WO1997013872A1 - Method and assaying amodori compounds - Google Patents

Method and assaying amodori compounds Download PDF

Info

Publication number
WO1997013872A1
WO1997013872A1 PCT/JP1996/002964 JP9602964W WO9713872A1 WO 1997013872 A1 WO1997013872 A1 WO 1997013872A1 JP 9602964 W JP9602964 W JP 9602964W WO 9713872 A1 WO9713872 A1 WO 9713872A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
amount
solution
faod
measured
Prior art date
Application number
PCT/JP1996/002964
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Yagi
Fumiyo Funatsu
Toshikatsu Sakai
Kaori Ishimaru
Hiroshi Fukuya
Hiroshi Yoshizu
Katsutaka Oishi
Original Assignee
Kyoto Daiichi Kagaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Daiichi Kagaku Co., Ltd. filed Critical Kyoto Daiichi Kagaku Co., Ltd.
Publication of WO1997013872A1 publication Critical patent/WO1997013872A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/906Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/906Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7)
    • G01N2333/90605Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7) acting on the CH-NH2 group of donors (1.4)
    • G01N2333/90633Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3) in general

Definitions

  • the present invention relates to a method for measuring an Amadori compound using an enzyme, and more particularly to a novel method for measuring an Amadori compound using fructosylamino acid oxidase, and a reagent and a kit used in the method.
  • Amadori compounds are non-enzymatic and irreversible when amino and aldehyde groups coexist with a substance having an amino group such as protein, peptide and amino acid and a reducing sugar such as aldose. It is produced by binding and Amadori rearrangement.
  • the rate of Amadori compound formation is a function of the concentration of the reactive substance, contact time, temperature, and so on. Therefore, it is thought that various information on the substance containing the reactive substance can be obtained from the generation s.
  • Substances containing Amadori compounds include foods such as soy sauce and body fluids such as blood.
  • a fructosylamine derivative which is an Amadori compound in which glucose and amino acid are combined, is produced.
  • a fructosylvanine derivative in which hemoglobin in blood is glycated is called glycohemoglobin
  • a derivative in which albumin is glycated is called glycoalbumin
  • a derivative in which blood protein is glycated is called fructosamine.
  • the decomposition reaction of the Amadori compound by the oxidizing enzyme can be represented by the following general formula.
  • Fructosyl amino acid oxidase Corynebacterium (Japanese Patent Publication No. 5-33997, Japanese Patent Publication No. 6-65300), Aspergillus (Japanese Patent Publication No. 3-155780) 0
  • Fructosyl amino acid-decomposing enzyme enicUliuin (JP-A-4-4874).
  • Ketoamine okidase Corynebacterium S, Fusarium, Acremonium or Debryomyces (Japanese Patent Application Laid-Open No. 5-192193)
  • Alkyl lysinase Prepared by the method described in J. Biol. Chem. 239, pp. 3790-3796 (1964).
  • glycated albumin is produced by the coupling of glucose to the ⁇ -position of a lysine residue in a protein molecule [J. Biol. Chem. 261: 13542-13545 (1986)].
  • glucose is also silicified to the 3-terminal N-terminal variant [J. Biol. Chem. 254: 3892-3 898 (1979)].
  • fructosyl lysine and Z or fructosyl valine in order to measure a glycated protein as an indicator of diabetes.
  • fructosyl lysine cannot be measured accurately by the methods described in JP-B 5-33997 and JP-B 6-65300, and JP-A 3-155780 discloses that glycated protein or its hydrolyzate cannot be measured. The effect is not disclosed.
  • the method described in JP-A-5-192193 cannot accurately measure a glycated protein in which a saccharide is bound to a lysine residue.
  • the Amadori compound (usually a protein) is decomposed into amino acids, and then hydrogen peroxide generated by the reaction of the liberated saccharification site amino acid residues with the enzyme is consumed or consumed. The amount of oxygen needed to be measured and could not be processed quickly. Furthermore, Amadori compounds having different glycation sites could not be specifically measured.
  • the conventional method is not suitable for accurate measurement of glycated protein, and development of a method for rapidly and specifically measuring fructosyl lysine and / or fructosyl valine and a peptide containing at least one of them is awaited.
  • a method for rapidly and specifically measuring fructosyl lysine and / or fructosyl valine and a peptide containing at least one of them is awaited.
  • the present inventors have conducted intensive studies with the aim of providing a measurement method for accurately analyzing an Amadori compound, particularly a glycated protein, and as a result, have found that certain fungi have been identified as fructosyl lysine and / or fructosyl
  • the present inventors have found that the purpose can be achieved by using a nitrogen atom obtained by culturing in the presence of N′—Z-lysine, and completed the present invention.
  • the present invention is characterized in that the measurement is performed using an enzyme. It is intended to provide a method for measuring an Amadori compound in a substance-containing sample.
  • the subject of the method of the present invention is arbitrary, but usually a biological component or food, as long as it can contain the Amadori compound.
  • the Amadori compound is preferably measured by measuring the saccharification rate of the sample, quantifying fructosylamine, or measuring the saccharified substance concentration.
  • analysis of Amadori compounds by measuring the saccharification rate using yeast is novel.
  • measuring Amadori compounds, especially saccharified proteins there are two methods: measuring the absolute amount (concentration) of the saccharified protein and measuring the percentage of saccharified protein (saccharification rate).
  • the total amount of the protein component to be measured and the saccharification amount are separately measured, and the saccharification rate is obtained by calculation. It has great clinical significance.
  • High-performance liquid chromatography, a method using a column packed with solids mixed with boric acid, electrophoresis, and a method using an antigen-antibody reaction include non-glycated tans.
  • the saccharification rate is determined from the relative ratio between the amount of protein and the amount of saccharified protein, there is a disadvantage that information on ft cannot be obtained.
  • this method it is possible to measure the saccharification rate that is important for the diagnosis of diabetes mellitus without being affected by the metabolism and amount of protein, and to determine the nutritional status and the total protein amount for determining the degree of liver injury. Measurement can be performed simultaneously. This indicates that this method is also effective in diagnosing diabetes in patients with diseases involving fluctuations in protein levels.
  • FIG. 1 is a graph showing the relationship between the fructosamine value and the amount of hydrogen peroxide generated by the FAUD action.
  • FIG. 2 is a graph showing the relationship between the concentration of glycated human serum albumin and the amount of hydrogen peroxide generated by the action of FAOD derived from Fusarium oxysvolum S-1F4.
  • FIG. 3 is a graph showing the relationship between the concentration of saccharified human serum albumin and the amount of hydrogen peroxide generated by the action of FAOD derived from Giperella fujikuroi.
  • FIG. 4 is a graph showing the relationship between the concentration of glycated human blood albumin and the amount of purple water peroxide generated by the action of F AOD from Fusarium oxasbum 'f.sp' lini.
  • FIG. 5 is a graph showing the relationship between the concentration of glycated human serum albumin and the amount of hydrogen peroxide generated by the action of FAOD derived from Aspergillus terreus GP1. 2 P
  • FIG. 6 is a graph showing the relationship between the saccharification rate of human serum albumin and the amount of hydrogen peroxide generated by the action of FAOD derived from Fusarium oxasvolum f.sp.lini.
  • FIG. 7 is a graph showing the relationship between the saccharification rate of human serum albumin and the amount of hydrogen peroxide generated by the action of FAOD derived from Aspergillus terreus GP1.
  • Figure 8 is Ru graph der showing the relationship between the amount of hydrogen peroxide generated by the action of FAOD derived from glycation rate and Giperera-fujikuroi of human serum albumin 0
  • FIG. 9 is a graph showing the relationship between the saccharification rate of human serum albumin and the amount of hydrogen peroxide generated by the action of FAOD derived from Fusarium oxysporum S-1F4.
  • FIG. 10 is a graph showing the relationship between the concentration of saccharified hemoglobin and the amount of hydrogen peroxide generated by the action of FAOD derived from Fusarium, oxysporum, f. Sp., And lini.
  • FIG. 11 is a graph showing the relationship between the concentration of saccharified hemoglobin and the amount of hydrogen peroxide generated by the action of FAOD derived from Aspergillus terreus GP1.
  • FIG. 12 is a graph showing the relationship between the amount of saccharified hemoglobin and the amount of hydrogen peroxide generated by the action of FAOD derived from Penicillium jansinerum S-313.
  • FIG. 13 is a graph showing the relationship between the amount of glycated hemoglobin and the amount of hydrogen peroxide generated by the action of FAOD derived from Penicillium jansinerum S-3413.
  • Figure 14 shows valine as a function of total hemoglobin content (absorbance at 415 nm).
  • 4 is a graph showing the relationship between the ratio of saccharification amount (absorbance at 727 nm) and hemoglobin A 1c value.
  • FIG. 15 is a graph showing the relationship between hemoglobin A 1 c value and hydrogen peroxide ft generated by the action of F AOD derived from Penicillium ′ Jansinerum S—34 13.
  • No. 160 shows the relationship between the concentration of fructosylvalin and the amount of hydrogen peroxide produced by the use of FAOD derived from Penicillium 'Jansinerum S-314, detected by a chemical method. It is a graph shown.
  • FIG. 17 is a graph showing the relationship between the concentration of fructosyl lysine and the amount of hydrogen peroxide generated by the action of immobilized FAOD derived from Fusarium 'oxysporum S-1F4.
  • An enzyme that acts on the saccharification site of the substrate includes fructosylamino acid oxidase.
  • fructosylamino acid oxidase When fructosylamino acid oxidase is used, the measurement of the Amadori compound is performed by measuring the amount of oxygen consumed or the amount of a product in the reaction mixture. Products include hydrogen peroxide and glucosone.
  • Quantification of hydrogen peroxide is usually measured using a chromogen that produces a dye upon decomposition of hydrogen peroxide by a catalyst having peroxidase or peroxidase-like activity, or by an electrochemical method. Can be.
  • the amount of hydrogen peroxide generated can be quantified by measuring the amount of aldehyde generated in the presence of catalase and alcohol.
  • an enzyme produced by culturing a fungus in a medium containing fructosyl lysine and Z or fructosyl N "-Z-pyridine can be used.
  • Fructoshi used in the invention method The amino acid oxidase is called FAOD.
  • the FAOD used in the method of the present invention is obtained by culturing a fungus having fructosylamino acid oxidase-producing ability in a medium containing fructosyl lysine and / or fructosyl N'-I-Z-lysine (hereinafter sometimes abbreviated as FZL).
  • FZL fructosylamino acid oxidase-producing ability
  • FZL fructosyl N'-I-Z-lysine
  • FZL fructosyl N'-I-Z-lysine
  • Fusarium oxysporum S-1F4 (Fu_sariuni oxysporum S-1F4) (1-3-1-3 Tsukuba-Higashi, Ibaraki Pref.) Deposited under BP-5010 (Original Deposit: February 24, 1994: Transfer to International Deposit: February 22, 1995), Fusarium Oxysporum f. Sp. Rini (IFO NO 5880) (Fusarium oxysporum f. Sp. Lini), Fusarium oxysporum f. Sp. Batatas (Fusarium oxysporum f. Sp. Batatas) Fusarium oxysporum f. Sp. (IFO NO. 4471) (Fusarium oxysporum f. Sp. Niveuni).
  • Fusarium oxysporum S-1F4 (Fu_sariuni oxysporum S-1F4) (1-3-1-3 Tsukuba-Higashi, Ibaraki Pref.) Deposited under BP-5010 (Original Deposit: February 24, 1994
  • Fusarium oxysporum f. Sp. Kucumulinium (IFO NO. 63 84) Fusarium oxysporum f. Sp. Cucumerinuin, Fusarium xysporum f. sp. melongenae (IFO NO. 7706) (Fusarium oxysporum f. sp. melonge nae), Fusarium oxy Borm ⁇ f. Sp. Avi (IFO NO. 9964) (Fusarium oxysporum f. Sp. Apii), Fusarium 'Oxisborg ⁇ f. Sp. Vinyl (IFO NO. 9971) (Fusarium oxysporum f. Sp.
  • Penicillium cyanium (IFO NO.5337) (Penicillium cyaneum); , Aspergillus' Teleus GP-1 (Contractor: Ministry of International Trade and Industry at the above address; Institute of Biotechnology and Industrial Technology, National Institute of Advanced Industrial Science and Technology; Deposit No .: FERil BP-5684; Deposited by Hara: May 31, 1996; Transfer: September 30, 1996) (Aspergillus terr eus GP-1) Aspergillus oryzae (IFO 4242) (Aspergillus oryzae), Aspergillus oryzae (IF05710) (Aspergillus oryzae), and the like, but are not limited thereto.
  • the FAODs produced by the above method generally catalyze the reaction of oxidizing the Amadori compound in the presence of an acid to produce ⁇ -ketoaldehyde, an amide derivative and hydrogen peroxide.
  • the glucose 01-50% by weight and lysine and / or New beta one ⁇ - lysine 0.01 to 20 wt% in solution 100 Manufactured by autoclaving at ⁇ 150 to 3-60 minutes.
  • New beta one Zeta - dissolved lysine emissions 10 g, usually 120. C can be manufactured by autoclaving for 20 minutes.
  • FZL medium may be prepared by adding fructosyl lysine and FZL or FZL obtained by the above method to an ordinary medium, for example, by adding 0.01 to 50% by weight of glucose, / or New beta - zeta-lysine 0.01,20 weight 3 ⁇ 4, K 2 HP0 4 0.1 wt%, NaH 2 P0 4 0.1 wt%, MgS0 4 ⁇ 7H 2 0 0.05 wt%, CaC 1 2 ⁇ 2 ⁇ 2 0 0.01 weight % And yeast extract 0.2% by weight (preferably ⁇ 5.6-6.0) can be obtained by subjecting the mixture to autoclaving at 100 to 50 L for 3 to 60 minutes.
  • the medium used for the production of FAOD used in the method of the present invention may be an ordinary synthetic or natural medium containing a carbon source, a nitrogen source, an inorganic substance, and other nutrient sources.
  • a carbon source include glucose.
  • a nitrogen source peptone, casein digest, yeast extract, etc. can be used.
  • inorganic substances those contained in ordinary culture media such as sodium, potassium, calcium, manganese, magnesium, and cobalt can be used.
  • FAOD used in the method of the present invention is most induced when cultured in a medium containing fructosyl lysine and F or FZL.
  • a medium containing fructosyl lysine and F or FZL examples of preferred media, the FZL obtained by the method described above as a single nitrogen source, FZ L medium (1.0% glucose using glucose as the carbon crowd source, 0.5% FZL, 0.1% K Z HPO "0 . l% NaH 2 P0 4, 0.05% MgS0 4 ⁇ 7H 2 0, 0.01% C a C 12 ⁇ 2H 2 0 and 0 ... 0.01% vitamin mixture) can Rukoto cited.
  • the FZL medium can be prepared by adding FZL to a normal medium or by autoclaving a medium containing glucose and! ⁇ '-Z-lysine.
  • Culturing is usually performed at about 25 to 37, preferably at 28.
  • the ⁇ of the medium is in the range of 4.0 to 8.0, preferably 5.5 to 6.0.
  • these conditions are those which are appropriately polished in accordance with the condition of each bacterium, and are not limited to the above.
  • the tie obtained in this manner can remove nucleic acids, cell wall fragments, and the like according to a conventional method to obtain an enzyme product.
  • the disruption of the cells may be any of autolysis, freezing, sonication, and pressurization using mechanical means or a solvent.
  • Methods for separating and purifying yeast cord include a combination of salting out using ammonium sulfate or the like, precipitation with an organic solvent such as ethanol, ion exchange chromatography, hydrophobic chromatography, gel filtration, and affinity chromatography. Make some.
  • the culture tie is collected by centrifugation or suction filtration to collect mycelium, washed, made 0.1 M Tris-HCl buffer ( ⁇ 8. ⁇ ), and crushed by Dyno-llill.
  • the supernatant obtained by centrifugation is treated as a cell-free extract by ammonium sulfate fractionation and fluorosepharose monofiltration. To purify.
  • the FAOD used in the method of the present invention regardless of the degree of purification, is not limited to enzyme-containing substances in all purification stages, including culture medium, as long as it can catalyze the oxidation reaction of Amadori compounds. Solution.
  • the present invention can achieve the object of the present invention only at the site of the fermented purple molecule that is involved in the activity of the enzyme. Therefore, the present invention also encompasses any fragment having the oxidation activity of the Amadori compound.
  • the FAOD thus obtained is useful not only for the measurement of Amadori compounds, especially for the measurement of glycated proteins for the diagnosis of diabetes, but also for solving the technical problems to be solved by the present invention. It is.
  • an enzyme obtained by culturing a living organism transformed by an expression vector containing a DNA encoding FAOD can also be used in the method of the present invention.
  • the FAOD thus obtained is useful not only for the measurement of Amadori compounds, particularly for the measurement of glycated proteins for the diagnosis of diabetes, but also for the technical problems to be solved by the present invention. Useful.
  • the characteristics of the FAOD used in the method of the present invention will be described in detail. 1.
  • FAOD used in the method of the present invention is an inducible enzyme induced by fructonyl lysine and / or FZL.Fructosyl lysine and / or FZL is used as a nitrogen source and glucose is used as a carbon source. It is produced by culturing fungal fructosylamino acid oxidase-producing bacteria.
  • FAOD is induced in a GL browning medium obtained by autoclaving both glucose and lysine and / or N'-Z-lysine. Prepared by toraping 3 ⁇ 4enzyme acts specifically on the Amadori compound, since it is not induced in the cultivated medium.
  • FAOD used in the method of the present invention has the formula:
  • R 1 represents an aldose residue
  • R 2 represents an amino acid, protein or peptide residue
  • R 1 is —OH, one (CH 2 ) casual— or one [CH (OH)] n-CHzOH (where n is an integer of 0-6)
  • R 2 is —CHR
  • Amadori compounds represented by 3 — [CONHR 3 ] n COOH (wherein, R 3 is a residue on one amino acid side and m is an integer of 1 to 480) are preferred as the substrate, among which R 3 is lysine And a side residue of an amino acid selected from boryridine, parin, asparagine, etc., and a compound wherein n is 5 to 6 and m is 55 or less.
  • Table 1 is —OH, one (CH 2 ) argue— or one [CH (OH)] n-CHzOH (where n is an integer of 0-6)
  • R 2 is —CHR
  • Amadori compounds represented by 3 — [CONHR 3 ] n COOH (wherein, R 3 is a residue on one amino acid side and m is an integer of 1
  • Table 1 shows that F AOD used in the method of the present invention has high specificity for fructosyl lysine and / or fructosyl valine. Further, the activity of FAOD for each substrate is shown in Table 2 below.
  • FAOD used in the method of the present invention has activity against fructosyl lysine and Z or fructosyl boryl lysine, which indicates that the FAOD is useful for measuring glycated albumin. It indicates that there is.
  • FAODs derived from Fusarium oxysvolum.f.sp.'lini, Aspergillus'Teleus GP1 and Penicillium jansinerum S-3413 used in the method of the present invention have activity against fructosylvalin. This indicates that the FAOD is also useful for measuring glycated hemoglobin.
  • FAOD used in the method of the present invention also has an activity on protease digests of glycated proteins.
  • the power grinding measurement of the bran was performed by the following method.
  • the 10 OmM FZL solution was prepared by dissolving FZL obtained in advance with distilled water. 45 mM 4-Aminoantipyrine, 60 units / m 1 peroxidase solution, 100/1 each of 6 OmM Fuunol solution, 0.1 M Tris-HCl ⁇ mouth solution (pH 8.0) Im and »3 ⁇ 4 solution 51 Mix and make up to 3.0 ml with distilled water. After incubating for 2 minutes at 30 ° C., 501 OmM solution was added, and the absorbance at 505 nm was measured over time.
  • the present invention provides a method for measuring oxygen consumption or a reaction product by bringing a sample containing an Amadori compound into contact with FAOD.
  • Another object of the present invention is to provide a method for measuring an Amadori compound in a sample. The method of the present invention is carried out based on the measurement of the amount and / or saccharification rate of a glycated protein in a biological component or food, or the determination of fructosylamine.
  • the enzyme activity of FAOD is measured based on the following reaction.
  • R 1 represents an aldose residue
  • R 2 represents an amino acid, protein or peptide residue
  • test liquid use any sample solution containing the Amadori compound.
  • sample solution containing the Amadori compound examples thereof include foods such as blood (whole blood, blood serum or serum), urine and other biological samples, as well as oils.
  • any of the following methods for measuring an Amadori compound is used.
  • the action of FAOD produces hydrogen peroxide and glucosone.
  • Hydrogen peroxide is measured by a method known in the art, for example, a coloring method, a method using a hydrogen oxide electrode, etc., and a standard curve prepared for the amounts of water peroxide purple and the Amadori compound.
  • the Amadori compound in the sample is measured by comparing with. Specifically, it is based on the measurement of the titer described in 3 above. However, the amount of FAOD shall be 1 unit Zm 1, an appropriately diluted sample shall be added, and the amount of hydrogen peroxide generated shall be measured.
  • the color development system for the colorimetric method of hydrogen peroxide is as follows: ⁇ ⁇ ⁇ Couplers such as 4-aminoantivirin (AAA) and 3-methyl-12-benzothiazolinone hydrazone (MBTH) in the presence of oxidase. It is possible to use a system that produces a dye by oxidative condensation of phenol with a chromogen such as phenol.
  • chromogens include fuynol derivatives, aniline derivatives, and toluidine derivatives.
  • a leuco-type coloring reagent which is oxidized in the presence of peroxidase to give a color
  • Various leuco-type coloring reagents are known to those skilled in the art, and include 0-dian ginseng, 0-trizine, 3.3-diaminobenzidine, 3,3.5.5-tetramethylbenzidine, and N- (carboxymethylaminocarbonyl). And 1,4-bis (dimethylamino) biphenylamine (DA64), 10- (carboquinmethylaminocarbonyl) -1,3,7-bis (dimethylamino) phenothiazine (DA A67), and the like.
  • the measurement of hydrogen peroxide using a chromogen includes a colorimetric method, a luminescence method, and a chemical luminescence method.
  • a compound that emits fluorescence by oxidation for example, homovanillic acid, 4-hydroquinphenyl sulfonic acid, tyramine, nociclecresol, diacetylfluorescin derivative and the like can be used.
  • chemiluminescence method veroxidase, lithium furocyanide, hemin, or the like can be used as a catalyst, and luminol, noresigenin, isorminol, pyrogallol, or the like can be used as a substrate.
  • a system in which catalase is allowed to act in the presence of an alcohol (eg, methanol) and the resulting aldehyde is colored by a Hunch reaction or a condensation reaction with MBTH can be used.
  • This aldehyde can also be conjugated to aldehyde dehydrogenase to measure changes in NAD (NADH).
  • an aldose reagent such as diphenylamine can be used.
  • the anode When measuring hydrogen peroxide using an electrode, the anode can be any material that can transfer electrons to and from hydrogen peroxide, but platinum, gold, silver, etc. are preferred. .
  • the measurement can be performed by a method known to those skilled in the art, such as ambiometry, potentiometry, and coulometry.
  • the reaction between the FAOD or the substrate and the positive electrode is mediated by an electron carrier, The resulting oxidation or reduction current or the amount of electricity can also be measured.
  • the electron conductor may be a substance known to those skilled in the art, such as a fluorinated conductor, a quinone derivative, or any substance having an electron transfer function that can be generally considered by those skilled in the art.
  • a proton conductor can be interposed between the hydrogen peroxide generated by the FAD reaction and the electrode, and the resulting oxidation, a-source current, or its air volume can be measured.
  • the value obtained by subtracting the amount of oxygen at the end of the reaction from the amount of oxygen at the start of the reaction is measured and compared with the quasi-curve created for the amounts of oxygen quenched Si and Amadori compounds in the sample. Is measured. Specifically, the measurement is performed in accordance with the above-mentioned titration measurement. However, the amount of F A O D to be used shall be 1 unit / ml, and an appropriately diluted sample shall be added to determine the amount of oxygen eliminated.
  • the method of the present invention can be carried out using the sample solution as it is, depending on the target Amadori compound, it is preferable to carry out the sample while or after the sample is treated so that the FAOD reacts.
  • Such purposes include the use of protease (enzymatic method), the use of chemicals such as trifluorosulfuric acid (chemical method), and the use of physical methods such as heat (physical method).
  • protease enzymatic method
  • chemical method the use of chemicals such as trifluorosulfuric acid
  • physical method such as heat (physical method).
  • endo- and exo-type proteases known to those skilled in the art can be used alone or in combination.
  • Endo-type proteases are abundant substances that are degraded from the inside of proteins.
  • the exo-type Oral protease is an enzyme that decomposes sequentially from the end of the peptide chain, and examples thereof include aminopeptidase and carboxypeptidase. Enzyme treatment methods are also known and can be performed, for example, by the method described in the following Examples.
  • endo-type and exo-type proteases are preferably used depending on the saccharification site of the Amadori compound to be measured by utilizing its properties.
  • glycated albumin is an endo-type protease because the internal lysine residue is glycated
  • hemoglobin Ale is an exo-type protease because the / 9 chain N-terminal valine residue is glycated. Processing can be performed more efficiently.
  • Proteinase A 5.0 200 Subtilisin ⁇ .7 230 Human cathepsin 4.2 170 Protease XIV 7.7 310 Bronase 5.8 230 Bronase E 8.4 340 Proteinase K 3.1 120 Blotase P 3.0 120 Blotase N 4.4 180 Proleather 3.0 120 Papain 5.0 200 Protease A 5.9 240 Bromelain F 4.0 160 exo-type protease
  • Carboxypeptidase B 1.27 33.3 Aminopeptidase 3.82 100.0 Aminobutidase M 0.43 11.2 Furthermore, according to the method of the present invention, unlike the conventional method, it is not necessary to completely decompose the Amadori compound into amino acids and release saccharified amino acid residues in the treatment by the thixotropy method. The processing time can be shortened because the saccharified peptide may be in a state in which FAOD can easily react.
  • an acid, an alkali, a surfactant, a protein denaturant and the like can be used alone or in combination.
  • heat, microwave, pressure, etc. can be used alone or in combination.
  • the enzymatic method, the chemical method, and the physical method can be used alone, but may be used in an appropriate combination. Further, these processes can be performed before or at the time of the F AOD reaction.
