WO1997016720A1 - Procede de dosage d'une substance et eprouvette de mesure - Google Patents

Procede de dosage d'une substance et eprouvette de mesure Download PDF

Info

Publication number
WO1997016720A1
WO1997016720A1 PCT/JP1996/003188 JP9603188W WO9716720A1 WO 1997016720 A1 WO1997016720 A1 WO 1997016720A1 JP 9603188 W JP9603188 W JP 9603188W WO 9716720 A1 WO9716720 A1 WO 9716720A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
substance
inorganic compound
layered inorganic
test
Prior art date
Application number
PCT/JP1996/003188
Other languages
English (en)
French (fr)
Inventor
Takao Fukuoka
Atsuko Katayama
Kenji Yamamoto
Satoshi Yonehara
Original Assignee
Kyoto Daiichi Kagaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP23951096A external-priority patent/JP3359821B2/ja
Priority claimed from JP24167796A external-priority patent/JP3323402B2/ja
Priority claimed from JP25494496A external-priority patent/JP3359822B2/ja
Priority claimed from JP27035496A external-priority patent/JP3323404B2/ja
Priority claimed from JP27966196A external-priority patent/JP3446796B2/ja
Application filed by Kyoto Daiichi Kagaku Co., Ltd. filed Critical Kyoto Daiichi Kagaku Co., Ltd.
Priority to EP96941154A priority Critical patent/EP0860695B1/en
Priority to DE69635717T priority patent/DE69635717T2/de
Publication of WO1997016720A1 publication Critical patent/WO1997016720A1/ja
Priority to US10/384,605 priority patent/US7153696B2/en
Priority to US10/384,577 priority patent/US7098038B2/en
Priority to US10/384,757 priority patent/US7189576B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/525Multi-layer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/23Carbon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • Y10T436/255Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.] including use of a solid sorbent, semipermeable membrane, or liquid extraction

