. The light that passed through the optical modulators 7 2—1 to 7 2—16 passed to the optical fibers 8 2—1 to 8 2—16 and the optical modulators 7 3—1 to 7 3—1 16 respectively. The light is respectively introduced into optical fibers 83-1 to 83-16 and transmitted.
このようにして合計 48個の光変調器 7 1 — 1〜 7 1 — 1 6, 7 2— 1〜 7 2 ― 1 6および 7 3— 1 〜7 3— 1 6によって個別に変調されて、 合計 4 8本の光 ファイバ 8 1 — 1〜8 1 - 1 6 , 8 2— 1〜8 2— 1 6および 8 3— 1〜 8 3— 1 6内に個別に導入 ·伝送されたそれぞれ変調周波数の異なる合計 4 8種類の光 は、 次いで、 以下の要領で、 波長毎にまとめられて、 それぞれ 1本(合計 1 6本〉 の光ファイバ内に導入される。 すなわち、 光ファイバ 8 1 — 1 , 8 2 - 1および In this way, a total of 48 optical modulators 7 1-1 to 7 1-16, 7 2-1 to 7 2-16 and 7 3-1 to 7 3-16 are individually modulated, Total 4 8 optical fibers 8 1-1 to 8 1-16, 8 2-1 to 8 2-16 and 8 3-1 to 8 3-16 Independently transmitted and modulated respectively Next, a total of 48 types of light having different frequencies are grouped for each wavelength and introduced into one (total of 16) optical fibers in the following way: Optical fiber 8 1 — 1, 8 2-1 and
8 3— 1によって伝送された光は、 光ファイバ結合器 9 1 一 1 を介して、 1本の 照射用光ファイバ 8— 1内にまとめて導入される。 同様にして、 光ファイバ 8 1 - 1 6 , 8 2 - 1 6および 8 3 - 1 6で伝送された光は、 光フアイバ結合器 9 1 一 1 6によって、 1本の照射用光ファイバ 8— 1 6内にまとめて導入される。 このようにして、 1 6本の照射用光ファイバ 8— 1〜8— 1 6によって、 それ ぞれ波長及び変調周波数の異なる 3種類の光 (合計 48種類の光) 力 先の第 1 の実施例と同様にして、 被検体 9表面に照射される。 なお、 被検体 9からの反射 光の計測方法は、 第 1の実施例の場合と同様である。 The light transmitted by 83-1 is collectively introduced into one irradiation optical fiber 8-1 via the optical fiber coupler 911. Similarly, the light transmitted through the optical fibers 8 1-16, 8 2-16 and 8 3-16 is converted into one irradiation optical fiber 8 by the optical fiber coupler 9 1 1 16. Introduced together in 16. In this way, 16 types of irradiation optical fibers 8-1 to 8-16 are used to carry out three types of light (48 types in total) with different wavelengths and modulation frequencies. The surface of the subject 9 is irradiated in the same manner as in the example. Note that the method of measuring the reflected light from the subject 9 is the same as in the first embodiment.
本実施例により、 生体内部の情報を、 広い空間領域で、 時間的及びシステム 的に効率良く画像計測することができ、 かつ装置構成が小型 ·簡便な生体光計測 装置が得られる。 According to this embodiment, it is possible to efficiently and temporally and systematically perform image measurement of information inside a living body in a wide space area, and the device configuration is small and simple. A device is obtained.
《生体内深部情報の高感度計測》  《High-sensitivity measurement of deep body information》
本発明では、 また、 被検体(生体)内の深都の微小領域における情報を、 高感度 かつ高分解能で計測することのできる生体光計測装置が提供される。  According to the present invention, there is also provided a biological optical measurement device capable of measuring information in a very small area in a deep city in a subject (living body) with high sensitivity and high resolution.
従来、 可視から赤外領域の波長の光を生体に照射し、 照射位置から 1 0〜50 m m程度離れた生体内深部領域からの反射光を検出して、 該深部領域についての 生体情報を得るようにした生体光計測装置が、 例えば特開昭 6 3— 2 770 38 号公報および特開平 5— 30088 7号公報等に開示されている。 しかし、 この 種の従来装置では、 生体内深部の微小領域についての生体情報を十分な計測精度 で得ることが困難である。  Conventionally, a living body is irradiated with light having a wavelength in the visible to infrared region, and reflected light from a deep region in the living body at a distance of about 10 to 50 mm from the irradiation position is detected, and biological information on the deep region is obtained. Such a living body optical measuring device is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 63-277038 and 5-30087. However, with this type of conventional apparatus, it is difficult to obtain biological information on a minute region deep inside the living body with sufficient measurement accuracy.
すなわち、 光を用いた牛.体計測では、 生体内での強い光散乱特性 (散乱係数 = 約し 0 [1/丽] 程度) のために、 照射された光は生体内で大きく拡がるため、 計測結果には、 生体内の広範囲にわたっての情報が含まれてしまう。 特に、 検出 感度の空間特性が、 光照射位置及び光検出位置に近い生体内浅部での感度が深部 での感度に比して大きくなつている点に問題がある。 このため、 従来提案されて いような方法では、 生体内深部領域での光吸収物質の濃度変化を精度良く計測す ることは困難である。 例えば、 生体脳の血行動態変化を頭皮上から計測する場合 には、 上記の理由により、 頭皮直下の比較的浅い領域での血行動態変化が計測値 に大きく反映してしまう点に問題がある。  In other words, cattle using light. In body measurement, the irradiated light spreads greatly in the living body due to the strong light scattering characteristics (scattering coefficient = about 0 [1 / 丽]) in the living body. The measurement results include information over a wide area in the living body. In particular, there is a problem in that the spatial characteristics of the detection sensitivity are such that the sensitivity in a shallow part of a living body near the light irradiation position and the light detection position is greater than the sensitivity in a deep part. For this reason, it is difficult to accurately measure a change in the concentration of a light absorbing substance in a deep region in a living body by a method that has been conventionally proposed. For example, when measuring the hemodynamic change of the living brain from above the scalp, there is a problem in that the hemodynamic change in a relatively shallow region immediately below the scalp is largely reflected in the measured value for the above-described reason.
上記した従来技術を用いて生体内の光吸収物質の濃度変化についての相対感度 分布を求めた結果の 例を図 1 2〜図 14に示す。 ここでは、 生体表面を平面と 仮定し、 生体表面と平行な平面を X— Y平面と定義し、 生体表面上 x = 32. 5 mm, y = 1 7. 5 m mの位置から生体内に光を照射し、 光照射位置より 30誦 離れた位置 x = 3 2. 5mm, y = 47. 5 mmでこの照射光を集光した場合に おける、 深さ 2. 5mmの位置での相対感度分布を図 1 2に、 深さ 7. 5mmの 位置での相対感度分布を図 1 3に、 深さ 1 2· 5 mmの位置での相対感度分布を 図 1 4にそれぞれ示す。 これらの図より、 生体内表面領域(図 1 2 )での相対感度 分布は高く急峻であるが、 生体内深部領域(図 1 4 )での相対感度分布は低く鈍化 していることが分かる。 このように、 生体内表面領域での光吸収や光散乱の影響 が非常に大きく、 従って、 従来技術では、 生体内深部領域での光吸収物質の濃度 変化を高い精度で計測することは困難である。 Figs. 12 to 14 show examples of the results of obtaining the relative sensitivity distribution with respect to the change in the concentration of the light absorbing substance in the living body using the above-mentioned conventional technology. Here, the surface of the living body is assumed to be a plane, and the plane parallel to the surface of the living body is defined as the X-Y plane, and light enters the living body from the position x = 32.5 mm, y = 17.5 mm on the surface of the living body. And a sensitivity distribution at a depth of 2.5 mm when this irradiation light is condensed at x = 32.5 mm, y = 47.5 mm at a position 30 distant from the light irradiation position Figure 12 shows the relative sensitivity distribution at a depth of 7.5 mm, and Figure 13 shows the relative sensitivity distribution at a depth of 12.5 mm. These are shown in Figure 14 respectively. From these figures, it can be seen that the relative sensitivity distribution in the in-vivo surface region (Fig. 12) is high and steep, but the relative sensitivity distribution in the in-vivo deep region (Fig. 14) is low and blunt. As described above, the influence of light absorption and light scattering in the surface region in the living body is extremely large. Therefore, it is difficult to measure the concentration change of the light absorbing substance in the deep region in the living body with high accuracy by the conventional technology. is there.
そこで. 本発明では, 被検体表面の複数の光照射位置から被検体内に光を照射 し、 被検体内を透過してきた光を被検体表面の複数の光検出位置で集光検出する に際し、 上記複数の光照射位置のそれぞれから照射され被検体内を透過してきた 光(透過光)のそれぞれの光路が被検体内の所望の計測領域において互いに重なり 合うように、 上記複数の光照射位置と上記複数の光検出位置との配置関係を設定 しておき、 上記複数の光検出位置での光検出信号を演算処理することによって、 上記した所望の計測領域内の光学的情報に対する検出感度を高める (それ以外の 領域における光学的情報に対しての検出感度を相対的に低下させる) ように構成 している。  Therefore, in the present invention, when irradiating light into the subject from a plurality of light irradiation positions on the subject surface, and condensing and detecting light transmitted through the subject at a plurality of light detection positions on the subject surface, The plurality of light irradiation positions and the plurality of light irradiation positions are so set that the respective light paths of the light (transmitted light) irradiated from each of the plurality of light irradiation positions and transmitted through the subject overlap each other in a desired measurement region in the subject. An arrangement relationship with the plurality of light detection positions is set, and light detection signals at the plurality of light detection positions are arithmetically processed, thereby increasing the detection sensitivity to the optical information in the desired measurement area. (The detection sensitivity for optical information in other areas is relatively reduced.)
以下、 上記した本発明の特徴的構成について、 より詳細に説明する。  Hereinafter, the characteristic configuration of the present invention described above will be described in more detail.
本発明による被検体(生体)内深部情報計測用の生体光計測装置は、 基本的には、 被検体表面の複数の照射位置からそれぞれ波長の異なる複数の照射光を被検体内 に照射するための複数の照射部を有する光照射手段と, 上記複数の光照射位置の それぞれから照射され被検体内を透過してきた光(透過光)を被検体表面の複数の 検出位置で集光するための、 上記複数の照射部のそれぞれから照射され被検体内 を透過してきたそれぞれの光(透過光)の光路が被検体内の所定計測領域において 互いに重なり合うような配置関係でもって設けられた複数の集光部を有する集光 手段と, 上記複数の集光部において集光されたそれぞれの透過光の、 上記複数の 照射位置毎および上記複数の波長毎の光強度を検出するための複数の光検出部を 有する光検出手段と, 上記複数の光検出部からの光強度検出信号から、 被検体内 の上記所定計測領域における光学的情報の計測感度を向上させるかあるいは上記 所定計測領域以外の領域における光学的情報の計測感度を低下させるための演算 処理を行なって上記所定計測領域における光学的情報を得るための演算処理手段 とを含んでなる。 The biological optical measurement device for deep information measurement inside a subject (living body) according to the present invention is basically for irradiating a plurality of irradiation lights having different wavelengths from a plurality of irradiation positions on the surface of the subject into the subject. A light irradiating means having a plurality of irradiating portions; and a light irradiating means for condensing light (transmitted light) irradiated from each of the plurality of light irradiating positions and transmitted through the subject at a plurality of detecting positions on the surface of the subject. A plurality of collections provided in an arrangement such that the optical paths of the respective lights (transmitted light) emitted from each of the plurality of irradiation units and transmitted through the subject overlap with each other in a predetermined measurement region in the subject. A light condensing means having an optical part; and a plurality of light detectors for detecting light intensities of the respective transmitted lights condensed by the plurality of light condensing parts at each of the plurality of irradiation positions and each of the plurality of wavelengths. Have department That the light detecting means, or the from the light intensity detection signal from the plurality of light detection section, to improve the measurement sensitivity of the optical information in the predetermined measurement region within the object Arithmetic processing means for performing arithmetic processing for lowering the measurement sensitivity of optical information in an area other than the predetermined measurement area to obtain optical information in the predetermined measurement area.
なお、 上記した複数の照射光には、 照射位置毎および波長毎にそれぞれ異なる 変調周波数での強度変調を与えておき、 上記それぞれの集光部により集光された 透過光中から所定の変調周波数で強度変調された光成分のみを分離検出 (ロック イン検出) することによって、 または、 上記それぞれの集光部により集光された 透過光の検出信号を演算処理することによって、 照射位置毎および波長毎の透過 光成分の光強度を得るようにしても良い。 さらに、 上記それぞれの集光部で集光 された透過光を分光器で波長毎に分光し、 分光された各波長成分の中から所定の 変調周波数で強度変調された光成分のみを分離検出 (ロックイン検出) すること により、 照射位置毎および波長毎の透過光成分の光強度を得るようにしても良い。 なお、 ここでは、 計測対象である上記の光学的情報とは、 被検体(生体)内におけ る光吸収係数である。  In addition, the above-mentioned plurality of irradiation lights are subjected to intensity modulation at different modulation frequencies for each irradiation position and each wavelength, and a predetermined modulation frequency is obtained from the transmitted light condensed by each of the condensing sections. By separating and detecting (lock-in detection) only the light component that is intensity-modulated by, or by calculating the detection signal of the transmitted light condensed by each of the condensing parts, the irradiation position and wavelength The light intensity of each transmitted light component may be obtained. Further, the transmitted light condensed by each of the condensing sections is separated by a spectroscope for each wavelength, and only the light component intensity-modulated at a predetermined modulation frequency is separated and detected from the separated wavelength components ( By performing lock-in detection, the light intensity of the transmitted light component for each irradiation position and each wavelength may be obtained. Here, the optical information to be measured is a light absorption coefficient in the subject (living body).
また、 本発明では、 所定の強度変調周波数を有する透過光 (または所定の強度 変調周波数を有する所定波長の透過光) を光電変換によって前記所定の強度変調 周波数を有する透過光強度信号に変換する光電変換部と、 この光電変換部からの 透過光強度信号が入力される位相検波部とを用い、 上記位相検波部にそれぞれの 光照射位置からのそれぞれの波長の照射光に与えた強度変調周波数に対応する参 照信号を入力して、 該位相検波部から所定の強度変調周波数をもった透過光成分 の強度に対応する信号を出力させることができる。 あるいは、 上記光電変換部と この光電変換部からの透過光強度信号が入力される D (アナログ一デジタル) 変換部とを用い、 上記光電変換部からの透過光強度信号を上記 AZ D変換部に入 力してフーリエ変換により周波数空間での透過光強度信号を求め、 また、 所定の 光照射位置毎または所定の波長毎に与えられた強度変調周波数に対応する信号を 上記 A/ D変換部に入力してフ一リェ変換により所定の参照周波数を求め、 上記 周波数空間での透過光強度信号中から上記した所定の参照周波数と等しい周波数 の信号成分を演算して求め、 これを所定の強度変調周波数をもった透過光成分の 強度信号として用いても良い。 Further, according to the present invention, there is provided a photoelectric conversion device that converts transmitted light having a predetermined intensity modulation frequency (or transmitted light having a predetermined wavelength having a predetermined intensity modulation frequency) into a transmitted light intensity signal having the predetermined intensity modulation frequency by photoelectric conversion. A conversion unit and a phase detection unit to which a transmitted light intensity signal from the photoelectric conversion unit is input, the phase detection unit is configured to apply the intensity modulation frequency given to the irradiation light of each wavelength from each light irradiation position. By inputting a corresponding reference signal, a signal corresponding to the intensity of the transmitted light component having a predetermined intensity modulation frequency can be output from the phase detector. Alternatively, using the photoelectric conversion unit and a D (analog-to-digital) conversion unit to which a transmitted light intensity signal from the photoelectric conversion unit is input, the transmitted light intensity signal from the photoelectric conversion unit is transmitted to the AZD conversion unit. Input and obtain a transmitted light intensity signal in the frequency space by Fourier transform, and a signal corresponding to the intensity modulation frequency given for each predetermined light irradiation position or for each predetermined wavelength is sent to the A / D converter. Input and obtain a predetermined reference frequency by Fourier transform. A signal component having a frequency equal to the above-mentioned predetermined reference frequency may be calculated from the transmitted light intensity signal in the frequency space, and this may be used as an intensity signal of the transmitted light component having a predetermined intensity modulation frequency.
上記した複数の照射部と複数の集光部は、 上記所定計測領域のほぼ中心を通る 垂線 (被検体表面に垂直な直線)が被検体表面と交わる点を中心とする少なくとも 一つの所定の直径を有する円上に等間隔に、 かつ、 それぞれ一つの照射部と一つ の集光部とが対となって上記円の中心を点対称中心とする点対称位置関係となる ように配置され得る。 この場合、 各光照射位置からの各波長毎の照射光に対応す る透過光強度を各集光位置毎, 各波長毎に検出し、 各光照射位置からの各波長毎 の透過光強度からその集光位置と点対称位置関係にある光照射位置からの各波長 毎の透過光強度を選択し、 さらに、 この選択した透過光強度の中から同一円上で 検出された透過光強度を選択し、 同一円上で検出された所定波長を有する透過光 の透過光強度を乗算または積算する演算処理が行なわれる。 さらに、 直径が小さ い方の上記円上に設置された集光部で集光された透過光の強度を被検体の浅部か らの情報とし、 直径が大きい方の上記円上に設置された集光部で集光された透過 光の強度を被検体の深部からの情報として、 透過光強度の演算処理が行なわれる また、 上記した複数の照射部と複数の集光部は、 正方格子状に配置され得る。 この場合、 照射部と集光部は、 それぞれ上記正方格子のそれぞれの行の格子点上 に、 照射部が配置された行と集光部が配置された行とが交互になるように配置さ れる。 さらに、 上記した複数の照射部と複数の集光部は、 正六角形格子状に配置 され得る。 この場合には、 照射部と集光部は、 上記正六角形格子の各格子点上に 交互に配置される。  The plurality of irradiating units and the plurality of condensing units have at least one predetermined diameter centered on a point at which a perpendicular (a straight line perpendicular to the surface of the subject) passing substantially at the center of the predetermined measurement area intersects the surface of the subject. Can be arranged at equal intervals on a circle having a circle, and such that one irradiating part and one condensing part are paired to form a point-symmetric positional relationship with the center of the circle as a point-symmetric center. . In this case, the transmitted light intensity corresponding to the irradiation light for each wavelength from each light irradiation position is detected for each condensing position and each wavelength, and the transmitted light intensity for each wavelength from each light irradiation position is detected. Select the transmitted light intensity for each wavelength from the light irradiation position that is in point symmetry with the condensing position, and select the transmitted light intensity detected on the same circle from the selected transmitted light intensity Then, an arithmetic process of multiplying or integrating the transmitted light intensity of the transmitted light having the predetermined wavelength detected on the same circle is performed. Further, the intensity of the transmitted light condensed by the light condensing part set on the circle with the smaller diameter is used as information from the shallow part of the subject, and the intensity is set on the circle with the larger diameter. The transmitted light intensity condensed by the condensing portion is used as information from the deep part of the subject, and the transmitted light intensity is subjected to arithmetic processing. It can be arranged in a shape. In this case, the irradiating section and the condensing section are arranged on the grid points of the respective rows of the square lattice so that the row where the irradiating section is arranged and the row where the condensing section are arranged alternately. It is. Furthermore, the plurality of irradiation units and the plurality of light collection units described above can be arranged in a regular hexagonal lattice. In this case, the irradiating section and the condensing section are alternately arranged on each lattice point of the regular hexagonal lattice.
被検体(生体)内に照射する光としては 8 0 5 n m近傍の波長の光が用いられ、 その透過光強度から、 生体内での酸化ヘモグロビン濃度変化, 還元ヘモグロビン 濃度変化, および、 酸化ヘモグロビン濃度変化と還元ヘモグロビン濃度変化との 和として演算される総ヘモグロビン濃度変化を求め、 この総ヘモグロビン濃度変 化の経時変化を表示させることができる。 まだ、 上記透過光強度から直接総へモ グロビン濃度変化を求めてもよい。 なお、 被検体(生体)内への照射光としては、 7 0 0 n mから 1 1 0 0 n mの波長範囲から複数波長(少なくとも 2波長)の照射 光を用いることができる。 Light having a wavelength near 805 nm is used as light to irradiate the subject (living body). Based on the transmitted light intensity, changes in oxyhemoglobin concentration, changes in reduced hemoglobin concentration, and oxyhemoglobin concentration in the living body can be determined. The change in total hemoglobin concentration calculated as the sum of the change and the reduced hemoglobin concentration change is determined, and the total hemoglobin concentration change is calculated. Change over time can be displayed. Still, the total change in the concentration of moglobin may be obtained directly from the transmitted light intensity. In addition, as irradiation light to the inside of the subject (living body), irradiation light of a plurality of wavelengths (at least two wavelengths) in a wavelength range of 700 nm to 110 nm can be used.
上記した酸化ヘモグロビン濃度変化と還元ヘモグロビン濃度変化との和として 演算される総ヘモグロビン濃度変化, 酸化ヘモグロビン濃度変化, または、 還元 ヘモグロビン濃度変化の経時変化は、 それぞれ線の色、 線の種類または線の太さ 等を変えて線図(グラフ)表示することができる。 例えば、 酸化ヘモグロビン濃度 変化を赤色または橙色で、 還元ヘモグロビン濃度変化を青色, 藍色または緑色で、 総ヘモグロビン濃度変化を黒色または茶色で表示してもよい。 また、 酸化へモグ 口ビン濃度変化と還元へモグロビン濃度変化との和として算出される総へモグロ ビン濃度変化, 酸化ヘモグロビン濃度変化, または、 還元ヘモグロビン濃度変化 の画像をそれぞれの濃度変化に対応した色あるいは輝度で表示してもよく、 また、 濃度変化が正の場合には、 濃度変化の値の絶対値が大きくなるほど濃い赤色また は高い輝度で表示し、 濃度変化が負の場合には、 濃度変化の値の絶対値が小さく なるほど濃い青色または低い輝度で表示してもよい。  The change in total hemoglobin concentration, the change in oxyhemoglobin concentration, or the change in reduced hemoglobin concentration, which is calculated as the sum of the change in oxyhemoglobin concentration and the change in reduced hemoglobin concentration, is represented by the color of the line, the type of line, or the line shape, respectively. By changing the thickness etc., it is possible to display a diagram. For example, changes in oxyhemoglobin concentration may be displayed in red or orange, changes in reduced hemoglobin may be displayed in blue, indigo or green, and changes in total hemoglobin concentration may be displayed in black or brown. In addition, the images of total hemoglobin concentration change, oxyhemoglobin concentration change, or reduced hemoglobin concentration change calculated as the sum of the oxidized hemoglobin mouth concentration change and the reduced hemoglobin concentration change corresponded to the respective concentration changes. It may be displayed in color or brightness.When the density change is positive, the display is displayed in darker red or higher brightness as the absolute value of the density change value becomes larger, and when the density change is negative, As the absolute value of the value of the density change becomes smaller, the image may be displayed in dark blue or lower luminance.
また、 複数の照射部と複数の集光部を同一円上に配置した場合には、 上記円上 で検出された所定波長を有する透過光の強度を、 上記円の中心を通り上記被検体 表面に垂直な垂線上の被検体内の所定の深さの所定範囲領域あるいは前記垂線を 回転軸とする所定の回転体の所定範囲領域における、 酸化ヘモグロビン濃度変化 と還元へモグ口ビン濃度変化との和として算出される総へモグロビン濃度変化, 酸化ヘモグロビン濃度変化, または、 還元ヘモグロビン濃度変化を反映している ものと見做して演算処理することができる。 また、 この場合には、 上記円の直径 を 2 5 m m〜3 5 m mの範囲内とし、 深さを 1 2 m m〜 2 5 m mの範囲内とする ことができる。 また、 上記照射部または集光部の被検体表面との接触面を柔軟で 照射光に対して-透過性の高い部材で被覆することにより、 照射部または集光部が 被検体に与える刺激をやわらげることができる。 Further, when a plurality of irradiation units and a plurality of condensing units are arranged on the same circle, the intensity of transmitted light having a predetermined wavelength detected on the circle is set to the surface of the subject through the center of the circle. The change in the oxyhemoglobin concentration change and the reduction in the mog vine bottle concentration change in a predetermined range region of a predetermined depth in the subject on a perpendicular line perpendicular to the predetermined range or a predetermined range region of a predetermined rotating body having the perpendicular as a rotation axis. The calculation can be performed assuming that the change in total hemoglobin concentration, the change in oxyhemoglobin concentration, or the change in reduced hemoglobin concentration calculated as the sum is reflected. In this case, the diameter of the circle can be in the range of 25 mm to 35 mm, and the depth can be in the range of 12 mm to 25 mm. Also, by covering the contact surface of the irradiating section or the condensing section with the object surface with a flexible and highly transmissive member to the irradiation light, the irradiating section or the condensing section is The stimulus given to the subject can be softened.