  • the processing of the sample and the FAOD reaction can be performed simultaneously, so the operation is simpler and more labor-intensive than the conventional method. Instead, it can be measured in a short time.
  • FAOD used in the method of the present invention since FAOD used in the method of the present invention has high substrate specificity for fructosyl lysine contained in glycated proteins, it includes the measurement of glycated albumin in a blood sample, diagnosis of diabetes, etc. Useful for In addition, since fructosylvaline also has specificity, it is useful for measuring hemoglobin A1c.
  • the collected blood sample is used as it is or after being subjected to a treatment such as folding.
  • the sample is a whole blood or hemolyzed sample
  • the sample will show a unique absorption spectrum due to the presence of hemoglobin.
  • the wavelength to be detected overlaps with the absorption of hemoglobin, and accurate measurement cannot be performed. Therefore, it is necessary to subtract the previously measured hemoglobin spectrum from the spectrum after the FAOD reaction and measure the difference.
  • this method is not always accurate, and is cumbersome.
  • the absorption of hemoglobin itself can be avoided, and the measurement can be performed in a long wavelength region (600 to 800 nm), whereby the shadow of hemoglobin in the sample can be obtained. And more accurate measurement is possible.
  • hydrogen peroxide produced by the action of FAOD was produced by oxidative coloring of DA64, DA67, 4AA / MAOS, 4AAZM APS, etc. in the presence of peroxidase, and by the action of lipase. It is detected by color development due to the condensation reaction between aldehyde and MBTH.
  • glycated albumin as well as Amadori compounds containing hemoglobin Ale in whole blood and hemolyzed samples can be measured.
  • the detection wavelength is not limited to this, and even if it is in the wavelength range that overlaps with hemoglobin absorption, as described above, the previously measured hemoglobin spectrum is measured after the FAOD reaction.
  • the method of subtracting from the spectrum and measuring the difference is also included in the method of the present invention.
  • the enzymes such as FAOD, peroxidase, lipase, and protease used in the method of the present invention may be used in the form of a solution, or may be immobilized on a suitable solid support.
  • a suitable solid support for example, by packing an enzyme immobilized on beads into a column and incorporating it into an automated device, routine analysis of a large number of samples such as clinical tests can be performed efficiently.
  • the immobilized yeast purple can be reused, which is preferable in terms of economic efficiency.
  • Immobilization of the enzyme can be performed by a method known in the art.
  • the method is carried out by a carrier binding method, a cross-linking method, an inclusive method, a complex method, or the like.
  • Carriers include polymer gels, microcapsules, agarose, alginic acid, and carrageen One Nan, and so on. Coupling is performed by a method known to those skilled in the art using covalent bonding, ionic bonding, physical adsorption, and biochemical affinity.
  • the analysis may be either flow or batch.
  • immobilized enzymes are particularly useful for routine analysis (glycos) of glycated proteins in blood samples.
  • the result should be expressed as glycated protein concentration, the ratio of glycated protein concentration to the total protein K concentration in the sample (glycation rate), or fructosylamine 4. .
  • the total protein concentration can be determined by a conventional method known to those skilled in the art (eg, absorbance at 280 ⁇ , Bradford method, Lowly method, Buret method, etc.). If the Amadori compound (glycated protein) to be measured is glycated albumin, phthalein dyes such as bromcresol green (BCG), bromcresol monopurple (BCP), and bromphenol blue (BPB) are used for the total albumin S level.
  • BCG bromcresol green
  • BCP bromcresol monopurple
  • BBPB bromphenol blue
  • methyl orange a method using azo dyes such as 2- (4'-hydroquinbenzenazo) benzoic acid (HAB (C) A), nephrometry, a method using the natural fluorescence of albumin, etc.
  • HAB (C) A 2- (4'-hydroquinbenzenazo) benzoic acid
  • nephrometry a method using the natural fluorescence of albumin, etc.
  • the measurement target is glycated hemoglobin
  • the total hemoglobin concentration can be measured by a gas method, a cyanmethemoglobin method, an azamethemoglobin method, a method using the absorbance of hemoglobin itself, etc.
  • the present invention is not limited to this.
  • the present invention also provides a method for measuring an Amadori compound in a sample, comprising: FAOD; and a processing reagent for treating the sample such that a saccharification site of the Amadori compound in the sample reacts with FA0D to form a sieve. It provides a reagent or kit.
  • FAOD jt in reagents is usually 1 to 1 per sample. 100 nits / ml, and the buffer solution is preferably Tris-HCl (pH 8.0).
  • the color-forming system may be a system that forms a color by oxidative condensation described in the above-mentioned “(1) Method based on the amount of reaction product”, or a leuco-type.
  • a coloring reagent or the like can be used.
  • a kit can also be obtained by combining the reagent for measuring the Amadori compound of the present invention, an appropriate color former, and a color standard or standard substance for ratio. Such a kit would be useful for preliminary diagnosis and testing.
  • the above measuring reagents and kits are used for measuring the amount and / or saccharification rate of glycated protein in biological components or foods, or for quantifying fructosylamine.
  • Production example 1 Production of FAOD derived from Giperella
  • Gibberella fujikuroi (IFO NO.6356) (Gibberella fujikuroi) from FZL 0.5%, glucose 1.0%, diphosphoric acid 0.1%, phosphoric acid-sodium 0.1%, magnesium sulfate 0.05%, calcium chloride 0.01%
  • the cells were inoculated into 10 L of a medium (pH 6.0) containing 0.2% yeast extract, and cultured with stirring using a jar fermenter with aeration of 2 LZ for 28 hours at a stirring speed of 400 rpm. Cultures were collected over time.
  • Ammonium sulfate was added to the obtained supernatant to 75% saturation, stirred, and centrifuged at 12.00 Orpm for 10 minutes.
  • Precipitate contains 2 mM DTT was dissolved in 50 mM Tris-HCl buffer (pH 8.5) (buffer A) and dialyzed against buffer A overnight.
  • the dialysate was adsorbed on a DEAE-Sephacel column equilibrated with buffer A. After washing with buffer A, elution was performed with a linear gradient of 0-0.5M potassium chloride.
  • the active fraction was collected, subjected to a 55% to 75% ammonium sulfate fraction, and dialyzed against buffer A.
  • Ammonium sulfate was added to the dialysate so as to be 25% saturated, and the dialysate was adsorbed to a full-length Yopearl column equilibrated with buffer A containing 25% saturated ammonium sulfate. After washing with the same buffer, elution was carried out with a linear gradient of ammonium sulfate concentration of 25-0% saturation. The active fractions were collected, ammonium sulfate was added to achieve 40% saturation, and the mixture was adsorbed on a Petit Root Yopal column equilibrated with buffer A containing 40% saturated ammonium sulfate.
  • Fusarium oxisbolum S-1 F4 (FERM BP-5010) (Fusarium ox ysporum S-1F4) was prepared from FZL 0.5%, glucose 1.0%, dicalcium phosphate 0.1%, monosodium phosphate 0.1%, magnesium sulfate Inoculate 10 L of a medium (pH 6.0) containing 0.05%, 0.01% calcium chloride and 0.2% yeast extract, and use a jar armor for 2 minutes with a stirring speed of 40 Orpm. The culture was agitated for hours. Cultures are collected by filtration. I did.
  • a portion (200 g) of the mycelium was suspended in 1 L of 0.1 M Tris-monohydrochloride buffer (pH 8.5) containing 0-chome, and the mycelium was disrupted by Dyno-Mill.
  • the crushed liquid was centrifuged at 10,000 Orpn for 15 minutes, and the obtained liquid was used as a crude enzyme liquid (cell-free extract).
  • Ammonium sulfate (hereinafter abbreviated as ammonium sulfate) was added to the crude enzyme solution so as to be 40% saturated, and the mixture was stirred and separated at 12.00 Orpin for 10 minutes. Ammonium sulfate was added to the obtained supernatant to 75% saturation, stirred, and eccentrically separated at 12.00 Orpin for 10 minutes.
  • the precipitate was dissolved in 50 mM Tris-HCl buffer (pH 8.5) containing 2 mM DTT (hereinafter abbreviated as buffer A), and dialyzed against mouth liquid A overnight.
  • the dialysate was adsorbed on a DEAE-Sephacel column equilibrated with buffer A. After washing with the same buffer A, elution was carried out with a linear concentration gradient of 0 to 0.5 M potassium chloride.
  • the active fraction was collected, subjected to a 55% to 75% ammonium sulfate fraction, and dialyzed against buffer A overnight.
  • Ammonium sulfate was added to the dialysate so as to be 25% saturated, and the dialysate was adsorbed to a Fuyroot yopal column equilibrated with buffer A containing 25% saturated ammonium sulfate. After washing with the same buffer solution, elution was performed with a linear gradient of 25-0% saturation. The active fractions were collected, ammonium sulfate was added to 40% saturation, and the mixture was adsorbed on a Petil-Toyopearl column equilibrated with Buffer A containing 40% saturated ammonium sulfate. After washing with the same buffer, elution was carried out with a linear concentration gradient of ammonium sulfate S degree 40-0% saturation.
  • the active fractions were collected, ammonium sulfate was added to 80% saturation, and the mixture was stirred, centrifuged at 12.000 rpm for 10 minutes, and the obtained precipitate was dissolved in 0.1 M buffer A.
  • the enzyme solution was applied to a Cefacryl S-200 gel filtration chromatograph which had been equilibrated with 0.1 M buffer A and contained 0.1 M of chloride.
  • Active fractions were collected and concentrated by ultrafiltration. Treating the concentrate with a Pharmacia FPLC system using a Mono Q column (0-0.5 M linear chlorinated chloride using buffer A, elution with a gradient), 30-60 units To obtain a purified mellow purple.
  • Fusarium 'oxysporum f.sp.lini IFO .5880
  • CFusarium oxysporum f. Sp. Lini or Aspergillus terreus GP 1 (FERM BP-5684)
  • Aspergillus terreus GP1 0.5% FZL, glucose 1.
  • Medium containing 0%, 0.1% dipotassium phosphate, 0.1% monosodium phosphate, 0.05% magnesium sulfate, 0.01% calcium chloride, and 0.2% yeast extract (pH 6. 0) 10 L was inoculated and cultivated with a jar arm for 28 hours under the conditions of an aeration amount of 2 LZ and a stirring speed of 40 Orpa for 28 hours.
  • the tie stuff was collected after a.
  • Step 1 Ammonium sulfate fractionation
  • ammonium sulfate (hereinafter abbreviated as ammonium sulfate) was added to the crude enzyme solution so that it became 40% saturated, and the protein was removed by centrifugation (4 EC . 12.00 ⁇ ). Further, ammonium sulfate was added to the supernatant so as to be 75% saturated, and the precipitate was recovered.
  • Step 2 Hydrophobic chromatography (batch method)
  • the precipitate obtained in Step 1 is dissolved in 5 OmM Tris-monohydrochloride buffer (pH 8.5) containing 2 mM DTT (hereinafter abbreviated as buffer A) and contains an equal amount of 40% ammonium sulfate Quench A was added. 200 ml of butyl-TOYOP EARL resin was added to the crude enzyme solution, and adsorption was performed by the batch method. Elution was also performed by the batch method using buffer A, and the active fraction was sulfuric acid. The solution was concentrated by precipitation.
  • the concentrated active fraction was adsorbed to a phenyl-TOYOPEARL column equilibrated with buffer A containing 25% ammonium sulfate, washed with the same buffer, and eluted with a linear gradient of 25 to 0% ammonium sulfate. .
  • the collected active fraction was concentrated by ammonium sulfate precipitation and used for the next step.
  • Step 4 Hydrophobic chromatography (column method)
  • the collected active fraction was used for a butyl topopearl column (equilibrated with mouth liquid A containing 40% ammonium sulfate).
  • the concentrate was adsorbed and washed with the same buffer.
  • the active fraction was obtained with a linear gradient of 40 to 0% ammonium sulfate.
  • Step 5 ion exchange mouth chromatography
  • Benzinlium Jansinerum S-3413 (FERM BP-5475) (Penicill iuB janthinellum S-3413) was prepared from 0.5% FZL, 1.0% glucose, 0.1% dibasic phosphate, 0.1% sodium phosphate, 0.1% magnesium sulfate, magnesium sulfate Inoculated in 10 L of a medium (pH 6.0) containing 0.05% calcium chloride, 0.01% calcium chloride, and yeast extract 0.2%. The mixture was cultured for 28 to 36 hours under conditions of a flow rate of 2 LZ and a stirring speed of 50 Orpm. Cultures were collected over time.
  • Ammonium sulfate (hereinafter abbreviated as ammonium sulfate) was added to the crude enzyme solution so as to be 403 ⁇ 4 saturated, stirred, and centrifuged at 12.00 Orp for 10 minutes. Ammonium sulfate was added to the obtained supernatant to 75% saturation, stirred, and eccentrically separated at 12. ⁇ for 10 minutes.
  • the precipitate was dissolved in a 5 OmM calcium phosphate buffer (pH 7.5) containing ImM DTT (hereinafter referred to as buffer A).
  • the obtained solution was dialyzed against buffer A.
  • the external solution was exchanged twice.
  • the enzyme solution after the analysis was ablated on a DEAE-Sephacel column (4.226 cm) equilibrated with buffer A.
  • the active fraction was found in the fraction washed with the same buffer, and was collected and subjected to ammonium sulfate fraction of 0-55% saturation. Next, the enzyme was equilibrated with buffer A containing 25% saturated ammonium sulfate.
  • fructosyl polylysine solution 0.1% fructosyl polylysine solution was analyzed using the BMY / NBT assay. Test showed a fructosamine value of 750 ol / 1.
  • the FAOD reaction solution was prepared as follows.
  • the 7.6 unit ZmlF AOD solution was prepared using 0.1 M Tris-hydrochloric acid buffer (pH 8) so that the FAOD derived from Giperella fujikuroi (IFO NO. .0) to make silk.
  • Figure 1 shows the relationship between the fructosamine value and the absorbance obtained by this method.
  • the vertical axis represents the absorbance at 505 mn (corresponding to the amount of hydrogen peroxide)
  • the horizontal axis represents the fructosamine value. The figure shows that the fructosamine value and the amount of generated hydrogen peroxide are correlated.
  • FAOD derived from Fusarium obtained in Production Example 2 was used.
  • Glycated human serum albumin (Sigma) is dissolved in 0.9% sodium chloride aqueous solution. Then, saccharified human serum albumin solutions having different concentrations in the range of 0 to 10% were prepared.
  • the F A 0 D reaction solution was prepared as follows.
  • Fig. 2 shows the relationship between the concentration of saccharified albumin obtained by this method and the absorbance.
  • the vertical bar in the figure indicates the absorbance of 555 ⁇ (corresponding to the amount of hydrogen peroxide), and the horizontal axis indicates the concentration of glycated albumin. The figure shows that the concentration of saccharified albumin and the amount of hydrogen peroxide generated are correlated.
  • Example 2 the same operation as in Example 2 was repeated, except that the FAOD derived from Giperella II obtained in Production Example 1 was used.
  • the FAOD solution was prepared by mixing FAOD derived from Gibberella fujikuroi obtained in Production Example 1 (IFO No. 6356) (Gibberella fujikuroi) with 0.1 M Tris-hydrochloric acid buffer (pH 8. 0).
  • Figure 3 shows the relationship between the concentration of saccharified albumin (horizontal axis in the figure) and absorbance (corresponding to hydrogen peroxide i: vertical axis) obtained by this method.
  • the figure shows that the concentration of saccharified albumin and the amount of generated hydrogen peroxide are correlated.
  • Example 3 the same operation as in Example 2 was repeated, except that the FAOD derived from Fusarium ⁇ obtained in Production Example 3 was used 50 // 1.
  • the FAOD solution was prepared so that the FAOD derived from Fusarium 'oxysbolum ⁇ f.sp. ⁇ lini (IFO NO.5880) (Fusariura oxys orum f.sp. lini) obtained in Production Example 3 was 6.0 units Zml. It was prepared by diluting with 0.1 M Tris-HCl buffer (pH 8.0).
  • Figure 4 shows the relationship between the concentration of saccharified albumin (horizontal axis in the figure) and the absorbance (corresponding to the amount of hydrogen peroxide: vertical bow) obtained by this method.
  • the figure shows that the concentration of saccharified albumin and the amount of generated hydrogen peroxide are correlated.
  • the D solution was prepared such that the FA D derived from Aspergillus terreus GP1 CFEB1I BP-5684 (Aspergillus terreus GP1) was adjusted to 0.1 units / ml.
  • the product was diluted with M Tris-hydrochloride mouth liquid (pH 8.0) and manufactured by IS.
  • Figure 5 shows the relationship between the concentration of saccharified albumin obtained by this method (horizontal axis in the figure) and the absorbance (corresponding to the amount of hydrogen peroxide: vertical axis). The figure shows that the concentration of saccharified albumin and the amount of generated hydrogen peroxide are correlated.
  • the F A 0D reaction solution was subjected to ISSi as follows.
  • the 6 unit / ml FAOD solution was prepared by converting FAOD from Fusarium oxysporum f.sp. lini (Fusarium oxysporum f. Sp. Lini) obtained in Production Example 3 to 6 unit Znl. It was prepared by diluting with 0.1 M Tris-HCl buffer (pH 8.0).
  • FIG. 6 shows the relationship between the saccharification rate of albumin obtained by this method and the absorbance.
  • the vertical axis in the figure indicates the absorbance of 555na (corresponding to the amount of hydrogen peroxide), and the horizontal axis indicates the saccharification rate of albumin.
  • the figure shows that the saccharification rate of albumin and the hydrogen peroxide generator are in a relationship.
  • the same operation as in Example 6 was repeated, except that the FAO D derived from Alpergillus ⁇ obtained in Production Example 3 was used.
  • the FAOD solution is prepared by diluting FAOD derived from Aspergillus' Teleus GP1 (FERM BP-5684) (Aspergillus terreus GP1) with 0.1 Tris-HCl buffer (pH 8.0) to 6.0 nit / ml. IS made.
  • Figure 7 shows the relationship between the saccharification rate of albumin (horizontal axis in the figure) and absorbance (corresponding to the amount of hydrogen peroxide: vertical axis) obtained by this method.
  • the figure shows that the saccharification rate of albumin and the amount of generated hydrogen peroxide are correlated.
  • the FAOD derived from Giperella ⁇ obtained in Production Example 1 was used for 201 The same operation as in Example 6 was repeated, except that it was performed.
  • the FAOD solution was prepared using 0.1 M Tris-HCl buffer (pH 8) such that the FAOD from Giperella fujikuroi (IFO No. 6356) (Gibberella fu jikuroi) obtained in Production Example 1 was adjusted to 6.6 units / m1. .0) and prepared.
  • Fig. 8 shows the relationship between the saccharification rate of albumin obtained by this method (jux axis in the figure) and absorbance (corresponding to the appropriate amount of oxidized water purple: vertical axis). The figure shows that the saccharification rate of albumin and the amount of generated hydrogen peroxide are correlated.
  • Example 2 the same operation as in Example 6 was repeated, except that 201 of the Fusarium-derived FA0D obtained in Production Example 2 was used.
  • the FAOD solution was prepared so that the FAOD derived from Fusarium oxisbolum S-1F4 (FERH BP-5010) (Fusarium o ysporum S-1F4) obtained in Production Example 2 was 10.3 units.
  • the mixture was diluted with 1M Tris-HCl buffer (pH 8.0) and made into an air-tight.
  • Figure 9 shows the relationship between the saccharification rate of albumin obtained by this method (figure ⁇ in Fig. ⁇ ) and absorbance (corresponding to the amount of peroxidized water: vertical axis). The figure shows that there is a correlation between the concentration of saccharified albumin and the amount of hydrogen peroxide generated.
  • Fusarium-derived FAOD obtained in Production Example 3 was used.
  • Glycohemoglobin control Sigma was dissolved in distilled water to prepare glycated hemoglobin solutions having different concentrations in the range of 0 to 30%.
  • Glycated hemoglobin solution 2 500 units / 101 aminopeptidase (Exo-type mouth opening) Solution 5 1
  • Tris-HCl buffer pH 8.0 20 ⁇ 30 Incubated at C for 30 minutes. Thereafter, 50% acetic acid at 10% trichloro mouth was added and the mixture was stirred. The mixture was kept at 0 ° C for 30 minutes and centrifuged at 1200 Orpn for 10 minutes. About 50 l of 2M NaOH was added to the obtained supernatant to make a neutral solution.
  • the F A 0 D reaction solution was prepared as follows.
  • the 4-unit / ml FAOD solution was prepared by combining the FAOD derived from Fusarium oxyspornolem, f.sp., lini (IFO NO.5880) (Fusarium oxysporum f.sp. lini) obtained in Production Example 3 with 4 units / ml. It was prepared by diluting with a 0.1 M Tris-monohydrochloride buffer solution (pH 8.0).
  • FIG. 10 shows the relationship between the concentration of saccharified hemoglobin and the absorbance obtained by this method.
  • the vertical axis in the figure represents the absorbance at 727 nm (corresponding to the amount of hydrogen peroxide), and the horizontal axis represents the concentration of glycated hemoglobin.
  • the figure shows that the degree of glycated hemoglobin and the amount of generated hydrogen peroxide are correlated.
  • Example 11 Measurement of saccharified hemoglobin concentration
  • the same operation as in Example 10 was repeated, except that FA 0D derived from Arlbergills JR obtained in Production Example 3 was used. That is, the FA OD solution was prepared by dissolving FA 0D derived from Aspergillus' Teleus GP1 (FERli BP-5684) (Aspergillus terreus GPl) in a 0.1 M Tris-HCl buffer (4.0 nit / ml). pH 8.0).
  • FIG. 11 shows the relationship between the * degree and the absorbance of saccharified hemoglobin obtained by this method.
  • the vertical axis in the figure indicates the absorbance at 727 nm (corresponding to the amount of hydrogen peroxide), and the vertical axis indicates the concentration of glycated hemoglobin.
  • the figure shows that there is a correlation between the concentration of glycated hemoglobin and the amount of generated hydrogen peroxide.
  • glycohemoglobin control E (Sigma) was dissolved in 100 1 of distilled water.
  • Acetone hydrochloride (1 N acetone hydrochloride: 1/100) inl was added to these samples, and centrifuged at 12,000 rpm for 10 minutes. The precipitate was washed with getyl ether 500 and dried under reduced pressure.
  • Add 8 ⁇ urea 100 heat in boiling water for 20 minutes, cool and mix with 5.2 units / ml trypsin 300 1 37. I incubated at C for 3 hours. Thereafter, the sample was heated in boiling water for 5 minutes to prepare a sample.
  • the F A 0 D reaction solution was prepared as follows.
  • the 25-unit Zml FAOD solution was prepared by diluting the FAOD obtained by the method of Production Example 4 with 0.1 M potassium phosphate / mouth liquid (pH 7.5) to 25 units / ml.
  • FIG. 12 shows the relationship between the amount of saccharified hemoglobin obtained by this method and the absorbance.
  • the vertical axis in the figure indicates the absorbance at 727 nm (corresponding to the amount of hydrogen peroxide), and the horizontal axis indicates the concentration of saccharified hemoglobin.
  • the figure shows that there is a correlation between the amount of glycated hemoglobin and the hydrogen peroxide generation S.
  • the F A OD reaction solution was prepared as follows.
  • FIG. 13 shows the relationship between the amount of glycated hemoglobin obtained by this method and the absorbance.
  • the vertical axis represents the absorbance at 727 mn (corresponding to the amount of hydrogen peroxide)
  • the horizontal axis represents the concentration of saccharified hemogbin. The figure shows that there is a correlation between the amount of saccharified hemoglobin and the amount of hydrogen peroxide generated.
  • ⁇ Nisylium ⁇ -derived FA ⁇ D obtained by the method described in Production Example 4 was used.
  • Glycohemoglobin controls N and E (Sigma) were dissolved in distilled water.
  • solutions with different hemoglobin A lc values were prepared and assayed using an automatic glycohemoglobin analyzer (Kyoto Daiichi Kagaku). The values were between 5.1% and 9.2%. Met. The following operations were performed using these solutions.
  • the FAOD reaction solution was prepared as follows.
  • the 12 unit / ml FAOD solution was prepared by dissolving the FAOD derived from Penicillium. Chancinerum S—3413 (FESM BP-5475) CPenicillium janthinellum S-3413) obtained in Production Example 4 with 0.1 M phosphoric acid so as to obtain 12 units. It was prepared by diluting with a potassium hydroxide solution (PH7.5).
  • Fig. 14 shows the relationship between the ratio of saccharified amount of palin to the total hemoglobin (vertical axis) and hemoglobin A1c value (horizontal axis) obtained by this method. The figure shows that there is a correlation between the hemoglobin A 1 c value and the glycation ratio of valine in hemoglobin measured using FAOD.
  • Example 15 Measurement of hemoglobin A 1 c value
  • Hemoglobin AO reagent (Sigma) was dissolved in distilled water to 2.3 M. This solution was fractionated using an automatic hemoglobin measuring device (Kyoto Daiichi Kagaku), and the hemoglobin A 1c fraction and the hemoglobin A 0 fraction were separated and purified. Substrate samples with hemoglobin Alc values between 0% and 52.0% were obtained.
  • the FAOD reaction solution was manufactured by IS as follows.
  • the 16-unit Zral FAOD solution was prepared by diluting the FAOD obtained in Production Example 4 with 0.1 M potassium phosphate buffer (pH 7.5) so as to become 16 units-Znl. After 2 minutes Inkyube Bok The FAOD reaction mixture at 30 e C, above the processing solution 400/1 was added, it was measured absorbance at 727nm after incubation for an additional 30 minutes.
  • the relationship between the hemoglobin A 1 c value of the substrate obtained by this method and the substrate is shown in FIG.
  • the vertical axis in the figure represents the absorbance at 727 ⁇ (corresponding to the amount of hydrogen peroxide), and the horizontal axis represents the hemoglobin A 1c value. The figure shows that there is a correlation between hemoglobin A 1 c value and the amount of generated hydrogen peroxide.
  • a platinum working electrode and a silver / silver chloride electrode were used as reference electrodes. These compresses were immersed in a reaction solution obtained by adding 12 units of FADII solution to 5 ml of 0.1 M potassium phosphate buffer solution (pH 7.5).
  • the 12-unit ZoilF AOD solution was prepared by diluting the FAOD derived from Benicillium.Yannnerm S-3413 obtained in Production Example 4 with a 0.1 M potassium phosphate buffer solution (pH 7.5) to 12 units / ml.
  • Fructosyl valine was added to the reaction solution, and the current value was measured at 30 ° C. and a constant voltage of 60 OmV.
  • Figure 16 shows the relationship between the concentration of fructosyl valine obtained by this method and the value of the compress.
  • the vertical axis in the figure indicates the current value (corresponding to the amount of hydrogen peroxide) at a constant voltage of 60 OmV, and the horizontal axis indicates fructosylvaline Ban degree.
  • the figure shows that fructosyl valine and hydrogen peroxide generation are correlated.
  • fructosyl lysine concentration was measured by the following method and the reaction solution
  • Fig. 17 shows the relationship between fructosyl lysine concentration and absorbance obtained by this method.
  • the vertical axis in the figure indicates the absorbance at 555 nro (corresponding to the amount of hydrogen peroxide), and the horizontal axis indicates the fructosyl lysine concentration.
  • the figure shows that there is a correlation between the concentration of fructosyl lysine and the hydrogen peroxide generating children.