Definitions

  • the present invention relates to a method for producing a detectable substance such as a dye based on a chemical reaction of a substance to be analyzed in a sample.
  • the present invention relates to a method for measuring a substance to be analyzed such as a biological component or an environmental sample by measuring, and a test piece used for the method.
  • Background of the Invention Detect and analyze analytes in samples, such as biological components such as urine and blood in body fluids, foods, pharmaceuticals, trace substances present in the natural environment, industrial chemicals, and trace substances in waste.
  • a detectable substance such as a dye or the like generated by using a reaction system involving the substance to be analyzed.
  • Such a method includes, for example, performing a redox reaction of hydrogen peroxide generated by a chemical reaction of an analyte with an oxidizable color forming agent (a dye precursor) in the presence of peroxidase, thereby forming a dye.
  • an oxidation-reduction reaction is caused by an enzyme between the electron mediator (medium and one day) and the substance to be analyzed, and the oxidized and reduced form of the generated electron mediator is reduced and oxidized at the electrode.
  • the conventional method when the amount of the analyte was very small, the sensitivity of the measurement was not sufficient, and a highly accurate measurement result could not be obtained. Therefore, development of a highly accurate measurement method with improved measurement sensitivity has been desired.
  • the measurement takes a long time due to the time required for the reaction, or the detection method takes a long time to reach the end point, so that the quantification accuracy is poor in the rate method based on the reaction rate. was there. Until now, the reaction rate has been 96/03188
  • the sample to be measured is spotted on or penetrated into the test piece and reacted.In the measurement for optically detecting the generated colorant, if the generated dye is insoluble in the sample solvent, it is transferred to the test piece base material. In some cases, the dye was deposited non-uniformly, or the dye was aggregated, which might be a factor that deteriorated the measurement accuracy.
  • the difference between insoluble and hardly soluble refers to the degree of insolubility in a solvent.
  • insoluble may be replaced with hardly soluble in the following description.
  • the reaction method is not uniform in the conventional method because the reaction system for forming the detectable substance is not uniform and the reaction does not proceed quickly.
  • the measurement sensitivity and the measurement sensitivity were reduced.
  • the product may be deposited near the enzyme or may inhibit the reaction.
  • the addition of a surfactant is disadvantageous in terms of measurement cost, and may cause side effects such as hindering the reaction, and is not necessarily a sufficient solution. Therefore, a new method that solves this problem more easily and enables measurement even in the presence of insoluble products has been desired.
  • the method of measuring an analyte using a reaction system that generates hydrogen peroxide as described above is an important measurement method because there are many reactions in which hydrogen peroxide is generated as a substance released by oxidation.
  • accurate measurement was not always easy for the following reasons.
  • the amount or concentration of a detectable substance such as a dye compound has a stoichiometric correlation with a specific substance such as hydrogen peroxide.
  • the redox system in the colorimetric method is affected by the strong oxidizing properties of excess hydrogen peroxide and the strong reducing properties of ascorbic acid and the like contained in biological samples, and the dye compounds, etc. can be detected. Substances may decompose and cause errors in measurement.
  • a peroxidase-like enzyme such as peroxidase that generates reactive oxygen species such as superoxide, which is highly reactive from hydrogen peroxide, or a transition gold ion and its complex that exert a similar effect are present in the sample. Then, the reactive oxygen species react with the generated dye, causing decomposition and fading. This interference also had a disadvantage in the measurement. If a reaction that produces a detectable substance, such as a dye, is performed while exposed to the atmosphere, the resulting dye is oxidized by nitrogen in the air or dissolved oxygen in the reaction solution, and is decomposed and discolored. Was invited.
  • biological samples contain reducing substances such as ascorbic acid, uric acid, and pyrirubin. These substances have a large effect on the oxidation-reduction reaction, and especially how accurate the measurement is in the presence of ascorbic acid. This has been a long-standing problem in clinical analysis, and interference suppression measures such as selective decomposition by enzymes, decomposition by the addition of periodic acid, oxidative decomposition by iron-ethylenediaminetetraacetic acid chelate, and selective separation by semipermeable membranes have been discussed above.
  • the enzymatic reaction is performed for a certain period of time, during which the electron mediator is oxidized and reduced to accumulate oxidized / reduced forms of the electron mediator, and after a certain period of time
  • Oxidized electron mediators There is a method of measuring a substance to be analyzed with high sensitivity by reducing and oxidizing a Z-reductant with an electrode to generate a large electrochemical response.
  • Oxidized product The reduced product was subject to decomposition reactions such as reduction / oxidation due to coexisting reducing or oxidizing substances, which sometimes caused errors in measurement.
  • the detectable substance is stable without decomposition, a stoichiometric relationship is assured at the time of measurement, and a better SZB ratio (ratio between signal and background) can be obtained by performing time integration. As a result, the accuracy of the analysis can be improved and the sensitivity can be increased. Therefore, much effort has been made to develop a reaction system that produces a stable, easily measurable detectable substance. Examples of various reagents that have been developed to date to produce such stable detectable substances are also described, for example, in Analytical Chemistry II.
  • test section further includes layers and regions having various functions.
  • the sample suction section for sucking a sample and introducing the sample into the test section, and the sample uniformly penetrates the test section. Diffusion infiltration part for diffusion, Reagent part containing reagent that reacts with the analyte contained in the sample, Reaction part where reaction such as detection reaction occurs, Adsorption of components in the sample, dye generated by the detection reaction, etc.
  • Developing part that separates by chromatographic-like functions such as separation and distribution, Time adjusting part that adjusts the progress of the reaction by using the time that the sample moves, and adsorbs the components in the sample and generated dyes Holder for trapping or removing with, detector for detecting dye etc. by reflectance, transmission absorption, fluorescence, etc., absorption for absorbing excess sample solution, added washing solution and developing solution and preventing backflow Departments It made.
  • the parts that perform each of these functions are not always present independently.
  • the detection section of a litmus test strip with the same sample suction section, reagent section, and reaction section As described above, a single unit may have a plurality of functions.
  • a single layer type or a multilayer type test piece having a diffusion layer also serving as a sample suction layer, a detection layer also serving as a reagent layer and a reaction layer, or a detection layer independent of a reaction layer also serving as a reagent layer. it can. Many of these are adhered on a support by an adhesive layer.
  • a spreading layer or a retaining layer having an action of removing an interfering component is provided between the reaction layer and the detection layer.
  • the diffusion layer also serves as the spreading layer and is in contact with the reagent layer by the adhesive layer.
  • a reflection layer may be provided before and after the detection layer.
  • the sample is spotted on a diffusion layer that also serves as a sample suction layer, and the reaction proceeds by dissolving the reagent in the reagent layer while uniformly diffusing, and a dye is generated from, for example, a dye precursor.
  • a dye is generated from, for example, a dye precursor.
  • the reagent layer and the reaction layer also serve as the detection layer, the measurement is performed as it is.
  • the independent detection layer is provided, the generated colorants and the like further penetrate and move into the detection layer and are measured at that time.
  • the test piece on the filter paper strip has a permeation part for the developing solution at the end, a sample suction part next to it, and a reaction part also serving as a reagent part (fixing enzyme) near the center, Furthermore, there is a test piece provided with a reagent part (fixing a dye precursor or the like) and a detection part which also serves as a reaction part and a holding part, and utilizing a planar movement of a sample or the like.
  • the developing solution is permeated from the end of the test piece and the sample is moved by capillary action, and the enzyme is placed in the reaction part which also serves as the first reagent part (fixing the enzyme).
  • test pieces are used in urine tests, biochemical tests, immunochromatographic tests, and the like.
  • an immunochromatographic test strip for example, one end of a filter paper on which an antibody is immobilized (the entire surface may be referred to as a reagent section, a reaction section, a developing section, a holding section, and a detection section) is immobilized with an enzyme immobilized as a reagent.
  • the antigen and a sample containing the antigen (analyte) are immersed and developed in a mixed developer, and then developed with a second reagent, a color former (including a dye precursor).
  • the portion where the enzyme-immobilized antigen was present is colored in a band.
  • the length of the colored band is proportional to the amount of antigen in the sample.
  • a sample suction part is provided at one end on a membrane filter strip.
  • a reagent section primary antibody-immobilized colored latex
  • a reagent section second antibody that recognizes the same antigen as the first antibody but has a different epitope
  • a test piece having a developing section and further having a detecting section which also serves as a reagent section (anti-first antibody antibody) and a holding section can be given.
  • the antigen (analyte) and the first antibody undergo an antigen-antibody reaction, and move with the movement of the sample in the form of the immune complex. This produces a sandwich reaction.
  • excess primary antibody that does not form an immune complex As it moves, it passes through the developing part, and is captured by the detecting part that also serves as the reagent part (anti-first antibody antibody) and the holding part.
  • the analyte can be measured by measuring the color of the colored latex (including a detectable substance dye) to which the first antibody is immobilized.
  • the dyes and the like formed by the reaction with the components to be analyzed are often incompatible with the sample solution, the reaction solution, and the like. It is soluble, resulting in inconveniences such as dissolution of dyes and the like in bulk liquid, backflush to the diffusion layer, and adhesion of dyes and the like to adjacent test parts on multi-item test papers with multiple test parts. Occurs. In addition, a phenomenon occurs in which the pigments and the like move to the edge of the test area with drying, so that the density in the central part decreases and the blackness in the peripheral part increases.
  • a method of covering the test part with a cover to prevent elution of the reagent Japanese Patent Laid-Open No. 2-38861
  • a test comprising a porous structure having good absorbability (porous layer, porous membrane, etc.)
  • Method to prevent liquid junction with adjacent test part by uniformly absorbing the sample in the part Japanese Patent Laid-Open No. 2-65441
  • a method to select a reaction that produces an insoluble dye, an insoluble and hydrophobic binder (Fixing agent) to capture dyes and the like Japanese Unexamined Patent Publication No.
  • one sensor usually moves multiple test sections to measure reflected light, etc., so if the distance between the test sections is increased, a large area is required, There is a disadvantage that it is disadvantageous for movement.
  • the method of controlling the immersion time has the disadvantage that it is troublesome in urine tests, and the method of controlling the time is not easy due to the reaction time. Each has its own drawbacks, including drawbacks, and no satisfactory solution has yet been found.
  • the method of measuring the ion as the analyte by measuring the membrane potential associated with the movement of the complex compound formed using a liquid membrane electrode, etc. is known as an important measurement method.
  • elution and diffusion of the electron mediator or ligand are usually performed by adding the electron mediator or ligand to an insoluble polymer.
  • the present invention provides a method for measuring a substance to be analyzed by measuring a detectable substance such as a dye generated based on a chemical reaction of the substance to be analyzed, which provides a highly sensitive measurement method. That is the task.
  • the measurement includes both quantitative and qualitative measurements.
  • Another object of the present invention is to provide, in the method for measuring a substance to be analyzed, a method for stabilizing the detectable substance, thereby increasing the accuracy of measurement and realizing high sensitivity.
  • Another object of the present invention is to provide a highly sensitive measurement method in the above method using a reaction system including a reaction for producing an insoluble substance.
  • the present invention suppresses the diffusion and elution of dyes and the like, enabling accurate inspection and analysis, It is another object of the present invention to provide a test piece for analysis which can be easily handled.
  • the present inventors conducted a reaction for producing a detectable substance in the presence of a layered inorganic compound, and also provided a layered inorganic compound in a test section such as a detection section for detecting a detectable substance in a test piece. It has been found that the above-mentioned problems can be solved by incorporating the present invention, and the present invention has been completed.
  • the present invention provides a method for measuring the detectable substance by using a reaction system including a reaction that generates a detectable substance based on a chemical reaction of the analyte in the sample.
  • a method for measuring a substance, wherein a layered inorganic compound is present in a reaction system including the reaction for producing a detectable substance is referred to as “the measuring method of the present invention”.
  • the present invention provides a method for measuring the substance, comprising a step of adding a layered inorganic compound to the reaction system and causing the layered inorganic compound to adsorb the detectable substance.
  • first method of the present invention this is referred to as “first method of the present invention”.
  • the first method of the present invention highly sensitive measurement becomes possible by adsorbing a detectable substance to be formed on a layered inorganic compound. That is, for example, as a result of the detectable substance being adsorbed to the layered inorganic compound and settling, the measurement sensitivity in optical or electrochemical detection is increased.
  • the detectable substance may be adsorbed to the layered inorganic compound and settled as colloidal aggregation, but it is not always necessary to aggregate.
  • the present invention provides a method for measuring the substance, wherein a decomposition of the detectable substance is suppressed by causing a layered inorganic compound to be present in the reaction system.
  • this is referred to as “the second method of the present invention”.
  • the presence of the layered inorganic compound in the reaction system that produces the detectable substance to be measured causes the detectable substance to be decomposed almost simultaneously with the production or by the coexisting substance.
  • a complex of the detectable substance and the layered inorganic compound is formed, so that the detectable substance is prevented from being decomposed by the action of a substance coexisting in the reaction system. it can.
  • the present invention provides a method for producing the detectable substance, wherein the reaction is performed in the presence of a layered inorganic compound, thereby increasing the reaction rate of the production reaction.
  • a measurement method hereinafter, this is referred to as “third method of the present invention”.
  • the reaction rate of the production reaction is increased by performing the production reaction of the detectable substance in the presence of the layered inorganic compound, and the measurement can be performed quickly, and the measurement time can be increased.
  • the time required for the detection reaction to reach the end point is shortened, so that the quantification accuracy in the rate method for performing quantification from the reaction speed can be improved.
  • the reason for the increase in the rate of the production reaction of a detectable substance is not necessarily clear, but the reaction starting material or the reaction intermediate of the production reaction is adsorbed on the surface of the layered inorganic compound and is condensed on the surface. It is thought that the reaction rate increases.
  • the present invention also provides a method for measuring a substance, wherein at least one of the reactions constituting the reaction system is a reaction that generates a substance that is insoluble in a reaction solvent.
  • the fourth method of the present invention this is referred to as “the fourth method of the present invention”.
  • a layered inorganic compound preferably in a dispersed state, is present in a reaction system containing a reaction for producing a detectable substance, whereby the detectable substance or the Even if by-products and the like are insoluble in the reaction solvent, the reaction can proceed quickly as if it were a homogeneous system. This is presumably because the insoluble detectable substance or insoluble by-product formed is adsorbed on the layered inorganic compound and uniformly dispersed in the reaction system together with the layered inorganic compound.
  • a detectable substance or by-product insoluble in a solvent is adsorbed to a layered inorganic compound, so that the detectable substance or by-product precipitates in a reaction system and is detected. It can be prevented from becoming difficult to handle.
  • the sample to be measured is spotted or penetrated into the test piece and reacted, and in the measurement for optically detecting the generated colorant, if the generated dye is insoluble in the sample solvent, the dye is converted into a layered inorganic material.
  • the compound By adsorbing the compound, it is possible to prevent the dye from unevenly depositing on the reaction part and the detection part of the test piece and causing the aggregation of the dye to deteriorate the measurement accuracy.
  • the electrode surface is insoluble by adsorbing the by-product to the layered inorganic compound. This can prevent the electrodes from being contaminated due to, for example, covering the electrodes and reducing the electrochemical response, thereby deteriorating the measurement accuracy.
  • the measuring method to which the present invention is applied is characterized in that the detectable substance is measured by using a reaction system including a reaction that generates a detectable substance based on a chemical reaction of a substance to be analyzed in a sample.
  • the method is not particularly limited as long as it is a method for measuring an analyte.
  • the detectable substance may be the substance to be analyzed itself.
  • a reaction including a reaction in which the detectable substance is generated with a quantitative correlation with the analyte is provided.
  • a method of quantitatively measuring a substance to be analyzed using a system may be used.
  • the present invention is not limited to the case of using a reaction system in which a detectable substance is directly generated by the chemical reaction of the analyte, and the chemical reaction of the analyte and the generation reaction of the detectable substance are not limited to the above. This includes cases where they are indirectly linked via another chemical reaction.
  • the method of the present invention relates to a measurement method using a reaction system in which a detectable substance is a dye generated by a redox reaction or an electron transfer substance, and a detectable substance generated is a dye zionophore such as an azo dye. It is preferably applied to a measurement method using a reaction system that is a complex with a substance to be analyzed.
  • a method of optically measuring a dye that is quantitatively generated by a redox reaction between hydrogen peroxide generated by an oxidase reaction from a biological component and an oxidizable color forming agent is a method for optically measuring various components in a body fluid in a clinical test.
  • the use of the measurement method of the present invention for such analysis and detection methods enables highly sensitive measurement.
  • the second method of the present invention for example, in an oxidation-reduction reaction system, an oxidizing substance, a reducing substance, or a peroxidase-like substance coexist in the reaction system as a reaction intermediate or a contaminant in a sample.
  • the detectable substance is decomposed by the action of the coexisting substance in the reaction system. In such a case, the second method of the present invention is useful.
  • the oxidizing property of excess hydrogen peroxide or the like existing in the reaction system is reduced. It is possible to overcome the problem that a measurement error occurs due to decomposition and fading of a dye or the like due to the action of a reducing substance such as a substance such as ascorbic acid, uric acid, or bilirubin.
  • a layered inorganic compound having a cation exchange ability is added to the reaction system particularly when the reaction starting material or the reaction intermediate in the reaction for producing a detectable substance is a cationic compound.
  • the reaction starting material or the reaction intermediate can be adsorbed on the surface of the layered inorganic compound and concentrated, thereby increasing the production reaction rate and enabling quick measurement. This is useful for measurement methods that use simple reaction systems.
  • the fourth method of the present invention is not particularly limited as long as the method uses a reaction system including a reaction in which a detectable substance or an insoluble by-product is formed in the reaction solvent.
  • the measurement method of the present invention preferably includes, as a substance to be analyzed, biological components such as urine and blood in body fluids, foods, medicines, trace substances existing in the natural environment, industrial chemical substances, trace substances in waste, and the like. It is used for detecting and quantifying these from a sample. Further, the present invention relates to a substance which can be detected based on a chemical reaction of a substance to be analyzed in a sample.
  • An analysis test strip for measuring the target substance by measuring the detectable substance using a reaction system including a reaction that generates a detection unit, and a detection unit for detecting the detectable substance.
  • a test piece comprising at least one test part having the following formula, wherein at least the test part contains a layered inorganic compound.
  • test piece of the present invention includes one or more test portions including two or more layers, including a detection layer for detecting a substance detectable as the detection portion, and at least the detection layer contains a layered inorganic compound. It may be. Further, in the test piece of the present invention, the test section further includes a diffusion layer for diffusing the sample, and the sample is diffused through the diffusion layer to reach the detection layer. Is also good. Further, the test strip of the present invention may include at least one test part having a detection region for detecting a substance that can be detected as the detection part, and at least the detection region contains a layered inorganic compound.
  • the test portion further includes a diffusion region for diffusing the sample, and the sample is diffused through the diffusion region to reach the detection region.
  • the test strip of the present invention may be one in which the detection region includes two or more layers including a detection layer for detecting a substance that can be detected.
  • the test section may further include a reaction section for reacting the analyte in the sample with the reagent, such that the detectable substance is generated in the reaction section. It may be what you did.
  • the test piece of the present invention may be provided at a position after the detection unit force, the sample has diffused and passed through the reaction unit.
  • the detectable substance may be generated by a reaction between a substance to be analyzed in a sample and a reagent in the detection unit.
  • the dye or the like generated by the reaction between the analyte and the reagent and the layered inorganic compound are adsorbed. Diffusion and elution by the reaction solution and the like are suppressed, and high-sensitivity and high-accuracy L analysis can be performed.
  • the test strip of the present invention is applied to a method for analyzing components in a liquid using a solid phase, and is particularly used for analysis of urine such as glucose and pyrilrubin.
  • urine such as glucose and pyrilrubin.
  • dyes and the like generated by the reaction with reagents dissolve in the sample and diffuse and dissolve.
  • the test piece of the present invention is effective, and is effective.
  • the reagent is not particularly limited as long as it causes a detectable reaction with the substance to be analyzed.
  • the reagent reacts with the substance to be analyzed and is an oxidized form of a dye compound or an electron transfer substance. It can generate a detectable substance such as a complex compound.
  • the reaction for producing a dye compound may be any reaction that produces an optically detectable substance, and may be a reaction that produces not only color development but also, for example, discoloration, fluorescence, or luminescence. .
  • FIG. 1 is an absorption spectrum diagram measured in Example 1.
  • FIG. 2 is a diagram showing a calibration curve of hydrogen peroxide obtained in Example 2 and Example 3.
  • FIG. 3 is a diagram showing a calibration curve obtained by taking the logarithm of the vertical axis and the horizontal axis of the calibration curve of FIG.
  • FIG. 4 is a graph showing a change over time in absorbance after addition of hydrogen peroxide in Example 4.
  • FIG. 5 is an absorption spectrum diagram measured in Example 5.
  • FIG. 6 is a diagram showing a calibration curve of ascorbic acid concentration obtained in Example 6.
  • FIG. 7 is an absorption spectrum diagram (smectite added system) measured in Example 7.
  • FIG. 8 is an absorption spectrum diagram (smectite-free system) measured in Example 7.
  • FIG. 9 is an absorption spectrum diagram (with and without smectite addition) at a sodium nitrite concentration of 33 mO 1/1 measured in Example 7.
  • FIG. 10 is a diagram showing a calibration curve of the sodium nitrite concentration obtained in Example 8.
  • FIG. 11 is a diagram showing a change in absorbance in an experiment performed in Example 9 showing the effect of adding smectite in the POD color developing system.
  • FIG. 12 shows the results of the POD color development system containing ascorbic acid performed in Example 10.
  • FIG. 7 is a diagram showing a change in absorbance in an experiment showing the effect of adding smectite.
  • FIG. 13 is an enlarged view of FIG. 12 from 0 to 60 seconds.
  • FIG. 14 is a diagram showing a change with time of the absorbance measured in Example 11.
  • FIG. 15 is a graph showing the change over time of the absorbance of the smectite-free system measured in Example 12.
  • FIG. 16 is a diagram showing the change over time in the absorbance of the smectite-added system measured in Example 12.
  • FIG. 17 is a graph showing the change over time in the absorbance of the smectite-added system and the smectite-free system when the sodium nitrite concentration measured in Example 12 was 25. ⁇ 1/1.
  • FIG. 18 is a schematic diagram showing the diffusion state of the dye on the smectite-impregnated filter paper in Example 13.
  • FIG. 19 is a schematic diagram showing the state of diffusion of the dye on the untreated filter paper in Example 13.
  • FIG. 20 is a schematic diagram of the reaction cell in Example 15.
  • FIG. 21 is a schematic diagram of a test piece in Example 16.
  • FIG. 22 is a schematic diagram of a test piece in Example 17.
  • 1 indicates the case where smectite was added
  • 2 indicates the case where no smectite was added
  • 3 indicates the case where smectite was added and hydrogen peroxide was not added.
  • 4 is for nitrous acid concentration of 33 ⁇ m ⁇ 1 1
  • 5 is for nitrous acid concentration of 16 mo1 Z 1
  • 6 is for nitrous acid concentration of 8; umo for 1/1; It represents the case where the acid concentration is 0 ⁇ 1.
  • 8 is the sample of sample number 1
  • 9 is the sample of sample number 2
  • 10 is the sample of sample number 3
  • 11 is the sample of sample number 4
  • 12 is the sample of sample number 5.
  • 13 is for sodium nitrite concentration of 50.
  • 14 is for sodium nitrite concentration of 25 ⁇ mol / l
  • 15 is for sodium nitrite concentration of 1 2.
  • 16 represents the case of sodium nitrite concentration 6.3 / m 01/1
  • 17 represents the case of sodium nitrite concentration 1.6 mo 11 c
  • 18 is the spot of the dye
  • 19 is the color-developing liquid from which the dye has been removed
  • 20 is the color liquid.
  • 21 indicates a coating film
  • 22 indicates PET.
  • Reference numeral 23 denotes a filter paper impregnated with a reagent (detection layer)
  • reference numeral 24 denotes a double-sided tape (adhesive layer)
  • reference numeral 25 denotes a filter paper impregnated with a dispersion of a layered inorganic compound
  • reference numeral 26 denotes a filter paper impregnated with a reagent.
  • Filter paper, 27 represents filter paper.
  • 28 is a sample suction area
  • 29 is a diffusion area
  • 30 is a reaction area
  • 31 is an area for adjusting the reaction time
  • 32 is a holding area
  • 33 is an area for absorbing extra sample. Represent. BEST MODE FOR CARRYING OUT THE INVENTION
  • the measuring method according to the present invention uses a reaction system including a reaction that generates a detectable substance based on a chemical reaction of an analyte in a sample, and measures the detectable substance by measuring the detectable substance. It is a method of measuring substances.
  • the reaction system used in the present invention includes a reaction that produces a detectable substance as shown below.
  • the detectable substance is not particularly limited as long as it can be adsorbed on the layered inorganic compound of the present invention.
  • Specific examples of the compounds that can be adsorbed on the layered inorganic compound include amines such as amines and polyamines: imines such as imines and polyimines: polyenes; aromatic compounds such as ananiline derivatives, benzoquinone derivatives, and aromatic condensed ring compounds.
  • Substances that can be detected by optical methods include dyes.
  • the pigment includes a fluorescent dye, a luminescent substance, and the like, and the reaction that produces the dye may be any reaction that produces an optically detectable substance. , Fluorescence, luminescence, etc.
  • a dye compound, a fluorescent substance, or a luminescent substance which is produced from a dye precursor by various color reactions such as an oxidation-reduction reaction, an acid-base reaction, and other condensation reactions, a coordination bond, an ion Examples include a dye complex or a fluorescent complex generated by the bond.
  • a compound having a conjugated system such as an aromatic ring is preferably used.
  • 4-amino-1,2-dihydro-1,5-dimethyl-1-2- Coupler represented by phenyl-2H-pyrazol-3-one (4-aminoantipyrine; hereinafter abbreviated as 4-AA) and a hydrogen donor (N-ethyl-N- (3-sulfopropyl) -1,3 Dyes formed by the oxidative condensation of 5—dimethylaniline and other Trinder reagents; oxidized chromogenic dyes of ortho-tolidine and benzidines (3, 3 ', 5, 5'-tetramethylbenzidine, etc.) 2,6-dichloro-4- [(4-hydroxyphenyl) imino] — 2,5-cyclohexadene-1-one and other leuco-oxidized dyes: 4-hydroxyhydrunyl acid Generate Fluorescent substances; Chemiluminescent substances, etc. Luminescent substances and their exciters: Formazan, a reducing dye of tetrazolium
  • the hydrogen donor refers to 4-amino-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-13-one (4) by peroxidase action in the presence of hydrogen peroxide.
  • AA and phenols that form quinone dyes by condensing with 3-methyl-2-benzothiazolinone hydrazone.
  • Examples include dichlorophenol, orthomethoxyphenol, and 1,2.3 —Trihydroxybenzene, dimethylaniline, N-ethyl-N-sulfopropylmethanisidine, N-ethyl-N-sulfopropylaniline, N-ethyl-N- (3-sulfopropyl) -3,5-Dimethoxyaniline, N-ethyl-N- (3-sulfopropyl) -3.5-dimethylaniline , N-ethyl-N-sulfopropylmeta toluidine, N-ethyl-N- (2-hydroxy-13-sulfopropyl) methanisidine, N-ethyl-N- (2-hydroxy-3-sulfopropyl) aniline, N-ethyl -N- (2-Hydroxy-3-sulfopropyl) -1,3,5-Dimethoxyaniline, N— (2-Hydroxy
  • the resulting quinone-based dye is measured with an absorptiometer or the like to indirectly measure the quinone-based dye.
  • Analyte is measured by measuring hydrogen peroxide.
  • ortho-tolidine and benzidines include ortho-tolidine, dianisidine, 3,3'-diaminobenzidine, 3,3 ', 5,5'-tetramethylbenzidine, and N- (3-sulfopropyl) -3,3' 5, 5'-tetramethylbenzidine and the like.
  • the leuco body is a colorless dye precursor that is oxidized to form a dye and develop color.
  • Dyes whose leuco bodies have been oxidized include: 2.6-dichloro-4-[(4-hydroxyphenyl) imino] -2,5-cyclohexadiene-one, 2,6-dichloro-one-one (( 3-Chloro-4-hydroxyphenyl) imino] 1, 2-cyclohexadiene 1-one, 7- (Jethylamino) 13-Iminor 8-methyl-3H-phenoxazine salt, 3— (Jethylamino) — 7— Amino-5-phenylphenazine salt, 3.7-bis (dimethylamino) phenothiazine-l-5-dium salt, 1-hydroxy-5-methylphenazine salt, 7-hydroxy-3H-phenoxazine-13-one-10 —Examples include lysate, and leuco-forms include 4,4′-
  • dye precursors that develop color when oxidized include 4-methoxyphenol, 4-ethoxyphenol, 2-ethoxyphenol, 1- (2-hydroxy-15-methoxyphenyl) ethanone, 2-hydroxyphenol
  • 4-methoxyphenol 4-ethoxyphenol
  • 2-ethoxyphenol 2-ethoxyphenol
  • 1- (2-hydroxy-15-methoxyphenyl) ethanone 2-hydroxyphenol
  • the fluorescent substances include 4-hydroxyphenylacetic acid, (4-hydroxy-3-methoxyphenyl) acetic acid, and 3- (4-hydroxyphenylacetic acid).
  • Fluorescent substances formed by oxidizing 4-hydroxyphenethylamine, N- (4-hydroxyphenyl) acetanilide, 2,7-dichlorofluorescein diacetate, and the like, are exemplified.
  • Examples of the luminescent substance such as a chemiluminescent substance include firefly luciferin, firefly luciferin, aequorin, lucigenin derivative, oleminol derivative, acridinidine ester, persuccinate, and the like.
  • the resulting dye is measured with an absorptiometer or the like to indirectly use hydrogen peroxide.
  • the substance to be analyzed is measured by measuring.
  • a substance to be analyzed is measured by indirectly measuring hydrogen peroxide by measuring with a fluorimeter or a luminometer.
  • the oxidizing agent participating in the oxidation reaction is not limited to hydrogen peroxide, and various known oxidizing agents may be used.
  • An oxidizing enzyme such as peroxidase may be added.
  • a reaction for producing the oxidizing agent may have occurred prior to the oxidation reaction for producing the dye.
  • the tetrazolium salt include 2,3,5-triphenyltetrazolium salt, 2,5-diphenyl-3- (1-naphthyl) -1 2H-tetrazolium salt, and 3,3′-one (3,3 ′ —Dimethoxy 4.
  • 7-hydroxy-3H-phenoxazine-13-one-10-oxo is reduced to produce a fluorescent substance.
  • a fluorescent substance 7-hydroxy-3H-phenoxazine-13-one is used.
  • 11-Oxoxide, 5-cyano 2,3-bis (4-methylphenyl) -2H-tetrazolium salt, 2.3-bis (4-cyanophenyl) -5-cyano 2H-tetrazolium salt, etc. are reduced And the like.
  • the resulting dye is measured with an absorptiometer or a fluorometer to indirectly reduce the reducing agent.
  • the analyte is measured by measuring Further, a reaction in which a reducing agent is generated may occur before a reduction reaction in which a dye is generated.
  • nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate is preferably used as a reducing agent for the reduction reaction.
  • the present invention is not limited to this, and various known reducing agents may be used.
  • the dye or the like generated by the acid-base reaction include compounds that develop or change color due to a change in pH, such as promocresol green.
  • Examples of such compounds include bromocresol green, snorephonphthalein dyes such as bromophenol blue, phenol red, bromopyrogallol red, and pyrogallol red; and triphenylmethane-based dyes such as malachite green and rozolic acid Dyes, quinaldine red, N- (parahydroxyphenyl) 1-2,6-dichloroquinoline dyes such as parabenzoquinoneimine, 7-hydroxy-13H-phenoxazine-13-one 10-oxazones such as oxide Dyes, coumarin-based dyes such as 6,7-dihydroxy-4-methylcoumarin, and derivatives of aniline oligomers And a conductive polymer compound.
  • bromocresol green snorephonphthalein dyes such as bromophenol blue, phenol red, bromopyrogallol red, and pyrogallol red
  • triphenylmethane-based dyes such as malachite
  • the acid or base is measured indirectly by measuring the resulting dye with an absorptiometer or the like.
  • the analyte is measured by.
  • the resulting dye is measured with an absorptiometer or the like to measure the hydrogen ion concentration. By doing so, the analyte is measured.
  • azo-based dyes formed by the force coupling of diazonium salts such as 2-methoxy-4-morpholinobenzenediazonium salt as dyes formed by various reactions known as color reaction and the like; Dyes formed by various known color reactions such as the reaction of amide with 2,3-dimethyl-2.3-bis (hydroxyamino) butane; formed by various known reactions such as the reaction of hissamine and orthophthalaldehyde Fluorescent substances: Dyes and fluorescent substances generated by the reaction of an enzyme substrate such as 4-methylumberifuryl phosphate with an enzyme.
  • the azo dyes formed by coupling of diazonium salts include azo dyes, perobilinogen, and azo dyes formed by force coupling of indoxyl and 2-methoxy-4- morpholinobenzenediazonium salt.
  • azo dyes formed by the coupling of 4,4 * -diazonium salt, formed by the reaction between 4-aminobenzenearsonic acid and N-1-naphthylethylenediamine in the presence of nitrite
  • An azo dye also formed by the reaction of 2,4-dichloroaniline with N, N-Jetyl-N'-1-1-naphthylnaphthylethylenediamine oxalate in the presence of nitrite And the like.
  • the generated dye is measured by an absorptiometer or the like, and an analysis target substance (in the above example, indoxysil, perobilinogen, (It is nitrite).
  • an analysis target substance in the above example, indoxysil, perobilinogen, (It is nitrite).
  • the reaction in which the azo dye is formed is not limited to the above examples, and is preferably applied to reactions in which various known azo dyes are formed. Dyes formed by various known color reactions include known dyes described below. Dyes generated in the color reaction are exemplified, but are not limited thereto.
  • Color reactions include the reaction of hydrogen peroxide with 1.4 diaminobenzene to detect aldehydes, and the reaction of 2,3-dimethyl-2,3-bis (hydroxyamino) butane to detect aldehydes.
  • Reaction reaction of 3-methyl-2-benzothiazolinone hydrazone with oxidizing agent when detecting aldehyde, reaction of 10H-phenothiazine with bromine when detecting secondary amine, detection of thiol Reaction of 2,2′-dithiodipyridine.
  • the dye to be formed is measured with an absorptiometer or the like, and the starting substance of the reaction is an analyte (an aldehyde, a secondary amine, or a thiol in the above example). ) Is measured.
  • the known color reaction that can be used is, of course, not limited to the above examples.
  • Examples of the fluorescent substance generated by various known reactions include, but are not limited to, a fluorescent substance generated in a known detection reaction performed using the reagent described below.
  • Reagents used in the detection reaction to generate fluorescent substances include 2-hydroxy-1,2-diphenylethanone for detecting guanidino compounds, orthophthalaldehyde for detecting histamine, and spermidine for detecting histamine. 2-Damino-4,5-dimethoxybenzene when detecting orthophthalaldehyde and alpha keto acid.
  • a fluorescent substance to be produced is measured with a fluorometer or the like, and the analysis target substance as a starting substance of the reaction (in the above example, a guanidino compound, histamine, spermidine, or alpha keto acid is used. ) Is measured.
  • the known detection reactions that can be used are, of course, not limited to the above examples.
  • Enzyme substrates that react with enzymes to produce dyes and fluorescent substances include chymotrypsin substrate N-tosyl-L-phenylalanine 1-2-amidoacridone and aminopeptidase L —Alanine 1—2-Amidocridone, 7-acetoxy N-methylquinolinium salt for the measurement of esterase, esterase substrate 7-acetoxy 3 H—phenoxazine 13-one, phosphatase Substrates for 4-methylumberifuryl phosphate and phosphatase 5,10,1 5.20-tetrakis (4-phosphonooxyphenyl) porphine, which is a substrate of porphyrin.
  • the present invention is not limited to this.
  • a target substance to be analyzed is measured by measuring a generated dye or a fluorescent substance with an absorptiometer or a fluorometer and indirectly measuring the enzyme. It measures the substance.
  • the enzyme or enzyme substrate may, for example, be chemically linked to the antibody or a fragment thereof.
  • a dye complex or a fluorescent complex formed by a coordination bond or an ionic bond a dye, a fluorescent substance, or the like formed by forming a complex between a metal ion or anion and a compound such as a ligand by a coordination bond or an ionic bond There is a compound that changes color.
  • Compounds that form a complex with a metal ion to develop color and discolor include compounds known as gold indicators and chromoionophores, as well as compounds that form a complex with colored transition metal ions to color.
  • ethylenediaminetetraacetic acid, 2.2-biviridine, 1-hydroxy-2- (2-hydroxyphenylazo) benzene, dibenzo-18-crown-16, dicyclohexyl-18-crown-16, Cyclic polyamines, elixir [4] arene, 3- [N, N-bis (carboxymethyl) aminomethyl] 1-1,2-dihydroxyanthraquinone, 5 ', 5 "-dibromopyrogallylylsulfone phthalate Rain, 2-hydroxy 1- (1-hydroxy 1-2-naphthylazo) 1-6-two-row 4-naphthalenesulfonate, 2,6-dichloro-1--4'-hydroxy 3,, 3 "-Dimethylfuchsone
  • compounds that form a colored complex with a monovalent cation include tetrakis.
  • tetraphenylarsonium salts that form a colored complex with anion, and ⁇ ⁇ -ethoxycarbonylmethyl bromide, whose fluorescence intensity decreases when they form a complex with chloride ion
  • examples thereof include 6-methoxyquinolinium and 8-hydroxy-11- (salicylideneamino) -3,6-naphthalenedisulfonic acid which forms a complex with boron.
  • the amount of the dye or the fluorescent substance is measured by measuring the dye or the fluorescent substance that generates ions and ligands with an absorptiometer or a fluorometer. This measures the analyte (often an ion).
  • Substances that can be detected by electrochemical methods include electron mediators (mediators), complexes of ionophores with ions, and the like.
  • An electron mediator is a chemical substance that reduces or oxidizes the analyte by an enzyme or the like, and then directly accepts / donates electrons from / to the analyte.
  • the analyte can be measured from the electrochemical response when the body is oxidized and reduced at the electrode.
  • the electron mediator and the analyte do not need to directly exchange electrons.
  • the electron mediator reduces the analyte by oxidizing and reducing it with an enzyme or the like. However, it may be a chemical substance that accepts and donors electrons indirectly.
  • the analyte is measured from the electrochemical response when the oxidant / reductant of the electron mediator, which has a quantitative relationship with the analyte, is remotely oxidized at the electrode.
  • a substance which can be redox at a potential within the measurable range of the electrode to be used (usually 1.1 V to +1.0 V for a carbon electrode) is preferable.
  • the detectable substance is the oxidized or reduced form of the electron transfer substance described above, and the reaction that generates the detectable substance is the oxidized or reduced reaction of the electron transfer substance.
  • the electrochemical response such as the oxidation-reduction current when the oxidized or reduced form of the electron transfer substance existing in a quantitative relationship with the analyte is reduced and oxidized at the electrode.
  • the analyte can be measured. For example, it measures the electrochemical response when oxidized / reduced on the electrode as an electron donating Z acceptor, such as ascorbic acid or hydrogen peroxide, and indirectly measures the analyte based on the response result be able to.
  • a ionophore is a compound such as a ligand that selectively forms a coordination bond or an ionic bond with a specific ion to be analyzed and forms a complex, and is particularly well used for a liquid membrane electrode.
  • ionophores that form complexes with cations include tetrakis [3,5-bis (trifluoromethyl) phenyl] borate salt, tetraphenylphosphonium salt, nokulinomycin, and cyclo ( ⁇ ', ⁇ ').
  • Dioctyl-1-D-asparaghi 2-L-Prolyl-L-Aranyl) 2 bis (benzo-15-crown-5), bis [(benzo-15-crown-5) — 4-methyl] pimelate, bis (12-crown-1 4), bis [(1 2—crown-1 4) methyl] 1—2—dodecyl-2-methylmalonate, 14—crown—1, dodecyl-methyl—14—crown 1,4,6.6-dibenzyl-1,4,8,11-tetraoxacyclotetradecane, dibenzo-18-crown-16, dicyclohexyl-18-crown-16,4,16-di- N-year-old octadecylcarbamoyl-3-oxosubtilyl 1,7,10,13,19-pentaoxer 4,16-diazacyclohexicosan.
  • a liquid membrane electrode is a technique in which a porous polymer layer is provided on the surface of the electrode, ionophores are impregnated into the polymer layer, and are bonded to only specific ions in the sample and moved inside the polymer layer. This is a method in which only certain ions are selectively crowded, the membrane potential generated at that time is measured, and the specific ions that are the analytes are measured.
  • the use of the ionophore in the electrochemical detection method is not limited to this example of a liquid film electrode.
  • the ionophore is bound to a specific ion, and the unbonded ions cannot move, and the electrode provided with the polymer layer capable of moving only the complex formed by bonding is applied to the electrode. Then, the ion separation, which is a substance to be analyzed, can be measured by measuring the membrane potential generated at that time.
  • the detectable substance is a complex of the ionophore and a specific ion
  • the reaction that forms the detectable substance is a complex formation reaction between the ionophore and the specific ion by coordination bond or ionic bond.
  • the substance to be analyzed is measured by electrochemically measuring the membrane potential generated according to the concentration of the specific ion as the substance to be analyzed.
  • the measurement method of the present invention is preferably applied to a method using a reaction system that produces such a detectable substance, and more preferably includes the following method.
  • a method using a reaction system that includes a reaction that produces nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH), or a reaction that uses NADH or NADPH as a reducing agent.
  • NADH nicotinamide adenine dinucleotide
  • NADPH nicotinamide adenine dinucleotide phosphate
  • NADH or NADPH is generated from a substance to be analyzed through a dehydrogenase reaction system, and is reduced by acting on a dye precursor in the presence of an electron transfer system.
  • a method for measuring a dye compound produced by the method is generated from a substance to be analyzed through a dehydrogenase reaction system, and is reduced by acting on a dye precursor in the presence of an electron transfer system.
  • Aromatic primary amine is reacted with nitrous acid under acidic conditions to generate a diazonium salt, the generated diazonium salt is reacted with the coupling reagent, and then the generated azo dye is measured.
  • Fluorescent enzyme substrate such as 4-methylumberifluorone having a phosphate ester migrates phosphate by the action of alkaline phosphatase to generate a fluorescent substance, and excites the generated fluorescent substance
  • the detectable substance may be the analyte itself, for example, by measuring the electrochemical response when glucose dissolved in water is oxidized on the electrode surface, and analyzing the analyte. There is something to measure.
  • the fourth measurement method of the present invention is a measurement method using a reaction system that generates a substance that can be detected in a solvent, and particularly includes a reaction that generates a substance that is insoluble in the solvent. Apply to the method. Further, it is preferably applied to a measurement method in which an insoluble detectable substance is generated. It is particularly preferably applied to a measurement method in which a detectable substance is an optically detectable substance.
  • the solvent is not particularly limited, and any conventionally known solvent can be used arbitrarily. For example, water such as distilled water, alcohol such as ethanol, ketones such as acetone, ethers such as getyl ether, etc.
  • esters such as ethyl ester, the halogenated hydrocarbons such as chloroform, and the aromatic hydrocarbons such as benzene and toluene
  • water is preferred.
  • a sample liquid containing a substance to be analyzed such as blood, saliva, or urine, can be used as a reaction solvent, as is known as dry chemistry.
  • the measurement method using a reaction in which a substance insoluble in the reaction solvent in which the reaction is performed is generated is not particularly limited, but a measurement using a reaction in which an optically detectable substance insoluble in the reaction solvent is generated.
  • Method measurement method using a reaction in which an insoluble by-product is generated in the solvent in which the reaction is performed and an optically detectable substance is generated, by-product insoluble in the reaction solvent is generated, and is electrochemically detectable Measurement methods that utilize reactions that produce various substances.
  • a measurement method using a reaction that produces an optically detectable substance insoluble in the reaction solvent is not particularly limited, and specific examples include the detection reaction described below.
  • the oxidation reaction includes the detection of hydrogen peroxide by the oxidative condensation of phenol and 4-amino-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-virazol-3-one in aqueous solution.
  • Reaction Oxidation of N-methylacridine-l-rubonate in aqueous solution to form water-insoluble fluorescent substance N-methylacridone
  • Detection reaction of hydrogen peroxide, presence of alkane sulfonate examples of the reaction include a reaction for detecting hydrogen peroxide including a reaction for oxidizing and coloring an aqueous solution of 10- (carboxymethylaminocarbonyl) -13,7-bis (dimethylamino) phenothiazine salt.
  • the reduction reaction involves reduction of 7-hydroxy-13H-phenoxazin-13-one-10-oxide to form a fluorescent substance 7-hydroxy-3H-phenoxazine-13-one insoluble in acidic aqueous solution.
  • Reducing substance detection reaction 3.3 '-(3,3, dimethoxy-4,4'-biphenylene) -bis [2- (paranitrophenyl) -5-1-phenyl-2H-tetrazolium ] Salt, 5-cyano 2, 3-bis (4-meth (Rufenil) — 2H-tetrazolium salt, 2,3-bis (4-cyanophenyl) -15-cyano 2H-tetrazolium salt, etc., to reduce water and form a water-insoluble formazan dye. No.
  • Other reactions include detection of arylsulfatase by reaction of 4-methylumberifurylsulfate with arylsulfatase in a weakly acidic aqueous solution, 2-chloro-4-412trotropinyl ⁇ —D-darcopyranoside and S— Includes ⁇ -glucosidase detection reaction by reaction with darcosidase in aqueous solution, aldehyde detection reaction by condensation reaction of azobenzeneparaphenylhydrazinesulfonic acid and aldehyde, and diazo force coupling between diazonium salt and 2-naphthol Reactions for the detection of hypophosphorous acid, and for the detection of cobalt ions by the formation of a colored insoluble complex of 1.3-diamino-4-1 (5-promo-2-pyridylazo) benzene and cobalt ions in a neutral aqueous solution. .
  • a measurement method that uses a reaction that produces an optically detectable substance and includes a reaction that produces a by-product that is insoluble in the reaction solvent, or a reaction that produces an electrochemically detectable substance.
  • the measurement method to be used which includes a reaction in which by-products insoluble in the reaction solvent are generated, is hardly used because of the drawbacks mentioned in the above-mentioned related art. Therefore, specific examples of such a measuring method are not given here, but this does not limit the present invention.
  • the insoluble material forms molecular aggregates of single molecules in the liquid phase, which grows further and precipitates as aggregates or precipitates.
  • the layered inorganic compound of the present invention is fine particles sufficiently small to be uniformly dispersed, and the insoluble substance such as an insoluble detectable substance and a by-product in the present invention is a single molecule or a sufficiently small molecule immediately after being formed. Since it is an aggregate, the insoluble substance is efficiently adsorbed by the layered inorganic compound, and both are uniformly dispersed.
  • the fourth measurement method of the present invention is characterized in that a layered inorganic compound capable of adsorbing a wide variety of substances and capable of being fully and uniformly dispersed is present in a detection reaction system in which an insoluble substance is generated, and the insoluble property is determined by the presence of the layered inorganic compound.
  • the substance is adsorbed, and the This is a measurement method that solves the problems caused by soluble substances.
  • the presence of the layered inorganic compound does not hinder the progress or detection of the detection reaction.
  • a reduction reaction of a tetrazolium salt is particularly preferably mentioned as a reaction system including a reaction for producing an insoluble substance.
  • the analytes that can be measured by the first to fourth measurement methods of the present invention include biological components such as urine and blood in body fluids, foods, pharmaceuticals, trace substances existing in the natural environment, industrial chemicals, and waste. And the like.
  • the measurement method of the present invention is characterized in that a layered inorganic compound is present in a reaction system including the above-mentioned reaction for producing a detectable substance.
  • a layered inorganic compound is present in a reaction system including the above-mentioned reaction for producing a detectable substance.
  • the layered inorganic compound of the present invention is an inorganic compound having a crystal structure in which a sheet structure in which polyhedrons such as Si tetrahedron and A1 octahedron are connected in a plane is layered, and a layered clay mineral and hydrotalcite Sites are included.
  • Clay minerals are aluminum gaterate minerals that make up the majority of clay (fine earth-like inorganic particulate matter that is plastic when wetted with water).
  • the smallest constituent unit is an Si tetrahedron surrounded by atoms and an A 1 (or Mg) octahedron surrounded by six OH groups or zeros with A 1 or Mg.
  • the structure of the layered clay mineral is such that Si tetrahedrons share one face and form a hexagonal mesh sheet with the remaining vertices 0 pointing in the same direction (tetrahedral sheet), while A 1 (or Mg)
  • the octahedron forms a sheet by sharing the ridge angles (octahedral sheet), which are layered.
  • a tetrahedral sheet and an octahedral sheet are stacked one by one.
  • 1 A mineral formed by stacking many layers in a single layer.
  • 1 A type 1 mineral. One octahedral sheet is sandwiched between two tetrahedral sheets.
  • a mineral formed by stacking multiple layers of one layer is called a 2: 1 type mineral, and a 2: 1 type mineral with another octahedral sheet sandwiched between layers of 2: 1 type.
  • the octahedral sheet is M g (OH) 2, where the metal ions are present at all octahedral positions, the 3 octahedral type (Trioctahedral).
  • the vacancy is called Dioctahedral.
  • a 2: 1 type mineral is preferable.
  • the element constituting the layered inorganic compound of the present invention is preferably composed of at least one selected from lithium, sodium, potassium, magnesium, aluminum, gayne, oxygen, hydrogen, fluorine, and carbon.
  • a compound represented by any one of the following formulas 1 to 9 is exemplified.
  • these formulas may include water of crystallization.
  • these formulas are formulas as mineralically or chemically pure compounds.
  • impurities such as sodium gayate, chemical formulas may be obtained by elemental analysis. The fact that the formulas do not always agree with these formulas, for example, can be found in the literature (D. W, Thompson, JT Butterworth, J. Colloid Interf. Sci., 151, 236-243 (1992)). ).
  • M is any one of H, Li, Na, and K, X is any of 0H and F, and X is a positive number less than 2.
  • M is any one of H, Li, Na, and K, X is 0H or F, and X is a positive number less than 4.
  • M is any one of H, Li, Na, and K, X is 0H or F, and X is a positive number less than 3.
  • M is any one of H, Li, Na, and K, X is 0H or F, and X is a positive number less than 4.
  • is one of Li and Na, and is preferably Na.
  • X is either 0H or F, and is preferably F.
  • M is either L i or Na, preferably L i.
  • X is either OH or F, preferably F.
  • Equation 7 (A Anion form of X in Equation 7 halogen, N0 3, SO C0 3, any or organic acids OH, preferably C0 3.
  • X is X is halogen, OH, N0 3, monovalent a 2 when the organic acid, when X is SO "of C0 3, divalent organic acid
  • X is either OH or F, preferably OH.
  • X is either OH or F, preferably OH.
  • A is a positive number less than 4
  • b is a positive number less than 3
  • Specific examples of the layered inorganic compound of the present invention include: 1: 1 type clay minerals such as porphyrin orite, halloysite, and serpentine; talc, pyrophyllite, smectite, vermiculite (in the above formula, Formula 2; the same applies to the following)
  • 2 1 type clay minerals such as mica containing (formula 5) and tenonite (formula 6); 2: 1 type 1 clay minerals such as chlorite; 2: 1-2: 1: 1 type intermediate minerals; And other quasicrystalline clay minerals: amorphous clay minerals such as arophane; hydrotalcite (Formula 7)
  • Smectites also include montmorillonite (Equation 1), bentonite, which is a natural substance containing 40 to 80% montmorillonite, and Piderite (Equation 2) depending on the ion species in the isomorphous tetrahedron and octahedral lattice.
  • Dioctahedral type hectrite (formula 3, preferably formula 8), saponite (formula 4, preferably formula 9), trioctahedral type such as nontronite, and the like.
  • Mg e A 12 (OH) 16 C0 3 ⁇ 4 H 20 is a layered mineral represented by Mg (OH) 2 (brucite: a structure in which oxygen octahedral layers with Mg 2 + in the center are stacked) A part of Mg 2+ is isomorphously substituted with A 1 s + and has a positive charge.However, it has electrical neutrality due to COs 2- between layers and has anion exchange ability. is there. Although not a maleate mineral, it is often treated as a clay mineral.
  • compositions of the above-mentioned layered inorganic compound of the present invention are shown in Table 1 below.
  • MI is an exchangeable cation represented by a monovalent cation.
  • the average particle size of the layered inorganic compound of the present invention is not particularly limited as long as it is small enough to allow uniform dispersion.
  • the layered inorganic compound is generally plate-like particles and is in a dynamic equilibrium where a plurality of particles control aggregation and cleavage, it is difficult to define the average particle size itself.
  • the value measured by a method such as the light scattering method or observation with an electron microscope is 1 nm or more when dispersed in water. It is preferably 20 m or less. More preferably, the thickness is 10 nm or more and 2 ⁇ m or less.
  • the absolute value of the layer charge preferably has a value of about 0.2 to 1 for the atomic group having the composition shown in Table 1.
  • transition metal ion such as iron as a substitution ion in the structure or as an impurity cause coloring, and exhibit redox properties and the like to cause side reactions, resulting in transparency and the like. Since it is inferior, it is preferable that there is no substitution with a transition metal ion, but it is not limited to this.
  • Pillars such as quaternary ammonium salts can be provided on these layered inorganic compounds such as clay minerals to adjust the interlayer distance, interlayer charge and polarity in advance.
  • layered inorganic compounds of the present invention more preferred are 2: 1 type clay minerals, and particularly preferred are swellable clay minerals having ion exchange ability.
  • swellable clay minerals more preferred are bentonite, smectite, vimiculite and synthetic fluoromica, particularly preferably synthetic smectite such as synthetic hectorite or synthetic saponite, or swelling typified by synthetic fluoromica.
  • Synthetic mica such as synthetic mica (or Na-type mica) (natural mica is usually a non-swelling clay mineral). The swelling action is due to the presence of exchangeable cations or anions.
  • the swelling layered inorganic compound is used to quickly adsorb detectable substances between layers or the surface of a clay mineral called a card house structure. Preferably, it is used.
  • Clay minerals adsorb anionic, cationic and nonionic polar organic compounds, and hydrotalcite adsorbs anionic compounds.
  • Compounds that can be adsorbed on layered inorganic compounds are described in detail in, for example, H. Van Olphen's book ⁇ Introduction to Clay Colloid Chemistry, Second EditiorU (Krieger Publishment, Malabar), Chapter 11 Factory Interaction of Clays and Organic Compounds J. Is described. In the present invention, these may be used alone or in combination of two or more.
  • the above-mentioned layered inorganic compound of the present invention can be used without being limited to a synthetic product and a natural product, but a synthetic product is preferably used.
  • synthetic products are capable of quantitatively handling detectable substances that are chemically uniform and adsorbed.Furthermore, they do not contain colored metals such as iron between layers and have high transparency. This is because it is possible to handle optically and optically.
  • the term “synthesis” means that at least in the case of smectite, water It is manufactured by a thermal synthesis method or a melting method. Swellable clay minerals obtained by purifying natural products are also preferably used.
  • Lucentite SWN or Lucentite SWF synthetic helicite
  • ME fluoromica
  • Kunimine manufactured by Corp Chemical Co., Ltd.
  • Smecton SA synthetic sabonite
  • Thixopie W synthetic hectorite
  • Kyodo 500 synthetic hydrotalcite
  • Rabo Knight synthetic hectorite
  • a natural bentonite sold by Nacalai Tesque, Inc. and a multi-gel (bentonite), a trade name manufactured by Toyshun Mining Co., Ltd.