以上のように、 複数の照射部からの照射光のそれぞれの被検体内における光路 が互いに重なり合うようにして、 複数の照射部と複数の集光部とを所定の直径の 円上に配置し、 各集光部においてそれと対向する位置にある照射部からの照射光 の透過光のみを選択的に検出し、 それぞれの集光部において検出された透過光の 強度を乗算することにより、 被検体表面上の上記円の中心位置から被検体内部の 所定の深さ位置にある領域(被計測領域)についての計測感度を向上させることが 可能となる。  As described above, the plurality of irradiation units and the plurality of light collection units are arranged on a circle having a predetermined diameter such that the optical paths of the irradiation light from the plurality of irradiation units in the subject overlap each other, At each condensing part, only the transmitted light of the irradiation light from the irradiating part located opposite to it is selectively detected, and the intensity of the transmitted light detected at each condensing part is multiplied to obtain the object surface. It is possible to improve the measurement sensitivity for a region (measurement region) located at a predetermined depth position inside the subject from the center position of the above circle.
すでに示したように、 本発明によれば、 複数の光照射点及び複数の光検出点問 に形成される複数の計測チャンネルについての計測を同時かつクロス卜一クなく 実行することができるので、 これら複数対の光照射点および光検出点を被検体内 の深部の特定の被計測部位を取り囲む円周上に配置し、 それぞれの対の中点位置 As described above, according to the present invention, it is possible to simultaneously and without cross-cutting measurement on a plurality of measurement channels formed between a plurality of light irradiation points and a plurality of light detection points. These plural pairs of light irradiation points and light detection points are arranged on a circumference surrounding a specific measurement site deep inside the subject, and the midpoint position of each pair is determined.
(計測位 S)をこの特定の被計測部位に一致させることにより、 この特定の被計測 部位における情報のみを選択的に集中検出することができる。 従って、 被検体内 深部の特定部位における生体情報を高感度で計測することができる。 By matching the (measurement position S) to this specific measured part, only the information on this specific measured part can be selectively concentrated. Therefore, it is possible to measure biological information at a specific site deep inside the subject with high sensitivity.
〈実施例 3〉  <Example 3>
以下、 本発明の第 3の実施例になる生体内深部情報を計測するのに適した生体 光計測装置について示す。  Hereinafter, a living body optical measurement device suitable for measuring deep in-vivo information according to a third embodiment of the present invention will be described.
なお、 本実施例では、 被検体(生体)内の酸化および還元ヘモグロビン濃度変化 の計測を目的として、 照射光として波長の異なる 2種類の光(2波長光)を用い、 また、 光照射位置および光検出位置をそれぞれ 2箇所に設定しているカ これら 照射光の数 (波長数), 光照射位置および光検出位置をさらに増やすことは容易で ある。 また、 照射光の数 (波長数〉を増加させることにより、 酸化および還元へモ グロビン濃度の変化に加えてチトクロームやミオグロビン等他の生体内の光吸収 物質濃度の変化を計測することもできることは云うまでもない。  In this example, two types of light having different wavelengths (two-wavelength light) were used as irradiation light for the purpose of measuring changes in oxidized and reduced hemoglobin concentrations in a subject (living body). Light detection positions are set at two locations, respectively. It is easy to further increase the number (wavelength number) of these irradiation lights, light irradiation positions, and light detection positions. In addition, by increasing the number of irradiation light (number of wavelengths), it is possible to measure not only changes in the concentration of redox hemoglobin but also changes in the concentration of other light-absorbing substances in the living body such as cytochrome and myoglobin. Needless to say.
図 1 5に、 本実施例になる生体光計測装置の概略構成を示す。 複数(本実施例では 4個)の光源 1一 1, 1一 2, 1 - 3 , 1一 4からの出力光 は、 それぞれ照射用光ファイバ 2— i, 2— 2, 2— 3 , 2— 4に導人される。 ここで、 光源 1 一 1, 1— 3からの出力光の波長はえ 1で、 光源 1一 2, 1一 4 からの出力光の波長は; L 2である。 なお、 この波長え 1 , え 2は 400 nmから 2400 nmの範囲内から選択される。 特に、 生体内の血行動態を計測する場合 には、 700 nmから 1 1 00 nmの波長範囲内から、 互いの波長差が 50 nm 以内となるように選択されるのが望ましい。 また、 光源 1一 1, 1一 2, 1一 3, 1一 4からの出力光は、 それぞれ光源駆動回路 4一 1 , 4— 2, 4— 3, 4 -4 によって、 1 00 H zから 1 OMH zの間の互いに異なる変調周波数 f 1, f 2 , f 3, f 4でもってそれぞれ強度変調されている。 また、 各光源駆動回路 4— 1, 4一 2, 4— 3 , 4— 4からの変調周波数信号 A , B, C, Dは、 参照周波数信 号として、 位相検波器 27— 1, 27 - 2 , 27— 3, 27— 4にそれぞれ入力 されている。 FIG. 15 shows a schematic configuration of the biological optical measurement device according to the present embodiment. Output light from a plurality (four in this embodiment) of light sources 111, 1-1, 1-3, 114 are respectively illuminated optical fibers 2-i, 2--2, 2-3-3, 2 — Guided to 4. Here, the wavelength of the output light from the light sources 1-1, 1-3 is f1, and the wavelength of the output light from the light sources 1-1, 1-4 is L2. The wavelengths 1 and 2 are selected from the range of 400 nm to 2400 nm. In particular, when measuring hemodynamics in a living body, it is desirable to select a wavelength within the range of 700 nm to 110 nm so that the wavelength difference between them is within 50 nm. Also, the output light from the light sources 111, 112, 113, and 114 is output from 100 Hz by the light source driving circuits 41, 4-2, 4-3, and 4-4, respectively. Intensity modulation is performed at different modulation frequencies f 1, f 2, f 3, and f 4, respectively, during 1 OMHz. The modulation frequency signals A, B, C, and D from the light source driving circuits 4-1, 4-1-2, 4-3, and 4-4 are used as reference frequency signals as phase detectors 27-1 and 27-. 2, 27-3, 27-4 are input.
光ファイバ 2— 1, 2— 2は光方向性結合器 3— 1に接続されており、 また、 光ファイバ 2— 3 , 2— 4は光方向性結合器 3— 2に接続されている。 光源 1一 1, 1— 2からの光は、 光方向性結合器 3— 1中で混合されて照射用光ファイバ 8— 1中に導入され、 光源 1— 3, 1—4からの光は、 光方向性結合器 3— 2中 で混合されて照射用光ファイバ 8— 2中に導入される。 照射用光ファイバ 8— 1 , 8— 2および集光用光ファイバ 1 0— 1, 1 0— 2は、 光ファイバホルダ 2 1に よって固定されて、 被検体(人頭部) 9表面に当接されている。  The optical fibers 2-1 and 2-2 are connected to the optical directional coupler 3-1. The optical fibers 2-3 and 2-4 are connected to the optical directional coupler 2-2. Light from the light sources 1-1, 1-2 is mixed in the optical directional coupler 3-1 and introduced into the irradiation optical fiber 8-1, and light from the light sources 1-3, 1-4 is Are mixed in the optical directional coupler 3-2 and introduced into the irradiation optical fiber 8-2. The irradiation optical fibers 8-1 and 8-2 and the condensing optical fibers 10-1 and 10-2 are fixed by the optical fiber holder 21 and applied to the surface of the subject (human head) 9. Touched.
照射用光ファイバ 8— 1, 8— 2から被検体 9に光を照射し、 集光用光フアイ ノく 1 0— 1 , 1 0— 2で被検体 9内を透過してきた光(透過光)を集光する。 ここ で、 照射用光ファイバ 8— 1 , 8— 2と集光用光ファイバ 1 0— 1 , 1 0— 2は、 光ファイバホルダ 2 1上に設定された一つの円の円周上に等間隔に配置されてお り、 上記円の中心を挟んで照射用光ファイバ 8— 1, 8— 2とそれぞれ対向する 位置に、 集光用光ファイバ 1 0— 1, 1 0— 2がそれぞれ配置されている。 光フ アイバホルダ 2 1は、 遮光性を高めるために黒色の材料で形成されるかもしくは 黒色の材料で被覆されていて、 図示のような中空構造体形状とされているのが望 ましい。 また、 照射用光ファイバ 8— 1 , 8— 2および集光用光ファイバ 1 0— 1 , 1 0— 2も、 それらの被検体 9との接触面以外の表面部分を黒色材料で被覆 されているのが望ましい。 さらに、 照射用光ファイバ 8— 1, 8— 2および集光 用光ファイバ 1 0— 1, 1 0— 2の被検体 9との接触面には、 被検体 9への当接 により被検体 9に耐える刺激を軽減する目的で、 例えばビニール樹脂等の柔軟で 照射光に対して透過性の良い材料からなる被覆を施しておくのが望ましい。 The object 9 is irradiated with light from the irradiation optical fibers 8-1, 8-2, and the light transmitted through the object 9 through the condensing optical fibers 10-1 and 10-2 (transmitted light). Focus). Here, the irradiation optical fibers 8-1 and 8-2 and the condensing optical fibers 10-1 and 10-2 are arranged on the circumference of one circle set on the optical fiber holder 21. The light-collecting optical fibers 10-1 and 10-2 are arranged at intervals and opposite to the irradiation optical fibers 8-1 and 8-2 with the center of the circle interposed therebetween. Have been. Light The eyeba holder 21 is preferably formed of a black material or coated with a black material in order to enhance the light-shielding property, and preferably has a hollow structure as shown in the figure. The irradiation optical fibers 8-1, 8-2 and the condensing optical fibers 10-1, 10-2 are also covered with a black material on the surface portions other than the contact surface with the subject 9. Is desirable. Further, the contact surfaces of the irradiation optical fibers 8-1, 8-2 and the condensing optical fibers 10-1, 10-2 with the subject 9 are brought into contact with the subject 9 so that the subject 9 It is desirable to apply a coating made of a material that is flexible and has good permeability to irradiation light, such as vinyl resin, for the purpose of reducing the stimulus that will endure.
集光用光ファイバ 1 0— し 1 0— 2で集光された被検体 (生体)内透過光は、 それぞれ光検出器 1 1 一 1 , 1 1— 2に導かれて、 光電変換されて検出される。 光検出器 1 0— 1 , 1 0— 2には、 光電子増倍管やアバランシェフオ トダイォ一 ドカ ^ '用いられる。 光検出器 1 0— 1からの出力信号は 2つに分配された後位相検 波器 2 7— 1 , 2 7— 2にそれぞれ入力され、 光検出器 1 1 一 2からの出力信号 も 2つに分配された後位相検波器 2 7 - 3 , 2 7— 4にそれぞれ入力される。 位相検波器 2 7— 1 , 2 7 - 2 , 2 7— 3, 2 7— 4に入力された信号には、 それぞれ被検体(生体)内に照射した全ての波長の光の透過光強度信号が混入して いる力、 位相検波器 2 7— 1 , 2 7 - 2 , 2 7 - 3 , 2 7— 4には、 光源駆動回 路 4— 1, 4一 2, 4— 3 , 4— 4からの参照周波数信号 A, B , C , Dがそれ ぞれ入力されているので、 位相検波器 2 7— 1では、 光源 1 一 1からの波長え 1 , 変調周波数 f 1なる照射光に対応する透過光強度成分のみが、 位相検波器 2 7— 2では、 光源 1— 2からの波長 λ 2, 変調周波数 ί 2なる照射光に対応する透過 光強度成分のみが、 位相検波器 2 7— 3では、 光源 1 一 3からの波長え 1, 変調 周波数 f 3なる照射光に対応する透過光強度成分のみが、 また、 位相検波器 2 7 —4では、 光源 1 _ 4からの波長え 2, 変調周波数 f 4なる照射光に対応する透 過光強度成分のみが、 それぞれ分離 ·検出される。  The light transmitted through the subject (living body) condensed by the converging optical fibers 10 0-1 10-2 is guided to the photodetectors 1 1 1 1 1 and 1 1-2, respectively, and photoelectrically converted. Is detected. Photomultiplier tubes and avalanche photodiodes are used for the photodetectors 10-1 and 10-2. The output signal from the photodetector 10-1 is divided into two and then input to the phase detectors 27-1 and 27-2, respectively, and the output signal from the photodetector 11-2 is also 2 After being divided into two, they are input to the phase detectors 27-3 and 27-4, respectively. The signals input to the phase detectors 27-1, 27-2, 27-3, and 27-4 include the transmitted light intensity signals of all wavelengths of light radiated into the subject (living body). The phase detectors 27-1, 27-2, 27-3, 27-4 have light source driving circuits 4-1, 4, 1-2, 4-3, 4-4 Since the reference frequency signals A, B, C, and D from 4 are respectively input, the phase detector 27-1 applies the wavelength 1 from the light source 111 and the irradiation light with the modulation frequency f 1 Only the corresponding transmitted light intensity component is detected by the phase detector 27-2. Only the transmitted light intensity component corresponding to the irradiation light having the wavelength λ 2 and the modulation frequency ί 2 from the light source 1-2 is detected by the phase detector 27. In the case of —3, only the transmitted light intensity component corresponding to the irradiating light with the modulation frequency f 3 and the wavelength of the light from the light source 1 to 3 are obtained. 2, modulation frequency f 4 Only over the light intensity component permeable corresponding to Shako are respectively separated and detected.
位相検波器 2 7— 1 , 2 7— 3で検出された波長え 1の透過光強度信号成分は 乗算器 2 8一 1に入力されて両信号成分の乗算が行なわれ、 位相検波器 2 7 - 2 , 2 7— 4で検出された波長; I 2の透過光強度信号成分は乗算器 2 8— 2に入力さ れて両信号成分の乗算が行なわれ、 乗算器 2 8— 1, 2 8 - 2からの出力信号は ログアンプ 2 9— 1, 2 9— 2にそれぞれ入力される。 さらに、 ログアンプ 2 9 一 1 , 2 9— 2からの出力信号は、 AZ D (アナログ—デジタル)変換器 1 4一 1, 1 4一 2にそれぞれ入力されて、 そこでそれぞれデジタル信号に変換された後に、 演算装置 3 0に取り込まれる。 The transmitted light intensity signal component of the wavelength 1 detected by the phase detectors 27-1 and 27-3 is The signal is input to the multiplier 28 1 and multiplied by both signal components, and the wavelengths detected by the phase detectors 27-2 and 27-4; the transmitted light intensity signal component of I 2 is calculated by the multiplier 28 The signal is input to —2 to multiply both signal components. The output signals from multipliers 28-1 and 28-2 are input to log amplifiers 29-1 and 29-2, respectively. Further, the output signals from the log amplifiers 291-1 and 29-2 are input to AZD (analog-digital) converters 141-1 and 14-12, respectively, where they are converted into digital signals. After that, it is taken into the arithmetic unit 30.
演算装置 3 0では、 取り込まれた 2波長の透過光強度の時系列信号より、 酸化 ヘモグロビン濃度の変化, 還元ヘモグロビン濃度の変化, および、 血液量を表す 酸化へモグ口ビン濃度変化と還元へモグ口ビン濃度変化との和が演算され、 その 演算結果が、 時系列変化グラフとして表示装置 1 7に表示される。 また、 同様の 装置で多点計測 (被検体 9内の複数の計測領域についての計測) を行った場合に は、 その計測結果を画像として表示装置 1 7に表示することができる。  The arithmetic unit 30 changes the oxyhemoglobin concentration, changes the reduced hemoglobin concentration, and expresses the blood volume to the oxidized to mog-to-bin concentration change and the reduced to the oxidized hemoglobin concentration based on the time-series signals of the transmitted two-wavelength transmitted light intensities. The sum with the mouth bottle density change is calculated, and the calculation result is displayed on the display device 17 as a time series change graph. Further, when multipoint measurement (measurement for a plurality of measurement regions in the subject 9) is performed by the same device, the measurement result can be displayed on the display device 17 as an image.
各ヘモグロビン濃度の変化を時系列変化グラフとして表示する際は、 表示装置 1 7がカラー表示可能な場合には、 各ヘモグロビン濃度の変化グラフ毎に表示色 を変えて表示し、 表示装置 1 7がカラー表示不可能な場合には、 各ヘモグロビン 濃度の変化グラフ毎に表示線の種類または太さ等を変えて表示することができる。 例えば、 表示装置 1 7がカラー表示可能な場合は、 酸化ヘモグロビン濃度の変化 は赤色または橙色で、 還元ヘモグロビン濃度の変化は青色, 藍色または緑色で、 総ヘモグロビン濃度の変化は黒色, 灰色または茶色で表示する。 また、 多点計測 の結果を画像表示する場合には、 等高線画像で表示しても良いし、 濃度変化値の 変化に対応して表示色あるいは表示輝度を変えて表示してもよい。 さらに、 正の 濃度変化値の絶対値が大きい程濃い赤色または濃い灰色で表示し、 負の濃度変化 値の絶対値が大きくなる程濃い青色または淡い白色で表示してもよい。  When displaying the change of each hemoglobin concentration as a time-series change graph, if the display device 17 can display color, the display color is changed for each change graph of each hemoglobin concentration, and the display device 17 is displayed. When color display is not possible, the type or thickness of the display line can be changed for each change graph of hemoglobin concentration and displayed. For example, if the display device 17 can display color, the change in oxyhemoglobin concentration is red or orange, the change in reduced hemoglobin concentration is blue, indigo or green, and the change in total hemoglobin concentration is black, gray or brown. To display. When displaying the result of the multipoint measurement as an image, the result may be displayed as a contour image, or the display color or the display brightness may be changed in accordance with the change in the density change value. Furthermore, the display may be displayed in deep red or dark gray as the absolute value of the positive density change value increases, and may be displayed in dark blue or pale white as the absolute value of the negative density change value increases.
本発明の装置構成としては、 図 i 5に示した光検出器 1 1— 1 , 1 1 一 2から 演算装置 3 0までのデータ収集部に関して、 様々な変形構成例が考えられる。 図 1 6から図 20に、 これらのデータ収集部に関する変形構成例を示す。 As the device configuration of the present invention, various modified configurations can be considered with respect to the data collection units from the photodetectors 11-1 and 11-12 to the arithmetic unit 30 shown in FIG. Figure FIGS. 16 to 20 show modified examples of the configuration of these data collection units.
図 1 6に、 データ収集部に関する第 1の変形構成例を示す。 なお、 本例では、 光源 1一 1, 1 - 2, 1— 3, 1一 4から集光用光ファイバ 1 0— 1, 1 0— 2 に到るまでの(光照射部および集光部の)構成は図 1 5の場合と同じとし、 簡略化 のためにそれらの部分の図示は省略している。 なお、 図中の丸囲み記号 A, B, C , Dは、 図 1 5の場合同様、 参照周波数信号を表している。 これらの点は以下 の図 1 7〜図 2◦に関しても同様である。  FIG. 16 shows a first modified configuration example of the data collection unit. Note that in this example, the light source 11-1, 1-2, 1-3, 114 to the optical fibers 10-1 and 10-2 for condensing (the light irradiating section and condensing section) The configuration is the same as that in Fig. 15 and those parts are omitted for simplicity. Note that the encircled symbols A, B, C, and D in the figure represent reference frequency signals, as in the case of FIG. These points are the same for the following Figures 17 to 2◦.
本例のデータ収集部は、 光検出器 1 1— 1 , 1 1一 2と、 位相検波器 27— 1, In this example, the data collection unit consists of a photodetector 11-1, 1-11, and a phase detector 27-1,
2 7 - 2 , 27 - 3, 27— 4と、 A/D変換器 1 4— 1, 1 4— 2, 1 4 - 3, 1 4一 4と、 演算装置 30とからなっている。 27-2, 27-3, 27-4, A / D converters 14-1, 14-2, 14-3, 14-14, and arithmetic unit 30.
位相検波器 27— 1 , 27 - 2, 27 - 3, 27— 4に到るまでの構成は、 図 1 5の場合と同じである力 ここでは、 位相検波器 27— 1, 27 - 2, 27 - 3, 27— 4からの出力信号(透過光強度信号)力 、 A/D変換器 1 4一 1, 1 4 一 2, 1 - 3 , 1 4一 4でそれぞれデジタル信号に変換された後に、 演算装置 The configuration up to the phase detector 27-1, 27-2, 27-3, 27-4 is the same as that in Fig. 15. The force here is the phase detector 27-1, 27-2, Output signals (transmitted light intensity signals) from 27-3 and 27-4 were converted to digital signals by A / D converters 14-1, 14-14, 1-3 and 14-14, respectively. Later, arithmetic unit
30に入力される。 演算装置 30では、 先ず入力された全ての波長の透過光強度 信号について同一波長の透過光強度信号同士の間での乗算を行なってから、 その 乗算結果を自然対数演算するか、 または、 先ず入力された全ての透過光強度信号 について自然対数演算を行なってから、 この自然対数演算結果について同一波長 同士間での加算を行なう。 ここでは、 上記した同一波長同士の透過光強度信号の 組み合わせは、 AZD変換器 1 4一 1, 1 4一 3からの出力信号の組と、 A/D 変換器 1 4一 2, 14— 4からの出力信号の組との、 合計 2組である。 Entered in 30. The arithmetic unit 30 first multiplies the input transmitted light intensity signals of all the wavelengths between the transmitted light intensity signals of the same wavelength, and then calculates the natural logarithm of the result of the multiplication, or The natural logarithm operation is performed on all the transmitted light intensity signals thus obtained, and then the result of the natural logarithm operation is added between the same wavelengths. Here, the combination of the transmitted light intensity signals of the same wavelength described above is the combination of the output signals from the AZD converters 14-1 and 14-13 and the A / D converters 14-1 and 14-4 And two sets of output signals from.
図 1 7に、 データ収集部に関する第 2の変形構成例を示す。  FIG. 17 shows a second modified configuration example of the data collection unit.
本構成例のデータ収集部は、 光検出器 1 1一 1, 1 1一 2と、 位相検波器 27 一 1, 27 - 2, 27 - 3, 27— 4と、 乗算器 28 - 1 , 28— 2と、 AZD 変換器 1 4一 1 , 14— 2と、 演算装置 30とからなっている。 乗算器 28— 1 , 28— 2に到るまでは、 図 1 5に示した構成と同じである力 、 ここでは、 乗算器 28 - 1 , 28— 2からの出力信号は、 AZD変換器 1 4一 1, 1 4— 2でデジ タル信号に変換された後演算装置 30に入力される。 演算装置 30では、 AZD 変換器 1 4一 1, 1 4一 2からの信号に対し、 それぞれ自然対数演算が行なわれ る。 The data collection unit of this configuration example includes a photodetector 111, a phase detector 27-11, 27-2, 27-3, 27-4, and a multiplier 28-1, 28. —2, AZD converters 14 1, 14 — 2, and an arithmetic unit 30. Up to the multipliers 28-1 and 28-2, the power is the same as that of the configuration shown in FIG. Output signals from 28-1 and 28-2 are converted into digital signals by the AZD converters 14-1 and 14-2, and then input to the arithmetic unit 30. The arithmetic unit 30 performs a natural logarithmic operation on the signals from the AZD converters 141-1 and 14-12, respectively.
図 1 8に、 データ収集部に関する第 3の変形構成例を示す。  FIG. 18 shows a third modification of the data collection unit.
本構成例のデータ収集部は、 光検出器 1 1一 1 , 1 1 2と、 位相検波器 27 — 1, 27 - 2, 27— 3 , 27— 4と、 ログアンプ 29— 1 , 29 - 2 , 29 - 3 , 29— 4と、 加算器 40— 1, 40— 2と、 AZD変換器 1 4一 1, 14 — 2と、 演算装置 30とから構成されている。 位相検波器 27 -- し 27 - 2, 2 7 - 3 , 27— 4までは図 1 5に示した構成と同様であるカ^ 本構成例では、 位相検波器 27— 1 , 27 - 2, 27 - 3 , 2 7— 4からの出力信号はログアン プ 29— 1, 29 - 2, 29— 3, 29— 4にそれぞれ入力されて自然対数変換 される。 ログアンプ 29— 1 , 29— 3からの透過光強度信号 (波長 λ 1の透過 光の強度信号) は加算器 40— 1に入力されて互いに加算され、 ログアンプ 29 一 2, 2 9— 4からの透過光強度信号 (波長 2の透過光の強度信号) は加算器 4 0— 2に入力されて互いに加算される。 加算器 40— 1 , 40— 2からの出力 信号は、 それぞれ AZD変換器 1 4一 1 , 1 4— 2に入力されてデジタル信号に 変換された後に、 演算装置 30に入力される。  The data acquisition section of this configuration example consists of a photodetector 1 1 1 1 1, 1 1 2, a phase detector 27-1, 27-2, 27-3, 27-4, and a log amp 29-1, 29- 2, 29-3, 29-4, adders 40-1, 40-2, AZD converters 14-1, 14-2, and an arithmetic unit 30. Phase detectors 27-2, 27-3, 27-4 are the same as the configuration shown in FIG. 15. In this configuration example, the phase detectors 27-1, 27-2, Output signals from 27-3, 27-4 are input to log amps 29-1, 29-2, 29-3, and 29-4, respectively, and are subjected to natural logarithmic conversion. The transmitted light intensity signals (the transmitted light intensity signals of wavelength λ1) from the log amplifiers 29-1 and 29-3 are input to the adder 40-1 and added together, and the log amplifiers 29-1 2, 29-4 The transmitted light intensity signal (the intensity signal of the transmitted light of wavelength 2) is input to the adder 40-2 and added together. Output signals from the adders 40-1 and 40-2 are input to the AZD converters 141-1 and 144-2, respectively, converted into digital signals, and then input to the arithmetic unit 30.
図 1 9に、 データ収集部に関する第 4の変形構成例を示す。  FIG. 19 shows a fourth modification of the data collection unit.
本構成例のデータ収集部は、 光検出器 1 1一 1, 1 1一 2と、 位相検波器 27 一 1 , 27— 2, 27 - 3, 27— 4と、 ログアンプ 29 1, 29— 2, 29 - 3 , 2 9— 4と、 AZD変換器 1 4— 1, 1 4— 2, 1 4— 3, 1 4一 4と、 演算装置 30とから構成されている。 位相検波器 27— 1 , 27 - 2, 27 - 3, 2 7— 4までの構成は図 1 5の場合と同じであるが、 本例では位相検波器 27— 1, 27— 2, 27 - 3, 27 _4からの出力信号は、 それぞれログアンプ 29 一 1 , 29 - 2, 29 - 3 , 29 _ 4に入力されて先ず自然対数変換される。 口 グアンプ 29— 1, 29 - 2, 29— 3, 29— 4からの出力信号は、 それぞれ AZD変換器 1 4一 1, 14-2, 14— 3, 14一 4でデジタル信号に変換さ れた後に演算装置 30に入力される。 演算装置 30では、 入力された透過光強度 信号について全波長につき同一波長同士の透過光強度信号間での加算が行なわれ る。 本例では、 上記した同一波長同士の透過光強度信号の組み合わせは、 AZD 変換器 14一 1, 14- 3からの出力信号の組と AZD変換器 14一 2, A/D 変換器 1 3— 4からの出力信号の組との合計 2組である。 The data acquisition unit of this configuration example consists of a photodetector 11 1 1 1 1 1 1 1 2, a phase detector 27 1 1, 27 2, 27-3, 27 4 2, 29-3, 29-4, an AZD converter 14-1, 14-2, 14-3, 14-14, and an arithmetic unit 30. The configuration up to the phase detector 27-1, 27-2, 27-3, 27-4 is the same as that of Fig. 15, but in this example, the phase detector 27-1, 27-2, 27- The output signals from 3, 27_4 are input to log amplifiers 29-11, 29-2, 29-3, and 29_4, respectively, and are first subjected to natural logarithmic conversion. mouth The output signals from amplifiers 29-1, 29-2, 29-3, and 29-4 were converted to digital signals by AZD converters 14-1, 1, 14-2, 14-3, and 14-4, respectively. Later, it is input to the arithmetic unit 30. In the arithmetic unit 30, the input transmitted light intensity signal is added between transmitted light intensity signals of the same wavelength for all wavelengths. In this example, the combination of the transmitted light intensity signals of the same wavelength described above is determined by the combination of the output signals from the AZD converters 14-1 and 14-3, the AZD converters 14-1 and the A / D converter 13-3 This is a total of two sets including the set of output signals from 4.
図 20に、 データ収集部に関する第 5の変形構成例を示す。  FIG. 20 shows a fifth modified configuration example of the data collection unit.
本例のデータ収集部は、 光検出器 1 1一 1 , 1 1一 2と、 AZD変換器 14一 In this example, the data collection unit consists of a photodetector 1 1 1 1, 1 1 1 1 2 and an AZD converter 14 1