Abstract

A method for enzymatically assaying Amadori compounds in biological components or foods, which comprises measuring the saccharification rate of a sample, determining the amount of fructosylamine, or measuring the concentration of saccharified matters.

Description

明 細 書  Specification
アマドリ化合物の測定方法  Method for measuring Amadori compounds
技術分野 Technical field
本発明は、 酵素を用いるアマドリ化合物の測定方法、 さらに詳しくは、 フルク トシルァミノ酸ォキシダーゼによる新規なアマドリ化合物の測定方 法、 及び該方法に用いられる試薬及びキッ 卜に関する。  The present invention relates to a method for measuring an Amadori compound using an enzyme, and more particularly to a novel method for measuring an Amadori compound using fructosylamino acid oxidase, and a reagent and a kit used in the method.
背景技術 Background art
アマドリ化合物は、 タンパク質、 ぺプチド及びァミノ酸のようなァミノ 基を有する物質と、 アルドースのような還元性の糖が共存する場合、 アミ ノ基とアルデヒ ド基が非酵素的かつ非可逆的に結合し、 アマドリ転移する ことにより生成される。 アマドリ化合物の生成速度は反応性物質の濃度、 接触時間、 温度などの関数で表される。 従って、 その生成 sから、 それら 反応性物質を含有する物質に関する様々な情報を得ることができると考え られている。 アマドリ化合物を含有する物質としては、 醤油等の食品、 及 び血液等の体液がある。  Amadori compounds are non-enzymatic and irreversible when amino and aldehyde groups coexist with a substance having an amino group such as protein, peptide and amino acid and a reducing sugar such as aldose. It is produced by binding and Amadori rearrangement. The rate of Amadori compound formation is a function of the concentration of the reactive substance, contact time, temperature, and so on. Therefore, it is thought that various information on the substance containing the reactive substance can be obtained from the generation s. Substances containing Amadori compounds include foods such as soy sauce and body fluids such as blood.
生体では、 グルコースとァミノ酸が桔合したアマドリ化合物であるフル ク トシルァミ ン誘導体が生成している。 例えば、 血液中のヘモグロビンが 糖化されたフルク トシルァ ΐ ン誘導体はグリコへモグロビン、 アルブミ ン が糖化された誘導体はグリコアルブミン、 血液中のタンパクが糖化された 誘導体の ¾元能はフルク トサミンと呼ばれる。 これらの血中'濃度は、 過去 の一定期間の平均血糖値を反映しており、 その測定値は、 糖尿病の症状の 診断及び症状の管理の重要な指檩となり得るために、 測定手段の確立は臨 床上、 極めて有用である。 また、 食品中のアマドリ化合物を測定すること により、 その食品の製造後の保存状況や期間を知ることができ、 品質管理 に役立つと考えられる。 このように、 アマドリ化合物の分析は医学及び食 品を含む広範な分野で有用である。 In the living body, a fructosylamine derivative, which is an Amadori compound in which glucose and amino acid are combined, is produced. For example, a fructosylvanine derivative in which hemoglobin in blood is glycated is called glycohemoglobin, a derivative in which albumin is glycated is called glycoalbumin, and a derivative in which blood protein is glycated is called fructosamine. These blood levels reflect the average blood glucose over a period of time in the past, and the measured values can be important indicators for diagnosing and managing the symptoms of diabetes. Is extremely useful clinically. In addition, by measuring the Amadori compound in food, it is possible to know the storage status and period of the food after its manufacture, which will be useful for quality control. As such, the analysis of Amadori compounds is in medicine and food. Useful in a wide range of fields, including goods.
従来、 アマドリ化合物の測定法としては、 高速液体クロマトグラフィー を利用する方法 [Chromatogr. Sci. 10 : 659(1979)] 、 ホウ酸を桔合させた 固体をつめたカラムを用いる方法 [Clin. Chem. 28 : 2088-2094(1982)] 、 電 気泳動 [Clin. Chem. 26 : 1598-1602(1980)] > 抗原一抗体反応を利用する方 法 [ J J C L A 18: 620(1993).機器 '試薬 16: 33-37(1993)]. フルク ト サミ ンの測定法 [Clin. Chim. Acta 127: 87-95 (1982)3, チォバルビツー ル酸を用いて酸化後比色定量する方法 [Clin. Chim. Acta 112: 197-204 (19 81)]などが知られているが、 高価な機器が必要であったり、 必ずしも正確 で迅速な方法ではなかった。  Conventional methods for measuring Amadori compounds include high-performance liquid chromatography [Chromatogr. Sci. 10: 659 (1979)] and a method using a column filled with solids mixed with boric acid [Clin. Chem. 28: 2088-2094 (1982)], electrophoresis [Clin. Chem. 26: 1598-1602 (1980)]> Method using antigen-antibody reaction [JJCLA 18: 620 (1993). 16: 33-37 (1993)]. Method for measuring fructosamine [Clin. Chim. Acta 127: 87-95 (1982) 3, Colorimetric determination after oxidation using thiobarbituric acid [Clin. Chim Acta 112: 197-204 (1981)] is known, but expensive equipment was required, and it was not always an accurate and quick method.
近年、 酵素の有する特性 (基質、 反応、 構造、 位 ffなどの特異性)に起因 して、 g枳的に目的物質を迅速かつ正確に分析することができることから 酵素反応を利用する方法が臨床分析や食品分析の分野で普及してきた。 既に、 アマドリ化合物に酸化 ¾元酵素を作用させ、 その反応における酸 素の消 S量又は過酸化水素の発生 Sを測定することにより、 アマドリ化合 物を測定する分析法が提案されている (例えば、 特公平 5-33997号公報、 特公平 6-65300号公報、 特開平 2_195900号公報、 特開平 3-155780号公報、 特開平 4-4874号公報、 特開平 5-192193号公報、 特開平 6-46846号公報)。 さ らに、 糖尿病の診断のための糖化タンパクの測定法も開示されている (特 開平 2- 195899号公報、 待開平 2-195900号公報、 特関平 5-192193号公報 (EP 0 526 150 A)、 特開平 6-46846号公報 (EP 0 576 838 A) )。  In recent years, methods that utilize enzyme reactions have been clinically used because of the ability to rapidly and accurately analyze target substances due to the properties of enzymes (specificity of substrate, reaction, structure, position ff, etc.). It has become widespread in the field of analysis and food analysis. Analytical methods have already been proposed to measure Amadori compounds by reacting an Amadori compound with an oxidizing enzyme and measuring the amount of oxygen consumed or the amount of hydrogen peroxide generated in the reaction (eg, JP-B 5-33997, JP-B 6-65300, JP-A-2-195900, JP-A-3-155780, JP-A-4-4874, JP-A-5-192193, JP-A-6 -46846). In addition, methods for measuring glycated proteins for the diagnosis of diabetes have been disclosed (Japanese Patent Publication No. 2-195899, Japanese Patent Publication No. 2-195900, and Japanese Patent Application No. 5-192193) (EP 0 526 150). A), JP-A-6-46846 (EP 0 576 838 A)).
アマドリ化合物の酸化通元酵素による分解反応は下記の一般式で表すこ とができる。  The decomposition reaction of the Amadori compound by the oxidizing enzyme can be represented by the following general formula.
R 1 - C O - C H 2 - N H - R 2 + 02 + H 20→ R 1 -CO-CH 2 -NH-R 2 + 0 2 + H 20
Rに C O— C H O + Rに N H 2 + H 202 (式中、 Rリまアルドース残基、 R2はアミノ酸、 タンパク質又はペプチド 残基を表す) R—CO—CHO + R—NH 2 + H 2 0 2 (Where R is an aldose residue and R 2 is an amino acid, protein or peptide residue)
上記の反応を触媒する酵素として以下のものが知られている。  The following are known as enzymes that catalyze the above reaction.
1.フルク トシルアミノ酸ォキシダーゼ: コリネバクテリゥム (Coryneb acterium) 厲 (特公平 5-33997号公報、 特公平 6-65300号公報)、 ァスペル ギルス厲 (Aspergillus) (特開平 3-155780号公報 )0 1. Fructosyl amino acid oxidase: Corynebacterium (Japanese Patent Publication No. 5-33997, Japanese Patent Publication No. 6-65300), Aspergillus (Japanese Patent Publication No. 3-155780) 0
2. フルク トシルァミンデグリカーゼ: カンジダ¾ (Candida) (特開平 6-46846号公報)  2. Fructosylamine deglycase: Candida (JP-A-6-46846)
3. フルク トシルアミノ酸分解酵素:ぺニシリウ厶厲 ( enicUliuin) (特開平 4-4874号公報)。  3. Fructosyl amino acid-decomposing enzyme: enicUliuin (JP-A-4-4874).
4.ケトアミンォキンダーゼ: コリネバクテリゥム) S、 フサリウム厲、 アクレモニゥ厶厲又はデブリオマイセス厲 (特開平 5-192193号公報)  4. Ketoamine okidase: Corynebacterium) S, Fusarium, Acremonium or Debryomyces (Japanese Patent Application Laid-Open No. 5-192193)
5. アルキルリジナーゼ: J.Biol.Chem.239卷、 第 3790— 3796頁 (196 4年) 記載の方法で調製。  5. Alkyl lysinase: Prepared by the method described in J. Biol. Chem. 239, pp. 3790-3796 (1964).
しかしながら、 これらの酵秦を用いる従来法には、 下記の問題点があつ た。 即ち、 糖尿病の診断における指標には糖化アルブミ ン、 糖化へモグロ ビン及びフルク トサミ ンがある。 糖化アルブミンはタンパク分子中のリジ ン残基の ε位にグルコースが桔合して生成される [J. Biol. Chem. 26 1:13542-13545(1986)] 。 糖化ヘモグロビンは、 ヘモグロビン ;3鎖の N末 端バリ ンにもグルコースが珪合している [J. Biol. Chem. 254:3892-3 898(1979)] 。 従って糖尿病の指標となる糖化タンパクの測定には、 フル ク トシルリジン及び Z又はフルク 卜シルバリンを正確に測定する必要があつ た。 しかし、 特公平 5-33997号公報及び特公平 6-65300号公報記載の方法で はフルク トシルリ ジンは正確に測定できず、 特開平 3-155780号公報は、 糖 化タンパク又はその加水分解物に対する作用について明らかにしていない。 他方、 特開平 5-192193号公報記載の方法ではリジン残基に糖が結合してい る糖化タンパクを正確に測定することはできない。 特開平 6-46846号公報 記載の方法ではリジン残基の ε位の糖化物を待異的に測定することができ ず、 またパリ ン残基の糖化物を特異的に測定することもできない。 さらに J . Biol. Chen, 239巻、 第 3790— 3796頁 (1964年) 記載の酵素を用いる特 開平 2-195900号公報記載の方法は糖類以外の残基がリジンに結合した物質 も測定され、 糖化物に対する特異性が低いという問通があり、 正確な測定 が期待できなかった。 特開平 4-4874号記載の方法ではフルク 卜シルリジン とフルク トシルァラニンのみが測定可能である。 However, the conventional methods using these yeasts have the following problems. That is, glycated albumin, glycated hemoglobin, and fructosamine are indicators for the diagnosis of diabetes. Glycated albumin is produced by the coupling of glucose to the ε-position of a lysine residue in a protein molecule [J. Biol. Chem. 261: 13542-13545 (1986)]. In glycated hemoglobin, hemoglobin; glucose is also silicified to the 3-terminal N-terminal variant [J. Biol. Chem. 254: 3892-3 898 (1979)]. Therefore, it was necessary to accurately measure fructosyl lysine and Z or fructosyl valine in order to measure a glycated protein as an indicator of diabetes. However, fructosyl lysine cannot be measured accurately by the methods described in JP-B 5-33997 and JP-B 6-65300, and JP-A 3-155780 discloses that glycated protein or its hydrolyzate cannot be measured. The effect is not disclosed. On the other hand, the method described in JP-A-5-192193 cannot accurately measure a glycated protein in which a saccharide is bound to a lysine residue. According to the method described in JP-A-6-46846, a saccharified product at the ε-position of a lysine residue cannot be measured extraordinarily, and a saccharified product at a parinic residue cannot be specifically measured. Furthermore, the method described in Japanese Patent Publication No. 2-195900 using the enzyme described in J. Biol. Chen, Vol. 239, pp. 3790-3796 (1964) also measures substances in which residues other than saccharides are bonded to lysine. There was a question that the specificity for saccharides was low, and accurate measurements could not be expected. In the method described in JP-A-4-4874, only fructosyl lysine and fructosylalanine can be measured.
し力、も、 これら従来法では、 アマドリ化合物 (通常タンパク質) をアミ ノ酸に分解させ、 その後、 遊離された糖化部位であるアミノ酸残基と酵素 との反応により生成する過酸化水素又は消费される酸素の量を測定する必 要があり、 迅速に処理することができなかった。 さらに、 糖化部位の異な るアマドリ化合物を特異的に測定することができなかった。  According to these conventional methods, the Amadori compound (usually a protein) is decomposed into amino acids, and then hydrogen peroxide generated by the reaction of the liberated saccharification site amino acid residues with the enzyme is consumed or consumed. The amount of oxygen needed to be measured and could not be processed quickly. Furthermore, Amadori compounds having different glycation sites could not be specifically measured.
このように従来法は糖化タンパクの正確な測定には適さず、 フルク トシ ルリジン及び/又はフルク トシルバリン及びこれらのうち少なくとも一方 を含有するべプチドを迅速かつ特異的に測定する方法の開発が待たれてい た。  As described above, the conventional method is not suitable for accurate measurement of glycated protein, and development of a method for rapidly and specifically measuring fructosyl lysine and / or fructosyl valine and a peptide containing at least one of them is awaited. Was.
発明の開示 Disclosure of the invention
本発明者らは、 アマドリ化合物、 特に糖化タンパクを正確に分析するた めの測定方法を提供することを目的として鋭意研究を重ねた結果、 ある種 の真菌類をフルク トシルリジン及び/又は、 フルク トシル N' — Z—リジ ンの存在下で培養することにより得られる »素を用いることにより、 該目 的が達成されることを見出し、 本発明を完成した。  The present inventors have conducted intensive studies with the aim of providing a measurement method for accurately analyzing an Amadori compound, particularly a glycated protein, and as a result, have found that certain fungi have been identified as fructosyl lysine and / or fructosyl The present inventors have found that the purpose can be achieved by using a nitrogen atom obtained by culturing in the presence of N′—Z-lysine, and completed the present invention.
即ち、 本発明は酵素を用いて測定することを特徴とする、 アマドリ化合 物含有試料中のアマドリ化合物の測定方法を提供するものである。 That is, the present invention is characterized in that the measurement is performed using an enzyme. It is intended to provide a method for measuring an Amadori compound in a substance-containing sample.
本発明の方法の対象は、 アマドリ化合物を含有し得る限り、 任意である が、 通常は生体成分又は食品である。  The subject of the method of the present invention is arbitrary, but usually a biological component or food, as long as it can contain the Amadori compound.
本発明方法では、 アマドリ化合物を、 試料の糖化率の測定、 フルク トシ ルァミ ンの定量、 又は糖化物濃度の測定により行うことが好ましい。 なか でも、 酵繁を用いた糖化率の測定によるアマドリ化合物の分析は新規であ る。 アマドリ化合物、 特に糖化タンパクを測定するとき、 その糖化タンパ クの絶対量 (濃度) を測定する方法と、 どれだけの割合のタンパクが糖化 したのか (糖化率) を測定する方法が考えられる。  In the method of the present invention, the Amadori compound is preferably measured by measuring the saccharification rate of the sample, quantifying fructosylamine, or measuring the saccharified substance concentration. Above all, analysis of Amadori compounds by measuring the saccharification rate using yeast is novel. When measuring Amadori compounds, especially saccharified proteins, there are two methods: measuring the absolute amount (concentration) of the saccharified protein and measuring the percentage of saccharified protein (saccharification rate).
測定対象となるタンパク成分の糖化した量のみを測定する場合、 その增 減が、 対象となるタンパク成分の全量の変化に由来するものであるのか、 血糖値の変化を反映するものであるのかが不明である。 糖化率を測定する 場合、 対象タンパク成分の全量中の糖化タンパクの量の比率で表すので、 タンパク量の変化とは無関係に、 血糖値に由来する変化、 すなわち糖尿病 の病状の変化のみを反映した値を示すことができる。 従来法であるフルク トサミン法ゃチォパルビツール酸を用いて比色定量する方法では、 通元能 を測定するため、 共存する物質の影響をうけ、 正確な糖化物量の情報が得 られない。 し力、し、 本法で得られる糖化物量は、 タンパクを構成するアミ ノ酸残基とグルコースとの桔合の絶対量を測定するため、 アミノ酸の糖化 の数に関する正確な情報が得られる。  When measuring only the saccharified amount of the protein component to be measured, whether the decrease is due to a change in the total amount of the target protein component or a change in the blood glucose level is determined. Unknown. When measuring the saccharification rate, it is expressed as the ratio of the amount of saccharified protein in the total amount of the target protein component, so only the change derived from the blood glucose level, that is, the change in the pathology of diabetes, is reflected independently of the change in the protein amount Value can be shown. In the conventional method of colorimetric determination using fructosamine method and thioparbituric acid, accurate information on the amount of saccharified substances cannot be obtained due to the influence of the coexisting substance because of the measurement of bioactivity. The amount of saccharified product obtained by the present method measures the absolute amount of the coupling between amino acid residues and glucose constituting the protein, so that accurate information on the number of saccharified amino acids can be obtained.
また、 本法で糖化率を測定する場合、 測定対象となるタンパク成分の全 量と糖化量を別々に測り、 演算によって糖化率を求めるため、 糖化率だけ でなくタンパク iの情報も同時に得ることができ、 臨床的意義が大きい。 高速液体クロマ卜グラフィー、 ホウ酸を桔合させた固体をつめたカラムを 用いる方法、 電気泳動、 抗原一抗体反応を利用する方法では、 非糖化タン  In addition, when measuring the saccharification rate by this method, the total amount of the protein component to be measured and the saccharification amount are separately measured, and the saccharification rate is obtained by calculation. It has great clinical significance. High-performance liquid chromatography, a method using a column packed with solids mixed with boric acid, electrophoresis, and a method using an antigen-antibody reaction include non-glycated tans.
- D - パク量と糖化タンパク量の相対比から糖化率を求めることになるので、 ft に関する情報が得られないという欠点がある。 本法では、 タンパクの代謝 や量の影響をうけずに糖尿病診断の报樣となる糖化率を測定することがで きるとともに、 栄養状態や、 肝陣害などの程度を判定する総タンパク量の 測定も同時に行うことができる。 このことは、 本法がタンパク量の変動を 伴う疾病を有する患者の糖尿病の病状診断にも有効であることを示してい る 0 -D- Since the saccharification rate is determined from the relative ratio between the amount of protein and the amount of saccharified protein, there is a disadvantage that information on ft cannot be obtained. With this method, it is possible to measure the saccharification rate that is important for the diagnosis of diabetes mellitus without being affected by the metabolism and amount of protein, and to determine the nutritional status and the total protein amount for determining the degree of liver injury. Measurement can be performed simultaneously. This indicates that this method is also effective in diagnosing diabetes in patients with diseases involving fluctuations in protein levels.
また、 酵素を用いた糖化タンパクの測定は、 特異性が高く、 従来の生化 学的測定と同様の方法をもちいることが可能なため、 操作が容易で試薬も 扱いやすく、 さらに他の項目との同時測定が可能という利点がある。 図面の簡単な説明  In addition, the measurement of glycated proteins using enzymes has high specificity and can be performed in the same manner as conventional biochemical measurements. There is an advantage that simultaneous measurement is possible. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 フルク トサミン値と、 F A O D作用により生成された過酸化 水素量との関係を示すグラフである。  FIG. 1 is a graph showing the relationship between the fructosamine value and the amount of hydrogen peroxide generated by the FAUD action.
第 2図は、 糖化ヒ ト血清アルブミ ンの濃度とフサリウム ·ォキシスボル ム S— 1 F 4由来の F A 0 Dの作用により生成された過酸化水素量との閧 係を示すグラフである。  FIG. 2 is a graph showing the relationship between the concentration of glycated human serum albumin and the amount of hydrogen peroxide generated by the action of FAOD derived from Fusarium oxysvolum S-1F4.
第 3図は、 糖化ヒ 卜血清アルブミ ンの濃度とギペレラ · フジクロィ由来 の F A O Dの作用により生成された過酸化水素量との関係を示すグラフで ある。  FIG. 3 is a graph showing the relationship between the concentration of saccharified human serum albumin and the amount of hydrogen peroxide generated by the action of FAOD derived from Giperella fujikuroi.
第 4図は、 糖化ヒト血淸アルブミンの濃度とフサリウム ·ォキシスボル ム ' f. sp ' リニ由来の F A O Dの作用により生成された過酸化水紫量との 関係を示すグラフである。  FIG. 4 is a graph showing the relationship between the concentration of glycated human blood albumin and the amount of purple water peroxide generated by the action of F AOD from Fusarium oxasbum 'f.sp' lini.
第 5図は、 糖化ヒ ト血清アルブミ ンの濃度とァスペルギルス · テレウス G P 1由来の F A O Dの作用により生成された過酸化水素量との関係を示 すグラフである。 2 P FIG. 5 is a graph showing the relationship between the concentration of glycated human serum albumin and the amount of hydrogen peroxide generated by the action of FAOD derived from Aspergillus terreus GP1. 2 P
第 6図は、 ヒ ト血清アルブミンの糖化率とフサリウ厶 ·ォキシスボルム f . sp · リニ由来の F A 0 Dの作用により生成された過酸化水素量との関係 を示すグラフである。 FIG. 6 is a graph showing the relationship between the saccharification rate of human serum albumin and the amount of hydrogen peroxide generated by the action of FAOD derived from Fusarium oxasvolum f.sp.lini.
第 7図は、 ヒ ト血清アルブミンの糖化率とァスペルギルス ·テレウス . GP1由来の FAODの作用により生成された過酸化水素量との関係を示 すグラフである。  FIG. 7 is a graph showing the relationship between the saccharification rate of human serum albumin and the amount of hydrogen peroxide generated by the action of FAOD derived from Aspergillus terreus GP1.
第 8図は、 ヒ ト血清アルブミンの糖化率とギペレラ · フジクロイ由来の FAODの作用により生成された過酸化水素量との関係を示すグラフであ る 0 Figure 8 is Ru graph der showing the relationship between the amount of hydrogen peroxide generated by the action of FAOD derived from glycation rate and Giperera-fujikuroi of human serum albumin 0
第 9図は、 ヒ ト血清アルブミンの糖化率とフサリウ厶 ·ォキシスポルム S— 1 F 4由来の FAODの作用により生成された過酸化水素量との関係 を示すグラフである。  FIG. 9 is a graph showing the relationship between the saccharification rate of human serum albumin and the amount of hydrogen peroxide generated by the action of FAOD derived from Fusarium oxysporum S-1F4.
第 10図は、 糖化へモグロビンの濃度とフサリゥム ·ォキシスポルム · f. sp. · リニ由来の FAODの作用により生成された過酸化水素量との関 係を示すグラフである。  FIG. 10 is a graph showing the relationship between the concentration of saccharified hemoglobin and the amount of hydrogen peroxide generated by the action of FAOD derived from Fusarium, oxysporum, f. Sp., And lini.
第 11図は、 糖化へモグロビンの濃度とァスペルギルス ·テレウス · G P 1由来の FAODの作用により生成された過酸化水素量との関係を示す グラフである。  FIG. 11 is a graph showing the relationship between the concentration of saccharified hemoglobin and the amount of hydrogen peroxide generated by the action of FAOD derived from Aspergillus terreus GP1.
第 12図は、 糖化へモグロビン量とぺニシリウム ·ヤンシネルム S— 3 13由来の FAODの作用により生成された過酸化水素量との関係を示 すグラフである。  FIG. 12 is a graph showing the relationship between the amount of saccharified hemoglobin and the amount of hydrogen peroxide generated by the action of FAOD derived from Penicillium jansinerum S-313.
第 13図は、 糖化ヘモグロビン量とぺニシリウム ·ヤンシネルム S— 3 413由来の FAODの作用により生成された過酸化水素量との関係を示 すグラフである。  FIG. 13 is a graph showing the relationship between the amount of glycated hemoglobin and the amount of hydrogen peroxide generated by the action of FAOD derived from Penicillium jansinerum S-3413.
第 14図は、 全ヘモグロビン量 (415nmの吸光度) に対するバリン の糖化量 (7 2 7 n mの吸光度) の割合と、 へモグロビン A 1 c値との関 係を示すグラフである。 Figure 14 shows valine as a function of total hemoglobin content (absorbance at 415 nm). 4 is a graph showing the relationship between the ratio of saccharification amount (absorbance at 727 nm) and hemoglobin A 1c value.
第 1 5図は、 ヘモグロビン A 1 c値とぺニシリウム 'ヤンシネルム S— 3 4 1 3由来の F A O Dの作用により生成された過酸化水素 ftとの関係を 示すグラフである。  FIG. 15 is a graph showing the relationship between hemoglobin A 1 c value and hydrogen peroxide ft generated by the action of F AOD derived from Penicillium ′ Jansinerum S—34 13.
第 1 60は、 フルクトシルバリ ンの濃度と、 気化学的手法によって検 出された、 ぺニシリウム 'ヤンシネルム S - 3 4 1 3由来の F A O Dの作 用により生成された過酸化水素の量との関係を示すグラフである。  No. 160 shows the relationship between the concentration of fructosylvalin and the amount of hydrogen peroxide produced by the use of FAOD derived from Penicillium 'Jansinerum S-314, detected by a chemical method. It is a graph shown.
第 1 7図は、 フルク トシルリ ジンの濃度と、 固定化された、 フサリウム ' ォキシスポルム S— 1 F 4由来の F A O Dの作用により生成された過酸化 水素の量との関係を示すグラフである。  FIG. 17 is a graph showing the relationship between the concentration of fructosyl lysine and the amount of hydrogen peroxide generated by the action of immobilized FAOD derived from Fusarium 'oxysporum S-1F4.
発明を実施するための 良の形 ¾ Good form for carrying out the invention ¾
基質の糖化部位に作用する酵素として、 フルク トシルァミノ酸ォキシダ ーゼを挙げることができる。 フルク トシルァミノ酸ォキシダーゼを用いる 場合、 アマドリ化合物の測定は、 反応混合物における酸素の消 ¾量又は生 成物の量を測定することにより行う。 生成物としては、 過酸化水素及びグ ルコソンがある。 過酸化水素の定量は、 通常、 過酸化水素のペルォキシダ ーゼ又はペルォキシダーゼ様活性を有する触媒による分解に伴って色素を 生成する色原体を用いて測定するか、 電気化学的手法によって測定するこ とができる。 または、 カタラーゼとアルコールの存在下で生成されたアル デヒ ドの量を測定することによっても過酸化水素の発生量を定量すること ができる。  An enzyme that acts on the saccharification site of the substrate includes fructosylamino acid oxidase. When fructosylamino acid oxidase is used, the measurement of the Amadori compound is performed by measuring the amount of oxygen consumed or the amount of a product in the reaction mixture. Products include hydrogen peroxide and glucosone. Quantification of hydrogen peroxide is usually measured using a chromogen that produces a dye upon decomposition of hydrogen peroxide by a catalyst having peroxidase or peroxidase-like activity, or by an electrochemical method. Can be. Alternatively, the amount of hydrogen peroxide generated can be quantified by measuring the amount of aldehyde generated in the presence of catalase and alcohol.
本発明方法には、 真菌類をフルク トシルリジン及び Z又はフルク トシル N " 一 Z—りジン含有培地で培養することによって生成される酵素を用い ることができる。 なお、 本明細書中では、 本発明方法に用いるフルク トシ ルアミノ酸ォキシダーゼを F A O Dと称する。 In the method of the present invention, an enzyme produced by culturing a fungus in a medium containing fructosyl lysine and Z or fructosyl N "-Z-pyridine can be used. Fructoshi used in the invention method The amino acid oxidase is called FAOD.