  • the above-mentioned layered inorganic compounds are known to adsorb organic compounds such as amines, polyenes, and various pigments.
  • water treatment agents that absorb oils and pigments, and protein removal during the production of wine, mirin, etc. It has been used as an agent and a decolorizing / purifying agent by removing impurities.
  • these employment inorganic compounds are known as materials that give a specific reaction field, such as causing a phenomenon called metachromism, and more recently, they are also known to improve the photostability of natural dyes. Is
  • the first method of the present invention it has been found that by allowing a detectable substance to be adsorbed to the layered inorganic compound, it is possible to increase the sensitivity of the measurement. Therefore, by adding this layered inorganic compound, for example, the measurement of hydrogen peroxide in a reaction system using 4-AA and a hydrogen donor can be performed more quantitatively. There has not yet been found any example in which such a layered inorganic compound such as a clay mineral is used for the measurement of a substance to increase the sensitivity.
  • a complex is formed by adsorbing the detectable substance on the layered inorganic compound, and the detectable substance is protected from the reaction system.
  • the detectable substance is adsorbed on the layered inorganic compound, and that the adsorbed detectable substance can be sufficiently stably present even in the presence of an excess of hydrogen peroxide and diascorbic acid. It is.
  • this layered inorganic compound for example, hydrogen peroxide measurement in a reaction system using the aforementioned 41 AA and a hydrogen donor can be performed with higher accuracy.
  • a layered inorganic compound such as a clay mineral is added to the reaction system for measuring the target substance to stabilize the detectable substance to be generated, and the sensitivity and accuracy in the measurement of the target substance are measured. No examples have been found to increase the quality.
  • the reaction for producing a detectable substance for the purpose of analysis is caused to proceed in the presence of the layered inorganic compound, and although the mechanism is not always clear, the layered inorganic compound can be detected.
  • the reaction rate for the generation of a detectable substance can be improved and the measurement can be speeded up.
  • the fourth method of the present invention by dispersing the layered inorganic compound in a solvent of a reaction system including a production reaction of a detectable substance, a high sensitivity and a high speed can be achieved even when an insoluble substance is produced. It has been found that detection is possible. No examples have been found yet in which such a layered inorganic compound such as a clay mineral is dispersed in a solvent and used for measuring a substance.
  • the presence of the layered inorganic compound in the reaction system does not hinder the detection reaction, and thus the addition of the layered inorganic compound does not impair the measurement accuracy.
  • the method of causing the layered inorganic compound to be present in the reaction system depends on the reaction system to be used.
  • the method includes a dispersion liquid, a sol, a gel, a slurry, an aggregate, an aggregate, and a sintered porous material. It is preferable that the compound is present in a dispersed state in the reaction medium of the reaction system in a form selected from t and t.
  • the reaction medium of the reaction system include a reaction solvent for a reaction that produces a detectable substance.
  • the reaction solvent for the reaction for producing a substance insoluble in the reaction solvent may be mentioned.
  • the method of causing the layered inorganic compound to be present in the reaction system is a method in which the layered inorganic compound is dispersed in a solvent and added to the reaction system in the form of a dispersion.
  • the solvent is not particularly limited, and a conventionally known solvent can be used arbitrarily; ', for example, water such as distilled water, alcohol such as ethanol, ketones such as acetone, T / JP96 / 03188
  • -40-Analyte substances and their detection from ethers such as getyl ether, esters such as ethyl acetate, halogenated hydrocarbons such as chloroform, and aromatic hydrocarbons such as benzene and toluene.
  • ethers such as getyl ether, esters such as ethyl acetate, halogenated hydrocarbons such as chloroform, and aromatic hydrocarbons such as benzene and toluene.
  • a buffer solution described below is used, and the solution is added as a buffer solution dispersed in the buffer.
  • sample liquids such as blood, saliva, urine, etc. containing the substance to be analyzed as a reaction solvent is known as dry chemistry.
  • the amount of the layered inorganic compound to be added is determined according to the reaction system to be used, and although it depends on the layered inorganic compound used, the amount of the adsorption site is too small for the detectable substance and the detectable substance is not adsorbed. It is preferable that the amount does not remain in a solution or the like, or does not cause a concentration unevenness in the adsorption of a detectable substance due to too many adsorption sites.
  • the preferred amount of the layered inorganic compound to be added to the reaction system is determined as follows. That is, since the layered inorganic compound mainly adsorbs a dye or the like in an amount corresponding to the above-described layer charge, the total number of adsorption sites for the dye or the like for various layered inorganic compounds can be determined. Once the concentration of the reagent is determined in the detection reaction system, the approximate maximum amount of the generated dyes and the like can be calculated, and the layered inorganic material can be calculated so as not to exceed the maximum amount of the dyes that can generate the total adsorption amount of the layered inorganic compound Compounds can be added.
  • the timing of addition of the layered inorganic compound is not particularly limited, and may be before or after the production of the detectable substance, and may be added to the reaction system before the production of the detectable substance. It is preferable that they are added in advance and dispersed in the reaction system.
  • dispersed in the reaction system is that interaction between the layered inorganic compound and a reaction starting material, a reaction intermediate, or a reaction product, which is involved in a reaction for producing a detectable substance, such as adsorption. This is to make it more likely to occur. Another reason is that a state in which the concentration is not uniformly dispersed is suitable for detection. Therefore, the term “dispersion” as used herein refers to a state in which the layered inorganic compound is dispersed in a liquid, a state of a sol, a gel, or the like. Anything is fine.
  • the insoluble substance is adsorbed on the layered inorganic compound by uniformly dispersing the layered inorganic compound in the reaction solvent and causing it to exist in the reaction system. Can be done.
  • the dispersion medium in which the layered inorganic compound is dispersed is not necessarily the same as the reaction solvent in which the reaction is performed.
  • the layered inorganic compound may be in a state of being dispersed in a dispersion liquid containing the reaction solvent as a dispersion medium, or in a state of a sol, gel, aggregate, aggregate, or sintered porous body through which the reaction solvent can penetrate.
  • a layered inorganic compound that is in the form of a sol, gel, aggregate, aggregate, or sintered porous material through which the reaction solvent can penetrate can be used as a detection unit that also serves as the reaction unit in test specimens such as dry chemistry.
  • the measurement method of the present invention can be applied to a test piece as long as the layered inorganic compound can be uniformly dispersed.
  • a layered inorganic compound having an exchangeable cation or an exchangeable anion When a layered inorganic compound having an exchangeable cation or an exchangeable anion is dispersed in water by stirring or irradiation of ultrasonic waves, it becomes a nearly uniform dispersion at an appropriate concentration.
  • the addition of the electrolyte, the addition of the organic compound, the prolonged standing or the temperature change causes the particles of the layered inorganic compound to aggregate or coagulate, sometimes causing gelation or precipitation. These agglomerations are generally the result of gentle interaction between particles and can be easily redispersed by stirring.
  • the degree of adsorption is affected by the composition of the buffer (pH, ionic strength, components forming the complex, etc.).
  • the buffer pH, ionic strength, components forming the complex, etc.
  • smectite dispersed in pure water is difficult to adsorb the food dye Blue No. 1 (Priantable I FCF), but the bistris buffer [bis (2-hydroxyethyl) iminotris (hydroxymethyl) with a pH of 6.5 is used. Prepared from methane and hydrochloric acid], which adsorbs this dye quickly. You.
  • the type of buffer and buffer solution used in the method of the present invention include, for example, the above-mentioned bis-tris buffer, phosphate buffer, citrate buffer, N- (2-acetoamide) iminoniacetic acid buffer and the like.
  • the present invention is not limited to these, and it is preferable to appropriately select them according to the reaction system to be used.
  • the timing of adding the buffering agent is not particularly limited, and may be before or after the addition of the layered inorganic compound. However, as a buffer solution in which the layered inorganic compound is dispersed, the buffered solution is added to the reaction system together with the layered inorganic compound. It is preferred to add.
  • various surfactants can be added to the reaction system.
  • a surfactant By adding a surfactant, it becomes possible to uniformly disperse the specimen containing the hardly soluble substance and to make the specimen more uniform and quicker to penetrate the test part by improving the wettability of the specimen.
  • surfactants have an effect of adsorbing on the interface, dispersing and dissolving the substance, and so on, and therefore compete with the adsorption of the generated detectable substance to the layered inorganic compound or generate the detectable substance.
  • the effect of the present invention may be weakened by causing dissolution.
  • the surfactant used in combination with the layered inorganic compound in the present invention it is preferable to select a surfactant that does not hinder the adsorption of the generated detectable substance and the layered inorganic compound. In addition, it is preferable to use a small amount of the surfactant so as not to cause such interference.
  • a known type of surfactant may be used so as to be suitable for the reaction system. You may.
  • the type of surfactant that does not hinder the adsorption is that the molecular weight of the surfactant is not extremely large compared to the generated dye, and the organic value and inorganic value of the surfactant satisfy the following formula. Are preferred.
  • the organic value of a single carbon is 20; the inorganic value of a hydroxyl group is 100; the organic value of polyethylene oxide is 30; the inorganic value is 60; 70, assign the points for each functional group or atom, such as 70, for the inorganic value, and add up these points for the functional groups and atoms that constitute the compound, and sum the inorganic value and organic value
  • the inorganic value and the organic value are plotted in rectangular coordinates, compounds having similar properties are located in the same region of rectangular coordinates, and common properties independent of the structure of the compound appear.
  • Is known as an organic conceptual diagram (Yoshio Koda, "Organic Conceptual Diagram-Basics and Applications 1", page 11, Sankyo Publishing (1984)).
  • the present inventors studied the relationship between the adsorption inhibition effect and the inorganic and organic values for many surfactants having a known structure, and confirmed that the adsorption was not inhibited and the type of surfactant. Found that the above formula was satisfied in the organic conceptual diagram.
  • the calculation of the inorganic and organic values can use the conversion data in the book on the above-mentioned organic conceptual diagram. (Chemical Software Society, etc.) Obtained using the conversion data in.
  • the type and amount of the surfactant that does not hinder the adsorption can be selected, for example, as described in the following (a) to (2).
  • (C) Smectite is separated by appropriate means such as spontaneous sedimentation, centrifugal separation, and filtration, and the color tone of the supernatant or filtrate is measured with a spectrophotometer or the like. Comparison of the amount of dye adsorbed to smectite under the following conditions. Alternatively, if aggregation due to adsorption is observed, evaluate the degree of aggregation and precipitation.
  • surfactants selected by such a method include sugar alkyl ethers such as n-methyl octyl / 91D-darcopyranoside, n-yl octyl-31-D-thiodalcoviranoside, n -Saccharide alkylthioethers such as heptyl- ⁇ -D-thioglucopyranoside, sugar amides such as n-tactyl-N-methylglucamide and n-nonanoyl-N-methyldarcamide; 9-D-fracttopyranosyl- ⁇ - D-Darcoviranosi domonodecanoate;; D-Fructovirano syrup ⁇ -D-Darcoviranoside monodecanoate and other sugar esters; ⁇ , -bis (3-D-D-D
  • the amount of addition is not particularly limited, and the ratio of addition to the total amount of the layered inorganic compound is not particularly limited, and the amount suitable for the type of the surfactant, the type of the layered inorganic compound, and the reaction system can be selected. It is preferable that the amount is sufficient to exhibit the effect as a surfactant, for example, an amount that does not greatly exceed the critical micelle of the surfactant used in the aqueous solution.
  • a 0.3% aqueous solution of ⁇ , ⁇ ⁇ -bis (3-D-dalconamide propyl) dexolamide can be preferably used.
  • the surfactant is preferably used particularly when measuring by the first to third methods of the present invention.
  • a layered inorganic compound is added to and dispersed in the reaction system in advance.
  • translucent colloidal aggregation may occur, but in the present invention, aggregation is not necessarily required.
  • This aggregation can be considered as a complex in which the layered inorganic compound and the detectable substance are adsorbed.
  • This aggregation is uniformly redispersed by stirring the liquid.
  • the use of a phosphate-based buffer solution improves the dispersibility of the layered inorganic compound, so that the occurrence of aggregation can be suppressed.
  • the method of separating the layered inorganic compound to which a detectable substance is adsorbed is not particularly limited, and examples thereof include a method by spontaneous sedimentation, centrifugation, filtration, chromatography, electrophoresis, and solvent evaporation.
  • the filtration of the dispersion of the layered inorganic compound exemplified in the present invention is performed, for example, using a polysulfone ultrafiltration membrane having an exclusion limit molecular weight of about 10,000 or a pore size of about 5 nm. Can be done.
  • a detectable substance adsorbed on the layered inorganic compound is measured.
  • the measurement method include an absorption measurement method, a fluorescence measurement, a luminescence measurement, an electrochemical measurement method, a scattered light measurement method, and a reflectance measurement method.
  • an optical measuring method such as colorimetric quantification represented by light absorption analysis using an absorptiometer or the like is used. Since the layered inorganic compound used in the present invention has almost no absorption in the visible to near-infrared region, optical measurement can be performed even in a colloidal dispersion or a gel. When the measurement is performed with the dispersion liquid, not only the system but also a method such as the opal glass method can be selected.
  • a porous structure through which a reaction solvent can penetrate can be produced using a layered inorganic compound, so that a test piece provided with this portion as a detection portion also serving as a reaction portion can be used for reflectance measurement, Absorbance measurement, fluorescence measurement, etc. can be performed.
  • an electrochemical measurement method in which an oxidation-reduction current or a membrane potential is measured at an electrode is also used. By bringing the electrode into contact with a layered inorganic compound to which a detectable substance has been adsorbed, the electrochemical response can be measured with high sensitivity.
  • the test strip of the present invention is an analytical test strip for measuring the target substance by measuring a detectable substance generated by a reaction between the target substance and a reagent in a sample, It has at least one test unit with a detection unit for detecting a detectable substance.
  • the test part is a functional part that performs a series of analysis processes, such as sample absorption, diffusion, reaction, and detection, on the test piece ⁇ , and its structure is not particularly limited.
  • the detection unit for detecting a detectable substance such as a dye based on the reflectance, transmission absorption, fluorescence, etc. at or near the end of the test unit for inhaling a sample and introducing it into the test unit
  • a sample suction section provided, a diffusion / penetration section for uniformly penetrating and diffusing the sample into the test section, a reagent section containing a reagent that reacts with the analyte contained in the sample, a reaction section where a reaction such as a detection reaction occurs,
  • a developing unit that separates the components in the sample and dyes and the like generated by the detection reaction in a manner similar to chromatography, a time adjustment unit that adjusts the progress of the reaction by using the time that the sample moves,
  • the sample suction unit is connected to a holding unit that trap
  • each of these sections that perform the function of the test section may overlap each other.
  • one section may be composed of a plurality of sections such as a detection section serving as a reagent section and a reaction section, and a detection section serving as a holding section. It may have a function.
  • a test strip provided with one or more multi-layer test sections each including two or more layers including a detection layer for detecting a detectable substance is used as the detection section.
  • Layers other than the detection layer include a sample suction layer for inhaling the sample and introducing it into the test section, a diffusion layer for uniformly penetrating and diffusing the sample into the test section, and reacting with the analyte contained in the sample.
  • Reagent layer containing reagent, reaction layer where reaction such as detection reaction occurs, spreading layer or holding layer that acts to remove interfering components provided between reaction layer and detection layer, etc., excess sample, added An absorbing layer for absorbing the washing liquid and the developing liquid to prevent backflow, an adhesive layer for fixing the test portion on the support, and the like can be provided.
  • the test piece further includes a diffusion layer for diffusing a sample in addition to the detection layer, and the sample is diffused through the diffusion layer to reach the detection layer.
  • the test piece of the present invention may be provided with one such test part, or may be a multi-item test piece provided with two or more test parts. In the case of a multi-item test strip, multiple samples can be analyzed at once, and by applying different reagents to each item, even if the sample contains two or more analytes, Can be simultaneously analyzed.
  • An absorption area or the like for absorbing open liquid and preventing backflow can be provided on the test piece.
  • a diffusion area for diffusing a sample is further included, and a sample spotted at an end of a test piece or the like passes through the diffusion area and is mainly planarized by capillary penetration action.
  • the detection region may have the above-mentioned multilayer structure including two or more layers including a detection layer for detecting a detectable substance.
  • the test strip of the present invention may be provided with one test unit composed of a pair of such a detection area and a reagent area, or provided with two or more test sections on the test piece.
  • a multi-item test piece may be used. In the case of a multi-item test strip, multiple samples can be analyzed at once, and by applying different reagents to each item, even if the sample contains two or more analytes, Each of the analytes can be analyzed simultaneously.
  • a reaction section for reacting an analyte in a sample with a reagent is provided separately from the detection section, and after the detectable substance is generated in the reaction section, the detection section It may be introduced and detected.
  • the detection unit is provided at a position after the sample has diffused and passed through the reaction unit.
  • a detection layer is provided at a position where the sample that has permeated from the surface of the multilayer test part diffuses through the diffusion layer, moves to the intermediate reaction layer, and reaches after reaching the reaction layer. Is preferred.
  • the detection area, reaction area, and diffusion area Preferably, an area is provided, and the detection area is provided in an area where the sample moves mainly in a plane, penetrates through the diffusion area, moves to the reaction area, and reaches after passing through the reaction area.
  • the detection section may also serve as a reaction section for simultaneously reacting a substance to be analyzed in a sample with a reagent, and the detectable substance may be an analyte in the sample in the detection section. It may be generated by the reaction between a substance and a reagent.
  • the detection section of the present invention is a section where a detectable substance such as a dye formed by a reaction between a substance to be analyzed and a reagent is actually detected, but as described above, the reaction section and the reagent in which the reaction occurs In some cases, the detection unit usually contains a reagent in advance.
  • the reaction section and the reagent section may have an independent detection section, and in that case, the reagent does not necessarily have to be included in the test section first.
  • the reagent may be added before and after the sample is added or after the addition.
  • a form may be used in which a solution of a detectable substance such as a dye formed by the reaction between the substance to be analyzed and the reagent is added.
  • the test piece of the present invention usually comprises such a test portion, and a sheet-like, tubular, or rod-like support portion for supporting the test portion. Further, if necessary, a sensor such as an electrode, a sample liquid suction device, or the like. May be attached.
  • the present invention is preferably applied to a test piece using a reagent and a reaction system capable of producing a detectable substance such as a dye as described below.
  • a detectable substance such as a dye formed by the reaction causes interaction such as adsorption with the layered inorganic compound of the present invention to form a complex.
  • a detectable substance such as a dye formed by the reaction causes interaction such as adsorption with the layered inorganic compound of the present invention to form a complex.
  • Reagents that generate a detectable substance that is adsorbed on a layered inorganic compound, etc. generate optically detectable substances such as dyes and fluorescent dyes by redox reactions, acid-base reactions, condensation reactions, complex formation reactions, etc.
  • Compounds that produce compounds such as dye precursors, or oxidized or reduced forms of electrochemically detectable mediators (electron mediators) or complex compounds It can be found widely in things and the like.
  • the reagent used is preferably a reagent that produces a water-soluble detection compound, and many such reagents are actually used.
  • the present invention is not limited to this, and the sample, reagent, or reactant may be derived from a solvent other than water, in which case the reagent used is one that produces a detectable substance that is diffused and eluted by the solvent. There is no problem.
  • a reagent that produces a detectable substance that is insoluble in the solvent of the sample, reagent, or reactant may be used.
  • a dye precursor preferably includes a compound having a conjugated system such as an aromatic ring.
  • couplers represented by 4-amino-1,2-dihydro1.5-dimethyl-12-phenyl-3H-pyrazol-13-one and a hydrogen donor (N-ethyl-N — (3-sulfopropyl) 1,3,5-dimethylaniline, etc.) (oxidative condensation to form quinone dyes), ortho-tolidine, benzidines (3,3'.5,5 ')
  • Dye precursors that produce oxidized chromogenic dyes such as tetramethylbenzidine, etc .; 2,6-dichloro-41-[(4-hydroxyphenyl) imino] —2,5-cyclohexadiene-one; Pigment Leuco (colors when oxidized), compounds that oxidize to produce
  • reaction system that produces such a detectable substance
  • examples of the reaction system that produces such a detectable substance include those used in the measurement method described in the description of the measurement method of the present invention. Specifically, the following reaction system is used. Can be exemplified.
  • a reaction system including a reaction for producing nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH), or a reaction in which NADH or NADPH acts as a reducing agent.
  • NADH nicotinamide adenine dinucleotide
  • NADPH nicotinamide adenine dinucleotide phosphate
  • a reaction system comprising a reaction in which a fluorescent enzyme substrate such as 4-methylumberifluorone having a phosphoric acid ester migrates a phosphate salt under the action of alkaline phosphatase to generate a fluorescent substance.
  • a fluorescent enzyme substrate such as 4-methylumberifluorone having a phosphoric acid ester migrates a phosphate salt under the action of alkaline phosphatase to generate a fluorescent substance.
  • a reaction system that involves the oxidation / reduction of a mediator such as 1.4-diaminobenzene by an oxidoreductase or the like to produce an oxidized Z form of the mediator.
  • a mediator such as 1.4-diaminobenzene by an oxidoreductase or the like to produce an oxidized Z form of the mediator.
  • Analytical methods using such a reaction system include immunoassays such as ELISA, immunochromatography, urinalysis, biochemical blood tests, and colorimetric test strips.
  • test pieces are described in HG Curme, et al., Clinical Chemistry, 24 (8), 1335-1342 (1978), ⁇ falter, Analytical Chemistry, 55 (4), 498A (1983 ), Asamu Kondo "Bunseki” 1984 (7), 534, Asamu Kondo "Bunseki” 1986 (6), 387, Handbook of Analytical Chemistry, p.8 (Japan Society for Analytical Chemistry, 4th Edition, Maruzen (1991) )), JP-A-6-213886
  • Analytes that can be analyzed by these methods include urine and blood in body fluids. Examples include body components, foods, pharmaceuticals, trace substances present in the natural environment, industrial chemicals, trace substances in waste, and the like.
  • the test strip of the present invention can be used for these analyses.
  • a sample to which can be applied may contain only one of these analytes, or may contain two or more analytes.
  • test portion of the test piece of the present invention may further contain a known compound commonly used in such test pieces for analysis, such as a hydrophilic polymer, if necessary.
  • a known compound commonly used in such test pieces for analysis such as a hydrophilic polymer, if necessary.
  • the test portion of the test piece preferably the detection portion in which the generated color element is present, contains the layered inorganic compound.
  • At least one detection layer or detection region constituting the test section contains a layered inorganic compound.
  • at least the detection layer contains a layered inorganic compound.
  • the layer other than the detection layer may further contain a layered inorganic compound.
  • the layered inorganic compound may be contained in the sample suction layer, the diffusion layer, the reagent layer, the reaction layer, the adhesive layer, the holding layer, the spreading layer, the absorption layer, and the like. May contain compounds.
  • the detection region contains a layered inorganic compound.
  • a layered inorganic compound may be contained in a region other than the detection region.
  • the layered inorganic compound may be contained in a sample suction region, a diffusion region, a reagent region, a reaction region, a development region, a time adjustment region, a holding region, an absorption region, and the like. It may contain a compound.
  • the detection region may have a multilayer structure, and in that case, at least the detection layer among the layers constituting the detection region contains a layered inorganic compound. Further, another layer may contain a layered inorganic compound.
  • test section has a reaction section for reacting the analyte in the sample with the reagent in addition to the detection section, the sample is diffused and detected at a position after passing through the reaction section. It is preferable that a detecting section is provided so that the detectable substance generated in the reaction section moves to the detecting section containing the layered inorganic compound and is detected.
  • Examples of the layered inorganic compound used for the test piece of the present invention include those exemplified in the above description of the measuring method of the present invention. Like the measurement method of the present invention, Of these layered inorganic compounds, more preferred are 2: 1 type clay minerals, and particularly preferred are swellable clay minerals having ion exchange ability. Further, among the swelling clay minerals, more preferred are synthetic mica such as swelling synthetic mica (or Na type mica) represented by bentonite, smectite, vermiculite or synthetic fluorine mica (natural mica is usually non-mica). Swellable clay minerals are preferred.), And particularly preferred are synthetic smectites such as synthetic hectorite or synthetic savonite, or synthetic fluoromica. These may be used alone or in combination of two or more. Until now, no attempt has been made to include a layered inorganic compound in a test piece by utilizing the effect of suppressing the diffusion and elution of a dye or the like.
  • the layered inorganic compound is added to a test section such as a detection section, the detection reaction is not disturbed. Therefore, by the addition of the layered inorganic compound, for example, an inspection using a reaction system using the aforementioned 41 AA and a hydrogen donor can be performed more accurately and easily without worrying about elution. is there.
  • the portion of the test portion containing the layered inorganic compound is preferably a porous structure, and the material is not particularly limited, but the force mainly formed by the layered inorganic compound, or mainly the hydrophilic polymer, the membrane At least one porous forming material selected from the group consisting of a fiber aggregate such as a filter, filter paper, cloth, and a glass filter; an organic compound such as cellulose or diatomaceous earth; or a fine powder of an inorganic compound. are preferably formed.
  • the porous structure formed of the layered inorganic compound mainly includes a sol, gel, aggregate, aggregate of the layered inorganic compound, or a porous body obtained by drying or sintering them.
  • a buffer or the like described below may be added to the porous structure. For example, a drop of a 1% dispersion of a layered inorganic compound is dropped on a support, cast, and freeze-dried to obtain a porous layer having good water absorption.
  • the support may be in the form of a sheet, a tube, or a rod.
  • the material is not particularly limited. Fiber aggregates such as filter paper, nonwoven fabric, cloth, and glass filter: glass beads, polymer beads, titanium dioxide, etc.
  • Particulate matter Cellulose, diatomaceous earth, powder such as soluble salts and hydrophobized polysaccharides, etc.
  • Particulate matter or fine powder Membrane filter 1: Plastic such as polyethylene terephthalate (PET) and polystyrene An organic polymer such as a plate; Further, more preferably, a gel comprising a hydrophilic polymer, a membrane filter or a plastic plate having a surface subjected to a hydrophilic treatment is used.
  • hydrophilic polymer examples include polyalkylene oxides such as polyethylene oxide and polypropylene oxide; cellulose derivatives such as carboxymethylcellulose and hydroxyethyl cellulose; gelatin and its derivatives (eg, phthalated gelatin); Derivatives (agarose, carrageenan, chitin, chitosan, etc.); polyvinyl alcohol; polyvinylpyrrolidone; polyacrylates (sodium polyacrylate, and their copolymers with maleic acid, etc.): polyacrylamide Polymethacrylic acids (polyhydroxymethyl methacrylic acid, etc.): methacrylamide: polysulfone; polyimide: polystyrene; polycarbonate; polyether ether ketone; polyoxymethyl Sodium alginate: hydrophilically treated (for example, hydrophilicized by ultraviolet irradiation or silanol treatment) polyethylene, polypropylene, polyolefin-based resin such as polyfluoroethylene; Polymers, aggregates,
  • the hydrophilic polymer preferably has a network structure formed by grafting with a crosslinking agent, association by hydrophobic affinity, and the like, and is preferably insoluble in water.
  • a hydrophilic polymer include dartaldehyde-crosslinked polylysine, polyethylene oxide crosslinked product, polyacrylamide graft polymer, polyacrylate graft polymer, and starch-acrylate graft polymer. And the like.
  • porous forming material selected from the group consisting of a hydrophilic polymer, a membrane filter, a fiber assembly, and a fine powder of an organic compound or an inorganic compound, and a layered inorganic compound are both contained in the test section,
  • the porous structure may be formed.
  • a method of forming such a porous structure a method of preparing a mixed solution of a material for forming a porous structure and a layered inorganic compound in advance and casting or impregnating the support described above, or A porous support such as a porous membrane is prepared using a porous structure forming material, and a dispersion of a layered inorganic compound or Examples of the method include a method of casting or impregnating the mixed solution on the porous support.
  • the layered inorganic compound is mixed during the production of the porous structure, for example, there is a method of kneading with a hydrophilic polymer—fine powder or the like and simultaneously forming a film. Further, a buffer solution obtained by dissolving or dispersing the layered inorganic compound in a buffer described later can be dried, and the dried product can be mixed with the raw material.
  • the type of solvent used is not particularly limited, and any conventionally known solvent can be used arbitrarily.
  • Water such as water, alcohols such as ethanol, ketones such as acetate, ethers such as getyl ether, esters such as ethyl acetate, halogenated hydrocarbons such as chloroform, aromatic compounds such as benzene and toluene From among the aromatic hydrocarbons, those suitable for the detection reaction system to be used can be selected.
  • a buffer solution dissolved or dispersed in the buffer is impregnated with a buffer described below.
  • the concentration of the solution or dispersion can be appropriately selected according to the reaction system and the like, and is not particularly limited.
  • a porous structure obtained by drying or sintering a sol, gel, aggregate, or aggregate of the layered inorganic compound can be used.
  • a drop of a 1% dispersion of a layered inorganic compound is cast on a plastic sheet and then freeze-dried to obtain a porous layer with good water absorbency.
  • at least one kind of porous structure forming material selected from the group consisting of the above-mentioned hydrophilic polymer, membrane filter, fiber aggregate, and organic or inorganic fine powder can be used for production.
  • hydrophilic polymer gelatin, polyacrylic acid or a derivative thereof, polyacrylamide, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene glycol, polysaccharide or a derivative thereof, polypeptide, polyamine or a derivative thereof are particularly preferable.
  • the hydrophilic polymer may be used as a gel or a dried gel.
  • the hydrophilic polymer may be a gel whose degree of crosslinking is adjusted by adding a known crosslinking agent such as glutaraldehyde. Use these alone or in combination Can be.
  • a porous region can be obtained by impregnating a filter paper with a 1% dispersion of a layered inorganic compound dispersed in a buffer solution and drying with hot air. If a small piece of the filter paper is pasted on, for example, a plastic sheet, a porous layer can be obtained.
  • the following procedure can be used.
  • an aqueous solution of polyacrylamide having a predetermined concentration adjusted to a weight ratio of 1: 1 to 4: 1, and the mixture is mixed well for several hours.
  • there is sodium carbonate! ⁇ Adjust the pH of the mixed solution to between about 5 and 9 by adding a dilute aqueous solution such as acetic acid.
  • the mixture may be made alkaline, N.N-methylenebisacrylamide may be added to a concentration of 2%, and electron beam irradiation may be performed to cause a crosslinking reaction.
  • a porous membrane can be obtained by applying the mixed solution thus obtained on a plastic plate and drying.
  • the porous structure containing the layered inorganic compound thus produced is particularly excellent in water absorption and is preferably used as a test portion of a test piece.
  • the production example of the test section is not limited to the examples described here.
  • examples of the production of test sections of various known test pieces can be applied.
  • Such test strips are described, for example, in HG Curme, et al., Clinical Chemistry, 24 (8), 1335-1342 (1978), B. falter, Analytical Chemistry. 55 (4), 498A (1983), Asamu Kondo ⁇ Bunseki '' 1984 (7). 534, RF Zuk, et al., Clinical Chemistry, 31 (7).
  • the concentration of the dispersion liquid of the layered inorganic compound, the mixing ratio with the hydrophilic polymer, and the pH to be adjusted The value of is required to be based on the type of layered inorganic compound, the type of dye to be adsorbed, the type and amount of hydrophilic polymer used, the type and amount of buffer, the viscosity of the mixed solution, etc. Select appropriate conditions to obtain the degree of porosity, the thickness of the porous layer, the mechanical strength of the test part, etc.
  • the porous structure serves as a detection unit for a test piece.
  • the amount of the layered inorganic compound to be added is determined according to the reaction system to be used. The amount of the layered inorganic compound depends on the layered inorganic compound to be used. It is desirable that the amount does not cause the product substance to remain in the solution or the like without being adsorbed, or does not cause the concentration of the product substance to be absorbed unevenly due to too much adsorption site.
  • the preferred amount of the layered inorganic compound to be added to the reaction system is as follows.
  • a layered inorganic compound can be added so as not to cause any problem.
  • the degree of adsorption is influenced by the composition of the buffer (PH, ionic strength, components that form the complex, etc.), so by changing the composition, concentration, or pH of the buffer, Alternatively, the desired degree of adsorption can be adjusted by changing the amount of a compound that can compete with a dye or the like in the adsorption to the layered inorganic compound.
  • the above-mentioned compounds that can compete include metal ions, organic amines, carboxylic acids, and phosphates, and surfactants and soluble polymers can also be used.
  • the type of buffer and buffer solution to be used, the pH of the buffer, and the like are the same as those described in the description of the measurement method of the present invention.
  • the method of adding the buffer is not particularly limited, but it can be contained as a buffer solution in which the layered inorganic compound is dissolved or dispersed, or as a dried product thereof together with the layered inorganic compound.
  • translucent colloidal agglomeration may occur in the dispersion of the layered inorganic compound, and this agglomerate is uniformly redispersed by stirring the dispersion. I do. Also, especially when agglomeration is disadvantageous, phosphate-based The use of a buffer solution improves the dispersibility of the layered inorganic compound, so that the occurrence of aggregation can be suppressed.
  • various surfactants can be included in the test section.
  • the addition of a surfactant improves the performance of coating a test portion or the like on a support.
  • surfactants have an effect of adsorbing to the interface, dispersing and dissolving the substance, they compete with the adsorption of the generated detectable substance to the layered inorganic compound, or the generated detectable substance
  • the effect of the present invention may be diminished by causing the dissolution of the substance. Therefore, as the surfactant used in combination with the layered inorganic compound in the present invention, it is preferable to select a surfactant that does not hinder the adsorption between the generated detectable substance and the layered inorganic compound.
  • Example 1 It is preferable to use a small amount of the surfactant so as not to cause such interference.
  • Specific examples of the type and amount of the surfactant are the same as those in the above-described measurement method of the present invention. Examples Hereinafter, the present invention will be described specifically with reference to examples.
  • POD Peroxidase
  • 41 AA and N-ethyl-N- (2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline (hereinafter abbreviated as EHSDA) as dye precursors, and as buffering agents Take bis-tris-notch (pH 6.5) and smectite as a layered inorganic compound so that the final concentration is as shown in Table 2, and add hydrogen peroxide to the final concentration of 120 // mo 1/1.
  • the reaction was carried out by adding so as to obtain a reaction solution.
  • the absorption spectrum of the agglutination part of the obtained reaction solution was measured between 450 and 750 nm.
  • POD, 41-AA, EHS DA, and bis-tris buffer ( ⁇ 6 ⁇ 5) was placed in a 1 cm cell length disposable cell (manufactured by polymethyl methacrylate) so that the final concentration was as shown in Table 3 above, and the temperature was adjusted at 37 ° C for 180 seconds. After the temperature was adjusted, hydrogen peroxide was added so that the final concentration was 100 mol / l, and the absorbance was measured every 2 seconds for 600 seconds every 20 seconds after the addition of hydrogen peroxide.
  • the measurement wavelength was 593 nm (wavelength near the maximum absorption wavelength) using JascoV-550 (manufactured by JASCO Corporation) as the measurement device. A slit for 0.1 m1 was used.
  • Fig. 4 shows the results. From FIG. 4, it can be seen that the smectite addition has a sensational effect. It was also confirmed that the color reaction reached the end point about 30 seconds after the addition of hydrogen peroxide. Furthermore, even if smectite was added after color development without smectite addition, dye adsorption and aggregation were observed.
  • Example 5 As a tetrazolium salt, 3,3 '-(3,3'-dimethoxy-1,4,4-biphenylene) monobis [2- (paranitrophenyl) -15-phenyl-2H-tetrazolium chloride ( Hereinafter, these are abbreviated as “tetrazolium salts.”)
  • phosphate buffer adjusted to pH 8.5 by mixing disodium hydrogen phosphate and sodium dihydrogen phosphate
  • L-ascorbic acid L-ascorbic acid
  • smectite Synthetic smectite, manufactured by Coop Chemical Co., Ltd.
  • This reaction is known as the formation of water-insoluble formasan.
  • the obtained coloring solution was diluted 10-fold, and the absorption spectrum was measured between 400 and 800 nm.
  • a tetrazolium salt, a phosphate buffer, and L-ascorbic acid were placed in a disposable tube in the same manner as described above except that smectite was not added so that the final concentration was as shown in Table 7, and the color was developed.
  • the absorption spectrum of the obtained coloring solution was measured between 400 and 800 nm.
  • the absorbance was measured using a spectrophotometer (JascoV-550) manufactured by JASCO Corporation.
  • a 1 cm disposable cell (made of polymethyl methacrylate) was used for the cell. used.
  • Figure 5 shows the measurement results.
  • Example 6 The same tetrazolium salt, phosphate buffer (pH 8.5), and smectite as used in Example 5 were placed in a disposable tube such that the final concentrations were as shown in Table 8, and the mixture was placed at 30 for 3 minutes. I've synced.
  • L-ascorbic acid was added to each of the concentrations shown in Table 9 in the range of 0 to 333 umo 1/1, and the reaction was carried out at 30 ° C for 30 minutes, and the absorbance was measured (measurement wavelength: 535 nm). ).
  • a calibration curve was prepared from the measurement results using a sample without scorbic acid added (0; mo 1/1) as a blank.
  • a tetrazolium salt and a phosphate buffer were placed in a disposable tube at a final concentration as shown in Table 8 except that smectite was not added, and the mixture was incubated at 30 for 3 minutes.
  • a calibration curve of r-0.9985 was obtained in the final ascorbic acid concentration range of 5.2 to 133.3 ⁇ mo 1/1.
  • the slope of the calibration curve obtained was about 2.5 times that of the smectite-added system compared to the smectite-free system, indicating that the addition of smectite can provide a sensitizing effect.
  • deposits that appeared to be formazan were deposited on the inner surface of the tube, whereas no precipitate or aggregation was observed in the tube in the smectite-added system.
  • the absorbance was measured using a spectrophotometer (JASCO V-550) manufactured by JASCO Corporation.
  • the cell used was a 1 cm cell-length disposable cell (made of polymethyl methacrylate).
  • Example 7 Hydrochloric acid, smectite (Cup Chemical Co., Ltd., Lucentite SWN), 2.4 dichloroaniline, and sodium nitrite were taken in this order so that the final concentration of each reagent was as shown in Table 11, and mixed. Thereafter, Tsuda reagent (N, N-getyl-N'-11-naphthylnaphthylethylenediamine oxalate) was added and allowed to react to form an azo-based dye to develop color. The absorbance spectrum of this was measured between 400 and 800 nm. In addition, sodium nitrite was added at four concentrations (0, 8, 16 and 33 m 0 11). Fig. 7 shows the results.
  • Example 8 Disposal (polymethyl) was added to hydrochloric acid, 2,4-dichloroaniline, sodium nitrite, and Tsuda reagent as used in Example 7 so that the final concentration was as shown in Table 12. (Methacrylate), and react for 10 minutes at 30 ° C. After sufficient color development, add smectite to form aggregates and settle out. Measure the absorbance of aggregates every second for 30 minutes after 30 seconds after adding smectite (Measuring wavelength: 555 nm).
  • Figure 10 shows the calibration curve obtained.
  • the slope of the calibration curve obtained is about 2.5 times that of the smectite-added system compared to the smectite-free system, indicating that the smectite effect can be obtained by adding smectite.
  • the absorbance was measured using a spectrophotometer (JascoV-550) manufactured by JASCO Corporation. A 1 cm disposable cell (made of polymethyl methacrylate) was used as the cell.
  • 2,4-dichloroaniline 200 0 1/1 sodium nitrite 0 to 50 umol Zl Tsuda reagent 200 imo 1/1 smectite 0.1% or 0%
  • POD peroxidase
  • 41-AA and N-ethyl-N- (2-hydroxy-3-sulfopropyl) -1,3,5-dimethylaniline (hereinafter abbreviated as EHSDMe A) as dye precursors, bis as a buffering agent
  • EHSDMe A N-ethyl-N- (2-hydroxy-3-sulfopropyl) -1,3,5-dimethylaniline
  • the tris buffer (pH 6.5) and smectite as a layered inorganic compound were placed in a 1 cm cell length disposable cell (methacrylate) so that the final concentration was as shown in Table 15. Incubation was performed for 180 seconds at 37 ° C. In addition, as another sample, the same composition and concentration were prepared except that smectite was not added, and the same incubation was performed.
  • Screw Tris Buffer 1 "00 mm o 1 / L
  • POD, 4-AA, EHSDMeA, bis-tris-no-peffer (pH 6.5), and smectite were used as disposable cells with a cell length of 1 cm (made of methacrylate) so that the final concentrations were as shown in Tables 17 and 18. Then, five kinds of samples (sample numbers 1 to 5) were prepared, and each of them was incubated at 37 days for 180 seconds. After adjusting the temperature of these samples, the reaction was started by adding the amount of hydrogen peroxide shown in Table 18. Further, 60 seconds after the addition of hydrogen peroxide, the amount of ascorbic acid shown in Table 18 was added, and the absorbance was measured every second for 300 seconds from 20 seconds after the addition.
  • the measurement wavelength was 630 nm using JascoV-550 (manufactured by JASCO Corporation) as the measurement device.
  • a slit for 0.1 mL was used for measurement.
  • FIG. 13 shows an enlarged view of 0 to 60 seconds in FIG.
  • Table 20 shows the absorbance (Abs) at 0, 60, and 300 seconds after the start of measurement. Furthermore, in order to subtract the lemon due to the occurrence of aggregation, the AAbs of Samples 3 and 4 were determined from the difference from Sample 5. The results are shown as data in square brackets in Table 20.
  • Example 1 As a tetrazolium salt, 3,3 '-(3,3'-dimethoxy-1,4,4-biphenylene) -bis [2- (paranitrophenyl) -1-5-phenyl-2H-tetrazolium] Chloride (hereinafter abbreviated as “tetrazolium salt”) as a buffer
  • Acid buffer (adjusted to pH 8.5 by mixing disodium hydrogen phosphate and sodium dihydrogen phosphate 00), L-ascorbic acid, and smooth cutout (product
  • Lucentite SWN Synthetic smectite manufactured by Corp Chemical Co., Ltd. was placed in a disposable cell (polymethyl methacrylate o) so that the final concentration was as shown in Table 21, and incubated at 30 for 180 seconds. Thereafter, the reaction was started by adding L-ascorbic acid, and the absorbance was measured every 1 second for 300 seconds 10 seconds after the addition to observe the change over time. The measurement wavelength is 535 nm and the reaction temperature is 30.
  • the absorbance was measured using a spectrophotometer (Jasc 0 V-550) manufactured by JASCO Corporation, and a 1 cm cell length disposable cell (polymethyl methacrylate) was used for the cell. Was.
  • both measurement wavelengths are wavelengths near the absorption maximum wavelength.
  • Figure 14 shows the measurement results as a graph of absorbance versus elapsed time.
  • the reaction is stabilized in about 50 seconds after the start of measurement, while in the smectite-free system, the reaction takes about 300 seconds after the start of measurement to be stabilized. This indicates that the addition of smectite increased the reaction rate.
  • This reaction is known as a reaction that produces water-insoluble formasan, but no precipitation or aggregation was observed in the cell in the smectite-added system.
  • Example 12 Hydrochloric acid, smectite (manufactured by Corp Chemical Co., trade name: Lucentite SWN), 2,4-dichloroaniline, and sodium nitrite were added to a disposable cell (polystyrene) so that the final concentration was as shown in Table 22. (Methyl methacrylate) and incubated at 180 ° C for 180 seconds.
  • concentration of sodium nitrite is in the range of 0 to 50 ⁇ mo 1 Z1, 1.6, 6.3, 12.5, 25.0, and 50.0 ⁇ mo 1 Five concentrations of Z1 were employed.
  • Tsuda reagent N, N-Jetyl-N'-1 -naphthylnaphthylethylenediamineoxalate
  • the measurement wavelength is 5.55 nm and the reaction temperature is 30.
  • hydrochloric acid, 2.4-dichloroaniline, and sodium nitrite were added in the same manner as above except that smectite was not added so that the final concentration was as shown in Table 22.
  • the sample was placed in a disposable cell (made of polymethyl methacrylate) and incubated for 180 seconds at 30 °. Thereafter, Tsuda reagent was added, and the absorbance was measured every second for 600 seconds from 10 seconds after the addition, and changes over time were observed. The measurement wavelength was 540 nm and the reaction temperature was 30.
  • the absorbance was measured using a spectrophotometer (JascoV-550) manufactured by JASCO Corporation, and a disposable cell (polymethyl methacrylate) having a cell length of 1 cm was used for the cell.
  • both measurement wavelengths are wavelengths near the absorption maximum wavelength.
  • FIGS. 15 to 17 show the measurement results as graphs of absorbance with respect to elapsed time.
  • Fig. 15 is the graph for the smectite-free system
  • Fig. 16 is the graph for the smectite-added system
  • Fig. 17 is the smectite addition when the sodium nitrite concentration is 25.0 ⁇ mo-1. It is a graph in a system and an additive-free system. According to these, the reaction reaches the end point in about 300 seconds after the start of measurement in the system without smectite addition, whereas the reaction reaches the end point in about 30 seconds after the start of measurement in the system with smectite addition. This indicates that the addition of smectite increased the reaction rate.
  • POD peroxidase
  • EHSDA N-ethyl-N- (2-hydroxy-3-sulfopropyl-1-3.5-dimethoxyaniline
  • a buffering agent Take the bis-tris buffer (pH 6.5) so that the final concentration is as shown in Table 23, and add hydrogen peroxide to the solution to obtain a coloring solution.
  • the use of the test piece according to the present invention can improve the measurement accuracy and sensitivity without migration or elution of the generated dye.
  • the measurement can be carried out easily.
  • Urine test paper Multi-item test paper for measuring nitrite, glucose, occult blood, pyrilrubin, and perobilinogen in urine: impregnated filter paper with each corresponding reagent using a commercially available general test paper
  • the test part was attached to a plastic film together with the test part for calibration), immersed in control urine prepared by a general prescription, immediately pulled up, and left for about 30 seconds until coloration was observed
  • the same smectite-impregnated filter paper piece used in Example 13 was pressed thereon, and the pigment was transferred to the smectite-impregnated filter paper piece.
  • the bleeding of the dye on the piece of filter paper was visually observed.
  • the filter paper pieces were washed well with running tap water, and the discoloration was visually observed.
  • 4-Aminobenzenearsonic acid is reacted with hypoconite under acidic conditions to form a diazodium salt, which is coupled with N-1-naphthylethylenediamine dihydrochloride to form an azo dye.
  • a diazodium salt which is coupled with N-1-naphthylethylenediamine dihydrochloride to form an azo dye.
  • 0.21 mg of N-11-naphthylethylenediamine dihydrochloride and 0.57 mg of 4-aminobenzenearsonic acid were impregnated into one piece of filter paper and divided into 100 parts. . One sheet absorbed about 61 solutions.
  • Hydrogen peroxide generated by glucose oxidase reacts with a color indicator (tetrabase and guaiac butter, respectively, chromogen) by peroxidase catalysis to oxidize and develop color.
  • a color indicator tetrabase and guaiac butter, respectively, chromogen
  • peroxidase catalysis As a prescription, a filter paper impregnated with 470 IU of glucose oxidase, 219 PU of peroxidase, 13.0 mg of tetrabase, and 4.3! ⁇ £ of guaiac fat, divided into 100 pieces, and divided into 100 pieces Test section. Approximately 6 n 1 of solution was absorbed by one piece.
  • This method utilizes the decomposition of cumene hydroxide by hemoglobin and the oxidative coloration of ortho-tolidine by the generated oxygen during the active phase.
  • Benzidines (3.3 ', 5, 5 * —tetramethylbenzidine, etc.) are used instead of ortho-tolidine
  • the same effect can be expected by using.
  • one filter paper was impregnated with 52.6 mg of cumene hydroperoxide and 7.6 mg of ortho-tolidine and divided into 100 parts, and one sheet was used as a test part. One sheet absorbed about 61 solutions.
  • the diazo reagents 2-methyl-5-nitroaniline or sulfo utilizes a reaction in which diazonium salt is generated from phenylic acid and sodium nitrite, and the diazonium salt is coupled with bilirubin in the presence of dyphylline to form azobilirubin.
  • the product was impregnated with 3.8 mg of 5-nitro-2-lin, 2.1 mg of sodium nitrite, and a small amount of dyphylline and divided into 100 parts, and one of the pieces was used as a test part. One sheet absorbed about 6 # 1 of the solution.
  • the filter paper impregnated with the layered inorganic compound adsorbs the dye without bleeding and does not discolor even after washing. Was. Therefore, it was found that the filter paper impregnated with the layered inorganic compound suppressed the dye diffusion and prevented the elution. Therefore, in the test piece according to the present invention, the generated dye does not move or elute, and improvement in measurement accuracy and sensitivity can be expected.
  • the concentration and movement of the dye due to drying of the test section Since the dye is not eluted even when the test piece is immersed in the sample, the measurement can be performed easily.
  • the generated dye does not contaminate adjacent test sections, so that the width between test sections can be narrowed and the test pieces can be miniaturized.
  • test strip of the present invention for example, a sample is collected at the patient's home, and the reaction test is performed on the test strip, and then the colored test strip is mailed to a remote inspection center. Even in such cases, the present invention shows the applicability of the present invention, such as obtaining the same measurement results as immediately after reaction coloring. That is, since the test piece of the present invention has a stable coloration and does not cause concentration of the dye due to drying or elution due to water leakage, it can be used as such a test piece for mailing.
  • Example 15 A solution prepared as shown in Table 27 below was applied to a UV-treated polyethylene terephthalate (PET) film with a doctor knife to a thickness of 100 ⁇ m, and dried. The coated film was cut into 1 cm squares together with the PET film, and sandwiched with a glass with a space of about 500 m as shown in FIG. 20 to produce a reaction cell.
  • FIG. 20 shows a schematic diagram of this reaction cell.
  • reaction cell 2 mmo1 / L of hydrogen peroxide was added to the reaction cell, and the state of color development at that time was observed.
  • a reaction cell was prepared in the same manner using a solution prepared in the same manner except that smectite was not added, and the state of color development was observed.
  • Example 16 An example of a preparation formula of a test piece of the present invention having a detection layer of a porous structure is shown. Fig. 21 shows a schematic diagram of this test piece.
  • Filter paper (2Chr, manufactured by Whatman) is immersed in a reagent solution containing enzymes G0D (glucose oxidase) and POD (peroxidase) prepared as shown in Table 28 below, and dried at 40 for 30 minutes.
  • This filter paper was cut into 5 mm x 5 mm, and affixed to one end of a 5 mm x 100 mm white plastic film using a double-sided tape, to prepare a test piece using the filter paper as a test section.
  • Smoke tit 1% In this test strip, plasma 61 was spotted on the test section with a pit, or the test strip was dipped in urine collected in a cup, and the reaction was allowed to proceed. By measuring the intensity of color development with a reflectometer or the like, the glucose level in plasma or urine can be measured.
  • the layer having a porous structure containing a layered inorganic compound according to the present invention can be used as a sample suction layer, a reagent layer, and a detection layer which also serves as a reaction layer in the test piece of this example.
  • Example 17 An example of a method for producing a test piece having a detection region of a porous structure according to the present invention will be described.
  • Fig. 22 shows a schematic diagram of this test piece.
  • Filter paper (manufactured by ffhatman, 2 Chr) is immersed in a reagent solution containing enzymes G0D (glucose oxidase) and POD (peroxidase) prepared as shown in Table 29 below, and dried at 40 for 30 minutes.
  • This filter paper is cut into 5 mm x 5 mm, and bonded to a predetermined position (reaction region in Fig. 22) of another 5 mm x 100 mm filter paper (Whatman, 2Chr) by crimping.
  • a new filter paper (manufactured by Batman, 2Chr) is immersed in a dispersion of the layered inorganic compound prepared as shown in Table 30 below, and is naturally dried at room temperature.
  • This filter paper is cut into 5 mm x 5 mm, and crimped to a predetermined position (retention area in Fig. 22) of a 5 mm x 100 mm filter paper (Whatman, 2 Chr) with a reaction area.
  • the test specimen thus prepared has a sample suction area, a diffusion area, a reaction area, a holding area for adsorbing a detectable substance, and an area for absorbing extra sample, and the detection area is a holding area. .
  • the sample suction area of this test piece is immersed in plasma taken in a cuvette or urine collected in a glass. After the sample passes through the sample suction area and diffusion area, reaches the reaction area and mixes with the reagent to form a reaction solution, and after passing through the reaction time adjustment area and the holding area, the test piece is pulled up. The intensity of the color in the holding area is measured with a reflectometer or the like, and the glucose concentration in plasma or urine is measured.
  • the porous structure containing the layered inorganic compound according to the present invention can be used as a detection region also serving as a holding region for adsorbing a detectable substance (dye) in the reaction liquid in the test piece of this example.
  • the measuring method of the present invention can be used for a method for measuring a substance with high sensitivity and high accuracy. That is, according to the first method of the present invention, a highly sensitive measurement can be performed by adding a layered inorganic compound such as a clay mineral to a reaction system, adsorbing a detectable substance, and then measuring the substance.
  • a detectable substance such as a dye and the layered inorganic compound are adsorbed, and the detectable substance is protected.
  • a detectable substance such as a dye and the layered inorganic compound are adsorbed, and the detectable substance is protected.
  • decomposition by excessive hydrogen peroxide or reducing ascorbic acid or the like is suppressed, and detectable substances can be stabilized. Therefore, if the dye is used, it is possible to prevent the fading or the like, and it is possible to perform stable high-sensitivity and high-accuracy measurement.
  • the reaction rate of the production reaction can be increased, and rapid measurement can be performed. can do.
  • the measurement method of the present invention is applicable to detection and quantification of biological components such as urine and blood in body fluids, foods, pharmaceuticals, trace substances existing in the natural environment, industrial chemicals, trace substances in wastes, and the like. Can be used for
  • the measurement method of the present invention is used for detection and quantification of biological components such as urine and blood in body fluids, foods, medicines, trace substances existing in the natural environment, industrial chemical substances, trace substances in wastes, and the like. be able to.
  • the fourth method of the present invention even if a reaction system in which an insoluble substance is produced by dispersing a layered inorganic compound such as a clay mineral in a reaction solvent or the like and performing a production reaction of a detectable substance, Highly sensitive measurements can be made possible. Further, according to the test piece of the present invention, the dye and the like are hardly diffused and eluted, and more sensitive, accurate and simple analysis can be performed.
  • the measurement method and test strip of the present invention can be used for detecting and quantifying biological components such as urine and blood in body fluids, foods, medicines, trace substances present in the natural environment, industrial chemicals, trace substances in wastes, and the like. Can be used for