1 , 14— 2, 14- 3, 14-4, 14— 5, 14— 6と、 演算装置 30とで 構成されている。 光検出器 1 1一 1, 1 1一 2までの構成は図 1 5に示したのと 同じである力、 本例の場合には、 光検出器 1 1一 1 , 1 1一 2からの出力信号は、 それぞれ AZD変換器 14一 1, 1 4— 2に入力されて先ず AZD変換される。 そして、 AZD変換器 14一 1 , 14一 2からの出力信号は、 直接演算装置 30 に人力されている。 また、 A/D変換器 14一 3 , 14— 4, 14— 5, 14—1, 14—2, 14—3, 14—4, 14—5, 14—6, and the arithmetic unit 30. The configuration up to the photodetectors 1 1 1 1 and 1 1 1 1 2 is the same as that shown in Fig. 15. In this example, the power from the photo detectors 1 1 1 1 1 1 1 1 1 2 The output signals are input to the AZD converters 14-11 and 144-2, respectively, and are first subjected to AZD conversion. The output signals from the AZD converters 141-1 and 14-12 are directly input to the arithmetic unit 30. A / D converters 14 1-3, 14-4, 14-5, 14-
6には参照周波数信号 (各照射光の変調周波数信号) Λ, B, C, Dがそれぞれ 入力されてそれぞれデジタル信号に変換された後に、 演算装置 30に入力されて いる。 演算装置 30では、 AZD変換器 14一 1, 1 -2, 14- 3, 14一 4, 1 - 5, 14一 6からの入力信号をそれぞれフーリエ変換する。 そして、 AZD変換器 1 4一 3, 1 -4, 14— 5, 14一 6からの入力信号をそれぞ れにフーリエ変換して得られた最高強度の周波数をそれぞれ f I, f 2 , f 3 , f 4として、 A/D変換器 14— 1からの入力信号をフーリエ変換して得られた 信号中から周波数 f l , f 2に相当する信号強度をそれぞれ I (f 1), I (f 2) とし、 AZD変換器 14一 2からの入力信号をフーリエ変換して得られた信号中 から周波数 f 3, f 4に相当する信号強度を I (f 3), I (f 4)とする。 ここで、In 6, reference frequency signals (modulation frequency signals of each irradiation light) Λ, B, C, and D are respectively input and converted into digital signals, and then input to the arithmetic unit 30. The arithmetic unit 30 Fourier-transforms the input signals from the AZD converters 14-1, 1, -2, 14-3, 14-1, 4, 1-5, 14-16, respectively. Then, the input signals from the AZD converters 14-13, 1-4, 14-5, and 14-16 are subjected to Fourier transform, respectively, and the highest-intensity frequencies obtained are fI, f2, f, respectively. 3 and f4, the signal strengths corresponding to the frequencies fl and f2 from the signal obtained by Fourier transforming the input signal from the A / D converter 14-1 are I (f1) and I (f 2), and the signal strengths corresponding to the frequencies f 3 and f 4 from the signals obtained by Fourier transforming the input signal from the AZD converters 14 and 1 are defined as I (f 3) and I (f 4) . here,
I (f 1)と I (f 3)は同一波長同士の照射光 (図 1 5の光源 1—し 1— 3から の波長え 1の光) に対応する透過光強度信号であるので、 両者を相互乗算した上 で、 自然対数演算を行ない、 また、 I ( f 2 )と I ( f 4 )も同一波長同士の照射光I (f 1) and I (f 3) are irradiation lights of the same wavelength. Since the signal is a transmitted light intensity signal corresponding to the wavelength of 1), a natural logarithm operation is performed after multiplying the two, and I (f 2) and I (f 4) also have the same wavelength. Irradiation light
(図 1 5の光源 1 一 2 , 1— 4からの波長え 2の光) に対応する透過光強度信号 であるので、 両者を相互乗算した上で、 自然対数演算を行なう。 Since the transmitted light intensity signal corresponds to (the light of wavelength 2 from the light sources 1-2 and 1-4 in FIG. 15), natural logarithm calculation is performed after multiplying the two.
以上、 単一円の円周上に照射用光ファイバ 2本と集光用光ファイバ 2本を配置 した場合について説明を行なってきたが、 以下に照射用光ファイバおよび集光用 光ファイバをさらに多数配置する場合の、 光ファイバ配置例について説明する。 図 2 1に、 多数の照射用光ファイバおよび集光用光ファイバを配 itする場合の 第 1の配置例を示す。 本配置例では、 2重同心円のそれぞれの円周上に、 照射用 光フアイバぉよび集光用光フアイバを各 3本ずつ配置する例を示すが、 照射用光 ファイバおよび集光用光ファイバをそれぞれの円周上にさらに多数配置すること により、 被検体(生体)内深部についての測定感度を高めることができ、 さらには、 照射用光ファイバおよび集光用光ファイバを配置する同心円をさらに多重化して 設けることにより、 被検体(生体)内の種々の深さ位置での測定感度を高めること ができることは云うまでもない。  In the above, the case where two irradiation optical fibers and two condensing optical fibers are arranged on the circumference of a single circle has been described, but the irradiation optical fiber and the condensing optical fiber are further described below. An example of optical fiber arrangement when a large number of optical fibers are arranged will be described. FIG. 21 shows a first arrangement example in which a large number of irradiation optical fibers and light collecting optical fibers are arranged. In this arrangement example, three irradiating optical fibers and three concentrating optical fibers are arranged on each circumference of the double concentric circle, but the irradiating optical fiber and the concentrating optical fiber are arranged. By arranging more on each circumference, the measurement sensitivity for the deep part inside the subject (living body) can be increased. Furthermore, concentric circles in which the irradiation optical fiber and the condensing optical fiber are arranged are further multiplexed. It is needless to say that the measurement sensitivity at various depth positions in the subject (living body) can be enhanced by providing the information.
図 2 1において、 照射用光ファイバ 8— 1, 8— 2, 8— 3は、 2重同心円の 外側の円 5 0— 1の円周上に 1 2 0度毎に等間隔配置されており、 同 -円周上の 上記照射用光ファイバ 8— 1, 8— 2 , 8— 3とそれぞれ対向する位置に集光用 光ファイノく 1 0— 1, 1 0 - 2 , 1 0— 3がそれぞれ配 Sされている。 また、 照 射用光ファイバ 8— 4, 8— 5, 8— 6は、 上記 2重同心円の内側の円 5 0— 2 の円周上に 1 2 0度毎に等間隔配置されており、 同一円周上の上記照射用光ファ ィバ 8— 4 , 8 - 5 , 8— 6とそれぞれ対向する位置に集光用光ファイバ 1 0— In Fig. 21, the irradiation optical fibers 8-1, 8-2, and 8-3 are arranged at regular intervals of 120 degrees on the circumference of the circle 50-1 outside the double concentric circle. The converging optical fins 10-1, 10-2, and 10-3 are located at positions opposite to the irradiation optical fibers 8-1, 8-2, and 8-3 on the same circumference. Each is arranged S. The irradiating optical fibers 8-4, 8-5, and 8-6 are arranged at regular intervals of 120 degrees on the circumference of the circle 50-2 inside the double concentric circle. The condensing optical fiber 10- is located at a position facing the irradiation optical fibers 8-4, 8-5, and 8-6 on the same circumference.
4, 1 0 - 5 , 1 0— 6がそれぞれ配置されている。 全て(6本)の光ファイバは、 上記のような配置関係を保った上で、 図 1 5に示したと同様の光ファイバホルダ4, 10-5 and 10-6 are arranged respectively. All (six) optical fibers are kept in the above-mentioned arrangement, and the same optical fiber holder as shown in Fig. 15
2 1に固定保持されている。 このような光ファイバの配置構成を採ることにより、 外側円 5 0— 1の円周上で検出された透過光強度を生体内深部情報として割り当 てて演算処理することによつて生体内深部のへモグロビン濃度変化を求め、 内側 円 5 0— 2の円周上で検出された透過光強度を生体内浅部情報として割り当てて 演算処理することによって生体内浅部のへモグロビン濃度変化を求めることが可 能となる。 2 Fixed to 1 By adopting such an optical fiber arrangement, the transmitted light intensity detected on the circumference of the outer circle 50-1 is assigned as in-vivo deep part information. To calculate the change in hemoglobin concentration in the deep part of the living body, and assign the transmitted light intensity detected on the circumference of the inner circle 50-2 as shallow part information in the living body to perform the processing. This makes it possible to determine the change in hemoglobin concentration in the shallow part of the body.
また、 内側円 5 0— 2の円周上で検出された透過光強度から演算して求められ るへモグロビン濃度変化に感度分布から推定される所定の重み係数を乗じること によって得られるヘモグロビン濃度変化を、 外側円 5 0— 1の円周上で検出され た透過光強度から演算して求められるヘモグロビン濃度変化から減算することに より、 生体内浅部に対する生体内深部の相対感度をさらに向上させることも可能 である。  Also, the hemoglobin concentration change obtained by multiplying the hemoglobin concentration change calculated from the transmitted light intensity detected on the circumference of the inner circle 50-2 by a predetermined weighting factor estimated from the sensitivity distribution. Is subtracted from the hemoglobin concentration change calculated from the transmitted light intensity detected on the circumference of the outer circle 50-1 to further improve the relative sensitivity of the deep part of the body to the shallow part of the body. It is also possible.
図 2 2に、 多数の照射用光ファイバおよび集光用光ファイバを配置する場合の 第 2の配置構成例を示す。 ここでは、 本発明に基づいて被検体(生体)内の様々な 被計測位置についての計測を行なう場合のよリ効率的な光フアイバ配置について 示す。 本例では、 一つの円の円周上に 2対の照射用一集光用光ファイバ対を配置 したものを基本ファイバ単位とし、 所望とする計測領域の広さに合わせて、 この 基本ファイバ単位を複数単位併設している。  FIG. 22 shows a second arrangement example in which a large number of irradiation optical fibers and light collecting optical fibers are arranged. Here, an optical fiber arrangement that is more efficient when measuring at various measurement positions in a subject (living body) based on the present invention will be described. In this example, two pairs of one converging optical fiber for irradiation are arranged on the circumference of one circle as a basic fiber unit, and the basic fiber unit is set according to the desired measurement area size. Is provided in multiple units.
一つの円の円周上に 2対の照射用—集光用光ファイバ対を配置したものを基本 ファイバ単位として、 計測領域の拡張を行なう場合には、 図 2 2に示すように、 正方格子の各格子点上に照射用光ファイバおよび集光用光ファイバを配置し、 正 方格子の対角線方向には、 照射用光ファイバと集光用光ファイバとが交互に位置 するようにする。 ここでは、 計測位置を 9箇所とし、 各計測位置の周りに 9個の 円 6 0— 1〜6 0— 9を設定し、 照射用光ファイバ 8— 1〜8— 8および集光用 光ファイバ 1 0— 1〜 1 0— 8を上記円の円周上でかつ上記正方格子の格子点上 に配置している。 かかる光ファイバ配置により、 それぞれ隣接する円同士の交差 点上に配置された照射用光ファイバおよび集光用光ファイバは、 それぞれが配置 されている格子点において交差する円の数(格子の内側の格子点では 4個)と同数 の計測位置に関して機能するため、 より少ない本数の光ファイバでの計測が可能 となる。 なお、 ここでは計測位置を 9箇所とした力;'、 さらに広い計測領域につい ての計測を行なうために計測位置数(=円数, =格子数)をさらに増加させること は容易である。 このような計測領域の広域化により得られた計測結果から、 生体 内深部の血行動態の画像を得ることができる。 When the measurement area is extended with two pairs of irradiation-condensing optical fiber pairs arranged on the circumference of one circle as the basic fiber unit, as shown in Fig. 22, a square lattice An irradiation optical fiber and a condensing optical fiber are arranged on each of the lattice points, and the irradiation optical fiber and the condensing optical fiber are arranged alternately in the diagonal direction of the square lattice. Here, nine measurement positions are set, and nine circles 60-1 to 60-9 are set around each measurement position, and the irradiation optical fiber 8-1 to 8-8 and the condensing optical fiber 10-1 to 10-8 are arranged on the circumference of the circle and on the lattice points of the square lattice. With such an optical fiber arrangement, the irradiation optical fiber and the condensing optical fiber arranged on the intersection of the adjacent circles each have the number of circles intersecting at the lattice point where they are arranged (the number of circles intersecting at the lattice point where they are arranged). (4 at grid points) Since it functions with respect to the measurement position, measurement with a smaller number of optical fibers is possible. In this case, the force at nine measurement positions; ', it is easy to further increase the number of measurement positions (= number of circles, = number of grids) in order to perform measurement over a wider measurement area. From the measurement results obtained by widening the measurement region, an image of hemodynamics in a deep part in a living body can be obtained.
図 2 3に、 多数の照射用光ファィバおよび集光用光フアイバを配置する場合の 第 3の配置構成例を示す。 本例では、 一つの円の円周上に 3対の照射用 集光用 光ファイバ対を配置したものを基本ファイバ単位として、 所望計測領域の広さに 合わせて、 この基本ファイバ単位を複数単位併設している。  FIG. 23 shows a third arrangement configuration example in which a large number of irradiation optical fibers and condensing optical fibers are arranged. In this example, three pairs of irradiating and condensing optical fiber pairs are arranged on the circumference of one circle as the basic fiber unit, and the basic fiber unit is divided into multiple units according to the desired measurement area. Attached.
一つの円の円周上に 3対の照射用一集光用光ファイバ対を配置したものを基本 ファイバ単位として、 計測領域の拡張を行なう場合には、 図 2 3に示すように、 正 6角形格子の各格子点上に照射用光ファィバおよび集光用光フアイバを交互に 配置して、 各格子の対角線方向には、 照射用光ファイバと集光用光ファイバとが 交互に位置するようにする。 ここでは、 計測位置を 4箇所として、 各計測位置の 周りに 4個の円 7 0— 1〜 7 0— 4を設定し、 照射用光ファイバ 8— 1 〜8— 8 および集光用光ファイバ 1 0— 1〜 1 0— 8を、 上記円の円周上でかつ上記正 6 角形格子の格子点上に配置している。 かかる光ファイバ配置により、 互いに隣接 する円同士の交差点上に配置された照射用光ファイバおよび集光用光ファイバは、 それぞれが配置されている格子点において交差する円数 (格子の内側の格子点で は 3個) と同数の計測位置に関して機能するため、 より少ない本数の光ファイバ での計測が可能となる。 なお、 ここでは計測位置を 4箇所としたが、 さらに広い 計測領域についての計測を行なうために、 計測位置数 (=円数, =格子数) をさ らに増加させることは容易である。 このような計測領域の広域化により得られた 計測結果から、 生体内深部の血行動態の画像を得ることができる。  When the measurement area is extended using three optical fiber pairs for irradiation as one basic fiber unit on the circumference of one circle, as shown in Fig. 23, The irradiating optical fiber and the converging optical fiber are alternately arranged on each grid point of the rectangular lattice, and the irradiating optical fiber and the converging optical fiber are alternately positioned in the diagonal direction of each lattice. To Here, there are four measurement positions, and four circles 70-1 to 70-4 are set around each measurement position, and the irradiation optical fibers 8-1 to 8-8 and the condensing optical fiber 10-1 to 10-8 are arranged on the circumference of the circle and on the lattice points of the regular hexagonal lattice. With such an optical fiber arrangement, the irradiation optical fiber and the condensing optical fiber arranged on the intersection of the mutually adjacent circles have the number of intersecting circles (the lattice points inside the lattice) at the lattice points where they are arranged. In this case, it works for the same number of measurement positions as 3), so measurement with fewer optical fibers is possible. Although four measurement positions were used here, it is easy to further increase the number of measurement positions (= number of circles, = number of grids) in order to perform measurement over a wider measurement area. From the measurement results obtained by widening the measurement area, an image of hemodynamics in a deep part in a living body can be obtained.
く実施例 4〉  Example 4>
図 2 4に、 本発明の第 4の実施例になる生体内深部情報を計測するのに適した 生体光計測装置について示す。 FIG. 24 shows a fourth embodiment of the present invention suitable for measuring in-vivo deep information. A biological light measurement device will be described.
なお、 本実施例では、 被検体 (生体)内の酸化および還元ヘモグロビン濃度変化 の計測を目的として、 白色光から適当な波長域の光を選択して被検体に照射し、 被検体からの透過光を分光器で分光することによって、 計測に必要な互いに異な る二つの波長の透過光を検出する方式を採り、 また、 被検体に対する光照射位置 および光検出位置をそれぞれ 2筒所に設定しているが、 これら照射光の数 (波長 数) , 光照射位置, および光検出位置をさらに増やすことは容易である。 また、 照射光の数(波長数)を増加させることにより、 酸化および還元へモグロビン濃度 の変化に加えて、 チ卜クロームやミオグロビン等他の生体内の光吸収物質濃度の 変化を計測することもできる。  In this example, in order to measure changes in the concentration of oxidized and reduced hemoglobin in the subject (living body), light in an appropriate wavelength range is selected from white light, and the subject is irradiated with the light, and transmitted from the subject. A method of detecting transmitted light of two different wavelengths required for measurement by spectroscopy of light with a spectroscope is adopted.In addition, the light irradiation position and the light detection position on the subject are set at two cylinders each. However, it is easy to further increase the number (the number of wavelengths) of these irradiation lights, light irradiation positions, and light detection positions. In addition, by increasing the number of irradiation light (number of wavelengths), it is possible to measure the change in the concentration of light absorbing substances in other living bodies such as cytochrome and myoglobin in addition to the change in the concentration of oxidized and reduced hemoglobin. it can.
図 24において、 白色光源 8 0— 1 , 8 0— 2から出力された白色光 (連続的 な波長スペク トルを有する光) は、 それぞれ硝子フィルタ 84— 1 , 84— 2を 通すことによって計測に必要な波長域の光にそれぞれ変換された後、 レンズ 8 5 — 1, 8 5— 2を介してそれぞれ照射用光ファイバ 8— 1 , 8— 2に導入 '伝送 されて、 被検体(生体) 9に照射される。 ここで、 被検体(生体) 9に照射する光の 波長は、 40 0〜24 00 nmの範固内に設定される。 特に、 生休内の血行動態 を計測する場合には、 照射光の波長が 7 ◦ ◦ ηπ!〜 1 1 0 0 nmの範囲内となる ように硝子フィルタ 8 4— 1, 84— 2を選定することが望ましい。 また、 光源 8 0 - 1 , 8 0— 2からの出力光はそれぞれ光源駆動回路 4— 1 , 4一 2により 1 0 0 H zから 1 0MH zの間の互いに異なる変調周波数 f 1, f 2でそれぞれ 強度変調されている。 一方、 光源駆動回路 4一 1, 4一 2からの変調周波数信号 A, B力 参照周波数信号として、 位相検波器 2 7— Iと 2 7— 2 , 2 7— 3と 2 7— 4にそれぞれ入力されている。 照射用光ファイバ 8— 1, 8— 2は集光用 光ファイバ 1 0— 1, 1 0— 2と共に光ファイバホルダ 2 1に固定されて被検体 9表面に当接されている。  In Fig. 24, white light (light having a continuous wavelength spectrum) output from white light sources 80-1 and 80-2 passes through glass filters 84-1 and 84-2, respectively, for measurement. After being converted to light in the required wavelength range, they are introduced into the irradiation optical fibers 8-1 and 8-2 via the lenses 85-1 and 85-2, respectively, and transmitted to the subject (living body). 9 is irradiated. Here, the wavelength of the light irradiating the subject (living body) 9 is set within a range of 400 to 2400 nm. In particular, when measuring hemodynamics during vacation, the wavelength of the irradiated light is 7 ° ◦ππ! It is desirable to select the glass filters 84-1, 84-2 so as to be within the range of 1 to 100 nm. Also, output light from the light sources 80-1 and 80-2 are modulated by the light source driving circuits 4-1 and 4-2, respectively, so that the modulation frequencies f 1 and f 2 different from 100 Hz to 10 MHz are different from each other. Are intensity-modulated. On the other hand, the modulating frequency signals A and B from the light source driving circuits 4-1 and 4-2 are applied to the phase detectors 27-I and 27--2, 27--3 and 27--4 as reference frequency signals, respectively. Has been entered. The irradiation optical fibers 8-1 and 8-2 are fixed to the optical fiber holder 21 together with the condensing optical fibers 10-1 and 10-2 and are in contact with the surface of the subject 9.
照射用光ファイバ 8— 1 , 8— 2から被検体 9に光を照射して、 集光用光ファ ィバ 1 0— 1, 1 0— 2で被検体 9内を透過してきた光 (透過光) を集光する。 ここで、 照射用光フアイバ 8— 1 , 8 - 2と集光用光ファイバ 1 0— 1, 1 0— 2は、 光ファイバホルダ 2 1上に設定された一つの円の円周上に等間隔に交互に 配置されており、 上記円の中心を挟んで照射用光ファイバ 8— 1, 8— 2とそれ ぞれ対向する位置に、 集光用光ファイバ 1 0— 1 , 1 0— 2がそれぞれ位置する ように設定されている。 The subject 9 is irradiated with light from the irradiation optical fibers 8-1 and 8-2, and the converging optical fiber is irradiated. The light transmitted through the subject 9 (transmitted light) at the optical fibers 10-1 and 10-2 is collected. Here, the irradiation optical fibers 8-1 and 8-2 and the condensing optical fibers 10-1 and 10-2 are arranged on the circumference of one circle set on the optical fiber holder 21. The optical fibers 10-1 and 10-2 are located alternately at intervals and are opposite to the optical fibers 8-1 and 8-2 for irradiation with the center of the circle interposed therebetween. Are set to be located respectively.
集光用光ファイバ 1 0— 1, 1 0— 2で集光された被検体(生体)内透過光は、 それぞれ分光器 8 6— 1, 8 6 - 2に導かれ分光(波長分離)される。 分光器 8 6 - 1 , 8 6 - 2では、 分光された種々の波長の成分光の中から計測に必要な波長 λ 1, λ 2を有する成分光のみが選び出される。 分光器 8 6 - 1からの波長 λ 1 , λ 2の透過光成分はそれぞれ光検出器 1 1 ー 1 , 1 1 一 2によって、 分光器 8 6 一 2からの波長え 1 , λ 2の透過光成分はそれぞれ光検出器 1 1 — 3 , 1 1 - 4 によって検出(光電変換および増幅)される。 光検出器 1 1 — 1〜 1 1 一 4として は光電子堦倍管あるいはアバランシェフォ 卜ダイオードが用いられる。 光検出器 1 1 一 1〜 1 1 一 4からの出力信号(透過光強度信号)は、 位相検波器 2 7— 1〜 2 7— 4にそれぞれ入力される。  The light transmitted through the subject (living body) condensed by the condensing optical fibers 10-1 and 10-2 is guided to the spectrometers 86-1 and 86-2, respectively, and separated (wavelength separated). You. In the spectrometers 86-1 and 86-2, only component light having the wavelengths λ 1 and λ 2 required for measurement are selected from the component light of various wavelengths that have been separated. The transmitted light components at wavelengths λ 1 and λ 2 from the spectrometer 86-1 are transmitted by the photodetectors 11-1 and 11-12, respectively, and transmitted at wavelengths 1 and λ 2 from the spectrometer 86-1 and 2. The light components are detected (photoelectric conversion and amplification) by the photodetectors 11-3 and 11-4, respectively. A photomultiplier tube or an avalanche photodiode is used as the photodetector 11-1 to 11-14. Output signals (transmitted light intensity signals) from the photodetectors 11 1 to 11 to 11 are input to the phase detectors 27-1 to 27-4, respectively.
各位相検波器に入力された信号には、 それぞれ同一波長ではあるが異なる変調 周波数を持った透過光の強度信号が混入しているが、 位相検波器 2 7— 1と 2 7 — 2, 2 7— 3と 2 7—4には、 光源駆動回路 4— 1, 4— 2からの周波数 f l , f 2なる参照周波数信号 A , Bがそれぞれ入力されているので、 位相検波器 2 7 一 1では照射用光ファイバ 8— 1からの波長え 1の照射光に対応する透過光強度 成分のみが、 位相検波器 2 7 一 2では照射用光ファイバ 8— 1からの波長 λ 2の 照射光に対応する透過光強度成分のみが、 位相検波器 2 7 - 3では照射用光ファ ィバ 8— 2からの波長え 1の照射光に対応する透過光強度成分のみが、 位相検波 器 2 7— 4では照射用光ファイバ 8— 2からの波長え 2の照射光に対応する透過 光強度成分のみが、 それぞれ選択的に分離されて出力される。 位相検波器 2 7 - 1 , 2 7— 3からの両出力信号 (照射用光ファイバ 8— 1 , 8— 2からの波長; L 1の照射光に基づく生体内透過光強度信号) は乗算器 2 8— 1に入力されて相互乗算され、 位相検波器 2 7— 2, 2 7— 4からの両出力信号 (照射用光ファイバ 8— 1, 8— 2からの波長 λ 2の照射光に基づく生体内透過 光強度信号) は乗算器 2 8— 2に入力されて相互乗算される。 乗算器 2 8— 1 , 2 8— 2からの出力信号はそれぞれログアンプ 2 9— 1, 2 9一 2に入力されて 自然対数増幅され、 さらに、 ログアンプ 2 9— 1 , 2 9— 2からの出力信号は、 それぞれ A Z D変換器 1 4一 1 , 1 4一 2に入力されてデジタル信号に変換され た後に、 演算装置 3 0に取り込まれる。 The signals input to each phase detector are mixed with transmitted light intensity signals having the same wavelength but different modulation frequencies, but the phase detectors 27-1 and 2-7-2, 2 Since the reference frequency signals A and B having the frequencies fl and f2 from the light source drive circuits 4-1 and 4-2 are input to 7-3 and 27-4, respectively, the phase detector 2 7 1 1 In the phase detector 271-2, only the transmitted light intensity component corresponding to the irradiating light of wavelength 1 from the irradiating optical fiber 8-1 is applied to the irradiating light of wavelength λ2 from the irradiating optical fiber 8-1. In the phase detector 27-3, only the corresponding transmitted light intensity component is transmitted. Only the transmitted light intensity component corresponding to the irradiation light of wavelength 1 from the irradiation optical fiber 8-2 is output to the phase detector 27-3. In Fig. 4, only the transmitted light intensity component corresponding to the irradiation light of wavelength 2 from the irradiation optical fiber 8-2 is selectively separated. It is output Te. Both output signals from the phase detectors 27-1 and 27-3 (wavelengths from the irradiation optical fibers 8-1 and 8-2; intensity signals transmitted through the living body based on L 1 irradiation light) are multipliers. 2 8—1 is input and multiplied by each other, and both output signals from the phase detectors 2 7—2 and 2 7—4 (to the irradiation light of wavelength λ 2 from the irradiation optical fibers 8—1 and 8—2) Is transmitted to the multiplier 28-2 and multiplied by each other. The output signals from the multipliers 28-1 and 28-2 are input to log amplifiers 29-1 and 29-12, respectively, and are naturally logarithmically amplified. Further, the log amplifiers 29-1 and 29-2 Are input to the AZD converters 14-11 and 14-12, respectively, are converted into digital signals, and then are taken into the arithmetic unit 30.
演算装置 3 0では、 取り込まれた 2波長の透過光強度の時系列信号より、 酸化 ヘモグロビン濃度の変化, 還元ヘモグロビン濃度の変化, および、 血液量を表す 酸化へモグロビン濃度変化と還元へモグロビン濃度変化との和 (総へモグロビン 濃度変化) が演算され、 その演算結果が、 時系列変化グラフとして表示装置 1 7 に表示される。  In the arithmetic unit 30, the change in oxyhemoglobin concentration, the change in reduced hemoglobin concentration, and the change in oxidized hemoglobin concentration and the change in reduced hemoglobin concentration, which indicate blood volume, are obtained from the time-series signals of the transmitted light intensities of the two wavelengths taken in. (Total hemoglobin concentration change) is calculated, and the calculation result is displayed on the display device 17 as a time-series change graph.