本発明方法に用いられる F A O Dは、 フルク トシルァミノ酸ォキシダー ゼ生産能を有する真菌類をフルク トシルリジン及び/又はフルク トシル N ' 一 Z—リジン (以下、 F Z Lと略称することもある) 含有培地で培養する ことにより生産することができる。 そのような菌として、 フサリウム厲 usariuo) 、 ギべレラ fe (Gibberella) 、 ぺニシリウム (Penicillium) 、 アルミラリア厲 (Armillaria) 、 カルダリオマイセス厲 (Caldarionivces)、 ガノデルマ属 (Ganoderma) 、 ァスペルギルス厲 (Aspergillus) などに厲 する菌を挙げることができる。 具体例には、 フサリウ厶 ·ォキシスボルム S— 1 F 4 (Fu_sariuni oxysporum S— 1 F 4 ) (茨城県つくば巿東 1丁目 1丁目 3号の通商産業省工業技術院生命工学工業技術研究所に FERM BP-5010 の下で寄託されている(原寄託曰 : 1994年 2月 24曰:国際寄託への移管曰: 19 95年 2月 22日)、 フサリウム ·ォキシスポルム · f. sp. リニ(IFO NO. 5880) (F usarium oxysporum f. sp. lini)、 フサリウム ·ォキシスボノレム · f. sp.ノヽ タタス(IFO NO. 4468) (Fusarium oxysporum f. sp. batatas) フサリウム · ォキシスボルム · f. sp.二べゥ厶(IFO NO. 4471) (Fusarium oxysporum f. sp. niveuni). フサリウム ·ォキシスボルム · f . sp.ククメ リニゥム(IFO NO. 63 84) Fusarium oxysporum f. sp. cucumerinuin)、 フサリゥム · キシスホノレ 厶 · f · sp.メロンゲナェ (IFO NO. 7706) (Fusarium oxysporum f. sp. melonge nae)、 フサリウム ·ォキシスボルム · f. sp.アビ(IFO NO. 9964) (Fusarium oxysporum f. sp. apii)、 フサリウム 'ォキシスボルム · f. sp. ビニ(IFO NO. 9971) (Fusarium oxysporum f. sp. pini)及びフサリウム ·ォキシスボルム · f. sp.フラガリェ(IFO NO. 31180) (Fusarium oxysporum f. sp. fragariae) ; ギペレラ ·フジクロイ(IFO NO. 6356. 6605) (Gibberella fuj ikuroi);ベニ ンリウム 'ヤンシネル厶 S-3413(Penicill iuta janthinellum S - 3413) (受 託機関:上記住所の通商産業省工業技術院生命工学工業技術研究所;寄託 番号: FERM BP-5475、原寄託日: 1995年 3月 28日:国際寄託への移管曰:1996 年 3月 14日)、 ぺニシリウム ' ヤンシネル厶(IFO NO.4651, 6581, 7905) (Peni cillium janthinellum)、 ぺニシリウ厶 'ォキサリクム(IFO NO.5748) (Pe nicillium oxalicum)、 ぺニシリウム ' ャバニクム(IFO NO.4639) Penicil lium j3vanicum)、 ぺニシリウム ' ク リソゲヌム(IFO NO.4897)(Penicilli um chrysogenuni). ぺニシリウム · シァネゥ厶(IFO NO.5337)(Penicillium cyaneum); ァスペルギルス · テレウス (IF06365) (Aspergillus terre us) 、 ァスペルギルス 'テレウス GP-1 (受託機関:上記住所の通商産業省 工業技術院生命工学工業技術研究所;寄託番号: FERil BP-5684;原寄託曰: 1996年 5月 31日;国際寄託への移管曰: 1996年 9月 30日) (Aspergillus terr eus GP-1) 、 ァスペルギルス 'オリザ (IFO 4242)(Aspergillus oryzae) 、 ァスペルギルス ' オリザ (IF05710) (Aspergillus oryzae) 等を挙げる ことができるが、 これらに限定されない。 The FAOD used in the method of the present invention is obtained by culturing a fungus having fructosylamino acid oxidase-producing ability in a medium containing fructosyl lysine and / or fructosyl N'-I-Z-lysine (hereinafter sometimes abbreviated as FZL). Can be produced. Such fungi include Fusarium 厲 usariuo), Gibberella fe (Gibberella), Penicillium, Almiraria Ar (Armillaria), Caldarionivces 、, Ganoderma As and Aspergillus As. ) And the like. Examples include Fusarium oxysporum S-1F4 (Fu_sariuni oxysporum S-1F4) (1-3-1-3 Tsukuba-Higashi, Ibaraki Pref.) Deposited under BP-5010 (Original Deposit: February 24, 1994: Transfer to International Deposit: February 22, 1995), Fusarium Oxysporum f. Sp. Rini (IFO NO 5880) (Fusarium oxysporum f. Sp. Lini), Fusarium oxysporum f. Sp. Batatas (Fusarium oxysporum f. Sp. Batatas) Fusarium oxysporum f. Sp. (IFO NO. 4471) (Fusarium oxysporum f. Sp. Niveuni). Fusarium oxysporum f. Sp. Kucumulinium (IFO NO. 63 84) Fusarium oxysporum f. Sp. Cucumerinuin, Fusarium xysporum f. sp. melongenae (IFO NO. 7706) (Fusarium oxysporum f. sp. melonge nae), Fusarium oxy Borm · f. Sp. Avi (IFO NO. 9964) (Fusarium oxysporum f. Sp. Apii), Fusarium 'Oxisborg · f. Sp. Vinyl (IFO NO. 9971) (Fusarium oxysporum f. Sp. Pini) and Fusarium · Foxy sporum f. Sp. Fragarie (IFO NO. 31180) (Fusarium oxysporum f. Sp. Fragariae); Giperera fujikuroi (IFO NO. 6356. 6605) (Gibberella fuj ikuroi); iuta janthinellum S-3413) Depositary institution: Institute of Biotechnology and Industrial Technology, Ministry of International Trade and Industry of the Ministry of International Trade and Industry; Deposit No .: FERM BP-5475, Original Deposit Date: March 28, 1995: Transfer to International Deposit: March 14, 1996 Sun), Penicillium 'Jansinerum (IFO NO.4651, 6581, 7905) (Peni cillium janthinellum), Penicillium' Oxalicum (IFO NO.5748) (Penicillium oxalicum), Penicillium 'Jabanicum (IFO NO.4639) Penicillium j3vanicum), Penicillium 'chrysogenum (IFO NO.4897) (Penicilli um chrysogenuni). Penicillium cyanium (IFO NO.5337) (Penicillium cyaneum); , Aspergillus' Teleus GP-1 (Contractor: Ministry of International Trade and Industry at the above address; Institute of Biotechnology and Industrial Technology, National Institute of Advanced Industrial Science and Technology; Deposit No .: FERil BP-5684; Deposited by Hara: May 31, 1996; Transfer: September 30, 1996) (Aspergillus terr eus GP-1) Aspergillus oryzae (IFO 4242) (Aspergillus oryzae), Aspergillus oryzae (IF05710) (Aspergillus oryzae), and the like, but are not limited thereto.
上記の方法で生産された FAOD類は、 一般に、 酸 ¾の存在下でアマド リ化合物を酸化し、 α—ケトアルデヒ ド、 ァミ ン誘導体及び過酸化水素を 生成する反応を触媒する。  The FAODs produced by the above method generally catalyze the reaction of oxidizing the Amadori compound in the presence of an acid to produce α-ketoaldehyde, an amide derivative and hydrogen peroxide.
本発明方法に用いられる FAODの生産に用いるフルク トシルリジン及 び/又は FZLは、 グルコース 01〜50重量%とリジン及び/又は Νβ 一 Ζ—リ ジン 0.01〜20重量%とを溶液中で、 100〜150て において 3〜60分間オートクレーブ処理する方法で製造される。 具体的 には、 全量 100 Om 1の溶液中にグルコース 200 g、 Νβ 一 Ζ -リジ ン 10 gを溶解させ、 通常 120。C、 20分間ォートクレーブ処理するこ とによって製造することができる。 Fourques Toshirurijin及beauty / or FZL used for the production of FAOD to be used in the method of the present invention, the glucose 01-50% by weight and lysine and / or New beta one Ζ- lysine 0.01 to 20 wt% in solution, 100 Manufactured by autoclaving at ~ 150 to 3-60 minutes. Specifically, glucose 200 g in a solution of total volume 100 Om 1, New beta one Zeta - dissolved lysine emissions 10 g, usually 120. C, can be manufactured by autoclaving for 20 minutes.
また、 本発明方法に用いられる FAODの生産のためのフルク トシルリ ジン及び 又は FZL含有培地 (以下、 FZL培地と称する) は、 上記の 方法で得られたフルク トシルリジン及びノ又は F Z Lを通常の培地に添加 するか、 例えば、 グルコース 0.01~50重量%、 リ ジン及び/又は Νβ- Ζ—リ ジン 0.01、20重量 ¾、 K2HP04 0.1重量%、 NaH2P04 0.1重量%、 MgS04 · 7H20 0.05重量%、 CaC 12· 2Η20 0.01重量%及び酵母エキス 0.2重量%を含有する混合物 (好ましく は ΡΗ5.6— 6.0) を 100〜: L 50 °Cにおいて 3〜 60分間ォートク レーブ処理することによって得ることができる。 Further, fructosyl sulfate for production of FAOD used in the method of the present invention. Gin and / or FZL-containing medium (hereinafter referred to as FZL medium) may be prepared by adding fructosyl lysine and FZL or FZL obtained by the above method to an ordinary medium, for example, by adding 0.01 to 50% by weight of glucose, / or New beta - zeta-lysine 0.01,20 weight ¾, K 2 HP0 4 0.1 wt%, NaH 2 P0 4 0.1 wt%, MgS0 4 · 7H 2 0 0.05 wt%, CaC 1 2 · 2Η 2 0 0.01 weight % And yeast extract 0.2% by weight (preferably ΡΗ5.6-6.0) can be obtained by subjecting the mixture to autoclaving at 100 to 50 L for 3 to 60 minutes.
本発明方法に用いられる FAODの生産に用いる培地は、 炭素源、 窒¾ 源、 無機物、 その他の栄養源を含有する通常の合成あるいは天然の培地で あってよく、 炭素源としては、 例えば、 グルコース、 キンロース、 グリセ リン等、 窒素源としては、 ペプトン、 カゼイン消化物、 酵母エキス、 等を 用いることができる。 さらに無機物としてはナトリウム、 カリウム、 カル シゥム、 マンガン、 マグネシウム、 コバルト等、 通常の培地に含有される ものを用いることができる。  The medium used for the production of FAOD used in the method of the present invention may be an ordinary synthetic or natural medium containing a carbon source, a nitrogen source, an inorganic substance, and other nutrient sources. Examples of the carbon source include glucose. As a nitrogen source, peptone, casein digest, yeast extract, etc. can be used. Further, as inorganic substances, those contained in ordinary culture media such as sodium, potassium, calcium, manganese, magnesium, and cobalt can be used.
本発明方法に用いられる FAODは、 フルク トシルリジン及びノ又は F Z Lを含有する培地で培養したとき、 最もよく誘導される。 好ましい培地 の例として、 上記の方法で得られた FZLを単一の窒素源とし、 炭衆源と してグルコースを用いる FZ L培地 (1.0%グルコース、 0.5%FZL、 0.1%KZHPO" 0. l%NaH2P04、 0.05%MgS04 · 7H2 0、 0.01 %C a C 12 · 2H20及び 0·· 01%ビタミ ン混合物) を挙げ ることができる。 特に好ましい培地は、 全量 1, 00 Oinl中にグルコース 20 g (2 、 FZL 10 g (1%)、 K2HP04 1.0 g (0.1%)、 N a H 2 P 041.0 g (0.1%) 、 MgSO 7H20 0.5 g (0.0 5%) 、 CaC 12· 2H20 0.1 g (0.01%) 及び酵母エキス 2.0 g ( 0. 2 %) を含有する培地 (p H 5 . 6— 6. 0 ) である。 F Z L培地 は、 通常の培地に F Z Lを添加するか、 グルコースと!^ ' 一 Z—リジンと を含有する培地をオートクレープ処理することによって調製することがで きる。 いずれの方法によっても得られる培地はフルク トシルリジン及びノ 又は F Z Lの存在によって褐色を呈しており、 F Z L褐変化培地又は G L (グリケーテツ ドリジン及び/又はグリケ一テツ ΚΝ β — Ζ— リ ジン) ¾ 変化培地と称する。 FAOD used in the method of the present invention is most induced when cultured in a medium containing fructosyl lysine and F or FZL. Examples of preferred media, the FZL obtained by the method described above as a single nitrogen source, FZ L medium (1.0% glucose using glucose as the carbon crowd source, 0.5% FZL, 0.1% K Z HPO "0 . l% NaH 2 P0 4, 0.05% MgS0 4 · 7H 2 0, 0.01% C a C 12 · 2H 2 0 and 0 ... 0.01% vitamin mixture) can Rukoto cited. particularly preferred medium, the total amount 1, 00 Oinl glucose 20 g (2, FZL 10 g (1% in), K 2 HP0 4 1.0 g (0.1%), N a H 2 P 041.0 g (0.1%), MgSO 7H 2 0 0.5 g ( 0.0 5%), CaC 1 2 · 2H 2 0 0.1 g (0.01%) and yeast extract 2.0 g (0.2%) (pH 5.6-6.0). The FZL medium can be prepared by adding FZL to a normal medium or by autoclaving a medium containing glucose and! ^ '-Z-lysine. Medium be obtained by any process has exhibited a brown color by the presence of Fourques Toshirurijin and Roh or FZL, FZL browning medium or GL (Guriketetsu Dorijin and / or Gurike ferrous ΚΝ β - Ζ- lysine) ¾ change medium Called.
培養は、 通常約 2 5〜3 7て、 好ましくは 2 8てで行われる。 培地の ρ Ηは 4 . 0〜8 . 0の範囲であり、 好ましくは 5. 5〜 6. 0である。 しかし ながら、 これらの条件はそれぞれの菌の伏態に応じて適宜綢製されるもの であり上記に限定されない。  Culturing is usually performed at about 25 to 37, preferably at 28. The ρΗ of the medium is in the range of 4.0 to 8.0, preferably 5.5 to 6.0. However, these conditions are those which are appropriately polished in accordance with the condition of each bacterium, and are not limited to the above.
このようにして得られた培餮物は、 常法に従い、 核酸、 細胞壁断片等を 除去し、 酵素摞品を得ることができる。  The tie obtained in this manner can remove nucleic acids, cell wall fragments, and the like according to a conventional method to obtain an enzyme product.
本発明方法に用 t、られる F A 0 Dの酵素活性は、 菌体中に蓄積されるの で、 培養物中の菌体を破砕し、 酵素生産に用いる。  Since the enzyme activity of F AOD used in the method of the present invention is accumulated in the cells, the cells in the culture are disrupted and used for enzyme production.
細胞の破砕は、 機械的手段又は溶媒を利用した自己消化、 凍結、 超音波 処理、 加圧などのいずれでもよい。  The disruption of the cells may be any of autolysis, freezing, sonication, and pressurization using mechanical means or a solvent.
酵索の分離精製方法も既知であり、 硫安などを用いる塩析、 エタノール 等の有機溶媒による沈殿、 イオン交換クロマ卜グラフィー、疎水クロマト グラフィーゃゲルろ過、 ァフィ二ティークロマトグラフィーなどを組み合 わせて稍製する。  Methods for separating and purifying yeast cord are also known, and include a combination of salting out using ammonium sulfate or the like, precipitation with an organic solvent such as ethanol, ion exchange chromatography, hydrophobic chromatography, gel filtration, and affinity chromatography. Make some.
例えば、 培餮物を、 遠心又は吸引ろ過して菌糸体を集め、 洗净後、 0. 1 Mトリスー塩酸锾衝液 (ρΗ 8 . δ ) に し、 Dyno-llillによって菌糸 体を破砕する。 次いで、 遠心分離して得た上清を無細胞抽出液として、 硫 安分画、 フヱ二ルーセファロース疎水クロマトグラフィ一で処理すること により精製する。 For example, the culture tie is collected by centrifugation or suction filtration to collect mycelium, washed, made 0.1 M Tris-HCl buffer (ρΗ8.δ), and crushed by Dyno-llill. Next, the supernatant obtained by centrifugation is treated as a cell-free extract by ammonium sulfate fractionation and fluorosepharose monofiltration. To purify.
しかしながら、 本発明の目的から、 本発明方法に用いられる FAODは 精製度にかかわらず、 アマドリ化合物の酸化反応を触媒することができる 限り、 培養液をはじめとする、 あらゆる精製段階の酵素含有物及び溶液を 包含する。 また、 酵紫分子の內、 媒活性に関与する部位のみでも、 本発 明目的を達成することができることから、 任意の、 アマドリ化合物酸化活 性を有するフラグメントをも包含するものとする。 このようにして得られ た FAODは、 アマドリ化合物の測定、 特に糖尿病の診断のための糖化タ ンパクの測定に有用であるばかりか、 本発明が解決すべき技術的な謀題の 解決にも有用である。  However, for the purpose of the present invention, the FAOD used in the method of the present invention, regardless of the degree of purification, is not limited to enzyme-containing substances in all purification stages, including culture medium, as long as it can catalyze the oxidation reaction of Amadori compounds. Solution. In addition, the present invention can achieve the object of the present invention only at the site of the fermented purple molecule that is involved in the activity of the enzyme. Therefore, the present invention also encompasses any fragment having the oxidation activity of the Amadori compound. The FAOD thus obtained is useful not only for the measurement of Amadori compounds, especially for the measurement of glycated proteins for the diagnosis of diabetes, but also for solving the technical problems to be solved by the present invention. It is.
さらに、 本発明方法には FAODをコー ドする DNAを含有する発現べ クタ一により形質転換された撖生物を培養することによって得られる酵素 も用いることができる。 このようにして得られた FAODも、 アマドリ化 合物の測定、 特に糖尿病の診断のための糖化タンパクの測定に有用である ばかりか、 本発明が解決すべき技術的な錁題の解決にも有用である。 以下に本発明方法に用いられる FAODの特性を詳細に説明する。 1. 一般的な誘導特性  Furthermore, an enzyme obtained by culturing a living organism transformed by an expression vector containing a DNA encoding FAOD can also be used in the method of the present invention. The FAOD thus obtained is useful not only for the measurement of Amadori compounds, particularly for the measurement of glycated proteins for the diagnosis of diabetes, but also for the technical problems to be solved by the present invention. Useful. Hereinafter, the characteristics of the FAOD used in the method of the present invention will be described in detail. 1. General induction characteristics
本発明方法に用いられる FAODはフルク トンルリジン及び/又は FZ Lによって誘導される誘導酵素であり、 フルク トシルリジン及び/又は F Z Lを窒素源とし、 グルコースを炭素源とするフルク トシルリジン及びノ 又は F Z L培地で、 真菌類のフルク 卜シルァミノ酸ォキシダーゼ生産菌を 培養することにより生産される。  FAOD used in the method of the present invention is an inducible enzyme induced by fructonyl lysine and / or FZL.Fructosyl lysine and / or FZL is used as a nitrogen source and glucose is used as a carbon source. It is produced by culturing fungal fructosylamino acid oxidase-producing bacteria.
FAODは、 グルコースとリジン及び 又は N' —Z—リジンを共にォ 一トクレーブして得られる GL褐変化培地で誘導されるが、 グルコースと リジン及び 又は N' — Z—リジンを别々にォー トクレイプ処理して調製 した培地では誘導されないことから、 ¾酵素はアマドリ化合物に特異的に 作用するものである。 FAOD is induced in a GL browning medium obtained by autoclaving both glucose and lysine and / or N'-Z-lysine. Prepared by toraping ¾enzyme acts specifically on the Amadori compound, since it is not induced in the cultivated medium.
2. 諸性質及び基質特異性  2. Properties and substrate specificity
本発明方法に用いられる FAODは、 式:  FAOD used in the method of the present invention has the formula:
R'-CO-CHz- H-R2 + 02 十 H20 → R'-CO-CHz- HR 2 + 0 2 tens of H 2 0 →
R1 - CO - CHO + Rに NH2 + H202 R 1 -CO-CHO + R with NH 2 + H 2 0 2
(式中、 R1はアルドース残基、 R2はアミノ酸、 タンパク質又はペプチド 残基を表す) (Wherein, R 1 represents an aldose residue, R 2 represents an amino acid, protein or peptide residue)
で示される反応における触媒活性を有する。 上記の反応式において、 R1 がー OH、 一 (CH2) „—又は一 [CH (OH) ] n-CHzOH (式中、 nは 0— 6の整数) であり、 R2がー CHR3— [CONHR3] nCOOH (式中、 R3はな一アミノ酸側趙残基、 mは 1一 480の整数を表す) で 示されるアマドリ化合物が基質として好ましい。 中でも、 R3がリ ジン、 ボリ リジン、 パリン、 ァスパラギンなどから選択されるアミノ酸の側鎮残 基であり、 また nが 5〜6、 mが 55以下である化合物が好ましい。 本発明方法に用いられる FAODの諸性質を以下の第 1表に示す。 Has a catalytic activity in the reaction represented by In the above reaction formula, R 1 is —OH, one (CH 2 ) „— or one [CH (OH)] n-CHzOH (where n is an integer of 0-6), and R 2 is —CHR Amadori compounds represented by 3 — [CONHR 3 ] n COOH (wherein, R 3 is a residue on one amino acid side and m is an integer of 1 to 480) are preferred as the substrate, among which R 3 is lysine And a side residue of an amino acid selected from boryridine, parin, asparagine, etc., and a compound wherein n is 5 to 6 and m is 55 or less. The results are shown in Table 1.
第 1表 Table 1
フノレク ト シノレア ミ ノ酸才キシダ ^の諸性質 生産菌 Gibberella Fusarium F. oxysporua penicillun Aspergillus fujikuroi oxysporuB S-14F f. sp. lini janthinellum S - 3413 terreus GP1 Various properties of funolecto cinnorea mino acid cyst ^ ^ Producing bacterium Gibberella Fusarium F. oxysporua penicillun Aspergillus fujikuroi oxysporuB S-14F f. Sp. Lini janthinellum S-3413 terreus GP1
<IF06356> く PERM BP-5010> <IF05880> <FER BP- 5475〉 〈函 BP-5684> 分子量 <IF06356> Ku PERM BP-5010> <IF05880> <FER BP-5475> <Box BP-5684> Molecular weight
(ゲルろ過) 47, 000 45, 000 106.000 38.700 94, 000 (SDS-PAGE) 52.000 50.000 51.000 48.700 48.000 補酵素 FADと共有結合 FADと共有結合 FADと共有結合 FADと共有結合 FADと共有結合 基質恃異性  (Gel filtration) 47,000 45,000 106.000 38.700 94,000 (SDS-PAGE) 52.000 50.000 51.000 48.700 48.000 Coenzyme FAD and covalent FAD and covalent FAD and covalent FAD and covalent FAD and covalent FAD and covalent
(U/rag · protein)  (U / rag
(フルクトシルリジン) 16.7 48.9 32.0 4.18 20.6  (Fructosyl lysine) 16.7 48.9 32.0 4.18 20.6
(フルクトシ) Vパリン) N. D. *1 N. D. 9.62 18.6 10.4 ミハエリス定数  (Fructosi) V-palin) N.D. * 1 N.D. 9.62 18.6 10.4 Michaelis constant
(aFZL)*2 0.45mM 1.37m 0.51IDN 0.62πιΜ (aFZL) * 2 0.45mM 1.37m 0.51IDN 0.62πιΜ
(ε FZL)*3 0.13ιαΝ 0.22πιϊ 0.37IDM 0.192mN (ε FZL) * 3 0.13ιαΝ 0.22πιϊ 0.37 IDM 0.192mN
specificity contant specificity contant
(Kn/Vmax) (aFZL) 86 94 131 240  (Kn / Vmax) (aFZL) 86 94 131 240
(£ FZ L) 176 555 107 26.8  (£ FZ L) 176 555 107 26.8
至適 pH 8.0 8.0 8.5 7.5 8.0 至適温度 C) 35 45 35 25 25-30 等電点 4.8 6.8 Optimum pH 8.0 8.0 8.5 7.5 8.0 Optimum temperature C) 35 45 35 25 25-30 Isoelectric point 4.8 6.8
SH試薬による影響 あり あり あり あり あり Effect of SH reagent Yes Yes Yes Yes Yes
* 1 :検出されず * 1: Not detected
* 2 : N β—フルク トシルー Ν '— Ζ—リ ジン * 2: N β —fructosyl Ν '— Ζ—resin
* 3 : N'—フルク トシルー Νβ— Ζ—リジン * 3: N'- Fourques Toshiru Ν β - Ζ- lysine
第 1表から、 本発明方法に用いる F AO Dは、 フルク トシルリジン及び /又はフルク トシルバリンに対して高い特異性を有することが分かる。 さ らに、 FAODの各基質に対する活性を以下の第 2表に示す。 Table 1 shows that F AOD used in the method of the present invention has high specificity for fructosyl lysine and / or fructosyl valine. Further, the activity of FAOD for each substrate is shown in Table 2 below.
第 2表 Table 2
F A O Dの基質特異性 基質 濃度 相対活性 (%)  Substrate specificity of F A O D Substrate concentration Relative activity (%)
Cibberella Fusariun oxysporum F. oxysporum Penicillium Aspergillus fujikuroi S-1F4 f. sp. lini janthinellum terreus GPl く IFO NO.6356> <FER« BP-5010> <IF0 NO.5880〉 S-3413<FER BP-5475) <FERM BP- 5684 Cibberella Fusariun oxysporum F. oxysporum Penicillium Aspergillus fujikuroi S-1F4 f.sp. lini janthinellum terreus GPl IFO NO.6356> <FER «BP-5010> <IF0 NO.5880> S-3413 <FER BP-5475) <FERM BP- 5684
N' -Fructosyl N"-Z-lysine 1.67mM 100 100 100 100 100 (FZL) N'-Fructosyl N "-Z-lysine 1.67mM 100 100 100 100 100 (FZL)
Fructosyl valine 1.67 N. D.本1 N.D. 30.1 446 32.1Fructosyl valine 1.67 ND 1 ND 30.1 446 32.1
N'-Methyl-L-lysine 1.67 N. D. N. D. N. D. N. D. N.D. N'-Methyl-L-lysine 1.67 N.D.N.D.N.D.N.D.N.D.
Fructosyl poly-L-lysine 0.02% 1.0 2.3 0.24 N. D. 0.30 (FPL)  Fructosyl poly-L-lysine 0.02% 1.0 2.3 0.24 N.D.0.30 (FPL)
Poly-L-lysine 0.02 N. D. N. D. N. D. N. D. N.D.  Poly-L-lysine 0.02 N.D.N.D.N.D.N.D.N.D.
FBSA*2 0.17 N. D. N. D. N. D. N. D. N.D. FBSA * 2 0.17 NDNDNDNDND
FHSA*3 0.17 N. D. N. D. N. D. N. D. N. D. FHSA * 3 0.17 NDNDNDNDND
Tryptic FBSA 0.17 0.19 4.6 0.62 N. D. 0.58 Tryptic FBSA 0.17 0.19 4.6 0.62 N.D.0.58
Tryptic FHSA 0.17 N. D. 2.3 N. D. N. D. N. D. Tryptic FHSA 0.17 N.D.2.3 N.D.N.D.N.D.
Tryptic FPL 0.17 59.7 Tryptic FPL 0.17 59.7
* 1 :検出されず * 1: Not detected
* 2 : フノレク トシル牛血清アルブミン  * 2: Funorectosyl bovine serum albumin
* 3 : フルク トシルヒ ト血清アルブミ ン  * 3: Fructosyl human serum albumin
第 2表に示されているように、 本発明方法に用いられる F A ODはフル ク トシルリジン及び Z又はフルク 卜シルボリ リジンに対する活性を有し、 このことは該 FAODが糖化ァルブミ ンの測定に有用であることを示して いる。 また、 本発明方法に用いられるフサリウム ·ォキシスボルム . f . s p. ' リニ、 ァスペルギルス ' テレウス · G P 1及びぺニシリウム . ャ ンシネルム S— 3413由来の FAODは、 フルク トシルバリ ンに対して 活性を有しており、 このことは、 該 FAODが糖化ヘモグロビンの測定に も有用であることを示している。 さらに本発明方法に用いられる FAOD は、 糖化タンパクのプロテアーゼ消化物に対する活性もある。  As shown in Table 2, FAOD used in the method of the present invention has activity against fructosyl lysine and Z or fructosyl boryl lysine, which indicates that the FAOD is useful for measuring glycated albumin. It indicates that there is. Further, FAODs derived from Fusarium oxysvolum.f.sp.'lini, Aspergillus'Teleus GP1 and Penicillium jansinerum S-3413 used in the method of the present invention have activity against fructosylvalin. This indicates that the FAOD is also useful for measuring glycated hemoglobin. Furthermore, FAOD used in the method of the present invention also has an activity on protease digests of glycated proteins.
3. 力価の測定 3. Measurement of titer
糠素の力砥測定は下記の方法で行った。  The power grinding measurement of the bran was performed by the following method.
(1) 生成する過酸化水素を比色法により測定する方法。  (1) A method of measuring the generated hydrogen peroxide by a colorimetric method.
A.速度法  A. Speed method
10 OmM FZL溶液はあらかじめ得られた FZLを蒸留水で溶解す ることによって调製した。 45mM 4—ァミノアンチピリン、 60ュニッ ト /m 1パーォキシダーゼ溶液、 及び 6 OmM フユノール溶液それぞれ 100/ 1と、 0.1M トリスー塩酸锾銜液 (pH8.0) Imし 及び »¾溶液 5 1を混合し、 全置を蒸留水で 3.0mlとする。 30てで 2分間インキュベートした後、 10 OmM ?2し溶液50 1を添加し、 505 nmにおける吸光度を経時的に測定した。 生成するキノン色素の分 子吸光係数 (5.16x 1 O^-'cm-1) から、 1分間に生成する過酸化水 紫のマイクロモルを算出し、 この数字を酵素活性単位 (ュニッ ト: U) と する。 The 10 OmM FZL solution was prepared by dissolving FZL obtained in advance with distilled water. 45 mM 4-Aminoantipyrine, 60 units / m 1 peroxidase solution, 100/1 each of 6 OmM Fuunol solution, 0.1 M Tris-HCl 锾 mouth solution (pH 8.0) Im and »¾ solution 51 Mix and make up to 3.0 ml with distilled water. After incubating for 2 minutes at 30 ° C., 501 OmM solution was added, and the absorbance at 505 nm was measured over time. From the molecular extinction coefficient (5.16 x 1 O ^-'cm- 1 ) of the quinone dye produced, calculate the micromoles of purple water per minute produced per minute, and use this figure as the enzyme activity unit (unit: U ) When I do.
B.終末法  B. terminal law
上記 A法と同様に処理し、 基質添加後、 30分間 30°Cでインキュベー トした後の 505 nmにおける吸光度を測定し、 あらかじめ標準過酸化水 紫溶液を用いて作成した検量線から生成した過酸化水素 Sを算出すること により、 酵素活性を測定する。  Treat in the same manner as in Method A above, add the substrate, incubate at 30 ° C for 30 minutes, measure the absorbance at 505 nm, and measure the absorbance generated from the calibration curve prepared in advance using a standard aqueous peroxide peroxide solution. Enzyme activity is measured by calculating hydrogen oxide S.
(2)酵素反応による酸素吸収を測定する方法  (2) Method of measuring oxygen absorption by enzyme reaction
0.1M トリス-塩酸緩衝液 (pH8.0) lm 1と酵素溶液 50 1を混 合し、 蒸留水で全量を 3.0m 1とし、 ランク ブラザーズ社の酸衆電極の セルに入れる。 3CTCで攬拌し、 溶存酸紫と温度を平衡化した後、 50m M FZL 100 1を添加し、 酸素吸収を記録計で連铳的に計測し、 初 速度を得る。 標準曲線から 1分問に吸収された酸素量を求め、 これを酵素 単位とする。  Mix lm 1 of 0.1 M Tris-HCl buffer (pH 8.0) with 501 of enzyme solution, make up to 3.0 ml with distilled water, and put into a cell of Rank Brothers' public electrode. After mixing with 3 CTC and equilibrating the temperature with the dissolved acid purple, 50 mM FZL 1001 is added, and the oxygen absorption is continuously measured with a recorder to obtain the initial velocity. Calculate the amount of oxygen absorbed in one minute from the standard curve, and use this as the enzyme unit.
上記のごとく、 FAODは、 アマドリ化合物の測定に有用であり、 従つ て、 本発明は、 アマドリ化合物を含有する試料と、 FAODとを接触させ 酸素の消費量又は反応生成物を測定することを特徴とする、 試料中のアマ ドリ化合物の測定方法を提供するものである。 本発明の方法は、 生体成分 又は食品中の糖化タンパクの量及び 又は糖化率の測定、 あるいはフルク トシルァ ミ ンの定量に基づいて行われる。  As described above, FAOD is useful for measuring an Amadori compound, and therefore, the present invention provides a method for measuring oxygen consumption or a reaction product by bringing a sample containing an Amadori compound into contact with FAOD. Another object of the present invention is to provide a method for measuring an Amadori compound in a sample. The method of the present invention is carried out based on the measurement of the amount and / or saccharification rate of a glycated protein in a biological component or food, or the determination of fructosylamine.
FAODの酵素活性は下記の反応に基づいて測定される。  The enzyme activity of FAOD is measured based on the following reaction.
R1 - CO - CH2 - NH - R2 + 02 + H20 → R 1 -CO-CH 2 -NH-R 2 + 0 2 + H 20
R'-C O-CHO + Rに NH2 + H202 R'-C O-CHO + R with NH 2 + H 2 0 2
(式中、 R1はアルドース残基、 R2はアミノ酸、 タンパク質又はペプチド 残基を表す) (Wherein, R 1 represents an aldose residue, R 2 represents an amino acid, protein or peptide residue)
被検液としては、 アマドリ化合物を含有する任意の試料溶液を用いるこ とができ、 例えば、 血液 (全血、 血嫘又は血清) 、 尿等の生体由来の試料 の外、 番油等の食品が挙げられる。 As the test liquid, use any sample solution containing the Amadori compound. Examples thereof include foods such as blood (whole blood, blood serum or serum), urine and other biological samples, as well as oils.
本発明の分析法では、 下記のいずれかのアマドリ化合物の測定法を用い る 0  In the analysis method of the present invention, any of the following methods for measuring an Amadori compound is used.
(1) 反応生成物の量に基づく方法  (1) Method based on the amount of reaction product
FAODの作用により、 過酸化水素及びグルコソンが生成される。 過酸 化水素の測定には、 当該技術分野で既知の方法、 例えば、 発色法、 a酸化 水素電極を用いる方法等で測定し、 過酸化水紫及びアマドリ化合物の量に 関して作成した標準曲線と比較することにより、 試料中のアマドリ化合物 を測定する。 具体的には、 上記 3の力価の測定に準じる。 ただし、 FAO D量は 1ュニッ 卜 Zm 1 とし、 適当に希釈した試料を添加し、 生成する過 酸化水素量を測定する。 過酸化水素の比色法における発色系としては、 ぺ ルォキシダーゼの存在下で 4ーァミノアンチビリン (AAA) 、 3—メチ ル一2—べンゾチアゾリノンヒ ドラゾン (MBTH)等のカップラーとフエ ノール等の色原体との酸化縮合により色素を生成する系を用いることがで さる。  The action of FAOD produces hydrogen peroxide and glucosone. Hydrogen peroxide is measured by a method known in the art, for example, a coloring method, a method using a hydrogen oxide electrode, etc., and a standard curve prepared for the amounts of water peroxide purple and the Amadori compound. The Amadori compound in the sample is measured by comparing with. Specifically, it is based on the measurement of the titer described in 3 above. However, the amount of FAOD shall be 1 unit Zm 1, an appropriately diluted sample shall be added, and the amount of hydrogen peroxide generated shall be measured. The color development system for the colorimetric method of hydrogen peroxide is as follows: カ ッ プ Couplers such as 4-aminoantivirin (AAA) and 3-methyl-12-benzothiazolinone hydrazone (MBTH) in the presence of oxidase. It is possible to use a system that produces a dye by oxidative condensation of phenol with a chromogen such as phenol.