Description

明細書 物質の測定方法及び試験片 発明の分野 本発明は、 試料中の分析対象物質の化学反応に基づいて色素等の検出可能な物 質を生成する反応系を用い、 前記検出可能な物質を測定することにより生体成分 や環境試料等の分析対象物質を測定する方法、 及びそれに用いる試験片に関する ものである。 発明の背景 試料中の分析対象物質、 例えば体液中の尿や血液等の生体成分、 食品、 医薬、 自然環境に存在する微量物質、 産業化学物質、 廃棄物中の微量物質等を検出 ·定 量する方法として、 分析対象物質が関与する反応系を用い、 それによつて生成す る色素等の検出可能な物質を測定する方法がある。
このような方法としては、 例えば分析対象物の化学反応によって生成される過 酸化水素を、 ペルォキシダーゼの共存下にある被酸化性発色剤 (色素前駆体) と 酸化還元反応を行わせ、 生成する色素化合物を比色定量する方法などがあり、 そ の簡便性から臨床検査等において多く用いられている。 また電子伝達物質 (メデ イエ一夕一) と分析対象物質の間に酵素などによつて酸化ノ還元反応を起こさせ、 生じた電子伝達物質の酸化体ノ還元体を電極で還元 酸化するときの電気化学応 答から分析対象物質を測定する方法もある。 しかしながら、 従来の方法では、 分析対象物質が微量であるとき、 測定の感度 が十分でなく、 精度の高い測定結果が得られなかった。 よって、 測定感度を向上 させた精度の高い測定方法の開発が望まれていた。
また、 反応に時間がかかるため測定に長時間を要する、 あるいは検出反応が終 点に達するまでに時間がかかるため反応速度から定量を行うレ一ト法では定量精 度が悪くなる、 といった問題点があった。 これに対しこれまでは、 反応速度を高 96/03188
- 2 - めるために、 反応系を加温する、 あるいは反応に与る試薬の濃度を高める、 など の方法がとられていた。 し力、し、 反応系を加温する方法では、 加温のために熱源 が必要であるので分析が複雑になっていた。 また、 生成物質が熱に不安定である 場合は検出に困難を生じるのでこの手段を用いることができなかった。 一方、 試 薬の濃度を高める方法は、 検出のバックグラウンドの上昇や分析コストの増加に つながるので実用的ではなかった。 また、 反応速度を高めるために触媒を添加す るなどの方法があるが、 好ましい触媒が知られていない検出反応が多く、 これも 実用的ではない。 以上のように、 これまでの方法はまだ不十分なところが多いた め、 より簡単に反応速度を高め迅速な測定を可能にする新規な方法が熱望されて いた。 さらに、 検出可能な物質を生成する反応系に、 反応溶媒に対し不溶性の物質が 生成する反応が含まれる場合には、 以下に例示するような不具合があり問題とな つていた。
( 1 )バッチ式の自動生化学検査装置など液状試薬を用い光学的に検出を行う測 定において、 反応によって生成する色素が溶媒に不溶性であると、 析出して測定 セル壁に付着し照射光や透過光などを遮光したり、 分注ノズルの汚染を引き起こ したり、 凝集により吸光係数の異常や散乱又は遮光などを引き起こしたりするこ とによって、 測定を困難にした。
( 2 ) 同様に、 液状試薬を用い光学的に検出を行う測定において、 不溶性副生物 が生成すると、 測定セル壁に付着し照射光や透過光などを遮光したり、 分注ノズ ルの汚染を引き起こしたり、 凝集により散乱又は遮光などを引き起こしたりする ことによって、 測定を困難にした。
( 3 ) 試験片に測定すべき試料を点着あるいは浸透させて反応させ、 生成する色 素を光学的に検出する測定において、 生成した色素が試料溶媒に不溶性であると、 試験片基材へ色素が不均一に沈着し、 あるいは色素の凝集が生じ、 測定精度を悪 化させる要因となる場合があった。
( 4 ) バッチ式の自動生化学検査装置など液状試薬を用いる電極測定において、 不溶性副生物が生成すると、 電極表面を不溶性沈着物で被うなどして電極の汚染 を引き起こし、 電気化学的応答を低下させ、 測定精度を悪化させる要因となる場 合があった。
ここで、 不溶性と難溶性の差は溶媒に溶解しない程度を指すのであって、 本発 明においては、 以下の記述において不溶性を難溶性と置き換えてもかまわない。 一方、 特に生成する検出可能な物質が反応溶媒に対し不溶性である場合には、 従来の方法では、 検出可能な物質の生成反応系が均一でなく、 反応が速やかに進 行しないため、 反応速度の低下や測定感度の低下を招く場合もあった。 例えば、 酵素を用いる反応系において、 生成物が酵素近傍に沈着したり、 反応阻害を起こ す場合があった。
このため、 反応が行われる反応溶媒中に不溶性の副生物が生成する反応を利用 する測定方法は、 ほとんど利用されていなかった。 したがって、 今までは、 不溶 性生成物が生成しない反応を検出系として選択するか、 あるいは生成物が反応溶 媒に可溶となるように合成化学的手段によって新たな検出反応系を開発せざるを 得なかった。 しかし、 これらの事情は用いる反応系を制限した。 一方では、 可溶 性物質のみを生成する反応系の探索や開発に多くの労力を要した。 また、 可溶化、 乳化、 あるいは分散等の状態とするために界面活性剤を添加する必要があった。 しかし、 界面活性剤の添加は測定コスト的に不利な上、 反応を妨害するなどの副 作用が生じる場合があり、 必ずしも充分な解決策とは言えなかった。 そこで、 よ り簡単にこの問題を解決し、 不溶性生成物の存在下でも測定を可能にする新規な 方法が熱望されていた。 また、 上述したような過酸化水素を生成させる反応系を利用して分析対象物質 を測定する方法は、 酸化に伴う放出物質として過酸化水素が発生する反応が多い ことから、 重要な測定方法になっているが、 従来の方法では、 次のような理由に より正確な測定が必ずしも容易ではなかった。 すなわち、 これらの測定方法にお いては、 例えば色素化合物等の検出可能な物質の量あるいは濃度が過酸化水素等 の特定物質と量論的相関関係にあることが必要になる場合があるが、 過剰の過酸 化水素の強い酸化性や生体試料中に含まれるァスコルビン酸等の強い還元性など で比色定量法における酸化還元系等が影響を受け、 前記色素化合物等の検出可能 な物質が分解して測定に誤差を生じさせることがある。
例えば、 これらの測定方法においては、 グルコースなどの分析対象物質からグ ルコースォキシダーゼなどのォキシダーゼ類によつて一時的にでも過剰量の過酸 化水素が生成すると、 色素前駆体と過酸化水素との反応の他に、 生成した色素と 過酸化水素との反応が起こる。 この結果、 せっかく生成した色素が、 生成と同時 に過酸化水素によって分解され、 退色が生じるという欠点がある。
また、 過酸化水素から反応性に富むスーパーォキシドなど活性酸素種を発生さ せるペルォキシダーゼなどのペルォキシダーゼ様の酵素、 または類似の作用を及 ぼす遷移金厲イオンとその錯体などが試料中に存在すると、 活性酸素種が生成し た色素と反応して、 分解、 退色を生じてしまう。 この干渉も測定に不都合を及ぼ していた。 また、 色素など検出可能な物質を生成する反応が大気に暴露された状 態で行われると、 せっかく生成した色素が空気中の黢素又は反応液中の溶存酸素 による酸化を受け、 分解、 退色を招くことがあった。
従って、 分解しにくい安定な物質を与える色素前駆体の探索や、 種々の安定化 剤の添加などさまざまな試みがなされているが、 未だ不十分である。
また、 生体試料中にはァスコルビン酸、 尿酸、 ピリルビン等の還元性物質が含 まれているが、 これらが酸化還元反応に与える影響は大きく、 特にァスコルビン 酸共存下でいかに正確に測定を行うかは、 臨床分析において長年の課題であり、 酵素による選択分解、 過ヨウ素酸の添加による分解、 鉄—エチレンジァミ ン四酢 酸キレートによる酸化分解、 半透膜による選択分雜などの干渉抑制手段が、 前述 した色素前駆体等の探索に加えて、 種々試みられている (太田宜秀、 小川豊、 「臨床検査」 3 4 ( 4 ) , 5 0 2 - 5 0 4 ( 1 9 9 0 ) :特公平 1— 4 1 2 2 3 :特公平 2 - 4 8 6 1 :特公平 4 - 1 8 6 3 0 :特開平 5 - 9 5 7 9 7 :特開平 7 - 1 5 5 1 9 6参照) 。
また酸化還元反応以外にも種々の公知の反応 (例えば酸塩基反応ゃジァゾニゥ ム塩のカップリング反応などの縮合反応、 錯体形成反応など) によって、 特定の 分析対象物質と定量的関係を持って色素 (例えば、 ァゾ系色素など) を生成し、 その生成した色素を光学的に定量することによって、 特定の分析対象物質を測定 する方法があり、 これらの方法は、 例えば分析化学便寬等に詳述されている重要 な測定方法である。 しかしながら、 このように生成した色素の中には、 環境中の 酸素や試料中の酸化性物質または還元性物質、 試料の水素イオンや塩基、 光等に よって分解する不安定な化合物である場合があり、 そのような物質を測定する際 には、 例えば迅速な操作や窒素置換された環境や遮光された環境などでの操作が 要求され、 さもなければ測定に誤差を与えることがあった。
また電子伝達物質 (メディエーター) を用いる方法の場合、 酵素反応を一定時 間行ってその間電子伝達物質を酸化 Z還元して電子伝達物質の酸化体/還元体を 蓄積し、 一定時間後に蓄積された電子伝達物質の酸化体 Z還元体を電極で還元 酸化して大きな電気化学的応答を発生せしめることによつて分析対象物質を高感 度に測定する方法があるが、 従来は蓄積した電子伝達物質の酸化体 還元体が共 存する還元性物質や酸化性物質によつて還元/酸化などの分解反応を受け、 測定 に誤差を与えることがあった。
検出可能な物質が分解することなく安定であれば、 測定時において量論関係が 保証され、 また時間積分を行うことによって、 より優れた S Z B比 (シグナルと バックグラウンドとの比) を得ることができ、 これによつて分析の精度が向上す ると共に高感度化が可能になる。 従って、 安定で測定しやすい検出可能な物質を 生成する反応系を開発するため、 これまでに多くの努力がなされてきた。 そのよ うな安定な検出可能な物質を生成する反応物質としてこれまでに開発された種々 の試薬の例が、 例えば分析化学便 IIにも記載されている。
しかし、 そのような安定な物質を生成する反応系の探索は多大な労力を費やす ものであり、 常に、 安定で測定しやすい検出可能な物質を生成する反応系を求め る作業が続いている。 よって、 現在利用されている測定法においても、 p H、 水 分、 酸化還元物質等の共存物、 光などによって分解する不安定な物質を検出可能 な物質として測定せざるを得ない場合は少なくない。 一方、 尿等の液体試料中の成分を検査 ·分析するために用いられる、 試料中の 分析対象物質の化学反応に基づいて生成する色素等の検出可能な物質を測定する ことにより分析対象物質を測定するための分析用試験片は、 通常、 液体試料の吸 収、 拡散、 反応、 検出など一連の分析プロセスを担う機能的な部分である試験部 96/03188
- 6 - と、 試験部を支持する支持部とからなり、 さらに必要に応じセンサー、 試料液吸 入装 a等を有する。 そして、 前記試験部はさらに種々の機能を担う層や領域など の部分からなり、 一般的には、 試料を吸入し試験部内に導入するための試料吸入 部、 試料を試験部内で均一に浸透 ·拡散させるための拡散浸透部、 試料中に含ま れる分析対象物質と反応する試薬を含む試薬部、 検出反応などの反応がおきる反 応部、 試料中の成分や検出反応で生成する色素等を吸着や分配などのクロマトグ ラフィ一類似の作用で分離する展開部、 試料が移動する時間を利用して反応の進 行を調整するための時間調整部、 試料中の成分や生成する色素等を吸着作用でト ラップし、 又は除去するための保持部、 反射率や透過吸収、 蛍光などで色素等を 検出する検出部、 過剰の試料液、 添加された洗浄液や展開液を吸収し逆流を防止 する吸収部等の各部からなる。
実際の試験片では、 必ずしもこれらの各機能を担う部分が各々独立して存在す るとは限らず、 例えば検出部が試料吸入部、 試薬部、 反応部と同一であるリ トマ ス試験紙のように、 一つの部で複数の機能を兼ね備える場合がある。
また、 例えば試料吸入層を兼ねる拡散層、 試薬層と反応層とを兼ねる検出層、 あるいは試薬層を兼ねる反応層と独立した検出層を備える単層型又は多層型の試 験片を挙げることもできる。 これらの多くは支持体上に接着層によつて貼り付け られている。 反応層と検出層の間などに妨害成分を除去するなどの作用を有する 展開層ないしは保持層を持つ場合もある。 拡散層が展開層を兼ね、 接着層によつ て試薬層に接している場合もある。 検出が反射率測定によって行われる場合では、 検出層の前後に反射層を設ける場合もある。 試料は、 試料吸入層を兼ねる拡散層 に点着され、 均一に拡散しながら試薬層内の試薬を溶解させることにより反応が 進行し、 例えば色素前駆体から色素が生成する。 試薬層と反応層が検出層を兼ね る場合ではそのまま測定されるが、 独立した検出層を備える場合では生成した色 素等がさらに検出層に浸透移動し、 その時点で測定される。 (H. G. Curme, et al. , Clinical Chemistry, 24(8), 1335-1342( 1978)、 B. Walter, Analytical Chemistry, 55(4), 498A(1983)、 近藤朝士「ぶんせき」 1984(7), 534、 近藤朝士 「ぶんせき」 1986(6), 387、 分析化学便覧第 8頁 (日本分析化学会繮:改訂 4版、 丸善(1991 )) 、 特開平 6-213886 (北島昌夫ら) 参照。 ) また、 例えばろ紙細片上の試験片の末端に展開液の浸透部を有し、 そのとなり に試料吸入部を備え、 その中央寄りに試薬部 (酵素を固定) を兼ねた反応部を備 え、 さらにその先に試薬部 (色素前駆体等を固定) と反応部と保持部を兼ねた検 出部を備えた、 試料等の平面的な移動を利用する試験片が挙げられる。 この場合、 試料を試料吸入部に点着した後、 試験片の末端から展開液を浸透させて毛細管作 用で試料を移動させ、 最初の試薬部(酵素を固定) を兼ねた反応部で酵素と反応 して過酸化水素を生成し、 さらに生成した過酸化水素が展開液によって移動して 2番目の試薬部 (色素前駆体等を固定) と反応部と保持部を兼ねた検出部におい て色素前駆体等を呈色させ、 生成した色素等 (検出可能な物質) を吸着保持する。 展開液の移動と共に過酸化水素が移動し、 その移動と共に呈色反応がおきるので、 分析対象物質の量が增すと呈色する幅が長くなり、 これにより物質を測定するこ とができる。 (M. P. Allen, et al. , Clinical Chemistry, 36(9), 1591-1597 (1990)、 D. Noble, Analytical Chemistry, 65(23), 1037AC 1993)参照。 )
このような試験片は尿試験、 生化学試験、 ィムノクロマト試験等に用いられて いる。 ィムノクロマト試験片の例としては、 例えば抗体を固定化したろ紙 (全面 が試薬部、 反応部、 展開部、 保持部、 及び検出部と言ってもよい) の一端を、 試 薬である酵素固定化抗原と、 抗原 (分析対象物質) を含む試料を混合した展開液 に浸潰して展開させ、 次いで、 2番目の試薬である発色液 (色素前駆体を含む) で展開すると、 あらかじめ展開され捕捉されていた酵素固定化抗原が存在する部 分が帯状に呈色する。 この呈色する帯の長さは試料中の抗原の量に比例する。
(R. F. Zuk, et al. , Clinical Chemistry, 31(7), 1144-1 0( 1985)参照。 ) また、 ィ厶ノクロマト試験片の他の例として、 メンブランフィルター細片上の 一端に試料吸入部を兼ねた試薬部 (第 1抗体固定化着色ラテックス) を備え、 中 央寄りに展開部を兼ねる試薬部 (第 1抗体と同じ抗原を認識するがェピト一プが 異なる第 2抗体) を備え、 次いで展開部を備え、 さらに試薬部 (抗第 1抗体抗体) と保持部を兼ねる検出部を備えた試験片が挙げられる。 試料吸入部に試料を点着 すると、 抗原 (分析対象物質) と第 1抗体が抗原抗体反応を起こし、 免疫複合体 のまま試料の移動と共に移動し、 展開部を兼ねる試薬部において第 2抗体とサン ドイッチ反応を生じる。 しかし、 免疫複合体を作らない過剰の第 1抗体は、 試料 の移動とともに展開部を通過し、 試薬部 (抗第 1抗体抗体) と保持部を兼ねる検 出部において捕捉される。 第 1抗体が固定化されている着色ラテックス (検出可 能な物質の色素を含む) の呈色を測定することにより分析対象物質を測定するこ とができる。 (I. I. Davidson, Analytical Proceedings, 29, 459(1992)参照。 ) しかし、 上述した種々の試験片において、 分析すべき成分との反応により生成 する色素等は、 多くの場合試料液、 反応液等に対する溶解性があり、 その結果、 色素等のバルク液への溶出、 拡散層へのバックフラッシュ、 複数の試験部を有す る多項目試験紙における色素等の瞵接する試験部への付着等の不都合が生じる。 また、 乾燥に伴って色素等が試験部の縁へ移動して中央部の濃度が薄くなり周辺 部の澳度が濃くなるといった現象も生じる。
測定の感度、 正確さ、 精度を低下させるこれらの不都合な現象は、 特に試料液 に浸潰して測定する尿試験紙等において顕著であるが、 試料の種類にかかわらず 一般的なことである。
これに対し、 試驗部にカバーを被せて試薬の溶出を防ぐ方法 (特開平 2— 3 8 8 6 1 ) 、 吸収性のよい多孔質構造体 (多孔質層、 多孔性膜など) からなる試験 部に試料を均一に吸収させて隣接する試験部との液絡を防止する方法 (特開平 2 - 6 5 4 1 ) 、 不溶性の色素を生成する反応を選択する方法、 不溶性、 疎水性の バインダー (固着剤) を利用して生成色素などを捕捉する方法 (特開平 7— 1 8 1 1 7 4 ) 、 多項目試験紙では隣接する試験部間の距雜を広げる方法、 浸漬時間 を制御 ·調整する方法、 拡散が起こる前に測定するよう時間を制御する方法等が 提案されている。 し力、し、 試験部にカバーを設けたり、 沈殿凝固法などの処方で 多孔質構造体を調製するのは、 試験紙の製造工程が複雑になるという欠点がある。 また、 不溶性の色素などが生成する反応を選択すると、 例えば酵素活性の生成物 阻害が生じるなどの欠点がある。 疎水性高分子をバインダ一にした試験片では、 水性試料溶液の吸収性が悪化するなどの欠点がある。 また、 多項目試験片では、 通常一個のセンサーが複数の試験部を移動して反射光測定などを行っているので、 試験部間の距雠を広げると大面積が必要となつたりセンサ一の移動に不利となつ たりする欠点がある。 その他、 浸漬時間を制御する方法は尿試験では面倒である という欠点があり、 時間を制御する方法は反応時間との関係で容易ではないとい う欠点があるなど、 それぞれに問題点があり、 未だに満足のいく解決策は見い出 されていないのが現状である。
また、 上述した電子伝達物質 (メディエーター) を用い酸化ノ還元時の電気化 学応答から分析対象物質を測定する方法や、 特定のイオンと配位結合またはィォ ン結合をする配位子 (ィオノフォア) などを液膜電極に用いて生成した錯体化合 物の移動に伴う膜電位を測定することによつて分析対象物質であるイオンを測定 する方法等は、 重要な測定法として知られているが、 電子伝達物質の酸化体ノ還 元体または錯体化合物を用いる電極では、 通常、 不溶性のポリマー中に電子伝達 物質または配位子を加えることによって、 電子伝達物質または配位子の溶出ゃ拡 散の防止をはかり、 同時に、 速やかに電子移動が起きるように電極表面の近傍に 電子伝達物質または配位子を保持させているが、 ポリマー中の物質移動は制限を 受けるため、 試料中の分析対象物質または分析対象物質から生成する中間物質と、 不溶性のポリマー中の電子伝達物質または配位子との反応が阻害されるという基 本的な欠点があり、 やはり満足のいく解決策は見い出されていない。 発明の開示 本発明は、 分析対象物質の化学反応に基づいて生成する色素等の検出可能な物 質を測定することによって分析対象物質を測定する方法であって、 高感度な測定 方法を提供することを課題とする。 ここで、 測定とは定量的な測定及び定性的な 測定の両方を含む。
また、 本発明は、 前記分析対象物質の測定方法において、 前記検出可能な物質 を安定化することにより測定の精度を高めるとともに高感度化を実現する方法を 提供することを課題とする。
また、 本発明は、 前記測定方法において、 化学反応の反応速度を高め迅速な測 定を可能にする新規な方法を提供することを課題とする。
また、 本発明は、 不溶性の物質を生成する反応を含む反応系を利用した前記方 法において、 高感度な測定方法を提供することを課題とする。
また、 本発明は、 色素等の拡散 ·溶出を抑制し、 正確な検査 ·分析を可能にし、 且つ簡便に取り扱える分析用試験片を提供することを課題とする。
本発明者等は、 検出可能な物質の生成反応を層状無機化合物の存在下に行うこ とにより、 また、 試験片の検出可能な物質を検出するための検出部等の試験部に 層状無機化合物を含有させることにより、 上記課題を解決できることを見出し、 本発明を完成したものである。
すなわち、 本発明は、 試料中の分析対象物質の化学反応に基づいて検出可能な 物質を生成する反応を含む反応系を用 L、て前記検出可能な物質を測定することに より前記分析対象物質を測定する方法において、 前記検出可能な物質の生成反応 を含む反応系に層状無機化合物を存在させることを特徴とする物質の測定方法を 提供するものである。 以下、 これを「本発明の測定方法」 という。
また、 本発明は、 前記反応系に層状無機化合物を添加して該層状無機化合物に 前記検出可能な物質を吸着させる工程を含むことを特徴とする前記物質の測定方 法を提供する。 以下、 これを 「本発明の第 1の方法」 という。
本発明の第 1の方法においては、 生成する検出可能な物質を層状無機化合物に 吸着させることにより、 高感度な測定が可能となる。 すなわち、 例えば検出可能 な物質が層状無機化合物に吸着して沈降する結果、 光学的又は電気化学的な検出 における測定感度が高められる。 この場合、 検出可能な物質が層状無機化合物に 吸着してコロイ ド状の凝集となって沈降する場合もあるが、 必ずしも凝集させる 必要はない。
また、 本発明は、 前記反応系に層状無機化合物を存在させることにより、 前記 検出可能な物質の分解を抑止することを特徴とする前記物質の測定方法を提供す る。 以下、 これを 「本発明の第 2の方法」 という。
本発明の第 2の方法においては、 測定すべき検出可能な物質を生成する反応系 に層状無機化合物を存在させることにより、 検出可能な物質が生成するとほぼ同 時に、 または共存する物質によって分解される前に、 該検出可能な物質と前記層 状無機化合物との複合体を形成させ、 その結果、 検出可能な物質が反応系に共存 する物質の作用によつて分解するのを抑止することができる。
また、 本発明は、 前記検出可能な物質の生成反応を層状無機化合物の存在下に 行うことにより、 前記生成反応の反応速度を高めることを特徴とする前記物質の 測定方法を提供する。 以下、 これを 「本発明の第 3の方法」 という。
本発明の第 3の方法においては、 検出可能な物質の生成反応を層状無機化合物 の存在下に行うことにより、 前記生成反応の反応速度が上昇し、 迅速な測定が可 能となって測定時間が大幅に短縮されるだけでなく、 検出反応が終点に達するま でに要する時間が短縮される結果、 反応速度から定量を行うレート法での定量精 度を向上させることができる。 検出可能な物質の生成反応速度が上昇する理由は 必ずしも明確ではないが、 前記生成反応の反応出発物質又は反応中間体が層状無 機化合物の表面に吸着し、 表面上で鏤縮されることにより反応速度が上昇するも のと考えられる。
また、 本発明は、 前記反応系を構成する反応の少なくとも一つが、 反応溶媒に 対し不溶性の物質を生成する反応であることを特徴とする前記物質の測定方法を 提供する。 以下、 これを 「本発明の第 4の方法」 という。
本発明の第 4の方法においては、 検出可能な物質の生成反応を含む反応系に層 状無機化合物を、 好ましくは分散した状態で、 存在させることにより、 該検出可 能な物質又は該反応における副生物等が反応溶媒に不溶性であっても、 あたかも 均一系のように反応を速やかに進行させることができる。 これは、 生成する不溶 性の検出可能な物質又は不溶性の副生物が層状無機化合物に吸着して該層状無機 化合物とともに反応系に均一に分散することによるものと思われる。 また、 本発 明においては、 溶媒に対し不溶性の検出可能な物質又は不溶性の副生物を層状無 機化合物に吸着させることにより、 該検出可能な物質又は副生物が反応系に析出 して検出時に扱い難くなるのを防ぐことができる。
ここで、 検出時に扱い難くなるのを防ぐ場合として、 具体的には以下のような 場合を挙げることができる。
( 1 ) バッチ式の自動生化学検査装置など液状試薬を用い光学的に検出を行う測 定において、 反応によって生成する色素が溶媒に不溶性である場合、 色素を層状 無機化合物に吸着させることにより、 色素が析出して測定セル壁に付着し照射光 や透過光などを遮光したり、 分注ノズルの汚染を引き起こしたり、 凝集により吸 光係数の異常や散乱又は遮光などを引き起こしたりするのを防ぎ、 測定困難とな るのを回避することができる。 /
- 12 -
( 2 ) 同様に、 液状試薬を用い光学的に検出を行う測定において、 不溶性副生物 が生成する場合、 副生物を層状無機化合物に吸着させることにより、 副生物が測 定セル壁に付着し照射光や透過光などを遮光したり、 分注ノズルの汚染を引き起 こしたり、 凝集により散乱又は遮光などを引き起こしたりするのを防ぎ、 測定困 難となるのを回避することができる。
( 3 ) 試験片に測定すべき試料を点着あるいは浸透させて反応させ、 生成する色 素を光学的に検出する測定において、 生成した色素が試料溶媒に不溶性である場 合、 色素を層状無機化合物に吸着させることにより、 試験片の反応部や検出部へ 色素が不均一に沈着したり色素の凝集が生じたりして測定精度を悪化させるのを 防ぐことができる。
( 4 )パッチ式の自動生化学検査装 Sなど液状試薬を用いる電極測定において、 不溶性副生物が生成する場合、 該副生物を層状無機化合物に吸着させることによ り、 電極表面を不溶性沈着物で被うなどして電極の汚染を引き起こしたり電気化 学的応答を低下させたりして測定精度を悪化させるのを防ぐことができる。 本発明が適用される測定方法は、 試料中の分析対象物質の化学反応に基づいて 検出可能な物質を生成する反応を含む反応系を利用して、 前記検出可能な物質を 測定することによって前記分析対象物質を測定する方法であれば、 特に限定され るものではない。 もちろん、 検出可能な物質が分析対象物質自身であってもよい。 また、 検出可能な物質を測定して分析対象物質を定性的に測定する方法であって も、 前記検出可能な物質が前記分析対象物質と量的相関関係を伴って生成する反 応を含む反応系を利用して分析対象物質を定量的に測定する方法であってもよい。 さらに、 例えば、 前記分析対象物質の化学反応によって検出可能な物質が直接生 成される反応系を利用する場合に限らず、 前記分析対象物質の化学反応と検出可 能な物質の生成反応とが別の化学反応を介して間接的に結びついている場合も含 まれる。 そのうち、 本発明の方法は、 検出可能な物質が酸化還元反応によって生 成する色素や電子伝達物質である反応系を用いる測定方法、 生成する検出可能な 物質がァゾ色素などの色素ゃィオノフォァと分析対象物質との錯体などである反 応系を用いる測定方法等に好ましく適用される。 特に、 生体成分から酸化酵素反応によって生成する過酸化水素と被酸化性発色 剤との酸化還元反応により定量的に生成する色素を光学的に測定する方法が、 臨 床検査における体液中の各種成分の定量や環境分析等に利用されているが、 本発 明の測定方法をこのような分析 ·検出方法に用いることによって、 高感度な測定 が可能となる。
特に本発明の第 2の方法について言えば、 例えば、 酸化還元反応系においては、 酸化性物質または還元性物質またはペルォキシダーゼ様物質が反応中間体または 試料中の夾雑物として反応系中に共存することが多く、 それら反応系の共存物質 の作用により検出可能な物質が分解される場合があり、 このような場合に本発明 の第 2の方法が有用である。
本発明の第 2の方法によれば、 上述した過酸化水素と被酸化性発色剤との黢化 還元反応を用いた測定方法において、 かかる反応系に存在する過剰の過酸化水素 等の酸化性物質ゃァスコルビン酸、 尿酸、 ビリルビン等の還元性物質の作用によ る色素等の分解退色によつて測定誤差が生じるという問題点を克服することがで さる。
また、 本発明の第 3の方法は、 特に検出可能な物質の生成反応の反応出発物質 又は反応中間体がカチオン性化合物である場合、 反応系にカチオン交換能を有す る層状無機化合物を添加することにより、 層状無機化合物の表面に前記反応出発 物質又は反応中間体を吸着させ、 濃縮させることができ、 これにより前記生成反 応速度を向上させ、 迅速な測定が可能となるので、 そのような反応系を利用した 測定方法に有用である。
また、 本発明の第 4の方法は、 反応溶媒に対し不溶性の検出可能な物質又は不 溶性の副生物が生成する反応を含む反応系を用いる方法であれば特に限定されな い。
本発明の測定方法は、 分析対象物質として、 好ましくは体液中の尿や血液等の 生体成分、 食品、 医薬、 自然環境に存在する微量物質、 産業化学物質、 廃棄物中 の微量物質等を含む試料からこれらを検出 ·定量する方法に利用される。 また、 本発明は、 試料中の分析対象物質の化学反応に基づいて検出可能な物質 を生成する反応を含む反応系を用いて前記検出可能な物質を測定することにより 前記分析対象物質を測定するための分析用試験片であって、 前記検出可能な物質 を検出するための検出部を有する試験部を 1以上備え、 少なくとも前記試験部に 層状無機化合物を含有する試験片を提供する。 以下、 「本発明の試験片」 という。 本発明の試験片は、 前記検出部として検出可能な物質を検出するための検出層 を含む、 2以上の層からなる試験部を 1以上備え、 少なくとも前記検出層に層状 無機化合物を含有するものであってもよい。 また、 本発明の試験片は、 前記試験 部が、 さらに試料を拡散するための拡散層を含み、 試料が前記拡散層を通って拡 散し前記検出層に到達するようにしたものであってもよい。 また、 本発明の試験 片は、 検出部として検出可能な物質を検出するための検出領域を有する試験部を 1以上備え、 少なくとも前記検出領域に層状無機化合物を含有するものであって もよい。 また、 本発明の試験片は、 前記試験部が、 さらに前記試料を拡散するた めの拡散領域を有し、 試料が前記拡散領域を通って拡散し前記検出領域に到達す るようにしたものであってもよい。 また、 本発明の試験片は、 前記検出領域が検 出可能な物質を検出するための検出層を含む 2以上の層からなるものであつても よい。 また、 本発明の試験片は、 前記試験部がさらに試料中の分析対象物質と試 薬とが反応するための反応部を有し、 前記検出可能な物質が前記反応部で生成さ れるようにしたことものであってもよい。 また、 本発明の試験片は、 前記検出部 力、'、 試料が拡散して前記反応部を通過した後の位置に設けられているものであつ てもよい。 また、 本発明の試験片は、 前記検出可能な物質が、 前記検出部におい て試料中の分析対象物質と試薬との反応により生成するようにしたものであって もよい。
本発明の試験片においては、 層状無機化合物を試験部に含めることにより、 分 析対象物と試薬との反応によって生成する色素等と前記層状無機化合物とが吸着 すると考えられ、 その結果、 試料液や反応液等による拡散や溶出が抑制され、 高 感度かつ精度の高 L、分析が可能になる。
本発明の試験片は、 液体中の成分を固相を用いて分析する方法に適用され、 特 に尿中のグルコース、 ピリルビン等の分析に用いられる。 このような液体中の成 分の分析においては、 試薬との反応で生成する色素等が試料に溶解して拡散、 溶 出しやすく、 本発明の試験片が有効である。
試薬としては、 分析対象物質と検知しうる反応を起こすものであれば特に限定 されないが、 好ましくは分析対象物質と反応して色素化合物や電子伝達物質の酸 化体ノ還元体ゃィオノフォアとィォンの錯体化合物等の検出可能な物質を生成し うるものである。 尚、 ここでいう色素化合物を生成する反応とは、 光学的に検知 しうるものが生成する反応であればよく、 発色のみならず、 例えば変色、 蛍光、 発光等をもたらすものであってもよい。 また、 生成する色素化合物等が水溶性の 場合、 試料液や反応液等によって拡散 ·溶出される場合が多いため、 本発明の試 験片はこのような水溶性色素化合物を生成する試薬を利用するものに適用するの が特に好ましい。 図面の簡単な説明 図 1は、 実施例 1で測定した吸収スぺクトル図である。
図 2は、 実施例 2及び実施例 3で求めた過酸化水素の検量線を示す図である。 図 3は、 図 2の検量線の縦軸と横軸の対数をとつた検量線を示す図である。 図 4は、 実施例 4における過酸化水素添加後の吸光度の経時変化を示す図であ る。
図 5は、 実施例 5で測定した吸収スぺクトル図である。
図 6は、 実施例 6で求めたァスコルビン酸濃度の検量線を示す図である。
図 7は、 実施例 7で測定した吸収スぺクトル図 (スメクタイ卜添加系) である。 図 8は、 実施例 7で測定した吸収スぺクトル図 (スメクタイト無添加系) であ る。
図 9は、 実施例 7で測定した亜硝酸ナトリゥム濃度 3 3 m o 1 / 1における 吸収スぺク トル図 (スメクタイト添加系及び無添加系) である。
図 1 0は、 実施例 8で求めた亜硝酸ナトリウム濃度の検量線を示す図である。 図 1 1は、 実施例 9で行った P O D発色系におけるスメクタイ ト添加効果を示 す実験における吸光度の変化を表す図である。
図 1 2は、 実施例 1 0で行ったァスコルビン酸を含有する P O D発色系におけ るスメクタイ ト添加効果を示す実験における吸光度の変化を表す図である。
図 1 3は、 図 1 2の 0〜6 0秒間を拡大した図である。
図 1 4は、 実施例 1 1で測定した吸光度の経時変化を示す図である。
図 1 5は、 実施例 1 2で測定したスメクタイト無添加系における吸光度の経時 変化を示す図である。
図 1 6は、 実施例 1 2で測定したスメクタイト添加系における吸光度の経時変 化を示す図である。
図 1 7は、 実施例 1 2で測定した亜硝酸ナトリウム濃度 25. Ο μτη ο 1 / 1 の場合のスメクタイト添加系及び無添加系における吸光度の経時変化を示す図で のる。
図 1 8は、 実施例 1 3におけるスメクタイト含浸ろ紙上の色素の拡散状態を表 す模式図である。
図 1 9は、 実施例 1 3における未処理ろ紙上の色素の拡散状態を表す模式図で める。
図 20は、 実施例 1 5における反応セルの模式図である。
図 2 1は、 実施例 1 6における試験片の模式図である。
図 22は、 実施例 1 7における試験片の模式図である。 図中、 1はスメクタイトを添加した場合、 2はスメクタイ トを添加しなかった 場合、 3はスメクタイ トを添加し過酸化水素を添加しなかった場合を表す。 また、 4は亜硝酸濃度 33〃 m ο 1ノ 1の場合、 5は亜硝酸濃度 1 6 m o 1 Z 1の場 合、 6は亜硝酸濃度 8 ;umo 1 / 1の場合、 7は亜確酸濃度 0 ηιο 1ノ 1の場 合を表す。 また、 8はサンプル番号 1の試料、 9はサンプル番号 2の試料、 1 0 はサンプル番号 3の試料、 1 1はサンプル番号 4の試料、 1 2はサンプル番号 5 の試料を表す。 また、 1 3は亜硝酸ナトリウム濃度 5 0. Ο ΙΏ Ο Ι Ζ Ιの場合、 1 4は亜硝酸ナトリウム濃度 25· 0〃mo l / lの場合、 1 5は亜碓酸ナトリ ゥム濃度 1 2. 5〃mo l / lの場合、 1 6は亜硝酸ナトリウム濃度 6. 3 / m 0 1 / 1の場合、 1 7は亜硝酸ナトリゥム濃度 1. 6 m o 1 1の場合を表す c また、 1 8は色素のスポッ卜、 1 9は色素を除かれた発色液を表し、 20はガラ ス、 2 1は塗工膜、 2 2は P E Tを表す。 また、 2 3は試薬を含浸させたろ紙 (検出層) 、 2 4は両面テープ (接着層) 、 2 5は層状無機化合物の分散液を含 浸させたろ紙、 2 6は試薬を含浸させたろ紙、 2 7はろ紙を表す。 また、 2 8は 試料吸入領域、 2 9は拡散領域、 3 0は反応領域、 3 1は反応時間を調整する領 域、 3 2は保持領域、 3 3は余分な試料などを吸収する領域を表す。 発明を実施するための最良の形態
I . 本発明の測定方法
本発明の測定方法は、 試料中の分析対象物質の化学反応に基づいて検出可能な 物質を生成する反応を含む反応系を用 L、て前記検出可能な物質を測定することに より前記分析対象物質を測定する方法である。
1 . 検出可能な物質
本発明において用いられる反応系は、 以下に示すような検出可能な物質を生成 する反応を含むものである。
検出可能な物質としては、 本発明の層状無機化合物に吸着可能なものであれば 特に限定されない。 層状無機化合物に吸着可能なものとしては、 具体的には、 ァ ミン、 ポリアミン等のァミン類:ィミン、 ポリイミン等のィミン類:ポリェン類 ;ァニリン誘導体、 ベンゾキノン誘導体、 芳香族縮合環化合物等の芳香族化合物 ;キサンテン、 ァジン、 チアジン等の複素環化合物;イオンとクラウンエーテル ゃバリノマイシンなどの環状配位子との錯体;などであって、 分子内に 4級窒素 原子、 フヱノール性水酸基、 スルホン酸基、 カルボキシル基を含んでいてもよい。 層状無機化合物に吸着可能な物質は、 例えば、 H. Van Olphen著の成書「An Introduction to Clay Colloid Chemistry, Second Edition 」 ( Krieger Publishment, Malabar) の 11章 Γ Interaction of Clays and Organic Compounds J などに詳述されている。 また、 特公昭 50-8462 (加藤忠義) などには、 多数の吸着 可能な化合物が紹介されている。 このうち、 光学的方法、 電気化学的方法によつ て検出可能な物質が挙げられる。 - 18 -
(1)光学的方法によって検出可能な物質
光学的方法によって検出可能な物質としては、 色素が挙げられる。 ここで、 色 素には蛍光色素、 発光物質等も含まれ、 また、 色素を生成する反応とは、 光学的 に検知しうるものが生成する反応であればよく、 例えば発色のみならず、 変色、 蛍光、 発光等をもたらすものでもよい。
色素としては、 好ましくは、 色素前駆体から酸化還元反応、 酸塩基反応、 その 他縮合反応など種々の呈色反応により生成される色素化合物、 蛍光物質、 又は発 光物質や、 配位結合、 イオン結合で生成する色素錯体又は蛍光錯体などが挙げら れる。 酸化還元反応に関連して生成する色素等としては、 好ましくは芳香環等の共役 系を有する化合物が用いられ、 具体的には、 4—アミノー 1, 2—ジヒドロー 1, 5—ジメチル一 2 -フエ二ルー 3 H—ピラゾールー 3—オン (4ーァミノアンチ ピリン:以下、 4—AAと略す。 ) に代表されるカプラーと、 水素供与体 (N— ェチル— N— (3—スルホプロピル) 一 3, 5—ジメチルァニリンなどのトリン ダー試薬類等) が酸化縮合することによって生成する色素;オルト トリジン、 ベ ンジジン類 (3, 3' , 5, 5' ーテトラメチルベンジジンなど) の酸化発色体 色素; 2, 6—ジクロロー 4— [ (4—ヒ ドロキシフエニル) ィミノ] — 2, 5 ーシクロへキサジェン— 1—オンなどロイコ体が酸化されて生成する色素: 4 - ヒ ドロキシフユニル醉酸などが酸化されて生成する蛍光物質;化学発光物質など 発光物質およびその励起体:テトラゾリゥム塩の還元色素であるホルマザン: 1, 1' 一ジメチルー 4, 4' 一ビビリジリウム塩などが還元されて生成する色素; などが挙げられる。
ここで、 水素供与体とは、 過酸化水素の共存下、 ペルォキシダーゼ作用で、 4 一アミノー 1, 2—ジヒドロー 1, 5—ジメチルー 2—フエ二ルー 3 H—ピラゾ ール一 3—オン (4一 AA) や 3—メチルー 2—べンゾチアゾリノンヒ ドラゾン と縮合してキノン系色素を生成するフエノール等の化合物であり、 具体的にはジ クロロフヱノール、 オルトメ トキシフエノール、 1, 2. 3—トリヒ ドロキシべ ンゼン、 ジメチルァニリン、 N—ェチルー N—スルホプロピルメタァニシジン、 N—ェチル—N—スルホプロピルァニリン、 N—ェチルー N— (3—スルホプロ ピル) —3, 5 -ジメ トキシァニリン、 N—ェチル— N— (3—スルホプロピル) - 3. 5—ジメチルァニリン、 N—ェチル—N—スルホプロピルメタ トルィジン、 N—ェチル一 N— (2—ヒ ドロキシ一 3—スルホプロピル) メタァニシジン、 N ーェチルー N— ( 2—ヒドロキシ— 3—スルホプロピル) ァニリン、 N—ェチル -N- (2—ヒ ドロキシ— 3—スルホプロピル) 一 3, 5—ジメ トキシァニリン、 N— (2—ヒ ドロキシ— 3—スルホプロピル) 一 3, 5—ジメ トキシァニリン、 N—ェチルー N— (2—ヒ ドロキシー 3—スルホプロピル) 一 3, 5—ジメチル ァニリン、 1^ーェチル—1^ー (2—ヒドロキシー 3—スルホプロピル) メタ トル ィジン、 N— (3—スルホプロピル) ァニリン等が挙げられる。
例えば前記 4 -AAと水素供与体とが過酸化水素の存在下で反応してキノン系 色素を生成する反応系を利用する方法では、 生成するキノン系色素を吸光光度計 などで測定して間接的に過酸化水素を測定することによつて分析対象物質を測定 する。
またオルト トリジン、 ベンジジン類としては、 オルト トリジン、 ジァニシジン、 3, 3' —ジァミノべンジジン、 3, 3' , 5, 5' ーテトラメチルベンジジン、 N— (3—スルホプロピル) — 3, 3' . 5, 5' ーテ卜ラメチルベンジジン等 が挙げられる。
ロイコ体は酸化されて色素となり発色する無色の色素前駆体である。 ロイコ体 が酸化された色素としては、 2. 6—ジクロロ— 4— [ (4ーヒドロキシフエ二 ル) ィミノ] ー 2, 5—シクロへキサジェンー 1一オン、 2, 6—ジクロ口一 4 一 [ (3—クロロー 4ーヒドロキシフエニル) ィミノ] 一 2, 5ーシクロへキサ ジェン一 1—オン、 7— (ジェチルァミノ) 一 3—イミノー 8—メチルー 3 H— フエノキサジン塩、 3— (ジェチルァミノ) — 7—アミノー 5—フエニルフエナ ジニゥム塩、 3. 7 -ビス (ジメチルァミノ) フエノチアジン一 5—ィゥム塩、 1ーヒ ドロキシー 5—メチルフエナジニゥム塩、 7—ヒ ドロキシー 3H-フエノ キサジン一 3—オン一 1 0—才キシドが挙げられ、 ロイコ体としては、 4, 4' 一べンジリデンビス (N. N—ジメチルァニリン) 、 4, 4' 一ビス [N—ェチ ルー N— ( 3—スルホプロピルァミノ) 一 2, 6—ジメチルフヱニル] メタン、 1 - (ェチルァミノチォカルボニル) — 2— (3 , 5—ジメ トキシー 4ーヒ ドロ キシフヱニル) 一 4 , 5—ビス (4—ジェチルアミノフヱニル) イミダゾール、 4 , 4 ' 一ビス (ジメチルァミノ) ジフエニルァミン、 N— (カルボキシメチル ァミノカルボニル) ー 4 , 4 ' 一ビス (ジメチルァミノ) ジフヱニルァミ ン塩、 1 0— (カルボキシメチルァミノカルボニル) — 3 . 7—ビス (ジメチルァミノ) フエノチアジン塩等が挙げられる。
酸化されて発色する色素前駆体としては、 そのほかに、 4ーメ トキシフ ノー ル、 4—エトキシフエノール、 2 -エトキシフエノール、 1一 (2—ヒ ドロキシ 一 5—メ トキシフヱニル) エタノン、 2—ヒ ドロキシ一 5—メ トキシ安息香酸、
2—ヒ ドロキシ一 5—メ トキシベンズアルデヒド、 2—ヒ ドロキシー 5—メ トキ シ安息香酸メチル、 4ーメ トキシ一 2—二トロフエノール、 2—クロロー 4ーメ トキシフエノール、 4ーヒドロキシー 3—メ トキシベンズアルデヒド、 4—ヒ ド 口キシー 3—メ トキシ安息香酸などが挙げられる。