先の実施例 3 (図 1 5 )および上記の実施例 4 (図 2 4 )では、 光フアイバホルダ 1に照射用一集光用光ファイバ対を 2対設けた例を示したが、 この光ファイバ ホルダ 2 1に設ける照射用一集光用光フアイバ対をさらに多数対に増やすことに よって、 被検体(生体)内深部における測定感度を飛躍的に高めることができる。 例えば、 図 2 4に示した装置構成で、 出光ファィバホルダ 2 1 に照射用一集光用 光ファイバ対を 4対設けて測定した場合の測定結果を図 2 5 , 図 2 6, 図 2 7に 示す。 被検体(生体)表面を平面と仮定し、 該生体表面と平行な平面を X— Υ平面 と定義し、 該生体表面上に、 中心が x = 3 2 . 5 m m , y = 3 2 . 5 m mの位置 にある直径が 3 0 m mの円を設定し、 該円の円周上に照射用光ファイバと集光用 光ファイバとを交互にそれぞれ 4本ずつ設置して、 それぞれ上記円中心を点対称 中心として互いに点対称関係位置にある照射用光ファィバと集光用光フアイバか らなる照射用一集光用光ファイバ対を 4対として測定を行なった結果を、 生体内 深さ 2 . 5 m mの位置での相対感度分布(図 2 5 ), 生体内深さ 7 . 5 m mの位置 での相対感度分布(図 2 6 ), および生体内深さ 1 2 . 5 m m位置での相対感度分 布(図 2 7 )として示す。 先に示した従来例による測定結果(図 1 2〜図 1 4 )と本 発明による測定結果(図 2 5〜図 2 7 )とを比較すると明らかなように、 本発明に よれば、 生体内深部での測定感度を格段に向上させることができる。 In Embodiment 3 (FIG. 15) and Embodiment 4 (FIG. 24) described above, an example is shown in which the optical fiber holder 1 is provided with two pairs of light-collecting optical fibers for irradiation. By increasing the number of irradiating and condensing optical fiber pairs provided in the fiber holder 21 to a greater number, the measurement sensitivity in the deep part inside the subject (living body) can be dramatically increased. For example, in the device configuration shown in Fig. 24, the measurement results obtained when four pairs of irradiating optical fibers were provided in the outgoing fiber holder 21 are shown in Figs. 25, 26, and 27. Show. Assuming that the surface of the subject (living body) is a plane, a plane parallel to the living body surface is defined as an X-— plane, and the center is x = 32.5 mm and y = 32.5 on the living body surface. A circle with a diameter of 30 mm at the position of mm is set, and four irradiation optical fibers and four focusing optical fibers are alternately set on the circumference of the circle, and the center of each circle is set. The results of measurement using four pairs of one light-collecting optical fiber pair consisting of an irradiation optical fiber and a condensing optical fiber that are point-symmetrical to each other as the center of point symmetry The relative sensitivity distribution at a depth of 2.5 mm (Fig. 25), the relative sensitivity distribution at a depth of 7.5 mm in the living body (Fig. 26), and a depth of 12.5 mm in the living body This is shown as the relative sensitivity distribution at the position (Fig. 27). As is clear from the comparison between the measurement results of the conventional example (FIGS. 12 to 14) and the measurement results of the present invention (FIGS. 25 to 27), according to the present invention, in vivo The measurement sensitivity in the deep part can be remarkably improved.
本実施例では、 所定の円上の複数の光照射位置から照射された複数の波長の光 の被検体内透過光を上記円上の上記複数の光照射位置のそれぞれと上記円の中心 を挟んで点対称の関係位置に設定された複数の集光位置で検出し、 これら複数の 集光位置で検出された透過光の強度を同一波長毎に全て乗算する様にした構成例 について示したが、 同様に、 同一波長毎に全て加算する様な装置構成でも物理的 な意味は低下するが、 被検体(生体)内深部の相対感度を向上させることは可能で ある。 また、 複数の集光位置で検出された被検体(生体)内透過光強度を四則演算 する装置構成を用いて、 目的とする計測領域についての計測感度を向上させる様 にしてもよい。  In the present embodiment, the transmitted light in the subject of a plurality of wavelengths emitted from a plurality of light irradiation positions on a predetermined circle interposes the center of the circle with each of the plurality of light irradiation positions on the circle. In the above, a configuration example was shown in which detection was performed at a plurality of light collection positions set at point-symmetric relational positions, and the intensity of transmitted light detected at these plurality of light collection positions was all multiplied for each same wavelength. Similarly, a device configuration in which all additions are performed for each of the same wavelengths has a reduced physical meaning, but it is possible to improve the relative sensitivity of a deep part in a subject (living body). Further, the measurement sensitivity of the target measurement area may be improved by using an apparatus configuration that performs four arithmetic operations on the transmitted light intensity in the subject (living body) detected at a plurality of light condensing positions.
本発明によれば、 被検体(生体)内の所定深さの領域における光吸収物質濃度を 精度良く計測することができる。 被検体 (生体)内深部に十分な計測感度が必要な 計測例としては、 例えば脳機能活動に伴う血行動態の変化についての計測が挙げ られる力^ 本発明によれば、 この脳機能活動に伴う血行動態の変化を頭皮上から 計測することができる。  ADVANTAGE OF THE INVENTION According to this invention, the light absorption substance density | concentration in the area | region of predetermined depth in a test object (living body) can be measured with high precision. An example of a measurement that requires sufficient measurement sensitivity deep inside the subject (living body) is, for example, measurement of changes in hemodynamics due to cerebral function activity. Force according to the present invention ^ According to the present invention, Hemodynamic changes can be measured from above the scalp.
《生体入力装置および生体制御装置》  《Biometric input device and biological control device》
さらに、 本発明によれば、 既に述べたように被検体(生体)内の広い空間領域に ついての生体情報を高効率 ·高精度で、 かつ高い空間分解能で計測できる生体光 計測装置が実現できるので、 該生体光計測装置からの計測信号を直接各種の外部 装置の入力信号として用いることにより、 これら各種外部装置を迅速かつ高精度 で制御することのできる、 実用性の高い生体入力装置および生体制御装置を実現 できる。 コンピュータやゲーム機などの装置を操作するために、 キーボードゃマウスや ハンドル等の種々の入力装置が用いられている。 しかし、 このような人間が手足 で操作する入力装置では、 例えばゲーム機における臨場感を減殺させたり、 ある いは身体障害者等による操作を困難にしている。 そこで、 脳波を用いて脳からの 直接入力を行なう装置が、 例えば特開平 7 - 1 2 4 3 3 1号公報にて提案されて いる。 この装置では、 心電図を計測するときのように、 脳波をそのまま計算機に 入力することにより計算機、 特にゲーム機を制御しょうとしている。 Further, according to the present invention, as described above, a living body light measuring device capable of measuring biological information with respect to a wide spatial region within a subject (living body) with high efficiency, high accuracy, and high spatial resolution can be realized. Therefore, by using the measurement signal from the biological optical measurement device directly as an input signal of various external devices, a highly practical biological input device and a biological device capable of controlling these various external devices quickly and with high accuracy. A control device can be realized. Various input devices such as a keyboard, a mouse, and a steering wheel are used to operate devices such as a computer and a game machine. However, such input devices operated by humans with limbs reduce the sense of presence in game machines, for example, or make it difficult for persons with physical disabilities to operate. Therefore, a device for performing direct input from the brain using brain waves has been proposed, for example, in Japanese Patent Application Laid-Open No. 7-124331. This device attempts to control a computer, especially a game machine, by inputting brain waves directly to the computer, such as when measuring an electrocardiogram.
このような脳からの直接入力装置は、 運動機能に障害が認められる人にとって も外部装置の制御を容易にするものであり、 身体障害者の社会参加に対して貢献 できるものとして期待されている。  Such a direct input device from the brain facilitates the control of external devices even for persons with impaired motor function, and is expected to contribute to the social participation of physically handicapped persons. .
ところで、 人間の脳は、 ブロードマンの脳地図で表されるように、 異なる細胞 構築で領域分割されており、 さらに、 各領域は異なる機能を分担している。 例え ば、 脳を横から見ると、 自発的な運動 (手, 指, 足等) に関与する領域は頂上部、 感覚, 視覚等に関与する領域は後頭部、 言語に関与する領域は左半分の所定部に 位置している。  By the way, as shown by the Broadman brain map, the human brain is divided into regions with different cell structures, and each region has a different function. For example, when the brain is viewed from the side, the area involved in spontaneous movements (hands, fingers, feet, etc.) is at the top, the area involved in sensation and vision is the occipital area, and the area involved in language is the left half. It is located in the designated part.
このように脳内の特定領域からの情報を高精度で抽出するためには、 空間分解 能の高い計測装置を用いる必要がある。 しかし、 上記従来技術で用いている脳波 は、 生体中では誘電率が不均一なために信号 (脳波)の発生場所が不明確となるの で、 高い空間分解能での計測は困難である。 また、 被検体が動いた際に発生する 筋電位が脳波計測信号に大きく反映し、 計測結果に悪影響を及ぼすため、 測定時 には被検体の動きを拘束しなければならないという制約条件もある。 従って、 脳 からの直接入力信号として脳波をそのまま用いる方法では、 精度および実用性に おいて問題がある。  As described above, in order to extract information from a specific region in the brain with high accuracy, it is necessary to use a measuring device with high spatial resolution. However, since the electroencephalogram used in the above-described conventional technology has an inhomogeneous dielectric constant in a living body, the location where a signal (electroencephalogram) is generated is unclear, so that measurement with high spatial resolution is difficult. In addition, there is also a constraint that the movement of the subject must be constrained during the measurement because the myoelectric potential generated when the subject moves greatly reflects on the electroencephalogram measurement signal and adversely affects the measurement result. Therefore, there is a problem in accuracy and practicability in the method of using brain waves directly as a direct input signal from the brain.
本発明によれば、 既に述べたように被検体(生体)内の広い空間領域についての 生体情報を高効率 ·高精度でかつ高い空間分解能で計測できる生体光計測装置が 実現できるので、 該生体光計測装置からの計測信号を直接各種の外部装置の入力 信号として用いることにより、 これら各種外部装置を迅速かつ高精度で制御する ことのできる、 実用性の高い生体入力装置および生体制御装置を提供できる。 本発明による生体光計測法を用いた生体入力装置は、 人頭部頭皮外から脳内に 向けて光を照射するための光照射手段と、 該光照射手段による上記脳内への上記 光照射によって上記脳内を通過してきた光を集光するための集光手段と、 該集光 手段により集光された上記脳内通過光の強度を計測するための光計測手段と、 該 光計測手段によって計測された上記脳内通過光強度から上記脳内の所定領域での 酸化ヘモグロビン濃度変化値, 還元ヘモグロビン濃度変化値, または総へモグロ ビン濃度変化値を演算して求め、 さらに、 これらの演算して求めたヘモグロビン 濃度変化値から所望の特徴パラメ一タ値を演算して求めて、 この演算して求めた 特徴パラメータ値に基づいて出力信号の種類を決定して出力するための演算手段 とを具備してなる。 According to the present invention, as described above, a living body optical measurement device capable of measuring biological information in a wide spatial region within a subject (living body) with high efficiency, high accuracy, and high spatial resolution can be realized. Directly input measurement signals from optical measurement devices to various external devices By using the signal as a signal, it is possible to provide a highly practical biological input device and a biological control device capable of controlling these various external devices quickly and with high accuracy. The living body input device using the living body light measurement method according to the present invention comprises: a light irradiating means for irradiating light from outside the scalp of the human head into the brain; and irradiating the light into the brain by the light irradiating means. Light collecting means for collecting the light passing through the brain by the light collecting means; light measuring means for measuring the intensity of the light passing through the brain collected by the light collecting means; and the light measuring means From the intensity of the light passing through the brain measured by the above, the oxyhemoglobin concentration change value, the reduced hemoglobin concentration change value, or the total hemoglobin concentration change value in a predetermined region in the brain is calculated and further calculated. Calculating means for calculating a desired characteristic parameter value from the hemoglobin concentration change value obtained as described above, and determining and outputting the type of output signal based on the calculated characteristic parameter value; and Equipped with It becomes Te.
上記生体入力装置は、 さらに、 上記演算手段によって演算して求められるべき 任意時間間隔のへモグロビン濃度の変化率、 へモグロビン濃度の時間変化の任意 周波数における強度等を上記特徴パラメータ値の参考データとして予め設定して 記憶しておくための記憶手段を含むことができる。 この場合は、 上記演算手段は、 上記の演算によリ求めた特徴パラメータ値と上記記憶手段によリ記憶された参考 データとから出力信号の種類を決定して出力する。  The biological input device may further include, as reference data for the characteristic parameter value, a change rate of the hemoglobin concentration at an arbitrary time interval, an intensity of the time change of the hemoglobin concentration at an arbitrary frequency, which is to be calculated by the arithmetic means, and the like. It may include storage means for setting and storing in advance. In this case, the calculating means determines the type of the output signal from the characteristic parameter value obtained by the above calculation and the reference data stored in the storage means and outputs it.
また、 本発明による光生体計測法を用いた生体制御装置は、 上記生体入力装置 と、 該生体入力装置により決定された出力信号を入力信号として、 該入力信号の 種類に応じて所定の機能動作を行なう外部装置とを具備してなる。  In addition, the biological control device using the optical biological measurement method according to the present invention includes the biological input device, and an output signal determined by the biological input device as an input signal, and a predetermined functional operation according to the type of the input signal. And an external device for performing the following.
なお、 上記の集光手段により集光される光は、 生体 (脳)内での反射光と透過光 とに分類される力、 本発明ではこれら両者を含めて通過光(透過光)としている。 本発明においては、 生体 (脳)内で局在化している脳機能活動を光を用いて計測 し、 この計測信号を例えば計算機等の外部装置への入力信号として用いる。 すな わち、 照射用光ファイバと集光用光ファイバとを脳内の所望の計測領域 (例えば、 右手指運動野, 左手指運動野, 言語野等) に対応する頭部表面上の位置に設けて、 脳内に光を照射してその脳内通過光を集光 ·計測し、 この計測信号を演算装置に 入力する。 演算装置では、 この計測信号から、 例えば右手指運動野からの信号に 対してはカーソルを左側に移動, 左手指運動野からの信号に対してはカーソルを 右側に移動, 言語野からの信号に対してはクリック動作を行なう等の出力信号の 種類を決定して、 該出力信号をコンピュータ, ワードプロセッサ, あるいはゲ一 ム機等の外部装置へ入力する。 外部装置は、 この入力信号の種類に応じた動作を 行なう。 The light condensed by the above-mentioned condensing means is a force classified into reflected light and transmitted light in a living body (brain). In the present invention, both of these are transmitted light (transmitted light). . In the present invention, brain function activity localized in a living body (brain) is measured using light, and this measurement signal is used as an input signal to an external device such as a computer. That is, the irradiation optical fiber and the condensing optical fiber are connected to a desired measurement area in the brain (for example, (Right finger motor area, left finger motor area, language area, etc.) at the position on the head surface, irradiate light into the brain, collect and measure the light passing through the brain, and measure this signal. Is input to the arithmetic unit. In the arithmetic unit, the cursor is moved to the left for signals from the right finger motor area, for example, the cursor is moved to the right for signals from the left finger motor area, On the other hand, the type of output signal for performing a click operation or the like is determined, and the output signal is input to an external device such as a computer, a word processor, or a game machine. The external device performs an operation according to the type of the input signal.
演算装 Eにおける他の演算例では、 計測した脳内通過光強度より、 脳内の酸化 ヘモグロビン濃度変化値, 還元ヘモグロビン濃度変化値, または総ヘモグロビン 濃度変化値を演算し、 これらの濃度変化値から特徴パラメータ値を演算して求め、 この演算して求めた特徴パラメータ値と予め記憶装置に記憶されてレ、る特徴パラ メータ値(参考データ)と比較して出力信号の種類を決定し、 この出力信号を外部 装置に入力する。  In another calculation example of the arithmetic unit E, a change in the oxidized hemoglobin concentration, a change in the reduced hemoglobin concentration, or a change in the total hemoglobin concentration in the brain is calculated from the measured intensity of the light passing through the brain. The type of the output signal is determined by comparing the calculated characteristic parameter value with the calculated characteristic parameter value and the characteristic parameter value (reference data) previously stored in the storage device. Input the output signal to the external device.
さらに、 他の演算例では、 外部装置への入力信号をそれぞれ特定の計測領域に 対応させずに、 『カーソルを右に』 , 『力一ソルを左に』 , 『クリックする』 等 の操作内容を操作者に想起させて、 その時の各計測領域毎の各特徴パラメータ毎 の標準偏差値および平均値を記憶装置に学習データとして記憶しておき、 実際の 計測値とそれらの学習データとを比較して、 許容範囲内で一致すれば、 その学習 データに対応する操作内容の実行を指示する信号を出力する。 この方法で、 特徴 パラメータを用いて出力信号の種類を決定するために、 マハラノビス距離を利用 することができる他、 ニューラルネットワークを利用することもできる。 ここで、 マハラノビス距離とは、 計測値等が分散を有する正規分布で表現される場合に、 実際の計測値がその分布に属するか否かを判定するための指標である。  Furthermore, in other calculation examples, the operation content such as “cursor right”, “force cursor left”, “click”, etc., does not correspond to the specific measurement area for each input signal to the external device. The operator remembers the standard deviation value and average value for each feature parameter in each measurement area at that time as learning data in the storage device, and compares the actual measurement value with those learning data. Then, if they match within the allowable range, a signal instructing execution of the operation content corresponding to the learning data is output. In this way, the Mahalanobis distance can be used to determine the type of output signal using the feature parameters, and a neural network can also be used. Here, the Mahalanobis distance is an index for determining whether an actual measurement value belongs to the distribution when the measurement value or the like is represented by a normal distribution having a variance.
これらの方法により、 キーボードやマウス等を使用せずに、 コンピュータ, ヮ —ドプロセッサ, ゲーム機等を直接制御することができるので、 障害者用として も利用できる。 With these methods, it is possible to directly control computers, processors, game machines, etc. without using a keyboard or mouse. Also available.
さらに、 被検体(生体頭部)表面上の多数点に光照射手段と集光手段を配置する ことにより、 運転者の居眠り警報装置, 環境制御装置, 学習度判定装置, 病人や 幼児や動物等の意思表示装置, 情報伝達装置, あるいは、 うそ発見器等にも応用 することができる。  Furthermore, by arranging light irradiating means and condensing means at a number of points on the surface of the subject (living body), the driver's dozing alarm device, environmental control device, learning degree determination device, sick person, infant, animal, etc. It can also be applied to an intention display device, an information transmission device, or a lie detector.
以下、 本発明の実施例につき、 図面を参照して詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
く実施例 5 >  Example 5>
図 2 8に、 本発明の第 5の実施例になる生体入力装置に用いられる脳機能活動 計測装置の概略構成を示す。  FIG. 28 shows a schematic configuration of a brain function activity measuring device used in the biological input device according to the fifth embodiment of the present invention.
本実施例では、 局在化している脳機能活動を光を用いて計測し、 その結果得ら れた信号を計算機あるいは外部装置への入力信号として用いる。  In the present embodiment, the localized brain function activity is measured using light, and the resulting signal is used as an input signal to a computer or an external device.
ここでは、 脳内の酸化へモグロビン濃度変化および還元へモグロビン濃度変化 の計測を目的とし、 照射光として異なる 2つの波長の光を用いて、 酸化へモグロ ビン濃度変化、 還元ヘモグロビン濃度変化をそれぞれ独立に計測する。 すなわち、 酸化ヘモグロビンと還元へモクロビンとの色の違い (光吸収波長の違い) を利用 して、 酸化ヘモグロビン濃度と還元へモクロビン濃度とを分別して計測するので ある。 照射光の波長数をさらに増加すれば、 さらに計測精度が向上すると共に、 酸化, 還元ヘモグロビン以外の物質の濃度計測も可能である。 ここでは、 光照射 位置および光検出位置をそれぞれ 1箇所ずつに設定した場合について説明するが、 それぞれの数を増やすことによって計測領域を広げることは容易である。  The purpose of this study was to measure changes in oxidized hemoglobin concentration and reduced hemoglobin concentration in the brain.Using two different wavelengths of irradiation light, the changes in oxidized hemoglobin concentration and reduced hemoglobin concentration were independent. To measure. That is, using the difference in color (difference in light absorption wavelength) between oxyhemoglobin and reduced hemoglobin, the oxyhemoglobin concentration and the reduced hemoglobin concentration are measured separately. If the number of wavelengths of the irradiation light is further increased, the measurement accuracy will be further improved, and the concentration of substances other than oxidized and reduced hemoglobin can be measured. Here, the case where the light irradiation position and the light detection position are each set to one position will be described. However, it is easy to expand the measurement area by increasing the number of each.
図 2 8において、 光源 1 _ 1, 1— 2からそれぞれ特定波長え 1, え 2の光が 出力され、 それぞれ光ファイバ 2— 1, 2— 2に導入される。 ここで、 光源 1— 1 , 1 - 2からの出力光の波長え 1, λ 2は、 それぞれ 4 O O n mから 2 4 0 0 n mの波長範囲から選択される。 特に、 生体中の血行動態を計測する場合には、 7 0 0 n mから 1 1 0 0 n mの波長範囲内から、 互いの波長差が 5 0 n m以内と なるよう選択されるのが、 計測精度を上げるために望ましい。 つまり、 この波長 域では、 生体内での光の透過性が高い。 これよりも長波長では水分による光吸収 が大きくなり、 また、 これよりも短波長ではヘモグロビン自体の光吸収も大きく なるので都合が悪い。 また、 光源 1 一 1, 1 一 2からの出力光は、 それぞれ駆動 回路 4一 1, 4— 2によりそれぞれ異なる変調周波数 f 1, f 2で強度変調され ている。 さらに、 駆動回路 4一 1, 4一 2からの変調周波数信号 A, B力、 参照 周波数信号として、 それぞれ位相検波器 2 7— 1, 2 7— 2に人力されている。 これは、 酸化へモグロビン濃度値に対応する信号成分と還元へモグロビン濃度値 に対応する信号成分とが混合している検出信号中からそれぞれの信^成分を分離 して取り出すためである。 In Fig. 28, light beams with specific wavelengths 1 and 2 are output from light sources 1-1 and 1-2, respectively, and introduced into optical fibers 2-1 and 2-2, respectively. Here, the wavelengths 1 and λ 2 of the output light from the light sources 1-1 and 1-2 are respectively selected from the wavelength range of 400 nm to 240 nm. In particular, when measuring hemodynamics in a living body, the measurement accuracy is selected from within the wavelength range of 700 nm to 110 nm so that the wavelength difference between them is within 50 nm. Desirable to raise. In other words, this wavelength In the region, light transmission in the living body is high. At longer wavelengths, light absorption by moisture increases, and at shorter wavelengths, hemoglobin itself also increases light absorption, which is not convenient. The output lights from the light sources 111 and 112 are intensity-modulated by the drive circuits 411 and 4-2 at different modulation frequencies f1 and f2, respectively. In addition, the modulation frequency signals A and B from the drive circuits 4-1 and 4-2 are input to the phase detectors 27-1 and 27-2, respectively, as reference frequency signals. This is to separate and extract each signal component from the detection signal in which the signal component corresponding to the oxidized hemoglobin concentration value and the signal component corresponding to the reduced hemoglobin concentration value are mixed.
光ファイバ 2— 1, 2— 2は、 光方向性結合器 3— 1に接続されており、 光源 1 一 1, 〖― 2からの波長え 1, え 2の光はここで混合されて照射用光ファイバ 8— 1内に導入され、 被検体(生体) 9表面に伝送される。  The optical fibers 2-1 and 2-2 are connected to the optical directional coupler 3-1. The light of wavelengths 1 and 2 from the light sources 111 and 〖-2 are mixed here for irradiation. Is introduced into the optical fiber 8-1, and transmitted to the surface of the subject (living body) 9.
照射用光ファイバ 8— 1から被検体(生体) 9内に光を照射し、 その生体内通過 光を集光用光ファイバ 1 0— 1で集光し検出する。 これにより、 血液中の酸化, 還元ヘモグロビン濃度の変化をそれぞれの色の変化 (光吸収波長の変化) として 計測できる。 動脈中では酸素飽和度 (全ヘモグロビン中で酸化ヘモグロビンが占 める割合) が高いが、 静脈中では動脈と比較して酸素飽和度が低下している。 ここで、 照射用光ファイバ 8— 1と集光用光ファイノ 1 0 - 1との間の距離は、 所望とする計測領域の生体内深さ等に応じて 1 0〜5 0 m mの範囲内に設定され るが、 本実施例では 3 0 m mに設定してある。  Light is emitted from the irradiation optical fiber 8-1 into the subject (living body) 9, and the light passing through the living body is collected and detected by the collecting optical fiber 10-1. As a result, changes in the oxidized and reduced hemoglobin concentrations in blood can be measured as changes in the respective colors (changes in the light absorption wavelength). Oxygen saturation is high in arteries (the proportion of oxyhemoglobin occupied in total hemoglobin), but oxygen saturation is lower in veins than in arteries. Here, the distance between the irradiation optical fiber 8-1 and the light condensing optical fin 10-1 is in the range of 10 to 50 mm depending on the desired depth of the measurement area in the living body and the like. Is set to 30 mm in this embodiment.
集光用光ファイバ 1 0— 1で集光された生体内通過光は、 光検出器 1 1 — 1に 送られ、 そこで光電変換されて増幅される。 光検出器 1 1 一 1には、 光電子増倍 管やアバランシェフオトダイォ一ドが用いられる。 光検出器 1 1 一 1からの出力 信号は、 2つに分配された後、 位相検波器 2 7— 1, 2 7— 2に入力される。 位相検波器 2 7— 1 , 2 7— 2に入力された信号には、 照射用光ファイバ 8— 1から生体 9内に照射された 2つの波長; I 1, え 2の光にそれぞれ対応する生体 内通過光の強度信号が混入している力 位相検波器 2 7—し 2 7— 2にはそれ ぞれ駆動回路 4一 1, 4一 2からの参照周波数信号が入力されているので、 位相 検波器 2 7— 1では光源 1 _ iからの波長 λ 1 (変調周波数 f 1 ) なる照射光に 対応する生体内通過光の強度信号が、 また、 位相検波器 2 7 - 2では光源 1 一 2 からの波長 λ 2 (変調周波数 f 2 )なる照射光に対応する生体内通過光の強度信号 力 それぞれ分離選択されて出力される。 The light passing through the living body condensed by the condensing optical fiber 10-1 is sent to the photodetector 11-1 where it is photoelectrically converted and amplified. Photomultipliers and avalanche photodiodes are used for the photodetectors. The output signal from the photodetector 11 is divided into two and then input to the phase detectors 27-1, 27-2. The signals input to the phase detectors 27-1 and 27-2 include the two wavelengths irradiated into the living body 9 from the irradiation optical fiber 8-1; corresponding to the light of I 1 and E 2, respectively. Living body The phase detector 27-2 27-2 receives the reference frequency signal from the drive circuits 41-1 and 42-2, respectively. In the detector 27-1, the intensity signal of the light passing through the living body corresponding to the irradiation light having the wavelength λ1 (modulation frequency f1) from the light source 1_i is obtained. In the phase detector 27-2, the light source 1 2, the intensity signal of the light passing through the living body corresponding to the irradiation light having the wavelength λ 2 (modulation frequency f 2) is separated and selected and output.
位相検波器 2 7— 1 , 2 7 - 2で分離選択されて出力された生体内通過光強度 信号は、 次いで、 Λ/ D変換器 1 4一 1, 1 4— 2にそれぞれ入力され、 ここで デジタル信号に変換された後、 演算装 [1 3 0内に取り込まれる。  The in-vivo transmitted light intensity signals separated and selected by the phase detectors 27-1 and 27-2 are then input to the Λ / D converters 14 1 and 14-2, respectively. After being converted into a digital signal, it is taken into the arithmetic unit [130].
演算装置 3◦では、 取り込まれた 2つの波長の通過光強度の時系列信号より、 酸化ヘモグロビン濃度, 還元ヘモグロビン濃度, および血液量を表わす酸化へモ グロビン濃度と還元へモグロビン濃度との和が演算され、 その演算結果が時系列 変化グラフとして、 表示装置 1 7に表示される。 血液中のヘモグロビンの総和量 (体積)は一定であり、 従って酸化へモグロビン量と還元へモグロビン量とを単に 加え合わせれば全体の血液 *がわかる。  The arithmetic unit 3◦ calculates the oxyhemoglobin concentration, the reduced hemoglobin concentration, and the sum of the oxidized hemoglobin concentration and the reduced hemoglobin concentration representing the blood volume from the time-series signals of the transmitted light intensities at the two wavelengths. The calculation result is displayed on the display device 17 as a time-series change graph. The total amount (volume) of hemoglobin in the blood is constant, so simply adding the amount of oxidized hemoglobin and the amount of reduced hemoglobin gives the total blood *.
本実施例の装置構成において、 脳機能活動に伴う酸化ヘモグロビン, 還元へモ グロビン, 及び総ヘモグロビン濃度変化を演算する方法が、 例えば、 本出願人に よる特許出願 (特願平 7— 3 0 9 7 2号出願)の明細書および図面中で提案されて いる (演算処理方法) 。 なお、 ここでは、 ヘモグロビン濃度が変化した量だけを 演算しているが、 生体中での光散乱の影響を除く演算を行なえば、 ヘモグロビン 濃度の絶対量を計測することも可能である。  In the device configuration of the present embodiment, a method of calculating changes in oxyhemoglobin, reduced hemoglobin, and total hemoglobin concentration accompanying brain activity is described in, for example, a patent application by the present applicant (Japanese Patent Application No. Hei 7-309). 72 application) in the specification and drawings (arithmetic processing method). Although only the amount of change in hemoglobin concentration is calculated here, the absolute amount of hemoglobin concentration can be measured by performing calculation excluding the influence of light scattering in a living body.
図 2 9は、 本実施例の脳機能活動計測装置を用いて計測された右手指運動時の ヘモグロビン濃度変化の一例を示すグラフである。 ここでは、 右手指の動きに関 与する脳内領域 (右手指運動野) を計測領域とし、 右手指運動を行なった場合の 酸化ヘモグロビン濃度変化(a ) , 還元ヘモグロビン濃度変化(b ), および総へモ グロビン濃度変化(c )の時系列変化を示している。 なお、 図中斜線を施した時間 領域 (T: )が右手指の運動期間である。 FIG. 29 is a graph illustrating an example of a change in hemoglobin concentration during right finger movement measured using the brain function activity measurement device of this example. Here, the region in the brain (the right finger motor area) related to the movement of the right finger is used as the measurement region, and the changes in the oxyhemoglobin concentration (a), the reduced hemoglobin concentration (b), and The time series change of the total hemoglobin concentration change (c) is shown. Note that the time indicated by diagonal lines in the figure The area (T:) is the period during which the right finger exercises.
図 3 0は、 本実施例の脳機能活動計測装置を用いて計測された左手指運動時の ヘモグロビン濃度変化の一例を示すグラフである。 ここでは、 左手指の動きに関 与する脳内領域 (左手指速動野) を計測領域とし、 左手指運動を行なった場合の 酸化ヘモグロビン濃度変化(d ), 還元ヘモグロビン濃度変化(e ), および総へモ グロビン濃度変化 )の時系列変化を示している。 なお、 図中斜線を施した時間 領域 (T 2 )が左手指の運動期間である。 FIG. 30 is a graph showing an example of a change in hemoglobin concentration during left finger movement measured using the brain function activity measurement device of the present example. Here, the region in the brain related to the movement of the left finger (the left finger speed field) is used as the measurement region, and the change in oxyhemoglobin concentration (d), the change in reduced hemoglobin concentration (e), And changes in total hemoglobin concentration). The hatched time region (T 2 ) in the figure is the exercise period of the left finger.
図 2 9と図 3 0とを比べると明らかなように、 右手指運動期間(Τ , )中の右手指 運動野での酸化ヘモグロビン濃度変化( a )と総ヘモグロビン濃度変化( c )は、 左 手指運動期問( )中の左手指運動野での酸化ヘモグロビン濃度変化(d )と総へモ グロビン濃度変化(f )のそれぞれ約 3倍の変化量を示している。 なお、 脳内左側 にある運動野は右半身の運動に関与する領域であり、 脳内右側にある運動野は左 半身の運動に関与する領域であリ、 脳内領域とその脳内領域が関与する身体部分 とは互いにクロス関係になっている。 なお、 図 2 9 , 図 3 0より、 還元へモグロ ビン濃度変化(b ), (e )は、 それほど顕著には変動していないことがわかる。 図 3 1は、 本実施例の脳機能活動計測装置で計測された右手指運動時の総へモ グロビン濃度変化の一例を示す等高線グラフである。 ここでは、 右手指運動野を 包含するよう脳内の多点で計測を行ない、 右手指運動を行なつた際の総へモグロ ビン濃度変化量を等高線グラフとして示している。 図 3 1では、 図の上下方向が 脳の上下方向に、 左側が脳の前側に、 右側が脳の後側にそれぞれ対応している。 本図より、 本実施例の脳機能活動計測装置により、 このような顕著な変化を示す 脳内の局所的な部位における脳機能活動が計測され得ていることがわかる。  As is clear from a comparison between FIG. 29 and FIG. 30, the change in oxyhemoglobin concentration (a) and the change in total hemoglobin concentration (c) in the right finger motor area during the right finger movement period (Τ,) The change in oxygenated hemoglobin concentration (d) and the change in total hemoglobin concentration (f) in the left finger motor area during the finger movement period () are approximately three times as large. The motor area on the left side of the brain is the area involved in the movement of the right body, and the motor area on the right side of the brain is the area involved in the movement of the left body. The body parts involved are cross-related to each other. It should be noted from FIGS. 29 and 30 that the changes in reduced hemoglobin concentration (b) and (e) do not change so significantly. FIG. 31 is a contour graph showing an example of a change in total hemoglobin concentration during right finger movement measured by the brain function activity measuring device of the present embodiment. Here, measurement is performed at multiple points in the brain so as to encompass the right finger motor area, and the amount of change in the total hemoglobin concentration during right finger movement is shown as a contour graph. In Fig. 31, the vertical direction corresponds to the vertical direction of the brain, the left side corresponds to the front side of the brain, and the right side corresponds to the back side of the brain. From this figure, it can be seen that the brain function activity measuring device of the present embodiment can measure brain function activity at a local site in the brain showing such a remarkable change.
図 3 2は、 本実施例の脳機能活動計測装置で計測された言語想起時の総へモグ ロビン濃度変化の一例を示す等高線グラフである。 ここでは、 言語活動に関与す る脳内領域 (言語野) を包含するように脳内の多点で計測を行ない、 言葉を想起 した場合の酸化へモグロビン濃度変化量を等高線グラフで示している。 言語野は、 頭部左側のこめかみ近傍の脳内位置に存在する。 ここでも、 本実施例の脳機能活 動計測装置により、 顕著な変化を示す脳内の局所的な部位における脳機能活動が 計測されている。 本実施例の脳機能活動計測装置によれば、 このような脳内での 言語想起活動についても計測することが可能である。 FIG. 32 is a contour graph showing an example of a change in the total hemoglobin concentration at the time of recalling a language measured by the brain function activity measuring device of the present embodiment. Here, measurements are made at multiple points in the brain so as to encompass the brain area (language area) involved in language activity, and the amount of change in oxidized hemoglobin concentration when words are recalled is shown in a contour graph. . The language field is It is located in the brain near the temple on the left side of the head. Also in this case, the brain function activity measuring apparatus of this embodiment measures the brain function activity at a local site in the brain showing a remarkable change. According to the brain function activity measuring device of the present embodiment, it is possible to measure such a language recall activity in the brain.
従って、 本発明においては、 上記した脳機能活動計測装置によって計測された 精度の良い計測信号を外部装置への入力信号として用いることにより精度および 実用性の高い脳からの直接入力方法を実現することができる。  Therefore, in the present invention, a highly accurate and practical direct input method from the brain is realized by using a highly accurate measurement signal measured by the brain function activity measuring device as an input signal to an external device. Can be.
以上、 本発明による生体入力装置に用いられる脳機能活動計測装 の原理的な 構成の概要を述べたので、 以下では、 本発明の生体入力装置および生体制御装置 の具体的な構成例について述べる。  The outline of the basic configuration of the brain function activity measuring device used in the biological input device according to the present invention has been described above. Hereinafter, specific configuration examples of the biological input device and the biological control device of the present invention will be described.
図 3 3は、 本発明の第 5の実施例になる生体制御装置の概略構成図である。 図 3 3において、 本実施例になる生体制御装置は、 生体入力装置 1 0 0と外部 装置 2 0 0とで構成されている。  FIG. 33 is a schematic configuration diagram of a biological control device according to a fifth embodiment of the present invention. In FIG. 33, the biological control device according to the present embodiment includes a biological input device 100 and an external device 200.
生体入力装置 1 0 0中では、 図 2 8に示したような構成の脳機能活動計測装置 1 1 0を用いて、 照射用光ファイバ 8— 1 , 8— 2および 8— 3を介して被検体 (人頭部) 9に光を照射し、 被検体 9からの透過光を集光用光ファイバ 1 0— 1 , 1 0— 2および 1 0— 3で集光してその透過光強度を計測する。 これらの照射用 および集光用の光ファイバは、 照射用光ファイバ 8— 1と集光用光ファイバ 1 0 - 1の対が第 1の計測領域に、 照射用光ファイバ 8— 2と集光用光ファイバ 1 0 一 2の対が第 2の計測領域に、 照射用光ファイバ 8— 3と集光用光ファイバ 1 0 一 3の対が第 3の計測領域にそれぞれ対応するようにして、 光フアイバ固定用の ヘルメット 2 1に固定されている。 なお、 照射用一集光用光ファイバ対の対数を 増やすことにより計測領域数をさらに増やすことは容易であり、 また、 計測精度 (空間分解能)を向上するために、 それぞれの計測領域に、 複数の光ファイバ対を 配置することも容易である。  In the biological input device 100, the brain function activity measuring device 110 having the configuration shown in FIG. 28 is used to receive light through the irradiation optical fibers 8-1, 8-2, and 8-3. The specimen (human head) 9 is irradiated with light, and the transmitted light from the subject 9 is condensed by the condensing optical fibers 10-1, 10-2 and 10-3 to reduce the transmitted light intensity. measure. The irradiation and collection optical fibers are composed of a pair of irradiation optical fiber 8-1 and collection optical fiber 10-1 in the first measurement area, and a pair of irradiation optical fiber 8-2 and collection optical fiber 8-1. The pair of optical fibers 10 and 12 correspond to the second measurement region, and the pair of the irradiation optical fiber 8-3 and the collection optical fiber 10 and 13 correspond to the third measurement region, respectively. It is fixed to the helmet 21 for fixing the optical fiber. In addition, it is easy to further increase the number of measurement areas by increasing the number of pairs of optical fibers for one irradiation and condensing, and to improve the measurement accuracy (spatial resolution), each measurement area must have a plurality of measurement areas. It is also easy to arrange optical fiber pairs.
脳機能活動計測装置 1 1 0により計測された各計測領域についての通過光強度 は演算装置 1 2 0に入力される。 演算装置 1 2 0では、 入力された各計測領域に ついての通過光強度と記憶装置 1 3 0に予め記憶されている酸化および還元へモ グ口ビンの光吸収係数およびその他の演算用データを用いて後述する演算方法に よる演算を行ない、 所望の信号を特定して外部装置 2 0 0へ入力する。 記憶装置 1 3 0には、 それぞれの信号がどのような意味を持つのかを判定するために、 予 め、 それまでに学習した結果 (へモク口ビンの光吸収係数や各種の演算用データ) を記憶させておく。 Passing light intensity for each measurement area measured by the brain function activity measurement device 110 Is input to the arithmetic unit 120. The arithmetic unit 120 receives the input transmitted light intensity for each measurement area, the light absorption coefficient of the oxidation and reduction hemo-mouth bottles stored in the storage device 130 in advance, and other arithmetic data. Then, an arithmetic operation according to an arithmetic method described later is performed, and a desired signal is specified and input to the external device 200. The storage device 130 stores in advance the results of the learning (light absorption coefficient and various calculation data) in order to determine the meaning of each signal. Is stored.
外部装匿 2 0 0では、 演算装置 1 2 0から人力された信号の種類に応じて動作 する。 外部装置 2 0 0としては、 コンピュータ, ワードプロセッサ, ゲーム機, あるいは通信装置等が挙げられる。  The external concealment 200 operates according to the type of the signal manually input from the arithmetic unit 120. Examples of the external device 200 include a computer, a word processor, a game machine, and a communication device.
次に、 演算装置 1 2 0における演算方法について説明する。  Next, a calculation method in the calculation device 120 will be described.
図 3 4は、 演算装置 1 2 0での第 1の演算手順例を示すフローチャートである。 例えば、 照射用光ファイバ 8— 1と集光用光ファイバ 1 0— 1との対を左手指 運動野(計測領域 1 )に、 照射用光ファイバ 8— 2と集光用光ファイノく 1 0— 2と の対を右手指運動野(計測領域 2 )に、 照射用光ファイバ 8— 3と集光用光フアイ バ 1 0— 3との対を言語野(計測領域 3 )にそれぞれ対応させて配置して、 各計測 領域における生体内通過光強度を計測し、 この計測結果を演算装置 1 2 0に入力 する。  FIG. 34 is a flowchart illustrating an example of a first calculation procedure in the calculation device 120. For example, a pair of the irradiation optical fiber 8-1 and the condensing optical fiber 10-1 is placed in the left finger motor area (measurement area 1), and the irradiation optical fiber 8-2 and the condensing optical fiber 10 0 — The pair of 2 and 3 correspond to the right finger motor area (measurement area 2), and the pair of irradiation optical fiber 8-3 and condensing optical fiber 10-3 correspond to the language area (measurement area 3). And the in-vivo light intensity in each measurement area is measured, and the measurement result is input to the arithmetic unit 120.
( s t e p 1 - 1 )  (s t e p 1-1)
計測領域 1からの各波長の通過光強度から、 酸化, 還元, または、 総へモグロ ビンの濃度値を演算する。  Calculate the concentration value of oxidation, reduction, or total hemoglobin from the transmitted light intensity of each wavelength from the measurement area 1.
( s t e 1 - 2 )  (s t e 1-2)
s t e p 1 - 1で演算された各または任意のへ乇グロビン濃度値、 つまリ酸化, 還元および総へモグロビン濃度値またはそれらの中の任意の 1つの濃度値より、 特徴パラメータ値を演算して求める。 特徴パラメータとしては、 例えば任意時間 間隔の各または任意のへモグロビン濃度の積算値や、 任意時間の各または任意の へモグロビン濃度の変化率や、 各または任意のへモグロビン濃度の時間変化の任 意周波数の強度が用いられ、 これらは様々に決定することができる。 Calculate the characteristic parameter values from each or any of the hemoglobin concentration values calculated in step 1-1, ie, the oxidation, reduction and total hemoglobin concentration values or any one of them. . The characteristic parameters include, for example, the integrated value of each or any hemoglobin concentration at an arbitrary time interval, The rate of change of the hemoglobin concentration and the intensity of the arbitrary frequency of the time change of each or any hemoglobin concentration are used, and these can be variously determined.
I s t e p 1— 3 )  I s t e p 1— 3)
s t e p 1— 2で演算して求められた特徴パラーメータ値を記憶装置 1 3 0内 に記憶されている学習値と比較して、 特徴パラメータ値が予め設定された任意の 閾値範囲内にあるか否かを判定し、 範囲内(y e s )であれば信弓 · 1 を出力する (, また、 範囲外(η 0 )であれば s t e ρ 1 一 4へ進む。 The feature parameter value calculated in step 1-2 is compared with the learning value stored in the storage device 130 to determine whether or not the feature parameter value is within a predetermined threshold range. Is determined, and if it is within the range (yes), the output is Nobuy · 1 ( , and if it is outside the range (η 0), the process proceeds to ste ρ 14.
( s t e p 1— 4 )  (s t e p 1— 4)
計測領域 2からの各波長の通過光強度から、 酸化, 還元, または、 総へモグロ ビンの濃度値を演算する。  Calculate the concentration value of oxidation, reduction, or total hemoglobin from the transmitted light intensity of each wavelength from measurement area 2.
( s t e p 1 - 5 )  (s t e p 1-5)
s 1 e p 1 - 4で演算された各または任意のへモグロビン濃度値より、 特徴パ ラメータ値を演算して求める。 特徴パラメ一タとしては、 例えば、 任意時間間隔 の各または任意のへモグロビン濃度の積算値や、 任意時間の各または任意のへモ グロビン濃度の変化率や、 各または任意のへモグロビン濃度の時間変化の任意周 波数における強度が用いられ、 これらは様々に決定することができる。  s 1 e p Calculates the characteristic parameter value from each or any hemoglobin concentration value calculated in 1-4 and obtains it. The characteristic parameters include, for example, an integrated value of each or any hemoglobin concentration at an arbitrary time interval, a change rate of each or any hemoglobin concentration at an arbitrary time, and a time of each or any hemoglobin concentration. The intensity at any frequency of change is used and these can be determined variously.
( s t e p 1 - 6 )  (s t e p 1-6)
s t e p 1 - 5で演算して求めた特徴パラーメータ値が、 予め設定された任意 の閾値範囲内にあるか否かを判定し、 範囲内(y e s )であれば信号 2を出力する。 また、 範囲外(n 0 )であれば s t e p 1 - 7へ進む。  It is determined whether or not the characteristic parameter value calculated by st e p 1-5 is within a predetermined threshold range. If the value is within the range (yes), signal 2 is output. If the value is out of the range (n 0), the process proceeds to st e p 1-7.
( s t e p 1— 7 )  (s t e p 1— 7)
計測領域 3からの各波長の通過光強度から、 酸化, 還元, または、 総へモグロ ビンの濃度値を演算する。  Calculate the concentration value of oxidation, reduction, or total hemoglobin from the transmitted light intensity of each wavelength from the measurement area 3.
( s t e p 1 - 8 )  (s t e p 1-8)
s t e p 1 - 7で演算された各または任意のへモグロビン濃度値より、 特徴パ ラメ一タ値を演算して求める。 特徴パラメータとしては、 例えば、 任意時間間隔 の各または任意のへモグロビン濃度の積算値あるいは平均値や、 任意時間の各ま たは任意のへモグロビン濃度の変化率や、 各または任意のへモグロビン濃度の時 間変化の任意周波数における強度が用いられ、 これらは様々に決定することがで きる。 A characteristic parameter value is calculated from each or any hemoglobin concentration value calculated in step 1-7 to obtain a value. As the feature parameters, for example, arbitrary time intervals Of each or any hemoglobin concentration, the rate of change of each or any hemoglobin concentration at any time, and the intensity of the time change of each or any hemoglobin concentration at any frequency. Used, and these can be determined in various ways.
( s t e 1 一 9 )  (st e 1 1 9)
s t e p 1 一 8で演算して求めた特徴パラ一メータ値力 予め設定された任意 の閾値範囲内にあるか否かを判定し、 範囲内(y e s )であれば信号 3を出力する c また、 範囲外(n o )であれば s t e p 1— 1へ戻る。 Step 1 Feature parameter value calculated by 1-8 Determine whether it is within a predetermined threshold range, and if it is within the range (yes), output signal 3 c If out of range (no), return to step 1-1.
ここで、 外部装置 2 0◦がコンピュータである場合を想定して、 常に外部装置 2 0 0を入力待ち状態にしておく。 さらに、 信号 1の入力に対しては力一ソルを 左移動、 信号 2の入力に対してはカーソルを右移動、 信号 3の入力に対してはク リックと云うように、 予め入力信号に対する外部装置 2 0 0の応答機能を対応さ せておくことも可能である。  Here, assuming that the external device 200 is a computer, the external device 200 is always kept in an input waiting state. In addition, move the cursor to the left for signal 1 input, move the cursor right for signal 2 input, and click for signal 3 input. It is also possible to make the response function of the device 200 correspond.
また、 上記演算方法の拡張例として、 s t e p 1— 3, s t e p 1— 6および s t e p 1 一 9において、 閾値範囲内の場合には 「0」 信号, 閾値範囲外の場合 には 「 1」 信号を出力する様にしておけば、 演算装置 1 2 0から出力する信号と しては 8通りの組合せ (0 0 0〜 1 1 1 ) を作ることができる。 この場合には、 演算装置 1 2 0からは信号 1から信号 8までの信^出力を行なわせるようにし、 各出力信号に対応する外部装置 2 0 0の応答機能を予め決めておけばよい。  As an extended example of the above calculation method, in step 1-3, step 1-6 and step 1-19, a “0” signal is output when the signal is within the threshold range, and a “1” signal is output when the signal is outside the threshold value If it is output, eight combinations (0 00 to 11 1) can be made as signals output from the arithmetic unit 120. In this case, the arithmetic unit 120 may output signals 1 to 8, and the response function of the external device 200 corresponding to each output signal may be determined in advance.
上記した第 1の演算手順例では、 予め、 計測領域を右手指運動野, 左手指運動 野および言語野に定めて、 それぞれの計測領域からの計測信号と外部装置の応答 機能とを 1対 1に対応させた場合について述べた。  In the above-described first example of the calculation procedure, the measurement areas are determined in advance as the right finger motor area, the left finger motor area, and the language area, and the measurement signal from each measurement area and the response function of the external device are one-to-one. I described the case where it was made to correspond to.
図 3 5は、 演算装置 1 2 0での第 2の演算手順例を示すフローチャートである c この第 2の演算手順例は、 各計測領域において計測された酸化. 還元, または 総ヘモグロビンの濃度変化値と外部装置 2 0 0へ入力する信号とを 1対 1に対応 させない場合である。 先の第 1の演算手順例では、 予め定めた計測領域 (特定の 機能動作に関与する特定の脳内領域) からの信号を選択的に取り出し、 この信号 を上記した特定の機能動作と 1対 1に対応させているが、 例えば、 操作者が力一 ソルを左に動かしたい意思を有する場合には、 それ相応に 「左手を動かす」 こと を想起しなければならず、 実際の外部装置の機能と操作者の意思とがかけ離れた ものとなってしまう場合がある。 以下に述べる第 2の演算手順例は、 先述の第 1 の演算手順例における上記の様な問題点を考慮した上でのものである。 FIG. 35 is a flowchart showing a second example of the calculation procedure in the arithmetic unit 120. c This second example of the calculation procedure is a measurement of the oxidation, reduction, or change in the concentration of total hemoglobin in each measurement region. This is the case where the value and the signal input to the external device 200 do not have a one-to-one correspondence. In the first example of the first calculation procedure, the predetermined measurement area (specific Signals from specific brain regions involved in functional movements) are selectively extracted, and this signal is associated one-to-one with the specific functional movements described above. If you have a willingness to move it, you must remind yourself to move your left hand accordingly, and the actual function of the external device and the intention of the operator may be far apart. . The second operation procedure example described below takes into consideration the above-mentioned problems in the first operation procedure example.
先ず計測領域を任意の複数箇所( i箇所)に設定し、 それぞれの計測領域に照射 用光ファィバと集光用光ファィバとを配置し、 各計測領域における生体内通過光 強度を計測し、 計測結果を演算装置 1 2 0に入力する。 すなわち、 本例では、 予 め定めた特定の計測領域 (特定の機能動作に関与する特定の脳内領域) にねらい を定めて、 これら特定の計測領域だけからの信号を選択的に計測するのではなく、 具体的に計測領域を特定せずに、 計測用光ファイバ対を被検体(人頭部)表面上の 任意の複数位 Kに配置し、 操作者が外部装置 (例えばコンピュータ)への入力動作 を想起した時の脳機能活動に伴なうこれら複数位置におけるヘモグロビンの濃度 変化の計測を何回も繰り返し行なって学習し、 該学習結果を予め記憶装置 1 3 0 に記憶しておくのである。 そして、 実際に計測された信号からヘモグロビン濃度 および特徴パラメータを演算して求め、 記憶装置 1 3 0内に記憶されたデータ中 にそれと同じような特徴パラメータが存在するか否かを探索し、 外部装置へ入力 すべき信号を決定するのである。  First, the measurement area is set at a plurality of arbitrary locations (i locations), an irradiation optical fiber and a condensing optical fiber are arranged in each measurement area, and the in-vivo light intensity in each measurement area is measured. The result is input to the arithmetic unit 120. In other words, in this example, the purpose is to target a predetermined specific measurement area (a specific brain area involved in a specific functional operation) and selectively measure signals from only these specific measurement areas. Instead, the measurement optical fiber pair is placed at arbitrary positions K on the surface of the subject (human head) without specifying the measurement area, and the operator connects to an external device (for example, a computer). Since the learning is performed by repeatedly measuring the change in the concentration of hemoglobin at these multiple positions accompanying the brain function activity when recalling the input operation, and the learning result is stored in the storage device 130 in advance. is there. Then, hemoglobin concentration and characteristic parameters are calculated and obtained from the actually measured signals, and it is searched whether or not there is a similar characteristic parameter in the data stored in the storage device 130. The signal to be input to the device is determined.
以下、 この第 2の演算手順例につき、 図 3 5に示したフローに沿って詳細に説明 する。 Hereinafter, this second calculation procedure example will be described in detail along the flow shown in FIG. 35.
( s t e p 2 - 1 ) い  (s t e p 2-1)
各計測領域 iからのそれぞれの波長の通過光強度から、 酸化, 還元, または総 ヘモグロビンの濃度を演算して求める。  From the transmitted light intensity of each wavelength from each measurement area i, calculate the concentration of oxidation, reduction, or total hemoglobin by calculation.
( s t e p 2 - 2 )  (s t e p 2-2)
s t e p 2 - 1 _で演算して求めた各または任意のヘモグロビン濃度より、 各計 測領域 i毎の各特徴パラメータ jの値 P i , j (マトリクス値) を演算して求め る。 ここで、 特徴パラメータ jとしては、 例えば任意時間間隔の各または任意の ヘモグロビン濃度の積算値や、 任意時間の各または任意のヘモグロビン濃度の変 化率や、 各または任意のヘモグロビン濃度の時間変化の任意周波数における強度 が用いられ、 これは様々に決定することができる。 From each or any hemoglobin concentration calculated by step 2-1 _, The value P i, j (matrix value) of each feature parameter j for each measurement area i is calculated and obtained. Here, the characteristic parameter j is, for example, an integrated value of each or any hemoglobin concentration at any time interval, a change rate of each or any hemoglobin concentration at any time, or a time change of each or any hemoglobin concentration. The intensity at an arbitrary frequency is used, which can be determined variously.
( s t e p 2— 3 )  (s t e p 2— 3)
ここで、 演算装置 1 2 0より出力される信号の種類を k種類とする。 予め記憶 装置 1 3 0には、 一般的あるいは操作者個人についての学習データが記憶されて いる。  Here, the types of signals output from the arithmetic unit 120 are set to k types. The storage device 130 stores learning data about general or individual operators in advance.
学習データ構造は、 各出力信号 k毎に同じ構造を持つ各計測領域 i毎の各特徴 パラメータ j毎の標準偏差値及び平均値である。 すなわち、 特徴パラメータの確 率分散がガゥシァン分布であることを前提としている。 標準偏差値及び平均値で、 ガウス関数を記述することができる。  The learning data structure is a standard deviation value and an average value for each feature parameter j for each measurement area i having the same structure for each output signal k. That is, it is assumed that the probability variance of the feature parameters is a Gaussian distribution. The Gaussian function can be described by the standard deviation and the mean.
例えば、 外部装置 2 0 0をコンピュータと想定し、 該コンピュータに予め演算 装置 1 2◦からの信号 kが入力された場合、 カーソルが右に動くように設定して おく。 また、 操作者は脳機能活動計測装置 1 1 0を装着し、 予め "力一ソルを右 に動かす" と想起することを複数回行なう。 この時、 計測される各計測領域 i毎 の各特徴パラメータ j毎に標準偏差値および平均値を計算する。 ここで得られた 各計測領域 i毎の各特徴パラメータ j毎の標準偏差値および平均値が、 信号 kの 学習データとして記憶装置 1 3 0に記憶されている。 この s t e p 2一 3では、 この記憶されている学習データ D i , j , kを演算装置 1 2 0に読み込む。  For example, assuming that the external device 200 is a computer, the cursor is set to move to the right when the signal k from the arithmetic device 12 ° is input to the computer in advance. In addition, the operator wears the brain function activity measuring device 110 and repeatedly remembers “moving the force sol right” a plurality of times in advance. At this time, a standard deviation value and an average value are calculated for each feature parameter j for each measurement area i to be measured. The obtained standard deviation value and average value for each feature parameter j for each measurement area i are stored in the storage device 130 as learning data of the signal k. In this step 23, the stored learning data Di, j, k are read into the arithmetic unit 120.
図 3 6に、 学習データ D i, j , kのデータ構造を示す。 図 3 6において、 S は標準偏差値を表わし、 Aは平均値を表わし、 点線(· · · ·)は省略を意味している。 また、 計測領域 i を n箇所とし、 特徴パラメータ jの種類数は m種類としている。 記憶されている全学習データ D i , j , kと s t e ρ 2— 2演算された各計測 領域 i毎の各特徴パラメータ jの値 P i, j を用い、 各信号 k毎にマハラノビス 距離 M D kを演算して求める。 このマハラノビス距離は、 周知の簡単な式で表わ される。 Figure 36 shows the data structure of the learning data Di, j, k. In Fig. 36, S represents the standard deviation value, A represents the average value, and the dotted line (·····) means omission. The measurement area i is set to n places, and the number of types of the characteristic parameter j is set to m. The Mahalanobis is used for each signal k using all stored learning data D i, j, k and the value P i, j of each characteristic parameter j for each measurement area i calculated by ste ρ 2-2. The distance MD k is calculated and found. This Mahalanobis distance is represented by a well-known simple equation.
( s t e p 2 - 5 )  (s t e p 2-5)
s t e p 2 — 4で演算して求めた各信号 k毎のマハラノビス距離 M D kから、 最小のマハラノビス距離 M D k (min) を探索する。 1〜 k個の信号中から最小値 のものを選択すれば、 それが最小のマハラノビス距離 M D k (min) となる。 ( s t e p 2 - 6 )  Search for the minimum Mahalanobis distance M D k (min) from the Mahalanobis distance M D k for each signal k calculated by s t e p 2 — 4. If the signal with the minimum value is selected from 1 to k signals, it will be the minimum Mahalanobis distance M D k (min). (s t e p 2-6)
最小のマハラノビス距離 M D k (min) が任意の閾値範囲内にあるか否かを判断 する。 範囲内にある場合には、 s t e p 2— 7へ進む。 また範囲外にある場合に は、 先の s t e p 2— 1へ戻る。  It is determined whether the minimum Mahalanobis distance M D k (min) is within an arbitrary threshold range. If so, go to st e p 2—7. If the value is out of the range, the process returns to step 2-1.
( s t e p 2 - 7 )  (s t e p 2-7)
上記のようにして得られた信号 kを出力し、 外部装置(コンピュータ) 2 0 0へ 送る。  The signal k obtained as described above is output and sent to an external device (computer) 200.
上記第 2の演算手順例は、 マハラノビス推定法を応用したものであるが、 同様 な推定を行なうために、 第 3の演算方法として、 ニューラルネットワークを応用 する方法もある。 この場合には、 ニューラルネットワークの入力側各端子に、 各 計測領域 i毎の各特徴パラメータ j を入力するようにし、 出力側各端子に各信号 k ( k = l〜 l ) を割り当てる。 ニューラルネットワークは、 予め各計測領域 i 毎の各特徴パラメータ jの値によって、 任意の信号 kを出力するように各操作者 毎あるいは一般的な操作者の複数回の操作によって学習しておく。 この学習した ニュ一ラルネットワークを用いることにより、 図 3 5に示したマハラノビス推定 による場合と同様な機能が得られ、 使用者が想起したことに対応した信号を出力 することができる。  The above-mentioned second example of the operation procedure is an application of the Mahalanobis estimation method, but there is also a method of applying a neural network as a third operation method in order to perform a similar estimation. In this case, each characteristic parameter j for each measurement area i is input to each input terminal of the neural network, and each signal k (k = l to l) is assigned to each output terminal. The neural network learns in advance by each operator or a plurality of operations by a general operator so as to output an arbitrary signal k according to the value of each feature parameter j for each measurement area i. By using the learned neural network, the same function as that obtained by the Mahalanobis estimation shown in Fig. 35 can be obtained, and a signal corresponding to the user's recall can be output.
図 3 3では、 演算装置 1 2 0の後段にニューラルネットワークを接続し、 特徴 パラメータを該ネットワークの入力側各端子に入力し、 該ネットワークの出力側 各端子を外部装置 2 0 0に接続する。 なお、 上記した第 1 , 第 2 , および第 3の演算方法の他に、 演算装置では、 脳 機能活動計測用の検出器によリ計測された信号を直接用いて、 出力信号の種類を 決定するようにすることも勿論可能である。 In FIG. 33, a neural network is connected to the subsequent stage of the arithmetic unit 120, characteristic parameters are input to input terminals of the network, and output terminals of the network are connected to the external device 200. In addition to the first, second, and third arithmetic methods described above, the arithmetic device determines the type of output signal by directly using the signal measured by the detector for measuring brain function activity. It is of course possible to do so.
く実施例 6〉  Example 6>
図 3 7に、 本発明の第 6の実施例になる生体制御装置の概略構成を示す。 本実施例は、 本発明による脳機能活動計測裝置からの信号を用いて自動車運転 者への居眠り警報を行なわせる例である。  FIG. 37 shows a schematic configuration of a biological control device according to a sixth embodiment of the present invention. This embodiment is an example in which a signal from the brain function activity measuring device according to the present invention is used to give a drowsiness warning to a car driver.
図 3 7中、 9は運転者 (被検体) , 1 0 2はハンドル, 1 0 3は座席, 1 0 4 は自動車, 1 0 5は駆動回路, 1 0 6はスピーカ, 1 0 7は光ファイバ固定具あ るいは光ファイバ固定用へルメット, 1 0 8は光照射用光ファイノ、', 1 0 9は光 集光用光ファイバ, 1 1 1は入力装置, 1 1 2は生体光計測部 (脳機能活動計測 装置) , 1 1 3は入力信号判定部, 1 1 4は信号線, 1 1 5はマイクロコンピュ ータ, 1 1 6は記憶装置である。 本実施例では、 生体光計測部 1 1 2からの生体 計測信号を用いて、 運転者 9への居眠り警報を行なわせるようにしている。 すな わち、 入力装置 1 1 1 (生体光計測部 1 1 2 , 入力信号判定部 1 1 3 , 光照射用 光ファイ ノく 1 0 8 , 光集光用光ファイバ 1 0 9 , および光ファイバ固定具あるい は光ファイバ固定ヘルメッ卜 1 0 7を含む) 力 本発明における生体入力装置を 構成しており、 外部装置としてマイクロコンピュータ 1 1 5が用いられている。 図 3 7は、 運転者 9が座席 1 0 3に座って、 ハンドル 1 0 2を操作して自動車 1 0 4を運転している状態を示している。 運転者 9は、 光ファイバ固定具 (ヘル メッ卜) 1 0 7を着用している。 この光ファイバ一固定具 (ヘルメット) 1 0 7 には、 1対以上の光照射用光ファイバ 1 0 8と光集光用光ファイバ 1 0 9が固定 されている。 光照射用光ファイバ 1 0 8からは、 常時運転者 9の頭部に光が照射 されており、 この光照射位置から任意の距離 (例えば 3 0 mm程度) 離れた集光 位置に固定された光集光用光ファイバ 1 0 9で生体内通過光が集光されている。 光照射用光ファイバ 1 0 8から照射する光の光源は、 生体光計測部 1 1 2内に設 けられており、 また光集光用光ファイバ 1 0 9で集光された光を検出するための 光検出器も同様に生体光計測部 1 1 2内に設けられている。 In Figure 37, 9 is the driver (subject), 102 is the steering wheel, 103 is the seat, 104 is the car, 105 is the driving circuit, 106 is the speaker, and 107 is the light. Fiber fixing device or helmet for fixing optical fiber, 108 is optical fino for light irradiation, ', 109 is optical fiber for condensing light, 111 is input device, and 112 is biological light measurement Unit (brain function measurement device), 113 is an input signal judgment unit, 114 is a signal line, 115 is a microcomputer, and 116 is a storage device. In the present embodiment, a drowsiness warning is issued to the driver 9 using the living body measurement signal from the living body light measuring unit 112. That is, the input device 1 1 1 (biological light measuring unit 1 1 2, input signal judging unit 1 1 3, light irradiating optical fiber 108, light condensing optical fiber 109, and light (Including a fiber fixing device or an optical fiber fixing helmet 107) Force A living body input device according to the present invention is constituted, and a microcomputer 115 is used as an external device. FIG. 37 shows a state in which the driver 9 is driving the automobile 104 by operating the steering wheel 102 while sitting in the seat 103. Driver 9 wears an optical fiber fixing device (Hellmet) 107. One or more pairs of light irradiation optical fibers 108 and light condensing optical fibers 109 are fixed to this optical fiber fixing device (helmet) 107. Light is constantly radiated to the head of the driver 9 from the optical fiber for light irradiation 108, and the light is fixed to a condensing position at an arbitrary distance (for example, about 30 mm) from the light irradiation position. The light passing through the living body is collected by the light collecting optical fiber 109. The light source of the light emitted from the optical fiber for light irradiation 108 is installed in the biological light measurement unit 112. Also, a photodetector for detecting the light condensed by the light condensing optical fiber 109 is provided in the biological light measurement unit 112 similarly.
ここで、 図 3 3の実施例で示したように、 異なる光照射位置毎および異なる照 射光波長毎に、 それぞれの照射光強度に互いに異なる変調周波数での変調を与え ておき、 光検出器で検出された生体内通過光強度信号を位相検波して、 それぞれ の変調周波数毎の通過光強度成分を分離して計測すれば、 所望とする計測位置以 外からの迷光の影響を除去し、 各計測位置毎の各波長毎の生体内通過光強度成分 を分離して計測することができる。 1対の光照射用光ファイノ、' 1 0 8と光集光用 光ファイ ノ 1 0 9で定義される計測位置は、 運転者 9毎に任意の複数位置に設定 して差し支えないが、 光透過性の高い前頭部や、 眠気により顕著に血行動態が変 化する部位等の特徴的な部位が予め判っている場合には、 これらの特徴的な部位 に選択的に計測位置を設定するのが良い。  Here, as shown in the embodiment of FIG. 33, modulation at different modulation frequencies is given to each irradiation light intensity for each different light irradiation position and each different irradiation light wavelength, and the light detectors use If the detected in-vivo transmitted light intensity signal is phase-detected and the transmitted light intensity components for each modulation frequency are separated and measured, the effect of stray light from other than the desired measurement position can be removed, It is possible to separate and measure the in-vivo light intensity components for each wavelength at each measurement position. The measurement position defined by a pair of optical fins for irradiating light, '108, and optical fins for condensing light 109, can be set to any arbitrary number of positions for each driver 9. If characteristic regions such as the frontal region with high permeability and the region where hemodynamics are significantly changed by drowsiness are known in advance, the measurement position is selectively set to these characteristic regions. Is good.
生体光計測部 1 1 2で計測された頭部血行動態を表わす計測信号を基にして、 入力信号判定部 1 1 3において眠気の信号を抽出する。 ここで、 入力信号判定部 1 1 2は、 ヘモグロビン等の光学パラメータなどの血行動態演算に必要な定数デ ータと運転者 9に関する学習データを記憶している記憶装置と、 血行動態の演算 と入力信号の判定とを行う演算装置とで構成されている。 また、 先の第 3の演算 手順例で示したように、 入力信号の判定にニューラルネットワークを用いること も可能である。  A drowsiness signal is extracted in the input signal determination unit 113 based on the measurement signal indicating the blood circulation of the head measured by the living body light measurement unit 112. Here, the input signal determination unit 112 includes a storage device that stores constant data necessary for hemodynamic calculation such as optical parameters such as hemoglobin and learning data on the driver 9, and calculates hemodynamics. And an arithmetic unit for determining the input signal. Further, as shown in the third example of the operation procedure, it is also possible to use a neural network to determine the input signal.
ここで、 入力信号判定部 1 1 3により運転者 9の眠気が検知された場合には、 この眠気検知出信号を信号線 1 1 4を介してマイクロコンピュータ 1 1 5に入力 し、 マイクロコンピュータ 1 1 5から、 駆動回路 1 0 5とスピーカ 1 0 6とから なる居眠り驚報系へ警報発信を指令する信号を送る。 居眠り警報系は、 この警報 指令信号が入力されたなら、 駆動回路 1 0 5からスピーカ 1 0 6へ警報音声信号 を送って、 警報音声を発生させる。 ここで、 居眠り警報系の警報手段としては、 上記した音声で運転者を刺激するものの他に、 光で刺激するもの、 あるいは座席 1 0 3を振動させるもの等、 種々の手段が考えられる。 また、 マイクロコンピュ ータ 1 1 5からは、 警報のレベルに応じて記憶装置 1 1 6に記憶されている音声 信号データを選択して、 例えば『危険!、 危険!、 · · ·』等の警報内容を表わ した音声警報を出力させるようにすることもできる。 また、 入力装置 1 1 1を光 ファイバ固定具 1 0 7に内装し、 信号線 1 1 4を用いず、 電磁波によって居眠り 警報系に信号を送ることも可能である。 さらに、 警報レベルが上ったことをマイ クロコンピュータ 1 1 5が判断した場合には、 マイクロコンピュータ 1 1 5から、 下方矢印で示すように、 例えば、 ブレーキをかけたり、 エンジンを停止させたり するための信号を直接出力させることもできる。 Here, if the drowsiness of the driver 9 is detected by the input signal determination unit 113, this sleepiness detection output signal is input to the microcomputer 115 via the signal line 114, and the microcomputer 1 From 15, a signal is sent to the drowsy alarm system consisting of the drive circuit 105 and the speaker 106 to issue an alarm. When this alarm command signal is input, the drowsiness alarm system sends an alarm sound signal from the drive circuit 105 to the speaker 106 to generate an alarm sound. Here, as the alarm means of the drowsiness alarm system, in addition to the above-mentioned sound stimulating means for the driver, a light stimulating means or a seat stimulating means Various means, such as one that vibrates 103, can be considered. Also, from the microcomputer 115, the voice signal data stored in the storage device 116 is selected according to the alarm level, and for example, “Danger! , Danger! , · · ·] Can be output as an audio alert indicating the content of the alert. Further, it is also possible to install the input device 111 in the optical fiber fixing device 107 and send a signal to the dozing alarm system by electromagnetic waves without using the signal line 114. In addition, if the microcomputer 115 determines that the alarm level has risen, the microcomputer 115, for example, applies a brake or stops the engine as indicated by a downward arrow. Can be directly output.
このような生体計測信号を用いた警報発生方式は、 図 3 7に示した自動車運転 のみならず、 飛行機, 電車等の全ての移動手段の運転に対しても適用することが でき、 これらの移動手段の運転中に、 眠気, 疲労, いらいら感, レッ ドアウト, ブラックァゥト等、 運転に支障をきたすような感覚状態を判定して自動的に警報 を発生させる装置としての応用ができる。 なお、 レッドアウト, ブラックアウト とは、 飛行機等の操縦中に大きな加速度によって脳内血流が局所に集中し、 視覚 異常, 意識喪失を引き起す症状のことである。  The alarm generation method using such a biological measurement signal can be applied not only to the driving of a car shown in Fig. 37 but also to the driving of all means of transportation such as an airplane and a train. The system can be applied as a device that automatically determines the drowsiness, fatigue, annoyance, redout, blackout, and other sensational conditions that may interfere with driving while the vehicle is operating. Note that redout and blackout are symptoms in which blood flow in the brain concentrates locally due to large acceleration during operation of an airplane or the like, causing visual abnormalities and loss of consciousness.
このように、 本発明による生体入力装置をマイクロコンピュータへの入力装置 として用いることにより、 例えば環境制御装置としての応用もできる。 すなわち、 寒い, 熱い, リラックスしている等の環境に対する主観的な感覚状態を判定して、 環境温度, 環境音楽, 明るさ, 映像状態等の環境条件をコントロールすることが できる装置としても利用することができる。  Thus, by using the biological input device according to the present invention as an input device to a microcomputer, it can be applied, for example, as an environment control device. In other words, it is used as a device that can judge the subjective sensation state of the environment such as cold, hot, relaxed, etc., and control the environmental conditions such as environmental temperature, environmental music, brightness, and image state. be able to.
また、 学習度判定装置としても応用することができる。 すなわち、 学問, 運動 (リハビリも含む) 等における学習程度を判定し、 その習熟度を表示する装置と して使用できる。 また、 表示された習熟度に基づいて、 被訓練者が繰り返し訓練 を行なうための訓練装置として用いることもできる。  It can also be applied as a learning degree determination device. That is, it can be used as a device that determines the degree of learning in learning, exercise (including rehabilitation), etc., and displays the proficiency. Further, based on the displayed proficiency, the trainee can be used as a training device for performing repetitive training.
また、 医療における診断, 警報装置としても適用できる。 すなわち、 てんかん 患者におけるてんかん焦点決定のための診断装置, 脳疾患患者のための脳機能検 査装置、 てんかん発作の警報装置等に適用することができる。 It can also be applied as a diagnostic and alarm device in medical treatment. That is, epilepsy It can be applied to diagnostic devices for determining epileptic focus in patients, brain function testing devices for brain disease patients, and alarm devices for epileptic seizures.
また、 筋疾患や植物状態の患者, 幼児, および動物等の外部に意思を伝達でき ないかまたは本来意思が通じないものの感覚や思考を表示する装置としても適用 することができる。 より具体的に示すと、 幼児が思っていることを生体入力装置 で捉え、 それをディジタルの電気信号に変えてマイクロコンピュータに入力し、 予め意味を持っている言葉をメモリに登録しておき、 それを判別選択して音声で 出力する。 また、 幼児の脳内情報を生体入力装置で捉え、 刻々の脳内活動の変化 を検出し、 それを音素として音声合成回路に入力して、 幼児が思っていることを 話し声として意志伝達させる。 さらにまた、 本発明による生体入力装置を動物, ぺット等に取り付けることにより、 これら動物が何を欲しがつているのかを知る こともできる。  In addition, the present invention can be applied as a device for displaying sensations and thoughts of those who cannot communicate their intentions to the outside such as patients, infants, animals, etc. with muscular diseases or vegetative states, or who originally cannot communicate. More specifically, an infant captures what he or she thinks, converts it into a digital electric signal, inputs it to a microcomputer, and registers meaningful words in memory beforehand. Select it and output it by voice. In addition, the information in the brain of the infant is captured by a biological input device, and changes in brain activity are detected every moment, and the changes are input to the speech synthesis circuit as phonemes, and the intention of the infant is conveyed as speech. Furthermore, by attaching the living body input device according to the present invention to animals, pets, and the like, it is possible to know what these animals want.
また、 喜怒哀楽等の感情を判定し、 テレビ電話等で感情情報を伝達する装置に も応用することができる。 この装置によつて伝達される送信者側の感情情報から、 受信者側で表示される送信者の顔のコンピュータグラフィックス映像上に表情を 付加させることができる。  Also, the present invention can be applied to a device that determines emotions such as emotions and emotions and transmits emotion information by videophone or the like. An expression can be added to the computer graphics image of the sender's face displayed on the receiver side from the sender's emotion information transmitted by this device.
また、 集中力を判定し、 これを表示する装置にも適用することができる。 さら にはまた、 うそ発見器にも応用することができる。  Also, the present invention can be applied to a device that determines the concentration and displays the same. Furthermore, it can also be applied to a lie detector.
以上説明したように、 本発明によれば、 局在化している脳機能情報を、 脳機能 計測装置によって計測し、 この計測信号を外部装置への入力信号として用いるの で、 キ一ボード, マウス, ハンドル等を用いずに外部装置を制御することができ る他に、 乗物の警報装置, 環境制御装置, 学習度判定装置, 医療用の診断および 警報装置, 意思表示装置, 情報伝達装置, 集中力判定装置, および、 うそ発見器 等にも応用することができる。 従ってまた、 従来はできなかった情報伝達手段を 有しない者同士間での交信も可能となる。 産業上の利用可能性 As described above, according to the present invention, localized brain function information is measured by a brain function measurement device, and this measurement signal is used as an input signal to an external device. In addition to being able to control external devices without using a steering wheel, a vehicle alarm device, an environmental control device, a learning level determination device, a medical diagnostic and alarm device, a willingness display device, an information transmission device, It can also be applied to force judgment devices and lie detectors. Therefore, communication between persons who do not have the information transmission means, which has not been possible in the past, becomes possible. Industrial applicability
以上詳述したように、 本発明による生体光計測装置は、 直接的には医療用等の 生体内情報の計測装置として利用できる他、 間接的にはその計測した生体内情報 に基づいて乗物(自動車等)の警報装置や制動装置等を作動させるための制御装置 として利用することができるものである。  As described in detail above, the biological optical measurement device according to the present invention can be directly used as a device for measuring in-vivo information for medical use or the like, and indirectly, based on the measured in-vivo information. It can be used as a control device to activate an alarm device, a braking device, etc. of an automobile.

Claims

請 求 の 範 囲 The scope of the claims
1 . 被検体表面上の複数の照射位置に可視から赤外領域の波長の照射光を同時に 照射する光照射手段と、 上記照射光が被検体内を通過して得られる通過光を被検 体表面上の複数の検出位置で同時に検出する光検出手段と、 上記光検出手段から の検出信号を用いて被検体内の情報を画像化する画像化手段とを有してなる生体 光計測装置であって、 上記光照射手段は上記複数の照射位置への照射光を各照射 位置毎にそれぞれ異なる変調周波数で強度変調する光変調手段を含んでなり、 上 記光検出手段は上記複数の検出位置への上記通過光中から各検出位置毎にそれぞ れ異なる変調周波数の通過光成分を選択して検出する選択検出手段を含んでなる ことを特徴とする生体光計測装置。  1. Light irradiating means for simultaneously irradiating a plurality of irradiation positions on the surface of the object with irradiation light having a wavelength in the visible to infrared region, and transmitting the light obtained by passing the irradiation light through the object to the object. A biological optical measurement device comprising: light detection means for simultaneously detecting at a plurality of detection positions on a surface; and imaging means for imaging information in a subject using detection signals from the light detection means. The light irradiation means includes light modulation means for intensity-modulating irradiation light to the plurality of irradiation positions at different modulation frequencies for each irradiation position, and the light detection means includes a plurality of detection positions. A biological light measurement device comprising selection detection means for selecting and detecting a passing light component having a different modulation frequency for each detection position from the passing light passing through the sensor.
2 . 被検体表面上の複数の照射位置に各照射位置毎に可視から赤外領域の複数の 波長の照射光を同時に照射する光照射手段と、 上記照射光が被検体内を通過して 得られる通過光を被検体表面上の複数の検出位置で同時に検出する光検出手段と、 上記光検出手段からの検出信号を用いて被検体内の情報を画像化する画像化手段 とを有してなる生体光計測装置であって、 上記光照射手段は上記複数の照射位置 への上記照射光を各照射位置毎にそれぞれ異なる変調周波数で強度変調する光変 調手段を含んでなり、 上記光検出手段は上記複数の検出位置への上記通過光中か ら各検出位置毎にそれぞれ異なる変調周波数の通過光成分を選択して検出する選 択検出手段を含んでなることを特徴とする生体光計測装置。  2. Light irradiation means for simultaneously irradiating a plurality of irradiation positions on the surface of the object with irradiation light of a plurality of wavelengths in the visible to infrared region for each irradiation position, and the irradiation light is obtained by passing through the inside of the object. Light detecting means for simultaneously detecting the transmitted light at a plurality of detection positions on the surface of the object, and imaging means for imaging information in the object using the detection signal from the light detecting means. A biological light measuring device, wherein the light irradiation means includes light modulation means for intensity-modulating the irradiation light to the plurality of irradiation positions at different modulation frequencies for each irradiation position, and Means for selecting and detecting a passing light component having a different modulation frequency for each of the detection positions from the passing light to the plurality of detection positions. apparatus.
3 . 被検体表面上の複数の照射位置に各照射位置毎に可視から赤外領域の複数の 波長の照射光を同時に照射する光照射手段と、 上記照射光が被検体内を通過して 得られる通過光を被検体表面上の複数の検出位置で同時に検出する光検出手段と、 上記光検出手段からの検出信号を用いて被検体内の情報を画像化する画像化手段 とを有してなる生体光計測装置であって、 上記光照射手段は上記複数の照射位置 への上記照射光を各照射位置毎にかつ各波長毎にそれぞれ異なる変調周波数で強 度変調する光変調手段を含んでなり、 上記光検出手段は上記複数の検出位置への 上記通過光中から各検出位置毎にそれぞれ異なる変調周波数の通過光成分を選択 して検出する選択検出手段を含んでなることを特徴とする生体光計測装置。3. Light irradiating means for simultaneously irradiating a plurality of irradiation positions on the surface of the object with irradiation light of a plurality of wavelengths in the visible to infrared region for each irradiation position, and obtaining the irradiation light passing through the inside of the object. Light detecting means for simultaneously detecting the transmitted light at a plurality of detection positions on the surface of the object, and imaging means for imaging information in the object using the detection signal from the light detecting means. The light irradiation means includes a light modulation means for intensity-modulating the irradiation light to the plurality of irradiation positions at a different modulation frequency for each irradiation position and for each wavelength. The light detection means is adapted to detect the plurality of detection positions. A biological light measurement device comprising selection detection means for selecting and detecting a passing light component having a different modulation frequency for each detection position from the passing light.
4 . 上記の光照射手段は、 上記複数の照射位置への上記照射光を各照射位置毎に それぞれ対応して設けられた光照射用の光ファイバを介して伝送し照射するもの であり、 上記の光検出手段は、 上記複数の検出位置への上記通過光を各検出位置 毎にそれぞれ対応して設けられた光検出用の光ファイバを介して伝送し検出する ものであることを特徴とする請求の範囲第 1項〜第 3項のいずれかに記載の生体 光計測装置。 4. The light irradiation means transmits and irradiates the irradiation light to the plurality of irradiation positions via light irradiation optical fibers provided correspondingly to each of the irradiation positions. Wherein the light detecting means transmits and detects the light passing through the plurality of detection positions via light detection optical fibers provided corresponding to each of the detection positions. The biological optical measurement device according to any one of claims 1 to 3.
5 . 上記の光照射手段は、 上記複数の照射位置への照射光を出力する複数の光源 を含んでなり、 上記の光変調手段は、 上記複数の光源からの出力光をそれぞれ異 なる変調周波数で強度変調することによって、 上記複数の照射位置への照射光を それぞれ異なる変調周波数で強度変調するものであることを特徴とする請求の範 囲第 1項〜第 4項のいずれかに記載の生体光計測装置。  5. The light irradiation unit includes a plurality of light sources that output irradiation light to the plurality of irradiation positions, and the light modulation unit converts output light from the plurality of light sources to different modulation frequencies. The method according to any one of claims 1 to 4, wherein the intensity of the irradiation light is modulated at different modulation frequencies. Biological light measurement device.
6 . 上記複数の光源は、 複数の半導体レーザであることを特徴とする請求の範囲 第 5項に記載の生体光計測装置。  6. The biological optical measurement device according to claim 5, wherein the plurality of light sources are a plurality of semiconductor lasers.
7 . 上記の光変調手段は、 上記複数の半導体レーザをそれぞれ異なる変調周波数 で変調駆動することによって、 上記複数の照射位置への照射光をそれぞれ異なる 変調周波数で強度変調するものであることを特徴とする請求の範囲第 6項に記載 の生体光計測装置。  7. The light modulating means modulates and drives the plurality of semiconductor lasers at different modulation frequencies to thereby intensity-modulate the irradiation light to the plurality of irradiation positions at different modulation frequencies. 7. The biological light measurement device according to claim 6, wherein:
8 . 上記の光照射手段は、 上記複数の照射位置への照射光を出力する単一の光源 と、 この単一の光源からの出力光を上記複数の照射位置へ分配して伝送するため の複数の光伝送路とを含んでなり、 上記の光変調手段は、 上記複数の光伝送路に 分配された照射光をそれぞれ異なる変調周波数で強度変調することによって、 上 記複数の照射位置への照射光をそれぞれ異なる変調周波数で強度変調するもので あることを特徴とする請求の範囲第 1項〜第 4項のいずれかに記載の生体光計測 8. The light irradiating means includes: a single light source that outputs irradiation light to the plurality of irradiation positions; and a light source for distributing and transmitting output light from the single light source to the plurality of irradiation positions. A plurality of light transmission paths, wherein the light modulating means modulates the intensity of the irradiation light distributed to the plurality of light transmission paths at different modulation frequencies, so that the plurality of light transmission paths are transmitted to the plurality of irradiation positions. The biological light measurement according to any one of claims 1 to 4, wherein the irradiation light is intensity-modulated at different modulation frequencies.
9 . 上記の光変調手段は、 上記複数の光伝送路に分配された照射光を液晶フィル タまたは光チヨツバを用いて強度変調するものであることを特徴とする請求の範 囲第 8項に記載の生体光計測装置。 9. The light modulating means for modulating the intensity of the irradiation light distributed to the plurality of light transmission paths by using a liquid crystal filter or a light bulb. The biological light measurement device according to claim 1.
1 0 . 被検体表面上に正方格子を仮想設定した時、 該正方格子の格子点上で上記 照射光の照射および上記通過光の検出が行なわれるように、 上記複数の照射位置 および上記複数の検出位置が配置設定されていることを特徴とする請求の範囲第 1項〜第 9項のいずれかに記載の生体光計測装置。  10. When a square grid is virtually set on the surface of the subject, the plurality of irradiation positions and the plurality of positions are set so that the irradiation of the irradiation light and the detection of the passing light are performed on the grid points of the square lattice. 10. The biological optical measurement device according to claim 1, wherein the detection positions are set and arranged.
1 1 . 上記複数の照射位置と上記複数の検出位置が、 上記正方格子の各単位格子 の 4つの格子点上に交互に配置されていることを特徴とする請求の範囲第 1 0項 に記載の生体光計測装置。  11. The plurality of irradiation positions and the plurality of detection positions are alternately arranged on four grid points of each unit cell of the square grid, according to claim 10, wherein: Biological light measurement device.
1 2 . 被検体表面上に正六角形格子を仮想設定した時、 該正六角形格子の格子点 上で上記照射光の照射および上記通過光の検出が行なわれるように、 上記複数の 照射位置および上記複数の検出位置が配置設定されていることを特徴とする請求 の範囲第 1項〜第 9項のいずれかに記載の生体光計測装置。  12. When a regular hexagonal lattice is virtually set on the surface of the subject, the plurality of irradiation positions and the plurality of irradiation positions are set so that the irradiation of the irradiation light and the detection of the transmitted light are performed on the lattice points of the regular hexagonal lattice. 10. The biological optical measurement device according to claim 1, wherein a plurality of detection positions are arranged and set.
1 3 . 上記複数の照射位置と上記複数の検出位置とが、 上記正六角形格子の各単 位格子の 6つの格子点上に交互に配置されていることを特徴とする請求の範囲第 1 2項に記載の生体光計測装置。  13. The plurality of irradiation positions and the plurality of detection positions are alternately arranged on six lattice points of each unit lattice of the regular hexagonal lattice. The biological light measurement device according to item [1].
1 4 . 被検体表面上の上記複数の照射位置に照射光を伝送するための光照射用の 光ファイバおよび上記複数の検出位置への上記通過光を伝送するための光検出用 の光ファイバを所定の位置関係の下に固定配置してなる計測用プローブを備えて なることを特徴とする請求の範囲第 1項〜第 1 3項のいずれかに記載の生体光計 測装置。  14. An optical fiber for light irradiation for transmitting irradiation light to the plurality of irradiation positions on the subject surface and an optical fiber for light detection for transmitting the passing light to the plurality of detection positions are provided. The biophotometric device according to any one of claims 1 to 13, further comprising a measurement probe fixedly arranged in a predetermined positional relationship.
1 5 . 被検体表面上の複数の照射位置から被検体内に可視から赤外領域の波長の 照射光をそれぞれ照射するための光照射手段と、 上記複数の照射位置にそれぞれ 対応する被検体表面上の複数の検出位置においてそれぞれ対応する上記照射位置 からの照射光の被検体内透過光の強度を選択検出する光検出手段と、 上記光検出 手段によつて検出された上記複数の照射位置からの照射光の被検体内透過光強度 を演算処理する演算処理手段とを有してなり、 上記複数の照射位置からそれぞれ 対応する上記検出位置に至る被検体内透過光の光路が被検体内の所定の計測領域 において互いに重なり合うように上記複数の照射位置と上記複数の検出位置とが 位置設定されてなることを特徴とする生体光計測装置。 15. Light irradiating means for irradiating irradiation light having a wavelength in the visible to infrared region from the plurality of irradiation positions on the object surface to the inside of the object, and the object surface corresponding to each of the plurality of irradiation positions Light detecting means for selectively detecting the intensity of light transmitted through the subject from the irradiation position corresponding to each of the plurality of detection positions above; Means for calculating the transmitted light intensity in the subject of the irradiation light from the plurality of irradiation positions detected by the means, and from the plurality of irradiation positions to the corresponding detection positions, respectively. A biological light measurement device, wherein the plurality of irradiation positions and the plurality of detection positions are set such that the optical paths of transmitted light in the subject overlap with each other in a predetermined measurement region in the subject.
1 6 . 上記複数の照射位置のそれぞれからの照射光は、 互いに異なる複数の波長 成分を含むものであり、 上記光検出手段は、 上記複数の波長成分の被検体内透過 光の強度を波長毎に分離して検出するものであることを特徴とする請求の範囲第 16. Irradiation light from each of the plurality of irradiation positions includes a plurality of wavelength components different from each other, and the light detection unit determines the intensity of the plurality of wavelength components transmitted through the subject for each wavelength. Claims characterized in that they are detected separately.
1 5項に記載の生体光計測装置。 15. The biological light measurement device according to item 5.
1 7 . 上記演算処理手段は、 上記所定の計測領域内における生体情報についての 計測感度が上記所定の計測領域外における生体情報についての計測感度に対して 相対的に高まるようにして、 上記被検体内透過光強度を演算処理するものである ことを特徴とする請求の範囲第 1 5項または第 1 6項に記載の生体光計測装置。 17. The arithmetic processing means sets the measurement sensitivity of the biological information in the predetermined measurement area to be relatively higher than the measurement sensitivity of the biological information outside the predetermined measurement area. The biological light measurement device according to claim 15 or 16, wherein the internal transmitted light intensity is arithmetically processed.
1 8 . 上記光照射手段は、 上記複数の照射位置から被検体内に照射する上記照射 光を照射位置毎にそれぞれ異なる変調周波数で強度変調する光変調手段を含んで なり、 上記光検出手段は、 上記複数の検出位置のそれぞれにおいて、 その検出位 置に対応する照射位置からの上記照射光の変調周波数と同じ変調周波数を有する 被検体内透過光強度を選択検出する選択検出手段を含んでなることを特徴とする 請求の範囲第 1 5項に記載の生体光計測装置。 18. The light irradiation means includes light modulation means for intensity-modulating the irradiation light, which irradiates the inside of the subject from the plurality of irradiation positions, with a different modulation frequency for each irradiation position. At each of the plurality of detection positions, selection detection means for selectively detecting the intensity of transmitted light in the subject having the same modulation frequency as the modulation frequency of the irradiation light from the irradiation position corresponding to the detection position. The biological optical measurement device according to claim 15, wherein:
1 9 . 上記複数の照射位置のそれぞれからの照射光は、 互いに異なる複数の波長 成分を含むものであり、 上記光照射手段は、 上記複数の照射位置から被検体内に 照射する上記複数の波長成分を含む照射光を照射位置毎にかつ波長成分毎にそれ ぞれ異なる変調周波数で強度変調する光変調手段を含んでなり、 上記光検出手段 は、 上記複数の検出位置のそれぞれにおいて、 その検出位置に対応する照射位置 からの上記複数の波長成分を含む照射光の各波長成分の変調周波数と同じ変調周 波数を有する複数の波長成分の被検体内透過光強度を波長毎に分離して検出する ものであることを特徴とする請求の範囲第 1 5項に記載の生体光計測装置。 19. Irradiation light from each of the plurality of irradiation positions includes a plurality of wavelength components different from each other, and the light irradiation means includes a plurality of wavelengths for irradiating the subject from the plurality of irradiation positions. Light modulating means for intensity-modulating the irradiation light containing the component at a different modulation frequency for each irradiation position and for each wavelength component, wherein the light detection means detects the light at each of the plurality of detection positions. The in-subject transmitted light intensity of a plurality of wavelength components having the same modulation frequency as the modulation frequency of each wavelength component of the irradiation light including the plurality of wavelength components from the irradiation position corresponding to the position is detected separately for each wavelength. Do 16. The living body light measuring device according to claim 15, wherein the living body light measuring device is a device.
2 0 . 被検体表面上の第 1の照射位置から被検体内に可視から赤外領域の波長の 第 1の照射光を照射するための第 1の光照射手段と、 上記第 1の照射光の被検体 通過光を被検体表面上の第 1の検出位置で検出する第 1の光検出手段と、 被検体 表面上の第 2の照射位置から被検体内に可視から赤外領域の波長の第 2の照射光 を照射するための第 2の光照射手段と、 上記第 2の照射光の被検体内通過光を被 検体表面上の第 2の検出位置で検出する第 2の光検出手段と、 上記第 1および第 の光検出手段からの検出信号を演算処理する演算処理手段とを有してなる生体 光計測装置であって、 上記第 1の照射位置から上記第 1の検出位置に至る上記第 1の照射光の被検体通過光の光路と上記第 2の照射位置から上記第 2の検出位置 に至る上記第 2の照射光の被検体通過光の光路とが被検体の所定の領域で互いに 重なり合うように、 上記第 1および第 2の照射位置と上記第 1および第 2の検出 位置とが位置設定されていることを特徴とする生体光計測装置。 20. first light irradiation means for irradiating the first irradiation light having a wavelength in the visible to infrared region from the first irradiation position on the surface of the object to the inside of the object, and the first irradiation light First light detection means for detecting light passing through the object at a first detection position on the surface of the object; and Second light irradiating means for irradiating the second irradiation light, and second light detecting means for detecting the light passing through the subject of the second irradiation light at a second detection position on the surface of the subject A biological light measurement device comprising: an arithmetic processing means for arithmetically processing the detection signals from the first and the first light detection means, wherein the biological light measurement apparatus moves from the first irradiation position to the first detection position. And the optical path of the first irradiation light passing through the subject and the second irradiation light from the second irradiation position to the second detection position. The first and second irradiation positions and the first and second detection positions are set so that the optical paths of the body-passing light overlap with each other in a predetermined region of the subject. Biological light measurement device.
2 1 . 被検体表面上の複数の照射位置のそれぞれから被検体内に複数の波長成分 を含む照射光を照射する光照射手段と、 上記複数の照射位置にそれぞれ対応する 被検体表面上の複数の検出位置のそれぞれにおいてその検出位置に対応する照射 位置からの照射光の被検体内透過光の強度を選択検出する光検出手段と、 上記光 検出手段によって検出された上記複数の照射位置からの照射光の被検体内透過光 の強度を演算処理する演算処理手段とを有してなり、 上記複数の照射位置のそれ ぞれからその照射位置に対応する検出位置に至る被検体内透過光の光路が被検体 内の所定の計測領域において互いに重なり合うように上記複数の照射位置と上記 複数の検出位置と力位置設定されており、 上記光検出手段は上記被検体内透過光 強度を上記複数の波長成分毎に分離して検出するものであり、 上記演算処理手段 は上記所定の計測領域内における生体情報についての計測感度が上記所定の計測 領域外における生体情報についての計測感度に対して相対的に高まるようにして 上記被検体内^光強度を演算処理するものであることを特徴とする生体光計測 装置。 2 1. Light irradiation means for irradiating the object with irradiation light containing a plurality of wavelength components from each of a plurality of irradiation positions on the subject surface, and a plurality of light irradiation means on the subject surface corresponding to the plurality of irradiation positions, respectively. Light detection means for selectively detecting the intensity of the transmitted light in the subject of the irradiation light from the irradiation position corresponding to the detection position at each of the detection positions, and detecting the intensity from the plurality of irradiation positions detected by the light detection means. Arithmetic processing means for arithmetically processing the intensity of the illuminating light transmitted through the subject; and calculating the intensity of the transmitted light within the subject from each of the plurality of irradiation positions to the detection position corresponding to the irradiation position. The plurality of irradiation positions, the plurality of detection positions, and the force position are set so that the optical paths overlap with each other in a predetermined measurement region in the subject. The arithmetic processing means is configured to detect the measurement sensitivity for the biological information in the predetermined measurement area with respect to the measurement sensitivity for the biological information outside the predetermined measurement area. Biological light measurement characterized by calculating the light intensity in the subject so as to increase relatively. apparatus.
2 2 . 上記の光照射手段は、 上記複数の照射位置から被検体内に照射する複数の 波長成分を含む上記照射光を各照射位置毎にかつ各波長成分毎にそれぞれ異なる 変調周波数で強度変調する光変調手段を含んでなり、 上記光検出手段は、 上記複 数の検出位置のそれぞれにおいて、 その検出位置に対応する照射位置からの上記 照射光の変調周波数と同じ変調周波数を有する被検体内透過光の強度を選択検出 する選択検出手段を含んでなることを特徴とする請求の範囲第 2 1項に記載の生 体光計測装置。  22. The light irradiating means is configured to intensity-modulate the irradiating light including a plurality of wavelength components to irradiate the subject from the plurality of irradiating positions with a different modulation frequency for each irradiating position and each wavelength component. Light modulating means, wherein the light detecting means has, in each of the plurality of detection positions, an object having the same modulation frequency as the modulation frequency of the irradiation light from the irradiation position corresponding to the detection position. 22. The living body light measuring device according to claim 21, further comprising selection detecting means for selectively detecting the intensity of the transmitted light.
2 3 . 上記の選択検出手段は、 位相検波手段を含んでなることを特徴とする請求 の範囲第 2 2項に記載の生体光計測装置。  23. The biological optical measurement device according to claim 22, wherein the selection detection means includes a phase detection means.
2 4 . 上記の光検出手段は、 上記複数の検出位置のそれぞれへの被検体内透過光 を上記複数の波長成分毎に分光する分光手段を含んでなることを特徴とする請求 の範囲第 2 1項に記載の生体光計測装置。  24. The light detecting means according to claim 2, wherein the light detecting means includes spectroscopic means for separating the transmitted light in the subject to each of the plurality of detection positions for each of the plurality of wavelength components. 2. The biological light measurement device according to item 1.
2 5 . 被検体表面上に正方格子を仮想設定した時、 該正方格子の格子点上で上記 照射光の照射および上記通過光の検出が行なわれるように、 上記複数の照射位置 および上記複数の検出位置が配置設定されていることを特徴とする請求の範囲第 2 1項〜第 2 4項のいずれかに記載の生体光計測装置。  25. When a square grid is virtually set on the surface of the subject, the plurality of irradiation positions and the plurality of the plurality of irradiation positions are set so that the irradiation of the irradiation light and the detection of the passing light are performed on the grid points of the square lattice. 26. The biological optical measurement device according to claim 21, wherein the detection positions are set.
2 6 . 被検体表面上に正六角形格子を仮想設定した時、 該正六角形格子の格子点 上で上記照射光の照射および上記通過光の検出が行なわれるように、 上記複数の 照射位置および上記複数の検出位置が配置設定されていることを特徴とする請求 の範囲第 2 1項〜第 2 4項のいずれかに記載の生体光計測装置。  26. When a regular hexagonal lattice is virtually set on the surface of the subject, the plurality of irradiation positions and the plurality of irradiation positions are set so that the irradiation of the irradiation light and the detection of the transmitted light are performed on the lattice points of the regular hexagonal lattice. The biological light measurement device according to any one of claims 21 to 24, wherein a plurality of detection positions are arranged and set.
2 7 . 上記照射光は、 7 0 0 n mから 1 1 0 0 n mの波長範囲内の光であること を特徴とする請求の範囲第 2 1項〜第 2 6項のいずれかに記載の生体光計測装置。 27. The living body according to any one of claims 21 to 26, wherein the irradiation light is light in a wavelength range of 700 nm to 110 nm. Optical measuring device.
2 8 . 上記照射光は、 8 0 5 n m近傍の波長の光であることを特徴とする請求の 範囲第 2 1項〜第 2 6項のいずれかに記載の生体光計測装置。 28. The biological light measurement device according to any one of claims 21 to 26, wherein the irradiation light is light having a wavelength near 805 nm.
2 9 . 上記の演算処理手段は、 上記光検出手段によって検出された上記被検体内 透過光強度を演算処理することによって、 被検体内の酸化へモグロビン濃度変化, 還元ヘモグロビン濃度変化, および総ヘモグロビン濃度変化を求めるものである ことを特徴とする請求の範囲第 2 1項に記載の生体光計測装置。 2 9. The arithmetic processing means is provided in the subject detected by the light detecting means. 21. The method according to claim 21, wherein a change in the concentration of oxidized hemoglobin, a change in the concentration of reduced hemoglobin, and a change in the total hemoglobin concentration in the subject are calculated by calculating the transmitted light intensity. Biological light measurement device.
3 0 . 上記演算処理手段により求められた酸化ヘモグロビン濃度変化, 還元へモ グロビン濃度変化, および総ヘモグロビン濃度変化の時間変化を表示ための表示 手段をさらに含んでなることを特徴とする請求の範囲第 2 9項に記載の生体光計 測装置。 30. A display device for displaying a change in oxyhemoglobin concentration, a change in reduced hemoglobin concentration, and a change in total hemoglobin concentration over time obtained by the arithmetic processing means. Item 29. The biological photometric device according to item 29.
3 1 . 複数の波長の照射光を被検体の複数の照射位置に照射する複数の照射部を 有し前記照射位置毎に照射される前記照射光に波長毎に異なる変調周波数の強度 変調を与える変調部を有する光照射手段と、 前記被検体を透過した透過光を前記 被検体の複数の検出位置で集光する複数の集光部であってそれぞれの前記照射部 から発せられた前記照射光のそれぞれの透過光の光路が重なるように前記透過光 を集光する複数の集光部を有する集光手段と、 前記透過光から前記複数の光照射 位置毎にかつ前記複数の波長毎に前記透過光の光強度を検出する光検出手段と、 前記透過光の中から所定の強度変調周波数の光を検出、 または前記透過光の中か ら所定の強度変調周波数の光の強度を演算する検出演算手段を有し、 前記被検体 の第 1の所定領域の光学パラメータを検出する感度を向上させるか、 あるいは前 記被検体の第 2の所定領域の光学パラメータを検出する感度を低下させて前記透 過光の強度を演算処理する演算処理手段とを有することを特徴とする生体光計測  31. A plurality of irradiators for irradiating irradiation light of a plurality of wavelengths to a plurality of irradiation positions of the subject are provided, and the irradiation light irradiated for each of the irradiation positions is subjected to intensity modulation of a different modulation frequency for each wavelength A light irradiating unit having a modulating unit; and a plurality of condensing units for condensing transmitted light transmitted through the subject at a plurality of detection positions of the subject, the irradiating light emitted from each of the irradiating units. Condensing means having a plurality of condensing portions for condensing the transmitted light so that the respective optical paths of the transmitted light overlap each other; and a light converging section for each of the plurality of light irradiation positions and the plurality of wavelengths from the transmitted light. Light detecting means for detecting the light intensity of the transmitted light; detecting light having a predetermined intensity modulation frequency from the transmitted light, or detecting calculating the intensity of light having a predetermined intensity modulation frequency from the transmitted light Computing means, wherein the first predetermined Computing means for improving the sensitivity for detecting the optical parameters of the region or decreasing the sensitivity for detecting the optical parameters of the second predetermined region of the subject to calculate the intensity of the transmitted light. Biological light measurement characterized by having
3 2 . 複数の波長の照射光を被検体の複数の照射位置に照射する複数の照射部を 有する光照射手段と、 前記被検体を透過した透過光を前記被検体の複数の検出位 置で集光する複数の集光部を有する集光手段と、 前記透過光の光強度を検出する 検出手段と、 前記被検体の第 1の所定領域の光学パラメータを検出する感度を向 上させるか、 あるいは前記被検体の第 2の所定領域の光学パラメータを検出する 感度を低下させて前記透過光の強度を演算処理する演算処理手段とを有すること を特徴とする生体光計測装置。 32. Light irradiation means having a plurality of irradiation units for irradiating irradiation light of a plurality of wavelengths to a plurality of irradiation positions of the subject, and transmitting light transmitted through the subject at a plurality of detection positions of the subject. Focusing means having a plurality of focusing portions for focusing, detecting means for detecting the light intensity of the transmitted light, and improving sensitivity for detecting an optical parameter of a first predetermined region of the subject, Alternatively, there is provided an arithmetic processing means for arithmetically processing the intensity of the transmitted light by lowering the sensitivity for detecting an optical parameter in a second predetermined area of the subject. A biological light measurement device characterized by the above-mentioned.
3 3 . 上記の光学パラメ一タは、 光吸収係数であることを特徴とする請求の範囲 第 3 1項または第 3 2項に記載の生体光計測装置。  33. The biological light measurement device according to claim 31 or 32, wherein the optical parameter is a light absorption coefficient.
3 4 . 生体表面上の少なくとも一つの光照射位置から上記生体内に光を照射する ための光照射手段と、 上記生体表面上の少なくとも一つの光検出位置で上記光照 射位置からの照射光の生体内通過光を集光するための集光手段と、 上記集光手段 により集光されだ生体内通過光の強度を検出するための光検出手段と、 上記光検 出手段により検出された生体内通過光強度と予め記憶されている参考データとに 基づいて出力信号の種類を決定し出力するための演算手段と、 上記参考データを 記憶しておくための記憶手段とを具備してなることを特徴とする生体光計測法を 用いた生体入力装置。  34. Light irradiation means for irradiating the inside of the living body with light from at least one light irradiation position on the surface of the living body, and irradiation light from the light irradiation position at at least one light detection position on the surface of the living body. Light collecting means for collecting the light passing through the living body, light detecting means for detecting the intensity of the light passing through the living body collected by the light collecting means, and the light detected by the light detecting means. Computing means for determining and outputting the type of output signal based on the intensity of light passing through the body and reference data stored in advance, and storage means for storing the reference data A biological input device using a biological light measurement method characterized by the following.
3 5 . 生体表面上の少なくとも一つの光照射位置から上記生体内に光を照射する ための光照射手段と、 上記生体表面上の少なくとも一つの光検出位置で上記光照 射位置からの照射光の生体内通過光を集光するための集光手段と、 上記集光手段 により集光された生体内通過光の強度を検出するための光検出手段と、 上記光検 出手段により検出された生体内通過光強度と予め記憶されている参考データとに 基づいて出力信号の種類を決定し出力するための演算手段と、 上記参考データを 記憶しておくための記憶手段とを有して.なる生体入力装置、 および上記生体入力 装置からの出力信号を入力信号として該入力信号の種類に応じた機能動作を実行 するための外部装置からなることを特徴とする生体光計測法を利用した生体制御 装置。  35. Light irradiation means for irradiating the inside of the living body with light from at least one light irradiation position on the surface of the living body, and irradiation light from the light irradiation position at at least one light detection position on the surface of the living body. Light condensing means for condensing light passing through the living body, light detecting means for detecting the intensity of the light passing through the living body condensed by the light condensing means, and light condensing by the light detecting means. It has arithmetic means for determining and outputting the type of output signal based on the intensity of light passing through the body and reference data stored in advance, and storage means for storing the reference data. A living body control using a living body light measurement method, comprising: a living body input device; and an external device for executing a functional operation according to a type of the input signal using an output signal from the living body input device as an input signal. apparatus.
3 6 . 生体表面上の少なくとも一つの光照射位置から上記生体内に光を照射する ための光照射手段と、 上記生体表面上の少なくとも一つの光検出位置で上記光照 射位置からの照射光の生体内通過光を集光するための集光手段と、 上記集光手段 により集光された生体内通過光の強度を検出するための光検出手段と、 上記光検 出手段により検出された生体内通過光強度と予め記憶されている参考データとに 基づいて出力信号の種類を決定し出力するための演算手段と、 上記参考データを 記憶しておくための記憶手段と、 上記演算手段からの出力信号を入力信号として 該入力信号の種類に応じた機能動作を実行するための外部装置とを具備してなり、 上記演算手段は上記光検出手段によリ計測された生体内通過光強度よリ上記生体 内の所望の計測位置における酸化へモグロビン濃度変化値, 還元へモグロビン濃 度変化値または総ヘモグロビン濃度変化値を演算して求め、 さらに該変化値から 所望の特徴パラメータ値を演算して求め、 該特徴パラメータ値と上記記憶手段に 予め記憶されている参考データとに基づいて出力信号の種類を決定し出力するも のであることを特徴とする生体光計測法を利用した生体制御装置。 36. Light irradiation means for irradiating the inside of the living body with light from at least one light irradiation position on the surface of the living body, and irradiation light from the light irradiation position at at least one light detection position on the surface of the living body. Light condensing means for condensing light passing through the living body, light detecting means for detecting the intensity of the light passing through the living body condensed by the light condensing means, and light condensing by the light detecting means. Between light intensity passing through the body and reference data stored in advance Computing means for determining and outputting the type of output signal based on the input signal; storage means for storing the reference data; and an output signal from the computing means as an input signal corresponding to the type of the input signal. An external device for executing a functional operation, wherein the calculating means calculates the oxidized hemoglobin concentration at a desired measurement position in the living body based on the light passing through the living body measured by the light detecting means. Change value, reduction hemoglobin concentration change value or total hemoglobin concentration change value is calculated and obtained, and a desired characteristic parameter value is further calculated and calculated from the change value. The characteristic parameter value is stored in advance in the storage means. A biological control apparatus using a biological light measurement method, wherein the type of the output signal is determined and output based on the reference data.
3 7 . 上記の特徴パラメータ値は、 任意計測時間内における上記酸化へモグロビ ン濃度変化値, 還元へモグロビン濃度変化値または総へモグロビン濃度変化値の 積算値、 または任意計測時間内における上記酸化ヘモグロビン濃度変化値, 還元 へモグロビン濃度変化値または総へモグロビン濃度変化値の平均値、 または任意 計測時間内における上記酸化へモグロビン濃度変化値, 還元へモグロビン濃度変 化値または総へモグロビン濃度変化値の任意の周波数成分、 または任意計測時間 内における上記酸化へモグ口ビン濃度変化値, 還元へモグ口ビン濃度変化値また は総ヘモグロビン濃度変化値の変化率であることを特徴とする請求の範囲第 3 6 項に記載の生体光計測法を利用した生体制御装置。  37. The above characteristic parameter value is the integrated value of the oxidized hemoglobin concentration change value, the reduced hemoglobin concentration change value or the total hemoglobin concentration change value within the arbitrary measurement time, or the oxyhemoglobin within the arbitrary measurement time. Concentration change value, reduction hemoglobin concentration change value or average value of total hemoglobin concentration change value, or change value of oxidized hemoglobin concentration change value, reduction hemoglobin concentration change value or total hemoglobin concentration change value within the arbitrary measurement time The change rate of the oxidized hemoglobin concentration change value, the reduction hemog concentration concentration change value or the total hemoglobin concentration change value within an arbitrary frequency component or an arbitrary measurement time. 36. A biological control device using the biological optical measurement method according to item 6.
3 8 . 乗り物運転者の頭部表皮上の少なくとも一つの光照射位置から上記運転者 の脳内に光を照射するための光照射手段と、 上記頭部表皮上の少なくとも一つの 光検出位置で上記光照射位置からの照射光の脳内通過光を集光するための集光手 段と、 上記集光手段により集光された脳内通過光の強度を検出するための光検出 手段と、 上記光検出手段により検出された脳内通過光強度と予め記憶されている 参考データとに基づいて出力信号の種類を決定し出力するための演算手段と、 上 記参考データを記憶しておくための記憶手段と、 上記演算手段からの出力信号を 入力信号として該入力信号の種類に応じた機能動作の実行を指示する制御信号を 発生するためのマイクロコンピュータとを具備してなり、 上記演算手段は、 上記 光検出手段によって検出された脳内通過光強度と予め記憶されている参考データ とから上記運転者が居眠り状態にあるかどうかを判定して、 居眠り状態にあると 判定した場合には居眠り状態検知信号を出力するものであり、 上記マイクロコン ピュータは、 上記演算手段からの居眠り状態検知信号を受けて、 上記乗り物に備 えられた警報発生装置またはブレーキ装置の作動を指示する制御信号を発生する ものであることを特徴とする生体光計測法を利用した乗り物運転者補助用の生体 制御装置。 3 8. A light irradiation means for irradiating light into the brain of the vehicle driver from at least one light irradiation position on the head skin of the vehicle driver, and at least one light detection position on the head skin. A light collecting means for collecting the light passing through the brain of the irradiation light from the light irradiation position; a light detecting means for detecting the intensity of the light passing through the brain collected by the light collecting means; Calculating means for determining and outputting the type of output signal based on the intensity of light passing through the brain detected by the light detecting means and reference data stored in advance, and storing the reference data And a control signal for instructing execution of a functional operation according to the type of the input signal using the output signal from the arithmetic unit as an input signal. A microcomputer for generating the light, wherein the calculating means determines whether the driver is dozing from the intensity of light passing through the brain detected by the light detecting means and reference data stored in advance. If it is determined that the vehicle is in a dozing state, the microcomputer outputs a dozing state detection signal, and the microcomputer receives the dozing state detection signal from the arithmetic unit and prepares for the vehicle. A biological control apparatus for assisting a vehicle driver using a biological light measurement method, which generates a control signal for instructing operation of the obtained alarm generating device or brake device.
PCT/JP1996/003365 1995-10-06 1996-11-15 Instrument for optical measurement of living body WO1997018755A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE19681107T DE19681107B4 (en) 1995-11-17 1996-11-15 Instrument for optical measurement in a living body
CA002210703A CA2210703C (en) 1995-11-17 1996-11-15 Optical measurement instrument for living body
GB9713004A GB2311854B (en) 1995-11-17 1996-11-15 Optical measurement instrument for living body
US08/875,081 US6240309B1 (en) 1995-10-06 1996-11-15 Optical measurement instrument for living body
US10/689,760 US7142906B2 (en) 1995-10-06 2003-10-22 Optical measurement instrument for living body
US11/371,919 US20060184047A1 (en) 1995-11-17 2006-03-10 Optical measurement instrument for living body
US11/371,918 US20060184046A1 (en) 1995-10-06 2006-03-10 Optical measurement instrument for living body
US11/371,916 US7774047B2 (en) 1995-10-06 2006-03-10 Optical measurement instrument for living body

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP29954295A JP3588880B2 (en) 1995-11-17 1995-11-17 Biological light measurement device
JP7/299542 1995-11-17
JP7/311993 1995-11-30
JP31199395A JP3682793B2 (en) 1995-11-30 1995-11-30 Light scattering device internal imaging device
JP31419595A JP3543453B2 (en) 1995-12-01 1995-12-01 Biological input device using optical biometric method
JP7/314195 1995-12-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/539,871 Continuation-In-Part US5803909A (en) 1994-10-06 1995-10-06 Optical system for measuring metabolism in a body and imaging method

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US08875081 A-371-Of-International 1996-11-15
US08/875,081 A-371-Of-International US6240309B1 (en) 1995-10-06 1996-11-15 Optical measurement instrument for living body
US09/849,409 Continuation US6640133B2 (en) 1995-10-06 2001-05-07 Optical measurement instrument for living body

Publications (1)

Publication Number Publication Date
WO1997018755A1 true WO1997018755A1 (en) 1997-05-29

Family

ID=27338317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003365 WO1997018755A1 (en) 1995-10-06 1996-11-15 Instrument for optical measurement of living body

Country Status (4)

Country Link
CA (1) CA2210703C (en)
DE (1) DE19681107B4 (en)
GB (1) GB2311854B (en)
WO (1) WO1997018755A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509687A (en) * 1999-09-14 2003-03-11 ザ・リサーチ・ファンデーション・オブ・ステート・ユニバーシティ・オブ・ニューヨーク System and method for tomographic imaging of dynamic properties of scattering media
US7072700B2 (en) * 1999-12-27 2006-07-04 Hitachi, Ltd. Biological photometric device
USRE44735E1 (en) 1998-10-13 2014-01-28 Covidien Lp Multi-channel non-invasive tissue oximeter

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69929380T2 (en) * 1998-12-07 2006-08-31 Hitachi, Ltd. Device for controlling plants by means of body signals
DE19922772A1 (en) * 1999-05-18 2001-02-08 Phiscience Gmbh Entwicklung Vo Device for determining various blood flow conditions and oxygen saturation in blood-bearing tissue
US6526297B1 (en) 1999-10-04 2003-02-25 Instrumentarium Corp. Method and apparatus for quantifying the hypnotic component of the depth of anesthesia by monitoring changes in optical scattering properties of brain tissue
IL138683A0 (en) 2000-09-25 2001-10-31 Vital Medical Ltd Apparatus and method for monitoring tissue vitality parameters
EP1327418B1 (en) * 2000-10-16 2010-05-19 Hitachi Medical Corporation Organism optical measurement instrument
JP4090699B2 (en) * 2001-04-02 2008-05-28 株式会社日立製作所 Biological light measurement device
IL148795A0 (en) 2002-03-20 2002-09-12 Vital Medical Ltd Apparatus and method for monitoring tissue vitality parameters for the diagnosis of body metabolic emergency state
JP3635332B2 (en) 2003-03-20 2005-04-06 独立行政法人情報通信研究機構 Head wearing equipment
DE102004032094A1 (en) * 2004-07-01 2006-01-26 Micro-Epsilon Messtechnik Gmbh & Co Kg Blood oxygen saturation measuring method for use in field of anesthesia, involves comparing measured values, which are recorded from body of patient, with reference value for determining deviation of measured values from reference value
GB0426993D0 (en) 2004-12-09 2005-01-12 Council Cent Lab Res Councils Apparatus for depth-selective raman spectroscopy
JP5018105B2 (en) * 2007-01-25 2012-09-05 株式会社日立製作所 Biological light measurement device

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115232A (en) * 1980-07-09 1982-07-17 Deyuuku Univ Inc Apparatus for measuring metabolic action in internal organ
JPS61502660A (en) * 1984-07-11 1986-11-20 ザ・ジョンズ・ホプキンス・ユニバ−シティ Electro-optical device for monitoring instantaneous monomer-state oxygen concentrations produced during periods of optical radiation using a CW excitation source
JPS62231625A (en) * 1986-03-31 1987-10-12 住友電気工業株式会社 Optical ct scanner
JPS635234A (en) * 1986-06-25 1988-01-11 Shimadzu Corp Unidimensional-two-dimensional photometric apparatus
JPS63305845A (en) * 1987-06-05 1988-12-13 Nissan Motor Co Ltd Apparatus for detecting abnormality of body
JPH01262839A (en) * 1987-12-02 1989-10-19 Boc Group Inc:The Frequency dividing multiplex type blood component monitor apparatus and method
JPH03241414A (en) * 1990-02-20 1991-10-28 Nippon Telegr & Teleph Corp <Ntt> Operation device by head skin preparation potential pattern
JPH03505922A (en) * 1988-06-08 1991-12-19 バーバー,ランダル エル. System for imaging random media
JPH04166144A (en) * 1990-10-31 1992-06-12 Matsushita Electric Ind Co Ltd Vital tissue measuring apparatus
JPH05103786A (en) * 1991-10-16 1993-04-27 Olympus Optical Co Ltd Measuring device for metabolism information
JPH05115485A (en) * 1991-10-25 1993-05-14 Hitachi Ltd Optical measuring instrument for living body
JPH05261110A (en) * 1992-03-19 1993-10-12 Hitachi Ltd Optically measuring system for living body
WO1994005209A1 (en) * 1992-08-31 1994-03-17 Hitachi, Ltd. Optical ct apparatus
WO1994010901A1 (en) * 1992-11-09 1994-05-26 Boehringer Mannheim Gmbh Process and device for glucose determination in a biological matrix
JPH06181930A (en) * 1992-12-21 1994-07-05 Hitachi Ltd Organismic light measuring device
JPH06245938A (en) * 1993-02-23 1994-09-06 Hitachi Ltd Optical measuring instrument
DE4318823A1 (en) * 1993-06-07 1994-12-08 Zeiss Carl Fa Device for scanning optical examination of tissue
JPH07103884A (en) * 1993-10-04 1995-04-21 Technol Res Assoc Of Medical & Welfare Apparatus Optical ct
JPH07117595A (en) * 1993-10-21 1995-05-09 Fujikura Ltd Asleep driving prevention device
JPH07120384A (en) * 1993-10-25 1995-05-12 Hitachi Ltd Method and apparatus for optical measurement
JPH07204168A (en) * 1994-01-12 1995-08-08 Nou Kinou Kenkyusho:Kk Device for automatically identifying information on living body
JPH0919408A (en) * 1995-07-05 1997-01-21 Hitachi Ltd Living body light measuring device and image forming method in the device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353799A (en) * 1991-01-22 1994-10-11 Non Invasive Technology, Inc. Examination of subjects using photon migration with high directionality techniques
GB2228314B (en) * 1989-02-16 1992-11-18 Hamamatsu Photonics Kk Examination apparatus
US5213105A (en) * 1990-12-04 1993-05-25 Research Corporation Technologies, Inc. Frequency domain optical imaging using diffusion of intensity modulated radiation
DE4340072C2 (en) * 1993-11-24 1996-05-15 Siemens Ag Device for examining tissue with light

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115232A (en) * 1980-07-09 1982-07-17 Deyuuku Univ Inc Apparatus for measuring metabolic action in internal organ
JPS61502660A (en) * 1984-07-11 1986-11-20 ザ・ジョンズ・ホプキンス・ユニバ−シティ Electro-optical device for monitoring instantaneous monomer-state oxygen concentrations produced during periods of optical radiation using a CW excitation source
JPS62231625A (en) * 1986-03-31 1987-10-12 住友電気工業株式会社 Optical ct scanner
JPS635234A (en) * 1986-06-25 1988-01-11 Shimadzu Corp Unidimensional-two-dimensional photometric apparatus
JPS63305845A (en) * 1987-06-05 1988-12-13 Nissan Motor Co Ltd Apparatus for detecting abnormality of body
JPH01262839A (en) * 1987-12-02 1989-10-19 Boc Group Inc:The Frequency dividing multiplex type blood component monitor apparatus and method
JPH03505922A (en) * 1988-06-08 1991-12-19 バーバー,ランダル エル. System for imaging random media
JPH03241414A (en) * 1990-02-20 1991-10-28 Nippon Telegr & Teleph Corp <Ntt> Operation device by head skin preparation potential pattern
JPH04166144A (en) * 1990-10-31 1992-06-12 Matsushita Electric Ind Co Ltd Vital tissue measuring apparatus
JPH05103786A (en) * 1991-10-16 1993-04-27 Olympus Optical Co Ltd Measuring device for metabolism information
JPH05115485A (en) * 1991-10-25 1993-05-14 Hitachi Ltd Optical measuring instrument for living body
JPH05261110A (en) * 1992-03-19 1993-10-12 Hitachi Ltd Optically measuring system for living body
WO1994005209A1 (en) * 1992-08-31 1994-03-17 Hitachi, Ltd. Optical ct apparatus
WO1994010901A1 (en) * 1992-11-09 1994-05-26 Boehringer Mannheim Gmbh Process and device for glucose determination in a biological matrix
JPH06181930A (en) * 1992-12-21 1994-07-05 Hitachi Ltd Organismic light measuring device
JPH06245938A (en) * 1993-02-23 1994-09-06 Hitachi Ltd Optical measuring instrument
DE4318823A1 (en) * 1993-06-07 1994-12-08 Zeiss Carl Fa Device for scanning optical examination of tissue
JPH07103884A (en) * 1993-10-04 1995-04-21 Technol Res Assoc Of Medical & Welfare Apparatus Optical ct
JPH07117595A (en) * 1993-10-21 1995-05-09 Fujikura Ltd Asleep driving prevention device
JPH07120384A (en) * 1993-10-25 1995-05-12 Hitachi Ltd Method and apparatus for optical measurement
JPH07204168A (en) * 1994-01-12 1995-08-08 Nou Kinou Kenkyusho:Kk Device for automatically identifying information on living body
JPH0919408A (en) * 1995-07-05 1997-01-21 Hitachi Ltd Living body light measuring device and image forming method in the device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPANESE UTILITY MODEL, Registration No. 3016160, Z1 (YUGEN KAISHA TOSTEC), 19 July 1995. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44735E1 (en) 1998-10-13 2014-01-28 Covidien Lp Multi-channel non-invasive tissue oximeter
JP2003509687A (en) * 1999-09-14 2003-03-11 ザ・リサーチ・ファンデーション・オブ・ステート・ユニバーシティ・オブ・ニューヨーク System and method for tomographic imaging of dynamic properties of scattering media
JP2003527883A (en) * 1999-09-14 2003-09-24 ザ・リサーチ・ファンデーション・オブ・ステート・ユニバーシティ・オブ・ニューヨーク Methods and systems for imaging dynamics of scattering media
US7072700B2 (en) * 1999-12-27 2006-07-04 Hitachi, Ltd. Biological photometric device

Also Published As

Publication number Publication date
GB2311854A (en) 1997-10-08
GB2311854B (en) 2000-03-22
CA2210703A1 (en) 1997-05-29
GB2311854A9 (en)
GB9713004D0 (en) 1997-08-27
CA2210703C (en) 2001-10-09
DE19681107T1 (en) 1997-12-11
DE19681107B4 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US7774047B2 (en) Optical measurement instrument for living body
JP3543453B2 (en) Biological input device using optical biometric method
US20060184047A1 (en) Optical measurement instrument for living body
Chance et al. A novel method for fast imaging of brain function, non-invasively, with light
Quaresima et al. A mini-review on functional near-infrared spectroscopy (fNIRS): where do we stand, and where should we go?
Sitaram et al. Hemodynamic brain–computer interfaces for communication and rehabilitation
JP3682793B2 (en) Light scattering device internal imaging device
Franceschini et al. On-line optical imaging of the human brain with 160-ms temporal resolution
Koizumi et al. Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging
Sato et al. Temporal cortex activation during speech recognition: an optical topography study
Li et al. Tutorial on use of intraclass correlation coefficients for assessing intertest reliability and its application in functional near-infrared spectroscopy–based brain imaging
WO1997018755A1 (en) Instrument for optical measurement of living body
Hoshi Towards the next generation of near-infrared spectroscopy
JP3532800B2 (en) Stethoscope
Nosrati et al. Event-related changes of the prefrontal cortex oxygen delivery and metabolism during driving measured by hyperspectral fNIRS
Hakimi et al. Proposing a convolutional neural network for stress assessment by means of derived heart rate from functional near infrared spectroscopy
JPH09135825A (en) Living body light measurement device
Mirbagheri et al. Simulation and in vivo investigation of light-emitting diode, near infrared Gaussian beam profiles
JP2002143169A (en) Optical measuring instrument and optical fiber holding device
Saikia et al. 3D-printed human-centered design of fNIRS optode for the portable neuroimaging
Sitnikova et al. Functional near-infrared spectroscopy applications in developmental cognitive neuroscience
JP3801172B2 (en) Biological light measurement device
JPH11169361A (en) Biological photometer
Lu et al. Explore the brain activity during translation and interpreting using functional near-infrared spectroscopy
KR101801473B1 (en) Apparatus for brain imaging using bundled light elements

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA DE GB US

WWE Wipo information: entry into national phase

Ref document number: 9713004.1

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2210703

Country of ref document: CA

Ref document number: 2210703

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 08875081

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19681107

Country of ref document: DE

Date of ref document: 19971211

WWE Wipo information: entry into national phase

Ref document number: 19681107

Country of ref document: DE