色原体として、 フユノール誘導体、 ァニリン诱導体、 トルイジン誘導体 等があり、 例えば、 N—ェチルー N— (2—ヒ ドロキン一 3—スルホプロ ビル) 一 m— トルイジン、 N, N—ジメチルァニリ ン、 N. N—ジェチルァ 二リン、 2, 4—ジクロ口フエノール、 N—ェチル一 N— (2—ヒ ドロキ シ一 3—スルホプロビル) 一 3, 5—ジメ トキシァニリ ン、 N—ェチル一 N— (3—スルホプロピル) 一 3. 5—ジメチルァニリ ン (MAP S)、 N—ェチルー N— (2—ヒ ドロキシー 3—スルホプロピル) 一 3, 5ージ メチルァニリン (MAOS) 等が挙げられる。 又ペルォキシダーゼの存在 下で酸化されて呈色するロイコ型発色試薬も用いることができ、 そのよう なロイコ型発色試薬は、 当業者に既知であり、 0—ジァニンジン、 0—ト リジン、 3.3—ジァミ ノべンジジン、 3, 3.5.5—テトラメチルベンジ ジン、 N— (カルボキシメチルァミノカルボニル) 一 4, 4一ビス (ジメ チルァミノ) ビフエニルアミ ン (DA64) 、 10— (カルボキンメチル ァミノカルボニル)一 3, 7-ビス (ジメチルァミノ) フエノチアジン (D A67) 、 等が挙げられる。 Examples of chromogens include fuynol derivatives, aniline derivatives, and toluidine derivatives. For example, N-ethyl-N- (2-hydroquinone-3-sulfopropyl) 1 m-toluidine, N, N-dimethylaniline, N.N-dimethylaniline N-Jetyla diphosphine, 2,4-dichroic phenol, N-ethyl-N- (2-hydroxy-13-sulfoprovir) -1,3,5-Dimethoxyanilinine, N-ethyl-N- (3-sulfo Propyl) -1-3.5-dimethylaniline (MAPS), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -1,5-dimethylaniline (MAOS) and the like. Also, a leuco-type coloring reagent which is oxidized in the presence of peroxidase to give a color can be used. Various leuco-type coloring reagents are known to those skilled in the art, and include 0-dian ginseng, 0-trizine, 3.3-diaminobenzidine, 3,3.5.5-tetramethylbenzidine, and N- (carboxymethylaminocarbonyl). And 1,4-bis (dimethylamino) biphenylamine (DA64), 10- (carboquinmethylaminocarbonyl) -1,3,7-bis (dimethylamino) phenothiazine (DA A67), and the like.
色原体を用いる過酸化水素の測定には、 比色法のほか、 茧光法、 化学発 光法も挙げられる。 蛍光法には、 酸化によって蛍光を発する化合物、 例え ば、 ホモバニリ ン酸、 4-ヒ ドロキンフエニル醉酸、 チラ ミ ン、 ノぐラクレ ゾール、 ジァセチルフルォレスシン誘導体などを用いることができる。 化 学発光法には、 触媒としてべルォキシダーゼ、 フユリシアン化力リウム、 へミ ン等を、 基質としてルミ ノール、 ノレシゲニン、 イソルミ ノール、 ピロ ガロール等を用いることができる。  The measurement of hydrogen peroxide using a chromogen includes a colorimetric method, a luminescence method, and a chemical luminescence method. For the fluorescence method, a compound that emits fluorescence by oxidation, for example, homovanillic acid, 4-hydroquinphenyl sulfonic acid, tyramine, nociclecresol, diacetylfluorescin derivative and the like can be used. In the chemiluminescence method, veroxidase, lithium furocyanide, hemin, or the like can be used as a catalyst, and luminol, noresigenin, isorminol, pyrogallol, or the like can be used as a substrate.
さらに、 過酸化水素の測定には、 アルコール (例、 メタノール) の存在 下でカタラーゼを作用させ、 生成するアルデヒ ドをハンチ反応や、 MBT Hとの縮合反応により発色させる系も利用できる。 このアルデヒ ドをアル デヒ ドデヒ ドロゲナーゼと共役させ、 NAD (N ADH) の変化を測定す ることもできる。  In addition, for the measurement of hydrogen peroxide, a system in which catalase is allowed to act in the presence of an alcohol (eg, methanol) and the resulting aldehyde is colored by a Hunch reaction or a condensation reaction with MBTH can be used. This aldehyde can also be conjugated to aldehyde dehydrogenase to measure changes in NAD (NADH).
グルコソンの測定には、 ジフヱニルアミ ン等のアルドース試薬を用いる ことができる。  For measurement of glucosone, an aldose reagent such as diphenylamine can be used.
過酸化水素を電極を用いて測定する場合、 鼋極には、 過酸化水素との間 で電子を授受することのできるものであれば何でも使用しうるが、 例えば 白金、 金、 銀などが好ましい。 測定は、 アンべロメ トリー、 ボテンショメ トリー、 クーロメ トリー等、 当業者既知の方法で行うことができる。 また、 FAOD又は基質と ¾極との間の反応に電子伝達体を介在させ、 得られる酸化、 還元電流あるいはその電気量を測定することもできる。 電 子伝連体としては、 フユ口セン诱導体、 キノン誘導体等、 当業者に既知の 物質、 又は当業者が通常考え得る電子伝達機能を有する任意の物質であつ て良い。 When measuring hydrogen peroxide using an electrode, the anode can be any material that can transfer electrons to and from hydrogen peroxide, but platinum, gold, silver, etc. are preferred. . The measurement can be performed by a method known to those skilled in the art, such as ambiometry, potentiometry, and coulometry. In addition, the reaction between the FAOD or the substrate and the positive electrode is mediated by an electron carrier, The resulting oxidation or reduction current or the amount of electricity can also be measured. The electron conductor may be a substance known to those skilled in the art, such as a fluorinated conductor, a quinone derivative, or any substance having an electron transfer function that can be generally considered by those skilled in the art.
さらに、 F A O D反応により生成する過酸化水素と電極との間に ¾子伝 達体を介在させ、 得られる酸化、 a元電流あるいはその 気量を測定する こともできる。  Furthermore, a proton conductor can be interposed between the hydrogen peroxide generated by the FAD reaction and the electrode, and the resulting oxidation, a-source current, or its air volume can be measured.
C 2 ) 酸素の消 «量に基づく方法  C 2) Oxygen consumption
反応開始時の酸素量から反応終了時の酸素量を差し引いた値 (酸素消 β *) を測定し、 酸素消 Siとアマドリ化合物の量に関して作成した樣準曲 線と比較することにより、 試料中のアマドリ化合物を測定する。 具体的に は、 上記 3の力価の測定に準じて行う。 但し用いる F A O D量は 1ュニッ ト /mlとし、 適当に希釈した試料を添加し消 Sされる酸素量を求める。 本発明方法は試料溶液をそのまま用いて行うこともできるが、 対象とな るアマドリ化合物によっては、 試料を F A 0 Dが反応しゃすい状態に処理 しながら、 又は処理してから行うことが好ましい。  The value obtained by subtracting the amount of oxygen at the end of the reaction from the amount of oxygen at the start of the reaction (oxygen quenching β *) is measured and compared with the quasi-curve created for the amounts of oxygen quenched Si and Amadori compounds in the sample. Is measured. Specifically, the measurement is performed in accordance with the above-mentioned titration measurement. However, the amount of F A O D to be used shall be 1 unit / ml, and an appropriately diluted sample shall be added to determine the amount of oxygen eliminated. Although the method of the present invention can be carried out using the sample solution as it is, depending on the target Amadori compound, it is preferable to carry out the sample while or after the sample is treated so that the FAOD reacts.
そのような目的には、 プロテアーゼを用いる場合 (酵素法) と、 トリク ロロ酔酸等の化学物質を用いる埸合 (化学法) 、 熱等の物理的手法を用い る場合 (物理法) がある。 酵素法には、 当業者に既知である、 エンド型及 びェキソ型のプロテアーゼを単独であるいは組み合わせて用いることがで きる。 エンド型のプロテアーゼは、 タンパク質の内部から分解する醇素で あり、 例えばトリブシン、 ーキモトリブシン、 スブチリシン、 ブロティ ナーゼ K、 パパイン、 カテブシン Β、 ペプシン、 サーモリ シン、 プロテア ーゼ X〗 V、 プロテアーゼ X VII、 プロテアーゼ X XI、 リジルエン ドべ ブチダーゼ、 プロレザー、 プロメライン F等がある。 一方、 ェキソ型のブ 口テア一ゼはぺプチド鎖の端から順に分解する酵素であり、 ァミノぺプチ ダーゼ、 カルボキシぺプチダーゼ等が挙げられる。 酵素処理の方法も既知 であり、 例えば下記実施例に記載の方法で行うことができる。 Such purposes include the use of protease (enzymatic method), the use of chemicals such as trifluorosulfuric acid (chemical method), and the use of physical methods such as heat (physical method). . For the enzymatic method, endo- and exo-type proteases known to those skilled in the art can be used alone or in combination. Endo-type proteases are abundant substances that are degraded from the inside of proteins.For example, trypsin, chymotrypsin, subtilisin, brotinase K, papain, cathepsin Β, pepsin, thermolysin, protease X〗 V, protease XVII, protease XXI, lysylende butide, pro-leather, promelain F, etc. On the other hand, the exo-type Oral protease is an enzyme that decomposes sequentially from the end of the peptide chain, and examples thereof include aminopeptidase and carboxypeptidase. Enzyme treatment methods are also known and can be performed, for example, by the method described in the following Examples.
これらのエンド型、 ェキソ型のプロテアーゼは、 その特性を利用し、 測 定対象となるアマドリ化合物の糖化部位に応じて使い分けることが好まし い。 例えば、 糖化アルブミンは内部のリジン残基が糖化されているため、 エンド型のプロテアーゼで、 ヘモグロビン A l eは、 /9鎖 N末端のバリン 残基が糖化されているため、 ェキソ型のプロテアーゼで、 より効率良く処 理することができる。 これらのことは、 以下の第 3表及び第 4表から読み 取ることができる。 These endo-type and exo-type proteases are preferably used depending on the saccharification site of the Amadori compound to be measured by utilizing its properties. For example, glycated albumin is an endo-type protease because the internal lysine residue is glycated, and hemoglobin Ale is an exo-type protease because the / 9 chain N-terminal valine residue is glycated. Processing can be performed more efficiently. These can be read from Tables 3 and 4 below.
第 3表 糖化ヒ トアルブミンに対する処理方法 プロテアーゼ F AOD活性 相対活性 Table 3 Treatment method for glycated human albumin Protease F AOD activity Relative activity
(U/ml)  (U / ml)
ェンド型プロテアーゼ End-type protease
特異的  Specific
トリブシン 2.5 100 リジルェンドぺプチダーゼ 6.3 250  Tribcine 2.5 100 Residual peptidase 6.3 250
^特異的 ^ Specific
プロティナーゼ A 5.0 200 ズブチリシン δ.7 230 ヒ トカテブシン 4.2 170 プロテアーゼ XIV 7.7 310 ブロナーゼ 5.8 230 ブロナーゼ E 8.4 340 プロティナーゼ K 3.1 120 ブロテアーゼ P 3.0 120 ブロテアーゼ N 4.4 180 プロレザー 3.0 120 パパイン 5.0 200 プロテアーゼ A 5.9 240 ブロメライン F 4.0 160 ェキソ型プロテアーゼ  Proteinase A 5.0 200 Subtilisin δ.7 230 Human cathepsin 4.2 170 Protease XIV 7.7 310 Bronase 5.8 230 Bronase E 8.4 340 Proteinase K 3.1 120 Blotase P 3.0 120 Blotase N 4.4 180 Proleather 3.0 120 Papain 5.0 200 Protease A 5.9 240 Bromelain F 4.0 160 exo-type protease
カルボキシぺプチダーゼ Υ 0.82 32 アミノぺプチダーゼ Τ 0.73 30 アミノぺプチダーゼ I 0.86 34 アミノぺプチダーゼ Μ 0.89 36 ァミノぺプチダーゼ C ― 0.54 22 第 4表 ヘモグロビン A 1 cに対する処理方法 プロテアーゼ FAOD活性 相対活性 Carboxypeptidase Υ 0.82 32 aminopeptidase Τ 0.73 30 aminopeptidase I 0.86 34 aminopeptidase Μ 0.89 36 aminopeptidase C ― 0.54 22 Table 4 Treatment method for hemoglobin A1c Protease FAOD activity Relative activity
(U/ml)  (U / ml)
ェンド型プロテア一ゼ End-type proteases
特異的  Specific
卜リブシン 0.22 5.8 非特異的  Tribcine 0.22 5.8 Non-specific
ペプシン 0.20 5.3 ブロティナーゼ A 0.13 3.5 ズブチリシン 0.04 1. 1 ゥシカテブシン 0.07 1.9 ヒ 卜カテブシン 0.10 2.6 ブロナーゼ 0.05 1. プロテアーゼ N 0.06 1.6 ブロテアーゼ A 0.14 3.7 パパイン 0.06 1.6 ェキソ型ブロテアーゼ  Pepsin 0.20 5.3 Brotinase A 0.13 3.5 Subtilisin 0.04 1.1 Dicatecatesin 0.07 1.9 Human cathepsin 0.10 2.6 Bronase 0.05 1.Protease N 0.06 1.6 Protease A 0.14 3.7 Papain 0.06 1.6 Exo-type protease
カルボキシぺプチダーゼ B 1.27 33.3 アミノぺプチダーゼ 3.82 100.0 ァミ ノぺブチダーゼ M 0.43 11.2 さらに、 本発明方法によれば、 従来法と異なり、 醉素法による処理にお いて、 アマドリ化合物を、 必ずしも完全にアミノ酸に分解し、 糖化された アミノ酸残基を遊離する必要がない。 F A O Dが反応しやすいような状態 の糖化べプチドにすればよいため、 処理時間が短縮できる。 Carboxypeptidase B 1.27 33.3 Aminopeptidase 3.82 100.0 Aminobutidase M 0.43 11.2 Furthermore, according to the method of the present invention, unlike the conventional method, it is not necessary to completely decompose the Amadori compound into amino acids and release saccharified amino acid residues in the treatment by the thixotropy method. The processing time can be shortened because the saccharified peptide may be in a state in which FAOD can easily react.
化学法では、 酸、 アルカリ、 界面活性剤、 タンパク変性剤等を単独又は 組み合わせて用いることができる。 物理法では、 熱、 マイクロウヱーブ、 圧力等を単独又は組み合わせて用いることができる。  In the chemical method, an acid, an alkali, a surfactant, a protein denaturant and the like can be used alone or in combination. In the physical method, heat, microwave, pressure, etc. can be used alone or in combination.
また、 酵素法、 化学法、 物理法は、 それぞれ単独で用いることができる が、 適宜組み合わせて用いてもよい。 さらに、 これらの処理は F A O D反 応の前または冏時に行うことができる。 従来法では、 試料を処理した後、 測定する必要があつたが、 本発明方法では、 試料の処理と F A O D反応と を同時に行うことができるので、 従来法に比べ、 操作が簡便で手間がかか らず、 短時間で測定することができる。  The enzymatic method, the chemical method, and the physical method can be used alone, but may be used in an appropriate combination. Further, these processes can be performed before or at the time of the F AOD reaction. In the conventional method, it was necessary to measure after processing the sample, but in the method of the present invention, the processing of the sample and the FAOD reaction can be performed simultaneously, so the operation is simpler and more labor-intensive than the conventional method. Instead, it can be measured in a short time.
上記の如く、 本発明方法に用いられる F A O Dは、 糖化タンパクに含ま れるフルク トシルリジンに高い基質特異性を有するものであることから、 血液試料中の糖化アルブミンを測定することを含む、 糖尿病の診断などに 有用である。 また、 フルク トシルバリンにも特異性を有することから、 へ モグロビン A 1 cの測定にも有用である。  As described above, since FAOD used in the method of the present invention has high substrate specificity for fructosyl lysine contained in glycated proteins, it includes the measurement of glycated albumin in a blood sample, diagnosis of diabetes, etc. Useful for In addition, since fructosylvaline also has specificity, it is useful for measuring hemoglobin A1c.
なお、 検体として血液試料 (全血、 血漿又は血清) を用いる場合、 採血 した試料をそのまま、 あるいは透折等の処理をした後用いる。  When a blood sample (whole blood, plasma or serum) is used as the specimen, the collected blood sample is used as it is or after being subjected to a treatment such as folding.
試料が全血や溶血検体である場合、 試料はへモグロビンの存在によって 特有の吸収スべク トルを示す。 比色法で測定する際に、 検出する波長によつ てはヘモグロビンの吸収と重なり、 正確な測定を行うことができない。 従つ て、 あらかじめ測っておいたヘモグロビンのスぺク トルを F A O D反応後 のスぺク トルから引き、 その差によって測定する必要がある。 しかしなが ら、 この方法は、 必ずしも正確でなく、 しかも面倒である。 本発明では、 比色法で測定を行う際に、 ヘモグロビン自身の吸収を避け、 長波長域 (60 0〜800nm) で測定することができ、 そうすることによって、 試料中のへモ グロビンの影 を受けず、 より正確な測定が可能となる。 例えば F A O D の作用により生成する過酸化水素を、 ペルォキシダーゼの存在下、 D A 6 4、 D A 6 7、 4 A A /MA O S , 4 A AZM A P Sなどの酸化発色や、 力タラ一ゼの作用により生成したアルデヒ ドと M B T Hの縮合反応による 発色などによって検出する。 この方法により、 全血や溶血検体中のへモグ 口ビン A leを含むアマドリ化合物はもちろん、 糖化アルブミンの測定も可 能である。 ただし、 検出波長は、 これに限定されるものではなく、 へモグ ロビンの吸収と重なる波長域であっても、 上記のごとく、 あらかじめ測つ ておいたヘモグロビンのスべク トルを F A O D反応後のスぺク トルから引 き、 その差によって測定する方法も本発明方法に含まれる。 If the sample is a whole blood or hemolyzed sample, the sample will show a unique absorption spectrum due to the presence of hemoglobin. When measuring by the colorimetric method, the wavelength to be detected overlaps with the absorption of hemoglobin, and accurate measurement cannot be performed. Therefore, it is necessary to subtract the previously measured hemoglobin spectrum from the spectrum after the FAOD reaction and measure the difference. However Moreover, this method is not always accurate, and is cumbersome. According to the present invention, when the measurement is performed by the colorimetric method, the absorption of hemoglobin itself can be avoided, and the measurement can be performed in a long wavelength region (600 to 800 nm), whereby the shadow of hemoglobin in the sample can be obtained. And more accurate measurement is possible. For example, hydrogen peroxide produced by the action of FAOD was produced by oxidative coloring of DA64, DA67, 4AA / MAOS, 4AAZM APS, etc. in the presence of peroxidase, and by the action of lipase. It is detected by color development due to the condensation reaction between aldehyde and MBTH. By this method, glycated albumin as well as Amadori compounds containing hemoglobin Ale in whole blood and hemolyzed samples can be measured. However, the detection wavelength is not limited to this, and even if it is in the wavelength range that overlaps with hemoglobin absorption, as described above, the previously measured hemoglobin spectrum is measured after the FAOD reaction. The method of subtracting from the spectrum and measuring the difference is also included in the method of the present invention.
さらに、 本発明方法に用いられる F A O D、 ペルォキシダーゼ、 力タラ ーゼ、 プロテアーゼ等の酵素は、 溶液状態で用いてもよいが、 適当な固体 支持体に固定化してもよい。 例えば、 ビーズに固定化した酵素をカラムに 充填し、 自動化装置に組み込むことにより、 臨床検査など、 多数の検体の 日常的な分析を効率的に行うことができる。 しかも、 固定化酵紫は再使用 が可能であることから、 経済効率の点でも好ましい。  Furthermore, the enzymes such as FAOD, peroxidase, lipase, and protease used in the method of the present invention may be used in the form of a solution, or may be immobilized on a suitable solid support. For example, by packing an enzyme immobilized on beads into a column and incorporating it into an automated device, routine analysis of a large number of samples such as clinical tests can be performed efficiently. In addition, the immobilized yeast purple can be reused, which is preferable in terms of economic efficiency.
さらには、 酵素と発色色素と処理試薬とを適宜組み合わせ、 臨床分析の みならず、 食品分析にも有用なアマドリ化合物の分析のためのキッ トを得 ることができる。  Furthermore, by appropriately combining an enzyme, a coloring dye, and a processing reagent, it is possible to obtain a kit for analyzing Amadori compounds useful not only for clinical analysis but also for food analysis.
酵素の固定化は当该技術分野で既知の方法により行うことができる。 例 えば、 担体結合法、 架橘化法、 包括法、 複合法等によって行う。 担体とし ては、 高分子ゲル、 マイクロカブセル、 ァガロース、 アルギン酸、 カラギ 一ナン、 などがある。 結合は共有結合、 イオン結合、 物理吸着法、 生化学 的親和力を利用し、 当業者既知の方法で行う。 Immobilization of the enzyme can be performed by a method known in the art. For example, the method is carried out by a carrier binding method, a cross-linking method, an inclusive method, a complex method, or the like. Carriers include polymer gels, microcapsules, agarose, alginic acid, and carrageen One Nan, and so on. Coupling is performed by a method known to those skilled in the art using covalent bonding, ionic bonding, physical adsorption, and biochemical affinity.
固定化酵素を用いる埸合、 分析はフロー又はバッチ方式のいずれでもよ い。 上記のごとく、 固定化酵素は、 血液試料中の糖化タンパクの日常的な 分析 (臨床検査) に特に有用である。  When using an immobilized enzyme, the analysis may be either flow or batch. As noted above, immobilized enzymes are particularly useful for routine analysis (glycos) of glycated proteins in blood samples.
臨床検査が糖尿病診断を目的とする場合、 診断の基準としては、 結果を 糖化タンパク濃度として表すか、 試料中の全タンパク K濃度に対する糖化 タンパク質の濃度の比率 (糖化率) 又はフルク トシルァミン 4で表す。 全 タンパク質濃度は、 当業者既知の通常の方法 (280ηιηの吸光度、 ブラッ ドフォード法、 Lowly法、 ビュレツ 卜法など)で剃定することができる。 測 定対象となるアマドリ化合物 (糖化タンパク) が糖化アルブミンの場合、 全アルブミ ン S度はブロムク レゾールグリーン (BCG) 、 ブロムクレゾ 一ルパープル (BCP)、 ブロムフエノールブルー (BPB) などのフタ レイン色素を用いる方法、 メチルオレンジ、 2— (4' ーヒ ドロキンベン ゼンァゾ) 安息香酸 (HAB (C) A) などのァゾ色素を用いる方法、 ネ フエロメ トリー法、 アルブミ ンの自然蛍光を利用する方法などによって測 定できる。 また、 測定対象が糖化ヘモグロビンの場合、 全ヘモグロビン濃 度は、 ガス法、 シアンメ トヘモグロビン法、 ァザィ トメ トヘモグロビン法、 ヘモグロビン自身の吸光度を利用する方法などによって測定できるがいず れの塌合もこれに限定されるものではない。  If the laboratory test is aimed at diagnosing diabetes, the result should be expressed as glycated protein concentration, the ratio of glycated protein concentration to the total protein K concentration in the sample (glycation rate), or fructosylamine 4. . The total protein concentration can be determined by a conventional method known to those skilled in the art (eg, absorbance at 280 ηιη, Bradford method, Lowly method, Buret method, etc.). If the Amadori compound (glycated protein) to be measured is glycated albumin, phthalein dyes such as bromcresol green (BCG), bromcresol monopurple (BCP), and bromphenol blue (BPB) are used for the total albumin S level. Method, methyl orange, a method using azo dyes such as 2- (4'-hydroquinbenzenazo) benzoic acid (HAB (C) A), nephrometry, a method using the natural fluorescence of albumin, etc. Can be determined. When the measurement target is glycated hemoglobin, the total hemoglobin concentration can be measured by a gas method, a cyanmethemoglobin method, an azamethemoglobin method, a method using the absorbance of hemoglobin itself, etc. However, the present invention is not limited to this.
本発明はまた、 FAODと、 試料中のアマドリ化合物の糖化部位が F A 0Dと反応しゃすい状態になるよう、 試料を処理するための処理用試薬と を含む、 試料中のアマドリ化合物の測定のための試薬又はキッ トを提供す るものである。  The present invention also provides a method for measuring an Amadori compound in a sample, comprising: FAOD; and a processing reagent for treating the sample such that a saccharification site of the Amadori compound in the sample reacts with FA0D to form a sieve. It provides a reagent or kit.
試薬中の FAODの jtは、 終点分析を行う埸合、 試料あたり、 通常 1〜 100ュニッ ト ml、 縵衝液はトリス-塩酸 (pH8.0) が好ましい。 過酸化水素の生成量に基づいてアマドリ化合物を測定する場合、 発色系 としては、 先述の「(1)反応生成物の量に基づく方法」に記載の酸化縮合に より発色する系、 並びにロイコ型発色試薬等を用いることができる。 本発明のアマドリ化合物の測定試薬と、 適当な発色剤ならびに比皎のた めの色基準あるいは檁準物質を組み合わせてキッ トとすることもできる。 そのようなキッ トは、 予備的な診断、 検査に有用であると考えられる。 上記の測定試薬及びキッ トは生体成分又は食品中の糖化タンパク量及び /又は糖化率の測定、 あるいは、 フルク トシルァミンを定量するために、 用いられるものである。 When performing end-point analysis, FAOD jt in reagents is usually 1 to 1 per sample. 100 nits / ml, and the buffer solution is preferably Tris-HCl (pH 8.0). When the Amadori compound is measured based on the amount of hydrogen peroxide generated, the color-forming system may be a system that forms a color by oxidative condensation described in the above-mentioned “(1) Method based on the amount of reaction product”, or a leuco-type. A coloring reagent or the like can be used. A kit can also be obtained by combining the reagent for measuring the Amadori compound of the present invention, an appropriate color former, and a color standard or standard substance for ratio. Such a kit would be useful for preliminary diagnosis and testing. The above measuring reagents and kits are used for measuring the amount and / or saccharification rate of glycated protein in biological components or foods, or for quantifying fructosylamine.
以下に実施例を挙げて本発明をさらに詳しく説明する。  Hereinafter, the present invention will be described in more detail with reference to Examples.
製造例 1 ギペレラ属由来の FAODの製造 Production example 1 Production of FAOD derived from Giperella
ギペレラ · フジクロィ (IFO NO.6356) (Gibberella fujikuroi) を F ZL 0.5%、 グルコース 1.0%、 リ ン酸ニ力リウム 0.1%、 リ ン酸 —ナ トリウム 0.1%、 硫酸マグネシウム 0.05%、 塩化カルシウム 0.01%. イース トエキス 0.2%を含有した培地(pH6.0)10Lに 植菌し、 ジャーファーメンターを用いて通気量 2 LZ分、 搜拌速度 400 rpmの条件で 28て、 24時間援拌培養した。 培養物は ¾過して集めた。 菌糸体 170s (湿重量) を、 2mMの DTTを含む、 0.1M トリス 一塩酸锾銜液 (pH8.5)1Lに懸濁し、 Dyno-Millにより菌糸体を破碎 した。 破砕液を 10, 00 Orpinで 15分間遠心分離し得られた液を粗酵素 液 (無細跑抽出液) とした。 粗酵素液に 40%飽和になるように硫酸アン モニゥム(以下、硫安と略す)を加え、 攪拌し、 12.00 Orpmで 10分間 遠心分離した。 得られた上清に 75%飽和になるように硫安を加え、 攪拌 し、 12.00 Orpmで 10分間遠心分雠した。 沈殿を 2mMの D TTを含 有する 50mM トリスー塩酸緩衝液(pH 8.5) (緩衝液 A) に溶解し、 緩衝液 Aにて一晩透析した。 透析物を緩衝液 Aにて平衡化した D E A E— セファセルカラムに吸着した。 緩衝液 Aにて洗浄した後、 0— 0.5Mの 塩化カリウム直線濃度勾配で溶出した。 活性画分を集め、 55%から 75 %の硫安分画に供し、 緩衝液 Aにてー晚透析した。 透析物に 25%飽和に なるように硫安を加え、 25 %飽和硫安を含む緩衝液 Aで平衡化したフユ 二ルー トヨパールカラムに吸着した。 同緩衝液にて洗浄した後、 硫安濃度 25— 0%飽和の直線勾配で溶出した。 活性画分を集め、 40%飽和にな るように硫安を添加し、 40%飽和硫安を含む緩衝液 Aで平衡化したプチ ルートヨパールカラムに吸着した。 同锾衝液にて洗浄した後、 硫安濃度 4 0— 0%飽和の直線濃度勾配にて溶出した。 活性画分を集め、 80%飽和 となるように硫安を添加し、 «拌後、 12.000rpB、 10分間遠心分離 し、 得られた沈殿を 0.1Mの緩衝液 Aに溶解した。 その酵素溶液を 0.1 M塩化力リウムを含有する、 0.1M緩衝液 Aで平銜化したセフアクリル s-200ゲル a¾クロマトクラフィ一に供した。 活性画分を集め、 限外 瀘過で濃縮した。 濃縮物をフアルマシア F P L Cシステムで Mono Qカラ ムを用いて処理すること (緩衝液 Aを用いた塩化力リウムの 0— 0.5M 直線濃度勾配による溶出〉 により、 30〜60ニニッ 卜の精製酵素を得た。 製造例 2 フサリウム厲由来の FAODの製造 Gibberella fujikuroi (IFO NO.6356) (Gibberella fujikuroi) from FZL 0.5%, glucose 1.0%, diphosphoric acid 0.1%, phosphoric acid-sodium 0.1%, magnesium sulfate 0.05%, calcium chloride 0.01% The cells were inoculated into 10 L of a medium (pH 6.0) containing 0.2% yeast extract, and cultured with stirring using a jar fermenter with aeration of 2 LZ for 28 hours at a stirring speed of 400 rpm. Cultures were collected over time. 170 s (wet weight) of mycelium was suspended in 1 L of 0.1 M Tris-monohydrochloride bite solution (pH 8.5) containing 2 mM DTT, and the mycelium was disrupted with Dyno-Mill. The crushed liquid was centrifuged at 10,000 Orpin for 15 minutes, and the obtained liquid was used as a crude enzyme liquid (non-fine extract). Ammonia sulfate (hereinafter abbreviated as ammonium sulfate) was added to the crude enzyme solution so as to be 40% saturated, stirred, and centrifuged at 12.00 Orpm for 10 minutes. Ammonium sulfate was added to the obtained supernatant to 75% saturation, stirred, and centrifuged at 12.00 Orpm for 10 minutes. Precipitate contains 2 mM DTT Was dissolved in 50 mM Tris-HCl buffer (pH 8.5) (buffer A) and dialyzed against buffer A overnight. The dialysate was adsorbed on a DEAE-Sephacel column equilibrated with buffer A. After washing with buffer A, elution was performed with a linear gradient of 0-0.5M potassium chloride. The active fraction was collected, subjected to a 55% to 75% ammonium sulfate fraction, and dialyzed against buffer A. Ammonium sulfate was added to the dialysate so as to be 25% saturated, and the dialysate was adsorbed to a full-length Yopearl column equilibrated with buffer A containing 25% saturated ammonium sulfate. After washing with the same buffer, elution was carried out with a linear gradient of ammonium sulfate concentration of 25-0% saturation. The active fractions were collected, ammonium sulfate was added to achieve 40% saturation, and the mixture was adsorbed on a Petit Root Yopal column equilibrated with buffer A containing 40% saturated ammonium sulfate. After washing with the same buffer solution, elution was carried out with a linear concentration gradient of ammonium sulfate concentration of 40-0% saturation. The active fractions were collected, ammonium sulfate was added to 80% saturation, stirred, centrifuged at 12.000 rpB for 10 minutes, and the resulting precipitate was dissolved in 0.1 M buffer A. The enzyme solution was subjected to cefacryl s-200 gel a¾chromatography containing 0.1M buffer chloride A and containing 0.1M buffer A and made into a flat mouth. The active fraction was collected and concentrated by ultrafiltration. By treating the concentrate with a Pharmacia FPLC system using a Mono Q column (elution with 0-0.5M linear concentration gradient of potassium chloride in buffer A), 30-60 nits of purified enzyme can be obtained. Production Example 2 Production of FAOD derived from Fusarium II