また、 3— ( 4—ヒ ドロキシフエニル) 一 2—プロペン酸、 2—ヒ ドロキシフ ェニル酢酸、 3—ヒドロキシフヱニル酢酸、 4—ヒ ドロキシフヱニル酢酸、 3— ヒ ドロキシ安息香酸、 4ーヒ ドロキシ安息香酸、 2—ァミノ安息香酸、 3—アミ ノ安息香酸、 4ーァミノ安息香酸、 3 , 4—ジァミノ安息香酸、 3 . 5—ジアミ ノ安息香酸、 4一アミノー 2—クロ口安息香酸、 4—アミノー 3—メチル安息香 酸、 4—アミノー 3—メ トキシ安息香酸、 4一アミノフタル酸などが挙げられる。 また、 2 , 4—ジァミノー 6—ヒドロキシピリ ミジン、 4, 5—ジァミノ一 6 ーヒ ドロキシピリ ミジン、 4一アミノー 2 . 6—ジヒ ドロキシピリ ミジン、 6— ヒ ドロキシー 2 , 4 . 5—トリアミノビリ ミジン、 4 . 5—ジァミノ一 2 , 6— ジヒ ドロキシピリ ミジン、 4一アミノー 6—ヒドロキシ一 2—メチルピリ ミジン、 4ーァミノ一 6—ヒドロキシピリ ミジン、 4 -アミノー 6—ヒ ドロキシー 2—メ トキシピリ ミジンなどが挙げられる。
また、 4—ヒ ドロキシフエニル酢酸などが酸化されて蛍光物質を生成するが、 蛍光物質としては、 4ーヒ ドロキシフヱニル酢酸、 (4—ヒ ドロキシー 3—メ ト キシフヱニル) 酢酸、 3— (4—ヒドロキシフヱニル) プロピオン酸、 4ーヒ ド 口キシ一 (2—アミノエチル) フエノール、 4ーヒ ドロキシ一 N , N , N—トリ メチルベンゼンメタミニゥム、 アルファアミノパラヒ ドロキシヒ ドロゲイ皮酸、
4ーヒドロキシフエネチルァミン、 N— (4ーヒドロキシフエニル) ァセトァニ リ ド、 2, 7—ジクロロフルォレツセインジアセテート等が、 酸化されて生成し た蛍光物質が挙げられる。
化学発光物質など発光物質としては、 ホタルルシフヱリン、 ゥミホタルルシフ エリン、 ェクオリン、 ルシゲニン誘導体、 ノレミノール誘導体、 ァクリジニゥムェ ステル、 過シユウ酸エステル等が挙げられる。
例えば前記べンジジン類ゃ口ィコ体が過酸化水素の存在下で酸化反応して発色 する反応系を利用する方法では、 生成する色素を吸光光度計などで測定して間接 的に過酸化水素を測定することによつて分析対象物質を測定するのである。
前記蛍光物質や発光物質が生成する反応系を利用する方法では、 蛍光光度計や 発光光度計などで測定して間接的に過酸化水素を測定することによって分析対象 物質を測定するのである。
このような色素を生成する酸化反応において、 酸化反応に与る酸化剤は過酸化 水素に限定されるものではなく、 種々の公知の酸化剤を利用してもよい。 ペルォ キシダーゼなどの酸化酵素を添加してもよい。 また色素が生成する酸化反応に先 立って、 前記酸化剤が生成する反応が生じていてもよい。 また、 テトラゾリゥム塩としては、 2, 3, 5—トリフエニルテトラゾリゥム 塩、 2, 5—ジフエニル— 3 - ( 1—ナフチル) 一 2H—テトラゾリゥム塩、 3, 3' 一 (3, 3' —ジメ トキシー 4. 4' ービフエ二レン) 一ビス [ 2— (パラ ニトロフエニル) 一 5—フエ二ルー 2 H—テトラゾリゥム] 塩、 3, 3' - [3, 3' ージメ トキシ— ( 1, Γ —ビフエニル) 一 4, 4' -ジィル] 一ビス (2, 5一ジフヱ二ルー 2H—テトラゾリゥム) 塩、 2— (4—ョードフヱニル) ― 3 一 (4一二トロフエニル) - 5—フエ二ルー 2 H—テトラゾリゥム塩、 2— (4 —ョードフエニル) 一 3— (4—ニトロフエニル) 一 5— (2, 4 -ジスルホフ ェニル) 一 2 H—テトラゾリゥム塩、 2— (4—ョ一ドフヱニル) 一 3— (2, 4ージニトロフエニル) 一 5— (2, 4—ジスルホフエニル) 一 2 H—テトラゾ リウム塩、 3, 3' 一 ( 1, 1' ービフエニル— 4, 4' ージィル) 一ビス (2, 5—ジフエニル一 2 H—テトラゾリゥム) 塩、 3— ( 4 , 5—ジメチルー 2—チ ァゾリル) — 2 . 5—ジフヱ二ルー 2 H—テトラゾリゥム塩等が挙げられる。 還元されて生成する色素としては、 1 , 1 ' —ジメチルー 4 , 4 ' —ビビリジ リウム塩、 1 , 1 ' ージベンジルー 4 . 4 ' -ビピリジリウム塩等の還元体が挙 げられる。 また 7—ヒ ドロキシー 3 H—フエノキサジン一 3—オン一 1 0—ォキ シドなどが還元されて蛍光物質を生成するが、 蛍光物質としては、 7—ヒ ドロキ シー 3 H—フエノキサジン一 3 -オン一 1 0 -ォキシド、 5—シァノー 2, 3— ビス (4—メチルフエニル) - 2 H—テトラゾリゥム塩、 2 . 3 -ビス (4ーシ ァノフヱニル) — 5—シァノー 2 H—テトラゾリゥム塩等が還元されて生成する 蛍光物質等が挙げられる。
例えば前記テトラゾリゥム塩やロイコ体が逮元剤の存在下で還元反応して発色 する反応系を利用する方法では、 生成する色素を吸光光度計又は蛍光光度計など で測定して間接的に還元剤を測定することによって分析対象物質を測定するので ある。 また色素が生成する還元反応に先立つて還元剤が生成する反応が生じてい てもよい。
このような色素を生成する還元反応において、 還元反応に与る還元剤として二 コチンアミ ドアデニンジヌクレオチドもしくはニコチンアミ ドアデニンジヌクレ ォチドホスフエートが好ましく用いられる。 しかしもちろんこれに限定されるも のではなく、 種々の公知の還元剤を利用していてもよい。 酸塩基反応で生成する色素等としては、 プロモクレゾールグリーンなど p Hの 変化によって発色または変色する化合物が挙げられる。 このような化合物として は、 ブロモクレゾールグリーンのほか、 ブロモフエノールブルー、 フエノールレ ッ ド、 ブロモピロガロールレツ ド、 ピロガロールレツ ドなどのスノレホンフタレイ ン系色素、 マラカイ トグリーン、 ロゾリックァシドなどのトリフエニルメタン系 色素、 キナルジンレッ ド、 N— (パラヒ ドロキシフエニル) 一 2 , 6—ジクロ口 パラべンゾキノンィミンなどのキノリン系色素、 7—ヒ ドロキシ一 3 H—フエノ キサジン一 3—オン 1 0—才キシドなどのォキサゾン系色素、 6 , 7—ジヒ ドロ キシ— 4ーメチルクマリンなどのクマリン系色素、 ァニリンォリゴマーなどの導 電性高分子化合物が挙げられる。
例えば p Hの変化によって発色または変色する化合物が酸または塩基によって 発色または変色する反応系を利用する方法では、 生成する色素を吸光光度計など で測定して間接的に酸または塩基を測定することによって分析対象物質を測定す る。 また例えば p Hの変化によつて発色または変色する化合物が水素ィオンによ つて発色または変色する反応系を利用する方法では、 生成する色素を吸光光度計 などで測定して水素イオン瀵度を測定することによって分析対象物質を測定する。 その他に、 呈色反応等として公知である種々の反応で生成する色素等として、 2 —メ トキシー 4—モルホリノベンゼンジァゾニゥム塩などジァゾニゥム塩の力 ップリングによって生成するァゾ系色素;アルデヒ ドと 2 , 3 —ジメチルー 2 . 3—ビス (ヒ ドロキシァミノ) ブタンの反応など種々の公知の呈色反応によって 生成する色素; ヒス夕ミンとオルトフタルアルデヒドとの反応など種々の公知の 反応によって生成する蛍光物質: 4ーメチルゥンベリフヱリルリン酸塩などの酵 素基質が酵素によって反応し生成する色素や蛍光物質が挙げられる。
ジァゾニゥム塩のカツプリングによって生成するァゾ系色素としては、 インド キシルと 2 —メ トキシ— 4—モルホリノベンゼンジァゾニゥム塩の力ップリング によって生成するァゾ系色素、 ゥロビリノ一ゲンと 3 . 3 ' —ジメ トキシビフエ 二ルー 4 , 4 * 一ジァゾニゥム塩のカップリングによって生成するァゾ系色素、 亜硝酸塩の存在下に 4 一アミノベンゼンアルソン酸と N— 1—ナフチルエチレン ジァミンが反応して生成するァゾ系色素、 同じく亜硝酸塩の存在下に 2 , 4—ジ クロロア二リ ンと N , N—ジェチルー N ' — 1 一ナフチルナフチルエチレンジァ ミ ンシユウ酸塩とが反応して生成するァゾ系色素などが挙げられる。
前記ァゾ系色素が生成する反応系を利用する方法では、 生成する色素を吸光光 度計などで測定して反応の出発物質である分析対象物質 (前記の例ではィンドキ シル、 ゥロビリノ一ゲン、 亜硝酸塩である) を測定する。 ァゾ系色素が生成する 反応は前記の例に限定されるものではなく、 種々の公知のァゾ系色素が生成する 反応に好ましく適用される。 また種々の公知の呈色反応によって生成する色素としては、 次に述べる公知の 呈色反応において生成する色素が挙げられるが、 もちろんこれに限定されるもの ではない。 呈色反応としては、 アルデヒドを検出するときの過酸化水素と 1 . 4 ージァミノベンゼンの反応、 アルデヒ ドを検出するときの 2, 3—ジメチルー 2 , 3—ビス (ヒ ドロキシァミノ) ブタンの反応、 アルデヒ ドを検出するときの 3— メチル— 2—べンゾチアゾリノンヒドラゾンと酸化剤の反応、 二級アミンを検出 するときの 1 0 H—フヱノチアジンと臭素の反応、 チオールを検出するときの 2 , 2 ' ージチォジピリジンの反応などが挙げられる。
前記公知の呈色反応を利用する方法では、 生成する色素を吸光光度計などで測 定して反応の出発物質である分析対象物質 (前記の例ではアルデヒ ド、 二級アミ ン、 チオールである) を測定するのである。 利用できる公知の呈色反応は、 もち ろん前記の例に限定されるものではない。 種々の公知の反応によって生成する蛍光物質としては、 次に述べる試薬を用い て実施される公知の検出反応において生成する蛍光物質が挙げられるが、 もちろ んこれに限定されるものではない。 蛍光物質を生成する検出反応に用いられる試 薬としては、 グァニジノ化合物を検出するときの 2—ヒ ドロキシー 1, 2—ジフ ェニルエタノン、 ヒスタミンを検出するときのオルトフタルアルデヒ ド、 スペル ミジンを検出するときのオルトフタルアルデヒド、 アルファケト酸を検出すると きの 2—ジァミノ— 4 , 5—ジメ トキシベンゼンなどが挙げられる。
前記公知の検出反応を利用する方法では、 生成する蛍光物質を蛍光光度計など で測定して反応の出発物質である分析対象物質 (前記の例ではグァニジノ化合物、 ヒスタミン、 スペルミジン、 アルファケト酸である) を測定する。 利用できる公 知の検出反応は、 もちろん前記の例に限定されるものではない。 また酵素によって反応し色素や蛍光物質を生成する酵素基質としては、 キモト リプシンの基質である N—トシル— L—フエ二ルァラニン一 2—アミ ドアクリ ド ン、 アミノぺプチタ一ゼの基質である L—ァラニン一 2—アミ ドアクリ ドン、 ェ ステラーゼを測定するときの 7—ァセトキシー N—メチルキノリニゥム塩、 エス テラーゼの基質である 7—ァセトキシー 3 H—フエノキサジン一 3—オン、 ホス ファタ一ゼの基質である 4ーメチルゥンベリフヱリルリン酸塩、 ホスファターゼ の基質である 5, 1 0, 1 5. 20—テトラキス (4—ホスホノォキシフエニル) ポルフィンなどが挙げられるカ^ もちろんこれに限定されるものではない。
例えば前記酵素基質が酵素によって分解される反応を利用する方法では、 生成 する色素や蛍光物質を吸光光度計や蛍光光度計などで測定して間接的に酵素を測 定することによつて分析対象物質を測定するのである。 酵素や酵素基質は例えば 抗体やその断片に化学的に結合していてもよい。 配位結合、 イオン結合で生成する色素錯体又は蛍光錯体として、 金属イオンや ァニオンと、 配位子などの化合物とが、 配位結合やイオン結合で錯体を形成して 生成した色素、 蛍光物質等の発色 ·変色する化合物がある。 金属イオンと錯体を 形成し発色 ·変色する化合物としては、 金厲指示薬やクロモイオノフォアとして 知られている化合物のほか、 有色の遷移金属イオンと錯体を形成して着色する化 合物が含まれるが、 具体的にはエチレンジァミン四酢酸、 2. 2—ビビリジン、 1ーヒドロキシー 2— (2—ヒ ドロキシフエニルァゾ) ベンゼン、 ジベンゾ一 1 8—クラウン一 6、 ジシクロへキシル一 18—クラウン一 6、 環状ポリァミン類、 力リックス [ 4 ] ァレーン、 3— [N, N—ビス (カルボキシメチル) アミノメ チル] 一 1, 2—ジヒ ドロキシアンスラキノン、 5' , 5" —ジブロモピロガロ 一ルスルホンフタレイン、 2—ヒ ドロキシー 1— ( 1—ヒ ドロキシ一 2—ナフチ ルァゾ) 一 6—二トロー 4一ナフタレンスルホン酸塩、 2, 6—ジクロ口一 4' —ヒ ドロキシ一 3, , 3" ージメチルフクソン一 5' , 5" 一二カルボン酸塩、 3, 3' 一ビス [N, N—ビス (カルボキシメチル) アミノメチル] フルォレツ セイン、 8— [N, N—ビス (カルボキシメチル) アミノメチル] —4一メチル ゥンベリフエロン、 2, 7—ビス (2—アルソノフエ二ルァゾ) 一 1, 8—ジヒ ドロキシ一 3. 6—ナフタレンジスルホン酸、 5—クロロー 2—ヒドロキシ一 3 - (2, 4—ジヒ ドロキシフエニルァゾ) ベンゼンスルホン酸、 5— [ (へキサ ヒ ドロー 2 , 4, 6— トリオキソー 5—ピリ ミジニル) ィミノ] 一 2, 4, 6
( 1 H, 3H, 5 H) —ピリ ミジントリオン塩、 2— ( 5—プロモー 2—ピリジ ルァゾ) 一 5— [N—プロピル— N— (3—スルホプロピル) ァミノ ] ァニリン 塩、 1, 8—ジヒ ドロキシ一 2— (2—ピリジルァゾ) 一 3, 6—ナフタレンジ スルホン酸塩、 2—ニトロソー 5— [N—プロピル— N— (3-スルホプロピル) ァミノ] フ Lノ一ル等が挙げられる。
また特に一価のカチオンと有色錯体を生成する化合物としては、 テトラキス
[3, 5—ビス (トリフルォロメチル) フエニル] ボレート塩、 テトラフェニル ホスホニゥム塩等が挙げられる。
また特にカルシウムイオンなどと蛍光錯体を生成する化合物として、 1一 [2 一アミノー 5— (2, 7—ジクロロー 6—ヒドロキシ一 3—ォキシ一 9—キサン テニル) フエノキシ] 一 2— (2—ァミノ一 5—メチルフエノキシ) エタンー N, N, ' , Ν' —四齚酸塩、 1一 [2—ァミノ - 5— (2, 7—ジクロロ一 6— ヒ ドロキシー 3—ォキシー 9ーキサンテニル) フエノキシ] — 2— (2—ァミノ 一 5—メチルフエノキシ) エタンー Ν, Ν, Ν' , Ν' —四酢酸一ペン夕ァセト キシメチルエステル、 1一 [6 -アミノー 2— (5—カルボキシー 2—オギザゾ ィル) 一 5—ベンゾフラ二口キシ] 一 2— (2—アミノー 5—メチルフエノキシ) ェタン— Ν. Ν, Ν' , N' —四齚酸塩、 1— [6—アミノー 2— (5—カルボ キシー 2—オギザゾィル) 一 5—ベンゾフラ二口キシ] 一 2— (2—アミノー 5 —メチルフエノキシ) ェタン一Ν, Ν, Ν' , N' 一四酌酸 ペンタァセトキシ メチルエステル、 1一 [2—アミノー 5— (6—カルボキシー 2—インドリル) フエノキシ] — 2— (2—ァミノ一 5—メチルフエノキシ) エタンー Ν, Ν. Ν ' , N' 一四酢酸塩、 1一 [2—アミノー 5— (6—カルボキシー 2—インドリ ル) フエノキシ] 一 2 - (2—アミノー 5—メチルフエノキシ) ェタン一 Ν, Ν, N' , N' —四酢酸 ペンタァセトキシメチルエステル、 8—ァミノ— 2—
[ ( 2—ァミノ一 5—メチルフエノキシ) メチル] —6—メ トキシキノリン一 Ν. Ν, Ν' . N' —四齚酸塩、 8—ァミノ— 2— [ (2—ァミノ— 5—メチルフエ ノキシ) メチル ] 一 6—メ トキシキノリン一 Ν, Ν, Ν' , Ν' 一四酢酸 ペン タァセトキシメチルエステル、 3, 3' 一ビス [Ν, Ν—ビス (カルボキシメチ ル) アミノメチル] フルォレツセイン、 8— [Ν, Ν—ビス (カルボキシメチル) ァミノメチル] ― 4—メチルゥンベリフヱロンなどが挙げられる。
またァニオンと有色錯体を形成するテトラフヱニルアルソニゥム塩、 塩化物ィ オンと錯体を形成すると蛍光強度が減少する臭化 Ν—エトキシカルボニルメチル 一 6—メ トキシキノリニゥム、 ホウ素と錯体を形成する 8 —ヒドロキシー 1 一 (サリシリデンァミノ) —3 , 6—ナフタレンジスルホン酸塩などが挙げられる。 前記錯体が形成される反応を利用する方法では、 イオンと配位子などが生成す る色素や蛍光物質を吸光光度計や蛍光光度計などで測定して色素や蛍光物質の量 を測定することによって分析対象物質 (多くの場合、 イオンである) を測定する のである。
( 2 ) 電気化学的に検出可能な物質
次に電気化学的に検出可能な物質について説明する。
電気化学的方法によって検出できる物質としては、 電子伝達物質 (メディエー ター) ゃィオノフォアとイオンとの錯体などが挙げられる。
電子伝達物質とは、 分析対象物質を酵素などによって酸化 Z還元し、 その際分 析対象物質から /に直接的に電子を受容/供与する化学物質であつて、 電子伝達 物質の還元体ノ酸化体を電極で酸化 Z還元するときの電気化学応答から分析対象 物質を測定することができる。 また電子伝達物質と分析対象物質が直接的に電子 を授受していなくても良く、 電子伝達物質は、 分析対象物質を酵素などによって 酸化 Z還元し、 その際分析対象物質からまたは分析対象物質に、 間接的に電子を 受容ノ供与する化学物質であつても良い。 分析対象物質と定量的関係にある電子 伝達物質の酸化体/還元体を電極で遠元 酸化するときの電気化学応答から分析 対象物質を測定する。 電子伝達物質としては、 用いる電極の測定可能範囲内の電位 (カーボン電極で は通常一 1 . 2 V〜+ 1 . 0 V ) で酸化還元されるものが好ましく、 具体的には、 1 , 1 ' —ジメチル— 4 , 4 ' —ビビリジリウム塩、 1 , 1 ' —ジベンジル一 4 , 4 ' —ビビリジリウム塩、 1, 4ージァミノベンゼン、 2—メチル一 1 , 4—ナ フトキノン、 N—メチルフエナジニゥム塩、 1 一ヒ ドロキシ一 5 —メチルフエナ ジニゥム塩、 1ーメ トキシー 5 —メチルフエナジニゥム塩、 9 —ジメチルァミノ ベンゾアルファフェノキサジン一 7—ィゥム塩、 フヱロセン誘導体、 へキサシァ ノ鉄 ( I I ) 塩、 7 —ヒ ドロキシ一 3 H—フエノキサジン一 3 —オン 1 0—ォキ シド、 3 . 7—ジァミノ— 5—フヱニルフエナジニゥム塩、 3— (ジェチルアミ ノ) — 7—アミノー 5—フエニルフエナジニゥム塩、 1, 4-ベンゼンジオール、 1, 4ージヒ ドロキシ一 2, 3. 5—トリメチルベンゼン、 N, N. N" , N' -テトラメチルー 1. 4一ベンゼンジァミン、 厶 2, 2' —ビー 1, 3—ジチォ ール、 2, 6—ジメチルベンゾキノン、 2, 5—ジメチルベンゾキノン、 2. 3, 5, 6—テトラメチルー 2. 5—シクロへキサジェンー 1, 4ージオン、 2, 6 ージクロロー 4一 [ (4ーヒ ドロキシフエニル) ィミノ] - 2, 5—シクロへキ サジェンー 1 -オン、 2, 6—ジクロロー 4一 [ (3—クロ口一 4ーヒドロキシ フエニル) ィミノ] 一 2, 5—シクロへキサジェンー 1一オン、 7— (ジェチル ァミノ) 一 3—イミノー 8—メチルー 3H—フエノキサジン塩、 3, 7-ビス (ジメチルアミノ) フヱノチアジン一 5—ィゥム塩等が挙げられる。
この例において検出可能な物質は、 上述した電子伝達物質の酸化体ノ還元体で あり、 検出可能な物質を生成する反応とは電子伝達物質の酸化ノ還元反応である。 前述したように、 例えば分析対象物質と定量的関係をもつて存在する電子伝達物 質の酸化体ノ還元体を電極で還元ノ酸化するときの酸化還元電流などの電気化学 応答を測定することにより、 分析対象物質を測定することができるのである。 例 えば、 ァスコルビン酸や過酸化水素のように、 電子供与 Z受容物質として電極上 で酸化/還元されるときの電気化学的応答を測定し、 その応答結果から分析対象 物質を間接的に測定することができる。 ィオノフォアは、 分析対象物質である特定のイオンと選択的に配位結合または イオン結合を生じ、 錯体となる配位子などの化合物であって、 液膜電極で用いら れていることは特に良く知られている。
具体的には、 カチオンと錯体をつくるィオノフォアとして、 テトラキス [3, 5—ビス (トリフルォロメチル) フエニル] ボレート塩、 テトラフヱニルホスホ ニゥム塩、 ノくリノマイシン、 シクロ (Ν' , Ν' ージォクチル一 D—ァスパラギ 二ルー L一プロリル— Lーァラニル) 2、 ビス (ベンゾー 15—クラウン— 5) 、 ビス [ (ベンゾ一 15—クラウン一 5 ) — 4 -メチル] ピメレート、 ビス ( 12 一クラウン一 4) 、 ビス [ (1 2—クラウン一 4) メチル] 一 2— ドデシルー 2 一メチルマロネート、 14—クラウン一 4、 ドデシルーメチルー 14一クラウン 一 4、 6 . 6—ジベンジルー 1 , 4, 8, 1 1—テトラオキサシクロテトラデカ ン、 ジベンゾ一 1 8—クラウン一 6、 ジシクロへキシルー 1 8—クラウン一 6、 4 , 1 6—ジ— N—才クタデシルカルバモイル— 3—ォキサブチリルー 1 , 7 , 1 0 , 1 3 , 1 9—ペンタォキサー 4 , 1 6—ジァザシクロへンィコサン等が挙 げられる。
またァニオンと錯体をつくるィオノフォアとして、 テトラフェニルアルソニゥ ム塩、 6—メ トキシ— N— (3—スルホプロピル) キノリニゥム塩などが挙げら れる。
液膜電極とは、 電極の表面に多孔質の高分子層などを設け、 高分子層にィオノ フォアを染み込ませ、 試料中の特定のイオンのみと結合させて高分子層内を移動 させることによって、 ある特定のイオンのみを選択分雜させ、 その際に生じる膜 電位を測定し分析対象物質である特定のイオンを測定する方法である。 もちろん 電気化学的検出方法にィォノフォァが用いられるのは、 この液膜電極の例に限ら れるわけではない。
バルク液中でィオノフォアとある特定のイオンを結合させ、 結合していないィ ォンが移動できず、 結合して生成した錯体のみが移動できる高分子層を設けた電 極にお t、て該ィォンの選択分雜を行 L、、 その際に生じる膜電位を測定し分析対象 物質である該イオンを測定することができる。
この例において検出可能な物質とはィオノフォアと特定のイオンとの錯体であ り、 検出可能な物質を生成する反応とは配位結合またはイオン結合によるィオノ フォアと特定のィォンとの錯体形成反応である。 前述のように分析対象物質であ る特定のイオンの濃度に応じて発生する膜電位を電気化学的に測定することによ り、 分析対象物質を測定する。
2 . 本発明が適用される測定方法
本発明の測定方法は、 このような検出可能な物質を生成する反応系を利用する 方法に好ましく適用されるが、 より好ましくは以下のような方法が挙げられる。
(a)過酸化水素の生成反応または過酸化水素を酸化剤とする酸化反応を含む反応系 を利用する方法であり、 具体的には、 例えば分析対象物質から酸化酵素反応系を 0 96/ 3188
- 30 - 介して過酸化水素を生成させ、 これをペルォキシダーゼの共存下、 被酸化性発色 体 (色素前駆体) と酸化還元反応を行わせて、 この反応により生成する色素化合 物を測定する方法。
(b)ニコチンアミ ドアデニンジヌクレオチド (NADH) もしくはニコチンアミ ド アデニンジヌクレオチドホスフェート (NADPH) を生成する反応、 または、 NADHもしくは NADPHを還元剤として使用する反応を含む反応系を利用す る方法であって、 具体的には、 例えば、 分析対象物質から、 脱水素酵素反応系を 介して NADHまたは NADPHを生成させ、 これを電子伝達系存在下に色素前 駆体に作用させて還元し、 これにより生成する色素化合物を測定する方法。
(c)酸性下で芳香族第 1ァミンに亜硝酸を反応させてジァゾ二ゥム塩を生成させ、 生成したジァゾニゥム塩と被カツプリング試薬とを反応させ、 次いで生成したァ ゾ色素を測定する亜硝酸塩、 ジァゾニゥム塩、 カップリング化合物を測定する方 法。
(d)リン酸エステルを有する 4—メチルゥンベリフヱロンなどの蛍光酵素基質が、 アル力リホスファターゼの作用によってリン酸塩を遊雜して蛍光物質を生成し、 生成した蛍光物質に励起光を照射し発する蛍光を測定する、 蛍光酵素基質で標識 された物質やアル力リホスファターゼを測定する方法。
(e)酸化還元酵素などによって 1 , 4ージァミノベンゼンなどのメディエーターを 酸化 Z還元し、 生成したメディエーターの酸化体ノ還元体が電極反応で還元ノ酸 化されるときの電流応答を測定する、 酸化還元酵素や酸化還元酵素で標識された 物質の測定方法。
もちろん、 検出可能な物質とは分析対象物質自身であってもよく、 その例とし ては、 水に溶解したグルコースが電極表面で酸化される際の電気化学的応答を測 定し、 分析対象物質を測定するものがある。
尚、 本発明の第 4の測定方法は、 特に、 溶媒中で検出可能な物質を生成する反 応系を利用した測定方法であって、 該溶媒に対し不溶性の物質が生成する反応を 含む測定方法に適用される。 また、 不溶性の検出可能な物質が生成する測定方法 に好ましく適用される。 また、 検出可能な物質が光学的に検出可能な物質である 測定方法に特に好ましく適用される。 溶媒としては特に限定されず、 従来公知のものを任意に使用することができる 力、 例えば蒸留水などの水、 エタノールなどのアルコール、 アセトンなどのケト ン類、 ジェチルエーテルなどのエーテル類、 齚酸ェチルなどのエステル類、 クロ 口ホルムなどのハロゲン化炭化水素類、 ベンゼンやトルエンなどの芳香族炭化水 素類などから、 分析対象物質やその検出反応系に適したものを選ぶことができる このうち好ましくは水である。 また、 分析対象物質を含む血液、 唾液、 尿などの 試料液体を反応溶媒として使用することができるのは、 ドライケミストリ一とし て知られている通りである。
反応が行われる反応溶媒に不溶性の物質が生成する反応を利用する測定方法と しては、 特に限定されないが、 反応溶媒に不溶性の光学的に検出可能な物質が生 成する反応を利用する測定方法、 反応が行われる溶媒に不溶性の副生物が生成し、 光学的に検出可能な物質が生成する反応を利用する測定方法、 反応溶媒に不溶性 の副生物が生成し、 電気化学的に検出可能な物質が生成する反応を利用する測定 方法が挙げられる。
反応溶媒に不溶性の光学的に検出可能な物質が生成する反応を利用する測定方 法としては、 特に限定されないが、 具体的には以下に述べる検出反応が挙げられ る。
酸化反応としては、 フヱノールと 4ーァミノ一 1 , 2—ジヒ ドロー 1 , 5—ジ メチル— 2—フヱ二ルー 3 H—ビラゾールー 3—オンの水溶液中での酸化縮合に よる過酸化水素の検出反応、 N—メチルーァクリジン一 9一力ルボン酸塩を水溶 液中で酸化して水に不溶な蛍光物質 N -メチルァクリ ドンを生成する過酸化水素 の検出反応、 アルカンスルホン酸塩の存在下に 1 0— (カルボキシメチルァミノ カルボニル) 一 3 , 7—ビス (ジメチルァミノ) フヱノチアジン塩水溶液を酸化 発色させる反応を含む過酸化水素の検出反応などが挙げられる。
還元反応としては、 7—ヒ ドロキシ一 3 H -フヱノキサジン一 3—オン一 1 0 一ォキシドを還元し酸性水溶液に不溶な蛍光物質 7—ヒ ドロキシ— 3 H—フエノ キサジン一 3—オンを生成する還元物質の検出反応、 3 . 3 ' 一 (3, 3, ージ メ トキシー 4 , 4 ' —ビフエ二レン) 一ビス [ 2— (パラニトロフエニル) 一 5 一フエ二ルー 2 H—テトラゾリゥム] 塩、 5—シァノー 2 , 3—ビス (4ーメチ ルフエ二ル) — 2 H—テトラゾリゥム塩、 2 , 3 —ビス (4—シァノフエニル) 一 5—シァノー 2 H—テトラゾリゥム塩等を還元し水に不溶性のホルマザン色素 を生成する還元物質の検出反応などが挙げられる。
その他の反応としては、 弱酸性水溶液での 4—メチルゥンべリフ リル硫酸塩 のァリルスルファターゼとの反応によるァリルスルファターゼ検出反応、 2—ク ロロ一 4一二トロフヱニルー^— D—ダルコピラノシドと S—ダルコシダ一ゼと の水溶液での反応による β一グルコシダーゼの検出反応、 ァゾベンゼンパラフヱ ニルヒドラジンスルホン酸とアルデヒドの縮合反応によるアルデヒドの検出反応、 ジァゾニゥム塩と 2—ナフトールとのジァゾ力ップリングを含む亜確酸の検出反 応、 中性水溶液での 1 . 3 —ジアミノー 4一 (5—プロモー 2 —ピリジルァゾ) ベンゼンとコバルトイオンとの有色の不溶性錯体形成反応によるコバルトイオン の検出反応などが挙げられる。
光学的に検出可能な物質が生成する反応を利用する測定方法であって反応溶媒 に不溶性の副生物が生成する反応が含まれる方法、 あるいは電気化学的に検出可 能な物質が生成する反応を利用する測定方法であって反応溶媒に不溶性の副生物 が生成する反応が含まれる方法としては、 前述した従来の技術に関する項目の中 で挙げた不具合のため、 ほとんど利用されていない。 よってそのような測定方法 の具体例をここに挙げないが、 これによつて本発明が制限されるわけではない。 不溶性の物質は、 それを溶解せしめない溶媒中に生成すると、 液相から直ちに 析出し、 近傍に存在する固相上に吸着されるのは、 日常的によく観察される現象 である。 もし固相が近傍になければ、 不溶性の物質は液相において単分子が集合 した分子集合体を形成し、 分子集合体がさらに成長して凝集又は沈殿として沈降 するのである。 本発明の層状無機化合物は、 均一に分散するのに充分微少な粒子 であり、 また本発明における不溶性の検出可能な物質や副生物等の不溶性物質は、 生成した直後は単分子又は充分小さな分子集合体であるので、 不溶性物質が層状 無機化合物に効率よく吸着され、 ともに均一に分散されるのである。
本発明の第 4の測定方法は、 多種多様な物質を吸着しうる作用を有し、 且つ充 分均一に分散しうる層状無機化合物を不溶性物質が生成する検出反応系に存在さ せて該不溶性物質を吸着せしめ、 従来の技術に関する説明で既に述べたような不 溶性物質によって生じる不具合を解決した測定方法である。 加えて、 該層状無機 化合物の存在は、 検出反応の進行や検出を妨害しない。 本発明の第 4の測定方法 では、 不溶性の物質を生成する反応を含む反応系として、 特に好ましくはテトラ ゾリゥム塩の還元反応が挙げられる。
本発明の第 1〜第 4の測定方法で測定可能な分析対象物質としては、 体液中の 尿や血液等の生体成分、 食品、 医薬、 自然環境に存在する微量物質、 産業化学物 質、 廃棄物中の微量物質等を挙げることができる。
3 . 層状無機化合物
本発明の測定方法においては、 上述した検出可能な物質の生成反応を含む反応 系に層状無機化合物を存在させることを特徴とする。 以下に層状無機化合物につ いて説明する。
本発明の層状無機化合物は、 S i四面体、 A 1八面体等の多面体が平面状に連 なったシート構造が層状に重なった結晶構造を有する無機化合物であり、 層状粘 土鉱物及びハイドロタルサイ卜が含まれる。
粘土鉱物とは、 粘土 (細かい土状の無機粒状物で、 水で湿った状態で可塑性の あるもの) の大半を占めるアルミニウムゲイ酸塩鉱物をいい、 通常は、 S iが 4 つの 0 (酸素原子) に囲まれた S i四面体と A 1又は M gが 6つの O H基あるい は 0に囲まれた A 1 (又は M g ) 八面体を最小構成単位としている。
層状粘土鉱物の構造は、 S i四面体が 1つの面を共有し、 残る頂点の 0を同方 向に向けて六角網状のシー卜を形成し (四面体シート) 、 一方 A 1 (又は M g ) 八面体が稜角を共有してシートを形成し (八面体シート) 、 これらが層状に重な つたものである。 四面体シートと八面体シートが一枚づっ重なってできた 1 : 1 層が何枚も積み重なってできた鉱物を 1 : 1型鉱物、 一枚の八面体シートを 2枚 の四面体シートで挟んだ 2 : 1層が何枚も積み重なってできた鉱物を 2 : 1型鉱 物、 2 : 1型の層間にもう一枚八面体シートが挟まったものを 2 : 1 : 1型鉱物 という。 また、 八面体シートが M g ( O H ) 2ですベての八面体位置に金属イオン が存在するものを 3八面体型 (Trioctahedral) 、 八面体シートが A 1 ( O H ) s で 1 Z 3が空孔になっているものを 2八面体型 (Dioctahedral ) という。 本発明 で用いる層状無機化合物としては、 2 : 1型鉱物が好ましい。
本発明の層状無機化合物を構成する元素は、 好ましくは、 リチウム、 ナトリウ ム、 カリウム、 マグネシウム、 アルミニウム、 ゲイ素、 酸素、 水素、 フッ素、 及 び炭素から選ばれる少なくとも一つ以上から構成され、 具体的には以下に示す式 1〜 9のいずれか一つで表される化合物が挙げられる。 尚、 これらの式に結晶水 が含まれたものでもよい。 もちろん、 これらの式は鉱物学的又は化学的に純粋な 化合物としての式であって、 現実の層状無機化合物では、 ゲイ酸ナトリウムなど の不純物を含む場合があるため、 元素分析などによつて化学式を定めたものとし ても、 これらの式と必ずしも一致しない場合があることは、 例えば、 文献 (D. W, Thompson, J. T. Butterworth, J. Colloid Interf. Sci. , 151, 236-243(1992)) においても記述されていることである。
Mx S i 4 (A 12-,M g , ) O 10 X 2 · · · ( 1 )
(式 1において Mは H、 L i、 Na、 Kのうちいずれかひとつであって、 Xは 0 H、 Fのいずれかであって、 Xは 2未満の正数である。 )
Mx ( S i 4-x A 1 » ) A 12 O 1 0 X 2 · · · (2)
(式 2において Mは H、 L i、 Na、 Kのうちいずれかひとつであって、 Xは 0 H、 Fのいずれかであって、 Xは 4未満の正数である。 )
M, S i 4 (Mgs-x L i x ) O 10 X 2 · · · (3)
(式 3において Mは H、 L i、 Na、 Kのうちいずれかひとつであって、 Xは 0 H、 Fのいずれかであって、 Xは 3未満の正数である。 )
Mx ( S i 4 -x A I J Mg30,oX2 · · · (4)
(式 4において Mは H、 L i、 Na、 Kのうちいずれかひとつであって、 Xは 0 H、 Fのいずれかであって、 Xは 4未満の正数である。 )
Figure imgf000036_0001
(式 5において Μは L i、 N aのうちいずれかであって、 好ましくは Naである。
Xは 0H、 Fのいずれかであって、 好ましくは Fである。 )
Figure imgf000037_0001
(式 6において Mは L i、 Naのうちいずれかであって、 好ましくは L iである。
Xは OH、 Fのいずれかであって、 好ましくは Fである。 )
Figure imgf000037_0002
(式 7において Xはハロゲン、 N03、 SO C03、 OHのいずれかもしくは有 機酸のァニオン形であって、 好ましくは C03である。 Xは Xがハロゲン、 OH、 N03、一価の有機酸のとき 2であって、 Xが SO" C03、 二価の有機酸のとき
1である。 )
N a0. ssS i 4 (Mg2.67 L i o.33 ) O10X2 · · · (8)
(式 8において、 Xは OH、 Fのいずれかであって、 好ましくは OHである。 )
N a.-b (S i 4 -. A 1.) (Mga-bA 1 b) Oi0X2 · · · (9)
(式 9において、 Xは OH、 Fのいずれかであって、 好ましくは OHである。 a は 4未満の正数であって、 bは 3未満の正数であって、 a - b〉0である。 ) 本発明の層状無機化合物の具体例としては、 力オリナイト、 ハロイサイト、 蛇 紋石等の 1 : 1型粘土鉱物;タルク、 パイロフィライト、 スメクタイ ト、 バーミ キュライ ト (上記式中、 式 2で表されるもの、 以下同様) 、 フッ素四ゲイ素雲母
(式 5) やテニォナイト (式 6) を含む雲母等の 2 : 1型粘土鉱物; クロライ ト 等の 2 : 1 : 1型粘土鉱物; 2 : 1〜2 : 1 : 1型の中間鉱物;ィモゴライ ト等 の準晶質粘土鉱物:ァロフ ン等の非晶質粘土鉱物;ハイドロタルサイト (式 7)
;等が挙げられる。
また、 スメクタイ卜には、 同型置換された四面体、 八面体格子中のイオン種に よってモンモリロナイト (式 1 ) 、 モンモリロナイトが 40〜80%含まれる天 然物であるベントナイト、 パイデライト (式 2) 等の 2八面体型:ヘクトライ ト (式 3、 好ましくは式 8) 、 サポナイト (式 4、 好ましくは式 9) 、 ノ ントロナ ィ 卜等の 3八面体型;等が含まれる。
尚、 ハイ ドロタルサイトは、 上記式中の式 7、 具体的には MgeA 12 (OH) 16C03 · 4 H20で表される層状鉱物であり、 Mg (OH) 2 (ブルーサイト :中 心に M g 2 +を持つ酸素八面体の層が積み重なつた構造を持つ) の M g 2+の一部が A 1 s +に同型置換したものであって正電荷を有するが、 層間の COs2-によって電 気的中性を保っており、 陰イオン交換能をもつものである。 ゲイ酸塩鉱物ではな いが、 しばしば粘土鉱物として取り扱われる。
上述した本発明の層状無機化合物のうちいくつかの組成を下記表 1に示す。
<表 1 > 鉱物名 組成' 力オリナイ 卜 ( aolinite) Si2Al206(0H)4
ハロイサイ ト Si2Al206(0H)4'2H20
蛇紋石 Si2( g2+.Fe2+)306(0H)4
タルク (Talc) Si4 g3(OH)2Oio
パイロフイライト (Pyrophyllite) Si4Al2(0H)20,0
モンモリロナイト (Montmorillonite) M I xSi4(Al2-xM x)Oio(OH)2»nH20 バイデライ 卜 (Beidellite) MI x(Si4-,Alx)Al20,o(0H)2«nH20 へクトライ ト (Hectorite) MI xSi4(Mg,-xLix)Oio(OH,F)2»nH20 サポナイト (Saponite) MI x(Si4-xAlx) 3Oio(OH)2'nH20 ノントロナイト (Nontronite) MI x(Si4-xAl,)Fe2010(0H)2'nH20 ノヽーミキユラィ卜 (Verniiculite) MI x(Si4-xAK)Al20,o(OH)2'nH20 ハイドロタルサイト (Hydrotalcite) MgeAlz(0H)ieC03*4H20
* : MI は 1価陽イオンで代表させた交換性陽イオン 本発明の層状無機化合物の平均粒径は、 均一な分散が行える程度に小さな粒径 であれば特に限定はされない。 また、 層状無機化合物は一般に板状の粒子であり 且つ複数個の粒子が凝集と劈開を操り返す動的平衡にあるので、 平均粒径の定義 を行うこと自体が困難であるから、 好ましい平均粒径の範囲を明示することは容 易ではないが、 強いて言及すれば、 光散乱法や電子顕微鏡での観察などの手段に よって測定された値が、 水中に分散させた状態で、 1 nm以上 20 m以下のも のが好ましい。 さらには 10 nm以上 2〃m以下のものが好ましい。 又、 これら はイオン交換能を有することによって、 色素等の電荷や極性に応じて吸着を行う ものと考えられ、 イオン交換能は、 層を構成する金属イオンの置換によって生じ た層電荷に由来する。 そこで、 層電荷の絶対値は、 表 1に示した式の組成の原子 団について 0 . 2〜1程度の値を有することが好ましい。
また、 鉄等の遷移金属イオンを置換イオンとして構造中に、 又は不純物として 含むものは、 それによつて着色を生じ、 また酸化還元特性等を示して副反応を生 じる結果、 透明性等に劣ることとなるため、 遷移金属イオンによる置換がない方 が好ましいが、 これに限定されるものではない。
これら粘土鉱物等の層状無機化合物には 4級ァンモニゥム塩などのピラーを立 てて層間距離や層間の電荷や極性をあらかじめ調整することもできる。
本発明の上述した層状無機化合物のうち、 より好ましいものは 2 : 1型粘土鉱 物であり、 特に好ましいものはイオン交換能を有する膨潤性粘土鉱物である。 膨潤性粘土鉱物のうち、 更に好ましいものはベントナイト、 スメクタイト、 バ 一ミキユラィ トまたは合成フッ素雲母であり、 特に好ましくは合成へクトライト もしくは合成サポナイト等の合成スメクタイト、 または合成フッ素雲母で代表さ れる膨潤性合成雲母 (又は N a型雲母) 等の合成雲母 (天然の雲母は通常非膨潤 性の粘土鉱物である) である。 尚、 膨潤作用は交換性のカチオンまたはァニオン を持つことに由来し、 層間あるいはカードハウス構造と呼ばれる粘土鉱物等の表 面に検出可能な物質を迅速に吸着するため、 膨潤性の層状無機化合物を用いるの が好ましい。 粘土鉱物はァニオン性物質、 カチオン性物質、 非イオン性の極性有 機化合物を、 ハイドロタルサイトはァ二オン性化合物を吸着する。 層状無機化合 物に吸着可能な化合物は、 例えば、 H. Van Olphen著の成書 ΓΑη Introduction to Clay Colloid Chemistry, Second EditiorU (Krieger Publishment, Malabar) の 1 1章厂 Interaction of Clays and Organic CompoundsJ などに詳述されてい る。 本発明においてはこれらを単独で、 または 2種以上を併用してもよい。
本発明の上述した層状無機化合物は、 合成物、 天然物に限らず使用できるが、 好ましくは合成物が用いられる。 合成物は、 天然物とは異なり、 化学的に均一で 吸着した検出可能な物質を定量的に取り扱うことが可能であり、 更に層間に鉄等 の有色の金属を含まず透明度が高いため、 定量的、 光学的取り扱いが可能だから である。 尚、 ここで、 「合成」 とは、 少なくともスメクタイ 卜の場合は、 主に水 熱合成法又は溶融法によって製造されたものをいう。 天然物を精製して得られる 膨潤性粘土鉱物も好ましく用いられる。
このような層状無機化合物は t、くつか市販されており、 たとえばコープケミカ ル (株) 製の商品名ルーセンタイト S WNもしくはルーセンタイ ト S WF (合成 へク トライ ト) または M E (フッ素雲母) 、 クニミネ工業 (株) 製の商品名スメ ク トン S A (合成サボナイト) 、 協和化学工業 (株)製の商品名チキソピー W (合成へクトライト) または商品名キヨーヮード 5 0 0 (合成ハイドロタルサイ ト) 、 ラボー社製の商品名ラボナイト (合成へクトライト) 、 (株) ナカラィテ スク社販売の天然ベン卜ナイト、 (株) 豊順鉱業社製の商品名マルチゲル (ベン トナイト) 等が挙げられる。
上述した層状無機化合物は、 ァミン、 ポリェン、 各種色素など有機化合物を吸 着することが知られており、 従来、 油、 色素などを吸着する水処理剤、 ワインや みりん等の製造時の蛋白除去剤、 不純物吸着除去による脱色精製剤等として用い られてきた。 また、 これら雇状無機化合物は、 メタクロマジ一と呼ばれる現象を 生じるなど、 特定の反応場を与える素材として知られており、 更に、 最近では天 然色素の光安定性を向上させることも知られている
しかしながら、 本発明の第 1の方法においては、 この層状無機化合物に検出可 能な物質を吸着させることにより、 測定の高感度化が可能となることを見出した ものである。 よって、 この層状無機化合物の添加によって、 例えば前記 4— A A と水素供与体を用いる反応系での過酸化水素測定を、 より定量的に行うことがで きるのである。 かかる粘土鉱物等の層状無機化合物を物質の測定に使用して高感 度化を図った例は未だ見い出されていない。
また、 本発明の第 2の方法においては、 この層状無機化合物に検出可能な物質 が吸着されることによつて複合体が形成され、 前記検出可能な物質が反応系から 保護されること、 分解反応に関与する電子準位が吸着によつて変化することなど の効果があるのではないかと考え、 反応系にこれら層状無機化合物を添加するこ とを試みたものである。 そして、 その結果、 検出可能な物質が層状無機化合物に 吸着され、 しかも吸着された検出可能な物質が過剰の過酸化水素ゃァスコルビン 酸などの存在下でも十分安定に存在することができることを見出したのである。 この層状無機化合物の添加によって、 例えば前記 4一 A Aと水素供与体を用いる 反応系での過酸化水素測定を、 より高精度に行うことができる。 このように分析 対象物質の測定のための反応系中に粘土鉱物等の層状無機化合物を添加して、 生 成する検出可能な物質を安定化せしめ、 該分析対象物質の測定における感度や精 度を高める例は未だ見い出されていない。
また、 本発明の第 3の方法では、 分析を目的として検出可能な物質の生成反応 をこの層状無機化合物の存在下に進行させ、 その機構は必ずしも明確ではないが、 この層状無機化合物に検出可能な物質の反応前駆体を吸着させて層状無機化合物 の表面で濃縮させることなどにより、 検出可能な物質の生成反応速度を向上させ、 測定の迅速化が可能となることを見出したものである。
また、 本発明の第 4の方法においては、 層状無機化合物を検出可能な物質の生 成反応を含む反応系の溶媒中に分散させることにより、 不溶性の物質が生成して も高感度且つ迅速な検出ができることを見出したものである。 かかる粘土鉱物等 の層状無機化合物を溶媒に分散させて物質の測定に使用した例は未だ見 、出され ていない。
更に驚くべきことに、 反応系に層状無機化合物を存在させても、 検出反応は妨 害されないため、 この層状無機化合物の添加によって、 測定精度が損なわれるこ とはない。 本発明の方法において層状無機化合物を反応系に存在させる方法は、 利用する 反応系にもよるが、 分散液、 ゾル、 ゲル、 スラリー、 凝集体、 凝結体、 及び焼結 した多孔体からなる群から選ばれる t、ずれかの形態で前記反応系の反応媒質中に 分散した状態で存在させるのが好ましい。 前記反応系の反応媒質としては、 検出 可能な物質を生成する反応の反応溶媒が挙げられる。 また、 本発明の第 4の方法 では、 反応溶媒に対し不溶性の物質を生成する反応の該反応溶媒が挙げられる。 層状無機化合物を反応系に存在させる方法としてさらに好ましくは、 層状無機 化合物を溶媒に分散させて分散液の形で反応系中に添加する方法が挙げられる。 溶媒としては特に限定されず、 従来公知のものを任意に使用することができる力、'、 例えば蒸留水などの水、 エタノールなどのアルコール、 ァセトンなどのケトン類、 T/JP96/03188
- 40 - ジェチルエーテルなどのエーテル類、 酢酸ェチルなどのエステル類、 クロ口ホル ムなどのハロゲン化炭化水素類、 ベンゼンやトルエンなどの芳香族炭化水素類な どから、 分析対象物質やその検出反応系に適したものを選ぶことができる。 好ま しくは後述する緩衝剤を用い、 緩衝剤に分散させた緩衝溶液として添加するのが よい。 また、 分析対象物質を含む血液、 唾液、 尿などの試料液体を反応溶媒とし て使用することができるのは、 ドライケミストリ一として知られている通りであ る。
層状無機化合物の添加量は、 利用する反応系に応じて決定され、 用いる層状無 機化合物にもよるが、 検出可能な物質に対して吸着サイ卜が少な過ぎて検出可能 な物質が吸着されずに溶液中等に残ったり、 吸着サイ卜が多すぎて検出可能な物 質の吸着に濃度の偏りが生じたりすることのない量が望ましい。
尚、 反応系に添加する層状無機化合物の好ましい量は以下のように決定する。 即ち、 層状無機化合物は、 主として上述の層電荷の程度に応じた量の色素等を吸 着するので、 各種の層状無機化合物について色素等に対する全吸着サイ ト数を求 めることができる。 検出反応系において試薬の濃度が定まれば、 生成する色素等 のおおよその最大量が算出でき、 層状無機化合物の全吸着サイ ト量を生成しうる 色素等の最大量が越えないように層状無機化合物を添加することができる。 層状無機化合物の添加時期については特に限定はなく、 検出可能な物質の生成 反応の前であつても生成反応後であつてもよ t、が、 検出可能な物質の生成反応前 に反応系にあらかじめ添加し、 反応系中に分散させておくのが好ましい。
ここで、 反応系中に分散させておくのは、 層状無機化合物と、 検出可能な物質 の生成反応に与る反応出発物質、 反応中間体、 又は反応生成物との吸着などの相 互作用が生じやすくなるようにするためである。 また、 均一に分散した濃度のバ ラツキのない状態は検出に適しているためでもある。 したがって、 ここでいう分 散とは、 液体中へ層状無機化合物が分散した状態でもよく、 ゾル、 ゲルなどの状 態であつてもよく、 前述の相互作用が生じやすくまた検出に適した状態であれば よい。
また、 本発明の第 4の方法では、 層状無機化合物を反応溶媒に均一に分散させ て前記反応系中に存在させることにより、 不溶性の物質を層状無機化合物に吸着 させることができる。
層状無機化合物が分散する分散媒は、 反応が行われる反応溶媒と必ずしも同じ でなくてもよい。 層状無機化合物は、 反応溶媒を分散媒とする分散液に分散して いる状態でもよく、 また反応溶媒が浸透しうるゾル、 ゲル、 凝集体、 凝結体又は 焼結した多孔体の状態であつてもよく、 層状無機化合物が均一に分散しうる形態 で存在していれば特に限定されない。 反応溶媒が浸透しうるゾル、 ゲル、 凝集体、 凝結体又は焼結した多孔体の状態 である層状無機化合物は、 ドライケミストリ一などの試験片における反応部を兼 ねた検出部として用いることができ、 このように層状無機化合物が均一に分散し うる形態であれば本発明の測定方法を試驗片に適用することができる。
交換性のカチオン、 あるいは交換性のァニオンを持つ層状無機化合物は、 携拌 又は超音波の照射などによって水中に分散させると、 適当な濃度であればほとん ど均一な分散液となる。 しかし、 電解質の添加や有機化合物の添加や長時間の静 置や温度変化などによって、 層状無機化合物の粒子同士が凝集あるいは凝結し、 時としてゲル化や沈殿を生じるに至る。 これらの凝集は一般に穏やかに粒子同士 が相互作用をしたもので、 攪拌によって容易に再分散しうる。
このような層状無機化合物の分散と凝集と再分散については、 例えば、 H. Van Olphen著の成書厂 An Introduction to Clay Colloid Chemistry, Second EditionJ (Krieger Publishment, Malabar) の 3章「The Theory of Stability of Hydrophobic Sols.」、4章厂 Successes of the Theory of Stability - Further Theories and Refinement J、 7章厂 Electric Double- Layer Structure and Stability of Clay Suspensions」、 8章厂 Peptization of Clay SuspensionsJ などに詳述されている。
吸着の度合いは緩衝剤の組成 (p H、 イオン強度、 錯体を形成する成分等) に 影響される。 例えば、 純水に分散させたスメクタイトは食用色素青色一号 (プリ リアントブル一 F C F ) を吸着しにくいが、 p H 6 . 5のビスートリス緩衝液 [ビス (2 -ヒドロキシェチル) イミノ トリス (ヒドロキシメチル) メタンと塩 酸から調製されたもの] 中に分散させたスメクタイ トはこの色素を迅速に吸着す る。
本発明の方法に用いる緩衝剤、 緩衝溶液の種類は、 例えば上述したビス一トリ ス緩衝液の他、 リン酸緩衝溶液、 クェン酸緩衝溶液、 N— (2—ァセトアミ ド) イミノニ酢酸緩衝液等が挙げられるが、 これらに限定されるものではなく、 用い る反応系に応じて適宜選択するのが好ましい。 また、 緩衝剤の p H、 濃度等につ いては、 用いる反応系に適した条件を選択することが好ましい。
緩衝剤の添加時期は特に限定されず、 層状無機化合物の添加前であっても添加 後であっても差し支えないが、 層状無機化合物を分散させた緩衝溶液として、 層 状無機化合物と共に反応系に添加するのが好ましい。
4 . 界面活性剤
また、 本発明の方法で測定するにあたっては、 反応系に種々の界面活性剤を添 加することもできる。 界面活性剤の添加により、 難溶性物質を含む検体の均一な 分散、 検体の濡れ性の向上による試験片の試験部への浸透の均一化と迅速化が可 能となる。 ただし、 界面活性剤は、 界面に吸着する、 物質を分散 ·溶解する等の 作用があるため、 生成した検出可能な物質の層状無機化合物への吸着と競合し、 あるいは生成した検出可能な物質の溶解をもたらすことによって、 本発明の効果 を弱めるおそれがある。 したがって、 本発明において層状無機化合物と組み合わ せて用いる界面活性剤としては、 生成した検出可能な物質と層状無機化合物との 吸着を妨害しないものを選択するのが好ましい。 また、 界面活性剤の使用量につ いても、 このような妨害が生じない程度の少量を用いるのが好ましい。 もちろん、 色素等検出可能な物質と層状無機化合物との吸着の強さを調整するためには、 反 応系に適するように公知の種類の界面活性剤を用いてもよく、 添加量を増減して もよい。
吸着を妨害しない界面活性剤の種類としては、 界面活性剤の分子量が生成する 色素に比べて極端に大きくないものであり、 且つ界面活性剤の有機性値と無機性 値が下記式を満足するものが好ましい。
(無機性値) = (2. 37 ± 0. 23) X (有機性値) - 186. 2 ± 117. 1 上記式は、 既知の構造の種々の界面活性剤について吸着阻害効果と無機性値及 び有機性値との関係を検討して得られたものである。 すなわち、 炭素一個の有機 性値を 2 0、 水酸基の無機性値を 1 0 0、 ポリエチレンォキシドの有機性値を 3 0、 その無機性値を 6 0、 二卜口基の有機性値を 7 0、 その無機性値を 7 0、 な どのように官能基や原子ごとにポイントを割り振り、 化合物を構成する官能基、 原子についてこれらのボイントを合計して無機性値の総和及び有機性値の総和を とり、 この無機性値と有機性値とを直交座標にプロットすると、 似た性質の化合 物は直交座標の同じ領域に位置づけられるので、 化合物の構造によらない共通の 性質が現れることが有機概念図として知られている (甲田善生、 「有機概念図— 基礎と応用一」 第 1 1頁、 三共出版(1984)) 。 本発明者らは、 既知の構造を有す る多くの界面活性剤について吸着阻害効果と無機性値及び有機性値との関係を検 討し、 吸着を阻害しなレ、界面活性剤の種類が有機概念図にお t、て上記式を満足す ることを見出したものである。 なお、 無機性値、 有機性値の算出には、 前述の有 機概念図に関する成書中の換算データを用いることができるが、 前述の数式は、 本間善夫作製のプログラム 「パソコン有機概念図」 (化学ソフトウェア学会等) 中の換算データを用いて得たものである。 吸着を妨害しない界面活性剤の種類と添加量の選択は、 例えば次の (ィ) 〜 (二) のように実施することができる。
(ィ) 所定量のスメクタイト、 4一 A A、 及び N—ェチルー N— (2—ヒドロキ シー 3—スルホプロピル) — 3, 5—ジメ トキシァニリンを含む反応液に過酸化 水素を加え発色させる。
(口) (ィ) と同じ組成の反応液に更に所定の濃度となるように界面活性剤を加 え、 同様に過酸化水素を加え発色させる。
(ハ) スメクタイトを自然沈降、 遠心分雜、 ろ別などの適当な手段で分離し、 上 澄み液またはろ液の色調を分光光度計等で測定して、 (ィ) 、 (口) のそれぞれ におけるスメクタイトへの生成色素の吸着量を比較する。 あるいは、 吸着による 凝集が観察される場合には、 凝集沈殿の程度をもつて評価する。
(二) 界面活性剤を添加しないときと添加したときでほとんど差が見られない界 面活性剤の種類と添加量を選択する。 このような方法で選択された好ましい界面活性剤の種類としては、 n—才クチ ルー /9一 D—ダルコピラノシドなどの糖アルキルエーテル類、 n—才クチルー 3 一 D—チォダルコビラノシド、 n—へプチルー^ー D—チォグルコピラノシドな どの糖アルキルチオエーテル類、 n—才クタノィル—N—メチルグルカミ ド、 n ーノナノィル一 N—メチルダルカミ ドなどの糖アミ ド類、 ;9 - D—フラク トピラ ノシルー α— D—ダルコビラノシ ドモノデカノエート、 ;3— D—フラク トビラノ シルー α— D—ダルコビラノシドモノデカノエートなどの糖エステル、 Ν , Ν— ビス (3 - D—ダルコナミ ドプロピル) デォキシコラミ ドなどが挙げられる。 また、 添加量としては特に限定されず、 層状無機化合物全童に対する添加の割 合も特に限定されるわけではなく、 界面活性剤の種類と層状無機化合物の種類と 反応系に適した量を選べばよいが、 界面活性剤としての効果を発揮するに充分な 量、 例えば水系溶液において用いる界面活性剤の臨界ミセル澳度を大きく越えな い程度が好ましい。 例えば、 η—才クチルー /S—D—チォグルコビラノシドの 0 . 3 %水溶液、 ;9— D—フラク トビラノシルーな一 D—グルコビラノシドモノデカ ノエ一卜の 0 . 3 96水溶液、 Ν , Ν—ビス (3— D—ダルコナミ ドプロピル) デ ォキシコラミ ドの 0 . 3 %水溶液を好ましく用いることができる。
界面活性剤は、 特に本発明の第 1〜第 3の方法により測定する場合に使用する のが好ましい。
5 . 具体的な測定方法
本発明の測定方法の好ましい態様においては、 反応系にあらかじめ層状無機化 合物を添加して分散させておく。 分散液では半透明のコロイ ド状の凝集を生じる 場合があるが、 本発明においては必ずしも凝集を生じる必要はない。 なお、 この 凝集は、 層状無機化合物と検出可能な物質とが吸着した複合体と考えることがで きる。 この凝集は液を損拌することによって均一に再分散する。 また、 特に凝集 が不都合であるときには、 リン酸塩系の緩衝溶液を用いれば層状無機化合物の分 散性が向上するので、 凝集の発生を抑制することができる。 また、 最終的に検出に用いられる検出可能な物質を層状無機化合物に吸着させ て沈降させ、 該検出可能な物質を反応系より分雕 ·濃縮して測定感度をさらに高 めることも可能である。 ここで、 検出可能な物質の吸着した層状無機化合物の分 雜方法は、 特に限定されないが、 例えば自然沈降による方法、 遠心分離、 ろ過、 クロマトグラフィー、 電気泳動、 溶媒蒸発等が挙げられる。 具体的な例を挙げる と、 本発明に例示した層状無機化合物の分散液のろ過は、 例えば、 排除限界分子 量が約 1万又はポアサイズが約 5 n mであるポリサルホン製の限外ろ過膜を用い て行うことができる。
本発明においては、 層状無機化合物に吸着された検出可能な物質を測定する。 その測定方法としては、 吸光測定方法、 蛍光測定、 発光測定、 電気化学的測定方 法、 散乱光測定方法、 反射率測定方法等が挙げられる。 好ましくは吸光光度計等 を用 t、た光吸収分析に代表される比色定量等の光学的な測定方法が挙げられる。 本発明で用いる層状無機化合物は、 可視〜近赤外領域にほとんど吸収を持たない ので、 コロイ ド状の分散液でも、 あるいはゲル状でも光学的な測定を行うことが できる。 尚、 分散液のまま測定するときには系はもちろんオパールグラス法など の手段を選ぶことができる。 また、 後述するように、 層状無機化合物を用いて反 応溶媒が浸透しうる多孔質構造体を作製できるので、 この部分を反応部を兼ねる 検出部として備える試験片を用いて、 反射率測定、 吸光測定、 蛍光測定などを行 うことができる。 また、 電極で酸化還元電流や膜電位を測定する電気化学的な測 定方法も用いられる。 検出可能な物質が吸着した層状無機化合物に電極を接触さ せることによって、 電気化学的な応答を高感度に測定することができる。
Π . 本発明の試験片
本発明の試験片は、 試料中の分析対象物質と試薬とが反応して生成する検出可 能な物質を測定することにより前記分析対象物質を測定するための分析用試験片 であって、 前記検出可能な物質を検出するための検出部を有する試験部を 1以上 備えたものである。
試験部は、 試験片內において、 試料の吸収、 拡散、 反応、 検出など一連の分析 プロセスを担う機能的な部分であり、 その構造は特に限定されないが、 一般的に は、 前記反射率や透過吸収、 蛍光などで色素等の検出可能な物質を検出するため の検出部のほかに、 試料を吸入し試験部内に導入するための試験部の末端ないし はその近傍に設けられる試料吸入部、 試料を試験部内に均一に浸透 ·拡散させる ための拡散浸透部、 試料中に含まれる分析対象物質と反応する試薬を含む試薬部、 検出反応などの反応がおきる反応部、 試料中の成分や検出反応で生成する色素等 をクロマトグラフィーと類似の作用で分離する展開部、 試料が移動する時間を利 用して反応の進行を調整するための時間調整部、 試料中の成分や生成する色素等 を吸着作用でトラップし、 又は除去するための保持部、 過剰の試料液、 添加され た洗浄液や展開液を吸収し逆流を防止するための検出部に対し試料吸入部と反対 側の試験部の末端又は近傍に設けられる吸収部等を備えている。
これら試験部の機能を担う各部は、 各々相互に重複していてもよく、 例えば検 出部が試薬部と反応部とを兼ねたり、 検出部が保持部を兼ねるなど、 一つの部が 複数の機能を兼ね備えていてもよい。 本発明の試験片の好ましい態様としては、 例えば前記検出部として、 検出可能 な物質を検出する検出層を含む 2以上の層からなる多層型試験部を 1以上備えた 試験片が挙げられる。 検出層以外の層としては、 試料を吸入し試験部に導入する ための試料吸入層、 試料を試験部に均一に浸透,拡散させるための拡散層、 試料 中に含まれる分析対象物質と反応する試薬を含む試薬層、 検出反応などの反応が おきる反応層、 反応層と検出層の間などに設けられる妨害成分を除去するなどの 作用を有する展開層ないしは保持層、 過剰の試料、 添加された洗浄液や展開液を 吸収し逆流を防止する吸収層、 試験部を支持体上に固定させるための接着層等を 設けることができる。 特に好ましくは、 前記検出層のほかに、 さらに試料を拡散 するための拡散層を含み、 試料が前記拡散層を通って拡散し前記検出層に到達す るようにした前記試験片が挙げられる。 本発明の試験片は、 このような試験部を 1つ備えたものであってもよく、 また 2つ以上備えた多項目試験片であつてもよ い。 多項目試験片の場合、 一度に複数の試料を分析することができ、 また、 各項 目に異なる試薬を適用することにより、 2種以上の分析対象物質を含む試料であ つても、 その中の各々の分析対象物質を同時に分析することができる。 また、 別の好ましい態様としては、 例えば前記検出部として前記検出可能な物 質を検出するための検出領域を有する試験部を 1以上備えた試験片が挙げられる c 前記検出領域以外の領域としては、 試料を吸入し試験部に導入するための試料吸 入領域、 試料を試験部に均一に浸透 '拡散させるための拡散領域、 試料中に含ま れる分析対象物質と反応する試薬を含む試薬領域、 検出反応などの反応がおきる 反応領域、 試料中の成分や検出反応で生成する色素等を吸着や分配などのクロマ トグラフィ一類似の作用で分雜する展開領域、 試料が移動する時間を利用して反 応の進行を調整するための時間調整領域、 試料中の成分や生成する色素等を吸着 作用でトラップし、 又は除去するための保持領域、 過剰の試料液、 添加された洗 浄液ゃ展開液を吸収し逆流を防止する吸収領域等を試験片上に設けることができ る。 特に好ましくは、 前記検出領域のほかに、 さらに試料を拡散するための拡散 領域を含み、 試験片の末端等に点着された試料が前記拡散領域を通って、 毛細管 浸透作用で主として平面的に試験片上を移動し前記検出領域に到達できるように したものが挙げられる。 また、 この場合、 前記検出領域が、 検出可能な物質を検 出するための検出層を含む 2以上の層からなる上述した多層構造を有するもので あってもよい。 また、 本発明の試験片は、 このような検出領域と試薬領域等の一 組からなる試験部を 1つ備えたものであってもよく、 また前記試験部を試験片上 に 2つ以上備えた多項目試験片であってもよい。 多項目試験片の場合、 一度に複 数の試料を分析することができ、 また、 各項目に異なる試薬を適用することによ り、 2種以上の分析対象物質を含む試料であっても、 その中の各々の分析対象物 質を同時に分析することができる。 本発明においては、 試料中の分析対象物質と試薬とが反応するための反応部を 前記検出部とは別に設け、 前記検出可能な物質が前記反応部で生成された後、 前 記検出部に導入され検出されるようにしたものであってもよい。 その場合、 前記 検出部は、 試料が拡散して前記反応部を通過した後の位置に設けられるのが好ま しい。 具体的には、 多層型試験部の表面から浸透した試料が拡散層を通って拡散 して中間層の反応層に移動し、 さらに前記反応層を通過した後に到達する位置に 検出層を設けるのが好ましい。 また、 試験片上に検出領域、 反応領域及び拡散領 域を設け、 前記試料が主として平面的に移動して拡散領域を通って浸透して反応 領域に移動し、 さらに前記反応領域を通過した後に到達する領域に検出領域を設 けるのが好ましい。
また、 本発明においては、 前記検出部が同時に試料中の分析対象物質と試薬と が反応するための反応部をも兼ねるようにし、 前記検出可能な物質が、 前記検出 部において試料中の分析対象物質と試薬との反応により生成するようにしてもよ い。
本発明の検出部は、 分析対象物質と試薬との反応によって生成した色素等の検 出可能な物質が実際に検出される部分であるが、 上述したように前記反応が起こ る反応部や試薬が含まれる試薬部などを兼ねて t、る場合があり、 その場合は通常 検出部にあらかじめ試薬が含まれている。 一方、 本発明においては、 前記反応部 や試薬部とは別の独立した検出部を有するものであってもよいから、 その場合は、 必ずしも最初に試薬が試験部に含まれていなくてもよく、 試料を添加する前及び Z又は添加した後に試薬を添加するような形式であってもよい。 また、 分析対象 物質と試薬との反応によって生成した色素等の検出可能な物質の溶液を添加する 形式であってもよい。
本発明の試験片は、 通常このような試験部と、 試験部を支持するシート状、 管 状、 棒状等の支持部とからなり、 さらに必要に応じ電極等のセンサー、 試料液吸 入装置等が付随していてもよい。 本発明は、 以下に述べるような色素等の検出可能な物質を生成しうる試薬及び 反応系を利用した試験片に適用するのが好ましい。
試薬としては、 本発明の測定方法に関する説明の中で記載したのと同様に、 反 応によって生成した色素等の検出可能な物質が本発明の層状無機化合物と吸着な ど相互作用を生じて複合体を形成しうるものであれば特に限定されない。 層状無機化合物に吸着等する検出可能な物質を生成する試薬は、 酸化還元反応、 酸塩基反応、 縮合反応、 錯体形成反応などにより色素、 蛍光色素等の光学的に検 出可能な物質を生成する色素前駆体等の化合物や、 電気化学的に検出可能なメデ イエ一ター (電子伝達物質) の酸化体ノ還元体または錯体化合物を生成する化合 物などにおいて幅広く見出すことができる。
試料、 試薬又は反応物は、 水を溶媒とする溶液であることが多いので、 前述の 検出可能な物質が水溶性であれば拡散 ·溶出されやすい。 したがって、 検出可能 な物質が水溶性であるとき本発明の効果が特によく現れる。 よって、 用いる試薬 は水溶性の検出化合物を生成する試薬であることが好ましく、 実際にそのような 試薬は数多く利用されている。 しかし、 これに限定されず、 試料、 試薬又は反応 物が水以外の溶媒によるものであってもよく、 その場合、 用いる試薬はその溶媒 によって拡散 ·溶出される検出可能な物質を生成するものであっても差し支えな い。 もちろん、 試料、 試薬又は反応物の溶媒に不溶性の検出可能な物質を生成す る試薬を用いてもかまわない。
試薬としては、 本発明の測定方法に関する説明の中で例示した検出可能な物質 を生成するものであればいずれでもよく、 例えば色素前駆体としては、 好ましく は芳香環等の共役系を有する化合物が用いられ、 具体的には、 4一アミノー 1, 2—ジヒ ドロー 1 . 5—ジメチル一 2—フエ二ルー 3 H—ピラゾール一 3—オン に代表されるカプラーと水素供与体 (N—ェチルー N— (3—スルホプロピル) 一 3 , 5—ジメチルァニリンなど) の試薬類 (酸化縮合することによってキノン 系色素を生成する) 、 オルト トリジン、 ベンジジン類 (3 , 3 ' . 5 , 5 ' —テ トラメチルベンジジンなど) などの酸化発色体色素を生成する色素前駆体、 2, 6—ジクロロー 4一 [ ( 4—ヒドロキシフエニル) ィミノ] — 2 , 5—シクロへ キサジェン— 1一オンなどの色素のロイコ体 (酸化されることによって発色する) 、 4ーヒドロキシフエニル酢酸などの酸化されて蛍光物質を生成する化合物、 化学 発光物質など発光物質、 テトラゾリゥム塩 (還元されてホルマザンを生成する) や 1 , Γ 一ジメチルー 4 , 4 ' 一ビビリジリウム塩などの遠元されて色素を生 成する試薬類、 プロモクレゾールグリーンなど p Hの変化によって発色または変 色する化合物、 2—メ トキシー 4一モルホリノベンゼンジァゾニゥム塩などのジ ァゾニゥム塩 (カップリングによってァゾ系色素を生成する) 、 2 , 3—ジメチ ルー 2 . 3—ビス (ヒドロキシァミノ) ブタン (アルデヒ ドと反応して呈色する) など種々の公知の呈色反応用試薬、 オルトフタルアルデヒ ド (ヒスタミンと反応 して蛍光物質を生成する) など種々の公知の反応用試薬、 4ーメチルゥンベリフ ェリルリン酸塩などの酵素基質、 2— ( 5—プロモー 2—ピリジルァゾ) 一 5— [ N—プロピル ( 3—スルホプロピル) ァミノ] ァニリン塩などの錯体を 形成し発色 ·変色する化合物、 その他上述した検出可能な物質を生成しうる化合 物が挙げられる。 このような検出可能な物質を生成する反応系としては、 本発明の測定方法に関 する説明の中で述べた測定方法に利用されるものが挙げられ、 具体的には以下の ような反応系が例示できる。
(a)過酸化水素の生成反応または過酸化水素を酸化剤とする酸化反応を含む反応系 £
(b)ニコチンアミ ドアデニンジヌクレオチド (N A D H ) もしくはニコチンアミ ド アデニンジヌクレオチドホスフヱート (N A D P H ) を生成する反応、 または、 N A D Hもしくは N A D P Hが還元剤として作用する反応を含む反応系。
(c)酸性下で芳香族第 1ァミンに亜硝酸を反応させてジァゾ二ゥム塩を生成させる 反応を利用する反応系。
(d)リン酸エステルを有する 4ーメチルゥンベリフヱロンなどの蛍光酵素基質が、 アル力リホスファタ一ゼの作用によってリン酸塩を遊雜して蛍光物質を生成する 反応を含む反応系。
(e)酸化還元酵素などによって 1 . 4—ジァミノベンゼンなどのメディエーターを 酸化/還元し、 メディエーターの酸化体 Z還元体を生成する反応を含む反応系。 このような反応系を利用した分析方法としては、 E L I S A等のィムノアッセ ィ、 ィムノクロマト、 尿検査、 生化学血液検査、 比色試験紙等が挙げられる。 こ のような試験片の具体的な例は、 H. G. Curme, et al. , Clinical Chemistry, 24(8), 1335- 1342(1978)、Β· falter, Analytical Chemistry, 55(4), 498A( 1983)、 近藤朝士「ぶんせき」 1984(7), 534、 近藤朝士「ぶんせき」 1986(6), 387、 分析 化学便覧第 8頁 (日本分析化学会編:改訂 4版、 丸善(1991)) 、 特開平 6- 213886
(北島昌夫ら) 、 M. P. Allen, et al. , Clinical Chemistry, 36(9), 1591 -159 7( 1990)、 D. Noble, Analytical Chemistry, 65(23), 1037A(1993)、 R. F. Zuk, et al. , Clinical Chemistry, 31(7), 1144-1 0( 1985)等の文献に詳述されてい る。 これらの方法で分析できる分析対象物質としては、 体液中の尿や血液等の生 体成分、 食品、 医薬、 自然環境に存在する微量物質、 産業化学物質、 廃棄物中の 微量物質等が挙げられ、 本発明の試験片はこれらの分析に利用することができる 本発明の試験片を適用できる試料は、 これらの分析対象物質を 1種のみ含むも のであってもよく、 また 2種以上の分析対象物質を含むものであってもよい。 本発明の試験片の試験部には、 更に必要に応じてかかる分析用試験片に通常用 、られる公知の配合物、 例えば親水性ポリマー等を含有させることができる。 本発明においては、 試験片における試験部、 好ましくはそのなかの生成した色 素が存在する部分である検出部に層状無機化合物が含まれていることが必要であ る。
すなわち、 前記試験部を構成する少なくとも 1つの検出層又は検出領域に層状 無機化合物が含まれていることが必要である。 具体的には、 検出層を含む 2以上 の層からなる多層型試験部においては、 少なくとも前記検出層に層状無機化合物 を含有する。 この場合、 さらに前記検出層以外の層に層状無機化合物を含有して もよく、 例えば試料吸入層、 拡散層、 試薬層、 反応層、 接着層、 保持層、 展開層、 吸収層等に層状無機化合物を含有してもよ t、。
また、 前記試験部が検出領域を有する場合は、 少なくとも前記検出領域に層状 無機化合物を含有する。 さらに前記検出領域以外の領域に層状無機化合物を含有 していてもよく、 例えば試料吸入領域、 拡散領域、 試薬領域、 反応領域、 展開領 域、 時間調整領域、 保持領域、 吸収領域等に層状無機化合物を含有してもよい。 この場合、 検出領域は多層構造であってもよく、 その場合は検出領域を構成する 層のうち少なくとも検出層に層状無機化合物を含む。 また、 さらに他の層に層状 無機化合物が含有されていてもよい。
また、 試験部が前記検出部のほかに、 試料中の分析対象物質と試薬とが反応す るための反応部を有する場合は、 試料が拡散して前記反応部を通過した後の位置 に検出部を設け、 該反応部において生成された検出可能な物質が層状無機化合物 を含有する検出部に移動して検出されるようにするのが好ましい。
本発明の試験片に用いられる層状無機化合物は、 上述した本発明の測定方法に 関する説明の中で例示したものが挙げられる。 本発明の測定方法と同様に、 これ らの層状無機化合物のうちより好ましいものは 2 : 1型粘土鉱物であり、 特に好 ましいものはイオン交換能を有する膨潤性粘土鉱物である。 また、 膨潤性粘土鉱 物のうち、 更に好ましいものはベントナイト、 スメクタイ ト、 バーミキユラィト または合成フッ素雲母で代表される膨潤性合成雲母 (又は N a型雲母) 等の合成 雲母 (天然の雲母は通常非膨潤性粘土鉱物である。 ) であり、 特に好ましいもの は合成へクトライトもしくは合成サボナイト等の合成スメクタイト、 または合成 フッ素雲母である。 これらは単独で用いても、 2種以上を併用してもよい。 この ように層状無機化合物が色素等の拡散 ·溶出を抑制するという効果を利用して試 験片に含有させることはこれまで試みられていない。
更に、 驚くべきことに、 検出部等の試験部に前記層状無機化合物を添加しても、 検出反応は妨害されない。 よって、 この層状無機化合物の添加によって、 例えば 前記 4一 A Aと水素供与体を用いる反応系等を利用した検査を、 より正確に、 そ して溶出を気にせずに簡便に行うことができるのである。
試験部のうちの層状無機化合物を含有する部分は、 好ましくは多孔質構造体で あり、 材質は特に限定されないが、 主として層状無機化合物によって形成されて いる力、、 又は、 主として親水性ポリマー、 メンブランフィルター、 ろ紙や布、 ガ ラスフィルターなどの繊維集合体、 セルロース又は珪藻土などの有機化合物もし くは無機化合物の微粉末からなる群から選ばれる少なくとも 1種の多孔質形成素 材と層状無機化合物とによって形成されているのが好ましい。
層状無機化合物によって形成されている多孔質構造体としては、 主として、 層 状無機化合物のゾル、 ゲル、 凝集体、 凝結体、 又はそれらを乾燥あるいは焼結し た多孔質体が挙げられる。 多孔質構造体には後述する緩衝剤などを添加してもよ い。 例えば層状無機化合物の 1 %分散液の一滴を支持体上に滴下してキャストし た後、 凍結乾燥することで、 吸水性のよい多孔質層を得ることができる。
支持体はシート状であっても管状又は棒状であってもよく、 材質は特に限定さ れず、 ろ紙、 不織布、 布、 ガラスフィルターなどの繊維集合体:ガラスビーズ、 ポリマ一ビーズ、 二酸化チタンなどの粒状物質:セルロース、 珪藻土、 可溶性塩 類や疎水化多糖類などの粉末、 などの粒状物質又は微粉末: メンブランフィルタ 一:ポリエチレンテレフ夕レート (P E T ) やポリスチレンなどのプラスチック プレート等の有機高分子;等であってもよい。 また、 更に好ましくは親水性ポリ マ一からなるゲル、 表面を親水化処理したメンブランフィルター又はプラスチッ クプレ一卜が举げられる。
親水性ポリマーとしては、 ポリエチレンォキシド、 ポリプロピレンォキシド等 のポリアルキレンォキシド;カルボキシメチルセルロース、 ヒドロキシェチルセ ルロースなどのセルロース誘導体;ゼラチンおよびその誘導体 (例えばフタル化 ゼラチンなど) ;その他多糖類およびその誘導体 (ァガロース、 力ラゲ一ナン、 キチン、 キトサンなど) ;ポリビニルアルコール;ポリビニルピロリ ドン; ポリ アクリル酸塩類 (ポリアクリル酸ナトリウム等、 およびそれらのマレイン酸との 共重合体等) : ポリアクリルアミ ド;ポリメタクリル酸類 (ポリヒ ドロキシェチ ルメタァクリル酸等) : メタアクリルアミ ド:ポリスルホン; ポリイミ ド: ポリ スチレン;ポリカーボネート ;ポリエーテルエーテルケ卜ン;ポリオキシメチレ ン;アルギン酸ナトリウム :親水処理された (例えば紫外線照射やシラノ一ル処 理によって親水化された) ポリエチレン、 ポリプロピレン、 ポリフルォロェチレ ン等のポリオレフイン系樹脂;などの化学構造を含む重合体、 共重合体、 会合体 等が挙げられる。
また、 前記親水性ポリマーは、 架橋剤によるグラフ卜化、 疎水的親和性による 会合などによるネッ トワーク構造を持ち、 水に不溶であるものが好ましい。 このような親水性ポリマーの具体例としては、 ダルタルデヒ ドで架橋されたポ リ リジン、 ポリエチレンォキサイ ド架橋生成物、 ポリアクリルアミ ドグラフトポ リマー、 ポリアクリル酸塩グラフトポリマー、 デンプンーアクリル酸塩グラフト ポリマー等が挙げられる。
また、 親水性ポリマー、 メンブランフィルター、 繊維集合体、 及び有機化合物 もしくは無機化合物の微粉末からなる群から選ばれる少なくとも 1種の多孔質形 成素材と層状無機化合物とがともに試験部に含有され、 前記多孔質構造体を形成 していてもよい。 このような多孔質構造体を形成させる方法としては、 あらかじ め多孔質構造体形成素材と層状無機化合物の混合液を調製しておき、 前述の支持 体にキャスト又は含浸させる方法、 または、 あらかじめ多孔質構造体形成素材を 用いて多孔質膜など多孔質の支持体を作製しておき、 層状無機化合物の分散液又 は前記混合液を、 その多孔質の支持体にキャスト又は含浸させる方法等が挙げら れる。
多孔質構造体の製造時に層状無機化合物を混合する場合は、 例えば親水性ポリ マーゃ微粉末等とともに混練し同時に製膜する方法等がある。 また、 層状無機化 合物を、 後述する緩衝剤に溶解又は分散させた緩衝溶液を乾燥させ、 この乾燥物 を原料に混合することもできる。
また、 層状無機化合物の分散液又は混合液を多孔質の支持体に含浸させる方法 の場合、 用いる溶媒の種類は特に限定されず、 従来公知のものを任意に使用する ことができるが、 例えば蒸留水などの水、 エタノールなどのアルコール、 ァセト ンなどのケトン類、 ジェチルエーテルなどのエーテル類、 酢酸ェチルなどのエス テル類、 クロ口ホルムなどのハロゲン化炭化水素類、 ベンゼンやトルエンなどの 芳香族炭化水素類などから、 利用する検出反応系等に適したものを選ぶことがで きる。 好ましくは、 後述する緩衝剤を用いて緩衝剤に溶解または分散させた緩衝 溶液を含浸させるのがよい。 溶液または分散液の濃度は、 反応系等に応じて適宜 選択することができ、 特に限定されない。
次に、 層状無機化合物を含有する層又は領域の作製方法を例示する。
層状無機化合物を含有する層又は領域を作製するとき、 前記層状無機化合物の ゾル、 ゲル、 凝集体、 凝結体を乾燥又は焼結した多孔質構造体を用いることがで きる。 例えば、 層状無機化合物の 1 %分散液の一滴をプラスチックシート上にキ ャストした後、 凍結乾燥することで、 吸水性のよい多孔質層を得ることができる。 また、 上述した親水性ポリマー、 メンブランフィルター、 繊維集合体、 及び有 機もしくは無機微粉末からなる群から選ばれる少なくとも 1種の多孔質構造体形 成素材を作製に用いることができる。
親水性ポリマーとしては、 ゼラチン、 ポリアクリル酸又はその誘導体、 ポリア クリルァミ ド、 ポリビニルアルコール、 ポリビニルピロリ ドン、 ポリエチレング リコール、 多糖類又はその誘導体、 ポリペプチド、 ポリアミン又はその誘導体な どが特に好ましい。 親水性ポリマーはゲル又はゲルの乾燥体として用いてもよい。 親水性ポリマーは、 グルタルアルデヒドなどの既知の架橋剤の添加などによって 架橋度を調節したゲルであってもよい。 これらを単独で、 或いは組み合わせて用 いることができる。
前記素材と層状無機化合物とを複合した多孔質構造体を得るには、 層状無機化 合物を試験部に含有させる方法において既に述べた種々の方法を用いることかで きる。 例えば、 緩衝溶液に分散させた層状無機化合物の 1 %分散液をろ紙に含浸 させ、 温風乾燥するという処方で多孔質の領域を得ることができる。 またそのろ 紙の小片を、 例えばプラスチックシートの上に貼り付ければ多孔質層を得ること ができる。
また例えば、 次に述べる手順を用いることができる。 層状無機化合物の 3 %分 散液に、 重量比で 1 : 1から 4 : 1となるように調製した所定濃度のポリアクリ ルアミ ドの水溶液の同量を混合し、 数時間よく攬拌する。 必要であれば炭酸ナト リウムある! ^、は酌酸などの希薄水溶液を加えることによって、 混合液の p Hを約 5〜 9の間に調整する。 また、 必要であれば混合液をアルカリ性にし、 N . N— メチレンビスアクリルアミ ドを 2 %となるように加え、 電子線を照射して架橋反 応を起こさせてもよい。 こうして得られた混合液をプラスチック板の上に塗布し、 乾燥させれば多孔質膜を得ることができる。
こうして作製された層状無機化合物を含有する多孔質構造体は、 特に吸水性に 優れており、 試験片の試験部として好ましく用いられる。 もちろん、 試験部の作 製例はここに述べた例に限られるわけではない。 例えば、 種々の公知の試験片の 試験部の作製例を応用することができる。 そのような試験片は、 例えば、 H. G. Curme, et al. , Clinical Chemistry, 24(8), 1335-1342(1978)、 B. falter, Analytical Chemistry. 55(4), 498A(1983)、 近藤朝士 「ぶんせき」 1984(7). 53 4、 R. F. Zuk, et al. , Clinical Chemistry, 31(7). 1144 - 1150(1985)、 近藤朝 士 「ぶんせき」 1986(6), 387、 特開平 2-6541 (K. Hildenbrand) 、 M. P. Allen, et al. , Clinical Chemistry, 36(9), 1591-1597(1990)、 特開平 3- 163361 (E. J. Kiserら) 、 分析化学便覧第 8頁 (日本分析化学会編:改訂 4版、 丸善(1991)) 、 D. Noble, Analytical Chemistry, 65(23), 1037A( 1993)、 特開平 5- 157745 (真鍋 秀彦ら) 、 特開平 6-213886 (北島昌夫ら) 、 特開平 6-222061 (H. Brandtら) 等の 文献に記載されている。
層状無機化合物の分散液の濃度や親水性ポリマーとの混合比や調整すべき p H の値は、 層状無機化合物の種類、 吸着させようとする色素の種類、 用いる親水性 ポリマーの種類と量、 緩衝剤の種類と量、 混合液の粘度などをハ "ラメ一ターとし て、 必要とする多孔性の程度、 多孔質層の膜厚、 試験部の機械的強度等を得られ るように適した条件を選べばよ t、。
以上のように作製した多孔質構造体中に、 試料液中の分析対象物質と反応し検 出可能な物質を生成する試薬を添加することによって、 該多孔質構造体を試験片 の検出部として使用することができる。 層状無機化合物の添加量は、 利用する反応系に応じて決定され、 用いる層状無 機化合物にもよるカ 、 本発明の測定方法におけるのと同様に、 生成物質に対して 吸着サイ卜が少な過ぎて生成物質が吸着されずに溶液中等に残ったり、 吸着サイ 卜が多すぎて生成物質の吸着に濃度の偏りが生じたりすることのない量が望まし い。 反応系に添加する層状無機化合物の好ましい量としては、 各種の層状無機化 合物について色素等に対する全吸着サイ ト数を求め、 この全吸着サイ ト数を生成 しうる色素等の最大童が越えないように層状無機化合物を添加することができる。 上述したように、 吸着の度合いは緩衝剤の組成(P H、 イオン強度、 錯体を形 成する成分等) に影饗されるので、 緩衝剤の組成、 濃度又は p Hを変化させるこ とで、 あるいは層状無機化合物への吸着において色素等と競合しうる化合物など の添加量を変化させることで、 望ましい吸着の程度に調整することができる。 前 記競合しうる化合物としては、 金属イオン、 有機アミン類、 カルボン酸類、 リン 酸塩などが举げられ、 また界面活性剤、 可溶性ポリマーなども使用できる。
用いる緩衝剤や緩衝溶液の種類、 緩衝剤の p H、 樓度等については、 本発明の 測定方法に関する説明の中で記載したものと同様である。
緩衝剤の添加方法は特に限定されないが、 層状無機化合物を溶解もしくは分散 させた緩衝溶液として、 またはその乾燥物として層状無機化合物と共に含有させ ることができる。
また、 試験片の製造にあたり、 層状無機化合物の分散液において、 半透明のコ ロイ ド状の凝集が生じる場合があるが、 この凝集体は分散液を擾拌することによ つて均一に再分散する。 また、 特に凝集が不都合であるときには、 リン酸塩系の 緩衝溶液を用いれば層状無機化合物の分散性が向上するので、 凝集の発生を抑制 することができる。
また、 種々の界面活性剤を試験部に含有させることもできる。 界面活性剤の添 加により、 支持体上に試験部等をコーティングする性能等が向上する。 ただし、 界面活性剤は、 界面に吸着する、 物質を分散,溶解する等の作用があるため、 生 成した検出可能な物質の層状無機化合物への吸着と競合し、 あるいは生成した検 出可能な物質の溶解をもたらすことによって、 本発明の効果を弱めるおそれがあ る。 したがって、 本発明において層状無機化合物と組み合わせて用いる界面活性 剤としては、 生成した検出可能な物質と層状無機化合物との吸着を妨害しないも のを選択するのが好ましい。 また、 界面活性剤の使用量についても、 このような 妨害が生じない程度の少量を用いるのが好ましい。 界面活性剤の種類及び使用量 の具体例は、 上述した本発明の測定方法におけるものと同様である。 実施例 以下に実施例を挙げて本発明を具体的に説明する。 実施例 1
POD (ペルォキシダ一ゼ) 、 色素前駆体として 4一 AAと N—ェチルー N— (2—ヒ ドロキシ— 3—スルホプロピル) — 3, 5—ジメ トキシァニリン (以下、 EHSDAと略す。 ) 、 緩衝剤としてビス一トリスノ ツファー (pH6. 5) 、 及び層状無機化合物としてスメクタイ トを、 終濃度が表 2の通りになるように取 り、 そこへ過酸化水素を終濃度が 120 //mo 1 / 1になるように添加して反応 させ、 反応溶液を得た。 得られた反応溶液の凝集部の吸収スぺク トルを 450〜 750 nmの間で測定した。
また、 P〇D、 4 -AA, EHSDA、 及びビス—トリスバッファーを終濃度 が表 3の通りになるように取り、 そこへ過酸化水素を終濃度が 1 20 m o 1 Z 1になるように添加して反応させ、 反応溶液を得た。 得られた反応溶液の吸収ス ぺク トルを、 同様に 450〜750 nmの間で測定した。 尚、 吸光度の測定は、 J a s c oV - 550 (日本分光社製) を用い、 0. 5 nmの間隔で行った。 走査速度は 200 nmノ分であり、 バンド幅は 1. 0 nm である。 セルにはセル長 1 cmのディスポセル (ポリメチルメタクリレ一ト製) を使用し、 スメクタイトを添加したときには凝集が生じたので凝集部のみを測定 するために 0. 1 m 1用スリツトを使用した。 測定の結果を図 1に示す。
<表 2 > 試 薬 終濃度
POD (ペルォキシダーゼ) 1 U/m 1
4一 AA*】 2 mm o 1 Z 1
EHSDA*2 2 mm o 1 / 1
ビス一卜リスバッファー " 00 mm o 1 / 1
スメクタイ ト" 0. 1 %
(全量 3m 1 )
*1)4-アミパンチピリン(4-ァミノ- 1, 2-シ' tト 'π- 1, 5-シ'メチル -2-フ ル -3Η-Ι:。ラ'厂ル- 3-才ン) *2)Ν-ιチル- Ν- (2- 1 Dキシ -3-スルホフ。 αピル)- 3,5-シ'メトキシァニリン