フサリウム .ォキシスボルム S— 1 F4 (FERM BP-5010) (Fusarium ox ysporum S- 1 F 4) を FZL 0.5%、 グルコース 1.0%、 リン酸二カリ ゥム 0.1%、 リン酸一ナトリウム 0.1%、 硫酸マグネシウム 0.05%、 塩化 カルシウム 0.01%. ィース トエキス 0.2%を含有する培地 (pH6.0)1 0Lに植菌し、 ジャーフアーメ ンターを用いて通 量 2 分、 援拌速度 40 Orpmの条件で 28て、 24時間援拌培養した。 培養物はろ過して集 めた。 菌糸体の一部 (200 g) を、 の0丁丁を含む、 0.1M 卜 リス一塩酸锾衝液 (pH8.5)1 Lに懸濁し、 Dyno-Millにより菌糸体を 破砕した。 破砕液を 10, 00 Orpnで 15分間遠心分離し、 得られた液を 粗酵素液 (無細胞抽出液) とした。 粗酵素液に 40%飽和になるように硫 酸アンモニゥム (以下、 硫安と略す) を加え、 搜拌し、 12.00 Orpinで 10分間達心分離した。 得られた上清に 75%飽和になるように硫安を加 え、 撹拌し、 12.00 Orpinで 10分間違心分離した。 沈殿を 2mMの D TTを含有する 50mM トリスー塩酸緩衝液 (pH8.5) (以下、 緩衝 液 Aと略す) に溶解し、 锾銜液 Aにて一晩透析した。 透析物を緩衝液 Aに て平衡化した DEAE—セファセルカラムに吸着した。 同锾衝液 Aにて洗 浄した後、 0— 0.5Mの塩化カリウム直線濃度勾配で溶出した。 活性画 分を集め、 55%から 75%の硫安分画に供し、 緩衝液 Aにて一晩透析し た。 透析物に 25%飽和になるように硫安を加え、 25%飽和硫安を含む 緩衝液 Aで平衡化したフユ二ルートヨパールカラムに吸着した。 同锾衝液 にて洗浄した後、 砗安濃度 25— 0%飽和の直線勾配で溶出した。 活性画 分を集め、 40%飽和になるように硫安を添加し、 40%飽和硫安を含む 锾衝液 Aで平衡化したプチルー トヨパールカラムに吸着した。 同緩衝液に て洗浄した後、 硫安 S度 40— 0%飽和の直線濃度勾配にて溶出した。 活 性画分を集め、 80%飽和となるように硫安を添加し、 攪拌後、 12.000rp ιη、 10分間遠心分離し、 得られた沈殿を 0.1Mの緩衝液 Aに溶解した。 その酵素溶液を 0.1M塩化力リウ厶を含有する、 0.1M緩衝液 Aで平衡 化したセフアクリル S— 200ゲルろ過クロマトクラフィに供した。 活性 画分を集め、 限外 ¾過で濃縮した。 濃縮物をフアルマシア FPLCシステ ムで Mono Qカラムを用いて処理すること (緩衝液 Aを用いた塩化力リウ ムの 0— 0.5 M直線 «度勾配による溶出) により、 30〜60ユニッ ト の精製醇紫を得た。 Fusarium oxisbolum S-1 F4 (FERM BP-5010) (Fusarium ox ysporum S-1F4) was prepared from FZL 0.5%, glucose 1.0%, dicalcium phosphate 0.1%, monosodium phosphate 0.1%, magnesium sulfate Inoculate 10 L of a medium (pH 6.0) containing 0.05%, 0.01% calcium chloride and 0.2% yeast extract, and use a jar armor for 2 minutes with a stirring speed of 40 Orpm. The culture was agitated for hours. Cultures are collected by filtration. I did. A portion (200 g) of the mycelium was suspended in 1 L of 0.1 M Tris-monohydrochloride buffer (pH 8.5) containing 0-chome, and the mycelium was disrupted by Dyno-Mill. The crushed liquid was centrifuged at 10,000 Orpn for 15 minutes, and the obtained liquid was used as a crude enzyme liquid (cell-free extract). Ammonium sulfate (hereinafter abbreviated as ammonium sulfate) was added to the crude enzyme solution so as to be 40% saturated, and the mixture was stirred and separated at 12.00 Orpin for 10 minutes. Ammonium sulfate was added to the obtained supernatant to 75% saturation, stirred, and eccentrically separated at 12.00 Orpin for 10 minutes. The precipitate was dissolved in 50 mM Tris-HCl buffer (pH 8.5) containing 2 mM DTT (hereinafter abbreviated as buffer A), and dialyzed against mouth liquid A overnight. The dialysate was adsorbed on a DEAE-Sephacel column equilibrated with buffer A. After washing with the same buffer A, elution was carried out with a linear concentration gradient of 0 to 0.5 M potassium chloride. The active fraction was collected, subjected to a 55% to 75% ammonium sulfate fraction, and dialyzed against buffer A overnight. Ammonium sulfate was added to the dialysate so as to be 25% saturated, and the dialysate was adsorbed to a Fuyroot yopal column equilibrated with buffer A containing 25% saturated ammonium sulfate. After washing with the same buffer solution, elution was performed with a linear gradient of 25-0% saturation. The active fractions were collected, ammonium sulfate was added to 40% saturation, and the mixture was adsorbed on a Petil-Toyopearl column equilibrated with Buffer A containing 40% saturated ammonium sulfate. After washing with the same buffer, elution was carried out with a linear concentration gradient of ammonium sulfate S degree 40-0% saturation. The active fractions were collected, ammonium sulfate was added to 80% saturation, and the mixture was stirred, centrifuged at 12.000 rpm for 10 minutes, and the obtained precipitate was dissolved in 0.1 M buffer A. The enzyme solution was applied to a Cefacryl S-200 gel filtration chromatograph which had been equilibrated with 0.1 M buffer A and contained 0.1 M of chloride. Active fractions were collected and concentrated by ultrafiltration. Treating the concentrate with a Pharmacia FPLC system using a Mono Q column (0-0.5 M linear chlorinated chloride using buffer A, elution with a gradient), 30-60 units To obtain a purified mellow purple.
製造例 3 フサリウム又はァスペルギルス JR由来の FAODの製造 Production example 3 Production of FAOD from Fusarium or Aspergillus JR
フサリウム 'ォキシスボルム · f. sp. · リニ (IFO .5880) CFusarium oxysporum f. sp. lini) 又はァスペルギルス ·テレウス GP 1 (FERM BP- 5684) (Aspergillus terreus GP1)を F Z L 0. 5%、 グルコース 1. 0 %、 リン酸二カリウム 0. 1%、 リン酸一ナトリウム 0. 1 %、 硫酸マグ ネシゥム 0. 05%、 塩化カルシウム 0. 0 1%、 ィーストエキス 0. 2 %を含有した培地 (p H6. 0)1 0 Lに植菌し、 ジャーフアーメ ンターを 用いて通気量 2 LZ分、 捜拌速度 40 Orpaの条件で 28て、 80時間 « 拌培養した。 培餮物は a過して集めた。  Fusarium 'oxysporum f.sp.lini (IFO .5880) CFusarium oxysporum f. Sp. Lini) or Aspergillus terreus GP 1 (FERM BP-5684) (Aspergillus terreus GP1) 0.5% FZL, glucose 1. Medium containing 0%, 0.1% dipotassium phosphate, 0.1% monosodium phosphate, 0.05% magnesium sulfate, 0.01% calcium chloride, and 0.2% yeast extract (pH 6. 0) 10 L was inoculated and cultivated with a jar arm for 28 hours under the conditions of an aeration amount of 2 LZ and a stirring speed of 40 Orpa for 28 hours. The tie stuff was collected after a.
次いで、 菌糸体 270 g (湿重 S)を、 2mMの DTTを含む、 0. 1 Mトリスー埴酸緩衝液 (pH8. 5)80 0 mlに懇 Sし、 Dyno— Hillにより 菌糸体を破砕した。 破砕液を 9, 50 Orpinで 20分間遠心分離し、 得られ た上清 (無細胞抽出液) を粗酵素液として、 以下の方法で精製した。  Next, 270 g of mycelium (wet weight S) was mixed with 800 ml of 0.1 M Tris-hanic acid buffer (pH 8.5) containing 2 mM DTT, and the mycelium was disrupted by Dyno-Hill. . The disrupted solution was centrifuged at 9,50 Orpin for 20 minutes, and the resulting supernatant (cell-free extract) was purified as a crude enzyme solution by the following method.
ステップ 1 :硫安分画 Step 1: Ammonium sulfate fractionation
粗酵素液に 40%飽和になるように硫酸アンモニゥム (以下、 硫安と略 す) を加え、 遠心分離 (4 EC. 1 2. 0 0 ΟΓΡΠ) して余分なタンパクを除 去した。 さらに、 上清に硫安を 75%飽和になるように添加して沈殿を回 収した。 Ammonium sulfate (hereinafter abbreviated as ammonium sulfate) was added to the crude enzyme solution so that it became 40% saturated, and the protein was removed by centrifugation (4 EC . 12.00ΟΓΡΠ). Further, ammonium sulfate was added to the supernatant so as to be 75% saturated, and the precipitate was recovered.
ステップ 2 :疎水クロマトグラフィー (バッチ法) Step 2: Hydrophobic chromatography (batch method)
ステップ 1で得られた沈殿を、 2mMの DTTを含有する 5 OmM 卜 リス一塩酸緩衝液 (p H8. 5) (以下、 緩衝液 Aと略す) に溶解し、 等 量の硫安 40%を含む锾衢液 Aを添加した。 同粗酵素液にブチルトヨパー ル (butyl-TOYOP EARL) 樹脂 200mlを加えて、 バッチ法による 吸着を行った。 溶出も、 緩衝液 Aを用いたバッチ法で行い、 活性画分は硫 安沈殿により濃縮した。 The precipitate obtained in Step 1 is dissolved in 5 OmM Tris-monohydrochloride buffer (pH 8.5) containing 2 mM DTT (hereinafter abbreviated as buffer A) and contains an equal amount of 40% ammonium sulfate Quench A was added. 200 ml of butyl-TOYOP EARL resin was added to the crude enzyme solution, and adsorption was performed by the batch method. Elution was also performed by the batch method using buffer A, and the active fraction was sulfuric acid. The solution was concentrated by precipitation.
ステップ 3 :疎水クロマトグラフィー Step 3: Hydrophobic chromatography
25%硫安を含む緩衝液 Aで平衡化したフエニルトヨパール (phenyl- TOYOPEARL) カラムに濃縮した活性画分を吸着させ、 同緩衝液で 洗浄後、 25〜0%硫安の直線勾配で溶出した。 回収した活性画分は硫安 沈殿により濃縮し、 次のステップに用いた。  The concentrated active fraction was adsorbed to a phenyl-TOYOPEARL column equilibrated with buffer A containing 25% ammonium sulfate, washed with the same buffer, and eluted with a linear gradient of 25 to 0% ammonium sulfate. . The collected active fraction was concentrated by ammonium sulfate precipitation and used for the next step.
ステップ 4 :疎水クロマトグラフィー (カラム法) Step 4: Hydrophobic chromatography (column method)
回収した活性画分をブチルトョパールカラム (40%硫安を含む锾銜液 Aで平衡化) に用いた。 濃縮液を吸着させ、 同緩衝液で洗浄した。 活性画 分は 40〜0%硫安の直線勾配で得られた。  The collected active fraction was used for a butyl topopearl column (equilibrated with mouth liquid A containing 40% ammonium sulfate). The concentrate was adsorbed and washed with the same buffer. The active fraction was obtained with a linear gradient of 40 to 0% ammonium sulfate.
ステップ 5 :イオン交換ク口マトグラフィー Step 5: ion exchange mouth chromatography
次に、 D EAE—トヨパール (DEAE-TOYOPEARL) カラム クロマトグラフィーを行った (緩衝液 Aで平衡化) 。 洗浄画分に FAOD 活性が認められたため、 これを回収して硫安で濃縮してから、 次のステツ プに用いた。  Next, DEAE-TOYOPEARL column chromatography was performed (equilibrated with buffer A). Since FAOD activity was observed in the washed fraction, this was collected, concentrated with ammonium sulfate, and used in the next step.
ステップ 6 : ゲル ¾過 Step 6: Gel filtration
¾後にセファクリルー 300によるゲル濂過をおこなった (0. 1 M N a CI. 2aM 0丁丁を含む0. 1Mト リスー塩酸緩衝被 (ρΗ8. δ) で 平衡化) 。 これにより、 70〜100ユニッ トの酵素標品を得た。  After that, gel migration was performed with Sephacryl® 300 (equilibrated with 0.1 M Tris-HCl buffer (ρΗ8.δ) including 0.1 M Na CI. As a result, 70 to 100 units of the enzyme preparation were obtained.
製造例 4 ぺニシリウム厲由来の FAODの製造 Production Example 4 Manufacture of {Nisylium} -derived FAOD
ベニ'ンリウム 'ヤンシネルム S— 3413 (FERM BP-5475) (Penicill iuB janthinellum S-3413) を F Z L 0.5%、 グルコース 1.0%、 リ ン酸ニ力リウム 0. 1 %、 リン酸ーナトリウム 0.1%、 硫酸マグネシゥ ム 0.05%、 塩化カルシウム 0.01%, イース トエキス 0.2%を含 有した培地 (pH6.0)10 Lに植菌し、 ジャーファーメン夕一を用いて 通 »量 2LZ分、 ¾拌速度 50 Orpmの条件で 28 、 36時間攬拌培養 した。 培養物は ¾過して集めた。 Benzinlium Jansinerum S-3413 (FERM BP-5475) (Penicill iuB janthinellum S-3413) was prepared from 0.5% FZL, 1.0% glucose, 0.1% dibasic phosphate, 0.1% sodium phosphate, 0.1% magnesium sulfate, magnesium sulfate Inoculated in 10 L of a medium (pH 6.0) containing 0.05% calcium chloride, 0.01% calcium chloride, and yeast extract 0.2%. The mixture was cultured for 28 to 36 hours under conditions of a flow rate of 2 LZ and a stirring speed of 50 Orpm. Cultures were collected over time.
菌糸体 410 g (湿重量) を、
Figure imgf000036_0001
0丁丁を含む、 0. 1Mリ ン 酸カリウム緩衝液 (pH 7.5)800mlに懸¾し、 Dyno-Millにより菌糸 体を破砕した。 破砕液を 9.50 Orpmで 20分間違心分離し、 得られた液 を粗酵素液 (無細胞抽出液) とし、 以下の方法で精製した。
410 g of mycelium (wet weight)
Figure imgf000036_0001
The cells were suspended in 800 ml of a 0.1 M potassium phosphate buffer (pH 7.5) containing 0-chome, and the mycelium was disrupted with Dyno-Mill. The crushed liquid was eccentrically separated at 9.50 Orpm for 20 minutes, and the obtained liquid was used as a crude enzyme liquid (cell-free extract) and purified by the following method.
粗酵素液に 40¾飽和になるように硫酸アンモニゥム (以下、 硫安と略 す) を加え、 «拌し、 12.00 Orp で 10分間遠心分離した。 得られた 上清に 75%飽和になるように硫安を加え、 撹拌し、 12. ΟΟΟΓΡΒで 1 0分 間違心分離した。 沈殿を 0. ImMの DTTを含有する 5 OmM リン酸カ リゥム锾衝液 (pH7.5) (以下、 緩衝液 Aと略す) に溶解した。 得られ た醉素溶液を緩衝液 Aに対しー晚透析した。 外液の交換は 2回行った。 透 析後の酵素溶液は緩衝液 Aで平衡化した DEAE—セファセルカラム (4. 2 26 cm) にアブライした。 活性画分は同緩衝液による洗净画分に認 められたので、 これを集め、 0— 55%飽和の硫安分画に供した。 次に 2 5%飽和硫安を含む緩衝液 Aで平衡化したフヱ二ルーセファロース 6 F F Ammonium sulfate (hereinafter abbreviated as ammonium sulfate) was added to the crude enzyme solution so as to be 40¾ saturated, stirred, and centrifuged at 12.00 Orp for 10 minutes. Ammonium sulfate was added to the obtained supernatant to 75% saturation, stirred, and eccentrically separated at 12.ΟΟΟΓΡΒ for 10 minutes. The precipitate was dissolved in a 5 OmM calcium phosphate buffer (pH 7.5) containing ImM DTT (hereinafter referred to as buffer A). The obtained solution was dialyzed against buffer A. The external solution was exchanged twice. The enzyme solution after the analysis was ablated on a DEAE-Sephacel column (4.226 cm) equilibrated with buffer A. The active fraction was found in the fraction washed with the same buffer, and was collected and subjected to ammonium sulfate fraction of 0-55% saturation. Next, the enzyme was equilibrated with buffer A containing 25% saturated ammonium sulfate.
(Low Substitute) カラム (HR 10Z10) に吸着した。 同接衝液にて 洗浄した後、 硫安濃度 25— 0%飽和の直線勾配で溶出した。 活性画分を 集め、 硫安濃縮後、 得られた酵素溶液を 0. ImM 0丁丁を含む0.2Mリ ン酸カリウム緩衝液 (pH7.5) にて平衡化したスーパーデックス 20 0 p gカラムによりゲル Λ過を行い、 70〜 100ュニッ 卜の精製眯素を 得た。 (Low Substitute) Column (HR 10Z10). After washing with the same contacting solution, elution was performed with a linear gradient of ammonium sulfate concentration of 25-0% saturation. The active fractions were collected, concentrated with ammonium sulfate, and the resulting enzyme solution was subjected to gel chromatography using a Superdex 200 pg column equilibrated with 0.2 M potassium phosphate buffer (pH 7.5) containing 0.1 ImM. After filtration, 70-100 units of purified nitrogen were obtained.
実施例 1 Example 1
本実施例では製造例 1で得たギペレラ JR由来の F A 0 Dを用いた。  In this example, FAO D derived from Giperella JR obtained in Production Example 1 was used.
0. 1%のフルク トシルポリリジン溶液を BMY · NBT検定法を用い て検定したところ、 750 ol/ 1のフルク トサミン値を示すことが分 かった 0.1% fructosyl polylysine solution was analyzed using the BMY / NBT assay. Test showed a fructosamine value of 750 ol / 1.
この溶液を蒸留水で希釈することにより、 0〜750 μαοΐ/ 1の範囲 で変化する一連の試料を作成した。 FAOD反応液は、 以下のように調製 した。  By diluting this solution with distilled water, a series of samples varying in the range of 0 to 750 μαοΐ / 1 was prepared. The FAOD reaction solution was prepared as follows.
4 δπιΜ 4一ァミノアンチピリ ン溶液 50 1 6 ΟπιΜ フユノール溶液 50 1  4 δπιΜ 4 Aminoantipyrine solution 50 1 6 ΟπιΜ Fuyunol solution 50 1
3 5  3 5
60ユニッ ト Zml ペルォキシダーゼ溶液 50 1 0. 1 トリス-塩酸緩衝液 (pH8. 0〕 500 il 60 units Zml peroxidase solution 50 10.1 Tris-HCl buffer (pH 8.0) 500 il
7.6ユニッ ト/ ml FAOD溶液 30 1 0.05% トリブシン(エンド型プロテアーゼ) 溶液 100 1 蒸留水で全量を 1400 lとした。 7.6 units / ml FAOD solution 30 1 0.05% Tribcine (endo-type protease) solution 100 1 The total volume was adjusted to 1400 l with distilled water.
7.6ュニッ 卜 ZmlF AOD溶液は、 製造例 1で得たギペレラ .フジク ロイ (IFO NO.6356) (Gibberella fujikuroi) 由来の FAODを 7.6ュ ニッ ト Zmlになるよう、 0.1M トリス一塩酸緩衝液 (pH8.0) で希 釈して綢製した。  The 7.6 unit ZmlF AOD solution was prepared using 0.1 M Tris-hydrochloric acid buffer (pH 8) so that the FAOD derived from Giperella fujikuroi (IFO NO. .0) to make silk.
この反応液を 30。Cでィンキュペー トし、 作成したフルク トシルボリ リ ジン溶液各 10 を加え、 30分後の 505ππにおける吸光度を測定 した。 この方法で得られるフルク トサミ ン値と吸光度との関係を第 1図に 示す。 図中、 縦軸は 505mnの吸光度 (過酸化水素の量に対応) 、 横紬は フルク トサミン値を表す。 図は、 フルク トサミン値と過酸化水素発生量が 相関関係にあることを示している。  30 of this reaction solution. C, and each of the prepared fructosyl boridine resin solutions was added, and the absorbance at 505ππ was measured 30 minutes later. Figure 1 shows the relationship between the fructosamine value and the absorbance obtained by this method. In the figure, the vertical axis represents the absorbance at 505 mn (corresponding to the amount of hydrogen peroxide), and the horizontal axis represents the fructosamine value. The figure shows that the fructosamine value and the amount of generated hydrogen peroxide are correlated.
実施例 2 糖化ヒ ト血清アルブミ ン馕度の測定 Example 2 Measurement of glycated human serum albumin concentration
本実施例では製造例 2で得たフサリゥム厲由来の FAODを用いた。 糖 化ヒ ト血清アルブミ ン (シグマ社) を 0.9%塩化ナ トリウム水溶液で溶 解させ、 0〜10%の範囲で «度の異なる糖化ヒ ト血清アルブミ ン溶液を 調製した。 In this example, FAOD derived from Fusarium obtained in Production Example 2 was used. Glycated human serum albumin (Sigma) is dissolved in 0.9% sodium chloride aqueous solution. Then, saccharified human serum albumin solutions having different concentrations in the range of 0 to 10% were prepared.
これらの溶液を用いて以下の操作を行った。  The following operations were performed using these solutions.
1 ) 試料の処理  1) Sample processing
糖化アルブミン溶液 60/ 1 Saccharified albumin solution 60/1
12.5 ig/ml プロテアーゼ XIV (シグマ社) 12.5 ig / ml protease XIV (Sigma)
(エンド型プロテアーゼ) 溶液 60 1 この混合液を 37てで 30分間ィンキュベートし、 その後、 約 90。Cで 5分間、 加熱して熱変性させた。  (Endo-type protease) Solution 60 1 Incubate this mixture for 30 minutes at 37 ° C. Heat denaturation by heating at C for 5 minutes.
2) 活性測定  2) Activity measurement
F A 0 D反応液は以下のようにして調製した。  The F A 0 D reaction solution was prepared as follows.
45mM 4ーァミ ノアンチビリン溶液 30 1 6 OoM N—ェチルー N— (2—ヒ ドロキン一  45mM 4-aminotinvirine solution 30 16 OoM N-ethyl-N- (2-hydroquinone
3—スルホプロピル) 一 m—トルイジン溶液 30 1 3-sulfopropyl) 1 m—toluidine solution 30 1
60ユニッ トノ ml ペルォキシダーゼ溶液 30^ 160 units per ml peroxidase solution 30 ^ 1
0.1M トリスー塩酸緩銜液 (pH8.0) 300 ^ 10.1M Tris-hydrochloric acid bite liquid (pH 8.0) 300 ^ 1
10.3ユニッ ト/ ml FAOD溶液 20 1 蒸留水で全量を lmlとした。 10.3 units / ml FAOD solution 20 1 Distilled water was used to bring the total volume to 1 ml.
10.3ユニッ トノ ml FAOD溶液は、 製造例 2で得たフサリゥム · ォキシスボルム S— 1 F4 (FERM BP-5010) (Fusarium oxysporum S— IF 4) 由来の FAODを 10.3ュニッ ト /mlになるよう、 0.1Mトリ スー塩酸緩衝液 (PH8.0) で希釈して網製した。  10.3 Unit No. ml FAOD solution was prepared by adjusting the FAOD derived from Fusarium oxysbolum S-1 F4 (FERM BP-5010) (Fusarium oxysporum S-IF4) obtained in Production Example 2 to 0.13 units / ml so as to obtain 10.3 units / ml It was diluted with Tris-HCl buffer (PH8.0) and made into a net.
FAOD反応液を 30eCで 2分問ィンキュペートした後、 上記の各処理 溶液を 100 1加え、 30分後の 555nnにおける吸光度を測定した。 この方法で得られる糖化アルブミンの濃度と吸光度との関係を第 2図に示 す。 図中の縱轴は 555ππの吸光度 (過酸化水素の量に対応) 、 横軸は糖 化アルブミンの濃度を表す。 図は、 糖化アルブミ ンの濃度と過酸化水素発 生量が相関関係にあることを示している。 After 2 minutes Q Inkyupeto the FAOD reaction mixture at 30 e C, each processing solution described above 100 1 added, the absorbance was measured at 555nn after 30 minutes. Fig. 2 shows the relationship between the concentration of saccharified albumin obtained by this method and the absorbance. You. The vertical bar in the figure indicates the absorbance of 555ππ (corresponding to the amount of hydrogen peroxide), and the horizontal axis indicates the concentration of glycated albumin. The figure shows that the concentration of saccharified albumin and the amount of hydrogen peroxide generated are correlated.
実施例 3 糖化ヒ ト血清アルブミ ン ¾度の測定 Example 3 Measurement of glycated human serum albumin concentration
本実施例では製造例 1で得たギペレラ厲由来の FAODを用いたことを 除いては、 実施例 2と同様の操作を緣り返した。 FAOD溶液は、 製造例 1で得たギペレラ · フジクロィ (IFO No. 6356)(Gibberella fujikuroi) 由来の FAODを 6. 6ユニッ ト/ m 1になるよう 0. 1M卜リス一塩酸 緩衝液 (pH8. 0) で希釈して調製した。  In this example, the same operation as in Example 2 was repeated, except that the FAOD derived from Giperella II obtained in Production Example 1 was used. The FAOD solution was prepared by mixing FAOD derived from Gibberella fujikuroi obtained in Production Example 1 (IFO No. 6356) (Gibberella fujikuroi) with 0.1 M Tris-hydrochloric acid buffer (pH 8. 0).
この方法で得られる糖化アルブミ ンの濃度 (図中の横軸) と吸光度 (過 酸化水素 iに対応:縦軸) との関係を第 3図に示す。 図は、 糖化アルブミ ンの濃度と過酸化水素発生量が相関関係にあることを示している。  Figure 3 shows the relationship between the concentration of saccharified albumin (horizontal axis in the figure) and absorbance (corresponding to hydrogen peroxide i: vertical axis) obtained by this method. The figure shows that the concentration of saccharified albumin and the amount of generated hydrogen peroxide are correlated.
実施例 4 糖化ヒ ト血? fアルブミ ン濃度の測定 Example 4 Glycated human blood? f Measurement of albumin concentration
本実施例では製造例 3で得たフサリウム厲由来の FAODを 50// 1用 いたことを除いては、 実施例 2と同様の操作を繰り返した。 FAOD溶液 は、 製造例 3で得たフサリウ厶 'ォキシスボルム · f.sp. · リニ (IFO NO. 5880) (Fusariura oxys orum f. sp. lini) 由来の FAODを 6. 0ュニッ 卜 Zmlになるよう 0. 1Mトリスー塩酸緩衝液 (pH8. 0) で希釈し て調製した。  In this example, the same operation as in Example 2 was repeated, except that the FAOD derived from Fusarium 厲 obtained in Production Example 3 was used 50 // 1. The FAOD solution was prepared so that the FAOD derived from Fusarium 'oxysbolum · f.sp. · lini (IFO NO.5880) (Fusariura oxys orum f.sp. lini) obtained in Production Example 3 was 6.0 units Zml. It was prepared by diluting with 0.1 M Tris-HCl buffer (pH 8.0).
この方法で得られる糖化アルブミンの濃度 (図中の横軸) と吸光度 (過 酸化水素量に対応:縱舳) との関係を第 4図に示す。 図は、 糖化アルブミ ンの濃度と過酸化水素発生量が相関関係にあることを示している。  Figure 4 shows the relationship between the concentration of saccharified albumin (horizontal axis in the figure) and the absorbance (corresponding to the amount of hydrogen peroxide: vertical bow) obtained by this method. The figure shows that the concentration of saccharified albumin and the amount of generated hydrogen peroxide are correlated.
実施例 5 糖化ヒ ト血清アルブミ ン濃度の測定 Example 5 Measurement of saccharified human serum albumin concentration
本実施例では製造例 3で得たアルベルギルス属由来の F A 0 Dを用いた ことを除いては、 実施例 2と同様の操作を繰り返した。 すなわち、 FA0 96 2964 In this example, the same operation as in Example 2 was repeated, except that FAOD derived from the genus Albergillus obtained in Production Example 3 was used. That is, FA0 96 2964
D溶液は、 ァスペルギルス · テレウス GP 1 CFEB1I BP-5684 (Aspergil lus terreus GP1)由来の F A◦ Dを 6.0ュニッ 卜/ mlになるように 0. 1The D solution was prepared such that the FA D derived from Aspergillus terreus GP1 CFEB1I BP-5684 (Aspergillus terreus GP1) was adjusted to 0.1 units / ml.
Mトリスー塩酸锾銜液 (pH8.0) で希釈して IS製した。 The product was diluted with M Tris-hydrochloride mouth liquid (pH 8.0) and manufactured by IS.
この方法で得られる糖化アルブミンの濃度 (図中の横軸) と吸光度 (過 酸化水素量に対応:縦軸) との閲係を第 5図に示す。 図は、 糖化アルブミ ンの濃度と過酸化水素発生量が相関関係にあることを示している。  Figure 5 shows the relationship between the concentration of saccharified albumin obtained by this method (horizontal axis in the figure) and the absorbance (corresponding to the amount of hydrogen peroxide: vertical axis). The figure shows that the concentration of saccharified albumin and the amount of generated hydrogen peroxide are correlated.
実施例 6 ヒ ト血澝アルブミンの糖化率の測定 Example 6 Measurement of saccharification rate of human blood albumin
本実施例では、 製造例 3で得たフサリウム厲由来の F A◦ Dを用いた。  In this example, the FASARD derived from Fusarium 得 obtained in Production Example 3 was used.
0.9%塩化ナトリウム水溶液 3mlに、 糖化ヒ ト血清アルブミン (シグマ 社) 150mg、 ヒ ト血消アルブミ ン(シグマ社) 15 Omgをそれぞれ溶解し た。 これらの溶液を混合することにより糖化率の異なる溶液を作製し、 自 動グリコアルブミ ン測定装置 (京都第一科学) を用いて検定したところ、 その糖化率は、 24. 6%〜61. 1%であった。 In 3 ml of 0.9% sodium chloride aqueous solution, 150 mg of glycated human serum albumin (Sigma) and 150 mg of human blood serum albumin (Sigma) were dissolved. By mixing these solutions to prepare solutions with different saccharification rates, and testing using an automatic glycoalbumin measuring device (Kyoto Daiichi Kagaku), the saccharification rate was 24.6% to 61.1%. %Met.
これらの溶液を用いて以下の操作を行った。  The following operations were performed using these solutions.
1) 試料の処理  1) Sample processing
糖化アルブミ ン溶液 60/a Saccharified albumin solution 60 / a
12. 5 mg/ol ブロテア一ゼ) (IV (シグマ社) 12.5 mg / ol brothase) (IV (Sigma)
(エンド型プロテアーゼ) 溶液 6 0 μΐ この溶液を 37。Cで 30分間インキュベートし、 その後、 約 90てで 5 分間加熱して熱変性させた。  (Endo-protease) solution 60 μΐ 37 The mixture was incubated at C for 30 minutes, and then heat denatured by heating at about 90 minutes for 5 minutes.
2 ) 活性測定  2) Activity measurement
F A 0 D反応液は以下のようにして ISSiした。  The F A 0D reaction solution was subjected to ISSi as follows.
45πιΜ 4一ァミ ノアンチピリ ン溶液 30 ^ 1 45πιΜ 4 Aminoantipyrine solution 30 ^ 1
6 Om N—ェチルー N— (2—ヒ ドロキシー 6 Om N—Ethyru N— (2-Hydroxy
3—スルホプロビル) 一 πι— トルイジン溶液 30 1 60ユニッ ト Zml ペルォキシダーゼ溶液 30 13—Sulfoprovir) 1 πι— Toluidine solution 30 1 60 units Zml peroxidase solution 30 1
0. 1M トリスー塩酸緩衝液 (pH 8.0) 300 β \0.1 M Tris-HCl buffer (pH 8.0) 300 β \
6ユニッ ト /ml FAOD溶液 50 fi I 蒸留水で全量を 1 mlとした。 6 units / ml FAOD solution The total volume was adjusted to 1 ml with 50 fi I distilled water.
6ュニッ ト /ml FAOD溶液は、 製造例 3で得たフサリウム ·ォキシ スボルム · f. sp. · リニ (IFO NO.5880) (Fusarium oxysporum f. sp. lini) 由来の FAODを 6ュニッ ト Znlになるよう、 0. 1Mトリスー塩酸緩衝 液 (pH 8.0 ) で希釈して調製した。  The 6 unit / ml FAOD solution was prepared by converting FAOD from Fusarium oxysporum f.sp. lini (Fusarium oxysporum f. Sp. Lini) obtained in Production Example 3 to 6 unit Znl. It was prepared by diluting with 0.1 M Tris-HCl buffer (pH 8.0).
FAOD反応液を 30てで 2分間ィンキュベートした後、 上記の各処理 溶液を l O Oiil加え、 30分後の 555ππιにおける吸光度を測定した。 こ の方法で得られるアルブミンの糖化率と吸光度との関係を第 6図に示す。 図中の縱軸は 555naの吸光度 (過酸化水素の量に対応) 、 横軸はアルブ ミンの糖化率を表す。 図は、 アルブミンの糖化率と過酸化水素発生置が相 閬関係にあることを示している。  After incubating the FAOD reaction solution at 30 ° C for 2 minutes, each of the above-mentioned treatment solutions was added to lO Oiil, and the absorbance at 555ππι was measured 30 minutes later. FIG. 6 shows the relationship between the saccharification rate of albumin obtained by this method and the absorbance. The vertical axis in the figure indicates the absorbance of 555na (corresponding to the amount of hydrogen peroxide), and the horizontal axis indicates the saccharification rate of albumin. The figure shows that the saccharification rate of albumin and the hydrogen peroxide generator are in a relationship.
実施例 7 ヒ ト血清アルブミンの糖化率の測定 Example 7 Measurement of saccharification rate of human serum albumin
本実施例では製造例 3で得たアルペルギルス厲由来の F A 0 Dを用いた ことを除いては、 実施例 6と同様の操作を繰り返した。 すなわち、 FAO D溶液は、 ァスペルギルス 'テレウス GP 1 (FERM BP-5684) (Aspergil lus terreus GP1)由来の FAODを 6.0ュニッ ト /mlになるように 0.1 トリスー塩酸緩衝液 CpH8.0) で希釈して IS製した。  In this example, the same operation as in Example 6 was repeated, except that the FAO D derived from Alpergillus 厲 obtained in Production Example 3 was used. In other words, the FAOD solution is prepared by diluting FAOD derived from Aspergillus' Teleus GP1 (FERM BP-5684) (Aspergillus terreus GP1) with 0.1 Tris-HCl buffer (pH 8.0) to 6.0 nit / ml. IS made.
この方法で得られるアルブミンの糖化率 (図中の横軸) と吸光度 (過酸 化水素量に対応:縦軸) との関係を第 7図に示す。 図は、 アルブミンの糖 化率と過酸化水素発生量が相関関係にあることを示している。  Figure 7 shows the relationship between the saccharification rate of albumin (horizontal axis in the figure) and absorbance (corresponding to the amount of hydrogen peroxide: vertical axis) obtained by this method. The figure shows that the saccharification rate of albumin and the amount of generated hydrogen peroxide are correlated.