*3)ビス(2-tドロキシヱチル)イミゾトリス(tト キシメチル) (夕ン
*4)ル-センタイト SVN (合成スメクタイト:コ-フ。ケミカル社製)
<表 3 > 試 薬 終濃度
POD (ペルォキシダーゼ) 1 U/m 1
4 -AA 2 mm 0 1 / 1
EHSDA 2 mm o 1 / 1
ビス一トリスハ'ッファー 00 mm o 1 / 1
(全量 3 m 1 ) 尚、 使用した試薬は各々下記表 4に示す通りである,
<表 4 > 試薬濃度 メーカー 試薬純度
POD (m) 3 0 U/IDL 東洋紡 (株)
4 - AA 6 Ommol/し 和光純薬 (株) 試薬特級
EHS D A 60 mmol/L S I GMA
ビス-トリス 0. 25 mmol/L ナカライテスク(株) Specially
'、'7フ了- Prepared
スメクタイ ト 0. 3 % コープケミカル (株)
過酸化水素 三徳化学工業 (株) 試薬特級
図 1の結果から分かるように、 色素がスメクタイ 卜に吸着している条件下にお いても、 無添加の条件下と同じように反応が進行することが確認できた。 スメク タイ ト無添加の場合の吸収極大は約 593 nm、 スメクタイ トを添加した場合の 吸収極大は約 578 n mであつた。 実施例 2
POD、 4 - AA. EHS DA、 及びビス—トリスバッファー (pH 6. 5) を終濃度が上記表 3の通りになるようにセル長 1 cmの石英セルに取り、 37て で 3分間インキュベーションを行った。 温度調整後、 表 5に示す濃度の過酸化水 素を添加して反応を開始し、 反応開始 3分後に吸光度を測定した。 測定した 3分 後にはこの反応は十分終点に達して 、た。
尚、 使用機器は J a s c oV- 5 5 0 (日本分光社製) であり、 測定波長は 5 9 3 nm (吸収極大付近の波長) とした。 この結果からスメクタイ ト無添加時の 過酸化水素の検量線を求めることができた。 <表 5 > 過酸化水素 吸 光 度
濃 度
mo 1 / 1 ) 1回目 2回目 平 均
200 1. 70 1. 70 1. 70
100 0. 85 0. 85 0. 85
50 0. 42 0. 42 0. 42
25 0. 21 0. 21 0. 21
1 3 0. 10 0. 10 0. 10
6. 3 0. 04 0. 04 0. 04
4. 2 0. 01 0. 01 0. 01
1. 6 0. 01 0. 01 0. 01
実施例 3
[実験方法]
POD、 4 -AA、 EHSDA、 ビスー トリスバッファー ( p H 6. 5) 及び 合成スメクタイトを、 終濃度が上記表 2の通りになるように、 セル長 l cmのデ イスボセル (ポリメチルメタクリレート製) に取り、 37 で 180秒間温度調 整を行った。 温度調整後、 過酸化水素を終濃度が表 6の通りになるように添加し、 過酸化水素添加 1 0秒後より 2秒毎に 1800秒間吸光度の測定を行った。 測定 装置として J a s c o V— 550 (日本分光社製) を用い、 測定波長を 577 η m (極大吸収波長付近の波長) とした。 凝集部のみを測定するため、 0. 1 m l 用のスリットを用いた。 過酸化水素濃度 0 mo 1 / 1の測定結果をブランクと し、 測定開始 1800秒後の吸光度の差 (AAb s) を求め、 スメクタイ ト添加 時の過酸化水素の検量線を求めた。
[結果]
この結果を実施例 2のスメクタイト無添加時の結果と共に図 2に示す。 図 2の 結果について更に縦軸、 横軸の対数をとつた検量線を図 3に示す。 表 5、 表 6、 図 2及び図 3から、 色素の吸着した吸光度と過酸化水素との間に相関関係がある ことがわかった。 [スメクタイト添加時では、 過酸化水素濃度 0〜 200 ^mo 1ノ 1の間で r = 0. 9 9 9の検量線が得られた。 [ r :相関係数]
図 2及び図 3より、 スメクタイ 卜無添加の場合、 最小検出限界がおよそ 6 m o 1 / 1であるのに対し、 スメクタイ ト添加の場合はおよそ 3 μτηο 1 / 1 と感 度が向上した。 また、 検量線の傾きも約 2倍となった。 く表 6 >
Figure imgf000063_0001
実施例 4
[実験方法]
P OD、 4一 AA、 EH S DA、 ビス— 卜リスバッファ一 ( p H 6. 5) 、 及 び合成スメクタイ トを、 終濃度が上記表 2の通りになるように、 セル長 1 c mの ディスポセル (ポリメチルメタクリレート製) に取り、 3 7てで 1 8 0秒間温度 調整を行った。 温度調整後、 過酸化水素を終濃度が 1 0 0 mo lノ 1 となるよ うに添加し、 過酸化水素添加 2 0秒後より 2秒毎に 6 0 0秒間吸光度の測定を行 つた。 測定装置として J a s c oV— 5 5 0 (日本分光社製) を用い、 測定波長 を 5 77 nm (極大吸収波長付近の波長) とした。 凝集部のみを測定するため、 0. 1 m l用のスリッ 卜を用いた。 また、 過酸化水素濃度 0 m o 1 / 1の測定 結果をプランクとして測定した。
また、 P OD、 4一 AA、 EHS DA、 及びビス—トリスバッファー (ρΗ 6· 5) を終濃度が上記表 3の通りになるように、 セル長 1 cmのディスポセル (ポ リメチルメタクリレート製) に取り、 37てで 180秒間温度調整を行った。 温 度調整後、 過酸化水素を終濃度が 100 mo 1ノ 1となるように添加し、 過酸 化水素添加 20秒後より 2秒毎に 600秒間吸光度の測定を行った。 測定装置と して J a s c oV - 550 (日本分光社製) を用い、 測定波長を 593 nm (極 大吸収波長付近の波長) とした。 0. 1 m 1用のスリッ トを用いた。
[結果]
結果を図 4に示す。 図 4から、 スメクタイ ト添加により增感効果があることが わかる。 また、 過酸化水素添加後約 30秒で発色反応が終点に達していることを 確認した。 更に、 スメクタイ ト無添加で発色させた後にスメクタイ トを添加して も色素の吸着、 凝集は観察された。 実施例 5 テトラゾリゥム塩として 3, 3' — (3, 3' ージメ トキシ一4, 4' ービフ ェニレン) 一ビス [2— (パラニトロフエニル) 一 5—フエ二ルー 2 H—テトラ ゾリゥムクロライ ド (以下、 「テトラゾリゥム塩」 と略す。 ) 、 緩衝剤としてリ ン酸バッファー (リン酸水素ニナトリウムとリン酸ニ水素ナトリウムとを混合し て pH8. 5に調整したもの) 、 Lーァスコルビン酸、 及びスメクタイ 卜 (商品 名ルーセンタイ ト SWN: コープケミカル社製、 合成スメクタイ ト) を、 終濃度 が表 7の通りになるようにディスポチューブにとって反応させ、 発色させた。 こ の反応は水に不溶性のホルマサンが生成する反応として知られている。 得られた 発色液を 10倍に希釈し、 400〜800 nmの間で吸収スぺク トルを測定した。 また、 比較のため、 スメクタイ トを加えない他は上記と同様にして終濃度が表 7の通りになるようにテトラゾリゥム塩とリン酸バッファーと Lーァスコルビン 酸とをディスポチューブにとり発色させた。 得られた発色液について 400〜8 00 nmの間で吸収スぺク トルを測定した。 尚、 吸光度の測定は、 日本分光社製分光光度計 (J a s c oV— 550) を用 いた。 セルにはセル長 1 c mのディスポセル (ポリメチルメタクリレー卜製) を 使用した。 測定の結果を図 5に示す。
<表 7 > 試 薬 終濃度 テトラゾリゥム塩 1 mm o 1 z 1
リン酸バッファ一(pH8.5) 1 00 mm o 1 / 1
L ( —ァスコルビン酸 333 / m o 1 / 1
スメクタイ ト 0. 1 %、 又は 0%
(全量 3m 1 )
スメクタイ 卜無添加の系では青色に発色し、 吸収極大波長は約 633 nmであ つた。 スメクタイ ト添加系では赤紫色に発色し、 吸収極大波長は約 535 nmで あった。 このように、 スメクタイ トを添加した条件下においても、 無添加の条件 下と同じように反応が進行することが確認できた。 さらにスメクタイ 卜無添加系 では、 セル内面にホルマサンと見られる沈着物が析出したのに対し、 スメクタイ 卜添加系ではセル内に沈殿あるいは凝集は観察されなかった。 また、 吸収極大が 短波長側へシフ卜しているので、 本実施例と同様の発色反応系を用いる場合は、 吸光度の測定は、 スメクタイ ト添加系、 無添加系のそれぞれの吸収極大波長付近 の波長である 633 nm (スメクタイ ト無添加系) 、 535 nm (スメクタイ ト 添加系) で行うのがよいことがわかる。 実施例 6 実施例 5で用いたのと同様のテトラゾリゥム塩、 リン酸バッファー (pH8. 5) 、 及びスメクタイ 卜を、 終濃度が表 8の通りになるようにディスポチューブ にとり、 30てで 3分間ィンキュペートした。 インキュベート後、 Lーァスコル ビン酸を 0〜333 umo 1 / 1の範囲で表 9に示す各濃度となるように添加し、 30てで 30分間反応を行って吸光度を測定した (測定波長: 535 nm) 。 了 スコルビン酸無添加 (0 ; mo 1 / 1 ) のサンプルをブランクとして測定結果よ り検量線を作成した。 また、 比較のため、 スメクタイ トを添加しない他は上記と同様に終濃度が表 8 の通りになるようにテトラゾリゥム塩及びリン酸バッファーをディスポチューブ にとり、 3 0 で 3分間インキュベートした。 インキュベート後、 ァスコルビン 酸 (0〜3 3 3〃11 0 1ノ 1 ) を表1 0に示す各濃度となるように添加し、 3 0 で 3 0分間反応を行って吸光度を測定した (測定波長: 6 3 3 nm) 。 ァスコ ルビン酸無添加のサンプルをブランクとして測定結果より検量線を作成した。 図 6に得られた検量線を示す。 スメクタイ ト無添加系では、 ァスコルビン酸終 濃度 4 1. 7〜3 3 3. 3 /m o 1 / 1の範囲で r (相関関数) - 0. 9 9 7 2 の検量線が得られた。 スメクタイ ト添加系では、 ァスコルビン酸終濃度 5. 2〜 1 3 3. 3 ^mo 1 / 1の範囲で r - 0. 9 98 5の検量線が得られた。 得られ た検量線の傾きは、 スメクタイ ト添加系がスメクタイ 卜無添加系の約 2. 5倍で あり、 スメクタイ トを添加することにより増感効果が得られることがわかる。 さ らにスメクタイ ト無添加系では、 チューブ内面にホルマザンと見られる沈着物が 析出したのに対し、 スメクタイ ト添加系ではチューブ内に沈殿あるいは凝集は観 察されなかった。
尚、 吸光度の測定は、 日本分光社製分光光度計 (J a s c o V- 5 5 0 ) を用 いた。 セルにはセル長 1 c mのディスポセル (ポリメチルメタクリレート製) を 使用した。
<表 8 > 試 薬 終濃度 テトラゾリゥム塩 8 0 0〃mo l / l
リン酸バッファー(pH8.5) 1 0 0 mm 0 1 / 1
L( + )—ァスコルビン酸 0〜 3 3 3. 3 μ τη ο 1 / 1
スメクタイ ト 0. 1 %、 又は 0 %
(全量 3 m 1 ) く表 9 : スメクタイ ト添加系 >
Figure imgf000067_0001
実施例 7 塩酸、 スメクタイ 卜 (コープケミカル社製、 ルーセンタイ ト SWN) 、 2. 4 ージクロロア二リン、 及び亜硝酸ナトリウムをこの順に、 各試薬の終濃度が表 1 1の通りになるようにとり、 混合後、 津田試薬 (N, N—ジェチル— N' — 1一 ナフチルナフチルエチレンジァミンシユウ酸塩) を加えて反応させ、 ァゾ系色素 を生成させて発色させた。 このものの吸光スぺク トルを 4 0 0〜8 0 0 nmの間 で測定した。 尚、 亜硝酸ナ卜リゥムは 4種類の濃度 (0、 8、 1 6、 及び 3 3 m 0 1 1 ) で添加した。 結果を図 7に示す。 また、 比較のため、 スメクタイ トを添加しない他は上記と同様に、 塩酸、 2, 4ージクロロア二リン、 及び亜硝酸ナトリゥムを終濃度が表 1 1の通りになるよ うに加えた後、 津田試薬を加えて発色させた。 このものの吸光スぺク トルを 40 0〜800 nmの間で測定した。 尚、 亜確酸ナ卜リゥムは 4種類の濃度 (0、 8, 1 6、 及び 33 ^mo 1 / 1 ) で添加した。 結果を図 8に示す。 また、 スメクタ ィ 卜添加系とスメクタイ ト無添加系について、 各々亜碓酸ナトリゥム澳度 33 mo 1 / 1の場合の吸光スぺク トルをともに図 9に示す。 尚、 吸光度の測定は、 日本分光社製分光光度計 (J a s c o V - 550) を用いた。 セルにはセル長 1 c mのディスポセル (ポリメチルメタクリレ一卜製) を使用した。 く表 1 1〉 試 薬 終濃度
1 mo 1 / 1
2, 4—ジクロロア二リン 200 0 1 / 1
亜碓酸ナトリゥム 0〜33 mo 1 / 1
津田試薬 200 um o 1 / 1
スメクタイ ト 0. 1 %、 又は 0%
(全量 3 m 1 )
スメクタイ 卜無添加系では赤紫色に発色し、 吸収極大波長は約 540 nmであ つた。 スメクタイ ト添加系では紫色に発色し、 吸収極大波長は約 555 nmであ つた。 このように、 スメクタイ トを添加した条件下においても、 無添加の条件下 と同じように反応が進行することが確認できた。 また、 吸収極大が長波長側ヘシ フトしているので、 本実施例と同様の発色反応系を用いる場合は、 吸光度の測定 は、 スメクタイ ト添加系、 無添加系のそれぞれの吸収極大波長付近の波長である 540 nm (スメクタイ ト無添加系) 、 555 nm (スメクタイ ト添加系) で行 うのがよいことがわかる。 実施例 8 実施例 7で用いたのと同様の塩酸、 2, 4—ジクロロア二リン、 亜硝酸ナトリ ゥム、 及び津田試薬を、 終濃度が表 12の通りになるようにディスポセル (ポリ メチルメタクリレート製) にとり、 30てで 10分間反応させ、 十分に発色させ た後、 スメクタイ トを添加して凝集を生成沈降させ、 スメクタイ ト添加 30秒後 より凝集の吸光度を 1秒毎に 20分間測定した (測定波長: 555 nm) 。 凝集 のみの吸光度を測定するために 0. lm 1用スリッ トを用いた。 尚、 亜硝酸ナト リゥムは 0〜50 ^mo 1ノ 1の範囲で表 13に示す各港度となるように添加し た。 亜硝酸ナトリウム終濃度 0 // mo 1ノ 1のサンプルの結果をブランクとして、 測定開始 20分後の吸光度との差 (AAb s) を求め、 検量線を作成した。
また、 スメクタイ ト無添加系として、 上記と同様に終縷度が表 12の通りにな るように塩酸、 2, 4—ジクロロア二リン、 及び亜硝酸ナトリウムをディスポセ ルにとり、 30てで 3分間インキュベートした後、 津田試薬を添加し、 添加 10 秒後より 1秒毎に 10分間吸光度を測定した (測定波長: 540 nm) 。 尚、 亜 硝酸ナトリウムは 0〜50 ^mo 1 / 1の範囲で表 14に示す各濃度となるよう に添加した。 測定開始 10分後の吸光度 (Ab s) を求め、 検量線を作成した。 亜硝酸ナトリゥム終濃度 0 ^mo 1 / 1のサンプルの結果をブランクとして測定 した。 この実験で用いた反応系は、 10分間で十分に終点に達している。
図 10に得られた検量線を示す。 スメクタイ 卜無添加系では、 亜硝酸ナトリウ ム終濃度 1. 6〜50. 0 /mo 1 X 1の範囲で r (相関関数) = 0. 9991 の検量線が得られた。 スメクタイ ト添加系では、 亜硝酸ナトリウム終濃度 0. 4 〜25. 0 ^ mo 1 Z Iの範囲で r = 0. 9940の検量線が得られた。 得られ た検量線の傾きは、 スメクタイ ト添加系がスメクタイ ト無添加系の約 2. 5倍で あり、 スメクタイ トを添加することにより增感効果が得られることがわかる。 尚、 吸光度の測定は、 日本分光社製分光光度計 (J a s c oV - 550) を用 いた。 セルにはセル長 1 c mのディスポセル (ポリメチルメタクリレート製) を 使用した。 <表 12 > 試 薬 終澳度
1 mo 1 / 1
2, 4ージクロロア二リ ン 200 0 1 / 1 亜硝酸ナトリゥム 0〜50 umo l Z l 津田試薬 200 i m o 1 / 1 スメクタイ ト 0. 1 %、 又は 0 %
(全量 3 m 1 )
く表 13 : スメクタイ ト添加系〉 亜硝酸ナトリウム終濃度 吸光度
( mo \ / \ ) (ΔΑ b s )
0. 4 0. 099
0. 8 0. 161
3. 1 0. 445
1 2. 5 1. 610
20. 0 2. 034
25. 0 2. 620
<表 14 : スメクタイ ト無添加系 > ァスコルビン酸終濃度 吸光度
(β τη 0 \ / \ ) (Ab s )
1. 6 0. 103
6. 3 0. 178
1 2. 5 0. 271
25. 0 0. 480
50. 0 1. 358 実施例 9
POD (ペルォキシダーゼ) 、 色素前駆体として 4一 AAと N—ェチル—N— (2—ヒドロキシー 3—スルホプロピル) 一 3, 5—ジメチルァニリン (以下、 EHSDMe Aと略す。 ) 、 緩衝剤としてビス一卜リスバッファ一 (p H 6. 5) 、 及び層状無機化合物としてスメクタイ トを、 終濃度が表 1 5の通りになるように セル長 1 c mのディスポセル (メタクリレート製) に取り、 この試料について 3 7てで 180秒間インキュベーションを行った。 また、 別の試料として、 スメク タイ トを添加しない他は同じ組成 ·濃度となるように調製して同様にィンキュベ ーションを行った。
これらの試料について、 温度調節後、 過酸化水素を表 15の通りになるように 添加し、 過酸化水素添加 20秒後より 2秒毎に 1800秒間吸光度を測定した。 装置として J a s c o V- 550 (日本分光社製) を用い、 測定波長を 630 η mとした。 スメクタイ 卜を添加したときには凝集を生じたので、 凝集部のみを測 定するために 0. lmL用のスリッ トを用いた。 また、 スメクタイ ト添加系のバ ックグラウンドとして、 スメクタイ トを同じ濃度で添加し、 且つ過酸化水素を添 加しな 、試料を調製し、 この反応溶液についても同様に測定を行つた。 く表 15〉 試薬 終濃度
POD (ペルォキシダーゼ) 1 U/mL
4 - AA*1 05 mm 0 1 z
EHS DMe A*2 5 mm o 1 zし
ビス一 トリスバッファ一 " 00 mm o 1 /L
スメクタイ ト *4 0. 1 %
過酸化水素 1 0 mm o 1 /L
(全量 3mL)
*1)4-了ミノアンチピリン(4-アミ 1,2-シ' tに n- 1,5-シ*メチル -2-7iニル -3H-ビラ'厂ル- 3 -オン)
*2)N- 1チル -N-(2-ヒに Dキシ- 3-スルホフ。ロピル) -3.5-シ"メチル了二リン
*3)ビス(2- 1に πキシヱチル)イミノトリス(t nキシメチル)メタン
*4)ル-センタイト S1TN (合成スメクタイト:コ-フ。ケミカル社製) 尚、 使用した試薬は各々下記表 16に示す通りである, く表 16〉 試薬 試薬濃度 メーカー 試薬純度
POD 30 U/rnL 東洋紡 (株)
4— A A 1. 5 miol/L 和光純薬 (株) 試薬特級
EHSDMeA 150 mmol/L 同仁化学 (株)
ビス -トリス 0. 25 mmol/L ナカライテスク(株) Specially
ハ '7フ7_ Prepared
スメクタイ ト 0. 3% コープケミカル (株)
過酸化水素 300 mmol/L 三徳化学工業 (株) 試薬特級
結果を図 11に示す。 図 11からわかるように、 スメクタイ ト無添加のものは 反応開始の約 3分後から吸光度の減少が観察されたのに対し、 スメクタイ トを添 加したものは、 吸光度の减少は観察されなかった。 従って、 スメクタイ 卜の添加 によっても本検出反応はスメクタイ ト無添加時と同じように進行することが確認 され、 さらに、 4一 AAと EHSDMeAとの酸化縮合によって生成した色素は、 スメクタイ 卜に吸着したことによって、 過酸化水素による酸化分解を受けずその 退色が抑制されたことが確認できた。 実施例 10
POD、 4 - AA, EHSDMeA, ビス一ト リスノペッファ一 ( p H 6. 5)、 及びスメクタイ トを終濃度が表 17及び表 18の通りになるようにセル長 1 cm のディスポセル (メタクリレート製) に取って 5種類の試料 (サンプル番号 1〜 5) を調製し、 各々について 37てで 180秒間ィンキュベ一シヨンを行った。 これらの試料について、 温度調節後、 表 18に示す量の過酸化水素を添加して 反応を開始した。 さらに、 過酸化水素添加 60秒後に表 18に示す量のァスコル ビン酸を添加し、 添加 20秒後より 1秒毎に 300秒間吸光度を測定した。 測定 装置として J a s c oV- 550 (日本分光社製) を用い測定波長を 630 nm とした。 また、 凝集 ¾5のみを測定するため 0. lmL用のスリ ッ トを測定に使用 した < く表 1 > 終濃度
POD (ペルォキシダ一ゼ) 1 U/mL
4 -AA 2 mm o 1 /L
EHS DMe A 2 mm o 1 /L
ビス一トリスパツファー 00 mm o 1 /L
スメクタイ ト " (表 18参照) 過酸化水素 (表 18参照)
L ( + ) ァスコルビン酸 (表 18参照)
(全量 3 mL)
*1)ル-センタイト SWN (合成スメクタイト:] -7°ケミカル社製) く表 18 > サンプル スメクタイ ト ァスコルビン酸 過酸化水素 番号 (%) (mg/d 1 ) (〃m 0 1 / 1 )
1 0 0 100
Figure imgf000073_0001
3 0 0 100 4 0 5 (284^mol/L) 100
5 0 0 0
尚、 使用した試薬は各々下記表 1 9に示す通りである, く表 1 9〉 試薬 試薬濃度 メーカー 試薬純度
P OD 3 0 U/IDL 東洋紡 (株)
4 - AA 6 Ommol/L 和光純薬 (株) 試薬特級
EHS DMe A 6 Ommol/L 同仁化学 (株)
ビス-トリス 0. 2 5 mmol/L ナカライテスク(株) Specially
ハ' 7ファ- Prepared
スメクタイ ト 0. 3 % コープケミカル (株)
過酸化水素 3 mmol/L 三徳化学工業 (株) 試薬特級
ァスコルビン酸 1 5 0 mg/dl ナカライテスク(株) 試薬特級 結果を表 1 8及び図 1 2に示す。 また、 図 1 2の 0〜6 0秒間を拡大した図を 図 1 3に示す。 また、 測定開始 0秒、 6 0秒、 3 0 0秒後の吸光度 (A b s ) を 表 2 0に示す。 さらに、 凝集の発生による影檬を差し引くために、 サンプル 3、 4についてはサンプル 5との差より AAb sを求めた。 結果を表 2 0中の 〇 内 のデータとして示す。
図 1 2、 1 3からわかるように、 スメクタイ ト無添加の系では、 ァスコルビン 酸を添加すると直ちに退色が起こった。 測定開始時 (ァスコルビン酸添加 2 0秒 後) には、 無添加時の約 2 0 %の発色しか見られず、 測定開始 6 0秒後 (ァスコ ルビン酸添加 8 0秒後) には、 無色になった。
それに対して、 スメクタイ 卜を添加した系では、 測定開始時は無添加時 (ァス コルビン酸添加 2 0秒後) の約 9 096の発色を維持し、 測定開始 6 0秒後 (ァス コルビン酸添加 8 0秒後) には、 約 8 0 %の発色、 3 0 0秒後 (ァスコルビン酸 添加 3 2 0秒後) でも約 5 0 %の発色が見られた。
この結果から、 スメクタイ トを添加することによって、 ァスコルビン酸による 生成色素の還元分解が抑制されたことが確認できた。 く表 20〉 サンプル 0秒後 60秒後 300秒後
番号 (ΔΑ b s ) (AAb s) (Δ A b s )
1 1. 15 1. 14 1. 1 1
2 0.23 0.00 0.00
3 1.26(1 . 16) 1.33( 1.23) 1.63(1.49)
4 1. 16(1 .06) 1.07(0.97)
5 0. 10 0. 10 0.14
実施例 1 テトラゾリゥム塩として 3, 3' 一 (3, 3' ージメ トキシ一 4, 4' ービフ ェニレン) 一ビス [2— (パラニトロフヱニル) 一 5 -フエ二ルー 2 H-テトラ ゾリゥム] クロライ ド (以下、 「テトラゾリゥム塩」 と略す) 、 緩衝剤としてリ
O
ン酸バッファー (リン酸水素ニナトリウムとリン酸ニ水素ナト00リゥムとを混合し て pH8. 5に調整したもの) 、 Lーァスコルビン酸、 及びスメ寸クタイ ト (商品
o
名ルーセンタイ ト SWN: コープケミカル社製、 合成スメクタイ ト) を、 終濃度 卜 が表 21の通りになるようにディスポセル (ポリメチルメタクリレート製 o) にと り、 30 で 180秒間インキュベートした。 その後、 Lーァスコルビン酸を加 えて反応を開始し、 添加 10秒後より 300秒間、 1秒毎に吸光度を測定して経 時変化を観察した。 測定波長は 535 nm、 反応温度は 30てである。
また、 比較のため、 スメクタイ トを添加しない他は上記と同様に終濃度が表 2 1の通りになるようにテトラゾリゥム塩及びリン酸バッファーをディスポセル (ポリメチルメタクリレート製) にとり、 30てで 180秒間インキュベー卜し た。 その後、 Lーァスコルビン酸を加え反応を開始し、 添加 10秒後より 300 秒間、 1秒毎に吸光度を測定し、 経時変化を観察した。 測定波長は 633 nm、 反応温度は 30てである。
尚、 吸光度の測定は日本分光社製分光光度計 ( J a s c 0 V - 550) を用い、 セルにはセル長 1 c mのディスポセル (ポリメチルメタクリレート製) を使用し た。 また、 測定波長はどちらも吸収極大波長付近の波長である。
図 1 4に測定結果を経過時間に対する吸光度のグラフとして示す。 スメクタイ 卜添加系では測定開始後約 5 0秒で反応が安定化するのに対して、 スメクタイ ト 無添加系では反応が安定化するのに測定開始後約 3 0 0秒要している。 このこと から、 スメクタイ トを添加することによって反応速度が上昇したことがわかる。 この反応は水に不溶性のホルマサンが生成する反応として知られているが、 ス メクタイ ト添加系ではセル内に沈殿あるいは凝集は観察されなかつた。 く表 2 1 > 試 薬 終濃度 テトラゾリゥム塩 8 0 0 ^ mo 1 / 1
リン酸バッファー(pH8.5) 1 0 0 mm o [ / \
L )—ァスコルビン酸 8 3. 3 ^mo 1 / 1
スメクタイ ト 0. 1 %、 又は 0 %
(全量 3 m 1 )
実施例 1 2 塩酸、 スメクタイ ト (コープケミカル社製、 商品名ルーセンタイ ト SWN) 、 2, 4—ジクロロアニリン、 及び亜硝酸ナトリゥムを、 終濃度が表 2 2の通りに なるようにディスポセル (ポリメチルメタクリレート製) にとり、 3 0てで 1 8 0秒間ィンキュベートした。 ここで、 亜硝酸ナ卜リゥムの濃度は 0〜 5 0 ^mo 1 Z 1の範囲で、 1. 6、 6. 3、 1 2. 5、 2 5. 0、 及び 5 0. 0 ^mo 1 Z 1の 5種類の濃度を採用した。
インキュベート後、 津田試薬 (N, N—ジェチルー N' — 1—ナフチルナフチ ルエチレンジアミンシユウ酸塩) を加え、 添加 1 0秒後より 6 0 0秒間、 1秒毎 に吸光度を測定し、 経時変化を観察した。 測定波長は 5 5 5 nm、 反応温度は 3 0 である。
また、 比較のため、 スメクタイ トを添加しない他は上記と同様に終濃度が表 2 2の通りになるように、 塩酸、 2. 4—ジクロロア二リン、 及び亜硝酸ナトリウ ムをディスポセル (ポリメチルメタクリレート製) にとり、 30てで 1 80秒間 ィンキュベートした。 その後、 津田試薬を加え、 添加 1 0秒後より 600秒間、 1秒毎に吸光度を測定し、 経時変化を観察した。 測定波長は 540 nm、 反応温 度は 30てである。
尚、 吸光度の測定は日本分光社製分光光度計 (J a s c oV - 550) を用い, セルにはセル長 1 cmのディスポセル (ポリメチルメタクリレート製) を使用し た。 また、 測定波長はどちらも吸収極大波長付近の波長である。
図 1 5〜図 1 7に測定結果を経過時間に対する吸光度のグラフとして示す。 こ のうち図 1 5はスメクタイ ト無添加系におけるグラフ、 図 1 6はスメクタイ ト添 加系におけるグラフ、 図 1 7は亜硝酸ナトリゥム濃度 25. 0〃mo 1ノ 1の場 合のスメクタイ ト添加系及び無添加系におけるグラフである。 これらによれば、 スメクタイ ト無添加系では測定開始後約 300秒で反応が終点に達するのに対し、 スメクタイ 卜添加系では測定開始後約 30秒で反応が終点に達している。 このこ とから、 スメクタイ トを添加することによって反応速度が上昇したことがわかる。 く表 22 >
¾ 楽 終濃度
1 m 0 1 / 1
2, 4—ジクロロァニリン 200 mo 1 / 1
亜硝酸ナトリウム 0〜50 jwmo 1 / 1
津田試薬 200 ^ m o 1 / 1
スメクタイ ト 0. 1 %、 又は 0%
(全量 3m 1 )
実施例 1 3
POD (ペルォキシダ一ゼ) 、 色素前駆体として 4一 AAと N—ェチルー N— ( 2—ヒ ドロキシ - 3—スルホプロピル一 3. 5 -ジメ トキシァニリン (以下、 EHSDAと略す。 ) 、 及び緩衝剤としてビス一トリス緩衝液 (pH6. 5) を、 終濃度が表 23の通りになるように取り、 そこへ過酸化水素を加えて発色液を得 た。 得られた発色液 30 Lを、 層状無機化合物 (合成スメクタイト :商品名ル 一センタイ 卜 SWN、 コープケミカル社製) の 1%分散液 (溶媒:蒸留水) に含 浸し乾燥させたろ紙(東洋 «紙社製 No. 2) と、 未処理のろ紙に点着させ、 そ の拡散の様子を観察した。 発色液は円形に浸透 ·拡散したとし、 その直径の最大 部と最小部とを測定してその平均から色素の拡散したスポッ 卜の面積を求めた。
<表 23〉 試薬 終濃度
POD 1 U/mL
4一 ΑΑ·1 2 mm o 1 /L
EHSD Α·2 2 mm o 1 /L
ビス一トリス緩衝液 ^ 100 mmo 1 /L
過酸化水素 100 //mo 1 /L
(全量 3mL)
*1)4-アミノ了ンチピリン(4-了ミノ- 1,2-シ' tに a-I, 5-シ'メチル -2-フ Iニル -3H- ラソ'ル- 3-オン) *2)N-ェチル - N- (2-tト'口キジ- 3-スルホフ。 ピル) -3,5-シ'メトキシ了ニリン
*3)ビス(2-t ロキシェチル)イミ/トリス ドロキシメチル)メタン 尚、 使用した試薬は各々下記表 24に示す通りである, く表 24 > 試薬 試薬濃度 メーカー 試薬純度
POD 3 OU/mL 東洋紡 (株)
4 - AA D 0 mmol/L 和光純薬 (株) 試薬特級
EHS DA 60 mmol/L S I GMA
ビス-トリス 0 25 mmol/L ナカライテスク(株) Specially
緩衝液 Prepared
スメク夕イ ト 1 % コープケミカル (株)
過酸化水素 三徳化学工業 (株) 試薬特級 得られた直径、 面積及びスポッ卜の色調を表 25に示す。 また、 発色液が拡 散したろ紙の様子を表す模式図を図 18及び図 19に示した。 く表 2 5 >
Figure imgf000079_0001
スメクタイ ト分散液を含浸させたろ紙では、 未処理のろ紙と比較して色素の拡 散が抑えられ、 スポッ トが小さくなつた (面積にして約 1ノ8 ) 。 しかし、 発色 液のうち色素を除かれた無色の部分は未処理のろ紙と同程度に拡散した。 このこ とから、 色素が選択的にろ紙中のスメクタイ 卜と吸着したことが確かめられた。 また、 スメクタイ トに含浸したろ紙では未処理のろ紙より、 そのスポッ トの色 調が縷いこと、 及び色調の短波長側へシフトしたことが目視で観察された。 更に、 このスメクタイ 卜に含浸したろ紙を水洗しても色素は溶出しなかった。
スメクタイ トをろ紙に添加することにより、 色素はろ紙上に吸着され、 これに よつて色素の拡散が防止され、 溶出も防止されることがわかつた。
したがって、 本発明による試験片を用いれば、 生成した色素が移動したり溶出 したりせず、 測定の精度と感度を向上させることができることがわかる。 また、 試験部の乾燥による色素の濃縮や移動がなく、試験片を試料中に付けたままにし たりしても生成色素の溶出がないので、 測定を簡便に実施することができること がわかる。 実施例 1 4 尿試験紙 (尿中の亜硝酸塩、 ブドウ糖、 潜血、 ピリルビン、 ゥロビリノ一ゲン を測定する多項目試験紙:市販の一般的な試験紙で、 対応する各試薬をろ紙に含 浸させて試験部とし、 校正用の試験部と共にプラスチックフィルムに貼り付けた もの) を一般的な処方で作製したコントロール尿中に浸潰し、 ただちに引き上げ、 呈色が観察されるまで約 3 0秒放置した後、 実施例 1 3で用いたものと同じスメ ク夕ィ ト含浸ろ紙片をその上に押しつけ、 色素をスメクタイ ト含浸ろ紙片に移し た。 ろ紙片上での色素のにじみを目視観察した。 また、 このろ紙片を水道水の流 水でよく洗浄し、 色落ちの様子を目視観察した。
対照としてスメクタイ トで処理していない東洋據紙 No. 2及び同 No. 1 3 1の二種類のろ紙を用いて同様の操作を行った。
各試験の測定方法及び処方は以下の通りである。 また、 結果を下記表 26に示 す。
•亜硝酸塩試験:グリース法
4ーァミノベンゼンアルソン酸を酸性条件下、 亜確酸塩と反応させてジァゾ二 ゥム塩を生成させ、 N— 1—ナフチルエチレンジァミンニ塩酸塩と力ップリング してァゾ色素を生成させる。 処方としては、 一枚のろ紙に N— 1一ナフチルェチ レンジアミ ンニ塩酸塩 0. 26 mg及び 4—ァミノベンゼンアルソン酸 0. 57 mgを含浸して 100分割し、 その一枚を試驗部とした。 一枚で約 6 1の溶液 を吸収した。
• グルコース試験:
グルコースォキシダーゼによって発生した過酸化水素を、 ペルォキシダーゼの 触媒作用で、 発色指示薬 (テトラベースとグアヤク脂、 それぞれ色原体) と反応 させて酸化発色させる。 処方としては、 一枚のろ紙にグルコースォキシダーゼ 4 70 I U、 ペルォキシダーゼ 21 9 PU、 テトラベース 13. 0mg、 及びグァ ャク脂 4. 3!^£を含浸して100分割し、 その一枚を試験部とした。 一枚で約 6 n 1の溶液を吸収した。
•潜血試験:
ヘモグロビンによるクメンハイ ドロバーオキシドの分解と、 発生する活性期の 酸素によるオルトトリジンの酸化発色を利用した方法であり、 オルトトリジンの 代わりにベンジジン類 (3. 3' , 5, 5* —テトラメチルベンジジンなど) を 用いても同様の効果が期待できる。 処方としては、 一枚のろ紙にクメンハイドロ パーォキシド 52. 6 mg及びオルトトリジン 7. 6mgを含浸して 1 00分割 し、 その一枚を試験部とした。 一枚で約 6 1の溶液を吸収した。
• ビリゾレビン試験:
酸性条件下で、 ジァゾ試薬である 2 -メチルー 5—ニトロァニリンまたはスル ファニル酸と亜硝酸ナトリゥムからジァゾニゥム塩が生じ、 ジァゾニゥム塩がダ ィフィ リンの存在下ビリルビンとカツプリングしてァゾビリルビンを生成する反 応を利用した方法であり、 処方としては一枚のろ紙に 2—メチルー 5—二トロア 二リン 3 . 8 m g、 亜硝酸ナトリウム 2 . l m g、 及びダイフィリン若干量を含 浸して 1 0 0分割し、 その一枚を試験部とした。 一枚で約 6 # 1の溶液を吸収し た。
•ゥロビリノ一ゲン試験:
酸性条件下で 3 . 3 ' —ジメ トキシビフヱニル— 4 . 4 ' ージァゾニゥム四フ ッ化ホウ素塩とァゾカップリングする反応を利用したものであり、 処方としては、 一枚のろ紙に 3, 3 ' —ジメ トキシビフエ二ルー 4, 4 * —ジァゾニゥム四フッ 化ホウ酸塩 0 . 3 6 111 8を含浸して1 0 0分割し、 その一枚を試験部とした。 一 枚で約 6 1の溶液を吸収した。 く表 2 6 >
Figure imgf000081_0001
色素のにじみ 〇:にじみなし X :かなりにじみあり
洗浄による色落ち 〇:色落ちせず X :かなり色落ちあり 表 2 6の結果に示すように、 層状無機化合物を含浸したろ紙は、 色素がにじま ずに吸着し、 洗浄によっても色落ちしなかった。 したがって、 層状無機化合物を 含浸したろ紙では色素の拡散が抑制され、 溶出も防止されることがわかった。 よ つて、 本発明による試験片は、 生成した色素が移動したり溶出したりせず、 測定 の精度と感度の向上が期待できる。 また、 試験部の乾燥による色素の濃縮や移動 がなく、 また試験片を試料中に浸けたままにしても生成色素の溶出がないので、 測定を簡便に実施することができる。 さらに、 多項目試験片では生成した色素が 隣接する試験部を汚染することがなくなるので、 試験部間の幅を狭めて試験片を 小型化することが可能である。
また、 生成色素を未処理のろ紙に染み込ませた状態で遮光せずに室温で空気暴 露しておいたところ、 変色と退色が観察され、 約 1ヶ月後には反応直後とは全く 異なった呈色状態になったが、 一方、 層状無機化合物を含有したろ紙に吸着され た生成色素は、 遮光せずに室温で空気暴露しても、 少なくとも 3ヶ月間は色調の 変化や退色がみられなかった。
以上の事実は、 本発明の試験片を用いれば、 例えば患者宅で試料を採取して試 験片上で反応呈色させたのち呈色済み試験片を遠隔地の検査センタ一まで郵送す るような場合でも、 反応呈色直後と同じ測定結果が得られるなど、 本発明の応用 性を示す。 すなわち、 本発明の試験片は呈色が安定であり、 乾燥による色素の濃 縮や水漏れによる溶出もないので、 このような郵送用の試験片としても利用可能 である。 実施例 1 5 紫外線処理をしたポリエチレンテレフタレート (P E T ) フィルム上に、 下記 表 2 7に示す通りに調製した溶液を、 ドクターナイフを用いて、 膜厚 1 0 0 u m で塗工し、 乾燥した。 この塗工膜を P E Tフィルムごと 1 c m角に切断し、 ガラ スで図 2 0のように 5 0 0 m程度の空間をあけて挟み、 反応セルを作製した。 この反応セルの模式図を図 2 0に示す。
この反応セルへ、 過酸化水素 2 mm o 1 / Lを添加し、 そのときの発色の様子 を観察した。 また、 スメクタイトを添加しなかった他は同様にして調製した溶液 を用いて、 同様に反応セルを作製し、 発色の様子を観察した。 く表 27 > 試薬 終濃度
POD 1 U/mL
4 -AA 2 mm o 1 / L
EHSDA 2 mm o 1 /L
ビス一トリス緩衝液 00 mm o 1 /L
スメクタイ ト 0. 3 %
HP C-M*2 1 % \ )ル-センタイト SWN (合成スメクタイト:コ-フ°ケミカル社製)
*2) tドロキシ: tチルフ。口ピルセルロ-ス スメクタイ ト無添加の塗工膜では膜中から生成色素の溶出が観察されたのに対 し、 スメクタイ トを添加した場合は、 生成色素の溶出は観察されなかった。 実施例 16 多孔質構造体の検出層を有する本発明の試験片の作製処方の例を示す。 この試 験片の模式図を図 21に示す。
ろ紙 (Whatman社製、 2 Ch r ) を、 下記表 28に示す通りに調製した酵素 G 0 D (グルコースォキシダーゼ) と POD (ペルォキシダーゼ) を含む試薬溶液に 浸漬し、 40てで 30分間乾燥させた。 このろ紙を 5mmx 5mmに切断し、 5 mmx 100 mmの白色のプラスチックフィルムの一端に両面テープを用いて貼 り付け、 前記ろ紙を試験部とする試験片を作製した。
く表 28 > 試薬 終濃度
GOD 100 U/mL
POD 100 U/mL
4 - AA 5 g/L
EHSDA 3 g/L
リン酸緩衝液 ( H 0) 0. 1 mo 1 /L
スメクタイ 卜 1 % この試験片においては、 血漿の 6 1をピぺッ 卜で試験部に点着するか又はコ ップに採取した尿に本試験片を浸潸し、 反応を進行させた後、 検出雇の発色の強 度を反射率計などで測定して血漿又は尿中のグルコース澳度を測定することがで きる。 本発明における層状無機化合物を含む多孔質構造の層は、 本実施例の試験 片においては、 試料吸入層と試薬層と反応層を兼ねた検出層として利用すること ができる。 実施例 17 本発明の多孔質構造の検出領域を有する試験片の作製方法の例を示す。 この試 験片の模式図を図 22に示す。
ろ紙(ffhatman社製、 2 Ch r) を、 下記表 29に示す通りに調製した酵素 G 0 D (グルコースォキシダーゼ) と POD (ペルォキシダーゼ) を含む試薬溶液に 浸演し、 40 で 30分間乾燥させた。 このろ紙を 5mmx 5mmに切断し、 5 mm X 100 mmの別のろ紙(Whatman社製、 2 C h r ) の所定の位置 (図 22の 反応領域) に圧着によって接合する。 次に、 新たなろ紙 (batman社製、 2 C h r) を、 下記表 30に示すとおりに調製した層状無機化合物の分散液に浸潰し、 室温 で自然乾燥させる。 このろ紙を 5 mm X 5 mmに切断し、 先に反応領域を設けた 5 mm X 1 00 mmのろ紙 (Whatman社製、 2 C h r ) の所定の位置 (図 22の保 持領域) に圧着によって接合する。 こうして作製した試験片は、 試料吸入領域、 拡散領域、 反応領域、 検出可能な物質を吸着する保持領域、 余分な試料を吸収す る領域とを備えており、 検出領域は保持領域となっている。
<表 29 > 試薬 終濃度
GOD 100 U/mL
POD 200 U/mL
4 - AA 5 g/L
EHS D A 3 g/L
リン酸緩衝液 ( p H . 0) 0. 1 mo 1 /L く表 3 0 > 試薬 終濃度 ビス一トリス緩衝液 (p H 6 . 5 ) 0 . 1 m o 1 / L
スメクタイト 1 %
この試験片においては、 キュべッ卜に取った血漿又はコップに採取した尿に本 試験片の試料吸入領域を浸漬する。 試料が試料吸入領域、 拡散領域を通過し、 反 応領域に到達して試薬と混合して反応した反応液となり、 反応時間を調整する領 域と保持領域を通過した後、 試験片を引き上げる。 保持領域における呈色の強度 を反射率計などで測定して、 血漿又は尿中のグルコース濃度を測定する。
本発明による層状無機化合物を含む多孔質構造は、 この例の試験片において反 応液中の検出可能な物質 (色素) を吸着する保持領域を兼ねた検出領域として利 用できる。 産業上の利用可能性 本発明の測定方法は、 高感度、 高精度に物質を測定する方法に用いることがで きる。 すなわち、 本発明の第 1の方法によれば、 反応系に粘土鉱物等の層状無機 化合物を添加して検出可能な物質を吸着させた後該物質を測定することによって、 感度の高い測定を可能にすることができる。 本発明の第 2の方法によれば、 反応 系に粘土鉱物等の層状無機化合物を添加することにより、 色素等の検出可能な物 質と層状無機化合物とが吸着し、 検出可能な物質が保護されることによって過剰 な過酸化水素や還元性のァスコルビン酸等による分解が抑制され、 検出可能な物 質の安定化を図ることができる。 よって、 色素ならばその退色等を防ぐことがで き、 安定した高感度かつ精度の高い測定が可能である。 本発明の第 3の方法によ れば、 検出可能な物質の生成反応系に粘土鉱物等の層状無機化合物を添加するこ とによって、 前記生成反応の反応速度を高め、 迅速な測定を可能にすることがで きる。 本発明の測定方法は、 体液中の尿や血液等の生体成分、 食品、 医薬、 自然 環境に存在する微量物質、 産業化学物質、 廃棄物中の微量物質等の検出、 定量等 に利用することができる。
本発明の測定方法は、 体液中の尿や血液等の生体成分、 食品、 医薬、 自然環境 に存在する微量物質、 産業化学物質、 廃棄物中の微量物質等の検出 ·定量等に利 用することができる。 本発明の第 4の方法によれば、 反応溶媒などに粘土鉱物等 の層状無機化合物を分散させて検出可能な物質の生成反応を行うことによって、 不溶性物質が生成する反応系であっても、 感度の高い測定を可能にすることがで きる。 また、 本発明の試験片によれば、 色素等が拡散 '溶出しにくく、 より高感 度かつ正確で簡便な分析が可能となる。
本発明の測定方法及び試験片は、 体液中の尿や血液等の生体成分、 食品、 医薬、 自然環境に存在する微量物質、 産業化学物質、 廃棄物中の微量物質等の検出 ·定 量等に利用することができる。

Claims

請求の範囲
1 . 試料中の分析対象物質の化学反応に基づいて検出可能な物質を生成する反 応を含む反応系を用いて前記検出可能な物質を測定することにより前記分析対象 物質を測定する方法において、 前記検出可能な物質の生成反応を含む反応系に層 状無機化合物を存在させることを特徴とする、 物質の測定方法。
2 . 前記方法が、 前記反応系に層状無機化合物を添加して該層状無機化合物に 前記検出可能な物質を吸着させる工程を含むことを特徴とする、 請求項 1記載の 物質の測定方法。
3 . 前記反応系に層状無機化合物を存在させることにより、 前記検出可能な物 質の分解を抑止することを特徴とする、 請求項 1記載の物質の測定方法。
4 . 前記検出可能な物質の生成反応を層状無機化合物の存在下に行うことによ り、 前記生成反応の反応速度を高めることを特徴とする、 請求項 1記載の物質の 測定方法。
5. 前記反応系を構成する反応の少なくとも一つが、 反応溶媒に対し不溶性の 物質を生成する反応であることを特徴とする、 請求項 1記載の物質の測定方法。
6 . 層状無機化合物が 2 : 1型粘土鉱物である、 請求項 1〜5のいずれかに記 載の測定方法。
7 . 2 : 1型粘土鉱物が膨潤性層状粘土鉱物である、 請求項 6記載の測定方法。
8 . 膨潤性層状粘土鉱物がベントナイト、 スメクタイト、 バーミキユラィト及 び合成フッ素雲母からなる群から選ばれる少なくとも一種である、 請求項 7記載 の測定方法。
9 . スメクタイ卜が合成スメクタイトである、 請求項 8記載の測定方法
1 0 . 合成スメクタイトがへク トライト及びサボナイ卜からなる群から選ばれる 少なくとも一種である、 請求項 9記載の測定方法。
1 1 . 層状無機化合物がハイ ドロタルサイトである、 請求項 1〜5のいずれかに 記載の測定方法。
1 2 . 前記検出可能な物質が、 光学的方法または電気化学的方法によって検出可 能な物質である、 請求項 1〜5のいずれかに記載の測定方法。
1 3 . 前記検出可能な物質が、 光学的方法によって検出可能な色素である、 請求 項 1 2記載の測定方法。
1 4 . 前記検出可能な物質を生成する反応が酸化還元反応である、 請求項 1〜 5 のいずれかに記載の測定方法。
1 5 . 前記検出可能な物質が、 電子伝達物質、 電子供与物質、 電子受容物質から なる群から選ばれる鼋気化学的方法によつて検出可能な化合物である、 請求項 1 2記載の測定方法。
1 6 . 前記検出可能な物質を生成する反応が酸化還元反応であり、 前記検出可能 な物質を含む反応系が過酸化水素の生成反応又は過酸化水素を酸化剤とする酸化 反応を含む、 請求項 1 4記載の測定方法。
1 7. 前記検出可能な物質を生成する反応が酸化還元反応であり、 前記検出可能 な物質を生成する反応を含む反応系が、 ニコチンアミ ドアデニンジヌクレオチ ド もしくはニコチンアミ ドアデニンジヌクレオチドホスフェートを生成する反応、 又は、 ニコチンアミ ドアデニンジヌクレオチドもしくはニコチンアミ ドアデニン ジヌクレオチドホスフ ー卜が還元剤として作用する反応を含む、 請求項 1 4記 載の測定方法。
1 8 . 前記方法が、 分析対象物質から化学反応によって生成する過酸化水素と被 酸化性発色剤との酸化還元反応により前記分析対象物質と量的相関関係を伴つて 生成する色素を比色定量することによつて前記分析対象物質を測定する方法であ つて、 前記酸化還元反応系に層状無機化合物を存在させて前記色素の少なくとも 過酸化水素による分解を抑止することを特徴とする、 請求項 1 4記載の測定方法。
1 9 . 前記方法が、 分析対象物質から化学反応によって生成するジァゾ二ゥム塩 と被カツプリング試薬とのカツプリング反応により前記分析対象物質と量的相関 関係を伴つて生成するァゾ化合物を定量することにより前記分析対象物質を測定 する方法であって、 前記カツプリング反応系に層状無機化合物を存在させて前記 ァゾ化合物の分解を抑止することを特徴とする、 請求項 3記載の測定方法。
2 0 . 検出可能な物質の分解が、 ァスコルビン酸による前記検出可能な分解を含 む、 請求項 3記載の測定方法。
2 1 . 前記検出可能な物質の生成反応の反応出発物質又は反応中間体が、 層状無 機化合物に吸着可能なカチォン性化合物である、 請求項 4記載の測定方法。
2 2 . 前記反応出発物質又は反応中間体がジァゾニゥム塩である、 請求項 2 1記 載の測定方法。
2 3 . 前記反応出発物質又は反応中間体がテトラゾリゥム塩である、 請求項 2 1 記載の測定方法。
2 4 . 前記検出可能な物質を生成する反応がテトラゾリゥム塩の還元反応である、 請求項 5記載の測定方法。
2 5 . 前記層状無機化合物を、 分散液、 ゾル、 ゲル、 スラリー、 凝集体、 凝結体、 及び焼結した多孔体からなる群から選ばれる L、ずれかの形態で前記反応系の反応 媒質中に分散した状態で存在させることを特徴とする、 請求項 1〜 5のいずれか に記載の測定方法。
2 6 . 前記層状無機化合物が、 該層状無機化合物の分散液として前記反応系中に 添加されたものである、 請求項 2 5記載の測定方法。
2 7. 試料中の分析対象物質の化学反応に基づいて検出可能な物質を生成する反 応を含む反応系を用いて前記検出可能な物質を測定することにより前記分析対象 物質を測定するための分析用試験片であつて、 前記検出可能な物質を検出するた めの検出部を有する試験部を 1以上備え、 少なくとも前記試験部に層状無機化合 物を含有する試験片。
2 8 . 検出部として検出可能な物質を検出するための検出層を含む、 2以上の層 からなる試験部を 1以上備え、 少なくとも前記検出層に層状無機化合物を含有す る、 請求項 2 7記載の試験片。
2 9 . 前記試験部が、 さらに試料を拡散するための拡散層を含み、 試料が前記拡 散層を通って拡散し前記検出層に到達するようにしたことを特徴とする、 請求項 2 8記載の試験片。
3 0 . 検出部として検出可能な物質を検出するための検出領域を有する試験部を 1以上備え、 少なくとも前記検出領域に層状無機化合物を含有する、 請求項 2 7 記載の試験片。
3 1 . 前記試験部が、 さらに前記試料を拡散するための拡散領域を有し、 試料が 前記拡散領域を通って拡散し前記検出領域に到達するようにしたことを特徴とす る、 請求項 3 0記載の試験片。
3 2 . 前記検出領域が、 検出可能な物質を検出するための検出層を含む 2以上の 層からなる、 請求項 3 0記載の試験片。
3 3 . 前記試験部が、 さらに試料中の分析対象物質と試薬とが反応するための反 応部を有し、 前記検出可能な物質が前記反応部で生成されるようにしたことを特 徴とする、 請求項 2 7記載の試験片。
3 4 . 前記検出部が、 試料が拡散して前記反応部を通過した後の位置に設けられ ていることを特徴とする、 請求項 3 3記載の試験片。
3 5 . 前記検出可能な物質が、 前記検出部において試料中の分析対象物質と試薬 との反応により生成することを特徴とする、 請求項 2 7記載の試験片。
3 6 . 前記試験片における層状無機化合物を含有する部分が多孔質構造体からな るものである、 請求項 2 7〜3 5のいずれかに記載の試験片。
3 7 . 前記多孔質構造体が、 前記層状無機化合物によって形成されているか、 又 は親水性ポリマー、 メンブランフィルター、 繊維集合体、 及び有機化合物もしく は無機化合物の微粉末からなる群から選ばれる少なくとも 1種と前記層状無機化 合物とによって形成されている、 請求項 3 6記載の試験片。
3 8 . 層状無機化合物が 2 : 1型粘土鉱物である、 請求項 2 7〜 3 5のいずれか に記載の試験片。
3 9 . 2 : 1型粘土鉱物が膨潤性層状粘土鉱物である、 請求項 3 8記載の試験片。
4 0 . 膨潤性層状粘土鉱物がベントナイト、 スメクタイ ト、 バーミキユラィト及 び合成フッ素雲母から選ばれる少なくとも一種である、 請求項 3 9記載の試験片。
4 1 . スメクタイ 卜が合成スメクタイトである、 請求項 4 0記載の試験片
4 2 . 合成スメクタイ 卜が、 へク トライトおよびサポナイ 卜からなる群から選ば れる少なくとも一種である、 請求項 4 1記載の試験片。
4 3 . 前記試験部に試薬が含有されている、 請求項 2 7〜3 5のいずれかに記載 の試験片。
4 4 . 試薬が、 試験部への試料の添加前及びノ又は添加後に試薬を溶解した試薬 溶液を添加することにより前記試験部に含有される、 請求項 4 3記載の試験片。
4 5 . 層状無機化合物を含有する部分に、 更に緩衝剤またはその乾燥物が含まれ る、 請求項 2 7〜3 5のいずれかに記載の試験片。
4 6 . 試薬が、 分析対象物質と反応して光学的方法によって検出可能な物質を生 成しうるものである、 請求項 2 7〜3 5のいずれかに記載の試験片。
4 7 . 光学的方法によって検出可能な物質が水溶性である、 請求項 4 6記載の試 験片。
PCT/JP1996/003188 1995-10-30 1996-10-30 Procede de dosage d'une substance et eprouvette de mesure WO1997016720A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP96941154A EP0860695B1 (en) 1995-10-30 1996-10-30 Method for measuring an analyte and corresponding device
DE69635717T DE69635717T2 (de) 1995-10-30 1996-10-30 Verfahren zum Bestimmen eines Analyten und Vorrichtung dafür
US10/384,605 US7153696B2 (en) 1995-10-30 2003-03-11 Method for measuring substance and testing piece
US10/384,577 US7098038B2 (en) 1995-10-30 2003-03-11 Method for measuring substance and testing piece
US10/384,757 US7189576B2 (en) 1995-10-30 2003-03-11 Method for measuring substance and testing piece

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP7/282148 1995-10-30
JP28214895 1995-10-30
JP28214795 1995-10-30
JP7/282147 1995-10-30
JP7/282146 1995-10-30
JP28214695 1995-10-30
JP8/239510 1996-09-10
JP23951096A JP3359821B2 (ja) 1996-09-10 1996-09-10 迅速な物質の測定方法
JP24167796A JP3323402B2 (ja) 1996-09-12 1996-09-12 不溶性の物質を生成する反応を含む物質の測定方法
JP8/241677 1996-09-12
JP8/254944 1996-09-26
JP25494496A JP3359822B2 (ja) 1995-10-30 1996-09-26 高感度な物質の測定方法
JP8/270354 1996-10-11
JP27035496A JP3323404B2 (ja) 1995-10-30 1996-10-11 高精度な物質の測定方法
JP27966196A JP3446796B2 (ja) 1995-10-30 1996-10-22 試験片
JP8/279661 1996-10-22

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US09068050 A-371-Of-International 1998-04-29
US10/384,576 Division US6777243B2 (en) 1995-10-30 2003-03-11 Method for measuring substance and testing piece
US10/384,577 Division US7098038B2 (en) 1995-10-30 2003-03-11 Method for measuring substance and testing piece
US10/384,757 Division US7189576B2 (en) 1995-10-30 2003-03-11 Method for measuring substance and testing piece
US10/384,606 Division US20030180183A1 (en) 1995-10-30 2003-03-11 Method for measuring substance and testing piece
US10/384,605 Division US7153696B2 (en) 1995-10-30 2003-03-11 Method for measuring substance and testing piece

Publications (1)

Publication Number Publication Date
WO1997016720A1 true WO1997016720A1 (fr) 1997-05-09

Family

ID=27573517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003188 WO1997016720A1 (fr) 1995-10-30 1996-10-30 Procede de dosage d'une substance et eprouvette de mesure

Country Status (5)

Country Link
US (3) US7153696B2 (ja)
EP (1) EP0860695B1 (ja)
CN (1) CN1103919C (ja)
DE (1) DE69635717T2 (ja)
WO (1) WO1997016720A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297433A (zh) * 2014-10-27 2015-01-21 天津医学高等专科学校 生物碱测试棒及制备方法
CN104458680A (zh) * 2013-09-20 2015-03-25 国立大学法人九州大学 光测量装置、光测量方法、滤波构件以及生产滤波构件的方法

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
ATE497731T1 (de) 2001-06-12 2011-02-15 Pelikan Technologies Inc Gerät zur erhöhung der erfolgsrate im hinblick auf die durch einen fingerstich erhaltene blutausbeute
EP1404235A4 (en) 2001-06-12 2008-08-20 Pelikan Technologies Inc METHOD AND DEVICE FOR A LANZETTING DEVICE INTEGRATED ON A BLOOD CARTRIDGE CARTRIDGE
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
JP4149911B2 (ja) 2001-06-12 2008-09-17 ペリカン テクノロジーズ インコーポレイテッド 電気式ランセットアクチュエータ
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
EP1404233B1 (en) 2001-06-12 2009-12-02 Pelikan Technologies Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US8210349B2 (en) 2003-03-25 2012-07-03 Arkray, Inc. Sensor storage container
ES2347248T3 (es) 2003-05-30 2010-10-27 Pelikan Technologies Inc. Procedimiento y aparato para la inyeccion de fluido.
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
EP1671096A4 (en) 2003-09-29 2009-09-16 Pelikan Technologies Inc METHOD AND APPARATUS FOR PROVIDING IMPROVED SAMPLE CAPTURING DEVICE
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
JP4088312B2 (ja) * 2003-10-30 2008-05-21 アークレイ株式会社 バイオセンサおよびその製造方法
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH &amp; Co. KG Printable hydrogel for biosensors
WO2005120365A1 (en) 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US7109271B2 (en) * 2004-07-28 2006-09-19 Lifescan, Inc. Redox polymers for use in electrochemical-based sensors
SG120277A1 (en) 2004-08-27 2006-03-28 Zellweger Analytics Ag Extended life mineral acid detection tape
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
WO2006092980A1 (ja) * 2005-02-28 2006-09-08 Fujifilm Corporation 乾式分析要素
US7838304B2 (en) * 2006-01-18 2010-11-23 Arkray, Inc. Liquid reagent of color former and method of stabilizing the same
US20110027129A1 (en) * 2006-09-26 2011-02-03 Arkray, Inc. Method for formation of reagent layer in analysis apparatus, method for manufacture of anlalysis apparatus, and analysis apparatus
JP2010513935A (ja) * 2006-12-18 2010-04-30 スリーエム イノベイティブ プロパティズ カンパニー 化学指標試験ストリップ
US20080145940A1 (en) * 2006-12-18 2008-06-19 3M Innovative Properties Company Chemical indicator test strip
US20080145948A1 (en) * 2006-12-18 2008-06-19 3M Innovative Properties Company Chemical indicator test strip
ES2374686T3 (es) 2007-05-14 2012-02-21 Historx, Inc. Separación en compartimentos por caracterización de píxel usando agrupamiento de datos de imágenes.
JP5593221B2 (ja) 2007-06-15 2014-09-17 ヒストロックス,インコーポレイテッド. 顕微鏡機器を標準化するための方法およびシステム
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
CN102077091B (zh) * 2008-06-30 2016-08-17 积水医疗株式会社 用于结合测定的多孔性固相和使用所述多孔性固相的结合测定法
CA2737116C (en) * 2008-09-16 2019-01-15 Historx, Inc. Reproducible quantification of biomarker expression
EP2172767A1 (en) * 2008-10-06 2010-04-07 Sony Corporation A sensor for thiol analytes
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
WO2011102859A1 (en) 2010-02-16 2011-08-25 Datamax-O'neil Corporation Portable printer with asymmetrically-damped media centering
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
WO2011137484A1 (en) * 2010-05-05 2011-11-10 Aqualysis Pty Ltd Analysis reagents and method
US20150177154A1 (en) * 2011-09-06 2015-06-25 Dmitri Boris Papkovsky Dry laminated photoluminescent probe and method of manufacture and use
TW201312119A (zh) * 2011-09-15 2013-03-16 Toyo Boseki 糖化血紅素測量用多層試驗片、及使用它之測量方法
CN102590198A (zh) * 2012-02-05 2012-07-18 云南烟草科学研究院 用分光光度计测定卷烟烟气中总挥发酚的方法
US8882374B2 (en) 2012-05-25 2014-11-11 Datamax—O'Neil Corporation Printer with print frame interlock and adjustable media support
CN103940883B (zh) * 2013-01-21 2016-08-17 中国科学院理化技术研究所 可快速检测水体生物毒性的一次性微生物膜传感器的制备方法、应用、装置及检测方法
CN104380086A (zh) 2013-04-26 2015-02-25 松下知识产权经营株式会社 氧化物质定量方法以及氧化物质定量装置
CN104198403B (zh) * 2014-02-26 2016-08-24 皖西学院 一种比色法检测水环境中Fe3+含量的方法
CN103966851B (zh) * 2014-05-22 2016-08-24 安徽工程大学 一种功能性aopan纳米纤维及其制备方法
WO2016085688A1 (en) * 2014-11-25 2016-06-02 3M Innovative Properties Company Devices and kits for the propagation or storage of microorganisms, and methods of making and using
EP3412763B1 (en) 2016-02-04 2020-12-23 Terumo Kabushiki Kaisha Blood-sugar-level measurement reagent, blood-sugar-level measurement chip, and blood-sugar-level measurement device set
CN106248664B (zh) * 2016-07-18 2019-02-19 中国科学院东北地理与农业生态研究所 土壤蔗糖酶的测定方法
CN106381326A (zh) * 2016-08-31 2017-02-08 辽宁迈迪生物科技股份有限公司 一种用于检测乙酰多胺的体外检测试剂盒及其检测方法
CN108802085B (zh) * 2018-06-15 2020-09-11 国网辽宁省电力有限公司电力科学研究院 一种电气支撑设备的状态评估方法
CN108802026B (zh) * 2018-06-19 2020-10-09 四川大学 过氧化物酶活性与抗坏血酸同时自动测定方法及装置
CN109557088A (zh) * 2019-01-11 2019-04-02 四川沃文特生物技术有限公司 一种用于检测粪便乳糖含量的试剂卡及基于此的粪便乳糖检测方法
CN109916891A (zh) * 2019-04-12 2019-06-21 吉林省汇酉生物技术股份有限公司 一种定量测定尿酸浓度的干化学试剂片及其制备方法
CN109916893A (zh) * 2019-04-12 2019-06-21 吉林省汇酉生物技术股份有限公司 一种定量检测白蛋白含量的干化学试剂片及其制备方法
CN110907405A (zh) * 2019-11-26 2020-03-24 桂林理工大学 一种基于四羧基镍酞菁测定痕量过氧化氢的方法
CN111686661B (zh) * 2020-06-22 2022-07-01 张瀚 基于3d纳米孔状结构的血液分离和分析器件的制备方法及应用
CN112161972B (zh) * 2020-08-14 2021-04-20 大连理工大学 一种快速分级定量检测酸性溶液中芳伯胺含量的检测试纸组及其应用
CN113092404B (zh) * 2021-03-16 2022-06-28 中国原子能科学研究院 一种测定冠醚浓度的方法
CN113484308B (zh) * 2021-06-25 2023-01-03 兰州大学 一种快速鉴别真假葡萄酒的试纸及其制备和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735753A (en) * 1980-05-31 1982-02-26 Pentel Kk Coloring material capable of developing and vanishing color
JPH0315399A (ja) * 1990-05-19 1991-01-23 Dainippon Printing Co Ltd 体液成分検査用組成物

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350175A (en) 1963-07-02 1967-10-31 Mine Safety Appliances Co Colorimetric indicator device for the determination of gases
US3672845A (en) 1970-07-28 1972-06-27 Miles Lab Test device for albumin
JPS4889787A (ja) 1972-02-25 1973-11-22
US3904373A (en) 1973-10-26 1975-09-09 Gerald Bruce Harper Indicators covalently bound to insoluble carriers
FR2280081A1 (fr) 1974-07-23 1976-02-20 Kodak Pathe Produit composite unitaire pour l'analyse chimique ou biologique
US4042335A (en) 1975-07-23 1977-08-16 Eastman Kodak Company Integral element for analysis of liquids
US4015937A (en) 1975-11-14 1977-04-05 Sakata Shokai Ltd. Process for detecting the completion of the sterilizing treatment using a color changing indicator composition
US4252782A (en) * 1978-09-29 1981-02-24 Meloy Laboratories, Inc. Test for assessing the unsaturated binding capacity of serum proteins which bind thyroid hormones
US4421719A (en) 1980-06-20 1983-12-20 Minnesota Mining And Manufacturing Company Colorimetric indicators
JPS57174099A (en) * 1981-04-17 1982-10-26 Fuji Photo Film Co Ltd Color indicator composition for detecting hydrogen peroxide and quantitative analytical film having reagent layer containing the same
JPS57200862A (en) 1981-06-05 1982-12-09 Fuji Photo Film Co Ltd Mutilayer analysis element utilizing unique binding reaction
US4803162A (en) 1984-05-15 1989-02-07 Fluorodiagnostic Limited Partners Composition, article and process for detecting a microorganism
JPS6192598A (ja) 1984-10-15 1986-05-10 Kainosu:Kk Adpの定量方法
JPS6339599A (ja) 1986-08-01 1988-02-20 Imunobaion:Kk 過酸化物量又はペルオキシダ−ゼ様作用を示す関与物の活性の測定方法
JPH0672845B2 (ja) * 1986-09-01 1994-09-14 富士写真フイルム株式会社 分析方法
DE3800661A1 (de) * 1988-01-13 1989-07-27 Zuckerindustrie Verein Teststreifen aus einem saugfaehigen werkstoff oder mit einer saugfaehigen beschichtung aus diesem werkstoff sowie verfahren zu seiner herstellung
DE3809523A1 (de) 1988-03-22 1989-10-12 Miles Inc Verfahren zur herstellung von poroesen membranen, die damit hergestellten membranen und deren verwendung als traegermatrices in teststreifen
US5240571A (en) * 1991-04-24 1993-08-31 University Of Cincinnati Quantitative method of detection of analytes in aqueous fluids by detection of NADH and NADPH
JPH0599927A (ja) 1991-10-09 1993-04-23 Dainippon Printing Co Ltd 水溶性被酸化呈色指示薬を用いたブドウ糖検出用印刷 インキ組成物及びその適用法
DE4238389A1 (de) 1992-11-13 1994-05-19 Bayer Ag Verfahren zur Durchführung immundiagnostischer Nachweise
US6509117B1 (en) * 2000-05-01 2003-01-21 The Gillette Company Battery comprising manganese dioxide having a high power coefficient

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735753A (en) * 1980-05-31 1982-02-26 Pentel Kk Coloring material capable of developing and vanishing color
JPH0315399A (ja) * 1990-05-19 1991-01-23 Dainippon Printing Co Ltd 体液成分検査用組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458680A (zh) * 2013-09-20 2015-03-25 国立大学法人九州大学 光测量装置、光测量方法、滤波构件以及生产滤波构件的方法
CN104458680B (zh) * 2013-09-20 2019-03-19 国立大学法人九州大学 光测量装置、光测量方法
CN104297433A (zh) * 2014-10-27 2015-01-21 天津医学高等专科学校 生物碱测试棒及制备方法

Also Published As

Publication number Publication date
US7189576B2 (en) 2007-03-13
US7098038B2 (en) 2006-08-29
EP0860695A1 (en) 1998-08-26
US20030175985A1 (en) 2003-09-18
US20030166295A1 (en) 2003-09-04
DE69635717T2 (de) 2006-08-31
US7153696B2 (en) 2006-12-26
CN1207173A (zh) 1999-02-03
CN1103919C (zh) 2003-03-26
EP0860695A9 (en) 2001-10-17
US20030175984A1 (en) 2003-09-18
DE69635717D1 (de) 2006-03-30
EP0860695B1 (en) 2006-01-04

Similar Documents

Publication Publication Date Title
WO1997016720A1 (fr) Procede de dosage d&#39;une substance et eprouvette de mesure
US6777243B2 (en) Method for measuring substance and testing piece
US6121050A (en) Analyte detection systems
US4274832A (en) Analytical element and method for analysis of multiple analytes
JPH04250360A (ja) イオンのアッセイ法とその装置
EP1271143B1 (en) Test strip having a porous filter layer
US20160245811A1 (en) Systems and methods for monitoring biological fluids
JPS6314302B2 (ja)
Preechakasedkit et al. Gold nanoparticle core–europium (iii) chelate fluorophore-doped silica shell hybrid nanocomposites for the lateral flow immunoassay of human thyroid stimulating hormone with a dual signal readout
CA1121920A (en) Fluorimetric analysis method for bilirubin
WO1993025892A1 (en) Sensor for optical assay
JP3446796B2 (ja) 試験片
EP0239242B1 (en) Analytical composition, element and method for the determination of hydrogen peroxide
Wang et al. A simple lateral flow biosensor for the rapid detection of copper (II) ions based on click chemistry
JP3359822B2 (ja) 高感度な物質の測定方法
KR100503562B1 (ko) 단백질측정용건식분석요소
JP3323404B2 (ja) 高精度な物質の測定方法
JP3359821B2 (ja) 迅速な物質の測定方法
JP2006087325A (ja) 分析用試薬、乾式分析要素、および分析方法
KR20200134925A (ko) 수용성 키토산 유도체를 포함하는 비색검출센서
JPS6244616B2 (ja)
JPH01107136A (ja) 液体分析方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96199465.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996941154

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996941154

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2251354

Country of ref document: CA

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1996941154

Country of ref document: EP