実施例 8 ヒ ト血清アルブミンの糖化率の測定 Example 8 Measurement of saccharification rate of human serum albumin
本実施例では、 製造例 1で得たギペレラ ¾由来の FAODを 20 1用 いたことを除いては、 実施例 6と同様の操作を繰り返した。 FAOD溶液 は、 製造例 1で得たギペレラ · フジクロィ(IFO No. 6356)(Gibberella fu jikuroi)由来の F AODを 6. 6ユニッ ト/ m 1になるよう 0. 1Mトリ スー塩酸緩衝液 (pH8. 0) で希釈して调製した。 In this example, the FAOD derived from Giperella た obtained in Production Example 1 was used for 201 The same operation as in Example 6 was repeated, except that it was performed. The FAOD solution was prepared using 0.1 M Tris-HCl buffer (pH 8) such that the FAOD from Giperella fujikuroi (IFO No. 6356) (Gibberella fu jikuroi) obtained in Production Example 1 was adjusted to 6.6 units / m1. .0) and prepared.
この方法で得られるアルブミンの糖化率 (図中の桷軸) と吸光度 (適酸 化水紫量に対応:縦軸) との関係を第 8図に示す。 図は、 アルブミンの糖 化率と過酸化水素発生量が相関関係にあることを示している。  Fig. 8 shows the relationship between the saccharification rate of albumin obtained by this method (jux axis in the figure) and absorbance (corresponding to the appropriate amount of oxidized water purple: vertical axis). The figure shows that the saccharification rate of albumin and the amount of generated hydrogen peroxide are correlated.
実施例 9 ヒ ト血清アルブミ ンの糖化率の測定 Example 9 Measurement of saccharification rate of human serum albumin
本実施例では製造例 2で得たフサリウム «由来の FA0Dを 20 1用 いたことを除いては、 実施例 6と同様の操作を繰り返した。 FAOD溶液 は、 製造例 2で得たフサリウム ·ォキシスボル厶 · S— 1 F 4 (FERH BP- 5010) (Fusarium o ysporum S-1F4) 由来の FAODを 10. 3ュニッ ト ノ m こなるよう 0. 1Mトリスー塩酸緩衝液 (pH8. 0) で希釈して 諷製した。  In the present example, the same operation as in Example 6 was repeated, except that 201 of the Fusarium-derived FA0D obtained in Production Example 2 was used. The FAOD solution was prepared so that the FAOD derived from Fusarium oxisbolum S-1F4 (FERH BP-5010) (Fusarium o ysporum S-1F4) obtained in Production Example 2 was 10.3 units. The mixture was diluted with 1M Tris-HCl buffer (pH 8.0) and made into an air-tight.
この方法で得られるアルブミンの糖化率 (図 Φの榱铀) と吸光度 (過酸 化水 ¾量に対応:縦軸) との関係を第 9図に示す。 図は、 糖化アルブミン の濃度と過酸化水素発生量が相関関係にあることを示している。  Figure 9 shows the relationship between the saccharification rate of albumin obtained by this method (figure 铀 in Fig. Φ) and absorbance (corresponding to the amount of peroxidized water: vertical axis). The figure shows that there is a correlation between the concentration of saccharified albumin and the amount of hydrogen peroxide generated.
実施例 10 糖化ヘモグロビン濃度の測定 Example 10 Measurement of glycated hemoglobin concentration
本実施例では、 製造例 3で得たフサリゥム厲由来の F A 0 Dを用いた。 グリコヘモグロビンコントロール (シグマ社) を蒸留水で溶解させ、 0〜 30%の範囲で濃度の異なる糖化へモグロビン溶液を 製した。  In this example, Fusarium-derived FAOD obtained in Production Example 3 was used. Glycohemoglobin control (Sigma) was dissolved in distilled water to prepare glycated hemoglobin solutions having different concentrations in the range of 0 to 30%.
これらの溶液を用いて以下の操作を行った。  The following operations were performed using these solutions.
1)試料の処理  1) Sample processing
糖化ヘモグロビン溶液 2 500ュニッ ト /101 アミノぺプチダーゼ (ェキソ型ブ口テアーゼ) 溶液 5 1Glycated hemoglobin solution 2 500 units / 101 aminopeptidase (Exo-type mouth opening) Solution 5 1
0. 1M トリスー塩酸锾衝液 (pH 8.0) 20 ΐ この混合液を 30。Cで 30分間インキュベートした。 その後、 10%トリ クロ口酢酸を 50 加えて搜拌し、 0てで 30分間静 Sした後 1200 Orpnで 10分間遠心分離を行った。 得られた上澝に 2M NaOHを約 5 0 l加え中性溶液にした。 0.1 M Tris-HCl buffer (pH 8.0) 20 を 30 Incubated at C for 30 minutes. Thereafter, 50% acetic acid at 10% trichloro mouth was added and the mixture was stirred. The mixture was kept at 0 ° C for 30 minutes and centrifuged at 1200 Orpn for 10 minutes. About 50 l of 2M NaOH was added to the obtained supernatant to make a neutral solution.
2) 活性測定 2) Activity measurement
F A 0 D反応液は以下のようにして調製した。  The F A 0 D reaction solution was prepared as follows.
3mM N— (カルボキシメチルァミ ノカルボニル) 一  3 mM N— (carboxymethylaminocarbonyl)
4, 4ビス (ジメチルァミ ノ) ビフエニルァミ ン溶液 (DA64) 30 l 60ユニッ ト/ ml ペルォキンダーゼ溶液 30 1 0. 1M トリスー塩酸緩衝液 (pH 8.0) 300 ^1 4,4 bis (dimethylamino) biphenylamine solution (DA64) 30 l 60 units / ml perokinidase solution 30 1 0.1 M Tris-HCl buffer (pH 8.0) 300 ^ 1
4ユニッ ト/ ml FAOD溶液 10 //1 蒸留水で全量を lmlとした。 4 units / ml FAOD solution 10 // 1 The total volume was adjusted to 1 ml with distilled water.
4ュニッ ト/ ml FAOD溶液は、 製造例 3で得たフサリウム .ォキシ スボノレム · f . sp. · リニ (IFO NO.5880) (Fusarium oxysporum f. sp. lini) 由来の FAODを 4ュニッ ト /mlになるよう、 0.1Mトリス一塩酸锾衝 液 (pH 8.0 ) で希釈して調製した。  The 4-unit / ml FAOD solution was prepared by combining the FAOD derived from Fusarium oxyspornolem, f.sp., lini (IFO NO.5880) (Fusarium oxysporum f.sp. lini) obtained in Production Example 3 with 4 units / ml. It was prepared by diluting with a 0.1 M Tris-monohydrochloride buffer solution (pH 8.0).
FAOD反応液を 30てで 2分間ィンキュペートした後、 上記の各処理 溶液を 80 / 1加え、 30分後の 727nmにおける吸光度を測定した。 こ の方法で得られる糖化へモグロビンの濃度と吸光度との関係を第 10図に 示す。 図中の縦軸は 727nmの吸光度 (過酸化水素の量に対応) 、 横軸は 糖化ヘモグロビンの濃度を表す。 図は、 糖化ヘモグロビンの ¾1度と過酸化 水素発生量が相関関係にあることを示している。  After the FAOD reaction solution was incubated at 30 ° C for 2 minutes, each of the above treatment solutions was added at 80/1, and the absorbance at 727 nm was measured 30 minutes later. Figure 10 shows the relationship between the concentration of saccharified hemoglobin and the absorbance obtained by this method. The vertical axis in the figure represents the absorbance at 727 nm (corresponding to the amount of hydrogen peroxide), and the horizontal axis represents the concentration of glycated hemoglobin. The figure shows that the degree of glycated hemoglobin and the amount of generated hydrogen peroxide are correlated.
実施例 11 糖化へモグロビン濃度の測定 本実施例では製造例 3で得たァルベルギルス JR由来の F A 0 Dを用いた ことを除いては、 実施例 10と同様の搡作を繰り返した。 すなわち、 FA OD溶液は、 ァスペルギルス 'テレウス G P 1 (FERli BP-5684) (Asperg illus terreus GPl)由来の F A 0 Dを 4. 0ュニッ ト /mlになるように 0. 1Mトリス—塩酸緩衝液 (pH8. 0) で希釈して调製した。 Example 11 Measurement of saccharified hemoglobin concentration In this example, the same operation as in Example 10 was repeated, except that FA 0D derived from Arlbergills JR obtained in Production Example 3 was used. That is, the FA OD solution was prepared by dissolving FA 0D derived from Aspergillus' Teleus GP1 (FERli BP-5684) (Aspergillus terreus GPl) in a 0.1 M Tris-HCl buffer (4.0 nit / ml). pH 8.0).
この方法で得られる糖化へモグロビンの *度と吸光度との関係を第 1 1 図に示す。 図中の縱轴は 727nmの吸光度 (通酸化水素の量に対応) 、 橫 軸は糖化ヘモグロビンの濃度を表す。 図は、 糖化ヘモグロビンの濃度と過 酸化水素発生量が相関関係にあることを示している。  FIG. 11 shows the relationship between the * degree and the absorbance of saccharified hemoglobin obtained by this method. The vertical axis in the figure indicates the absorbance at 727 nm (corresponding to the amount of hydrogen peroxide), and the vertical axis indicates the concentration of glycated hemoglobin. The figure shows that there is a correlation between the concentration of glycated hemoglobin and the amount of generated hydrogen peroxide.
実施例 12 糖化ヘモグロビン Sの測定 Example 12 Measurement of glycated hemoglobin S
1) 試料の処理  1) Sample processing
0〜15mgのグリコヘモグロビンコントロール E (シグマ社)を 100 1の蒸留水で溶解した。 これらの試料に塩酸ァセ トン(1 N塩酸 ァセトン : 1/1 00)lnlを加え、 12000回転で 10分間遠心分離した。 沈 殿物をジェチルエーテル 500 で洗浄し、 减圧乾固した。 さらに 8Μ 尿素 100 1を加え、 20分間沸騰水中で加熱後冷却し、 5. 2ユニッ ト /mlトリブシン 300 1と混台、 37。Cで 3時間ィンキュペートした。 その後、 沸騰水中で 5分間加熱し、 試料を调製した。  0 to 15 mg of glycohemoglobin control E (Sigma) was dissolved in 100 1 of distilled water. Acetone hydrochloride (1 N acetone hydrochloride: 1/100) inl was added to these samples, and centrifuged at 12,000 rpm for 10 minutes. The precipitate was washed with getyl ether 500 and dried under reduced pressure. Add 8Μ urea 100 1, heat in boiling water for 20 minutes, cool and mix with 5.2 units / ml trypsin 300 1 37. I incubated at C for 3 hours. Thereafter, the sample was heated in boiling water for 5 minutes to prepare a sample.
2 ) 活性測定  2) Activity measurement
F A 0 D反応液は以下のようにして調製した。  The F A 0 D reaction solution was prepared as follows.
3mM N— (カルボキシメチルァミ ノカルボニル) 一  3 mM N— (carboxymethylaminocarbonyl)
4.4一ビス (ジメチルァミノ) ビフエニルァミ ン溶液 30 iil 4.4 Bis (dimethylamino) biphenylamine solution 30 iil
60ユニッ ト/ ml ペルォキシダーゼ溶液 30 160 units / ml peroxidase solution 30 1
0. 1M トリスー塩酸锾衝液 (pH 8. 0) 300 "10.1 M Tris-HCl buffer (pH 8.0) 300 "1
25ユニッ ト/ ml FAOD溶液 10^1 蒸留水で全 «:を 1 mlとした。 25 units / ml FAOD solution 10 ^ 1 The total volume was adjusted to 1 ml with distilled water.
25ュニッ ト Zml FAOD溶液は、 製造例 4の方法で得た F A 0 Dを 25ュニッ ト /mlになるよう、 0.1Mリン酸カリウム锾銜液 (pH7.5) で希釈して調製した。  The 25-unit Zml FAOD solution was prepared by diluting the FAOD obtained by the method of Production Example 4 with 0.1 M potassium phosphate / mouth liquid (pH 7.5) to 25 units / ml.
この F A OD反応液に上記の各処理基質を 150 1加え、 30eCでィ ンキュペートし、 30分後の 727nmにおける吸光度を測定した。 この方 法で得られる糖化へモグロビンの量と吸光度との関係を第 12図に示す。 図中の縦軸は 727nmの吸光度 (過酸化水素の量に対応) 、横軸は糖化へ モグロビンの濃度を表す。 図は、 糖化ヘモグロビンの量と過酸化水素発生 Sが相関関係にあることを示している。 This FA OD reaction the processing substrate above 150 1 added, then 30 e C di Nkyupeto, the absorbance was measured at 727nm after 30 minutes. Fig. 12 shows the relationship between the amount of saccharified hemoglobin obtained by this method and the absorbance. The vertical axis in the figure indicates the absorbance at 727 nm (corresponding to the amount of hydrogen peroxide), and the horizontal axis indicates the concentration of saccharified hemoglobin. The figure shows that there is a correlation between the amount of glycated hemoglobin and the hydrogen peroxide generation S.
実施例 13 糖化ヘモグロビン量の測定 Example 13 Measurement of glycated hemoglobin amount
1)試料の処理  1) Sample processing
3 Omgのグリコヘモグロビンコントロール E (シグマ社) を蒸留水 20 0 1で溶解し、 8M尿素、 0.2%EDTA · 2ナトリウムを含む 570 mMトリス一塩酸緩衝液 (pH8.8) 1 mlと 2—メルカブトエタノール 4 0 1を添加し、 窒素封入下で 2時間静置した。 その後、 1Mのョード酢 酸ナトリウム 400 1を添加し、 30分間静置後、 2—メルカブトエタ ノール 40 ilを添加した。 0.1M重炭酸アンモニゥムに対して透析した 後、 1 OmgZinl TPCK—卜リブシン 10 ilと混合し、 37。Cで 3時間イ ン キュペートした。 その後、 沸騰水中で 5分間加熱し試料を調製した。  3 Omg of Glycohemoglobin Control E (Sigma) was dissolved in 200 ml of distilled water, and 1 ml of 570 mM Tris-hydrochloric acid buffer (pH8.8) containing 8 M urea and 0.2% EDTA. Beet ethanol 401 was added, and the mixture was allowed to stand for 2 hours under a nitrogen atmosphere. Thereafter, 1M sodium eodovine acetate 4001 was added, and the mixture was allowed to stand for 30 minutes, and then 40 il of 2-mercaptoethanol was added. After dialysis against 0.1 M ammonium bicarbonate, it was mixed with 1 OmgZinl TPCK-tribine 10 il. Incubated at C for 3 hours. Then, the sample was heated in boiling water for 5 minutes to prepare a sample.
2)活性測定  2) Activity measurement
F A OD反応液は以下のようにして調製した。  The F A OD reaction solution was prepared as follows.
3mM N— (カルボキシメチルァミノカルボニル) 一  3mM N— (carboxymethylaminocarbonyl)
4.4—ビス (ジメチルァミ ノ) ビフエニルァミ ン溶液 3  4.4—Bis (dimethylamino) biphenylamine solution 3
60ユニッ トノ ml ペルォキシダーゼ溶液 30 1 0. 1M トリス一塩酸锾衝液 (PH8.0) 300 //160 units per ml peroxidase solution 30 1 0.1 M Tris monohydrochloride buffer ( P H8.0) 300 // 1
25ュニッ 卜/ ml F A0D溶液 10 ^1 処理試料 0 ~ 13.2 n 蒸留水で全量を 900 /ilとした。 25 units / ml F A0D solution 10 ^ 1 treated sample 0 to 13.2 n The total volume was adjusted to 900 / il with distilled water.
25ュニッ ト Znil FA0D溶液は、 製造例 4の方法で得た F A 0 Dを 25ュニッ トノ mlになるよう、 0. 1Mリン酸カリウム緩衝液 (PH 7. 5) で希釈して調製した。 25 Yuni' DOO Znil FA0D solution, so that the FA 0 D obtained in Production Example 4 The method in 25 Yuni' concert ml, and prepared by dilution with 0. 1M potassium phosphate buffer (P H 7. 5).
この F AO D反応液を 30てでィンキュペートし、 30分後の 727nm における吸光度を測定した。 この方法で得られる糖化ヘモグロビンの量と 吸光度との関係を第 13図に示す。 図中の縦軸は 727mnの吸光度 (過酸 化水素の量に対応) 、 横軸は糖化へモグ□ビンの濃度を表す。 図は、 糖化 へモグロビンの量と ¾酸化水素発生量とが相関関係にあることを示してい る。  The F AOD reaction solution was incubated with a pipette for 30 minutes, and the absorbance at 727 nm was measured 30 minutes later. FIG. 13 shows the relationship between the amount of glycated hemoglobin obtained by this method and the absorbance. In the figure, the vertical axis represents the absorbance at 727 mn (corresponding to the amount of hydrogen peroxide), and the horizontal axis represents the concentration of saccharified hemogbin. The figure shows that there is a correlation between the amount of saccharified hemoglobin and the amount of hydrogen peroxide generated.
実施例 14 ヘモグロビン A 1 c値の刺定 Example 14 Determination of hemoglobin A 1 c value
本実施例では、 製造例 4に記載の方法で得たぺニシリウム厲由来の F A 〇Dを用いた。 グリコヘモグロビンコントロール N及び E (シグマ社) を 蒸留水で溶解した。 これらの溶液を混合することにより、 ヘモグロビン A lc値の異なる溶液を作成し、 自動グリコヘモグロビン測定装置 (京都第一 科学) を用いて検定したところ、 その値は 5. 1%〜9. 2%であった。 これらの溶液を用いて以下の操作を行った。  In the present Example, {Nisylium} -derived FAΔD obtained by the method described in Production Example 4 was used. Glycohemoglobin controls N and E (Sigma) were dissolved in distilled water. By mixing these solutions, solutions with different hemoglobin A lc values were prepared and assayed using an automatic glycohemoglobin analyzer (Kyoto Daiichi Kagaku). The values were between 5.1% and 9.2%. Met. The following operations were performed using these solutions.
1) 試料の処理  1) Sample processing
グリコヘモグロビン溶液 25 il Glycohemoglobin solution 25 il
500ュニッ ト 01 アミノぺブチダーゼ 500 Units 01 Amino-Butidase
(ェキソ型ブ口テアーゼ) 溶液 5 1 0. 1M トリスー塩酸緩衝液 (pH 8.0) 20 βΐ この混合液を 30eCで 30分間インキュベートした。 その後、 10%ト リクロロ酢酸を 50 l加えて撹拌し、 0°Cで 30分間静置した後 120 0 Orpmで 10分間遠心分離を行った。 得られた上清に 2M NaOHを約 50 1加え中性溶液にした。 (Exo-type open mouth thease) solution 5 0.1 M Tris-HCl buffer (pH 8.0) 20 βΐ The mixture was incubated for 30 minutes at 30 e C. Thereafter, 50 l of 10% trichloroacetic acid was added and the mixture was stirred, allowed to stand at 0 ° C for 30 minutes, and then centrifuged at 1200 rpm for 10 minutes. About 501 of 2M NaOH was added to the obtained supernatant to make a neutral solution.
2)活性測定  2) Activity measurement
FAOD反応液は以下のようにして調製した。  The FAOD reaction solution was prepared as follows.
3mi N— (カルボキシメチルァミ ノカルボニル) 一  3mi N— (carboxymethylaminocarbonyl) one
4,4一ビス (ジメチルァミノ) ビフエニルァミ ン溶液 (DA64) 30 Hi 60ユニッ ト/ ml ペルォキシダーゼ溶液 30^1 0.1M トリス—塩酸緩衝液 (pH 8.0) 300 1 4,4-bis (dimethylamino) biphenylamine solution (DA64) 30 Hi 60 units / ml peroxidase solution 30 ^ 1 0.1 M Tris-HCl buffer (pH 8.0) 300 1
12ユニッ ト/ ml FAOD溶液 10 1 蒸留水で全量を lmlとした。 12 units / ml FAOD solution 10 1 The total volume was adjusted to 1 ml with distilled water.
12ュニッ ト /ml FAOD溶液は、 製造例 4で得たぺニシリウ厶 . ャ ンシネルム S— 3413 (FESM BP-5475) CPenicillium janthinellum S -3413) 由来の FAODを 12ュニッ になるよう、 0.1Mリン酸カ リウ厶缓衝液 (PH7.5) で希釈して調製した。  The 12 unit / ml FAOD solution was prepared by dissolving the FAOD derived from Penicillium. Chancinerum S—3413 (FESM BP-5475) CPenicillium janthinellum S-3413) obtained in Production Example 4 with 0.1 M phosphoric acid so as to obtain 12 units. It was prepared by diluting with a potassium hydroxide solution (PH7.5).
FAOD反応液を 30°Cで 2分間ィンキュペートした後、 上記の各処理 溶液を 80 /zl加え、 30分後の 727nmにおける吸光度 (過酸化水素量 に対応) を測定した。 あらかじめ全ヘモグロビン量を 415 nmにおける 吸光度で測定し、 全ヘモグロビン量 (415nmの吸光度) に対するバリ ンの糖化量 (727 nmの吸光度) の割合を算出した。 この方法で得られ る全ヘモグロビンに対するパリンの糖化量の割合 (縦軸) と、 へモグロビ ン A 1 c値 (横軸) との関係を第 14図に示す。 図はへモグロビン A 1 c 値と FAODを用いて測定したへモグロビン中のバリンの糖化置の割合が 相関関係にあることを示している。 実施例 15 ヘモグロビン A 1 c値の測定 After the FAOD reaction solution was incubated at 30 ° C for 2 minutes, each of the above treatment solutions was added at 80 / zl, and the absorbance at 727 nm (corresponding to the amount of hydrogen peroxide) was measured 30 minutes later. The amount of total hemoglobin was measured in advance by the absorbance at 415 nm, and the ratio of the amount of saccharified variin (absorbance at 727 nm) to the amount of total hemoglobin (absorbance at 415 nm) was calculated. Fig. 14 shows the relationship between the ratio of saccharified amount of palin to the total hemoglobin (vertical axis) and hemoglobin A1c value (horizontal axis) obtained by this method. The figure shows that there is a correlation between the hemoglobin A 1 c value and the glycation ratio of valine in hemoglobin measured using FAOD. Example 15 Measurement of hemoglobin A 1 c value
ヘモグロビン AO試薬 (シグマ社) を蒸留水で 2.3 Mになるように溶 解した。 この溶液を自動ヘモグロビン測定装置 (京都第一科学〉 を用いて 分画し、 ヘモグロビン A 1 c画分とヘモグロビン A 0画分を分取、 精製し た。 両画分を比率混合することにより、 ヘモグロビン Al c値 0%〜52. 0%の基質試料を得た。  Hemoglobin AO reagent (Sigma) was dissolved in distilled water to 2.3 M. This solution was fractionated using an automatic hemoglobin measuring device (Kyoto Daiichi Kagaku), and the hemoglobin A 1c fraction and the hemoglobin A 0 fraction were separated and purified. Substrate samples with hemoglobin Alc values between 0% and 52.0% were obtained.
1) 試料の処理  1) Sample processing
基質試料 250 g 250 g substrate sample
500ュニッ ト 0>1 ァミノべプチダーゼ溶液 5 1 1.0M トリスー塩酸緩衝液 (pH 8.0) 15^1 これらを混合し、 蒸留水で全量を 200 とした。 その後、 10%ト リクロロ^酸を 200 1加えて撹拌し、 0てで 20分間静置した後、 1 2000卬《>で 10分間遠心分離を行った。 得られた上清に 5 M NaOH を約 40 1加え中性溶液にした。 500 units 0> 1 Aminobeptidase solution 5 1 1.0M Tris-HCl buffer (pH 8.0) 15 ^ 1 These were mixed, and the total amount was adjusted to 200 with distilled water. Then, 200 1 of 10% trichloro ^ acid was added, and the mixture was stirred, left at 0 ° C for 20 minutes, and then centrifuged at 12,000 卬 for 10 minutes. About 401 of 5 M NaOH was added to the obtained supernatant to make a neutral solution.
2) 活性測定  2) Activity measurement
F AOD反応液は以下のようにして IS製した。  The FAOD reaction solution was manufactured by IS as follows.
3mM - (カルボキシメチルァミ ノカルボニル) 一  3mM-(carboxymethylaminocarbonyl) 1
4.4-ビス (ジメチルァミノ) ビフエニルァミ ン溶液 100 1 4.4-Bis (dimethylamino) biphenylamine solution 100 1
60ユニッ ト/ nil ペルォキシダーゼ溶液 30 il 0.1M 卜リス一塩酸緩衝液 (pH 8.0) 1000 /^1 16ユニッ ト/ ml FAOD溶液 15 1 蒸留水で全量を 2.6 mlとした。 60 units / nil peroxidase solution 30 il 0.1 M Tris-monohydrochloride buffer (pH 8.0) 1000 / ^ 1 16 units / ml FAOD solution 151 The total volume was made up to 2.6 ml with distilled water.
16ュニッ ト Zral FAOD溶液は、 製造例 4で得た F A ODを 16ュ ニッ ト Znlになるよう、 0.1Mリン酸カリウム緩衝液 (pH7.5) で希 釈して调製した。 FAOD反応液を 30eCで 2分間ィンキュベー卜した後、 上記の各処理 溶液を 400 /1加え、 さらに 30分インキュベートした後の 727nmに おける吸光度を測定した。 この方法で得られる基質のヘモグロビン A 1 c 値と基質の関係を第 15図に示す。 図中の縱軸は 727πιηにおける吸光度 (過酸化水素量に対応) 、 横軸はヘモグロビン A 1 c値を表す。 図は、 へ モグロビン A 1 c値と過酸化水素の発生量が相関関係にあることを示して いる。 The 16-unit Zral FAOD solution was prepared by diluting the FAOD obtained in Production Example 4 with 0.1 M potassium phosphate buffer (pH 7.5) so as to become 16 units-Znl. After 2 minutes Inkyube Bok The FAOD reaction mixture at 30 e C, above the processing solution 400/1 was added, it was measured absorbance at 727nm after incubation for an additional 30 minutes. The relationship between the hemoglobin A 1 c value of the substrate obtained by this method and the substrate is shown in FIG. The vertical axis in the figure represents the absorbance at 727πιη (corresponding to the amount of hydrogen peroxide), and the horizontal axis represents the hemoglobin A 1c value. The figure shows that there is a correlation between hemoglobin A 1 c value and the amount of generated hydrogen peroxide.
実施例 16 フルク トシルバリン濃度の電極測定 Example 16 Electrode measurement of fructosyl valine concentration
作用極、 対極に白金、 参照極に銀/塩化銀電極を用いた。 これらの罨極 を 0.1Mリン酸カリウム锾衝液(pH 7.5) 5 mlに 12ュニッ 卜ノ l F A 〇D溶液を加えた反応液に浸濱した。 12ュニッ ト ZoilF AOD溶液は、 製造例 4で得たベニシリウム .ヤンンネルム S— 3413由来の FAOD を 12ュニッ 卜/ mlになるよう、 0.1 Mリン酸カリウム锾衝液 (pH 7. 5) で希釈して調製した。 この反応液に、 フルク トシルバリンを添加し、 30°C、 60 OmV定電圧での電流値を測定した。 この方法で得られるフ ルク トシルバリン濃度と罨流値との関係を第 16図に示す。 図中の縦軸は 60 OmV定電圧での電流値 (過酸化水素の量に対応) 、 横軸はフルク ト シルバリン潘度を表す。 図はフルク トシルバリンと過酸化水素発生量が相 関関係にあることを示している。  A platinum working electrode and a silver / silver chloride electrode were used as reference electrodes. These compresses were immersed in a reaction solution obtained by adding 12 units of FADII solution to 5 ml of 0.1 M potassium phosphate buffer solution (pH 7.5). The 12-unit ZoilF AOD solution was prepared by diluting the FAOD derived from Benicillium.Yannnerm S-3413 obtained in Production Example 4 with a 0.1 M potassium phosphate buffer solution (pH 7.5) to 12 units / ml. Prepared. Fructosyl valine was added to the reaction solution, and the current value was measured at 30 ° C. and a constant voltage of 60 OmV. Figure 16 shows the relationship between the concentration of fructosyl valine obtained by this method and the value of the compress. The vertical axis in the figure indicates the current value (corresponding to the amount of hydrogen peroxide) at a constant voltage of 60 OmV, and the horizontal axis indicates fructosylvaline Ban degree. The figure shows that fructosyl valine and hydrogen peroxide generation are correlated.
実施例 17 FAOD固定化酵素を用いたフルク トシルリジンの測定 Example 17 Fructosyl lysine measurement using FAOD-immobilized enzyme
10.3ュニッ ト /mlFAOD溶液 10 mlに 3 %アルギン酸ナトリウム 水溶液 20mlを加えた。 この混合液を注射器に入れ、 37てに保った 0. 05 M塩化カルシウム溶液 (pH6〜8) 中に一定速度で滴下するとビー ズが得られた。 このビーズを硬化させ固定化酵素を得た。 10.3ュニッ 卜ノ mlFAOD溶液は、 製造例 2で得たフサリウム ·ォキシスポルム S— 1 4由来の 八00を10.3ュニッ ト Zmlになるよう、 0.1M卜リス —塩酸緩衝液 (PH8.0) で希釈して網製した。 20 ml of a 3% sodium alginate aqueous solution was added to 10 ml of the 10.3 unit / ml FAOD solution. This mixture was placed in a syringe and dropped at a constant rate into a 0.05 M calcium chloride solution (pH 6 to 8) kept at 37 to obtain a bead. The beads were cured to obtain an immobilized enzyme. 10.3 Unitol mlFAOD solution was obtained from Fusarium oxasporum S- The 800 derived from 14 was diluted with 0.1 M Tris-hydrochloric acid buffer (PH8.0) so as to have a volume of 10.3 nit Zml, and made into a net.
この固定化酵索を用い、 以下の方法でフルク トシルリジン濃度を測定し 反応液  Using this immobilized yeast cord, the fructosyl lysine concentration was measured by the following method and the reaction solution
0.1M トリスー塩酸棣銜液 (pH 8.0) 300 1 0.1M Tris-HCl dimouth solution (pH 8.0) 300 1
45nM 4ーァミノアンチピリン溶液 30〃 1 6 OmM N—ェチルー N— (2—ヒ ドロキシー 45nM 4-aminoantipyrine solution 30〃16 OmM N-ethyl-N- (2-hydroxy
3—スルホブロビル) 一 in—卜ルイジン溶液 30/ 1 60ユニッ ト Zml ペルォキシダーゼ溶液 30〃 1 3-sulfobrovir) 1-in-toluidine solution 30/1 160 units Zml peroxidase solution 30〃 1
FAOD固定化酵素 4 Omg 蒸留水で全:!を 1 mlとした。 FAOD immobilized enzyme 4 Omg All in distilled water :! To 1 ml.
この反応液にフルク トシルリジンを添加し、 30 、 3分後の 555nm における吸光度を測定した。 この方法で得られるフルク トシルリ ジン濃度 と吸光度との関係を第 17図に示す。 図中の縦軸は 555nroの吸光度 (過 酸化水素の量に対応) 、横軸はフルク トシルリジンの濃度を表す。 図は、 フルク 卜シルリジンの濃度と過酸化水素発生童が相関関係にあることを示 している。  Fructosyl lysine was added to the reaction solution, and the absorbance at 555 nm was measured 30 and 3 minutes later. Fig. 17 shows the relationship between fructosyl lysine concentration and absorbance obtained by this method. The vertical axis in the figure indicates the absorbance at 555 nro (corresponding to the amount of hydrogen peroxide), and the horizontal axis indicates the fructosyl lysine concentration. The figure shows that there is a correlation between the concentration of fructosyl lysine and the hydrogen peroxide generating children.
実施例 18 糖化アルブミン測定用キッ ト Example 18 Kit for measuring saccharified albumin
発色試薬 Coloring reagent
A: 135 mol 4 -ァミノアンチビリ ン/ 30ml  A: 135 mol 4 -amino antivirin / 30 ml
B: 180 ^ mol N—ェチルー N— (2—ヒ ドロキン一 3—スルホブ 口ビル) 一 m—トルィジン/ 40ml  B: 180 ^ mol N—Ethyru N— (2-Hydroquine 1-3—Sulfobu mouth building) 1 m—Toluidine / 40 ml
C : 50ユニッ ト FAOD+ 180ユニッ ト ペルォキシダーゼ 3 C: 50 units FAOD + 180 units Peroxidase 3
Oral 0. 1Mトリス一塩酸锾衝液 (pH8. 0) 処理試薬 Oral 0.1 M Tris monohydrochloride buffer (pH 8.0) Processing reagent
D: 75 mg プロテアーゼ X I VZSml  D: 75 mg protease X I VZSml
測定に際しては、 ヒ ト血潸試料 50 X 1に対し D液 50 1、 AB Cの 混合液 lmlを使用する。  For measurement, use 1 ml of a mixed solution of 501 D solution and ABC for 50 X 1 of human blood sample.
実施例 19 ヘモグロビン A 1 c測定用キッ ト Example 19 Kit for measuring hemoglobin A1c
発色試薬 Coloring reagent
A: 9 mol N— (カルボキシメチルァミ ノカルボニル) 一 4, 4 - ビス (ジメチルァミノ) ビフエニルァミ ン Z 7 Oml  A: 9 mol N— (carboxymethylaminocarbonyl) -1,4,4-bis (dimethylamino) biphenylamine Z 7 Oml
B : 30ユニッ ト FAOD+180ユニッ ト ペルォキシダーゼノ 3 0 ml 0. 1Mト リスー塩酸緩衝液 (pH8. 0)  B: 30 units FAOD + 180 units Peroxidaseno 30 ml 0.1 M Tris-HCl buffer (pH 8.0)
処理試薬 Processing reagent
C : 250ユニッ ト アミノぺプチダーゼノ 2. 5 ml 0. 1Mトリス 一塩酸緩衝液 (pH8. 0)  C: 250 units aminopeptidase 2.5 ml 0.1 M Tris monohydrochloride buffer (pH 8.0)
D : 500 og トリクロ口酢酸 Z5nil  D: 500 og tricloacetic acid Z5nil
Ε : 1 Ommo 1 N a OH/5ml  Ε: 1 Ommo 1 NaOH / 5ml
測定に際しては、 ヒ ト血清試料 25 1に対し C液 25 Ai D . E液 50/^1、 ABの混合液 lmlを使用する。  For the measurement, use 1 ml of a mixed solution of 25 Ai D.E solution 50 / ^ 1 and AB for human serum sample 251.

Claims

請 求 の 範 囲 The scope of the claims
1 . 酵素を用いて測定することを特徴とする、 アマドリ化合物含有試料中 のアマドリ化合物の測定方法。  1. A method for measuring an Amadori compound in a Amadori compound-containing sample, wherein the method is performed by using an enzyme.
2. 試料が生体成分又は食品である請 項 1記載の方法。  2. The method according to claim 1, wherein the sample is a biological component or a food.
3. 試料の糖化率を測定することにより行うことを特徴とする、 請求項 1 又は 2記載の方法。  3. The method according to claim 1, wherein the method is performed by measuring a saccharification rate of a sample.
4. 試料中のフルク トシルアミンの定量により行うことを特徼とする、 請 求項 1又は 2記載の方法。  4. The method according to claim 1 or 2, wherein the determination is performed by determining fructosylamine in the sample.
5. 試料中の糖化物濃度の測定により行うことを特徴とする、 請求項 1又 は 2記載の方法。  5. The method according to claim 1, wherein the method is performed by measuring a saccharified substance concentration in a sample.
6. 酵素がフルク トシルアミノ酸ォキンダーゼであることを特徴とする、 請求項 1〜 5のいずれかに記載の方法。  6. The method according to any one of claims 1 to 5, wherein the enzyme is fructosyl amino acid kindase.
7 . フルク トシルァミノ酸ォキシダーゼが真菌類をフルク トシルリジン及 び/又はフルク トシル1^' 一 Z—リ ジン含有培地で培養することによって 得られることを特徵とする、 請求項 6記載の方法。  7. The method according to claim 6, wherein the fructosylamino acid oxidase is obtained by culturing the fungus in a medium containing fructosyl lysine and / or fructosyl 1 ^ '-Z-lysine.
8. 試料中のアマドリ化合物の糖化部位がフルク トシルアミノ酸ォキンダ ーゼと反応しやすい状態になるよう、 試料を処理した後、 あるいは処理し ながら、 フルク トシルアミノ酸ォキシダーゼを作用し、 反応混合物におけ る酸素の消 S量又は生成物の量を測定することを特徴とする、 謓求項 6〜 7のいずれかに記載の方法。  8. After or while treating the sample, fructosylamino acid oxidase acts on the sample so that the saccharification site of the Amadori compound in the sample reacts easily with fructosylamino acid kinase, and is then added to the reaction mixture. The method according to any one of claims 6 to 7, wherein the amount of oxygen consumed or the amount of a product is measured.
9. 試料の処理方法が、 ブロテ了ーゼ処理及び 又は化学的、 物理的処理 であることを特微とする、 猜求項 8記載の方法。  9. The method according to claim 8, wherein the method of treating the sample is a brothase treatment and / or a chemical or physical treatment.
1 0. プロテア一ゼがェキソ型プロテアーゼ及びノ又はェンド型ブ口テア ーゼであることを特徼とする、 IS求項 9記載の方法。  10. The method of claim 9 wherein the protease is an exo-type protease and a no- or end-type protease.
1 1 . 化学的、 物理的処理が酸、 アルカリ、 界面活性剤、 変性剤、 熱、 マ イクロウエーブ及び圧力による処理である請求項 9記載の方法。 1 1. Chemical and physical treatments include acids, alkalis, surfactants, denaturants, heat, 10. The method according to claim 9, wherein the treatment is performed by microwave and pressure.
12. 試料をェキソ型プロテアーゼで処理したのち、 あるいは処理しなが ら、 フルク トシルアミノ酸ォキシダーゼを作用させて、 酸素の消 S量又は 反応生成物の量を測定することを特徴とする、 該試料中のぺブチド鎖末端 に糖化部位を有するァマドリ化合物の分析方法。  12. After treating the sample with an exo-type protease, or while treating the sample, the sample is treated with fructosyl amino acid oxidase to measure the amount of oxygen-depleted S or the amount of a reaction product. Method for analyzing an Amadori compound having a saccharification site at the terminal of a peptide chain.
13. アマドリ化合物がヘモグロビン Aleである請求項 12記載の方法。 13. The method according to claim 12, wherein the Amadori compound is hemoglobin Ale.
14. 試料をエンド型プロテアーゼで処理したのち、 あるいは処理しなが ら、 フルク 卜シルアミノ酸ォキシダーゼを作用させて、 酸素の消費量又は 反応生成物の Sを制定することを特徴とする、 該試料中のぺブチド鎖内部 に糖化部位を有するアマドリ化合物の分析方法。 14. After treating the sample with endo-type protease, or while treating the sample, fructosylamino acid oxidase is acted on to determine the oxygen consumption or S of the reaction product. Method for analyzing Amadori compounds having a saccharification site inside the peptide chain in the inside.
15. アマドリ化合物が糖化アルブミンである請求項 14記載の方法。 15. The method according to claim 14, wherein the Amadori compound is saccharified albumin.
16. 試料中にヘモグロビンを含有する場合には、 アマドリ化合物を 60 0〜800 nmにおける吸光度によって測定することを特徴とする、 請求 項 1 ~ 15のいずれかに記載の方法。 16. The method according to any one of claims 1 to 15, wherein, when hemoglobin is contained in the sample, the Amadori compound is measured by an absorbance at 600 to 800 nm.
17. 反応混合物に、 ペルォキンダーゼと酸化されて色素を生成する試薬 を作用し、 反応混合物中の過酸化水素の発生量を測定することを特徴とす る、 請求項 16記載の方法。  17. The method according to claim 16, wherein a reagent that is oxidized with perokinidase to generate a dye is acted on the reaction mixture, and the amount of hydrogen peroxide generated in the reaction mixture is measured.
18. 試薬が、 N— (カルボキシメチルァミ ノカルボニル〉 一4, 4—ビ ス (ジメチルァミノ) ビフエニルアミン (DA64) 、 10— (カルボキ シメチルアミノカルボニル) 一 3.7—ビス (ジメチルアミ ノ) フエノチ ァジン (DA67) 、 4一ァミノアンチピリ ン (4AA) ZN—ェチルー N— (2—ヒ ドロキン— 3—スルホプロピル) 一 3, 5—ジメチルァニリ ン (MAO S) 、 4一ァミ ノアンチピリ ン (4 A A)ノ N—ェチルー N— スルホプロビル一 3.5—ジメチルァニリン (MAPS) からなる群から 選択されるものである請求項 17記戴の方法。 18. The reagents are N- (carboxymethylaminocarbonyl) 1,4-bis (dimethylamino) biphenylamine (DA64), 10- (carboxymethylaminocarbonyl) -13.7-bis (dimethylamino) phenothiazine ( DA67), 4-Aminoantipyrine (4AA) ZN-ethyl-N- (2-hydroxy-3-3-sulfopropyl) -1,3,5-dimethylaniline (MAO S), 4-aminoantipyrine (4AA) 18. The method according to claim 17, wherein the method is selected from the group consisting of: -ethyl-N-sulfoprovir-3.5-dimethylaniline (MAPS).
1 9. 反応混合物に、 カタラーゼを作用し、 生成するアルデヒ ドの量を測 定することを特徴とする講求項 1 6記載の方法。 1 9. The method according to claim 16, wherein catalase is acted on the reaction mixture, and the amount of aldehyde generated is measured.
2 0. アマドリ化合物を電気化学的に測定することを特徴とする、 請求項 1〜 1 5のいずれかに記載の方法。 20. The method according to any one of claims 1 to 15, wherein the Amadori compound is measured electrochemically.
2 1 . フルク トシルアミノ酸ォキシダーゼの作用で消費する、 酸紫量を S 極で測定することを特微とする請求項 2 0記載の方法。  21. The method according to claim 20, characterized in that the amount of acid purple consumed by the action of fructosyl amino acid oxidase is measured at the south pole.
2 2. フルク トシルアミノ酸ォキシダーゼの作用により生成する、 a酸化 水素世を ¾極で測定することを特徴とする講求項 2 0記載の方法。  2 2. The method according to claim 20, wherein hydrogen peroxide a produced by the action of fructosyl amino acid oxidase is measured at the positive electrode.
2 3. フルク トシルアミノ酸ォキシダーゼと電極との間に少なくとも 1つ 以上の電子伝逢体を介在させ、 得られる酸化、 «元電流あるいはその電気 量を測定することを特徵とする請求項 2 0記載の方法。 23. The method according to claim 20, wherein at least one or more electron carriers are interposed between the fructosylamino acid oxidase and the electrode, and the resulting oxidation, primary current, or the amount of electricity is measured. the method of.
2 4. フルク トシルアミノ酸ォキシダーゼの作用により生成する、 a酸化 水素と《極との間に少なくとも 1つ以上の電子伝達体を介在させ、 得られ る酸化、 «元電流あるいはその電気量を測定することを特徴とする請求項 2 4. With at least one or more electron carriers between hydrogen peroxide and the electrode generated by the action of fructosyl amino acid oxidase, measure the resulting oxidation, primary current, or its charge. Claims characterized by the following:
2 0記載の方法。 20. The method of claim 20.
2 5 . フルク 卜シルァミノ酸ォキンダーゼと、 試料中のアマドリ化合物の 糖化部位がフルク トシルァミノ酸ォキンダーゼと反応しやすい状態になる よう、 試料を処理するための試薬とを含む、 試料中のアマドリ化合物の測 定のための試薬又はキッ ト。  25. Measurement of the Amadori compound in the sample, which includes fructosylamino acid okinidase and a reagent for treating the sample so that the saccharification site of the Amadori compound in the sample is easily reacted with the fructosylamino acid okinidase. Reagent or kit for determination.
2 6 . 生体成分中の糖化タンパクの量及び Z又は糖化率の測定、 あるいは フルク トシルァミンの定貴に用いられることを特撖とする、 請求項 2 5記 載の試薬又はキッ ト。  26. The reagent or kit according to claim 25, which is used for measuring the amount and Z or saccharification rate of glycated protein in a biological component, or for determining fructosylamine.
PCT/JP1996/002964 1995-10-12 1996-10-14 Method and assaying amodori compounds WO1997013872A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP26438795 1995-10-12
JP7/264387 1995-10-12
JP19200396 1996-07-22
JP8/192003 1996-07-22

Publications (1)

Publication Number Publication Date
WO1997013872A1 true WO1997013872A1 (en) 1997-04-17

Family

ID=26507035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002964 WO1997013872A1 (en) 1995-10-12 1996-10-14 Method and assaying amodori compounds

Country Status (1)

Country Link
WO (1) WO1997013872A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025475A1 (en) * 1999-10-01 2001-04-12 Kikkoman Corporation Method of assaying glycoprotein
WO2002006519A1 (en) * 2000-07-14 2002-01-24 Arkray, Inc. Method of selectively determining glycated hemoglobin
WO2003033729A1 (en) * 2001-10-11 2003-04-24 Arkray, Inc. Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
JP2004222570A (en) * 2003-01-22 2004-08-12 Asahi Kasei Pharma Kk Protease for assaying saccharified protein
WO2005087946A1 (en) * 2004-03-17 2005-09-22 Daiichi Pure Chemicals Co., Ltd. Method of measuring glycoprotein
WO2006120976A1 (en) 2005-05-06 2006-11-16 Arkray, Inc. Protein cleavage method and use thereof
US7250269B2 (en) 2001-01-31 2007-07-31 Asahi Kasei Pharma Corporation Composition for assaying glycoprotein
WO2007125779A1 (en) 2006-04-25 2007-11-08 Kikkoman Corporation Eukaryotic amadoriase having excellent thermal stability, gene and recombinant dna for the eukaryotic amadoriase, and process for production of eukaryotic amadoriase having excellent thermal stability
US7329520B2 (en) 2002-10-23 2008-02-12 Daiichi Pure Chemicals Co., Ltd. Fructosyl peptide oxidase and utilization thereof
EP2096173A1 (en) 2003-05-21 2009-09-02 Asahi Kasei Pharma Corporation Method of measuring glycolated hemoglobin A1C, enzyme to be used therefor and process for producing the same
WO2012018094A1 (en) 2010-08-06 2012-02-09 キッコーマン株式会社 Amadoriase having altered substrate specificity
WO2013100006A1 (en) 2011-12-28 2013-07-04 キッコーマン株式会社 Amadoriase having improved thermal stability, gene and recombinant dna of same, and method for producing amadoriase having improved thermal stability
WO2013162035A1 (en) 2012-04-27 2013-10-31 キッコーマン株式会社 Modified amadoriase capable of acting on fructosyl hexapeptide
USRE45074E1 (en) 2001-10-11 2014-08-12 Arkray, Inc. Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
WO2015020200A1 (en) 2013-08-09 2015-02-12 キッコーマン株式会社 MODIFIED AMADORIASE AND METHOD FOR PRODUCING SAME, AGENT FOR IMPROVING SURFACTANT-RESISTANCE OF AMADORIASE AND COMPOSITION FOR MEASURING HbA1c USING SAME
WO2015060431A1 (en) 2013-10-25 2015-04-30 キッコーマン株式会社 HbA1c MEASUREMENT METHOD USING AMADORIASE ACTING ON GLYCATED PEPTIDES
WO2015060429A1 (en) 2013-10-25 2015-04-30 キッコーマン株式会社 HEMOGLOBIN A1c MEASUREMENT METHOD AND MEASUREMENT KIT
KR20170054475A (en) 2014-10-24 2017-05-17 기꼬만 가부시키가이샤 Amadoriase having enhanced dehydrogenase activity
US9708586B2 (en) 2010-08-06 2017-07-18 Kikkoman Corporation Amadoriase having altered substrate specificity
WO2019045052A1 (en) 2017-08-31 2019-03-07 キッコーマン株式会社 Glycated hemoglobin oxidase variant and measurement method
WO2021002371A1 (en) 2019-07-01 2021-01-07 旭化成ファーマ株式会社 Glycosylated protein assay reagent containing protease stabilizer increasing redox potential of ferrocyanide, method for assaying glycosylated protein, method for preserving glycosylated protein assay reagent, and method for stabilizing glycosylated protein assay reagent
US10934530B2 (en) 2015-04-03 2021-03-02 Kikkoman Corporation Amadoriase having improved specific activity
US11111517B2 (en) 2016-04-22 2021-09-07 Kikkoman Corporation HbA1c dehydrogenase
US11198852B2 (en) 2014-11-07 2021-12-14 Kikkoman Corporation Amadoriase having enhanced anionic surfactant tolerance
US11384381B2 (en) 2016-07-13 2022-07-12 Kikkoman Corporation Reaction accelerating agent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280297A (en) * 1985-06-04 1986-12-10 Noda Sangyo Kagaku Kenkyusho Quantitative determination of amadori compound and reagent for quantitative determination thereof
JPH03155780A (en) * 1989-11-14 1991-07-03 Noda Sangyo Kagaku Kenkyusho Fructosylamine oxidase, its production, determination of amadori compound using the enzyme and reagent therefor
JPH044874A (en) * 1990-04-20 1992-01-09 Nakano Vinegar Co Ltd Fructosylamino acid hydrolase, production and utilization thereof
JPH05192193A (en) * 1991-07-29 1993-08-03 Genzyme Ltd Method for assay of non-enzymatic glycosylation protein
JPH0646846A (en) * 1992-06-05 1994-02-22 Nakano Vinegar Co Ltd Fructosylamine deglycase, its production and method for determining amadori compound using the same enzyme
JPH07289253A (en) * 1994-03-03 1995-11-07 Kyoto Daiichi Kagaku:Kk Fructosylamino acid oxidase and its production
JPH08154672A (en) * 1994-10-05 1996-06-18 Kdk Corp Fructosylaminoacid oxidase and its production
JPH08336386A (en) * 1995-04-11 1996-12-24 Kdk Corp Fructosylamino acid oxidase and its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280297A (en) * 1985-06-04 1986-12-10 Noda Sangyo Kagaku Kenkyusho Quantitative determination of amadori compound and reagent for quantitative determination thereof
JPH03155780A (en) * 1989-11-14 1991-07-03 Noda Sangyo Kagaku Kenkyusho Fructosylamine oxidase, its production, determination of amadori compound using the enzyme and reagent therefor
JPH044874A (en) * 1990-04-20 1992-01-09 Nakano Vinegar Co Ltd Fructosylamino acid hydrolase, production and utilization thereof
JPH05192193A (en) * 1991-07-29 1993-08-03 Genzyme Ltd Method for assay of non-enzymatic glycosylation protein
JPH0646846A (en) * 1992-06-05 1994-02-22 Nakano Vinegar Co Ltd Fructosylamine deglycase, its production and method for determining amadori compound using the same enzyme
JPH07289253A (en) * 1994-03-03 1995-11-07 Kyoto Daiichi Kagaku:Kk Fructosylamino acid oxidase and its production
JPH08154672A (en) * 1994-10-05 1996-06-18 Kdk Corp Fructosylaminoacid oxidase and its production
JPH08336386A (en) * 1995-04-11 1996-12-24 Kdk Corp Fructosylamino acid oxidase and its production

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 61, No. 12, (December 1995) YOSHIDA N. et al., "Distribution and Properties of Fructosyl Amino Acid Oxidase in Fungi", pages 4487-4489. *
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, Vol. 61, No. 1, (January 1996), SAKAI Y. et al., "Production of Fructosyl Lysine Oxidase from Fusarium Oxysporum S-1F4 on Autoclave-Browned Medium", pages 150-151. *
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMSTRY, Vol. 59, No. 3, (March 1995) SAKAI Y. et al., "Purification and Properties of Fructosyl Lysine Oxidase From Fusarium Oxysporum S-1F4", pages 487-491. *

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070948B1 (en) 1999-10-01 2006-07-04 Kikkoman Corporation Method for assaying glycated protein
WO2001025475A1 (en) * 1999-10-01 2001-04-12 Kikkoman Corporation Method of assaying glycoprotein
CN101363044B (en) * 2000-07-14 2013-01-09 爱科来株式会社 Method of selectively determining glycated hemoglobin
WO2002006519A1 (en) * 2000-07-14 2002-01-24 Arkray, Inc. Method of selectively determining glycated hemoglobin
USRE46130E1 (en) 2000-07-14 2016-08-30 Arkray, Inc. Method of selectively determining glycated hemoglobin
USRE46118E1 (en) 2000-07-14 2016-08-23 Arkray, Inc. Method of selectively determining glycated hemoglobin
USRE46105E1 (en) 2000-07-14 2016-08-16 Arkray, Inc. Method of selectively determining glycated hemoglobin
EP2944699A1 (en) * 2000-07-14 2015-11-18 ARKRAY, Inc. Method of selectively determining glycated hemoglobin
US7235378B2 (en) 2000-07-14 2007-06-26 Arkray, Inc. Method of selectively determining glycated hemoglobin
EP2336351A3 (en) * 2000-07-14 2011-09-14 Arkray, Inc. Method of selectively determining glycated hemoglobin
CN101875963B (en) * 2000-07-14 2013-10-16 爱科来株式会社 Method of selectively determining glycated hemoglobin
US7250269B2 (en) 2001-01-31 2007-07-31 Asahi Kasei Pharma Corporation Composition for assaying glycoprotein
US8105800B2 (en) 2001-01-31 2012-01-31 Asahi Kasei Pharma Corporation Composition for assaying glycated proteins
EP2236618A2 (en) 2001-01-31 2010-10-06 Asahi Kasei Pharma Corporation Compositions for assaying glycoprotein
EP2248909A1 (en) 2001-01-31 2010-11-10 Asahi Kasei Pharma Corporation Compositions for assaying glycoprotein
EP2107123A2 (en) 2001-01-31 2009-10-07 Asahi Kasei Pharma Corporation Composition for assaying glycated proteins
EP2107376A2 (en) 2001-01-31 2009-10-07 Asahi Kasei Pharma Corporation Composition for assaying glycated proteins
USRE45074E1 (en) 2001-10-11 2014-08-12 Arkray, Inc. Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
USRE45626E1 (en) 2001-10-11 2015-07-28 Arkray, Inc. Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
WO2003033729A1 (en) * 2001-10-11 2003-04-24 Arkray, Inc. Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
USRE46073E1 (en) 2001-10-11 2016-07-19 Arkray, Inc. Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
US7449305B2 (en) 2001-10-11 2008-11-11 Arkray, Inc. Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
USRE43795E1 (en) 2001-10-11 2012-11-06 Arkray, Inc. Method of pre-treating sample for measuring saccharified amine and method of measuring saccharified amine
US7393549B2 (en) 2002-10-23 2008-07-01 Daiichi Pure Chemicals Co., Ltd. Defructosylation method
US7329520B2 (en) 2002-10-23 2008-02-12 Daiichi Pure Chemicals Co., Ltd. Fructosyl peptide oxidase and utilization thereof
JP2004222570A (en) * 2003-01-22 2004-08-12 Asahi Kasei Pharma Kk Protease for assaying saccharified protein
JP4565807B2 (en) * 2003-01-22 2010-10-20 旭化成ファーマ株式会社 Protease for measuring glycated protein
EP2096173A1 (en) 2003-05-21 2009-09-02 Asahi Kasei Pharma Corporation Method of measuring glycolated hemoglobin A1C, enzyme to be used therefor and process for producing the same
US7943337B2 (en) 2003-05-21 2011-05-17 Asahi Kasei Pharma Corporation Method for screening a protease
US7588910B2 (en) 2003-05-21 2009-09-15 Asahi Kasei Pharma Corporation Hemoglobin A1c determination method, enzyme to be used therefor, and production method thereof
WO2005087946A1 (en) * 2004-03-17 2005-09-22 Daiichi Pure Chemicals Co., Ltd. Method of measuring glycoprotein
WO2006120976A1 (en) 2005-05-06 2006-11-16 Arkray, Inc. Protein cleavage method and use thereof
US7820404B2 (en) 2005-05-06 2010-10-26 Arkray, Inc. Protein cleavage method and use thereof
US8003359B2 (en) 2006-04-25 2011-08-23 Kikkoman Corporation Eukaryotic amadoriase having excellent thermal stability, gene and recombinant DNA for the eukaryotic amadoriase, and process for production of eukaryotic amadoriase having excellent thermal stability
US8828699B2 (en) 2006-04-25 2014-09-09 Kikkoman Corporation Eukaryotic amadoriase, gene and recombinant DNA for the eukaryotic amadoriase, and process for production of the eukaryotic amadoriase
WO2007125779A1 (en) 2006-04-25 2007-11-08 Kikkoman Corporation Eukaryotic amadoriase having excellent thermal stability, gene and recombinant dna for the eukaryotic amadoriase, and process for production of eukaryotic amadoriase having excellent thermal stability
EP2520650A2 (en) 2006-04-25 2012-11-07 Kikkoman Corporation Eukaryotic amadoriase having excellent thermal stability, gene and recombinant DNA for the eukaryotic amadoriase, and process for production of eukaryotic amadoriase having excellent thermal stability
US9708586B2 (en) 2010-08-06 2017-07-18 Kikkoman Corporation Amadoriase having altered substrate specificity
US9062286B2 (en) 2010-08-06 2015-06-23 Kikkoman Corporation Amadoriase having altered substrate specificity
KR20130105614A (en) 2010-08-06 2013-09-25 기꼬만 가부시키가이샤 Amadoriase having altered substrate specificity
WO2012018094A1 (en) 2010-08-06 2012-02-09 キッコーマン株式会社 Amadoriase having altered substrate specificity
WO2013100006A1 (en) 2011-12-28 2013-07-04 キッコーマン株式会社 Amadoriase having improved thermal stability, gene and recombinant dna of same, and method for producing amadoriase having improved thermal stability
US9701949B2 (en) 2011-12-28 2017-07-11 Kikkoman Corporation Amadoriase with improved thermostability, gene and recombinant DNA for the amadoriase, and method for production of amadoriase with improved thermostability
US10767211B2 (en) 2012-04-27 2020-09-08 Kikkoman Corporation Modified amadoriase reacting with fructosyl hexapeptide
WO2013162035A1 (en) 2012-04-27 2013-10-31 キッコーマン株式会社 Modified amadoriase capable of acting on fructosyl hexapeptide
EP3508577A2 (en) 2012-04-27 2019-07-10 Kikkoman Corporation Modified amadoriase capable of acting on fructosyl hexapeptide
US11549134B2 (en) 2013-08-09 2023-01-10 Kikkoman Corporation Modified amadoriase and method for producing the same, agent for improving surfactant resistance of amadoriase and composition for measuring HbA1c using the same
US10619183B2 (en) 2013-08-09 2020-04-14 Kikkoman Corporation Modified amadoriase and method for producing the same, agent for improving surfactant resistance of amadoriase and composition for measuring HbA1c using the same
WO2015020200A1 (en) 2013-08-09 2015-02-12 キッコーマン株式会社 MODIFIED AMADORIASE AND METHOD FOR PRODUCING SAME, AGENT FOR IMPROVING SURFACTANT-RESISTANCE OF AMADORIASE AND COMPOSITION FOR MEASURING HbA1c USING SAME
EP3760717A1 (en) 2013-08-09 2021-01-06 Kikkoman Corporation Amadoriase and method for producing the same, agent for improving surfactant resistance of amadoriase and composition for measuring hba1c using the same
US11078517B2 (en) 2013-10-25 2021-08-03 Kikkoman Corporation Hemoglobin A1c measurement method and measurement kit
WO2015060431A1 (en) 2013-10-25 2015-04-30 キッコーマン株式会社 HbA1c MEASUREMENT METHOD USING AMADORIASE ACTING ON GLYCATED PEPTIDES
US10697979B2 (en) 2013-10-25 2020-06-30 Kikkoman Corporation Method for measurement of HbA1c using amadoriase that reacts with glycated peptide
WO2015060429A1 (en) 2013-10-25 2015-04-30 キッコーマン株式会社 HEMOGLOBIN A1c MEASUREMENT METHOD AND MEASUREMENT KIT
EP3786291A1 (en) 2014-10-24 2021-03-03 Kikkoman Corporation Amadoriase having enhanced dehydrogenase activity
US11499143B2 (en) 2014-10-24 2022-11-15 Kikkoman Corporation Amadoriase having enhanced dehydrogenase activity
KR20170054475A (en) 2014-10-24 2017-05-17 기꼬만 가부시키가이샤 Amadoriase having enhanced dehydrogenase activity
US11198852B2 (en) 2014-11-07 2021-12-14 Kikkoman Corporation Amadoriase having enhanced anionic surfactant tolerance
US10934530B2 (en) 2015-04-03 2021-03-02 Kikkoman Corporation Amadoriase having improved specific activity
US11111517B2 (en) 2016-04-22 2021-09-07 Kikkoman Corporation HbA1c dehydrogenase
US11384381B2 (en) 2016-07-13 2022-07-12 Kikkoman Corporation Reaction accelerating agent
WO2019045052A1 (en) 2017-08-31 2019-03-07 キッコーマン株式会社 Glycated hemoglobin oxidase variant and measurement method
KR20220011699A (en) 2019-07-01 2022-01-28 아사히 가세이 파마 가부시키가이샤 A glycosylated protein measurement reagent comprising a protease stabilizer that increases the redox potential of ferrocyanide, a glycosylated protein measurement method, a method for storing a glycosylated protein measurement reagent, and a method for stabilizing a glycosylated protein measurement reagent
WO2021002371A1 (en) 2019-07-01 2021-01-07 旭化成ファーマ株式会社 Glycosylated protein assay reagent containing protease stabilizer increasing redox potential of ferrocyanide, method for assaying glycosylated protein, method for preserving glycosylated protein assay reagent, and method for stabilizing glycosylated protein assay reagent

Similar Documents

Publication Publication Date Title
WO1997013872A1 (en) Method and assaying amodori compounds
AU655646B2 (en) A method for the determination of glycated proteins in biological material
JP3850904B2 (en) Fructosyl amino acid oxidase and method for producing the same
JP4227820B2 (en) New enzyme
JP4061348B2 (en) Enzymatic measurement method of glycated protein
US5712138A (en) Fructosyl amino acid oxidase
JP2923222B2 (en) Fructosyl amino acid oxidase and method for producing the same
JP3786966B2 (en) Fructosyl amino acid oxidase, method for producing the same, and method for measuring an Amadori compound using the enzyme
JP2001095598A (en) Method for measuring glucosylated protein
JPH0646846A (en) Fructosylamine deglycase, its production and method for determining amadori compound using the same enzyme
JP4004081B2 (en) Fructosyl amino acid oxidase and method for producing the same
US5972671A (en) Fructosyl amino acid oxidase and process for producing the same
EP0737744B1 (en) Fructosyl amino acid oxidase and process for producing the same
US5985591A (en) Method for the determination of glycosylated proteins
EP0264815B1 (en) Methods for selective measurement of amino acids
JP3416540B2 (en) Fructosyl amino acid oxidase and method for producing the same
JP4257568B2 (en) Biological component measurement method and reagent composition used therefor
JP2004344052A (en) Protease for hemoglobin a1c assay
JPH11196897A (en) Determination of glycosylated protein and determination apparatus
JPH04278098A (en) Method and kit for detecting candidasis
CN1161374A (en) Fructosyl amino acid oxidase and process for producing same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase