WO1997005507A1 - Detector - Google Patents

Detector Download PDF

Info

Publication number
WO1997005507A1
WO1997005507A1 PCT/JP1996/002086 JP9602086W WO9705507A1 WO 1997005507 A1 WO1997005507 A1 WO 1997005507A1 JP 9602086 W JP9602086 W JP 9602086W WO 9705507 A1 WO9705507 A1 WO 9705507A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
output
detection
circuit
signal
Prior art date
Application number
PCT/JP1996/002086
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuharu Ishikawa
Masahiro Kurokawa
Shinya Otsuki
Kouji Iguchi
Shinya Tamino
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation filed Critical Omron Corporation
Priority to JP50745597A priority Critical patent/JP3548847B2/en
Priority to AU65309/96A priority patent/AU6530996A/en
Publication of WO1997005507A1 publication Critical patent/WO1997005507A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers

Definitions

  • the present invention relates to a device for detecting an object or the like, and particularly to a device for detecting an object or the like that optically detects the presence or absence of a person or an object (
  • the conventional photoelectric sensor has a light-emitting element 1101 for projecting light toward an object to be detected and a light-receiving element 1102 for receiving the reflected light, and is obtained from an oscillation circuit 1103.
  • the light emitting circuit 1104 is driven by the pulse signal, and the light emitting element 1101 is turned on.
  • the light emitted from the light projecting element 111 hits the detection object, and the reflected light enters the light receiving element 110 2, where it is subjected to light-to-current conversion and amplified by the amplifier circuit 110 5.
  • the amplified light receiving signal is compared with a preset threshold value by a comparator circuit 106, synchronized with the light emission pulse in a gate circuit 107, and integrated by a integrating circuit 1 for noise removal. After passing through 108, it is output from the output circuit 1109 to the outside of the sensor.
  • the passive detector is the detector itself. Or, as a device that works in conjunction with the detection device, it does not have an element that actively acts on the detection target (for example, a light source that shares a timing signal with the light receiving unit and illuminates in pulses). It uses energy from the target that is generated by an uncoupled artificial or natural energy source (eg, a lighting device or sunlight) acting on the target.
  • an uncoupled artificial or natural energy source eg, a lighting device or sunlight
  • a stationary human body detector using an integrating infrared detecting element (thermopile) as the detecting element will be described.
  • Figure 2 shows the circuit diagram.
  • thermopile 111 When a person enters the detection area of the stationary human body detector, infrared rays emitted from the human body enter the thermopile 111 and an electromotive force corresponding to the amount of light is transmitted through the buffer 111 to the next stage. Sent to 13. The signal is amplified by the amplifier 11 13, the high-frequency noise is removed by the low-pass filter 11 14, and the signal is compared with the preset threshold value by the comparison circuit 11 15. When a signal exceeding the threshold value is input, the comparator circuit 110 outputs an ON signal.
  • VR1 is a variable resistor for adjusting the offset voltage of the amplifier 111
  • VS is the power supply
  • V is the offset voltage.
  • the conventional photoelectric sensor as shown in Fig. 1 emits light by itself and detects an object based on the amount of reflected light, so that the detection performance greatly depends on the amount of projected light. Since the amount of emitted light is determined by the current flowing through the light emitting element 111, it is difficult to reduce current consumption. On the other hand, when the sensor is driven by a battery, it is difficult to drive the sensor for a long time. Had a problem that it was difficult to reduce heat generation.
  • thermopile 1 1 1 1 1 1 since the output from the thermopile 1 1 1 1 appears as an integrated signal, the amplifier 1 1 1 3 must perform DC amplification, and the noise cut is Since it is necessary to perform only with a pass filter and cannot pass through a high pass filter, there is a problem that it is weak to low frequency noise.
  • thermopile 111 since the output signal of the thermopile 111 is very small and equal to or less than the offset voltage V of the amplifier 111, when the DC is amplified by the amplifier 113, the offset voltage V Cannot be ignored.
  • a high-precision amplifier with a small off-voltage V is used for the amplifier 111 or an off-voltage adjustment circuit V R 1 as shown in Fig. 2 is required.
  • the former has a problem that the price of the amplifier is high, and the latter has a problem that an adjustment process is required at the time of assembling, and the manufacturing cost is increased.
  • one of the objects of the present invention is to provide a device for detecting an object or the like having a low current consumption and a simple configuration.
  • Another object of the present invention is to provide a detection device for an object or the like capable of removing high-frequency noise, offset noise of an amplifier, and other external noise.
  • Still another object of the present invention is to reduce the size, cost, and current consumption of the sensor, and to provide a highly accurate circuit. It is possible to provide a device for detecting objects, etc., which is not required.
  • Still another object of the present invention is to provide a passive object detection device capable of securing a high S / N ratio and suppressing costs.
  • Still another object of the present invention is to provide a passive-section-type object detection device capable of reducing the scale of a signal processing circuit.
  • Still another object of the present invention is to provide an object detector which can surely detect an object to be detected, can reduce a light emission current, and can reduce current consumption.
  • a detection device for optically detecting the presence or absence of an object, comprising: an optical system; a photodetector configured to form a plurality of light receiving fields by a photodetector that receives light passing through the optical system; and a photodetector.
  • a light intensity fluctuation detector that detects the light intensity fluctuation between a plurality of light-receiving fields based on the output from
  • the object detection device does not have a light projecting unit as in the related art, and detects an object based on a change in light amount from a plurality of light receiving fields. As a result, an object detection device having a simple configuration with low power consumption and current consumption can be provided.
  • the optical system includes an optical fiber. Since an optical fiber is used, a plurality of light receiving fields corresponding to a plurality of light detecting elements can be set freely.
  • a passive detection device that detects the presence or absence of an object or the like includes a detection element that detects a physical quantity, an amplifier that amplifies an output from the detection element, and a detection element that detects the output from the amplifier. It includes a determination unit that determines the state of the target in binary, and a switch that periodically interrupts the transmission of the output of the detection element to the amplifier.
  • the output from the detection element is converted into a pulse signal by a switch and an amplifier, and the pulse signal is output as a more reliable binary signal by a determination unit according to the presence or absence of a detection target.
  • the determination unit may change the output when the magnitude of the signal for each pulse pulsed by the switch and amplified by the amplifier continuously exceeds a predetermined value a predetermined number of times. .
  • the determining unit includes a first comparing unit that is pulsed by the switch and that pulses the signal amplified by the amplifier into a binary value based on a magnitude relationship with a predetermined reference value; An integration unit that integrates the output of the comparison unit and a second comparison unit that binarizes the output of the integration unit based on a magnitude relationship with a predetermined reference value and outputs the binary value.
  • the detection device may include a filter that passes a signal in a band including the switching frequency of the switch.
  • the signal generated according to the physical quantity of the detection target by the detection element is switched into a pulse signal and amplified by an amplifier, and from the output of the amplifier, the state of the detection target is binarized by the judgment unit and output. . Since the signal size is binarized for each pulse, the pulse width is small and the wave height is large. The detector does not respond to impulsive noise. Therefore, a high SZN ratio can be secured. In addition, even if the signal obtained by the detection element is a very small signal, it is hardly affected by the offset voltage of the amplifier or low-frequency noise, so there is no need for an expensive high-precision amplifier or an offset adjustment step during manufacturing. become. As a result, costs can be reduced.
  • a passive object detector for detecting an object to be detected by receiving light from the object to be detected comprises a plurality of light receiving fields, A plurality of light receiving elements receive light from an object to be detected or a background object present in the field of view, and a photodetector that outputs detection signals of a plurality of systems based on the received light amount.
  • a gate that time-divisions each, a pulse generator that supplies a pulse signal to the gate so that each detection signal passes through this gate asynchronously and time-divisionally,
  • a passive detector for detecting an object to be detected by receiving light from the object to be detected comprises: a plurality of light receiving fields; A light receiving device that receives light from a detected object or a background object within the device and outputs a light receiving signal based on the received light amount, and a determining unit that determines the presence or absence of the detected object based on the output of the light receiving device. And an auxiliary projector for projecting auxiliary light toward the inside of the light receiving field according to the output of the determination unit.
  • auxiliary light is used to detect the object to be detected, so that it is possible to detect the object reliably. Wear. Also, since there is no need to constantly emit light, it is possible to reduce the light emission current and reduce the current consumption. In addition, by reducing the current consumption, when the object detector is driven by the battery, the life of the battery can be extended. As a result, the number of battery replacements can be reduced, and installation in a place without power supply is possible.
  • the object detection device includes:
  • a photodetector that outputs two light-receiving signals, a differential calculator that calculates the difference between the two light-receiving signals, and an object based on a comparison between the output of the differential calculator and two thresholds.
  • a judgment unit for judging the presence or absence, an adjuster for adjusting the output of the differential arithmetic unit so that the output of the differential arithmetic unit becomes a predetermined value in an initial state, and a differential operation by the adjuster
  • An adjustment amount detector that detects the amount of output adjustment, and a threshold setting device that sets two thresholds or a hysteresis width given to each threshold based on the output of the adjustment amount detector. including.
  • the noise component of the differential output becomes almost zero.
  • the noise component of the differential output will be the difference between the two light-receiving signals, that is, the magnitude of the signal component of the differential output It grows accordingly. Therefore, in the initial setting, the difference in the initial state
  • the adjustment is performed by the adjuster so that the output of the dynamic operation unit becomes a predetermined value. The adjustment amount at that time is detected by the adjustment amount detector.
  • the threshold value or the hysteresis width can be appropriately set according to the amount of change in the differential output of the differential operator at the time of the initial setting. Then, the threshold is set above and below the detection signal, and when the level deviates from that level, a signal indicating that the object has been detected is output, so that the object can be detected regardless of the output change direction. As a result, it is possible to provide a high-sensitivity passive detection device that can perform appropriate sensitivity adjustment independent of the use environment and the like.
  • FIG. 1 is a diagram showing the configuration of a conventional reflective photoelectric sensor.
  • FIG. 2 is a configuration diagram showing an example of a conventional detection device.
  • FIG. 3 is a block diagram showing the basic principle of the object detection device according to the first embodiment.
  • FIG. 4A is a diagram showing a configuration of a light receiving unit of the detection device according to one embodiment of the present invention.
  • FIGS. 5A to 5D are a diagram showing a configuration of a light receiving unit according to Example 1a and a light intensity distribution diagram on a PSD.
  • FIG. 6 is a block diagram of the signal processing unit according to the embodiment 1a.
  • 7A to 7D are a configuration diagram of a light receiving unit, a light intensity distribution diagram on a PSD, and a block configuration diagram of a signal processing unit according to Example 1b.
  • FIG. 8 is a block diagram of the light receiving unit and the signal processing unit according to the embodiment 1c.
  • FIG. 9 is a block diagram of a signal processing unit according to a modification of the embodiment 1c.
  • FIG. 10 is a block diagram of a light receiving unit and a signal processing unit according to Embodiment 1d.
  • FIG. 11a is a block diagram of the light receiving unit and the signal processing unit according to the embodiment 1e.
  • FIG. 11b is a block diagram of a modification of the embodiment 1e.
  • FIG. 12 is a block diagram when a division circuit is used for the signal processing of the embodiment 1e.
  • FIG. 13 is a diagram illustrating a configuration of a detection device according to a modified example of Example 1f.
  • FIG. 14 is a configuration diagram of an apparatus according to Example 1g.
  • FIG. 15 is a configuration diagram showing a modification of the embodiment 1g.
  • FIG. 16 is a configuration diagram of an apparatus according to Example 1h.
  • Figure 17 shows the spectral distribution of various light sources.
  • FIG. 18 is a view showing a modification of the embodiment 1h.
  • FIG. 19a is a diagram showing the configuration of the device according to Example 1i
  • FIG. 19b is a circuit diagram thereof.
  • FIG. 20a is a diagram showing the configuration of the device according to the embodiment 1j
  • FIG. 20b is the circuit diagram.
  • FIG. 21a is a diagram showing the configuration of the device according to Example 1k
  • FIG. 21b is a circuit diagram thereof.
  • FIG. 22A is a diagram showing the configuration of the device according to Example 1m
  • FIG. 22B is a circuit diagram thereof.
  • FIG. 23A is a diagram showing the configuration of the device according to Example 1n, and FIG. 23B is a circuit diagram thereof.
  • FIG. 24 is a diagram illustrating a detection device according to Example 1o.
  • FIGS. 25a to 25i are time charts of the operation of the embodiment 1o.
  • FIG. 26 is a circuit diagram showing a specific example of a judgment unit including a comparison circuit, an integration circuit, and an output circuit.
  • FIG. 27a to Figure 27d are time charts for the above operation.o
  • FIG. 28 is a circuit diagram showing another example of the determining unit.
  • FIGS 29a to 29e are time charts of the above operation.
  • FIG. 30 is a circuit diagram showing still another example of the judgment unit.
  • FIGS. 31a to 311 are time charts of the above operation.
  • FIG. 32 is a diagram illustrating a basic configuration of a passive-type detection device according to the second embodiment.
  • FIG. 33 is a configuration diagram of a photodetector according to Embodiment 2a.
  • Figures 34a to 34h are time charts of Example 1a. O
  • FIG. 35a is a diagram showing a configuration example of a cycle Z duty ratio variable circuit for generating a switching signal SG
  • FIG. 35b is a timing chart thereof.
  • Fig. 36 is a diagram showing the configuration of the detection device according to the embodiment 2b.
  • FIG. 37 is a diagram showing the relationship between the circuit components and the parallel capacitance C i of the capacitor in Example 2b.
  • FIG. 38 is a circuit diagram showing a specific example of the above-described comparison circuit and a determination unit including a determination unit.
  • Fig. 39a to Fig. 39 d are the timing charts for the above operation.
  • FIG. 40 is a circuit diagram showing another example of the determining unit.
  • Figure 41a to Figure 41e are time charts for the above operation.
  • FIG. 42 is a circuit diagram showing still another example of the judgment unit.
  • FIGS. 43a to 431 are time charts of the above operation.
  • FIG. 44 is a diagram showing the configuration of the infrared detector according to the embodiment 2c.
  • FIG. 45 is a diagram illustrating a configuration of a detection unit of a temperature detector according to Embodiment 2d.
  • FIGS. 46a to 46d are a plan view and a cross-sectional view, an equivalent circuit diagram, and signals showing a configuration of the pressure detector according to the embodiment 2e.
  • FIG. 3 is a diagram illustrating a configuration of a processing unit.
  • Figures 47a to 47h are time charts of Example 2c.
  • FIG. 48 is a diagram illustrating the configuration of the detection unit of the temperature sensor according to Embodiment 2f.
  • FIG. 49 shows a configuration according to Example 2g.
  • FIG. 50 is a diagram showing a configuration according to Example 2h.
  • FIG. 51 is a configuration diagram of a detector according to Embodiment 3a.
  • FIGS. 52a to 52i are time charts of the detection operation of the detector according to the embodiment 3a.
  • FIG. 53 is a configuration diagram of a detector according to Embodiment 3b.
  • FIG. 54 is a diagram showing a configuration near the switch of the detector according to the embodiment 3c.
  • FIG. 55 is a diagram showing a configuration near the switch of the detector according to Embodiment 3b.
  • FIG. 56 is a configuration diagram of a detector according to Embodiment 3e.
  • FIGS. 57a to 57m are time charts of the detection operation of the detector according to Example 3e.
  • FIG. 58 is a configuration diagram of a detector according to Embodiment 3f.
  • Figs. 59a to 59i are time charts of the detection operation of the detector according to the embodiment 3f.
  • FIG. 60 is a configuration diagram of a detector according to Embodiment 3g.
  • FIGS. 61a to 61j are time charts of the detection operation of the detector according to the third embodiment.
  • Figures 62a to 62j are time charts of the detection operation of the detector according to Example 3h.
  • FIG. 63 is a configuration diagram of a detector according to Embodiment 3i.
  • FIGS. 64a to 64j are time charts of the detection operation of the detector according to Embodiment 3j.
  • FIG. 65 is a configuration diagram of a detector according to Embodiment 3j.
  • FIGS. 66a to 66j are configuration diagrams of the detector according to the embodiment 3j.
  • FIG. 67 is a configuration diagram of a detector according to Embodiment 3k.
  • Fig. 68a to Fig. 68j are time charts of the detector field detection operation according to embodiment 3k.
  • FIG. 69 is a configuration diagram of a detector according to Embodiment 31.
  • FIG. 70 is a configuration diagram of a detector according to Embodiment 3m.
  • FIG. 71 is a configuration diagram of an infrared sensor according to Embodiment 3n.
  • FIG. 72 is a configuration diagram of the temperature sensor according to the third embodiment.
  • FIG. 73A is a plan view and a sectional view of a pressure sensor according to Example 3p, and
  • FIG. 73B is a circuit diagram of the sensor.
  • FIG. 74 is a configuration diagram of a gas sensor according to Embodiment 3q.
  • FIG. 75 is a block diagram showing a basic configuration of the detector according to the fourth embodiment.
  • FIGS. 76a to 76e are diagrams showing the distribution of the amount of received light on the photodetector.
  • FIG. 77 is a block diagram showing the internal configuration of the comparison circuit and the discrimination circuit.
  • FIGS. 78a to 78p are time charts of the output of the differential amplifier and the operation of the comparison circuit and the discrimination circuit.
  • Fig. 79 is a block diagram showing the configuration of the detector in the case where the number of reflecting surfaces is greater than the number of receiving and emitting light.
  • FIG. 80 is a diagram showing a change in the amount of received light with respect to the position of the detection object.
  • Fig. 81 is a block diagram showing a detection circuit that uses a battery as the power supply and supplies power intermittently.
  • Figure 82 is a block diagram of the detector when power is supplied to the storage battery by the solar cell.
  • Fig. 83 is a block diagram showing the configuration of a detector that supplies power to a storage battery by hydroelectric power generation.
  • Figure 84 is a schematic diagram showing a method for adjusting the position of the detector.
  • FIG. 85 is a diagram showing the configuration of a light receiving section having a built-in LED for position adjustment.
  • FIG. 86a shows a reflector
  • FIG. 86b shows a configuration of a four-divided PD.
  • Fig. 87 shows the optical system with an aperture between the photodetector and the lens.
  • Fig. 88 is a diagram showing the arrangement of detectors in the parking lot system.
  • Figure 89 is a block diagram showing the configuration of the parking lot system.
  • Figure 90 is a block diagram showing the configuration of the vehicle detection system on the road surface.
  • FIG. 89 is a block diagram showing the configuration of the parking lot system.
  • Figure 90 is a block diagram showing the configuration of the vehicle detection system on the road surface.
  • Figure 91 is a block diagram showing the configuration of the system for measuring the number of axles.
  • Figure 92 is a block diagram showing the configuration of the passgate system.
  • Figure 93 shows the arrangement of detectors in the passgate ⁇
  • Figure 94 is a block diagram showing the configuration of the number-of-entrants management system.
  • FIG. 95 is a block diagram showing the configuration of the positioning device.
  • Figure 96 shows the analog output of the detector.
  • FIG. 97 is a schematic diagram showing the configuration of the length measuring device.
  • Figure 98 is a block diagram showing the configuration of the monitoring system.
  • FIG. 99 is a schematic diagram showing the configuration in the fifth embodiment.
  • FIG. 100 is a diagram showing an area sensor using the detector according to the fifth embodiment.
  • FIG. 101 is a diagram showing a specific usage example of the area sensor.
  • FIGS. 102 to 104 are diagrams illustrating examples of use of an area sensor using a detector according to the fifth embodiment.
  • FIG. 105 is a configuration diagram of a detector according to Embodiment 6a.
  • FIGS. 106a to 1061 are timing charts of the detection operation of the detector according to the embodiment 6a.
  • Fig. 107a shows the auxiliary light emitting part of the detector according to Example 6a
  • Fig. 107b shows the detector of Example 6a. It is a circuit diagram and a logic diagram of a light emission trigger circuit.
  • FIG. 108 is a configuration diagram of a detector according to Embodiment 6b.
  • FIG. 109 is a configuration diagram of a detector according to Embodiment 6c.
  • FIGS. 110a to 110n are time charts of the detection operation of the detector according to the embodiment 6c.
  • FIG. 11a is a time chart of the detection operation of the detector according to Example 6c
  • FIG. 11b is a diagram showing the characteristics of the detection operation.
  • FIG. 112 is a block diagram showing a configuration of a detector according to Example 6d.
  • Figures 1 1 3 3 to 1 1 3 e are given by the time chart of the detection operation.
  • FIG. 114 is a diagram showing the configuration of the output inhibition circuit.
  • FIG. 115 is a configuration diagram of a detector according to Example 6e.
  • FIG. 116 is a configuration diagram of a detector according to Example 6f.
  • FIG. 117 is a diagram showing a configuration of a detector according to Example 6g.
  • Fig. 118 is a circuit diagram of a detection circuit equipped with both output prohibition circuits, that is, output prohibition at power reset and output prohibition at voltage drop.
  • Figure 1 19 shows the time chart of the detection operation.
  • FIGS. 12 and 0 are circuit diagrams of the warning display circuit of the detector according to Example 6h.
  • FIG. 121 is a configuration diagram of a comparison unit, a calculation unit, and a determination unit of the detector according to the embodiment 6i
  • FIG. 122 is a circuit diagram of an output inhibition circuit.
  • FIG. 123 is a block diagram showing the configuration of the detector according to Embodiment 6j.
  • FIGS. 124a to 124d are timing charts of the detection operation.
  • FIG. 125 is a block diagram of a detection device according to Example ⁇ a.
  • FIGS. 126a to 126i are time charts of the operation according to the embodiment 7a.
  • FIG. 127 illustrates the basic concept of the initial setting.
  • Fig. 128a and Fig. 128b are a circuit diagram when the reference voltage of the operation calculator is changed and a diagram showing the relationship between the reference voltage and the two threshold values at that time.
  • c and FIG. 128 d are a circuit diagram when the amplification factor of the amplifier circuit is changed and a diagram showing the relationship between the reference voltage and the two thresholds at that time.
  • Fig. 12a and Fig. 12b are a circuit diagram in the case of attenuation of the received light signal and a diagram showing the relationship between the reference signal and the two thresholds at that time.
  • Fig. 1229d is a circuit diagram in the case of changing the DC offset value of the amplification circuit output and a diagram showing the relationship between the reference voltage and the two thresholds at that time.
  • FIG. 130 is a block diagram of a detection device according to Example 7b.
  • FIG. 13 1 is a specific circuit diagram for the initial setting in the embodiment 7a.
  • Fig. 13 2 is a main circuit diagram when only the hysteresis width is changed at the time of initial setting.
  • Fig. 13 3 is a main circuit diagram when only the threshold is changed at the time of initial setting.
  • FIG. 13A is a partial circuit diagram showing a modification of the change amount detection unit at the time of initial setting
  • FIG. 13B is a time chart for explaining its operation.
  • Fig. 135 is a main part circuit diagram when the threshold value is changed at the time of initial setting.
  • FIG. 136 is a circuit diagram of a light receiving section of a detection device according to Embodiment 7c of the present invention.
  • FIGS. 137a to 137g are time charts for explaining the operation.
  • detection device 100 does not have a light projecting unit, but includes a light receiving unit and its signal processing unit.
  • the plurality of light receiving elements 101, 102 receive light from the detected object in the plurality of light receiving fields, and the signal processing unit receives signals from the light receiving elements 101, 102.
  • the circuit is composed of 1 1 and 3.
  • the output circuit 113 converts the output of the integration circuit 112 into a binary value based on a magnitude relationship with a predetermined reference value.
  • Fig. 4a shows the configuration of the light receiving sections 101 and 102.
  • the light-receiving elements 101, 102 are composed of lenses 116, 117, which form a plurality of light-receiving fields, and a position-sensing device (position detecting element: hereinafter, referred to as PSD). , 1 19.
  • PSD position detecting element
  • the background 1 can be detected. Before 4, the presence or absence of the detected object 15 that did not exist in the initial state is detected.
  • 5a to 5d show the light receiving portion and P according to Embodiment 1a of the present invention.
  • the receiving field of view a is constituted by the lens 1 16 and the PSD 1 18, and the receiving field b is constituted by the lens 1 17 and the PSD 1 19.
  • These fields are illuminated by natural scattered light (illumination light, sunlight, etc.) from the surroundings.
  • the background images illuminated by natural scattered light are reflected on the PSDs 118 and 119 through the lenses 116 and 117, respectively.
  • the light intensity distribution on the PSD is uniform, as shown in Fig. 5b. Become a heart. If there is contrast in the background, the initial setting is performed so that the position of the center of gravity G becomes the center of the PSD.
  • the reflected light from the detection object 15 is larger than the reflected light from the background 14.
  • the position of the center of gravity G moves toward the image on the detection object 15 side.
  • the movement amount is ALa in PSD118, and ALB in PSD119.
  • the reflected light from the detection object 15 is smaller than the reflected light from the background 14.
  • the position G of the center of gravity moves toward the image on the background side.
  • FIG. 6 shows a block configuration of the signal processing unit according to the embodiment 1a.
  • Each PSD outputs a photocurrent corresponding to the light input power to the PSD and the position of the optical center of gravity.
  • the currents I 1 and I 2 are output from PSD 118, and the currents I 3 and I 4 are output from PSD 119. Is output.
  • Each of these photocurrents is converted to a voltage by the I conversion circuit.
  • the current I 1 is set to the voltage V 1 by the I / V conversion circuit 1 2 1
  • the current I 2 is set to 1 V conversion circuit 1 2 2 to voltage V 2
  • the detection device for the object and the like in Example 1a does not emit light by itself, operates using natural scattered light as a light source, and receives an object that did not exist in the initial state into the light reception field. Since the position of the optical center of gravity on the element fluctuates and the amount of the fluctuation is detected to detect the presence or absence of an object, current consumption can be easily reduced. However, if there is a change in either the light-receiving field a or the light-receiving field b shown in Fig. 5a, an output can be obtained, so that the light-receiving field can be widened compared to the case with one receiver, and Since the amount of movement of each PSD is added at the overlapping part of, the sensitivity is doubled.
  • FIGS. 7A to 7D show block diagrams of a light receiving unit, a light intensity distribution on a PSD, and a signal processing unit according to the embodiment 1b.
  • a light receiving field is constituted by one lens 116 and a PSD 118. This field is illuminated by natural scattered light (illumination light, sunlight, etc.) from the surroundings.
  • PSD 118 reflects the background image illuminated by natural scattered light through lens 16. If there is no contrast in the background 14, the light intensity distribution on the PSD is uniform as shown in Fig. 7b, and the light center of gravity G of the PSD becomes the center of the PSD. If the background 14 has contrast, the initial settings are made so that the center of gravity G is the center of the PSD.
  • the PSD 118 outputs a photocurrent according to the light input power to the PSD 118 and the position of the optical center of gravity, and the PSD 118 outputs the photocurrents I 1 and I 2. These photocurrents are converted to voltages by the IZV converters 1 2 1 and 1 2 2. Converted to V2. The voltages V 1 and V 2 are subtracted by the differential amplifier circuit 107 to obtain (VI ⁇ V 2). This result is compared with a preset threshold value by a comparator circuit 110, passes through an integration circuit 112 for noise removal, and is output from an output circuit 113.
  • the image is reflected on the PSD, the position of the center of gravity G moves, and the Each output photocurrent is different from the initial state where the background image is shown.
  • P when there is no detected object 15 (the background is detected) If the output current of SD18 is I11, 121, the voltage after IZV conversion is VII, V21, and the voltage after differential amplification is (VII-V21). If the output current of PSD 18 with sensing object 15 is I12 and 122, the voltage after IV conversion is V12 and V22, and the voltage after differential amplification is (V12-V22).
  • the threshold value of the comparator circuit 10 is set above and below the output value (VII-V21) of the differential amplifier circuit 107 when there is no detection object 15. Signals that cross this threshold value are set. For example, when (V12-V22) is input, an ON signal is output from the comparison circuit 110, and the signal passes through the integration circuit 112 for noise removal and then from the output circuit 113. An intrusion signal of the detected object is output.
  • the detection device of Example 1b does not emit light by itself, operates using natural scattered light as a light source, and when an object that was not present in the initial state enters the light receiving field, the light weight on the light receiving element Since the position of the heart fluctuates and the difference of the photocurrent according to the fluctuation amount is detected to detect the presence or absence of an object, current consumption can be easily reduced. This is advantageous in terms of size and cost as compared with those having a plurality of light receivers.
  • FIG. 8 shows a block configuration of the light receiving unit and the signal processing unit according to the embodiment 1c.
  • the receiving field of view 1 is composed of the lens 1 16 and the PD 1 of the two-part photodiode (PD) 1 3 1
  • the receiving field 2 is composed of the lens 1 16 and the PD 2 of the two-part 13 1 Lens 1 1 7 and split by PD 3 of PD 1 3 2
  • An optical field of view 3 is constituted, and a light receiving field of view 4 is constituted by the lens 1 17 and the PD 4 of the two divided PDs 13 2.
  • These fields are illuminated by natural scattered light (illumination light, sunlight, etc.) from the surroundings.
  • Each PD outputs a photocurrent according to the light input power to the PD, PD 1 outputs I 1, PD 2 outputs I 2, PD 3 outputs I 3, and PD 4 outputs I 4 .
  • These photocurrents are converted into voltages by the IZV conversion circuits 1 2 1 to 1 2 4, and the current I 1 is V 1 by the I conversion circuit 1 2 1, and the current I 2 is V 2 by the I / V conversion circuit 1 2 2 2
  • the current I 3 is converted to V 3 by the IZV conversion circuit 123 and the current I 4 is converted to V 4 by the IV conversion circuit 124.
  • the voltages V 1 and V 2 are subtracted by the differential amplifier circuit 107 to obtain (V 1 ⁇ V 2), and the voltages V 3 and V 4 are subtracted by the differential amplifier circuit 108 to obtain (V 3 ⁇ V 4). These are further subtracted by the differential amplifier circuit 109, and the output is
  • the background image illuminated by the naturally scattered light is reflected through the lens on the two-divided PDs 13 1 and 13 2. If there is no contrast in the background, the amount of light incident on PD 1 and PD 2 and the amount of light incident on PD 3 and PD 4 are equal, and the output of the differential amplifier circuit 109 becomes zero. If there is contrast in the background, the amount of light incident on PD 1 and PD 2 and PD 3 Since the amount of light incident on PD 4 is different and the output of the differential amplifier circuit 109 does not become 0, the initial setting is made so that this becomes 0.
  • the reflected light from the detection object 15 will be larger than the light reflected from the background. Then, the light intensity P in the portion where the image of the detection object 15 is reflected is large, and the light intensity P in the portion where the background is reflected is small. Therefore,
  • the reflected light from the detection object 15 is smaller than the light reflected from the background.
  • the light intensity P in the part where the image of the detected object is reflected is small, and the light intensity P in the part where the background is reflected is large. Therefore,
  • the detection device of Example 1c does not emit light by itself, and operates using naturally scattered light as a light source.
  • the balance of the light amount is lost, and the fluctuation amount is detected to detect the presence or absence of the detected object, so that current consumption can be easily reduced.
  • an output can be obtained if there is a change in any of the light-receiving fields 1, 2, 3, 4, and so on.
  • the object can be detected, and in the overlapping part of the field of view, the amount of change in the amount of light of each PD is added, so the sensitivity is doubled.
  • FIG. 9 shows a block configuration of a signal processing unit according to a modification of the embodiment 1c.
  • V 1 and V 2 are subtracted by the differential amplifier circuit 107 to obtain (VI ⁇ V 2) and added by the adder 107 ′ to obtain (V 1 + V 2).
  • V 3 and V 4 are subtracted by the differential amplifier circuit 108 to obtain (V 3 — V 4), and are added by the adder 108 ′ to obtain (V 3 + V 4).
  • each of the differences is divided by the sum in the divider circuits 1 3 5 and 1 3 6 to obtain (V 1 -V 2) / (V 1 + V 2), (V 3 -V 4) / (V 3 + V 4), and is subtracted by the differential amplifier circuit 13 7 to obtain (VI-V 2) / (V 1 + V 2)-(V 3-V 4) / (V 3 + V 4). Since the output ratio is handled by using such a division process, the object can be accurately detected even when the entire field of view becomes bright or dark.
  • FIG. 10 shows a block diagram of a light receiving unit and a signal processing unit according to the embodiment 1d.
  • a two-divided PD 140 is used as a light receiving element, and the divided PDs are designated as PDa and PDb.
  • the light receiving field of view a is constituted by PD a and the lens 1 16
  • the light receiving field b is constituted by PD b and the lens 1 16.
  • These fields are illuminated by natural scattered light (illumination light, solar light) from the surroundings.
  • the background image illuminated by natural scattered light is reflected on the PD a and b through the lens 16. If there is no contrast in the background, the light intensity distribution on the PD is uniform, and the photocurrents output from PD a and b are equal. If there is contrast in the background, the photocurrents output from PD a and b are different.
  • the image is reflected on PD 10 and the photocurrent output from PD a and b is reflected in the background image. Is different from the initial state.
  • the output of PD a is I al
  • the output of PD b is I bl
  • the output of PD a with sensing object is I a2
  • the output of PD b is I b2 You.
  • the photocurrent output of PD a is converted to a voltage Va by an I / ⁇ converter circuit 121
  • the photoelectric output power of PD b is converted to a voltage by an I / V converter circuit 122.
  • V b Converted to V b. If there is no object 15, Val and Vbl are obtained. If there is 15 object, Va2 and Vb2 are obtained. These are subtracted by the differential amplifier circuit 109, and if there is no sensing object 15 (V al-Vbl), and if there is a detected object 15 (Va2-Vb2).
  • the threshold value of the comparator circuit 110 is set above and below the output value (Val-Vbl) of the differential amplifier circuit 109 when there is no sensing object 15. Signals that cross this threshold, for example (Va2 — When Vb2) is input, an ON signal is output from the comparator circuit 110, and the signal passes through the noise removal integration circuit 112, and then enters the detection object 15 from the output circuit 113. Is output.
  • the detection device of Example 1d does not emit light by itself, operates using natural scattered light as a light source, and when an object that did not exist in the initial state enters the light receiving field, the light detecting field Since the amount of light fluctuates and the amount of fluctuation is detected to detect the presence or absence of an object, current consumption can be easily reduced. This is advantageous in terms of size and cost as compared with those having a plurality of light receivers.
  • FIG. 11a shows a block configuration of the light receiving unit and the signal processing unit according to the embodiment 1e.
  • two PDs 14 1 and 14 2 are used as light receiving elements.
  • the light receiving field of view a is constituted by the PD 141 and the lens 1 16
  • the light receiving field b is constituted by the PD 142 and the lens 117. These fields of view are separated from each other, and both fields are irradiated with natural scattered light (illumination light, solar light) from the surroundings.
  • the background image illuminated by natural scattered light is output to the PDs 14 1 and 14 2 through the lenses 1 16 and 1 17. It is reflected.
  • the light intensity distribution on the PD is uniform, and the photocurrents output from the PDs 141 and 142 are equal. If there is contrast in the background, the photocurrent output from PDs 14 1 and 14 2 will be different.
  • the image is projected on the PD 142, and the photocurrent output from the PD 142 is different from the initial state where the background image is projected.
  • the output current of PD 14 1 in the background is Ial
  • the output current of PD 14 2 is I bl
  • the current remains at Ial, and the output current of PD142 becomes Ib2.
  • the photocurrent output of PD 14 1 is converted to voltage Va by the I / V converter 121, and the photocurrent output of PD 14 2 is converted by the IV converter 12 2.
  • Val and Vbl are obtained when there is no sensing object 15, and Val (no change) and Vb2 are obtained when there is a sensing object. These are subtracted by the differential amplifier circuit 109 to obtain (Val-Vbl) when there is no detected object 15 and (Val-Vb2) when there is a detected object.
  • the threshold value of the comparator circuit 110 is set above and below the output value (Val—Vbl) of the differential amplifier circuit 109 when no object is detected, and a signal that crosses the threshold value, for example, (Val— When Vb2) is input, an ON signal is output from the comparator circuit 110, and the signal passes through the integration circuit 112 for noise elimination.
  • the intrusion signal of the detection object 15 is output from the circuit 1 13.
  • the detection device of Example 1e does not emit light by itself, operates using natural scattered light as a light source, and when an object that did not exist in the initial state enters the light-receiving field, the light-receiving field Since the amount of light fluctuates and the amount of fluctuation is detected to detect the presence or absence of an object, current consumption can be easily reduced. Also, in this case, since the light receiving fields are separated from each other, there is an advantage that the light receiving field can be widened and a larger object can be detected.
  • optical fibers 151, 152 are provided instead of lenses 116, 117.
  • the other parts are the same as in FIG. 11B.
  • the light-receiving field can be set freely.
  • FIG. 12 is a block diagram in the case where a division circuit is used for the signal processing of the embodiment 1e and a power supply circuit is added. If a division circuit 144 is used in place of the differential amplifier circuit and the ratio between the voltages Va and Vb is calculated, the output will be V bl ZV al if there is no sensing object, and if there is an sensing object, Since V b2 ZV al, this ratio does not change even if the entire field of view becomes brighter or darker at the same ratio, and is more resistant to changes in natural scattered light.
  • battery 145 is used as the power source. This eliminates the need for electrical work and allows installation of the detector in places where there is no commercial power supply, eliminating the restrictions on installation locations.
  • the detection device 51 is an I / V conversion circuit 121, 122, a division circuit 144, a comparison circuit 110, an integration circuit 112, and an output circuit 111. 3 and the like, and the power supply thereto is performed by a power supply circuit 146 which is intermittently supplied by the clock of the oscillation circuit 111. As a result, the current consumption can be further reduced.
  • FIG. 13 shows another configuration of the detection device 51 shown in FIG.
  • a solar battery 52 is used as a power supply for the detector 51 having the above-described configuration, and the power is supplied to a battery 53 including a large-capacity capacitor or a secondary battery.
  • a battery 53 including a large-capacity capacitor or a secondary battery.
  • FIG. 14 shows the configuration of the device according to Example 1g.
  • the present embodiment is a detection device that detects a person's hand or the like that has entered the wash basin 55 with the detector (sensing unit) 51 and absorbs water into the faucet 56.
  • a detector (sensing part) 51 is installed near the wash basin 55.
  • a solenoid valve (valve) 5 7 disposed on the water passage is provided.
  • a valve open signal for is input to the control unit (valve drive circuit) 58, and the output drives the solenoid valve 57 to open. Opening of this solenoid valve 5 7 Perform more spouting.
  • a valve close signal is output from the detector 51, and the control unit 58 closes the solenoid valve 57 to stop water.
  • a hydraulic generator 59 with an impeller is arranged on the water channel, and the power generated by the generator 59 is charged into the storage battery 60, and the output is used as the power source for the detector 51.
  • the impeller is rotated by water force, and the generator 59 outputs a current with a frequency corresponding to the rotation speed.
  • This output current is full-wave rectified by the rectifier circuit 61 and the charging circuit 6 2. It is supplied to the storage battery 60 via the diode 63, and is charged.
  • the detector 51 is operated by the charged power. According to this configuration, since there is no need to supply power from the outside, there is an effect that it is not necessary to install the detector 51 in a non-power supply place or to perform electrical work.
  • the detector 51 of the present embodiment As shown in FIG. 15, the detector 51 of the present embodiment
  • FIG. 16 shows the configuration of the device according to Example 1h.
  • the light receiving element 67 of the detector 51 directly receives sunlight, the light output of the light receiving element 67 is saturated by the strong light, and the light output of the light receiving element 67 changes with respect to the change of the optical signal due to the intrusion of the object into the light receiving field. Loses sensitivity. Therefore, the illuminator 68 in the space is used as the light source of the detector 51, and of the light emitted by the illuminator 68, only light in a predetermined wavelength range including a wavelength range having a large light amount is transmitted.
  • Figure 17 shows the spectral distribution of various light sources.
  • an optical filter that cuts light of 700 nm or less is used, and when a fluorescent lamp is used as the light source, 550 to 65 Use an optical filter that cuts light other than 0 nm light.
  • FIG. 18 a configuration in which an optical filter 69 is arranged on the front of the lenses 116 and 117 is also conceivable.
  • the optical filter 69 may have a detachable structure so that the optical filter 69 can be attached later according to the wavelength of the illumination light in the space of the detector 51.
  • FIGS. 19a and 19b show the configuration and circuit of the device according to Example 1i.
  • the detector 51 of the present embodiment is installed around a display device 70 such as a television or a guidance display, and monitors the visual field in front of the display device 70 with the detector 51.
  • the detector 51 When a person enters the field of view, that is, when the presence of a person is detected, the detector 51 outputs a signal to turn on the power switch 71 of the display device 70, and when the person goes out of the field of view, Outputs a signal to turn off the power switch 71. Thereby, the power of the display device 70 is automatically turned on / off.
  • FIGS. 20a and 20b show the configuration and circuit of the device according to Example 1j.
  • the detector 51 of this embodiment is used for It is installed around each device 73 (hereinafter referred to as a pachinko machine) such as an ATM, a vending machine, and a vending machine, and monitors the field of view in front of it. Detection signals from the ball detection unit 74 and the detector 51 of each pachinko machine 73 are transmitted to the control unit 75.
  • the control unit 75 controls so that the ball is not ejected from the ball ejection unit 76.
  • control is performed so that transactions are not performed unless a person is detected in the field of view of the detector. This functions as a security system.
  • FIGS. 21a and 21b show the configuration and circuit of the device according to Example 1k.
  • the detector 51 of the present embodiment is installed so as to be in front of a desk 78, and when a person enters the field of view, the switch 71 of the illuminator 79 is automatically turned on, and The switch 71 of the illuminator 79 is automatically turned off when it comes off. This can save energy.
  • Figures 22a and 22b show the configuration and circuit of the device of Example 1m.
  • the detector 51 of this embodiment is installed around the door 80 in a room or toilet, and when a person enters the field of view, the switch 71 of the ventilation fan 81 is automatically turned on, and When it goes out of the field of view, the switch 71 of the ventilation fan 81 is automatically turned off.
  • the ventilation fan it can be applied to air conditioners such as air conditioners to control so that the wind does not blow in the direction where people are directly.
  • FIGS. 23a and 23b show the configuration of the device and the circuit block according to Embodiment 1n.
  • the detector 51 of this embodiment is installed so as to monitor the vicinity of the automatic door 82, and when a person enters the field of view, sends a detection signal to the motor control unit 83 to drive the motor 84. And open the automatic door 82.
  • Such an automatic door configuration is suitable for retrofitting, since the detector can operate on battery power and there are few restrictions on the mounting location as described above.
  • FIG. 24 is a configuration and a circuit diagram of the detection device according to the embodiment 1o
  • FIG. 25 is a time chart of the operation.
  • the receiving field of view 1 is composed of the lens 1 16 and the PD 1 of the two-part PD 131
  • the receiving field of view 2 is composed of the lens 1 16 and the PD 2 of the two-part PD 131
  • the lens 1 17 is composed of the PD 3 of the two-part PD 1 32
  • the receiving field of view 4 is composed of the lens 1 17 and the PD 4 of the two-part PD 132.
  • Each PD outputs a photocurrent according to the light input power to the PD, I 1 from PD 1, I 2 from PD 2, and PD 3 Outputs I 3 and PD 4 outputs I 4. These photocurrents are converted to voltages by the I conversion circuit. V 3 and 14 are converted to V 4 by the I ZV conversion circuit 124. The voltages V 1 and V 2 are subtracted by the differential amplifier circuit 107 to obtain (V 1 —V 2), and the voltages V 3 and V 4 are subtracted by the differential amplifier circuit 108 to obtain (V 3 — V 4).
  • VI to V4 include noise such as the offset voltage of the operational amplifier, the power supply low-frequency noise included in the fluorescent lamp, and the high-frequency noise generated in the light-receiving element / light-receiving circuit. Since the DC component is dominant in the received light signal, it is difficult to remove the offset voltage and low-frequency noise.
  • the output from each light receiving element is converted from a DC signal to a pulse signal. Convert.
  • the output signal waveforms of operational amplifiers 1, 4 and 2, 3 of each IZV conversion circuit are shown in Figures 25c and 25d. These signals are passed through a high-pass filter (HPF1 to HPF4) composed of capacitors C1 to C4 and resistors R5 to R8 to remove offset voltage and low-frequency noise.
  • the signal waveforms are shown in Figure 25e and 25 2.
  • high frequency noise is removed by a port-pass filter composed of capacitors C5 to C6 and resistors R9 to R10.
  • the signal waveforms of the operational amplifiers 5 and 6 are shown in Figures 25g and 25h. Noy These noise-removed signals are further subtracted by the differential amplifier circuit 109, and the output is
  • the background image illuminated by natural scattered light is reflected on the two divided PDs 13 1 and 13 2 through the lenses 1 16 and 1 17.
  • the amount of light incident on PD 1 and PD 2 and the amount of light incident on PD 3 and PD 4 are equal, and the output of the differential amplifier circuit 109 becomes 0.
  • the amount of light incident on PD 1 and PD 2 and the amount of light incident on PD 3 and PD 4 are different, and the output of the differential amplifier circuit 109 does not become 0, and Depending on the relationship between the background and the reflectance of the detection object 15, the output of the differential amplifier circuit 109 takes both positive and negative values.
  • the sensitivity setting circuit 95 sets the output V 0 in the absence of the detection object 15 so that it is the center between the threshold values V thl and V th2 (see Fig. 25i).
  • the sensitivity can be set using a variable resistor or by setting the differential output V 0 to AZD conversion and using a microcomputer.
  • the sensitivity setting may be performed inside or outside the detection device.
  • a detection object with a reflectance equal to or higher than that of the background is in the light-receiving fields of view 1 and 4
  • the light reflected from the detection object will be larger than the light reflected from the background.
  • the light intensity P in the part where the image of the object is reflected is large, and the light intensity P in the part where the background is reflected is small. Therefore,
  • V1-V2 > 0, (V3-V4) ⁇ 0, and the output of the differential amplifier circuit 109 becomes Vthl or more, which is different from the initial state. Detects intrusion. .
  • the reflected light from the detected object will be smaller than the reflected light from the background.
  • the light intensity ⁇ at the part where the image of the object is reflected is small, and the light intensity ⁇ at the part where the background is reflected is large. Therefore,
  • the two-divided PD is used. Since the balance of the amount of light entering the device is lost, the amount of change is detected, and the presence or absence of the detected object is detected, so that current consumption can be easily reduced. Also, if there is a change in any of the light receiving fields 1, 2, 3, 4 Since the detection signal is output, the field of view of the received light can be widened and a large object can be detected compared to the case where only one photodetector is used. The sensitivity is also doubled.
  • FIG. 26 shows specific examples of the comparison circuit 110, the integration circuit 112, and the output circuit 113. These circuits constitute a determination unit based on an integration method for obtaining a more reliable binary output from the pulse signal output of the differential amplifier circuit 109.
  • the variable resistor VR at the input terminal of the comparison circuit 110 corresponds to the sensitivity adjustment circuit 95, and can change the threshold value (ON / OFF level).
  • the substantial content of the output circuit 113 is a comparison circuit 113a.
  • FIG. 27a to FIG. 27d are timing charts of the operation. When the output of the differential amplifier circuit 109 exceeds the threshold value 0N level, the output of the COM 3 of the comparator circuit 110 becomes L.
  • the transistor TR5 of the integration circuit 112 is turned on by INV1, and the capacitor C2 is charged by the current I '.
  • the output of the differential amplifier circuit 109 falls below the threshold OFF level, the output of COM3 goes high.
  • the transistor TR5 is in the OFF state due to INV1, and the charge of the capacitor C2 is discharged at a predetermined time constant (C2x, R13) through the resistor R13.
  • the Chitsubasa-type amplifier has a smoothing section for DC conversion on the output side, whereas the present embodiment does not use a smoothing section and has a binary value as shown in FIG.
  • the difference is that a judgment unit including a comparison circuit for obtaining an output is used. For this reason, in the present embodiment, a specific effect of preventing malfunction due to impulse noise as described above can be obtained.
  • FIG. 28 shows a modified example of the judgment unit of the integration method.
  • the time chart of the operation is shown in Figs. 29a to 29e.
  • the transistor TR1 When the output of C0M1 of the comparison circuit 110 is L and the pulse signal SG is H, the transistor TR1 is in the 0N state and AND1 is in the L level, so that the transistor TR4 is in the OFF state. Therefore, the capacitor C 1 is charged by the current I ′.
  • the output of COM1 is H and the pulse signal SG is H, the transistor TR1 is in the 0FF state and AND1 is at the H level, so that the transistor TR4 is in the ON state.
  • the charge of the capacitor C1 is discharged at once through the transistor TR4.
  • the comparator circuit 110 outputs an L level when the output of the differential amplifier circuit 109 exceeds a predetermined threshold value 0 N level, and outputs a predetermined threshold value 0 FF level If the value is lower than, the H level is output.
  • the integrator circuit 112 is charged when the output signal of the comparison circuit 110 is at the L level, and the charged potential of the capacitor C1 changes from 0 [V] to Va (point (1) c in Fig. 29c). After that, it is discharged with a predetermined time constant (C 1 XR 5), and the charging potential changes from Va to Vb (Vb> 0) by the next input signal (point 2 in Figure 29c). The input changes from Vb to Va + Vb (point c in Fig.
  • the comparison circuit 112 continues to be charged. On the other hand, if the output of the comparison circuit 110 is at the L level (the point in FIG. 29c), the integration circuit 112 is discharged at once, and becomes 0 [V]. If the output signal of the integration circuit 112 exceeds the predetermined threshold ON level, the comparison circuit 113a outputs an H level to detect the presence of an object or the like.
  • the process When turned ON, the process can be performed without being affected by the signal history immediately before the predetermined period, and the conditions for turning ON and OFF the output can be set independently.
  • FIG. 30 shows another example of the judgment unit.
  • This determination unit is a pulse power counting system, and the comparison circuit 110 and the determination unit 96
  • Figure 31a to Figure 311 show the time chart of the operation.
  • the output signal of CAM1 is L
  • Q0 L
  • D—FF 1 to 3 are at the rising edge of clock CK
  • Q H if D input is H level
  • L D input
  • FIG. 32 is a diagram showing the basic configuration of a passive-type detection device.
  • the passive detector 200 includes a detecting element 211, an analog switch 211 receiving a detecting element switching signal SG, an IZV converter 211, and a high-pass filter.
  • the filter includes a filter 2 14, an amplifier 2 15, a low-pass filter 2 16 and a decision unit 2 17.
  • the physical quantity to be detected is detected by the detection element 211, and the detection output is periodically intermittently turned into a pulse signal by the analog switch 212, and is converted from the current to the voltage by the IZV converter 211. And then passed through the high-pass filter 2 14, the amplifier 2 15 and the low-pass filter 2 16 The signal is processed and given to the judgment unit 217.
  • the judging unit 217 outputs the state of the detection target from each pulse signal in binary. Note that the no-pass filter and the two-pass filter pass signals in the band including the switching frequency of the analog switch and allow offsets and external signals generated in the signal processing circuit to pass. Low frequency noise and high frequency noise.
  • the configuration of the photodetector according to the embodiment 2a is shown in Fig. 33, and its time chart is shown in Figs. 34a to 34h.
  • the detecting section 220 is composed of two light receiving elements (photodiodes: PD 1 and PD 2) as detecting elements 211 and two lenses 201 and 202, respectively.
  • Light-receiving field 1 and light-receiving field 2 are configured. These fields of view are separated from each other and illuminated by natural scattered light (light from sunlight, fluorescent lights, etc.).
  • light receiving circuits such as the IZV converters 2 13a and 2 13b, differential amplifiers 2 15 and filter circuits 2 14 and 16 and a comparison circuit 2 1 8.
  • the supply of power (Vs.Vr) to the discriminator 219 is performed by switching signal PG (period:
  • the switching is performed intermittently by switching the analog switches 2 12 c and 2 12 d (Fig. 34c) using the T, dew, and tee ratios tp ZT) to reduce the current consumption of the circuit.
  • PD 1 and PD 2 output the photocurrent according to the incident light
  • the photocurrent is switched by the analog switches 211a and 212b using the switching signal SG (period: T, duty ratio ts / T, synchronized with PG) (Fig. 34b).
  • the switched photocurrent is converted to a voltage by the IZV converters 21a and 21b, respectively.
  • the light receiving signals of PD1 and PD2, which dominates the DC component include the offset voltage generated by the operational amplifiers of the low-frequency noise of the AC power supply and the I / V converters 213a and 213b.
  • the received signal is given a high-frequency component by switching as shown above (Fig. 34d), and the high-pass filter at the subsequent stage is used.
  • the low frequency noise is removed by HPF 2 14 a and 2 14 b (FIGS. 34 e and 34 f). At this time, by setting the cut-off frequency of this high-pass filter lower than the switching signal SG and higher than the switching signal PG, it is possible to remove the offset voltage and power supply low-frequency noise, Can only be taken out.
  • the two light receiving signals (V 1, V 2) from which the low-frequency noise has been removed are differentially amplified by the differential amplifier 215 to obtain (V 1 ⁇ V 2) (FIG. 34 g).
  • the low-frequency noise is removed again by the high-pass filter HPF214c, and the high-frequency noise is removed by the single-pass filter LPF216, and the signal is as shown in Fig. 34h.
  • This signal is compared with a preset threshold value by the comparison circuit 218.
  • the cut-off frequency of the mouth-to-mouth filter is determined by the switching signal SG, Higher than switching signal PG.
  • the comparison circuit 218 outputs an ON signal, and based on the result, the discriminating unit 219 removes noise to remove the presence of a person or an object. It outputs a signal that informs the user.
  • the passive-type light detection device by switching the light-receiving element and removing the noise using the filter circuit at the subsequent stage, it is possible to easily and reliably extract a light-receiving signal with a high SZN ratio. It becomes possible.
  • FIG. Fig. 35a shows a configuration example of a variable cycle duty ratio circuit that generates the switching signal SG
  • Fig. 35b shows its time chart.
  • This circuit consists of a current source 231, a capacitor CO charged by the current source, a comparator COM1 that outputs a switching signal SG, etc., and a capacitor charged by the current I of the current source 231.
  • the potential V of the capacitor C 0 becomes the potential of the negative input terminal of COM 1.
  • the switching signal SG becomes H during the charging time t1 of the capacitor C0, becomes L during the discharging time t2 of the capacitor C20, and repeats the oscillation.
  • Voltages V 1 and V 2 current I and charging time t 1 can be expressed by the following equations.
  • V 1 R 2 / (R 2 + R 1 // R 3)
  • V 2 (R 2 / / 3) / (R 1 + R 2 // R 3)
  • R 1 // R 3 and the like represent the parallel resistance of the resistor R 1 and the resistor R 3, and V and be (TR 4) represent the base emitter potential of the transistor TR 4.
  • V s is the power supply voltage.
  • FIG. 35a shows that the current value I of the current source 231 can be changed by the value of the variable resistor R26.
  • formula (1) and (2) show that the charging time tl to the capacitor C 20 can be changed by the current I. Therefore, the cycle (t1 + t2) of the switching signal SG and the pulse duty ratio tlZ (tl + t2) can be changed by the value of the variable resistor R6.
  • FIG. 36 shows the configuration of the detection device according to the second embodiment, in which the pulse signal SG and the filter frequency of the high-pass filter HPF 214 are interlocked and variable.
  • the switching signal SG the output of the circuit shown in FIG. 35A may be used.
  • current source 2 3 1 binding 0] ⁇ 1 to 3 analog switch 2 12 b to 2 12 d, capacitor connected in parallel with capacitor C 1 C 2, C 3 and C 4 are used.
  • the input voltage V 0 of C 0 M 1 to 3 can be changed by the value of the variable resistor R 6.
  • the cutoff frequency f of the HPF 214 is determined by the parallel capacitance C i of the capacitors C 1 to C 4 and the resistor R 8, and V 0, which is the negative input voltage of COM 1 to 3, is as follows: Can be expressed.
  • V 0 I X R 1 1
  • FIG. 37 shows the relationship between the state of each part of the circuit and the parallel capacitance C i of the capacitors C 1 to C 4.
  • the cut-off frequency f of the HPF 2 14 is controlled by the ONZO FF control of the analog switches 2 12 b to 2 12 d controlled according to the voltage V 0, and the connection state of the capacitors C 1 to C 4 Is determined, thereby parallel It can be changed by changing the value of the capacitance C i. For example, if the variable resistor R6 is made larger, the current I becomes smaller, the charging time t1 becomes longer, and the frequency of the switching signal SG becomes smaller.
  • the voltage V 0 decreases, the parallel capacitance C i increases, and the cutoff frequency ⁇ of the HPF 214 also decreases in conjunction with the frequency of the switching signal SG.
  • the resistance R6 is reduced, the current I increases, the charging time t1 decreases, and the frequency of the switching signal SG increases.
  • the voltage V 0 increases, the parallel capacitance C i decreases, and the cut-off frequency f of the HPF 214 increases in conjunction with the frequency of the switching signal SG.
  • the period and the duty ratio of the switching signal SG can be freely changed, the external noise is reliably removed by setting the frequency to be different from the external noise in the use environment. It is possible to prevent a malfunction caused by the above.
  • FIG. 38 shows a specific example of the comparison circuit 218 and the judgment unit 219 which constitute the above judgment unit. These circuits constitute a judgment unit based on the integration method for obtaining a more reliable binary output from the pulse signal output of the LPF 2 16.
  • the variable resistor VR at the input terminal of the comparison circuit 218 corresponds to the sensitivity adjustment circuit, and the threshold value (ON / OFF level) can be changed.
  • the discriminating unit 219 includes an integrating circuit 219a and a comparing circuit 219b.
  • Fig. 39a to Fig. 39d are operation time charts. When the output of the LPF 216 exceeds the threshold ON level, the output of the COM 3 of the comparison circuit 218 becomes L. Then I
  • the capacitor C2 In the ON state, the capacitor C2 is charged by the current I '.
  • the output of LPF2 16 falls below the threshold OFF level
  • FIG. 40 shows a modified example of the judgment unit of the integration method.
  • the time chart of the operation is shown in Figs. 41a to 41e.
  • the comparison circuit 218 outputs the L level when the output of the LPF 216 exceeds the preset threshold ON level, and outputs the L level when the output is below the preset threshold 0 FF level. Outputs H level.
  • the integrator circuit 219a is charged when the output signal of the comparator circuit 218 is at the L level, and the charged potential of the capacitor C1 changes from 0 [V] to Va (point cc in FIG. 41). After that, the battery is discharged with a predetermined time constant (C 1 XR 5), and the charged potential changes from Va to Vb (Vb> 0) by the next input signal (2 point in FIG. 41 c). The input changes from Vb to Va + Vb (point 3 in Fig.
  • the integration circuit 2 19 a continues to be charged.
  • the integration circuit 219 a is discharged at once and becomes 0 [V]. If the output signal of the integration circuit 219b exceeds the preset threshold ON level, the comparison circuit 219b outputs an H level to detect the presence of an object or the like.
  • Fig. 42 shows another example of the judgment unit.
  • This judging unit is of a pulse count type and is composed of a comparing circuit 218 and a judging unit 219 (which functions as a digital filter).
  • the time chart for the operation is shown in Figs.
  • Q 0 is reset by the RST signal (Fig. 43c), becomes L level, and waits for the next input signal.
  • the output signal of CAM1 is L
  • Q0 L
  • D—FF 1 to 3 are at the rising edge of clock CK
  • Q H if the D input is H level
  • Q L if the D input is L level.
  • AND 1 outputs AND of Q 1 to Q 3, so that all of Q 1 to Q 3 are at the H level, that is, a predetermined number of times, as shown in (1) and (3) in FIG.
  • the output of AND 1 changes to H level.
  • AND 2 outputs AND of inverted Q 1 to inverted Q 3, so once inverted Q 1 to inverted Q 3 are all at H level, that is, once there is no input, they are at H level once. However, if there is an input, it will be at the L level, and at least three cycles will be at the L level.
  • FIG. 4 shows a configuration of an infrared detector according to Embodiment 2c of the present invention.
  • the thermopile 211a which is an infrared detecting element of the detecting section 220, is an element that can obtain an electromotive force according to the amount of infrared light.
  • a switching signal SG frequency ⁇
  • the switched signal passes through the HPF 21 whose cut-off frequency is lower than the switching frequency f, and is amplified by the amplifier 215.
  • the amplified signal passes through the LPF 216 whose cut-off frequency is higher than the switching frequency ⁇ . If the cut-off frequency exceeds the threshold value, the comparison circuit 218 outputs a 0 ⁇ signal. It is determined whether there is any intrusion and existence of, and it is output.
  • FIG. 45 shows the configuration of the detection unit of the temperature detector according to Embodiment 2d of the present invention.
  • the configuration downstream of the detection unit may be the same as in Fig. 36.
  • the temperature thermistor Rth of the temperature detection element shown in the figure is an element whose resistance value changes according to the temperature. The change is detected as a voltage value V 0 and used for temperature control and the like. Since the detection result is binarized and output, it can be used to perform on / off control over the night. Further, a thermocouple or the like may be used as the temperature detector.
  • the output voltage V 0 at the connection point between the temperature thermistor R th and the resistor R can be expressed by the following equation. However, Vs is the power supply voltage.
  • V 0 ⁇ R / (R th + R) ⁇ V s (2 e)
  • V s 2 e
  • Fig. 46a and 46b show the configuration of the pressure detector according to Embodiment 2e of the present invention
  • Fig. 46c shows the equivalent circuit
  • Fig. 46d shows the signal processing unit
  • Fig. 46 shows the time chart. 47a to 47h.
  • This detector is used for fluid pressure control.
  • the pressure sensing element is provided with a pressure-sensitive diaphragm 22 on an Si single crystal substrate 221, and a strain gauge (diffusion resistance) R l, R In this configuration, 2, R3 and R4 are arranged.
  • the rate of change of the radial gauges Rl and R3 is greater than the rate of change of the circumferential gauges R2 and R4.
  • This difference is detected by the wheel bridge shown in the equivalent circuit of Fig. 46c, processed by the signal processing unit shown in Fig. 46d, and output.
  • the output voltage V 0 of this equivalent circuit can be expressed by the following equation.
  • V 0 (V 1-V 2)
  • VI is analog switch 2 12a and V 2 is analog switch 2 12b. ( Figures 47e and 47f :). After that, it is amplified by the differential amplifier 2 15 (Fig. 47g), and the high-frequency noise is removed by the LPF 216 (Fig. 47h). If the detection signal exceeds the threshold value, the comparison circuit 218 outputs an ON signal, and the judgment unit 219 judges whether the pressure is higher or lower than the set value, and outputs the result.
  • This pressure detector can be applied to the detection of abnormal pressure reduction due to the opening of city gas valves.
  • FIG. 48 shows the configuration of the detection unit of the humidity sensor according to Embodiment 2f of the present invention.
  • the configuration subsequent to the detection unit may be the same as in FIG. 46d.
  • This detector can be used for controlling air conditioners.
  • the detection sensor element 2 25 (R 1) is arranged in the air to be detected, and the compensation sensor element 2 26 (R 4) is arranged in the dry air.
  • These elements 2 25 and 2 26 are elements whose resistance changes according to the humidity. They are bridge-connected together with the other resistors R 2 and R 3. Is converted to a voltage value V 0 and output.
  • the output of this humidity sensor can be used for on / off control of the humidifier.
  • a gas sensor replaces this humidity detection element with an element whose resistance changes according to the mixture ratio of the gas mixture, and is used for controlling the gas mixture and detecting gas leakage.
  • the detection sensor element 225 (R, l) is disposed in the gas to be detected, and the compensation sensor element 226 (R4) is disposed in the reference gas.
  • the change amount of the resistance value is detected after being converted into the voltage value V 0.
  • This gas sensor can be used as a city gas leak sensor.
  • FIG. 49 shows a configuration according to Example 2g of the present invention.
  • a switch 211a for switching a detection signal from the detection element 211 is constituted by an FET (field effect transistor).
  • FET field effect transistor
  • FIG. 50 shows a configuration according to Example 2h of the present invention.
  • a switch 212b for switching a detection signal from the detection element 211 is constituted by a bipolar transistor. According to this configuration, there is an effect that spike noise due to switching is small.
  • FIG. 51 is a block diagram of the detector according to the embodiment 3a, and FIGS. 52a to 52i are time charts showing the operation of the detector.
  • the detector 301 receives the background 14 of natural scattered light (for example, lighting equipment and sunlight) at the place where the detector 301 is placed and the reflected light from the detection object 15 to detect the object. It is a passive type detector that detects presence / absence.
  • the detector 301 includes a light-receiving lens 303 as a light-receiving unit, It is composed of a two-division photo diode 3, 02 (light receiving element, hereinafter abbreviated as PD1, PD2) provided behind the light receiving lens 303, and the first and second light receiving fields are provided. It is composed.
  • FIG. 51 shows a state in which the detection object 15 has entered one of the two light receiving visual fields (the visual field 2).
  • reflected light from the background (for example, all over white) 14 passes through the lens 303? 0 1, incident on PD2.
  • the light incident on PD 1 and PD 2 is converted to light-to-current here, and the detection current I 1 from PD 1 and the detection current I 2 from PD 2 are intermittently switched by switches SW 1 and SW 2. It is sent to the light receiving circuit 308.
  • the switches SW1 and SW2 are connected to the oscillation circuit 3
  • Oscillation pulse signals SG1 and SG2 supplied from 07 are switched alternately by the clock of SG1 and SG2, so that the currents I1 and I2 passing through the switches SW1 and SW2 are switched.
  • Timing 2 is asynchronous and time division. Detection current I 1,
  • the integrator circuit 317 outputs the 0N signal when the number of consecutive 0N signals of the comparison circuit 316 becomes three or more, and the 0FF signal of the comparison circuit 316 output continues. If the number becomes three or more, a 0FF signal is output.
  • each detection signal is processed as a pair and processed by one system of signal processing circuit.
  • FIG. 53 is a block diagram of a detector according to Example 3b.
  • This detector 320 is different from the detector 301 shown in FIG. 51 in that the switches SW 1 and SW 2 provided between the PD 1 and PD 2 and the light receiving circuit 308 are replaced by This is provided between the amplifier circuit 309 and the SH circuit 310.
  • the detection currents I 1 and I 2 from PD 1 and PD 2 are converted to voltages by the respective light receiving circuits 3 08 a and 3 08 b and amplified by the amplifier circuits 3 0 9 a and 3 09 b , And are switched alternately by switches SW1 and SW2 in accordance with the clocks of signals SG1 and SG2, and become voltages VI and V2.
  • switching is performed after amplifying the detection signal in the amplifier circuits 309a and 309b, thereby switching to a high impedance line (small signal line). Since no element is required, switching noise superimposed on the received light signal can be reduced.
  • FIG. 5 is a configuration diagram near the switch of the detector according to Example 3c.
  • the switch SW is constituted by a field-effect transistor (hereinafter, referred to as FET).
  • FET field-effect transistor
  • FIG. 55 is a configuration diagram near the switch SW of the detector according to Example 3d.
  • the switch SW is constituted by a bipolar transistor. Since the bipolar transistor has a small spike noise due to switching, it can detect minute changes in the detection current, and can more accurately detect the presence or absence of an object.
  • FIG. 56 is a block diagram of the detector 3221 according to the third embodiment 3e, and FIGS. 57a to 57m are time charts of the operation of the detector.
  • This detector 3221 is obtained by switching the switch SW2 in the detector 301 shown in FIG. 51 described above by ANDing the signal SG2 with the output signal of the second comparison circuit 322. That's what I did.
  • the light received by PD 1 and PD 2 is converted into detection currents 11 and 12, and the currents II and I 2 are supplied to the light receiving circuit 308, the amplifying circuit 309, After passing through the SZH circuit 310 and the AZD conversion circuit 311, the outputs become D 1 and D 2.
  • the output D1 is input to the second comparison circuit 32, and the value of the output D1 is sampled.
  • the comparator circuit 3 2 2 If they are different before and after one evening, the comparator circuit 3 2 2 outputs an ON signal. Switch SW 2 is switched by ANDing this output signal with signal SG 2. On the other hand, the output D 2 continues to output the previous data until the release signal due to the ON signal of the second comparison circuit 32 2 is input by the data holding circuit 32 3, and the second comparison circuit 32 2 When the release signal by the 0 N signal is input, the data held in the data holding circuit 3 2 3 is updated. The output D 2 and the output D 1 are subjected to a differential operation in the operation unit 3 12 to obtain an operation result D. The calculation result D is compared with threshold values VT 1 and VT 2 set in advance by the comparison circuit 316.
  • the comparison circuit 316 outputs the 0N signal when the operation result D exceeds VT1 or falls below VT2. If the number of 0 N signals becomes three or more in succession, a binary ON signal is obtained from the integrating circuit 3 17, and this signal is output from the output circuit 3 18 and the detector 3 2 1 Inform the outside that the object 15 has entered the field of view.
  • FIG. 58 is a block diagram of the detector 32 6 according to the embodiment 3f
  • FIGS. 59a to 59i are time charts of the operation of the detector.
  • the detector 326 is obtained by adding a modulation circuit 328 to the detector 301 shown in FIG. 51 described above.
  • the modulation circuit 328 performs pulse time modulation of sg1, sg2, sh, and a / d sine waves supplied from the oscillation circuit 327, and generates pulse signals of SG1, SG2, SH, and AZD. Is converted to.
  • the light incident on PD 1 and PD 2 is converted to light-to-current here, and the detection current I 1 from PD 1 and the detection current 12 from PD 2 are intermittent at switches SW 1 and SW 2 Is sent to the light receiving circuit 308.
  • the switches SW1 and SW2 are alternately switched by the clock of the oscillating pulse signals SG1 and SG2 supplied from the oscillating circuit 307, whereby the switches SW1 and SW2 are switched. 1,
  • the timing of currents I31 and I32 passing through SW2 is asynchronous and time-division.
  • the detection currents I 1 and I 2 are converted into voltages by the light receiving circuit 308 and then amplified by the amplifier circuit 309 to become the detection voltages V 1 and V 2.
  • These voltages VI and V2 are sampled by the SZH circuit 310 at the timing of the sample and hold signal SH of the oscillation circuit 307, and then converted to digital signals by the AZD conversion circuit 311.
  • the outputs are Dl and D2, respectively.
  • These outputs D l and D 2 are subjected to a difference operation (D 1 — D 2) in the operation section 3 1 2, and the operation result D is obtained. obtain.
  • This value D is compared with the threshold value VT by the comparison circuit 316, and if it exceeds VT, the 0N signal is output. If the number of ON signals becomes three or more in succession, a binarized 0 N signal is obtained from the integrating circuit 3 17, and this signal is output from the output circuit 3 18 and the detector 3 2 6 Notify the detection object 2 invasion to the outside.
  • data is held by alternately switching the two detection signals II and I2 obtained by the passive method, sampling and holding each detection signal as a pair, and holding the data. Since the processing is performed by the signal processing circuit including the light receiving circuit, the scale of the signal processing circuit can be reduced, and the same operation and effect as those of the third embodiment can be obtained.
  • the clock signal that performs switching of the detection signal is pulse-time modulated, synchronized with the signal, and processed to remove physical and electrical noise that is different from the periodic detection target. Therefore, a high SZN detection signal can be obtained. As a result, a smaller change in the detected current can be handled, so that the presence / absence of an object can be detected more accurately.
  • FIG. 60 is a block diagram of the detector according to Example 3g, and FIGS. 61 a to 61 i are timing charts of this detector.
  • the detector 330 is different from the detector 310 shown in FIG. 51 in that the timing of power supply to the signal processing circuit is controlled.
  • Switch SW 3 is added. This switch SW3 is switched by a signal AG synchronized with the signals SG1 and SG2 supplied from the oscillation circuit 307, respectively. As a result, power is supplied only for the time necessary for signal processing for each of the signals SG1 and SG2, as shown in the time chart of FIG.
  • the two systems of the detection signals 11 and 12 obtained by the passive method are alternately switched, and each of the detection signals is sampled and held as a pair. Since the processing is performed by the signal processing circuit including the light receiving circuit of the system, the scale of the signal processing circuit can be reduced, and the same operation and effect as those of the third embodiment can be obtained. In addition, power supply to each signal processing circuit is intermittently performed for the time required for signal processing, so that current consumption can be further reduced. In addition, since power is supplied according to the respective oscillation pulse signals of the signal SG1 and the signal SG2, the signal SG1 and the signal SG2 are controlled so that the signals of the voltage V1 and the voltage V2 do not interfere with each other. Even if the pulse interval is wide, it is possible to respond to an excessive input detection signal while maintaining the effect of reducing current consumption.
  • Figures 62a to 62j show time charts of the operation of the detector according to Example 3h.
  • the detector according to the present embodiment has the same configuration as the detector 330 according to the third embodiment.
  • Switch SW3 uses the signals SG1 and SG2 supplied from the oscillating circuit as the ground signals, and is switched by the signal AG synchronized with this pair of signals.
  • the power is supplied only for the time required for the signal SG1 and the signal SG2 at the same time for the signal processing related thereto.
  • the data is held by alternately switching the two detection signals 11 and 12 obtained by the passive method and sampling and holding each detection signal as a pair. Since the signal is processed by the signal processing circuit including the light receiving circuit, the size of the signal processing circuit can be reduced, and the same operation and effect as those of the first embodiment can be obtained. In addition, power is supplied to each signal processing circuit only for the time required for signal processing of signal SG1 and signal SG2.If the pulse period of signal SG1 and signal SG2 is lengthened, power Since the supply time is shorter, it is possible to further reduce the current consumption.
  • FIG. 63 is a block diagram of a detector 331 according to the embodiment 3i, and FIG. 64 is a time chart of this detector.
  • the detector 331 performs the switching of the switch SW3 by the signals SG1 and SG2 supplied from the oscillation circuit 307 in the detector 3330 shown in FIG. Things. In this way, supply of power to each circuit and switching of the detection signal are performed. By using the same signal, the number of oscillation pulse signals can be reduced, and the configuration of the oscillation circuit 7 can be simplified, so that the circuit scale and current consumption can be further reduced.
  • FIG. 65 is a block diagram of the detector according to the present embodiment.
  • FIG. 66 j is the time chart of this detector.
  • This detector 3332 is the same as the detector 301 shown in FIG. 51 except that a switch 34 is added between PD1 and PD2 and the light receiving circuit 308.
  • a bandpass filter 319 is added between the amplifier circuit 309 and the SZH circuit 310.
  • the switch SW4 is switched by a signal FG synchronized with the signals SG1 and SG2.
  • Each PD outputs a detection current in accordance with the light input power to the PD, PD 1 outputs a current II, and PD 2 outputs a current I 2.
  • the detection currents II and 12 pass through the switches SW 1 and SW 2, respectively, pass through the switch SW 4, and are sent to the light receiving circuit 308. Since the pulse width of the signal FG that controls the switch SW30 is smaller than the pulse widths of the signals SG1 and SG2, the detection currents I1 and I2 are chopped and converted to high-frequency signals. It is possible to do.
  • the detection currents II and I2 are converted into voltages by the light receiving circuit 308 and amplified by the amplifier circuit 309 to become voltages V1 and V2.
  • the bandpass filter 319 By passing these voltages VI and V2 through the bandpass filter 319, the power supply generated when a fluorescent lamp is used as the light source is reduced. Noise such as frequency noise and high-frequency noise generated by the light receiving elements PD1, PD2 and the light-receiving circuit 308 can be eliminated.
  • the noise-removed signals F 1 and F 2 are sampled by the SZH circuit 310 at the sampling and holding signal SH of the oscillation circuit 307, and then digitalized by the AZD conversion circuit 311. And output D 1 and D 2 respectively.
  • These outputs Dl and D2 are subjected to a difference operation (D1-D2) in the operation unit 312 to obtain an operation result D. This value D is compared with the threshold value VT by the comparison circuit 316.
  • an ON signal is output. If this 0 N signal becomes three or more consecutively, a binary ON signal is obtained from the integrating circuit 3 17, and this signal is output from the output circuit 3 18, and the detector 3 3 2 Inform the detection object 15 of the intrusion.
  • the two detection signals I 1 and 12 obtained by the passive method are switched alternately, and each detection signal is sampled and held as a pair.
  • the scale of the signal processing circuit can be reduced, and the same operational effects as those of the above-described embodiment 3a can be obtained.
  • Obtainable by chopping the detection signal, converting it to a high-frequency signal, and removing the noise with a filter 319, optical and electrical noise can be removed.
  • a high S / N detection signal can be obtained. This makes it possible to handle smaller changes in the detection signal. As a result, the presence or absence of an object can be detected more accurately.
  • FIG. 67 is a block diagram of the detector 33 33 according to the embodiment 3k
  • FIGS. 68a to 68j are schematic diagrams of the detector.
  • the detector 333 according to the present embodiment converts the detection signal into a high-frequency signal when the switches SW1 and SW2 are switched. That is, the current I from P D 1
  • the currents 12 from I and PD 2 are alternately switched by switches SW 1 and SW 2 with the clocks of signals SGI and SG 2.
  • These detection currents I 1 and I 2 include power supply low-frequency noise generated when a fluorescent lamp is used as a light source. In order to remove them, conversion to high-frequency signals that are separated from low-frequency noise when switching switches SW1 and SW32 are also performed, and then pass through a band-pass filter 319.
  • FIG. 69 is a block diagram of a detector 334 according to the embodiment 31.
  • This detector 334 is different from the detector 333 shown in FIG. 67 in that the oscillation circuit 307 is configured to output an oscillation pulse signal having a plurality of frequencies.
  • the pass frequency of the filter 319 By changing the pass frequency of the filter 319 in the same way, it is possible to cope with a change in the noise situation caused by a change in the use environment.
  • the light incident on PD 1 and PD 2 is converted from light to current here, and the detection current I 1 from PD 1 and the detection current I 2 from PD 2 are converted into switches SW 1 and SW 2 Light receiving circuit 3 intermittently
  • the switches SW1 and SW2 are alternately switched by the oscillation pulse signals SG1 and SG2 supplied from the oscillation circuit 307. 1, current I 1, passing through SW 2
  • the timing of 132 is asynchronous and time division.
  • Current I 1
  • I2 is converted into a voltage by the light receiving circuit 308 and then amplified by the amplifying circuit 309 to become voltages V1 and V2.
  • the voltages VI and V 2 are passed through a band-pass filter 319 to remove low-frequency noise and become voltages F 1 and F 2.
  • the voltages F 1 and F 2 are sampled by the SZH circuit 310 at the timing of the sample and hold signal SH.
  • the sampled detection signal is converted to a digital signal by the AZD conversion circuit 311 and then converted to a digital signal.
  • the outputs are Dl and D2, respectively. These outputs Dl and D2 are subjected to a difference operation (D1-D2) in the operation unit 312 to obtain an operation result D.
  • the calculation result D is compared with the threshold value VT by the comparison circuit 316.
  • a 0 N signal is output. If the number of consecutive 0 N signals becomes three or more, a binarized ON signal is obtained from the integrating circuit 3 17, and the detection circuit 3 3 4 is output to the outside of the detector 3 3 4 from the output circuit 3 18. Signal an intrusion.
  • the frequency of noise such as a power supply low-frequency noise included in the detection signal output from the PD also changes. Therefore, in order to accurately detect the presence or absence of an object, the oscillation frequency of the oscillation pulse signals SG 1 and SG 2 output from the oscillation circuit 307 is changed according to the change in the use environment, and It is necessary to change the pass frequency of the filter 319 so as to take out only the detection signal in conjunction with it.
  • the detector 3 3 4 according to the present embodiment is provided with a switch SW 5 for externally changing the frequency of the signals SG 1 and SG 2 in order to avoid the noise frequency of the use environment.
  • the low cut-off frequency 1 (27 ⁇ R s C s) of the filter 319 is changed to the oscillation frequency 1Z (27 ⁇ R Co) of the oscillation pulse signals SG1, SG2. It can be changed in conjunction with it.
  • the two systems of detection signals (11, 12) obtained by the passive method are alternately switched, and each detection signal is sampled and held as a base to retain data. Is performed, and processing is performed by a signal processing circuit including a single light receiving circuit. Therefore, the scale of the signal processing circuit can be reduced, and the same operation and effect as those of the third embodiment can be obtained. Furthermore, the oscillation frequency of the oscillating pulse signals SG 1 and SG 2 of the received light signal is changed according to the noise situation in the use environment, and in conjunction with this, the pass frequency of the filter 19 that extracts only that signal is changed. This makes it possible to remove physical quantity noise and electrical noise that are different from the periodic detection target, so that a high S / N detection signal can be obtained and smaller signals can be handled.
  • FIG. 70 is a block diagram of the detector 335 according to the third embodiment.
  • the detector 335 according to the present embodiment has a configuration in which the gain of the amplifier circuit 309 can be changed in accordance with a change in the oscillation frequency of the oscillation pulses SG 1 and SG 2.
  • the light incident on PD 1 and PD 2 undergoes photo-current conversion, and the detection current I 1 from PD 1 and the detection current I 2 from PD 2 are converted into switches SW 1 and SW 2 Light receiving circuit 3 intermittently
  • the switches SW1 and SW2 are alternately switched by the oscillation pulse signals SG1 and SG2 supplied from the oscillation circuit 307.
  • the evening of 1 and 2 is asynchronous and time division.
  • the currents I 1 and I 2 are converted into voltages by the photodetector circuit 108, It is amplified by 9 and becomes voltages V 1 and V 2.
  • the voltages V 1 and V 2 are passed through a band-pass filter 319 to remove low-frequency noise and become voltages F 1 and F 2.
  • the voltages F 1 and F 2 are sampled by the S / H circuit 310 at the timing of the sample hold signal SH.
  • the sampled detection signal is converted into a digital signal by the AZD conversion circuit 311 and then output as Dl and D2, respectively.
  • These outputs Dl and D2 are subjected to a difference operation (D1-D2) in the operation unit 312 to obtain the operation result D.
  • the calculation result D is compared with the threshold value VT by the comparison circuit 316, and when it exceeds VT, an ON signal is output. If the number of ON signals becomes three or more in succession, a binarized ON signal is obtained from the integrating circuit 3 17, and the detection circuit 3 3 5 Signal an intrusion.
  • the frequency of noise such as power supply low-frequency noise included in the detection signals output from PD1 and PD2 also changes. Therefore, in order to accurately detect the presence or absence of an object, the oscillating frequency of the oscillating pulse signals SG 1 and SG 2 output from the oscillating circuit 307 is changed according to the change of the use environment, and furthermore, It is necessary to change the gain of the amplifier circuit 309 so that only the detection signal is taken out in conjunction with it.p
  • the detector 335 according to this embodiment is designed to avoid noise frequencies in the operating environment.
  • the switch SW5 for changing the frequency of the signals SG1 and SG2 from the outside is added, and the position of the switch SW5 allows the gain of the amplifying circuit 309 to be changed.
  • R f ZRs can be changed in conjunction with the oscillation frequency 1 / (2TTROCO) of the oscillation pulse signals SG1, SG2.
  • FIG. 71 is a diagram showing a configuration of an infrared sensor according to Example 3m.
  • the infrared sensor 340 according to this embodiment is the same as the detector shown in the above embodiments 3a to 3m, except that an infrared detecting element 342 (such as a thermopile) is provided instead of the PD. .
  • an infrared detecting element 342 such as a thermopile
  • the circuit size and simplification of the infrared sensor 342 for detecting the intrusion of a person 343 into the detection area can be reduced, and the size of the sensor 340 can be reduced. Can be reduced.
  • Example 3o Example 3o
  • FIG. 72 is a diagram illustrating the configuration of the temperature sensor according to the third embodiment.
  • the temperature sensor 344 according to this embodiment is the same as the detector shown in the above-described 3a or 3 m embodiment, except that a temperature detection element 345 is provided instead of the PD. This makes it possible to reduce and simplify the circuit scale of the temperature sensor 344 used for temperature control and the like in a device such as a molding machine.
  • FIGS. 73a and 73b are diagrams showing a configuration of a pressure sensor according to the present embodiment and an equivalent circuit thereof.
  • the pressure sensor 346 according to the present embodiment is the same as the detector shown in the above-described embodiments 3a to 3m, except that a pressure detecting element 347 is provided instead of the PD. This makes it possible to reduce and simplify the circuit scale of the pressure sensor 346 that controls the pressure section of a device such as a molding machine.
  • FIG. 74 is a diagram showing the configuration of the gas sensor according to the third embodiment q.
  • the gas sensor 348 according to this embodiment is the same as the detector shown in the above-described 3a or 3 m embodiment, except that a gas detection element 349 is provided instead of the PD. This makes it possible to reduce and simplify the circuit scale of the gas sensor 348 for controlling mixed gas and detecting gas leakage and the like.
  • a light-dark pattern is provided on the background 14 of the first embodiment.
  • FIG. 75 shows the basic configuration of the object detector 401 according to the fourth embodiment.
  • the optical system portion includes a reflector 414, a light receiving lens 403, and a photodetector 418. Natural scattered light from the period
  • the photodetecting element 418 uses two divided PDaPDb. Each PD outputs a current proportional to the amount of light incident on the light receiving surface.
  • PSD is used as another photodetector
  • a current corresponding to the position of the center of gravity of the light intensity distribution in the light receiving surface is output.
  • the light receiving field of view is two, light receiving fields a and b, as shown in Fig. 75, and the contrast pattern of the reflector is correspondingly two patterns.
  • a white and black pattern is used for simplification.
  • the output currents Ia and Ib of the two divided PDa and PDb are periodically switched by a pulse signal SG by analog switches 412a and 412b input to the PD output line.
  • the DC signal is converted to a pulse signal.
  • the output currents Ia, I, and b are voltage-converted by the I / V converters 421 and 422, and Va also becomes Vb.
  • Vb ⁇ Va is obtained by the differential amplifier circuit 409, and this Vb ⁇ Va is a light amount difference signal between the light receiving fields b and a.
  • Figures 76a to 76e show the relationship between the position of the detected object, the distribution of the received light amount on PDa and PDb, and the light amount difference signal Vb-Va.
  • the distribution of received light on PD a and PD b is as shown in Figure 76a, and the received light of PD a corresponds to the contrast pattern of the reflector 4 14. It is small and the amount of light received by PD b is large.
  • the output current from the PD is I b> I a, and the output (light intensity difference signal) V b— from the differential amplifier circuit 409 switched by the analog switches 412 a and 412 b V a is as shown in FIG. If the detection object enters the light receiving field of view without this detection object 15, the received light distribution and light intensity difference signal on the PD are changed from Fig. 76 b to Fig. 76 c-Fig. 76 d ⁇ It changes to Figure 76 e.
  • w indicates the range occupied by the detected object.
  • Figure 76a shows the case where there is no sensing object 15;
  • Figure 76b shows the case where sensing object 15 has begun to obstruct the light receiving field of view a;
  • Fig. 76 d shows the case where the detection object 15 has begun to block the light-receiving field b, and
  • Fig. 76 e shows the case where the detection object 15 has completely blocked the light-receiving field b. Is shown.
  • the sensitivity of the detector is adjusted as follows.
  • Vb—Va with sensing object 15 is both larger and smaller than Vb—Va without sensing object 15 due to the reflectance of sensing object 15
  • the threshold value has two levels, V thl and V th2.
  • the sensitivity adjustment circuit 4 1 1 is set so that the peak level V 0 of V b -V a without the detection object 15 comes to the center of the threshold values V thl and V th2.
  • the sensitivity can be set by a variable resistor, or by a AZD conversion of the light intensity difference signal Vb-Va and then by a microcomputer. Also, the sensitivity setting may be performed inside or outside the detector 401.
  • the light amount difference signal Vb—Va is compared with the threshold value set by the sensitivity adjustment circuit 4 1 1 by the comparison circuit 4 10, and the ON / OFF of the output is determined by the determination circuit 4 1 2.
  • the result of the determination is output from 13.
  • Figure 77 shows the internal configuration of the comparison circuit 410 and the discrimination circuit 4122
  • Figure 78a to Figure 78p show the time chart of its operation.
  • the discriminating circuit 412 first synchronizes the output of C0M1,2 with the switching period by AND1,2 gate (referred to as gate signal GATE).
  • gate signal GATE AND1,2 gate
  • the differentially amplified signal Vb—Va is applied to the output of DFF 1 and 2 by the ENOR gate, and the threshold value Vth1, Vth
  • the logic configuration is H level if both are above or below both, and L level if between V thl and V th 2.
  • the next DFFs 3 to 5 are three-stage shift registers, which take the AND of the outputs of DFFs 3 to 5 and the inverted output, and use that output as the RSFF set signal and reset signal, respectively. RSFF is not set unless the EN0R output is at the H level for at least three periods of the SG signal.
  • the EN 0 R output is not reset unless the SG signal is at the L level for at least three cycles. Then, this RSFF output is sent to the output circuit and becomes the sensor output.
  • the sensor output is 0 N
  • Vb—Va is the SG signal. Is between V th1 and V th2 for more than 3 cycles, the sensor output becomes 0FF.
  • the reflection plate 14 and the detection object 15 are discriminated using the light amount difference signal of the two light receiving fields, but the divided value of the light amount of the two light receiving fields or the sum of the light amount difference and the light amount sum is obtained. It is also possible to determine using values.
  • the reflector was a black-and-white pattern, but if the object to be detected had a contrast, the reflector had no contrast.
  • the difference between the object and the detected object is more likely to occur when the object has the reflectance or the reflection directivity. In addition, it is easier to discriminate if the reflectance is large.
  • the detection object 15 is a metal surface, that is, a regular reflection surface without contrast. Therefore, the reflection plate 14 is a diffuse reflection surface with contrast (for example, blank paper). And black paper).
  • the reflection plate is preferably a regular reflection surface (for example, a mirror).
  • the number of reflective surfaces is larger than the light receiving field.
  • Fig. 79 shows one configuration. As shown in FIG. 79, there is one light-receiving field for the four divided reflecting surfaces. The received light amount changes as shown in FIG. 80 according to the position of the detection object 15. If the threshold is set to the level of a or b in FIG. 80, it can be determined that the detection object 15 is located in the area of 1 or 3 on the reflection plate 14. It is assumed that the reflectances of the reflectors 2 and ⁇ and the detection object are the same.
  • Figure 81 shows a detector 450 of an object detection device that uses a battery as the power supply and supplies power intermittently. Since batteries 416 are used as the power supply, no work is required for wiring the power supply when installing the detector, and the installation location is not restricted. In addition, the power supply to the signal processing units such as the IZV conversion circuit 421 and the differential amplifier circuit 409 is intermittently supplied by the clock of the oscillation circuit 414, further reducing power consumption. Battery life can be prolonged.
  • Fig. 82 shows a detector powered by the solar cell 4 17 to the storage battery 4 16. No external power supply is required by the solar cell 417, so maintenance after installation is not required.
  • Fig. 83 shows a detector 450 that is supplied to the storage battery 4 16 by the hydroelectric power 4 32. As with detectors using solar cells, maintenance after installation is not required.
  • Figure 84 shows the adjustment points. There are two adjustment points around the X-axis and Y-axis in the figure.
  • the detector 4 51 has a built-in light emitting LED 4 42, and the position of the detector 4 5 1 and the reflector 4 14 4 is adjusted using the light beam. There is a way to do it.
  • the 85 is a diagram showing a configuration in which the optical axis of the light receiving element and the optical axis of the light-emitting LED 442 are made coaxial by using a die mirror 441.
  • the die mirror has the property of reflecting only the light in the wavelength range of the LED for light emission.
  • the light beam emitted from the light-emitting LED 442 is reflected by the dichroic mirror 441, enters the light-receiving lens 403, and is emitted to the reflector 414.
  • look at the projected beam reflected on the reflector 4 1 4 Adjust the position of the detector 4 15 from this.
  • FIGS. 86a and 86b As another position adjustment method, there is a method using a reflector 414 and a four-divided PD 418a shown in FIGS. 86a and 86b.
  • the circle at the center of the reflector 4 14 forms an image as shown by the dotted line in FIG. 80 b on the four-divided PD 418 a by the light receiving lens 40 3.
  • the direction of deviation between the center of the reflector 4 14 and the center of the 4-split PD 4 18 a can be determined, and it is provided on the detector 4 51 during position adjustment. If the direction is indicated on a display or the like, the adjustment can be simplified.
  • the photodetector is a surface rather than a point, the light receiving field of view increases as the distance increases. Therefore, when the reflector 414 is placed at a long distance, the light receiving field becomes larger than the reflector 414, and the amount of light in the light receiving field may change due to an object outside the reflector 414. In this case, even though there is no detection object between the detector 45 1 and the reflection plate 41, the amount of light in the light receiving field of view changes and it may be determined that there is a detection object. That Therefore, as shown in FIG. 87, an aperture 443 is provided between the photodetector element 418 and the light receiving lens 403 to limit the light receiving field. In other words, there is a method in which the light-receiving field is contained within the reflector.
  • FIG 8 shows the layout of the detectors
  • Figure 89 shows the system configuration.
  • Indoor parking lots such as buildings can be considered as parking lots, and detectors 45 2 are installed on the ceiling of each parking lot.
  • the detector 452 outputs whether or not there is a car in the parking lot by comparing the light quantity difference.
  • the output from the detectors 45 2 installed at each parking lot is processed by the processing unit 4 44 4, and the parking lot is displayed by displaying the empty parking lot at the entrance on the display display 44 5. Parking lot users can stop the car smoothly.
  • Figure 89 shows the system configuration diagram.
  • the signal control unit 449 switches the signal from red to blue if there is an output from the detector 452 that there is a car.
  • Mark 4 4 7 is provided on the road below detector 4 5 2 It is used as a reflector to determine the presence or absence of a vehicle that stops under the detector 452.
  • Figure 91 shows the system configuration diagram. This axle number measurement system is used in the vehicle type discrimination system used at unmanned toll booths on expressways.
  • the detector 453 is arranged so that the car passes between the detector 453 and the reflector 414. When the car passes, the output of detector 453 turns ON. Based on the output from the detector 453, the axle force is counted at the axle number force point part 461, and the discriminator part 462 is used to determine the vehicle type using the axle number output. Is performed.
  • FIG. 92 shows the system configuration.
  • Figure 93 shows the detector arrangement.
  • the passgate system of the automatic ticket gate at the station is a system that closes the exit door when a ticket that cannot be passed is entered, confirms that there are no more people in the passgate 463, and then opens the door again. I have. This sensor is used to confirm that no one is in passgate 463.
  • the output is processed by the people counting section 464 to determine the number of people in the passgate 463.
  • Count The processing unit 465 determines whether the number of people in the passgate is 0 or not. If it is 0, an instruction to open the door is output to the controller 466, and the door is opened.
  • Figure 94 shows the system configuration.
  • Detector 455 is installed on the ceiling of the entrance.
  • a reflector (for example, a mark painted on the floor) 4 14 a is placed underneath.
  • Figure 95 shows the configuration.
  • the light amount difference signal between the light receiving fields changes according to the amount of blocking the reflecting plate 4 14.
  • the change amount is processed in the detector 456 to output an analog signal as shown in FIG.
  • the position of the detection object 15 is determined by controlling the motor 471 which sends out the detection object 15 using the processing unit 473.
  • a car is used as the detection object 15, but it is naturally possible to detect other objects than the car.
  • a linear image sensor using a PD array can be considered as the photodetector of the detector 457.
  • a linear output according to the length is obtained.
  • the reflecting plate 4 14 may be constituted by a large number of reflecting surfaces. If the vehicle is a detected object as in this embodiment, the length W can be measured to be used as data for vehicle type determination or to determine whether or not the vehicle width can be parked in a parking lot. it can.
  • This system detects the movement of an exhibit, such as an expensive artwork, that is, an almost stationary object. If the light amount difference in the light receiving field changes even a little, the output of detector 457 turns ON. The movement of the exhibit 472 is detected, and the security company 474 is notified of the abnormality of the exhibit 472 through the security monitoring system 473.
  • the detector in the fifth embodiment is basically the same as that in the fourth embodiment. The only difference is that the light portion of the light-dark pattern of the reflector 4 14 is used as the light-emitting body.
  • a reflector 414 includes a light source 414a and a reference plane 414b. With this configuration Therefore, the passage of the detection object 15 can be detected stably even at night.
  • the light source 414 e does not need to have directivity, and may be, for example, a general lighting device. Further, since it is not necessary to have directivity, as shown in FIG. 100, an area sensor that can easily detect a plurality of areas with one light source can be configured.
  • the emergency light 511 is used as a light source and can be used for human body detection in case of fire. Since the detector 450 can be realized with extremely low power consumption, it can be very easily installed in an existing building by combining battery driving and wireless signal transmission. In addition, there is a merit that can be used as a failure detector that detects an emergency light bulb burnout in normal times.
  • FIG. 102—FIG. 104 is a diagram showing an example of use of an area sensor using the detector 450 of the present embodiment.
  • An area sensor having no mutual interference can be easily realized. According to this method, it is possible to detect not only the presence or absence of a detected object but also the moving direction of the detected object. In a place where there is always illumination, a similar effect can be obtained by arranging a contrast pattern instead of the light source at a position facing the light receiver.
  • FIG. 105 shows a configuration of the detector 600 according to the embodiment 6a, and FIGS. 106a to 1061 are time charts of the operation.
  • This detector 600 is normally detected by receiving the natural scattered light (for example, lighting equipment and sunlight) reflected from the background object 14 and the detection object 15 at the place where the detector 600 is placed.
  • a passive type detector 600 that performs light detection.
  • the light receiving section 600 is composed of a light receiving lens 602 and a two-part photodiode 603 disposed behind the light receiving lens 602.
  • the first and second light-receiving fields are configured for a contrasted background.
  • the detection object 15 shown in FIG. 105 has entered one of a plurality of light-receiving fields of the light-receiving unit 601.
  • a detection operation is performed by emitting auxiliary light when the detection object 15 enters the light receiving field of view and receiving reflected light from the detection object 15.
  • the two light-to-current converted light signals by the two-part The signal is pulse-modulated by the pulse signal SG (FIG. 106c) for noise removal, and further amplified by the first and second amplifier circuits 606a and 606b.
  • the amplified two light receiving signals (FIG. 106 d and 106 e) are subjected to differential operation by the differential amplifier 607, and the differential operation output (FIG. 106 ⁇ ) is output to the first, and second signals.
  • the circuits 608 a and 608 b compare the thresholds Vthl and Vth2 (Vth2 ⁇ Vthl) with two preset thresholds (Fig. 106 g, 106 h).
  • the signal is processed by a signal processing unit 611 composed of a unit 609 and a judgment unit 610 (FIG. 106i106j).
  • the outputs of the arithmetic unit 609 and the judging unit 610 are supplied to a light emitting trigger generating circuit 613.
  • the auxiliary light projector 614 that emits the auxiliary light includes a light emitting element driving circuit 615 that receives an output of the light emitting trigger circuit 613 and operates and a light emitting element 616.
  • the oscillating circuit 617 supplies the oscillating output to the calculating section 609, the judging section 610, and the light emitting element driving circuit 615, and outputs a signal SG.
  • the outputs of the first and second comparison circuits 608a and 608b (FIGS. 106g and 106h) are subjected to coincidence calculation by the calculation unit 609. Then, if the output of the arithmetic unit 609 is at the H level for three pulses of the pulse signal SG, the judgment unit 610 outputs an H level signal (FIG. 106 j), and The detection output is output from the output circuit 612 (Fig. 1061).
  • the auxiliary light emitting section 614 starts emitting auxiliary light (FIG. 106k).
  • the determination unit 6110 outputs an H level signal, the emission of the assist light is stopped.
  • the auxiliary light emitting method will be described with reference to FIGS. 107A and 107B.
  • the transistor TR 1 when the light emitting trigger signal from the light emitting trigger circuit 613 is at the L level, the transistor TR 1 is in the 0 FF state. Therefore, the transistor TR 2 is in the 0FF state, and the light emitting element 6 16 is not turned on.
  • the transistor TR 1 When the light emission trigger signal from the light emission trigger circuit 6 13 is at the H level, the transistor TR 1 is turned on, so that the transistor TR 2 is pulse-driven by the light emission drive pulse of the oscillation circuit 6 17 Then, the light emitting elements 6 16 are turned on. Further, FIG.
  • the 107b is a logic circuit and a logic diagram of the light emission trigger circuit 613 for sending a light emission trigger signal to the light emission element drive circuit 615, and as shown in the logic diagram, the light emission is performed.
  • the optical trigger circuit 613 outputs an H level light trigger signal when the operation unit output (Fig. 106i) is at H level, but the judgment unit output (Fig. 106j) is at L level. Is output.
  • the passive type light receiving circuit that processes the light receiving signal for the auxiliary light projection and the light receiving circuit that processes the light receiving signal for the naturally scattered light are shared, so the number of components can be reduced and the cost is reduced. be able to.
  • FIG. 108 is a configuration diagram of a detector according to Embodiment 6b.
  • the detector according to the present embodiment is configured to drive the detector of the above-described embodiment 6a with a battery, further detect the amount of battery by the detector, and a battery exhaustion detection circuit 618, And a display light driving circuit 619 for displaying the detection output of the light emitting element 619 of the above-described embodiment 6a. Shared with 6 1 5. That is, the indicator light drive circuit 6 19 is an oscillation circuit 6 1 that changes a light emission pulse in accordance with the output signal of the battery exhaustion detection circuit 6 18 and the light emission trigger of the light emission trigger circuit 6 13. Driven by 7 pulse signals. In addition, the light emission pulse for lighting this display and the light emission pulse for the auxiliary light emission are unsynchronized pulse signals.
  • the detector of this embodiment is provided with the dead battery detection circuit 618, it is possible to know in advance that the battery level is low, and it is possible to reduce malfunctions due to a drop in power supply voltage.
  • the auxiliary projector and indicator light are shared, the number of parts can be reduced and cost can be reduced.
  • FIG. 109 is a configuration diagram of the detector according to the embodiment 6c
  • FIG. 110 is a time chart of the operation.
  • This detector is obtained by adding a threshold value correction circuit 620 and a light receiving circuit 621 for processing a light receiving signal of auxiliary light to the detector having the configuration shown in FIG.
  • the light receiving circuit 621 which processes the light receiving signal of the auxiliary light, includes an addition circuit 62, a BP F.23 that passes only the light emission pulse frequency, and a third comparison circuit 608c.
  • the detection operation of this detector will be described with reference to the time charts of FIG. 11Oa to FIG. 11On by listing differences from the above-described embodiment 6a.
  • the threshold value correction circuit 62 is automatically corrected by the threshold value correction circuit 62 so that the differential operation output falls between the threshold values (FIG. 110f).
  • the auxiliary light can be used to confirm whether the H level has been reached due to a change in the background object, and the detection accuracy can be improved.
  • automatic detection of the threshold value enables stable detection without erroneous operation with respect to changes in illuminance and changes in background objects.
  • the output of the judgment unit 61 is inverted and goes to H level, the detection output is output, and the light emission stops at the same time. Then, when the detection object 15 goes out of the light receiving field of view and the output of the arithmetic unit 609 is inverted and becomes L level, light emission starts, and the judgment unit 6100 determines that the presence of the detection object 15 is not detected.
  • the output is inverted and goes to L level, non-detection output is output, and emission stops at the same time.
  • the output of the calculation unit 609 is inverted.
  • the H level is reached, light emission starts, and the presence of the detection object 15 is detected and the output of the judgment unit 6100 is inverted. Then, it becomes H level and the detection output is output. Thereafter, when the presence of the detected object 15 in the light-receiving field of view is no longer detected due to the detection operation by light emission, the output of the judgment unit 6100 is inverted to L level, and a non-detection output is output and Stop emitting light.
  • the output of the calculation unit 609 becomes H level, the output is inverted by the judgment unit 610 and the output is inverted.
  • a detection output is output.
  • the output of the arithmetic unit 609 becomes L level, the output is integrated by the judgment unit 610 and the output is inverted. Then, the L level is output, the non-detection output is output, and the emission stops at the same time.
  • FIG. 11b is a diagram showing the features of the detection methods (1) to (4) described above. As shown in the figure, the detection methods 1 to 4 have different characteristics in detection accuracy, response time, and current consumption. Therefore, it is possible to provide a detector that meets the purpose by utilizing each characteristic.
  • FIG. 112 is a configuration diagram of a detector according to Embodiment 6d.
  • This detector is designed to counter natural scattered light (eg lighting, sunlight).
  • This is a passive type detector that performs detection by receiving emitted light, with the addition of an output prohibition circuit 624 that prohibits output in accordance with the detected illuminance. Is shown. In this embodiment, unlike the above embodiments, no auxiliary projector is provided.
  • the configuration of the output inhibition circuit 624 is as shown in FIG.
  • an L level signal is output from the comparison circuit 6 08 c
  • the output Q of the D flip-flop circuit 6 25 becomes L level.
  • This L level signal is inverted by the inverter, and the H level signal is inverted.
  • the H level signal causes the output TR in the signal processing unit 6 1 1 to form a 0 FF circuit, and the transistor TR 1 becomes the ON state, so that the detection output is forcibly set to the L level and the output is OFF.
  • the detector of the present embodiment includes the output prohibition circuit 624 that prohibits the detection output in accordance with the change in the illuminance, so that the device controlled by the detector does not malfunction.
  • the output of this output prohibition circuit 6 24 is connected to the light emission trigger circuit 6 13 of the above-described embodiment 6a, it can be detected by the auxiliary light emission even under illuminance that cannot be detected by the passive method, and detection is continued be able to.
  • FIG. 115 is a configuration diagram of a detector according to Example 6e.
  • the detector of Example 6d described above performs illuminance detection by detecting the total amount of light received by the light receiving element
  • the detector of this embodiment detects the illuminance by detecting the amount of light received by one light receiving element. It performs detection. Further, the detection operation is the same as that in the above-described embodiment 6d. This makes it possible to reduce the number of parts as compared with the detector according to Embodiment 6d described above.
  • FIG. 116 is a configuration diagram of a detector according to Example 6f.
  • This embodiment is obtained by adding a second light receiving section 604b to the configuration of the above-described embodiment 6d.
  • This detector is provided with two light receiving sections, detects a detection object by a first light receiving section 604a, and performs illuminance detection by a second light receiving section 604b. Since the light receiving circuit of the light receiving section 604b can be designed with specifications limited to illuminance detection, illuminance can be detected with high accuracy. Also, if the light receiving field of illuminance detection is configured to look at a field of view different from that of the object to be detected, for example, the illumination, it is possible to reliably detect whether the illumination is on or off, and to perform accurate detection. (6 g) Example 6 g
  • Fig. 117 is a circuit diagram showing the configuration near the output unit of the detector according to the embodiment 6g.
  • This embodiment uses the detectors described in the above embodiments 6d to 6f to detect This is an addition of an output prohibition circuit at power reset that prohibits output from being output.
  • a signal from the output prohibition circuit 624 that operates in response to a change in illuminance and a signal from the output prohibition circuit when the power is reset are input. Then, if one of these two signals is an H level signal, a prohibition signal is output. Since the transistor 627 is turned ON by this prohibition signal, the detection output from the signal processing unit 611 is not output.
  • the output prohibition circuit operates when the power is reset, and the output of the detection output is prohibited. Malfunctions due to the above can be reduced, and a stable detection operation can be performed.
  • the above-described output prohibition circuit at power supply reset may be an output prohibition circuit due to a drop in power supply voltage (hereinafter referred to as an output prohibition circuit at voltage drop). Malfunctions due to the decrease can be reduced.
  • the OR circuit 626 may be provided with three input terminals. These terminals are connected to three output inhibit circuits (output inhibit circuits that operate in response to changes in illuminance) and power reset. Output inhibit circuit, output inhibit circuit when voltage drops) A more reliable detection operation can be performed.
  • Fig. 118 shows a configuration in which both output prohibition circuits for output prohibition at power supply reset and output prohibition at voltage drop are shared, and the detection operation of this detection circuit is shown in the time chart of Fig. 119. It will be described with reference to FIG.
  • the output prohibition circuit at power reset will be described.
  • Vcc When the power is turned on by the switch SW, the voltage Vcc gradually rises due to the RC time constant, but when Vcc is low, the detection output is unstable because the detection is unstable. Output must be prohibited.
  • V cc is lower than the threshold value V thl (a voltage at which the detector can operate normally) of the comparator circuit 629, the comparator circuit 629 outputs an L level signal, and the L level signal is an The signal is inverted by the signal 631 and becomes an H level signal, and the transistor 627 is turned on via the OR circuit 626. Therefore, no detection output is output.
  • V cc exceeds V thl, the output of the comparison circuit 629 becomes H level, and the disabled state is released.
  • the voltage detector 63 0 When V cc becomes lower than the detection voltage V th2 of the voltage detector 30, the voltage detector 63 0 outputs an L level signal, and this L level signal is inverted by the inverter — the H level signal Since the transistor 6 27 is turned on via the 0 R circuit 6 26, No detection output is output. Conversely, when V cc is higher than V th2, the voltage detector 630 outputs an H-level signal, and the detection output is output.
  • FIG. 120 shows Example 6h, and Example 6c! A warning indicator is provided to indicate that detection has become difficult by the output of the output prohibition circuit 624 as shown in Figs. If the output of the output prohibition circuit 624 is an H level signal, the transistor 633 is in the ON state, and the light emitting element 634 is turned on to indicate that the detection becomes difficult. On the other hand, if the output of the output inhibition circuit 624 is an L-level signal, the transistor 633 is in the 0 FF state, and the light emitting element 634 is not driven. In this way, the user can know that the ambient illuminance has decreased and no detection operation has been performed, and that the battery voltage has dropped and the battery cannot be used.
  • FIGS. 12, 1, and 122 show the embodiment 6i and explain a method of prohibiting output.
  • FIG. 12 1 is a diagram showing a configuration of a comparison unit 633, a calculation unit 609, and a determination unit 610 of the detector
  • FIG. 122 is a configuration diagram of an output forced OFF circuit.
  • the transistor TR61 is turned on by the output prohibition signal from the output prohibition circuit 624, and the detection signal is forcibly turned off.
  • the four signals A, B, C, and D can be considered as OFF signals. 0 When the signal to be flipped is the detection output signal D, the output is quickly inhibited in response to the output inhibit signal.
  • the method of 0FFing the signal of the output signal A of the differential amplifier, the Ex-NOR output signal B of the signal processing unit, and the input signal C to the AND gate of the shift register of the signal processing unit is differential.
  • FIGS. 12 3 and 12 24 a to 12 4 d show the embodiment 6 j, in which a detector having an output inhibition circuit 6 24 is supplied to the detector according to the output inhibition output.
  • a power supply cycle changer that changes the power supply pulse is added.
  • Fig. 123 shows the configuration
  • Figs. 124a to 124d show the time chart of the operation.
  • the power supply cycle changer includes first and second oscillation circuits 635a and 635b having different oscillation cycles and a two-input multiplexer 636.
  • This detector normally performs detection based on the pulse period oscillated from the first oscillation circuit 635a, and an output inhibition signal is output from the output inhibition circuit 624 due to a decrease in ambient illuminance, etc.
  • the selection signal is input to the 2-input multiplexer 36, and the pulse cycle is switched from the first oscillation circuit 635a to the second oscillation circuit 635b with longer oscillation cycle. Change. Thereby, low current consumption can be achieved.
  • the seventh embodiment the content of the signal processing in the first embodiment is specified.
  • Fig. 125 is a block diagram of the detection device 700 according to the embodiment 7a, and Figs. 126a to 126i are time charts of operations in the detection device.
  • the detection device 700 detects an object or the like that was not in the initial state, and the object to be detected 1 is detected by natural scattered light such as illumination light or sunlight at the place where the detection device 700 is installed. It comprises a photodetector 701 for detecting the signal No. 5 and various processing circuits such as a differential amplifier circuit 706 for processing and outputting the detected light receiving signal.
  • the light detection section 701 is composed of a light receiving lens 703 that collects naturally scattered light reflected from the detection object 15 and the background object 1, and two photo diodes PD 1 and PD that convert light into current.
  • the processing circuit includes two amplifier circuits 704 and 705, a differential amplifier circuit 706, a high-pass filter HPF 707, a comparison circuit 708, an integration circuit 709, and an output circuit. It comprises a power circuit 7, 10 and an oscillation circuit 71.
  • the initial setting circuit 7 11 the change amount detection circuit (adjustment amount detector) 7 1 2 at the time of initial setting, and the discrimination level setting circuit (threshold value setting device) 7 1 and 3 are included.
  • Light reflected by the detection object 15 and the background object 14 is condensed by the light-receiving lens 703, and the light passing through the lens 703 is divided into two light-receiving fields forming two light-receiving fields.
  • the light is received by the photo diode PD1, PD2 (photodetector) and converted into light-current.
  • These two light-to-current converted light receiving signals are converted into high-frequency signals by a switching pulse SG (FIG. 12B), and are amplified by the amplifier circuits 704 and 705, respectively (see FIG. 1). 26 c, 126 d).
  • the amplifier circuits 704 and 705, respectively see FIG. 1). 26 c, 126 d.
  • the differential operation circuit 706 FIG. 12E
  • the low-frequency noise is removed from the differentially calculated light-receiving signal by the HPF 707 (see FIG. 126), and the comparison circuit 108 sets two thresholds V thl and V th 2 (V th 2 ⁇ V th 1).
  • the larger threshold V th1 is set to V th1 ⁇ S at the output of the integrating circuit 709,
  • the threshold V th2 is changed to V th 2 + y ( ⁇ , r> 0), respectively.
  • the comparison circuit 708 outputs an H level signal if the differential output is out of the discrimination range, and outputs an L level signal if the differential output is not out of the discrimination range (Fig. 126g).
  • the output signal of the comparison circuit 708 is sent to the integration circuit 709.
  • the noise is further removed (Fig. 126h), and output by the output circuit 710.
  • V th 2 ⁇ (the differentially calculated light receiving signal) ⁇ V th 1
  • the non-detection output OFF: no detected object is in the light receiving field
  • V th 1 the detection output
  • the detection output ON: the detected object is within the light receiving field
  • the light receiving signal in the initial state (the state where there is no detected object) will be described.
  • the initial state there is almost no contrast between the two light receiving fields, and there is some contrast, so that the signal component of the differential output of the differential arithmetic circuit 706 is a signal There are levels.
  • the noise component included in the light reception signals received from the two light reception fields increases according to the amount of received light.
  • the initial setting is a process to put the differential operation output in the initial state (the state where there is no sensing object) within the levels of the two thresholds Vth1, Vth2 (Vth2 ⁇ Vth1). is there.
  • the target of the initial setting is the initial setting circuit 711, the change amount detection circuit 712 at the time of the initial setting, and the discrimination level setting circuit 713.
  • the initial setting circuit 7 1 1 is a circuit that allows the differential operation output to fall within the levels of the two thresholds V thl and V th 2 when there is no sensing object. There is a way to change the threshold without changing the differential output.
  • the change amount detection circuit 7 1 2 at the time of the initial setting is a circuit which detects how much the differential operation output has been changed at the time of the initial setting, or how much the threshold value has been changed, and the physical quantity thereof.
  • the discrimination level setting circuit 713 is a circuit that sets a threshold value and a hysteresis width according to the physical quantity detected by the change amount detection circuit 712 at the time of initial setting. The method of changing the threshold value without changing the differential output at the time of initial setting only sets the hysteresis width.
  • the detection device malfunctions due to the usage environment None. Further, the threshold value is set above and below the detection signal, and an output signal is output when the detection signal deviates from the level. Therefore, the direction in which the light-receiving output changes is not limited.
  • the detection device of the present embodiment the object can be detected without selecting the contrast between the visual field and the background for detecting the detected object, and the sensitivity of the sensor is greatly improved.
  • FIG. 127 illustrates the basic concept of the initial setting.
  • the initial setting means that the output signal level Vsp of the differential amplification output is set to two thresholds Vthl, Vth2 (Vth2 ⁇ Vth1 ) Level.
  • FIGS. 128a and 128b are a circuit diagram when the reference voltage of the differential amplifier circuit 706 is changed and a diagram showing the relationship between the reference voltage and two thresholds at that time.
  • FIG. 9 is a circuit diagram in a case where the threshold voltage is changed, and a diagram showing a relationship between a reference voltage and two threshold values at that time.
  • the output Vs is changed by changing the amplification factor (RfZRs) of the amplifier circuit 706, and Vsp is set within the threshold level. In this method, it can be used even in a high-light environment.
  • FIGS. 12a and 12b are a circuit diagram in the case of attenuation of the received light signal and a diagram showing the relationship between the reference voltage and the two thresholds at that time.
  • the output Vs is set within the threshold level by the output of the amplifier circuit being attenuated by (R a 1 / R a) times by the resistance voltage division. In this method, the cost is reduced because the configuration is simple.
  • FIGS. 1229c and 1229d are a circuit diagram in the case where the DC offset value of the output of the amplifier circuit is changed, and a diagram showing the relationship between the reference voltage and the two threshold values at that time.
  • V s V ccx (RD 2 RD)-( R f / R s) X v
  • the embodiment shown in FIG. 130 is a teaching method in which the initial setting and the setting of the threshold value are automatically performed by a command from the outside of the detecting device.
  • Fig. 130 the differential output of the received light Sample and hold by the sample and hold circuit 715, AZD conversion by the AZD conversion circuit 716, and comparison by the comparison circuit 108 with the discrimination range stored in the memory 122 by the initial setting. After passing through an integrating circuit 709 for noise removal, the output of is output to the outside of the sensor by an output circuit 710.
  • the initial setting is that when the external switch SW1 that executes the execution command is set to 0 N, a plurality of light-receiving outputs are output from a plurality of memories 718 and 719 by the trigger signal of the initialization circuit 717. It is memorized.
  • the stored light receiving signal is calculated by the arithmetic circuit 720 (for example, an average value, an intermediate value between the maximum value and the minimum value), and a discrimination range is set.
  • the set value is stored in the memory 721, and the initial setting is performed. According to this method, initial settings can be made very easily.
  • the buffer output V 0 of the same circuit 71 1 is input to the absolute value circuit 73 1.
  • I0 (R14 / R16)
  • XIIV thl Vref + R17xI0.
  • Vth2 Vref-R18XI0.
  • Fig. 13 2 shows the discrimination level setting circuit 7 1 3 that changes only the hysteresis width according to the amount of change at the time of initial setting.
  • FIG. 13 is a circuit diagram of a discrimination level setting circuit 7 13 in which only the threshold value is changed according to the amount of change at the time of initial setting.
  • FIGS. 13A and 13B are modified examples of the change amount detection circuit 7 12 at the time of the initial setting described above, and are diagrams showing circuits suitable for detecting the change amount of the AC signal. 1334a is a part of the circuit diagram, and Fig.136b is its time chart.
  • the present embodiment detects the magnitude of V 0 and outputs the detected signal to the absolute value circuit 7 3 1 in FIG. To detect the amount of change.
  • the threshold and the hysteresis width are set by the above-described discrimination level setting circuit 711 according to the amount of change.
  • the diode D1 when the control signal CTL of the transistor TR1 is at the H level, the diode D1 does not conduct and the potential between VS and VG becomes the same potential, and the transistor TR1 changes to the 0N state. Become. Therefore, capacitor CH is charged to VS It is.
  • the control signal CTL goes to L level, the diode D1 conducts, a potential difference occurs between VS and VG, and the transistor TR1 becomes 0FF. Therefore, the capacitor CH is held at the immediately preceding potential V 0.
  • Fig. 13 5 is a circuit diagram of the discrimination level setting circuit 7 13 that performs initial setting by changing the threshold and the hysteresis width, and according to the center value of the two threshold levels, It shows a changer that changes the threshold and the hysteresis width.
  • the center value of the threshold value is determined by changing the VR of the resistor R1 as the initial setting circuit 711.
  • VB is input via the buffer to the + input of the buffer in the change amount detection circuit 7 12 in the initial setting shown in Figure 13 1 according to the output V 2 of the differential amplifier in Figure 13 1.
  • Current source current I 1 (V 2-V BE ) / R 1.
  • the circuit diagram of the embodiment 7c is shown in Fig. 136, and the timing chart of the operation is shown in 137a to 137g.
  • three photodiodes PD1, PD2, and PD3 are used as detection elements.
  • PD1, PD2, and PD3 are used as detection elements.
  • the object detection device is an automatic water supply device in a washroom or a toilet, or a detector for operating a machine that needs to be automatically operated only when a person is present. It is particularly suitable for use in automatic operation control of equipment where energy saving is required.

Abstract

A detector comprising object lenses (116 and 117) and photodetectors (PSD or PD) (118 and 119) for receiving the rays of light passing through the object lenses (116 and 117), wherein a plurality of fields of view are observed. The output signals from the photodetectors (118 and 119) are processed to detect changes in the quantity of light in a plurality of fields of view, or the displacement of the optical center of a field of view. This detection serves to find the appearance of objects that do not exist under the initial state.

Description

明細書 物体等の検知装置  Description Detecting device for objects
技術分野 Technical field
この発明は、 物体等の検知装置に関し、 特に人または物 体等の有無を光学的に検知する物体等の検知装置に関する ( The present invention relates to a device for detecting an object or the like, and particularly to a device for detecting an object or the like that optically detects the presence or absence of a person or an object (
背景技術 Background art
従来のこの種の検知装置の一例として、 反射型光電セン サについて図 1 を参照して説明する。 従来の光電センサは- 被検知物体に向けて投光する投光素子 1 1 0 1 とその反射 光を受光する受光素子 1 1 0 2 とを有し、 発振回路 1 1 0 3 より得られたパルス信号でもつて投光回路 1 1 0 4を駆 動し、 投光素子 1 1 0 1 を点灯させる。 その投光素子 1 1 0 1から出射された光は検出物体に当たり、 その反射光が 受光素子 1 1 0 2 に入射され、 光一電流変換され、 増幅回 路 1 1 0 5により増幅される。 この増幅された受光信号は- 予め設定されたしきい値と比較回路 1 1 0 6で比較され、 ゲー ト回路 1 1 0 7 において投光パルスと同期が取られ、 ノイズ除去用の積分回路 1 1 0 8を通った後、 出力回路 1 1 0 9 よりセンサ外部に出力される。  As an example of this type of conventional detection device, a reflection type photoelectric sensor will be described with reference to FIG. The conventional photoelectric sensor has a light-emitting element 1101 for projecting light toward an object to be detected and a light-receiving element 1102 for receiving the reflected light, and is obtained from an oscillation circuit 1103. The light emitting circuit 1104 is driven by the pulse signal, and the light emitting element 1101 is turned on. The light emitted from the light projecting element 111 hits the detection object, and the reflected light enters the light receiving element 110 2, where it is subjected to light-to-current conversion and amplified by the amplifier circuit 110 5. The amplified light receiving signal is compared with a preset threshold value by a comparator circuit 106, synchronized with the light emission pulse in a gate circuit 107, and integrated by a integrating circuit 1 for noise removal. After passing through 108, it is output from the output circuit 1109 to the outside of the sensor.
比較的簡単な構成の検知装置と して、 パッシブ (受動) 型の装置がある。 パッ シブ型の検知装置は、 検知装置自体 または検知装置と連動する装置と して、 検知対象に能動的 に作用する要素 (たとえば受光部とタイ ミ ング信号を共有 してパルス点灯する光源など) を有しておらず、 検知装置 とは連動しない人工または自然のエネルギ源 (たとえば照 明装置または太陽光) が検知対象に作用して生じる検知対 象からのエネルギを利用する。 その一例と して、 検知素子 に積分型赤外線検知素子 (サーモパイル) を用いた静止人 体検出器について説明する。 その回路図を図 2 に示す。 静 止人体検出器の検出エリアに人が侵入すると、 サーモパイ ル 1 1 1 1 に人体から発した赤外線が入射し、 その光量に 応じた起電力がバッファ 1 1 1 2を通して次段のァンプ 1 1 1 3へ送られる。 その信号はアンプ 1 1 1 3で増幅され、 ローパスフィ ルタ 1 1 1 4で高周波ノィズを除去し後、 予 め設定されたしきい値と比較回路 1 1 1 5で比較される。 しきい値を上回る信号が入力されると、 比較回路 1 1 0 5 はオン信号を出力する。 V R 1 はアンプ 1 1 1 3 のオフセ ッ 卜電圧調整用の可変抵抗、 V Sは電源、 Vはオフセッ ト 電圧である。 As a detection device with a relatively simple configuration, there is a passive type device. The passive detector is the detector itself. Or, as a device that works in conjunction with the detection device, it does not have an element that actively acts on the detection target (for example, a light source that shares a timing signal with the light receiving unit and illuminates in pulses). It uses energy from the target that is generated by an uncoupled artificial or natural energy source (eg, a lighting device or sunlight) acting on the target. As an example, a stationary human body detector using an integrating infrared detecting element (thermopile) as the detecting element will be described. Figure 2 shows the circuit diagram. When a person enters the detection area of the stationary human body detector, infrared rays emitted from the human body enter the thermopile 111 and an electromotive force corresponding to the amount of light is transmitted through the buffer 111 to the next stage. Sent to 13. The signal is amplified by the amplifier 11 13, the high-frequency noise is removed by the low-pass filter 11 14, and the signal is compared with the preset threshold value by the comparison circuit 11 15. When a signal exceeding the threshold value is input, the comparator circuit 110 outputs an ON signal. VR1 is a variable resistor for adjusting the offset voltage of the amplifier 111, VS is the power supply, and V is the offset voltage.
しかしながら、 図 1 に示したような従来の光電センサは、 自らが光を出射し、 その反射光量により物体検出を行なう ため、 検出性能は投光量に大き く依存する。 その投光量は、 投光素子 1 1 0 1 に流す電流で決まるため、 低消費電流化 が図りにく い。 一方、 センサをバッテリで駆動する場合に は、 長時間の駆動が困難になり、 センサを小型にする場合 には、 発熱の低減が困難になるという問題があった。 However, the conventional photoelectric sensor as shown in Fig. 1 emits light by itself and detects an object based on the amount of reflected light, so that the detection performance greatly depends on the amount of projected light. Since the amount of emitted light is determined by the current flowing through the light emitting element 111, it is difficult to reduce current consumption. On the other hand, when the sensor is driven by a battery, it is difficult to drive the sensor for a long time. Had a problem that it was difficult to reduce heat generation.
図 2 に示したような検知器においては、 サ一モパイル 1 1 1 1からの出力は信号が積分されて現れるため、 アンプ 1 1 1 3 は直流増幅を行なう必要があり、 ノイズカッ トは 口一パスフィ ルタのみで行なう必要があり、 ハイパスフィ ルタを通すことができないため、 低周波のノイズに弱いと いう問題がある。  In the detector shown in Fig. 2, since the output from the thermopile 1 1 1 1 1 appears as an integrated signal, the amplifier 1 1 1 3 must perform DC amplification, and the noise cut is Since it is necessary to perform only with a pass filter and cannot pass through a high pass filter, there is a problem that it is weak to low frequency noise.
また、 サ一モパイル 1 1 1 1の出力信号は微小でアンプ 1 1 1 3のオフセッ ト電圧 Vと同等以下であるため、 アン プ 1 1 1 3で直流増幅されるとき、 そのオフセッ ト電圧 V は無視できない。 このオフセッ ト電圧 Vを除去するために は、 アンプ 1 1 1 3 にオフ電圧 Vの小さな高精度アンプを 用いるか、 図 2 に示したようにオフ電圧調整回路 V R 1が 必要となる。 ところが、 前者はアンプの価格が高いという 問題があり、 後者は組立時に調整工程が必要となり、 製造 コス トを上げるという問題がある。  Also, since the output signal of the thermopile 111 is very small and equal to or less than the offset voltage V of the amplifier 111, when the DC is amplified by the amplifier 113, the offset voltage V Cannot be ignored. In order to eliminate the offset voltage V, a high-precision amplifier with a small off-voltage V is used for the amplifier 111 or an off-voltage adjustment circuit V R 1 as shown in Fig. 2 is required. However, the former has a problem that the price of the amplifier is high, and the latter has a problem that an adjustment process is required at the time of assembling, and the manufacturing cost is increased.
したがって、 この発明の目的の 1つは、 低消費電流でか つ簡素な構成を有する物体等の検知装置を提供するこ とで ある。  Therefore, one of the objects of the present invention is to provide a device for detecting an object or the like having a low current consumption and a simple configuration.
この発明の他の目的は高周波ノイズやアンプのオフセッ トノィズやその他外来ノィズを除去することができる物体 等の検知装置を提供するこ とである。  Another object of the present invention is to provide a detection device for an object or the like capable of removing high-frequency noise, offset noise of an amplifier, and other external noise.
この発明のさ らに他の目的は、 センサの小型化、 口一コ ス ト化、 低消費電流化を図ることができ、 高精度な回路が 要求されるこ とのない、 物体等の検知装置を提供すること でめる。 Still another object of the present invention is to reduce the size, cost, and current consumption of the sensor, and to provide a highly accurate circuit. It is possible to provide a device for detecting objects, etc., which is not required.
この発明のさ らに他の目的は、 高い S / N比を確保でき、 かつコス トを抑えることができるパッシブ型物体検出装置 を提供することである。  Still another object of the present invention is to provide a passive object detection device capable of securing a high S / N ratio and suppressing costs.
この発明のさ らに他の目的は、 信号処理回路の規模を縮 小することができるパッシブ部型物体検出装置を提供する ことである。  Still another object of the present invention is to provide a passive-section-type object detection device capable of reducing the scale of a signal processing circuit.
この発明のさ らに他の目的は、 確実に被検出物体の検知 を行なう こ とができ、 投光電流を削減し、 低消費電流化を 図ることができる物体検知器を提供することである。 発明の開示  Still another object of the present invention is to provide an object detector which can surely detect an object to be detected, can reduce a light emission current, and can reduce current consumption. . Disclosure of the invention
この発明に係る、 物体の有無を光学的に検知する検知装 置は、 光学系と、 光学系を通過した光を受ける光検出素子 とにより複数の受光視野を構成する受光器と、 光検出素子 からの出力をもとに、 複数の受光視野間の光量変動を検出 する光量変動検出器を含む。  According to the present invention, there is provided a detection device for optically detecting the presence or absence of an object, comprising: an optical system; a photodetector configured to form a plurality of light receiving fields by a photodetector that receives light passing through the optical system; and a photodetector. Includes a light intensity fluctuation detector that detects the light intensity fluctuation between a plurality of light-receiving fields based on the output from
物体検知装置は、 従来のように投光部を持たず、 複数の 受光視野からの光量変動をもとに物体を検出する。 その結 果、 低消、費電流で簡素な構成の物体検出装置が提供できる。  The object detection device does not have a light projecting unit as in the related art, and detects an object based on a change in light amount from a plurality of light receiving fields. As a result, an object detection device having a simple configuration with low power consumption and current consumption can be provided.
好ま しく は、 光学系は光フアイバを含む。 光ファイバを 用いるため、 複数の光検出素子の対応する複数の受光視野 を自在に設定できる。 この発明の他の局面によれば、 物体等の有無を検出する パッ シブ型の検知装置は、 物理量を検出する検出素子と、 検出素子からの出力を増幅する増幅器と、 増幅器の出力か ら検出対象の状態を 2値判断する判断部と、 検出素子の出 力の増幅器への伝達を周期的に断続するスィ ツチとを含む。 検出素子からの出力はスィ ッチおよび増幅器によりパルス 信号とされ、 さ らに、 そのパルス信号は判断部により検出 対象の有無に応じてより確かな 2値信号と して出力される。 上記判断部は、 スィ ツチでパルス化され増幅器で増幅さ れた各パルスごとの信号の大きさが、 所定値を連続して所 定回数超えたときに出力を変化させるものであってもよい。 また、 判断部は、 スィ ッチでパルス化され、 増幅器で増幅 された信号を所定の基準値との大小関係に基づいて 2値の 値にパルス化する第 1の比較部と、 第 1の比較部の出力を 積分する積分部と、 積分部の出力を所定の基準値との大小 関係に基づいて 2値化して出力する第 2の比較部とからな るものであってもよい。 また、 検知装置は、 スィ ッチのス ィ ッチング周波数を含む帯域の信号を通過させるフィ ルタ を具備してもよい。 Preferably, the optical system includes an optical fiber. Since an optical fiber is used, a plurality of light receiving fields corresponding to a plurality of light detecting elements can be set freely. According to another aspect of the present invention, a passive detection device that detects the presence or absence of an object or the like includes a detection element that detects a physical quantity, an amplifier that amplifies an output from the detection element, and a detection element that detects the output from the amplifier. It includes a determination unit that determines the state of the target in binary, and a switch that periodically interrupts the transmission of the output of the detection element to the amplifier. The output from the detection element is converted into a pulse signal by a switch and an amplifier, and the pulse signal is output as a more reliable binary signal by a determination unit according to the presence or absence of a detection target. The determination unit may change the output when the magnitude of the signal for each pulse pulsed by the switch and amplified by the amplifier continuously exceeds a predetermined value a predetermined number of times. . Also, the determining unit includes a first comparing unit that is pulsed by the switch and that pulses the signal amplified by the amplifier into a binary value based on a magnitude relationship with a predetermined reference value; An integration unit that integrates the output of the comparison unit and a second comparison unit that binarizes the output of the integration unit based on a magnitude relationship with a predetermined reference value and outputs the binary value. In addition, the detection device may include a filter that passes a signal in a band including the switching frequency of the switch.
検出素子により検出対象の物理量に応じて発生した信号 をスィ ッチングしてパルス信号と し、 かつ増幅器により増 幅し、 この増幅器の出力から判断部により検出対象の状態 が 2値化して出力される。 信号の大きさが各パルスごとに 2値化して扱われるため、 パルス幅が小さ く て波高の大き なイ ンパルスノイズに検知器は反応しない。 したがって高 い S Z N比を確保できる。 また、 検出素子で得られる信号 ' が微小信号であっても、 増幅器のオフセッ ト電圧や低周波 ノィズの影響を受けにく いため、 高価な高精度アンプや製 造時のオフセッ 卜調整工程が不要になる。 その結果コス ト を抑えることができる。 The signal generated according to the physical quantity of the detection target by the detection element is switched into a pulse signal and amplified by an amplifier, and from the output of the amplifier, the state of the detection target is binarized by the judgment unit and output. . Since the signal size is binarized for each pulse, the pulse width is small and the wave height is large. The detector does not respond to impulsive noise. Therefore, a high SZN ratio can be secured. In addition, even if the signal obtained by the detection element is a very small signal, it is hardly affected by the offset voltage of the amplifier or low-frequency noise, so there is no need for an expensive high-precision amplifier or an offset adjustment step during manufacturing. become. As a result, costs can be reduced.
また、 スィ ッチのスイ ッチング周波数を含む帯域の信号 を通過させるフィ ルタを用いることにより、 交流電源など の外来の低周波ノ ィズゃ信号処理回路などで発生する高周 波ノイズをカツ トできるため、 高い S Z N比を確保でき、 高感度化が図れる。  In addition, by using a filter that passes signals in the band including the switching frequency of the switch, external low-frequency noise such as AC power can be cut off by high-frequency noise generated by signal processing circuits. As a result, a high SZN ratio can be secured and high sensitivity can be achieved.
この発明のさ らの他の局面によれば、 被検出物体からの 光を受光するこ とによつて被検出物体を検知するパッシブ 型物体検知器は、 複数の受光視野を構成し、 この受光視野 内に存する被検出物体または背景物体からの光を複数の受 光素子により受光し、 この受光量に基づいて複数の系統の 検出信号を出力する受光器と、 複数の系統の各検出信号を それぞれ時分割するゲ一 トと、 各検出信号がこのゲ一 トを 通過するタイ ミ ングが非同期で時分割となるようにゲ一 ト にパルス信号を供給するパルス発生器と、 ゲー トにより時 分割され、た各検出信号を組合せて 1系統で信号処理をする こ とにより、 受光視野間の光量変動を検出する信号処理器 とを含む。  According to still another aspect of the present invention, a passive object detector for detecting an object to be detected by receiving light from the object to be detected comprises a plurality of light receiving fields, A plurality of light receiving elements receive light from an object to be detected or a background object present in the field of view, and a photodetector that outputs detection signals of a plurality of systems based on the received light amount. A gate that time-divisions each, a pulse generator that supplies a pulse signal to the gate so that each detection signal passes through this gate asynchronously and time-divisionally, A signal processor for detecting light amount fluctuations between the light-receiving fields by performing signal processing in one system by combining the divided detection signals.
受光器から出力された複数の検出信号の信号処理器への 入力を、 ゲ一 卜により非同期で時分割となるようにタイ ミ ングで切換えるようにしたことにより、 複数の系統の検出 信号を 1系統の信号処理器で処理することが可能になる。 従来の光電センサのように、 受光出力数と同数の受光回路 や増幅回路等の信号処理回路を備える必要がなく なり、 信 号処理回路の規模を縮小することができる。 また、 回路部Multiple detection signals output from the receiver are sent to the signal processor. By switching the input at a timing so as to be time-shared asynchronously by the gate, it is possible to process detection signals of a plurality of systems with a single signal processor. Unlike conventional photoelectric sensors, there is no need to provide signal processing circuits such as light receiving circuits and amplifier circuits, the number of which is equal to the number of light receiving outputs, and the size of the signal processing circuit can be reduced. The circuit section
□Dの削減、 消費電流の低減、 検知器の外形の縮小、 コス ト の削減、 製造不良率の低減等を図ることが可能になる。 ま た回路構成を簡略化することにより、 複数の回路の特性の マツチングを図る必要がなく なるので、 高精度の部品が要 求されることがなく なる。  It is possible to reduce □ D, reduce current consumption, reduce the outer shape of the detector, reduce cost, and reduce the manufacturing defect rate. Also, by simplifying the circuit configuration, it is not necessary to match the characteristics of a plurality of circuits, so that high-precision components are not required.
この発明のさ らに他の局面によれば、 披検出物体からの 光を受光することによつて該被検出物体を検知するパッシ ブ型検知器は、 複数の受光視野を構成し、 受光視野内に存 する被検出物体または背景物体からの光を受光し、 この受 光量に基づいて受光信号を出力する受光器と、 受光器の出 力に基づいて被検出物体の有無を判断する判断部と、 この 判断部の出力に応じて受光視野内に向けて補助光を投光す る補助投光器とを含む。  According to still another aspect of the present invention, a passive detector for detecting an object to be detected by receiving light from the object to be detected comprises: a plurality of light receiving fields; A light receiving device that receives light from a detected object or a background object within the device and outputs a light receiving signal based on the received light amount, and a determining unit that determines the presence or absence of the detected object based on the output of the light receiving device. And an auxiliary projector for projecting auxiliary light toward the inside of the light receiving field according to the output of the determination unit.
パッシブ型検知器においては、 周囲照度が低下したとき や、 被検出物体が受光視野内に侵入したときに、 受光器に よる受光量の変化が判断部により検出され、 それに応じて 補助光が投光され、 この補助光を用いてさ らに被検出物体 の検知を行なうので、 確実な物体の検知を行なう ことがで きる。 また、 常に投光を行なう必要がないため、 投光電流 を削減し、 低消費電流化を図ることができる。 また、 この 低消費電流化により、 バッテリによって物体検知器を駆動 する場合においては、 バッテリの長寿命化を図ることがで きる。 その結果、 バッテリの交換回数を減らすことができ、 電源のない場所での設置が可能になる。 In passive detectors, when the ambient illuminance decreases or when an object to be detected enters the light-receiving field, a change in the amount of light received by the light-receiving device is detected by the determination unit, and an auxiliary light is emitted accordingly. The auxiliary light is used to detect the object to be detected, so that it is possible to detect the object reliably. Wear. Also, since there is no need to constantly emit light, it is possible to reduce the light emission current and reduce the current consumption. In addition, by reducing the current consumption, when the object detector is driven by the battery, the life of the battery can be extended. As a result, the number of battery replacements can be reduced, and installation in a place without power supply is possible.
この発明のさ らに他の局面においては、 物体検知装置は、 In still another aspect of the present invention, the object detection device includes:
2つの受光信号を出力する光検出部と、 2つの受光信号の 差を差動演算する差動演算器と、 差動演算器の出力と 2つ のしきい値との比較に基づいて物体の有無を判断する判断 器と、 初期状態において差動演算器の出力が所定の値にな るように差動演算器の出力を調整するための調整器と、 調 整器によつて差動演算出力が調整された量を検出する調整 量検出器と、 調整量検出器の出力に基づいて 2つのしきい 値または各しきい値に与えられるヒステリ シス幅を設定す るしきい値設定器とを含む。 A photodetector that outputs two light-receiving signals, a differential calculator that calculates the difference between the two light-receiving signals, and an object based on a comparison between the output of the differential calculator and two thresholds. A judgment unit for judging the presence or absence, an adjuster for adjusting the output of the differential arithmetic unit so that the output of the differential arithmetic unit becomes a predetermined value in an initial state, and a differential operation by the adjuster An adjustment amount detector that detects the amount of output adjustment, and a threshold setting device that sets two thresholds or a hysteresis width given to each threshold based on the output of the adjustment amount detector. including.
初期状態の調整において、 検知物体がない状態での 2つ の受光信号に差がない ( 2つの受光視野内にコ ン ト ラス ト がない) と、 2つの受光信号のノイズ成分はほぼ等しいの で除去されて差動出力のノイズ成分はほぼ 0 となる。 逆に 2つの受光信号に差がある (複数の受光視野内にコン トラ ス トがある) と、 差動出力のノイズ成分を 2つの受光信号 の差、 つまり、 差動出力の信号成分の大きさに応じて大き く なる。 そこで、 初期設定において、 初期状態における差 動演算器の出力が所定の値になるように調整器により調整 し、 そのときの調整量は調整量検出器によって検出され、 その検出された調整量に基づいてしきい値設定器は 2つの しきい値または各しきい値のヒステリ シス幅を設定する。 このようにすることによって、 初期設定時における差動演 算器の差動出力の変化量に応じて適切にしきい値またはヒ ステリ シス幅を設定することができる。 そして、 しきい値 を検知信号の上下に設定し、 そのレベルから外れたら物体 を検知した旨の信号が出力されるため、 出力の変化方向に かかわらず物体が検出できる。 その結果、 使用環境等に依 存じない適切な感度調整が可能でかつ高感度のパッ シブ型 検知装置が提供できる。 図面の簡単な説明 In the adjustment of the initial state, if there is no difference between the two received light signals when there is no sensing object (there is no contrast in the two received light fields), the noise components of the two received light signals are almost equal. And the noise component of the differential output becomes almost zero. Conversely, if there is a difference between the two light-receiving signals (contrast is present in multiple light-receiving fields), the noise component of the differential output will be the difference between the two light-receiving signals, that is, the magnitude of the signal component of the differential output It grows accordingly. Therefore, in the initial setting, the difference in the initial state The adjustment is performed by the adjuster so that the output of the dynamic operation unit becomes a predetermined value.The adjustment amount at that time is detected by the adjustment amount detector. Set the threshold or the hysteresis width of each threshold. By doing so, the threshold value or the hysteresis width can be appropriately set according to the amount of change in the differential output of the differential operator at the time of the initial setting. Then, the threshold is set above and below the detection signal, and when the level deviates from that level, a signal indicating that the object has been detected is output, so that the object can be detected regardless of the output change direction. As a result, it is possible to provide a high-sensitivity passive detection device that can perform appropriate sensitivity adjustment independent of the use environment and the like. BRIEF DESCRIPTION OF THE FIGURES
図 1 は従来の反射形光電センサの構成を示す図である。 図 2 は従来の検知装置の一例を示す構成図である。  FIG. 1 is a diagram showing the configuration of a conventional reflective photoelectric sensor. FIG. 2 is a configuration diagram showing an example of a conventional detection device.
図 3 は第 1実施例による物体検知装置の基本原理を示す プロック図である。  FIG. 3 is a block diagram showing the basic principle of the object detection device according to the first embodiment.
図 4 aは本発明の一実施例による検知装置の受光部の構 成を示す図、 図 4 bは検出物体がない特許とある時の P S D上の光強度分布図である。  FIG. 4A is a diagram showing a configuration of a light receiving unit of the detection device according to one embodiment of the present invention, and FIG.
図 5 a〜図 5 dは実施例 1 aによる受光部の構成を示す 図及び P S D上の光強度分布図である。  FIGS. 5A to 5D are a diagram showing a configuration of a light receiving unit according to Example 1a and a light intensity distribution diagram on a PSD.
図 6 は実施例 1 aによる信号処理部のプロック図である。 図 7 a〜図 7 dは実施例 1 bによる受光部の構成図、 P S D上の光強度分布図及び信号処理部のプロック構成図で ある。 FIG. 6 is a block diagram of the signal processing unit according to the embodiment 1a. 7A to 7D are a configuration diagram of a light receiving unit, a light intensity distribution diagram on a PSD, and a block configuration diagram of a signal processing unit according to Example 1b.
図 8 は実施例 1 cによる受光部及び信号処理部のプロッ ク図である。  FIG. 8 is a block diagram of the light receiving unit and the signal processing unit according to the embodiment 1c.
図 9 は実施例 1 cの変形例による信号処理部のプロック 図である。  FIG. 9 is a block diagram of a signal processing unit according to a modification of the embodiment 1c.
図 1 0は実施例 1 dによる受光部及び信号処理部のプロ ック図である。  FIG. 10 is a block diagram of a light receiving unit and a signal processing unit according to Embodiment 1d.
図 1 1 aは実施例 1 eによる受光部及び信号処理部のブ ロック図である。  FIG. 11a is a block diagram of the light receiving unit and the signal processing unit according to the embodiment 1e.
図 1 1 bは実施例 1 eの変形実施例のプロック図である。 図 1 2 は実施例 1 eの信号処理に割算回路を用いた場合 のブロック図である。  FIG. 11b is a block diagram of a modification of the embodiment 1e. FIG. 12 is a block diagram when a division circuit is used for the signal processing of the embodiment 1e.
図 1 3 は実施例 1 f の変形例による検知装置の構成を示 す図である。  FIG. 13 is a diagram illustrating a configuration of a detection device according to a modified example of Example 1f.
図 1 4 は実施例 1 gによる装置の構成図である。  FIG. 14 is a configuration diagram of an apparatus according to Example 1g.
図 1 5 は実施例 1 gの変形例を示す構成図である。  FIG. 15 is a configuration diagram showing a modification of the embodiment 1g.
図 1 6 は実施例 1 hによる装置の構成図である。  FIG. 16 is a configuration diagram of an apparatus according to Example 1h.
図 1 7 は各種光源の分光分布図である。  Figure 17 shows the spectral distribution of various light sources.
図 1 8 は実施例 1 hの変形例を示す図である。  FIG. 18 is a view showing a modification of the embodiment 1h.
図 1 9 aは実施例 1 i による装置の構成を示す図であり、 図 1 9 bはその回路図である。  FIG. 19a is a diagram showing the configuration of the device according to Example 1i, and FIG. 19b is a circuit diagram thereof.
図 2 0 aは実施例 1 j による装置の構成を示す図であり、 図 2 0 bはその回路図である。 FIG. 20a is a diagram showing the configuration of the device according to the embodiment 1j, FIG. 20b is the circuit diagram.
図 2 1 aは実施例 1 kによる装置の構成を示す図であり、 図 2 1 bはその回路図である。  FIG. 21a is a diagram showing the configuration of the device according to Example 1k, and FIG. 21b is a circuit diagram thereof.
図 2 2 aは実施例 1 mによる装置の構成を示す図であり、 図 2 2 bはその回路図である。  FIG. 22A is a diagram showing the configuration of the device according to Example 1m, and FIG. 22B is a circuit diagram thereof.
図 2 3 aは実施例 1 nによる装置の構成を示す図であり、 図 2 3 bはその回路図である。  FIG. 23A is a diagram showing the configuration of the device according to Example 1n, and FIG. 23B is a circuit diagram thereof.
図 2 4 は実施例 1 oによる検知装置を示す図である。  FIG. 24 is a diagram illustrating a detection device according to Example 1o.
図 2 5 a〜図 2 5 i は実施例 1 oの動作のタイムチヤ一 トである。  FIGS. 25a to 25i are time charts of the operation of the embodiment 1o.
図 2 6 は比較回路、 積分回路、 出力回路からなる判断部 の具体例を示す回路図である。  FIG. 26 is a circuit diagram showing a specific example of a judgment unit including a comparison circuit, an integration circuit, and an output circuit.
図 2 7 a〜図 2 7 dは上記の動作のタイムチャー トであ る o  Figure 27a to Figure 27d are time charts for the above operation.o
図 2 8は判断部の他の例を示す回路図である。  FIG. 28 is a circuit diagram showing another example of the determining unit.
図 2 9 a〜図 2 9 eは上記の動作のタイムチャー トであ る o  Figures 29a to 29e are time charts of the above operation.
図 3 0 は判断部のさ らに他の例を示す回路図である。  FIG. 30 is a circuit diagram showing still another example of the judgment unit.
図 3 1 a〜図 3 1 1 は上記の動作のタイムチャー トであ る。  FIGS. 31a to 311 are time charts of the above operation.
図 3 2は第 2実施例のパッ シブ型の検知装置の基本構成 を示す図である。  FIG. 32 is a diagram illustrating a basic configuration of a passive-type detection device according to the second embodiment.
図 3 3 は実施例 2 aによる光検出器の構成図である。  FIG. 33 is a configuration diagram of a photodetector according to Embodiment 2a.
図 3 4 a〜図 3 4 hは実施例 1 aのタイムチヤ一 トであ る o Figures 34a to 34h are time charts of Example 1a. O
図 3 5 aはスィ ツチング信号 S Gを生成する周期 Zデュ —ティ比可変回路の構成例を示す図、 図 3 5 bはそのタイ ムチヤ一 卜である。  FIG. 35a is a diagram showing a configuration example of a cycle Z duty ratio variable circuit for generating a switching signal SG, and FIG. 35b is a timing chart thereof.
図 3 6 は実施例 2 bによる検知装置の構成を示す図であ o  Fig. 36 is a diagram showing the configuration of the detection device according to the embodiment 2b.
図 3 7 は実施例 2 bにおける回路各部とコンデンサの並 列容量 C i の関係図である。  FIG. 37 is a diagram showing the relationship between the circuit components and the parallel capacitance C i of the capacitor in Example 2b.
図 3 8は上記の比較回路、 判別部からなる判断部の具体 例を示す回路図である。  FIG. 38 is a circuit diagram showing a specific example of the above-described comparison circuit and a determination unit including a determination unit.
図 3 9 a〜図 3 9 dは上記の動作のタィムチヤ一 トであ Fig. 39a to Fig. 39 d are the timing charts for the above operation.
Q O Q O
図 4 0は判断部の他の例を示す回路図である。  FIG. 40 is a circuit diagram showing another example of the determining unit.
図 4 1 a〜図 4 1 eは上記の動作のタイムチャー トであ る o  Figure 41a to Figure 41e are time charts for the above operation.
図 4 2 は判断部のさ らに他の例を示す回路図である。 図 4 3 a〜図 4 3 1 は上記の動作のタイムチヤ一トであ る。  FIG. 42 is a circuit diagram showing still another example of the judgment unit. FIGS. 43a to 431 are time charts of the above operation.
図 4 4 は実施例 2 cによる赤外線検出器の構成を示す図 である。  FIG. 44 is a diagram showing the configuration of the infrared detector according to the embodiment 2c.
図 4 5は実施例 2 dによる温度検出器の検出部の構成を 示す図である。  FIG. 45 is a diagram illustrating a configuration of a detection unit of a temperature detector according to Embodiment 2d.
図 4 6 a〜図 4 6 dは実施例 2 eによる圧力検出器の構 成を示す平面図及び断面図、 等価回路図、 およびその信号 処理部の構成を示す図である。 FIGS. 46a to 46d are a plan view and a cross-sectional view, an equivalent circuit diagram, and signals showing a configuration of the pressure detector according to the embodiment 2e. FIG. 3 is a diagram illustrating a configuration of a processing unit.
図 4 7 a〜図 4 7 hは実施例 2 cのタイムチャー トであ Figures 47a to 47h are time charts of Example 2c.
O O
図 4 8 は実施例 2 f による温度センサの検出部の構成を 示す図である。  FIG. 48 is a diagram illustrating the configuration of the detection unit of the temperature sensor according to Embodiment 2f.
図 4 9 は実施例 2 gによる構成を示す図である。  FIG. 49 shows a configuration according to Example 2g.
図 5 0 は実施例 2 hによる構成を示す図である。  FIG. 50 is a diagram showing a configuration according to Example 2h.
図 5 1 は実施例 3 aによる検知器の構成図である。  FIG. 51 is a configuration diagram of a detector according to Embodiment 3a.
図 5 2 a〜図 5 2 i は実施例 3 aによる検知器の検知動 作のタイムチャー トである。  FIGS. 52a to 52i are time charts of the detection operation of the detector according to the embodiment 3a.
図 5 3 は実施例 3 bによる検知器の構成図である。  FIG. 53 is a configuration diagram of a detector according to Embodiment 3b.
図 5 4 は実施例 3 cによる検知器のスィ ッチ近傍の構成 を示す図である。  FIG. 54 is a diagram showing a configuration near the switch of the detector according to the embodiment 3c.
図 5 5 は実施例 3 bによる検知器のスィ ッチ近傍の構成 を示す図である。  FIG. 55 is a diagram showing a configuration near the switch of the detector according to Embodiment 3b.
図 5 6 は実施例 3 eによる検知器の構成図である。  FIG. 56 is a configuration diagram of a detector according to Embodiment 3e.
図 5 7 a〜図 5 7 mは実施例 3 eによる検知器の検知動 作のタイムチャー トである。  FIGS. 57a to 57m are time charts of the detection operation of the detector according to Example 3e.
図 5 8 は実施例 3 f による検知器の構成図である。  FIG. 58 is a configuration diagram of a detector according to Embodiment 3f.
図 5 9 a〜図 5 9 i は実施例 3 f による検知器の検知動 作のタイムチヤ一である。  Figs. 59a to 59i are time charts of the detection operation of the detector according to the embodiment 3f.
図 6 0 は実施例 3 gによる検知器の構成図である。  FIG. 60 is a configuration diagram of a detector according to Embodiment 3g.
図 6 1 a〜図 6 1 j は実施例 3 による検知器の検知動 作のタイムチャー トである。 図 6 2 a〜図 6 2 j は実施例 3 hによる検知器の検知動 作のタイムチャー トである。 FIGS. 61a to 61j are time charts of the detection operation of the detector according to the third embodiment. Figures 62a to 62j are time charts of the detection operation of the detector according to Example 3h.
図 6 3 は実施例 3 i による検知器の構成図である。  FIG. 63 is a configuration diagram of a detector according to Embodiment 3i.
図 6 4 a〜図 6 4 j は実施例 3 j による検知器の検知動 作のタイムチヤ一 卜である。  FIGS. 64a to 64j are time charts of the detection operation of the detector according to Embodiment 3j.
図 6 5は実施例 3 j による検知器の構成図である。  FIG. 65 is a configuration diagram of a detector according to Embodiment 3j.
図 6 6 a〜図 6 6 j は実施例 3 j による検知器の構成図 である。  FIGS. 66a to 66j are configuration diagrams of the detector according to the embodiment 3j.
図 6 7 は実施例 3 kによる検知器の構成図である。  FIG. 67 is a configuration diagram of a detector according to Embodiment 3k.
図 6 8 a〜図 6 8 j は実施例 3 kによる検知器野検知動 作のタイムチヤ一 トである。  Fig. 68a to Fig. 68j are time charts of the detector field detection operation according to embodiment 3k.
図 6 9 は実施例 3 1 による検知器の構成図である。  FIG. 69 is a configuration diagram of a detector according to Embodiment 31.
図 7 0 は実施例 3 mによる検知器の構成図である。  FIG. 70 is a configuration diagram of a detector according to Embodiment 3m.
図 7 1 は実施例 3 nによる赤外線センサの構成図である。 図 7 2 は実施例 3 oによる温度センサの構成図である。 図 7 3 aは実施例 3 pによる圧力センサの平面図、 及び 断面図、 図 7 3 bは同センサの回路図である。  FIG. 71 is a configuration diagram of an infrared sensor according to Embodiment 3n. FIG. 72 is a configuration diagram of the temperature sensor according to the third embodiment. FIG. 73A is a plan view and a sectional view of a pressure sensor according to Example 3p, and FIG. 73B is a circuit diagram of the sensor.
図 7 4 は実施例 3 qによるガスセンサの構成図である。 図 7 5は第 4実施例に係る検知器の基本構成を示すプロ ック図である。  FIG. 74 is a configuration diagram of a gas sensor according to Embodiment 3q. FIG. 75 is a block diagram showing a basic configuration of the detector according to the fourth embodiment.
図 7 6 a〜図 7 6 e は光検出素子上の受光量分布を示す 図である。  FIGS. 76a to 76e are diagrams showing the distribution of the amount of received light on the photodetector.
図 7 7 は比較回路、 判別回路の内部構成を示すブロック 図である。 図 7 8 a〜図 7 8 pは差動増幅器の出力および比較回路、 判別回路の動作のタイムチャー トである。 FIG. 77 is a block diagram showing the internal configuration of the comparison circuit and the discrimination circuit. FIGS. 78a to 78p are time charts of the output of the differential amplifier and the operation of the comparison circuit and the discrimination circuit.
図 7 9 は受光出射より反射面の数の方が多い場合の検知 器の構成を示すブロック図である。  Fig. 79 is a block diagram showing the configuration of the detector in the case where the number of reflecting surfaces is greater than the number of receiving and emitting light.
図 8 0 は検知物体の位置に対する受光量の変化を示す図 である。  FIG. 80 is a diagram showing a change in the amount of received light with respect to the position of the detection object.
図 8 1 は電源に電池を用い、 電源の供給を間欠供給と し た検知回路を示すプロック図である。  Fig. 81 is a block diagram showing a detection circuit that uses a battery as the power supply and supplies power intermittently.
図 8 2 は太陽電池によつて蓄電池に給電場合の検知器の ブロック図である。  Figure 82 is a block diagram of the detector when power is supplied to the storage battery by the solar cell.
図 8 3 は水力発電によつて蓄電池に給電される検知器の 構成を示すプロック図である。  Fig. 83 is a block diagram showing the configuration of a detector that supplies power to a storage battery by hydroelectric power generation.
図 8 4 は検知器の位置の調整をする方法を示す模式図で ある。  Figure 84 is a schematic diagram showing a method for adjusting the position of the detector.
図 8 5 は位置調整用の L E Dを内蔵した受光部の構成を 示す図である。  FIG. 85 is a diagram showing the configuration of a light receiving section having a built-in LED for position adjustment.
図 8 6 aは反射板を示し、 第 8 6 b図は 4分割 P Dの構 成を示す図である。  FIG. 86a shows a reflector, and FIG. 86b shows a configuration of a four-divided PD.
図 8 7 は光検出素子と レンズの間に絞りを入れた光学系 を示す図である。  Fig. 87 shows the optical system with an aperture between the photodetector and the lens.
図 8 8は駐車場システムにおける検知器の配置を示す図 である。  Fig. 88 is a diagram showing the arrangement of detectors in the parking lot system.
図 8 9 は駐車場システムの構成を示すブロッ ク図である。 図 9 0 は路面上の車両検出システムの構成を示すブロッ ク図である。 Figure 89 is a block diagram showing the configuration of the parking lot system. Figure 90 is a block diagram showing the configuration of the vehicle detection system on the road surface. FIG.
図 9 1 は車軸数を測定するシステムの構成を示すブロッ ク図である。  Figure 91 is a block diagram showing the configuration of the system for measuring the number of axles.
図 9 2 はパスゲー トシステムの構成を示すプロック図で ある。  Figure 92 is a block diagram showing the configuration of the passgate system.
図 9 3 はパスゲー トにおける検知器の配置を示す図であ る ο  Figure 93 shows the arrangement of detectors in the passgate ο
図 9 4は入退者数管理システムの構成を示すプロック図 である。  Figure 94 is a block diagram showing the configuration of the number-of-entrants management system.
図 9 5は位置決め装置の構成を示すプロック図である。 図 9 6 は検知器のアナログ出力を示す図である。  FIG. 95 is a block diagram showing the configuration of the positioning device. Figure 96 shows the analog output of the detector.
図 9 7 は長さ測定装置の構成を示す模式図である。  FIG. 97 is a schematic diagram showing the configuration of the length measuring device.
図 9 8 は監視システムの構成を示すプロック図である。 図 9 9 は第 5実施例における構成を示す模式図である。 図 1 0 0 は第 5実施例に係る検知器を用いたエリァセン サを示す図である。  Figure 98 is a block diagram showing the configuration of the monitoring system. FIG. 99 is a schematic diagram showing the configuration in the fifth embodiment. FIG. 100 is a diagram showing an area sensor using the detector according to the fifth embodiment.
図 1 0 1 はエリァセンサの具体的使用例を示す図である。 図 1 0 2〜図 1 0 4 は第 5実施例における検知器を用い たエリアセンサの利用例を示す図である。  FIG. 101 is a diagram showing a specific usage example of the area sensor. FIGS. 102 to 104 are diagrams illustrating examples of use of an area sensor using a detector according to the fifth embodiment.
図 1 0 5 は実施例 6 aによる検知器の構成図である。  FIG. 105 is a configuration diagram of a detector according to Embodiment 6a.
図 1 0 6 a〜図 1 0 6 1 は実施例 6 aによる検知器の検 知動作のタィムチヤ一 トである。  FIGS. 106a to 1061 are timing charts of the detection operation of the detector according to the embodiment 6a.
図 1 0 7 aは実施例 6 aによる検知器の補助投光部のか いいろずであり、 図 1 0 7 bは実施例 6 aによる検知器の 投光ト リガ回路の回路図と論理図である。 Fig. 107a shows the auxiliary light emitting part of the detector according to Example 6a, and Fig. 107b shows the detector of Example 6a. It is a circuit diagram and a logic diagram of a light emission trigger circuit.
図 1 0 8 は実施例 6 bによる検知器の構成図である。 図 1 0 9は実施例 6 c による検知器の構成図である。 図 1 1 0 a〜図 1 1 0 nは実施例 6 cによる検知器の検 知動作のタイムチャー トである。  FIG. 108 is a configuration diagram of a detector according to Embodiment 6b. FIG. 109 is a configuration diagram of a detector according to Embodiment 6c. FIGS. 110a to 110n are time charts of the detection operation of the detector according to the embodiment 6c.
図 1 1 1 aは実施例 6 cによる検知器の検知動作のタイ ムチャー トであり、 図 1 1 1 bはその検知動作の特徵を示 す図である。  FIG. 11a is a time chart of the detection operation of the detector according to Example 6c, and FIG. 11b is a diagram showing the characteristics of the detection operation.
図 1 1 2は実施例 6 dによる検知器の構成を示すプロ ッ ク図である。  FIG. 112 is a block diagram showing a configuration of a detector according to Example 6d.
図 1 1 3 3〜図 1 1 3 eは検知動作のタイムチャー トで める。  Figures 1 1 3 3 to 1 1 3 e are given by the time chart of the detection operation.
図 1 1 4は出力禁止回路の構成を示す図である。  FIG. 114 is a diagram showing the configuration of the output inhibition circuit.
図 1 1 5 は実施例 6 e による検知器の構成図である。  FIG. 115 is a configuration diagram of a detector according to Example 6e.
図 1 1 6 は実施例 6 f による検知器の構成図である。  FIG. 116 is a configuration diagram of a detector according to Example 6f.
図 1 1 7は実施例 6 gによる検知器の構成を示す図であ る。  FIG. 117 is a diagram showing a configuration of a detector according to Example 6g.
図 1 1 8 は電源リセッ ト時出力禁止と電圧低下時出力禁 止の両出力禁止回路を備えた検知回路の回路図である。  Fig. 118 is a circuit diagram of a detection circuit equipped with both output prohibition circuits, that is, output prohibition at power reset and output prohibition at voltage drop.
図 1 1 9 は検知動作のタイムチャー トである。  Figure 1 19 shows the time chart of the detection operation.
図 1 2、 0は実施例 6 hによる検知器の警告表示回路の回 路図である。  FIGS. 12 and 0 are circuit diagrams of the warning display circuit of the detector according to Example 6h.
図 1 2 1 は実施例 6 i による検知器の比較部、 演算部、 判断部の構成図、 図 1 2 2は出力禁止回路の回路図である。 図 1 2 3 は実施例 6 j による検知器の構成を示すプロッ ク図である。 FIG. 121 is a configuration diagram of a comparison unit, a calculation unit, and a determination unit of the detector according to the embodiment 6i, and FIG. 122 is a circuit diagram of an output inhibition circuit. FIG. 123 is a block diagram showing the configuration of the detector according to Embodiment 6j.
図 1 2 4 a〜図 1 2 4 dは検知動作のタィムチヤ一卜で ある。  FIGS. 124a to 124d are timing charts of the detection operation.
図 1 2 5 は実施例 Ί aによる検知装置のプロック構成図 である。  FIG. 125 is a block diagram of a detection device according to Example Ίa.
図 1 2 6 a〜図 1 2 6 i は実施例 7 aによる動作のタイ ムチヤー 卜である。  FIGS. 126a to 126i are time charts of the operation according to the embodiment 7a.
図 1 2 7 は初期設定の基本概念を説明する図である。 図 1 2 8 a及び図 1 2 8 bは作動演算器の基準電圧を変 更する場合の回路図及びその時の基準電圧と 2つのしきい 値との関係を示す図であり、 図 1 2 8 c及び図 1 2 8 dは 増幅回路の増幅率の変更による場合の回路図及びその時の 基準電圧と 2つのしきい値との関係を示す図である。  FIG. 127 illustrates the basic concept of the initial setting. Fig. 128a and Fig. 128b are a circuit diagram when the reference voltage of the operation calculator is changed and a diagram showing the relationship between the reference voltage and the two threshold values at that time. c and FIG. 128 d are a circuit diagram when the amplification factor of the amplifier circuit is changed and a diagram showing the relationship between the reference voltage and the two thresholds at that time.
図 1 2 9 a及び図 1 2 9 bは受光信号の減衰による場合 の回路図及びその時の基準でんたう と 2つのしきい値との 関係を示す図であり、 図 1 2 9 c及び図 1 2 9 dは増幅回 路出力の D Cオフセッ ト値の変更による場合の回路図及び その時の基準電圧と 2つのしきい値との関係を示す図であ る。  Fig. 12a and Fig. 12b are a circuit diagram in the case of attenuation of the received light signal and a diagram showing the relationship between the reference signal and the two thresholds at that time. Fig. 1229d is a circuit diagram in the case of changing the DC offset value of the amplification circuit output and a diagram showing the relationship between the reference voltage and the two thresholds at that time.
図 1 3 0 は実施例 7 bによる検知装置のプロック図であ o  FIG. 130 is a block diagram of a detection device according to Example 7b.
図 1 3 1 は実施例 7 aにおける初期設定のための具体的 は回路図である。 図 1 3 2 は初期設定時にヒステリ シス幅のみを変更する 場合の要部回路図である。 FIG. 13 1 is a specific circuit diagram for the initial setting in the embodiment 7a. Fig. 13 2 is a main circuit diagram when only the hysteresis width is changed at the time of initial setting.
図 1 3 3 は初期設定時にしきい値のみを変更する場合の 要部回路図である。  Fig. 13 3 is a main circuit diagram when only the threshold is changed at the time of initial setting.
図 1 3 4 aは初期設定時の変化量検出部の変形例を示す 部分回路図、 図 1 3 4 bはその動作を説明するタイムチヤ 一トである。  FIG. 13A is a partial circuit diagram showing a modification of the change amount detection unit at the time of initial setting, and FIG. 13B is a time chart for explaining its operation.
図 1 3 5 は初期設定時にしきい値を変更する場合の要部 回路図である。  Fig. 135 is a main part circuit diagram when the threshold value is changed at the time of initial setting.
図 1 3 6 は本発明の実施例 7 cによる検知装置の受光部 の回路図である。  FIG. 136 is a circuit diagram of a light receiving section of a detection device according to Embodiment 7c of the present invention.
図 1 3 7 a〜図 1 3 7 gはその動作を説明するタイムチ ャ一 トである。 発明を実施するための最良の形態  FIGS. 137a to 137g are time charts for explaining the operation. BEST MODE FOR CARRYING OUT THE INVENTION
( 1 ) 第 1実施例  (1) First embodiment
本発明による物体等の検知装置の基本原理についてまず 説明する。 図 3を参照して検知装置 1 0 0 は、 投光部を持 たず、 受光部とその信号処理部からなる。 複数の受光素子 1 0 1 , 1 0 2 は、 複数の受光視野内の被検知物体からの 光を受光するもので、 信号処理部は、 受光素子 1 0 1, 1 0 2からの信号を受ける増幅回路 1 0 3, 1 0 4及び 1 0 5 , 1 0 6、 差動増幅回路 1 0 7 , 1 0 8、 及び 1 0 9、 比較回路 1 1 0、 発振回路 1 1 1、 積分回路 1 1 2、 出力 回路 1 1 3 とからなる。 出力回路 1 1 3は積分回路 1 1 2 の出力を所定の基準値との大小関係に基づいて 2値とする ものである。 受光部 1 0 1, 1 0 2の構成を図 4 aに示す。 上記受光素子 1 0 1, 1 0 2は、 複数の受光視野を構成す る レンズ 1 1 6, 1 1 7 と、 ポジショ ン · センシング · デ バイス (位置検出素子 : 以下、 P S Dという) 1 1 8, 1 1 9 とを含む。 図 4 b, 4 cは、 検出物体がない時とある 時の P S D上の光強度分布を示す。 同図に示すように、 受 光視野内の像の変化による P S D 1 1 8, P S D 1 1 9上 の重心位置 Gの移動又は複数の受光視野間の光量変動を感 知することで、 背景 1 4の前に初期状態には存在していな かった検出物体 1 5の有無検知を行う。 First, the basic principle of the device for detecting an object or the like according to the present invention will be described. Referring to FIG. 3, detection device 100 does not have a light projecting unit, but includes a light receiving unit and its signal processing unit. The plurality of light receiving elements 101, 102 receive light from the detected object in the plurality of light receiving fields, and the signal processing unit receives signals from the light receiving elements 101, 102. Amplification circuits 103, 104 and 105, 106, Differential amplification circuits 107, 108, and 109, Comparison circuit 110, Oscillator circuit 111, Integrator circuit 1 1 2, output The circuit is composed of 1 1 and 3. The output circuit 113 converts the output of the integration circuit 112 into a binary value based on a magnitude relationship with a predetermined reference value. Fig. 4a shows the configuration of the light receiving sections 101 and 102. The light-receiving elements 101, 102 are composed of lenses 116, 117, which form a plurality of light-receiving fields, and a position-sensing device (position detecting element: hereinafter, referred to as PSD). , 1 19. Figures 4b and 4c show the light intensity distribution on the PSD with and without the detected object. As shown in the figure, by detecting the movement of the center of gravity G on the PSD 118 or PSD 119 due to the change of the image in the light receiving field or the fluctuation of the light quantity between the multiple light receiving fields, the background 1 can be detected. Before 4, the presence or absence of the detected object 15 that did not exist in the initial state is detected.
以下に上記原理を応用した各具体例を説明する。  Hereinafter, specific examples applying the above principle will be described.
( l a) 実施例 1 a  (l a) Example 1a
図 5 a〜図 5 dは本発明の実施例 1 aによる受光部と P 5a to 5d show the light receiving portion and P according to Embodiment 1a of the present invention.
S D上の光強度分布を示す。 レンズ 1 1 6 と P S D 1 1 8 により受光視野 aを構成し、 レンズ 1 1 7 と P S D 1 1 9 により受光視野 bを構成する。 これらの視野には周囲から の自然散乱光 (照明光、 太陽光など) が照射されている。 検出物体がない場合、 P S D 1 1 8 , P S D 1 1 9には自 然散乱光に照らされた背景の像がレンズ 1 1 6, 1 1 7を 通して映っている。 背景にコ ン トラス トがない場合、 図 5 bのように、 P S D上の光強度分布は一様となるため、 P S D 1 1 8 , P S D 1 1 9共に光重心位置 Gは P S Dの中 心となる。 背景にコ ン トラス トがあれば、 光重心位置 Gが P S Dの中心となるように初期設定を行う。 4 shows a light intensity distribution on SD. The receiving field of view a is constituted by the lens 1 16 and the PSD 1 18, and the receiving field b is constituted by the lens 1 17 and the PSD 1 19. These fields are illuminated by natural scattered light (illumination light, sunlight, etc.) from the surroundings. When no object is detected, the background images illuminated by natural scattered light are reflected on the PSDs 118 and 119 through the lenses 116 and 117, respectively. When there is no contrast in the background, the light intensity distribution on the PSD is uniform, as shown in Fig. 5b. Become a heart. If there is contrast in the background, the initial setting is performed so that the position of the center of gravity G becomes the center of the PSD.
こ こで、 背景と同等以上の反射率の高い検出物体 1 5が 受光視野内にある場合は、 検出物体 1 5からの反射光が背 景 1 4からの反射光より も大き く なるため、 図 5 cのよう に、 P S D上では検出物体 1 5の像が映っている部分の光 強度 Pは大き く、 背景 1 4が映っている部分の光強度 Pは 小さ く なる。 よって、 光重心位置 Gは検出物体 1 5側の像 の方へ移動する。 その移動量を P S D 1 1 8では A L a、 P S D 1 1 9では A L bとする。  Here, when a detection object 15 having a high reflectance equal to or higher than the background is within the light receiving field, the reflected light from the detection object 15 is larger than the reflected light from the background 14. As shown in FIG. 5c, on the PSD, the light intensity P at the portion where the image of the detection object 15 is reflected is large, and the light intensity P at the portion where the background 14 is reflected is small. Therefore, the position of the center of gravity G moves toward the image on the detection object 15 side. The movement amount is ALa in PSD118, and ALB in PSD119.
また、 背景 1 4 と同等以下の反射率の低い検出物体 1 5 が受光視野内にある場合は、 検出物体 1 5からの反射光が 背景 1 4からの反射光より も小さ く なるため、 図 5 bのよ うに、 P S D上では検出物体 1 5の像が映っている部分の 光強度 Pは小さ く、 背景が映っている部分の光強度 Pは大 き くなる。 よって、 光重心位置 Gは背景側の像の方へ移動 する。  Also, when a detection object 15 having a low reflectance equal to or lower than that of the background 14 is within the light receiving field, the reflected light from the detection object 15 is smaller than the reflected light from the background 14. As shown in 5b, on the PSD, the light intensity P of the portion where the image of the detection object 15 is reflected is small, and the light intensity P of the portion where the background is reflected is large. Therefore, the position G of the center of gravity moves toward the image on the background side.
図 6は実施例 1 aによる信号処理部のプロック構成を示 す。  FIG. 6 shows a block configuration of the signal processing unit according to the embodiment 1a.
各 P S Dからは P S Dへの入光パワーと光重心位置に応 じた光電流が出力され、 P S D 1 1 8からは電流 I 1, I 2、 P S D 1 1 9からは電流 I 3, I 4が出力される。 こ れら光電流は各々 I 変換回路で電圧に変換される。 電 流 I 1は Iノ V変換回路 1 2 1で電圧 V 1に、 電流 I 2は 1 ノ V変換回路 1 2 2で電圧 V 2 に、 電流 I 3 は I ノ V変 換回路 1 2 3で電圧 V 3 に、 電流 I 4 は I 変換回路 1Each PSD outputs a photocurrent corresponding to the light input power to the PSD and the position of the optical center of gravity. The currents I 1 and I 2 are output from PSD 118, and the currents I 3 and I 4 are output from PSD 119. Is output. Each of these photocurrents is converted to a voltage by the I conversion circuit. The current I 1 is set to the voltage V 1 by the I / V conversion circuit 1 2 1, and the current I 2 is set to 1 V conversion circuit 1 2 2 to voltage V 2, current I 3 to I V conversion circuit 1 2 3 to voltage V 3, current I 4 to I conversion circuit 1
2 4で電圧 V 4にそれぞれ変換される。 電圧 V 1 と V 2 は 差動増幅回路 1 0 7で引き算され、 (V 1— V 2 ) を得、 電圧 V 3 と V 4 は差動増幅回路 1 0 8で引き算され、 (VAt 24, they are converted to voltages V4, respectively. The voltages V 1 and V 2 are subtracted by the differential amplifier circuit 107 to obtain (V 1—V 2), and the voltages V 3 and V 4 are subtracted by the differential amplifier circuit 108 to obtain (V
3 - V ) を得る。 これらは差動増幅回路 1 0 9でさ らに 引き算され、 その出力は、 3-V). These are further subtracted by the differential amplifier circuit 109, and the output is
(出力) = ( V 1 - V 2 ) 一 ( V 3 - V 4 )  (Output) = (V 1-V 2) one (V 3-V 4)
となる。 この結果は予め設定されたしきい値と比較回路 1 1 0で比較され、 ノイズ除去のための積分回路 1 1 2を通 つた後、 出力回路 1 1 3 より出力される。 Becomes This result is compared with a preset threshold value by a comparator circuit 110, passes through an integration circuit 112 for noise removal, and is output from an output circuit 113.
このように実施例 1 aの物体等の検知装置は、 自ら光を 発せず、 自然散乱光を光源と して動作し、 受光視野に初期 状態には存在していなかった物体が侵入すると、 受光素子 上の光重心位置が変動し、 その変動量を検知して、 物体の 有無を検出するため、 低消費電流化を容易に図れる。 しか も、 図 5 aに示した受光視野 a又は受光視野 bのどちらか 一方で変化があれば出力が得られるので、 受光器が 1個の 場合に比べ、 受光視野は広く取れ、 また、 視野の重なり部 分では各 P S Dの移動量を足し合わせることになるため、 感度も 2倍となる。  As described above, the detection device for the object and the like in Example 1a does not emit light by itself, operates using natural scattered light as a light source, and receives an object that did not exist in the initial state into the light reception field. Since the position of the optical center of gravity on the element fluctuates and the amount of the fluctuation is detected to detect the presence or absence of an object, current consumption can be easily reduced. However, if there is a change in either the light-receiving field a or the light-receiving field b shown in Fig. 5a, an output can be obtained, so that the light-receiving field can be widened compared to the case with one receiver, and Since the amount of movement of each PSD is added at the overlapping part of, the sensitivity is doubled.
( l b ) 実施例 b  (l b) Example b
図 7 a〜図 7 dは実施例 1 bによる受光部、 P S D上の 光強度分布及び信号処理部のブロック構成を示す。 本実施 例では、 1個のレンズ 1 1 6 と P S D 1 1 8により受光視 野を構成する。 この視野には周囲からの自然散乱光 (照明 光、 太陽光など) が照射されている。 検出物体がない場合、 P S D 1 1 8には自然散乱光に照らされた背景の像がレン ズ 1 6を通して映っている。 背景 1 4にコ ン トラス トがな い場合、 図 7 bのように P S D上の光強度分布は一様とな るため、 P S Dの光重心位置 Gは P S Dの中心となる。 背 景 1 4にコ ン トラス トがあれば、 光重心位置 Gが P S Dの 中心となるよう初期設定を行う。 FIGS. 7A to 7D show block diagrams of a light receiving unit, a light intensity distribution on a PSD, and a signal processing unit according to the embodiment 1b. This implementation In the example, a light receiving field is constituted by one lens 116 and a PSD 118. This field is illuminated by natural scattered light (illumination light, sunlight, etc.) from the surroundings. In the absence of an object, PSD 118 reflects the background image illuminated by natural scattered light through lens 16. If there is no contrast in the background 14, the light intensity distribution on the PSD is uniform as shown in Fig. 7b, and the light center of gravity G of the PSD becomes the center of the PSD. If the background 14 has contrast, the initial settings are made so that the center of gravity G is the center of the PSD.
P S D 1 1 8からは P S D 1 1 8への入光パワーと光重 心位置に応じた光電流が出力され、 P S D 1 1 8からは光 電流 I 1, I 2が出力される。 これら光電流は I ZV変換 回路 1 2 1 , 1 2 2で電圧に変換され、 電流 I 1は I V 変換回路 1 2 1で電圧 V 1に、 電流 I 2は I ZV変換回路 1 2 2で電圧 V 2に変換される。 電圧 V 1 と V 2は差動増 幅回路 1 0 7で引き算され、 (V I— V 2 ) を得る。 この 結果は予め設定されたしきい値と比較回路 1 1 0で比較さ れ、 ノイズ除去のための積分回路 1 1 2を通った後、 出力 回路 1 1 3より出力される。  The PSD 118 outputs a photocurrent according to the light input power to the PSD 118 and the position of the optical center of gravity, and the PSD 118 outputs the photocurrents I 1 and I 2. These photocurrents are converted to voltages by the IZV converters 1 2 1 and 1 2 2. Converted to V2. The voltages V 1 and V 2 are subtracted by the differential amplifier circuit 107 to obtain (VI−V 2). This result is compared with a preset threshold value by a comparator circuit 110, passes through an integration circuit 112 for noise removal, and is output from an output circuit 113.
背景 1 4 と異なるコ ン トラス トを持つ検出物体 1 5が受 光視野内にある場合は、 図 7 cのように、 P S D上にその 像が映り、 光重心位置 Gが移動し、 P S Dから出力される 各光電流は背景像が映っている初期状態とは異なる。 ここ に、 検出物体 1 5がない場合 (背景を検知している) の P S D 1 8の出力電流を I 11, 121とすると、 I ZV変換後 の電圧は VII, V21、 差動増幅後の電圧は (VII - V21) となる。 検出物体 1 5がある場合の P S D 1 8の出力電流 を I 12、 122とすると、 I V変換後の電圧は V12、 V22、 差動増幅後の電圧は (V12—V22) となる。 こ こに、 検出 物体 1 5がない場合の差動増幅回路 1 0 7の出力値 (VII - V21) の上下に比較回路 1 0のしきい値は設定され、 こ のしきい値を横切る信号、 例えば (V12— V22) が入力さ れると、 比較回路 1 1 0からオン信号が出力され、 その信 号はノイズ除去のための積分回路 1 1 2を通った後、 出力 回路 1 1 3より検出物体の侵入信号を出力する。 If the detected object 15 having a contrast different from that of the background 14 is in the light receiving field, the image is reflected on the PSD, the position of the center of gravity G moves, and the Each output photocurrent is different from the initial state where the background image is shown. Here, P when there is no detected object 15 (the background is detected) If the output current of SD18 is I11, 121, the voltage after IZV conversion is VII, V21, and the voltage after differential amplification is (VII-V21). If the output current of PSD 18 with sensing object 15 is I12 and 122, the voltage after IV conversion is V12 and V22, and the voltage after differential amplification is (V12-V22). Here, the threshold value of the comparator circuit 10 is set above and below the output value (VII-V21) of the differential amplifier circuit 107 when there is no detection object 15. Signals that cross this threshold value are set. For example, when (V12-V22) is input, an ON signal is output from the comparison circuit 110, and the signal passes through the integration circuit 112 for noise removal and then from the output circuit 113. An intrusion signal of the detected object is output.
このように実施例 1 bの検知装置は、 自ら光を発せず、 自然散乱光を光源として動作し、 受光視野に初期状態には 存在していなかった物体が侵入すると、 受光素子上の光重 心位置が変動し、 その変動量に応じた光電流の差異を検知 して、 物体の有無を検出するため、 低消費電流化を容易に 図れる。 これは、 受光器を複数持つものに比べて、 小型、 コス トの面で有利である。  Thus, the detection device of Example 1b does not emit light by itself, operates using natural scattered light as a light source, and when an object that was not present in the initial state enters the light receiving field, the light weight on the light receiving element Since the position of the heart fluctuates and the difference of the photocurrent according to the fluctuation amount is detected to detect the presence or absence of an object, current consumption can be easily reduced. This is advantageous in terms of size and cost as compared with those having a plurality of light receivers.
( 1 c ) 実施例 1 c  (1c) Example 1c
図 8 は実施例 1 cによる受光部及び信号処理部のプロッ ク構成を示す。 レンズ 1 1 6 と 2分割フオ トダイオー ド (P Dという) 1 3 1の P D 1により受光視野 1を構成し、 レンズ 1 1 6 と 2分割 1 3 1の P D 2より受光視野 2を構 成し、 レンズ 1 1 7 と 2分割 P D 1 3 2の P D 3により受 光視野 3を構成し、 レンズ 1 1 7 と 2分割 P D 1 3 2の P D 4より受光視野 4を構成する。 これらの視野には周囲か らの自然散乱光 (照明光、 太陽光など) が照射されている。 各 P Dからは P Dへの入光パワーに応じた光電流が出力 され、 P D 1からは I 1、 P D 2からは I 2、 P D 3から は I 3、 P D 4からは I 4が出力される。 これら光電流は I ZV変換回路 1 2 1〜 1 2 4で電圧に変換され、 電流 I 1は I 変換回路 1 2 1で V 1、 電流 I 2は I /V変換 回路 1 2 2で V 2、 電流 I 3は I Z V変換回路 1 2 3で V 3、 電流 I 4 は I V変換回路 1 2 4で V 4 に変換される。 電圧 V 1 と V 2は差動増幅回路 1 0 7で引き算され、 (V 1 — V 2 ) を得、 電圧 V 3 と V 4は差動増幅回路 1 0 8で 引き算され、 (V 3— V 4 ) を得る。 これらは差動増幅回 路 1 0 9でさ らに引き算され、 その出力は、 FIG. 8 shows a block configuration of the light receiving unit and the signal processing unit according to the embodiment 1c. The receiving field of view 1 is composed of the lens 1 16 and the PD 1 of the two-part photodiode (PD) 1 3 1, and the receiving field 2 is composed of the lens 1 16 and the PD 2 of the two-part 13 1 Lens 1 1 7 and split by PD 3 of PD 1 3 2 An optical field of view 3 is constituted, and a light receiving field of view 4 is constituted by the lens 1 17 and the PD 4 of the two divided PDs 13 2. These fields are illuminated by natural scattered light (illumination light, sunlight, etc.) from the surroundings. Each PD outputs a photocurrent according to the light input power to the PD, PD 1 outputs I 1, PD 2 outputs I 2, PD 3 outputs I 3, and PD 4 outputs I 4 . These photocurrents are converted into voltages by the IZV conversion circuits 1 2 1 to 1 2 4, and the current I 1 is V 1 by the I conversion circuit 1 2 1, and the current I 2 is V 2 by the I / V conversion circuit 1 2 2 The current I 3 is converted to V 3 by the IZV conversion circuit 123 and the current I 4 is converted to V 4 by the IV conversion circuit 124. The voltages V 1 and V 2 are subtracted by the differential amplifier circuit 107 to obtain (V 1 − V 2), and the voltages V 3 and V 4 are subtracted by the differential amplifier circuit 108 to obtain (V 3− V 4). These are further subtracted by the differential amplifier circuit 109, and the output is
(出力) = (V 1 — V 2 ) — (V 3—V 4 )  (Output) = (V 1 — V 2) — (V 3 — V 4)
となる。 この結果は予め設定されたしきい値と比較回路 1 1 0で比較され、 ノイズ除去のための積分回路 1 1 2を通 つた後、 出力回路 1 1 3より出力される。 Becomes This result is compared with a preset threshold value by a comparator circuit 110, passes through an integrating circuit 112 for noise removal, and is output from an output circuit 113.
検出物体がない場合、 2分割 P D 1 3 1 , 1 3 2には自 然散乱光に照らされた背景の像がレンズを通して映ってい る。 背景にコン トラス 卜がない場合、 P D 1 と P D 2への 入射光量、 P D 3 と P D 4の入射光量はそれぞれ等しく な り、 差動増幅回路 1 0 9の出力は 0 となる。 背景にコン ト ラス トがあれば、 P D 1 と P D 2への入射光量、 P D 3 と P D 4への入射光量はそれぞれ異なり、 差動増幅回路 1 0 9の出力は 0 とならないので、 これが 0 となるように初期 設定を行う。 When there is no object to be detected, the background image illuminated by the naturally scattered light is reflected through the lens on the two-divided PDs 13 1 and 13 2. If there is no contrast in the background, the amount of light incident on PD 1 and PD 2 and the amount of light incident on PD 3 and PD 4 are equal, and the output of the differential amplifier circuit 109 becomes zero. If there is contrast in the background, the amount of light incident on PD 1 and PD 2 and PD 3 Since the amount of light incident on PD 4 is different and the output of the differential amplifier circuit 109 does not become 0, the initial setting is made so that this becomes 0.
いま、 背景と同等以上の反射率の高い検出物体 1 5が受 光視野 1、 4内にある場合は、 検出物体 1 5からの反射光 が背景からの反射光より大き く なるため、 P D上では検出 物体 1 5の像が映っている部分の光強度 Pは大き く、 背景 が映っている部分の光強度 Pは小さ く なる。 よって、  Now, if a detection object 15 with a reflectance equal to or higher than that of the background is in the light receiving fields 1 and 4, the reflected light from the detection object 15 will be larger than the light reflected from the background. Then, the light intensity P in the portion where the image of the detection object 15 is reflected is large, and the light intensity P in the portion where the background is reflected is small. Therefore,
( V 1 - V 2 ) > 0、 ( V 3 - V 4 ) く 0 となり、 差動増幅回路 1 0 9の出力は 0以上となり、 初期状態とは 異なるため、 この違いを検知することで物体の侵入を検出 できる。  (V1-V2)> 0, (V3-V4) <0, and the output of the differential amplifier circuit 109 becomes 0 or more, which is different from the initial state. Intrusion can be detected.
また、 背景と同等以下の反射率の低い検出物体 1 5が受 光視野 1、 4内にある場合は、 検出物体 1 5からの反射光 が背景からの反射光より も小さ く なるため、 P D上では検 出物体の像が映っている部分の光強度 Pは小さ く、 背景が 映っている部分の光強度 Pは大き く なる。 よって、  In addition, when a detection object 15 having a low reflectance equal to or less than that of the background is within the light receiving fields 1 and 4, the reflected light from the detection object 15 is smaller than the light reflected from the background. Above, the light intensity P in the part where the image of the detected object is reflected is small, and the light intensity P in the part where the background is reflected is large. Therefore,
( V 1 - V 2 ) く 0、 ( V 3 - V 4 ) > 0 となり、 差動増幅回路 1 0 9の出力は 0以下となり、 初期状態とは 異なるため、 この違いを検知することで物体の侵入を検出 できる。 、  (V1-V2) <0, (V3-V4)> 0, and the output of the differential amplifier circuit 109 becomes 0 or less, which is different from the initial state. Intrusion can be detected. ,
このように実施例 1 cの検出装置は、 自ら光を発せず、 自然散乱光を光源として動作し、 受光視野に初期状態には 存在していなかった物体が侵入すると、 2分割 P Dへの入 光量のバランスが崩れ、 その変動量を検出して、 検出物体 の有無を検出するため、 低消費電流化を容易に図れる。 本 実施例によれば、 受光視野 1、 2、 3、 4、 のいずれかの 視野に変化があれば出力が得られるため、 受光器が 1個の 場合に比べ、 受光視野は広く取れ、 大きな物体の検出が可 能となり、 また、 視野の重なり部分では各 P Dの光量変化 量を足し合わせることになるため、 感度も 2倍となる。 As described above, the detection device of Example 1c does not emit light by itself, and operates using naturally scattered light as a light source. The balance of the light amount is lost, and the fluctuation amount is detected to detect the presence or absence of the detected object, so that current consumption can be easily reduced. According to the present embodiment, an output can be obtained if there is a change in any of the light-receiving fields 1, 2, 3, 4, and so on. The object can be detected, and in the overlapping part of the field of view, the amount of change in the amount of light of each PD is added, so the sensitivity is doubled.
図 9は上記実施例 1 cの変形例による信号処理部のプロ ック構成を示す。  FIG. 9 shows a block configuration of a signal processing unit according to a modification of the embodiment 1c.
同図には、 上記 I V変換回路 1 2 1〜: 1 2 4の出力以 降の構成のみを示している。 電圧 V 1 と V 2は差動増幅回 路 1 0 7で引き算され、 (V I — V 2 ) を得、 加算器 1 0 7 'で足算され、 ( V 1 + V 2 ) を得、 電圧 V 3 と V 4は 差動増幅回路 1 0 8で引き算され、 (V 3— V 4 ) を得、 加算器 1 0 8 ' で足算され、 ( V 3 + V 4 ) を得る。 さ ら に、 割算回路 1 3 5 , 1 3 6で各々の差を和で割り算し、 (V 1 -V 2 ) / (V 1 +V 2 ) , ( V 3 - V 4 ) / ( V 3 + V 4 ) を得て、 さ らに、 差動増幅回路 1 3 7で引き算 され、 (V I — V 2 ) / ( V 1 + V 2 ) - ( V 3 - V 4 ) / ( V 3 + V 4 ) を得る。 このような割り算処理を用いる ことにより、 出力比を取り扱う ことになるので、 視野全体 が明る く又は暗く なるといった変動に対しても正確に物体 の検出が行える。  In the figure, only the configuration after the output of the above-mentioned IV conversion circuits 12 1 to 12 4 is shown. The voltages V 1 and V 2 are subtracted by the differential amplifier circuit 107 to obtain (VI−V 2) and added by the adder 107 ′ to obtain (V 1 + V 2). V 3 and V 4 are subtracted by the differential amplifier circuit 108 to obtain (V 3 — V 4), and are added by the adder 108 ′ to obtain (V 3 + V 4). Furthermore, each of the differences is divided by the sum in the divider circuits 1 3 5 and 1 3 6 to obtain (V 1 -V 2) / (V 1 + V 2), (V 3 -V 4) / (V 3 + V 4), and is subtracted by the differential amplifier circuit 13 7 to obtain (VI-V 2) / (V 1 + V 2)-(V 3-V 4) / (V 3 + V 4). Since the output ratio is handled by using such a division process, the object can be accurately detected even when the entire field of view becomes bright or dark.
( I d) 実施例 1 d 図 1 0 は実施例 1 dによる受光部及び信号処理部のプロ ック構成を示す。 本実施例では、 受光素子と して 2分割 P D 1 4 0を用い、 分割されたそれぞれの P Dを P D a、 P D b とする。 P D a とレンズ 1 1 6 により受光視野 aを構 成し、 P D b とレンズ 1 1 6により受光視野 bを構成する。 これらの視野には周囲からの自然散乱光 (照明光、 太陽 光) が照射されている。 検出物体がない場合、 P D a, b には自然散乱光に照らされた背景の像がレンズ 1 6を通し て映っている。 背景にコ ン トラス トがない場合、 P D上の 光強度分布は一様となるため、 P D a, bから出力される 光電流は等しい。 背景にコ ン トラス トがあれば、 P D a , bから出力される光電流は異なる。 (Id) Example 1 d FIG. 10 shows a block diagram of a light receiving unit and a signal processing unit according to the embodiment 1d. In the present embodiment, a two-divided PD 140 is used as a light receiving element, and the divided PDs are designated as PDa and PDb. The light receiving field of view a is constituted by PD a and the lens 1 16, and the light receiving field b is constituted by PD b and the lens 1 16. These fields are illuminated by natural scattered light (illumination light, solar light) from the surroundings. When no object is detected, the background image illuminated by natural scattered light is reflected on the PD a and b through the lens 16. If there is no contrast in the background, the light intensity distribution on the PD is uniform, and the photocurrents output from PD a and b are equal. If there is contrast in the background, the photocurrents output from PD a and b are different.
いま、 背景と異なるコ ン トラス トを持つ検出物体 1 5が 受光視野内にある場合は、 P D 1 0上にその像が映り、 P D a , bから出力される光電流は背景像が映っている初 期状態とは異なる。 検出物体 1 5がない場合 (背景) の P D aの出力を I al、 P D bの出力を I blとし、 検出物体が ある場合の P D aの出力を I a2、 P D bの出力を I b2とす る。 図 1 0に示すように、 P D aの光電流出力は、 I /Ί 変換回路 1 2 1で電圧 V aに変換され、 P D bの光電流出 力は、 I /V変換回路 1 2 2で電圧 V bに変換される。 検 出物体 1 5がない場合、 Val、 Vblが得られ、 検出物体 1 5がある場合、 Va2、 Vb2が得られる。 これらは差動増幅 回路 1 0 9で引き算され、 検出物体 1 5がない場合、 (V al- Vbl) となり、 検出物体 1 5がある場合、 (Va2— V b2) となる。 Now, if a detection object 15 having a contrast different from the background is within the light receiving field, the image is reflected on PD 10 and the photocurrent output from PD a and b is reflected in the background image. Is different from the initial state. When there is no sensing object 1 5 (background), the output of PD a is I al, the output of PD b is I bl, the output of PD a with sensing object is I a2, and the output of PD b is I b2 You. As shown in FIG. 10, the photocurrent output of PD a is converted to a voltage Va by an I / Ί converter circuit 121, and the photoelectric output power of PD b is converted to a voltage by an I / V converter circuit 122. Converted to V b. If there is no object 15, Val and Vbl are obtained. If there is 15 object, Va2 and Vb2 are obtained. These are subtracted by the differential amplifier circuit 109, and if there is no sensing object 15 (V al-Vbl), and if there is a detected object 15 (Va2-Vb2).
検出物体 1 5がない場合の差動増幅回路 1 0 9の出力値 ( Val- Vbl) の上下に比較回路 1 1 0のしきい値は設定 され、 このしきい値を横切る信号、 例えば (Va2— Vb2) が入力されると、 比較回路 1 1 0からオン信号が出力され、 その信号はノイズ除去の積分回路 1 1 2を通った後、 出力 回路 1 1 3より検出物体 1 5の侵入信号を出力する。  The threshold value of the comparator circuit 110 is set above and below the output value (Val-Vbl) of the differential amplifier circuit 109 when there is no sensing object 15. Signals that cross this threshold, for example (Va2 — When Vb2) is input, an ON signal is output from the comparator circuit 110, and the signal passes through the noise removal integration circuit 112, and then enters the detection object 15 from the output circuit 113. Is output.
このように実施例 1 dの検知装置は、 自ら光を発せず、 自然散乱光を光源と して動作し、 受光視野に初期状態には 存在していなかった物体が侵入すると、 受光視野間の光量 が変動し、 その変動量を検知して、 物体の有無を検出する ため、 低消費電流化を容易に図れる。 これは、 受光器を複 数持つものに比べて、 小型、 コス トの面で有利である。  As described above, the detection device of Example 1d does not emit light by itself, operates using natural scattered light as a light source, and when an object that did not exist in the initial state enters the light receiving field, the light detecting field Since the amount of light fluctuates and the amount of fluctuation is detected to detect the presence or absence of an object, current consumption can be easily reduced. This is advantageous in terms of size and cost as compared with those having a plurality of light receivers.
( 1 e ) 実施例 1 e  (1 e) Example 1 e
図 1 1 aは実施例 1 eによる受光部及び信号処理部のブ ロック構成を示す。 本実施例では、 受光素子として 2個の P D 1 4 1 , 1 4 2を用いる。 P D 1 4 1 とレンズ 1 1 6 により受光視野 aを構成し、 P D 1 4 2 とレンズ 1 1 7に より受光視野 bを構成する。 これらの視野はお互いに分離 しており、、 両視野に周囲からの自然散乱光 (照明光、 太陽 光) が照射されている。  FIG. 11a shows a block configuration of the light receiving unit and the signal processing unit according to the embodiment 1e. In this embodiment, two PDs 14 1 and 14 2 are used as light receiving elements. The light receiving field of view a is constituted by the PD 141 and the lens 1 16, and the light receiving field b is constituted by the PD 142 and the lens 117. These fields of view are separated from each other, and both fields are irradiated with natural scattered light (illumination light, solar light) from the surroundings.
検出物体がない場合、 P D 1 4 1, 1 4 2には自然散乱 光に照らされた背景の像がレンズ 1 1 6 , 1 1 7を通して 映っている。 背景にコン トラス トがない場合、 P D上の光 強度分布は一様となるため、 P D 1 4 1 , 1 4 2から出力 される光電流は等しい。 背景にコン トラス トがあれば、 P D 1 4 1 , 1 4 2から出力される光電流は異なる。 When no object is detected, the background image illuminated by natural scattered light is output to the PDs 14 1 and 14 2 through the lenses 1 16 and 1 17. It is reflected. When there is no contrast in the background, the light intensity distribution on the PD is uniform, and the photocurrents output from the PDs 141 and 142 are equal. If there is contrast in the background, the photocurrent output from PDs 14 1 and 14 2 will be different.
いま、 片側の受光視野、 例えば受光視野 bに検出物体 1 Now, the detection object 1
5が侵入する場合を考える。 この時、 P D 1 4 2上にその 像が映り、 P D 1 4 2から出力される光電流は背景像が映 つている初期状態とは異なる。 検出物体 1 5がない場合、 背景の P D 1 4 1の出力電流は Ial、 P D 1 4 2の出力電 流は I bl、 検出物体 1 5が受光視野 bにある場合の P D 1 4 1の出力電流は I alのままであり、 P D 1 4 2の出力電 流は I b2となる。 図 1 1 aに示すように、 P D 1 4 1の光 電流出力は I /V変換回路 1 2 1で電圧 V aに変換され、 P D 1 4 2の光電流出力は I V変換回路 1 2 2で電圧 V bに変換されるから、 検出物体 1 5がない場合、 Val、 V blが得られ、 検出物体がある場合、 Val (変化なし) 、 V b2が得られる。 これらは差動増幅回路 1 0 9で引き算され、 検出物体 1 5がない場合、 (Val— Vbl) となり、 検出物 体がある場合、 (Val— Vb2) となる。 Consider the case where 5 enters. At this time, the image is projected on the PD 142, and the photocurrent output from the PD 142 is different from the initial state where the background image is projected. If there is no sensing object 15, the output current of PD 14 1 in the background is Ial, the output current of PD 14 2 is I bl, and the output of PD 14 1 when sensing object 15 is in the light-receiving field b. The current remains at Ial, and the output current of PD142 becomes Ib2. As shown in Fig. 11a, the photocurrent output of PD 14 1 is converted to voltage Va by the I / V converter 121, and the photocurrent output of PD 14 2 is converted by the IV converter 12 2. Since it is converted to voltage Vb, Val and Vbl are obtained when there is no sensing object 15, and Val (no change) and Vb2 are obtained when there is a sensing object. These are subtracted by the differential amplifier circuit 109 to obtain (Val-Vbl) when there is no detected object 15 and (Val-Vb2) when there is a detected object.
検出物体がない場合の差動増幅回路 1 0 9の出力値 (V al— Vbl) の上下に比較回路 1 1 0のしきい値は設定され、 このしきい値を横切る信号、 例えば (Val— Vb2) が入力 されると比較回路 1 1 0からオン信号が出力され、 その信 号はノイズ除去のための積分回路 1 1 2を通った後、 出力 回路 1 1 3 より検出物体 1 5の侵入信号を出力する。 The threshold value of the comparator circuit 110 is set above and below the output value (Val—Vbl) of the differential amplifier circuit 109 when no object is detected, and a signal that crosses the threshold value, for example, (Val— When Vb2) is input, an ON signal is output from the comparator circuit 110, and the signal passes through the integration circuit 112 for noise elimination. The intrusion signal of the detection object 15 is output from the circuit 1 13.
このように実施例 1 eの検知装置は、 自ら光を発せず、 自然散乱光を光源と して動作し、 受光視野に初期状態には 存在していなかった物体が侵入すると、 受光視野間の光量 が変動し、 その変動量を検知して、 物体の有無を検出する ため、 低消費電流化を容易に図れる。 また、 この場合、 受 光視野がお互いに分離していることで、 受光視野を広く取 れ、 より大きな物体の検出ができるという利点がある。  Thus, the detection device of Example 1e does not emit light by itself, operates using natural scattered light as a light source, and when an object that did not exist in the initial state enters the light-receiving field, the light-receiving field Since the amount of light fluctuates and the amount of fluctuation is detected to detect the presence or absence of an object, current consumption can be easily reduced. Also, in this case, since the light receiving fields are separated from each other, there is an advantage that the light receiving field can be widened and a larger object can be detected.
次に実施例 1 eの変形例を図 1 1 bを参照して説明する。 図 1 1 bを参照して、 変形例においては、 レンズ 1 1 6、 1 1 7の代わりに光フアイバ 1 5 1、 1 5 2が設けられて いる。 それ以外の部分について図 1 l a と同様であるので、 その説明は省略する。  Next, a modified example of the embodiment 1e will be described with reference to FIG. 11B. Referring to FIG. 11b, in a modified example, optical fibers 151, 152 are provided instead of lenses 116, 117. The other parts are the same as in FIG.
レンズの代わりに光ファイバを用いているため、 受光視 野は自在に設定できる。  Since an optical fiber is used instead of a lens, the light-receiving field can be set freely.
( I f ) 実施例 1 ί  (If) Example 1
図 1 2 は上記実施例 1 eの信号処理に割算回路を用い、 かつ電源回路を加えた場合のブロック図である。 差動増幅 回路に代えて割算回路 1 4 4を用い、 電圧 V a と V bの比 を取ると、 その出力は検出物体がない場合、 V bl Z V alと なり、 検 物体がある場合、 V b2 Z V alとなるため、 視野 全体が同じ比率で明る く なつても暗く なつても、 この比が 変わらないから、 自然散乱光の変化に強くなる。  FIG. 12 is a block diagram in the case where a division circuit is used for the signal processing of the embodiment 1e and a power supply circuit is added. If a division circuit 144 is used in place of the differential amplifier circuit and the ratio between the voltages Va and Vb is calculated, the output will be V bl ZV al if there is no sensing object, and if there is an sensing object, Since V b2 ZV al, this ratio does not change even if the entire field of view becomes brighter or darker at the same ratio, and is more resistant to changes in natural scattered light.
上記図 1 2の例では、 電源として電池 1 4 5を用いてお り、 これにより電気工事が不要となり、 商用電源がないよ うな場所でも検知装置を設置することが可能で、 取付場所 の制約がなく なる。 In the example shown in Fig. 12 above, battery 145 is used as the power source. This eliminates the need for electrical work and allows installation of the detector in places where there is no commercial power supply, eliminating the restrictions on installation locations.
上記図 1 2の例では、 検知装置 5 1 は I / V変換回路 1 2 1 , 1 2 2、 割算回路 1 4 4、 比較回路 1 1 0、 積分回 路 1 1 2、 出力回路 1 1 3などの信号処理部を含み、 そこ への電源供給は、 発振回路 1 1 1のクロックで間欠供給す るような電源回路 1 4 6で行なう。 これにより、 一層、 消 費電流を低減することができる。  In the example of Fig. 12 above, the detection device 51 is an I / V conversion circuit 121, 122, a division circuit 144, a comparison circuit 110, an integration circuit 112, and an output circuit 111. 3 and the like, and the power supply thereto is performed by a power supply circuit 146 which is intermittently supplied by the clock of the oscillation circuit 111. As a result, the current consumption can be further reduced.
図 1 3 は図 1 2 に示した検知装置 5 1の他の構成を示す。 上述したような構成でなる検知器 5 1 の電源として太陽電 池 5 2を用い、 その電力を大容量コンデンサ又は二次電池 等でなる蓄電器 5 3 に供給する。 その結果、 電気工事が不 要となり、 検知器 5 1の取付場所に制約を受けることがな ヽ なる o  FIG. 13 shows another configuration of the detection device 51 shown in FIG. A solar battery 52 is used as a power supply for the detector 51 having the above-described configuration, and the power is supplied to a battery 53 including a large-capacity capacitor or a secondary battery. As a result, electrical work is not required, and there is no restriction on the installation location of the detector 51 o
( 1 g ) 実施例 1 g  (1 g) Example 1 g
図 1 4 は実施例 1 gによる装置の構成を示す。 本実施例 は、 洗面台 5 5の中に侵入されたた人の手などを検知器 (感知部) 5 1 により検知して蛇口 5 6に吸水する検知装 置である。 検知器 (感知部) 5 1が洗面台 5 5の近傍に設 けられ、 こ、の検知器 5 1 により手などが感知されると、 通 水路上に配された電磁弁 (バルブ) 5 7 に対するバルブ開 信号が制御部 (バルブ駆動回路) 5 8へ入力され、 その出 力で電磁弁 5 7 は駆動され、 開く。 この電磁弁 5 7の開に より吐水を行う。 また、 手が検知器 5 1 の検知エリァから 外れると、 検知器 5 1からはバルブ閉信号が出力され、 制 御部 5 8により電磁弁 5 7 は閉じられ、 止水する。 FIG. 14 shows the configuration of the device according to Example 1g. The present embodiment is a detection device that detects a person's hand or the like that has entered the wash basin 55 with the detector (sensing unit) 51 and absorbs water into the faucet 56. A detector (sensing part) 51 is installed near the wash basin 55. When a hand or the like is detected by the detector 51, a solenoid valve (valve) 5 7 disposed on the water passage is provided. A valve open signal for is input to the control unit (valve drive circuit) 58, and the output drives the solenoid valve 57 to open. Opening of this solenoid valve 5 7 Perform more spouting. When the hand comes off the detection area of the detector 51, a valve close signal is output from the detector 51, and the control unit 58 closes the solenoid valve 57 to stop water.
また、 通水路上に羽根車付きの水力発電機 5 9を配設し、 この発電機 5 9による発電電力を蓄電池 6 0 に充電し、 そ の出力を検知器 5 1の電源と している。 発電機 5 9 は、 バ ルブ開の時、 羽根車が水勢により回転され、 その回転速度 に応じた周波数の電流を出力し、 この出力電流は整流回路 6 1 により全波整流され、 充電回路 6 2、 ダイオー ド 6 3 を経て蓄電池 6 0に供給され、 これを充電する。 この充電 された電力により検知器 5 1を動作させる。 この構成によ れば、 外部から電源を供給しなくてもよいので、 検知器 5 1の無電源場所への設置や電気工事を必要と しないという 効果がある。  In addition, a hydraulic generator 59 with an impeller is arranged on the water channel, and the power generated by the generator 59 is charged into the storage battery 60, and the output is used as the power source for the detector 51. . When the valve is open, the impeller is rotated by water force, and the generator 59 outputs a current with a frequency corresponding to the rotation speed.This output current is full-wave rectified by the rectifier circuit 61 and the charging circuit 6 2. It is supplied to the storage battery 60 via the diode 63, and is charged. The detector 51 is operated by the charged power. According to this configuration, since there is no need to supply power from the outside, there is an effect that it is not necessary to install the detector 51 in a non-power supply place or to perform electrical work.
本実施例の検知器 5 1 は、 図 1 5に示すように、 便器 6 As shown in FIG. 15, the detector 51 of the present embodiment
5に自動水洗を行うための人体検知にも適用できる。 5. Also applicable to human body detection for automatic water washing.
( 1 h ) 実施例 1 h  (1 h) Example 1 h
図 1 6 は実施例 1 hによる装置の構成を示す。 検知器 5 1の受光素子 6 7 は、 太陽光を直接に受光すると、 その強 い光により受光素子 6 7 の光出力が飽和し、 受光視野内へ の物体の侵人による光信号の変化に対する感度を失う。 そ こで、 検知器 5 1の光源としてその空間の照明器 6 8を用 い、 その照明器 6 8が発する光のうち、 光量が大きい波長 域を含む所定の波長域のみの光を透過させる光学フィ ルタ 6 9を受光素子 6 7の前面に配置し、 照明光以外の光 (主 に太陽光) をできるだけカツ 卜する。 図 1 7 は各種光源の 分光分布を示している。 同図から分かるように、 例えば、 光源に白熱灯を用いる場合は、 7 0 0 n m以下の光をカツ 卜する光学フィ ルタを用い、 光源に蛍光灯を用いる場合は、 5 5 0〜 6 5 0 n mの光以外をカツ 卜する光学フィルタを 用いる。 また、 図 1 8に示すように、 光学フィ ルタ 6 9を レンズ 1 1 6 , 1 1 7 の前面に配置する構成も考えられる。 この場合は、 光学フィ ルタ 6 9を脱着構造と し、 検知器 5 1の空間の照明光の波長に合わせて後付けでも取り付けら れるようにすればよい。 FIG. 16 shows the configuration of the device according to Example 1h. When the light receiving element 67 of the detector 51 directly receives sunlight, the light output of the light receiving element 67 is saturated by the strong light, and the light output of the light receiving element 67 changes with respect to the change of the optical signal due to the intrusion of the object into the light receiving field. Loses sensitivity. Therefore, the illuminator 68 in the space is used as the light source of the detector 51, and of the light emitted by the illuminator 68, only light in a predetermined wavelength range including a wavelength range having a large light amount is transmitted. Optical filter Arrange 69 in front of the light receiving element 67 to cut out light (mainly sunlight) other than illumination light as much as possible. Figure 17 shows the spectral distribution of various light sources. As can be seen from the figure, for example, when an incandescent lamp is used as the light source, an optical filter that cuts light of 700 nm or less is used, and when a fluorescent lamp is used as the light source, 550 to 65 Use an optical filter that cuts light other than 0 nm light. Further, as shown in FIG. 18, a configuration in which an optical filter 69 is arranged on the front of the lenses 116 and 117 is also conceivable. In this case, the optical filter 69 may have a detachable structure so that the optical filter 69 can be attached later according to the wavelength of the illumination light in the space of the detector 51.
( 1 i ) 実施例 1 i  (1i) Example 1 i
図 1 9 a、 1 9 bは実施例 1 i による装置の構成及び回 路を示す。 本実施例の検知器 5 1 は、 テレビや案内表示器 等のディ スプレイ装置 7 0の周辺に設置され、 その前方の 視野を検知器 5 1 によりモニタするものである。 人がその 視野に侵入すると、 すなわち、 人の存在が検知された時、 検知器 5 1 はディ スプレイ装置 7 0の電源スィ ツチ 7 1を オンする信号を出力し、 人がその視野から外れると、 電源 スィ ッチ 7 1 をオフする信号を出力する。 これにより、 自 動的にディ、スプレイ装置 7 0の電源がォン · オフされる。  FIGS. 19a and 19b show the configuration and circuit of the device according to Example 1i. The detector 51 of the present embodiment is installed around a display device 70 such as a television or a guidance display, and monitors the visual field in front of the display device 70 with the detector 51. When a person enters the field of view, that is, when the presence of a person is detected, the detector 51 outputs a signal to turn on the power switch 71 of the display device 70, and when the person goes out of the field of view, Outputs a signal to turn off the power switch 71. Thereby, the power of the display device 70 is automatically turned on / off.
( 1 j ) 実施例 1 j  (1 j) Example 1 j
図 2 0 a、 2 0 bは実施例 1 j による装置の構成及び回 路を示す。 本実施例の検知器 5 1 は、 パチンコ台や自動取 引装置 (ATM) 、 自動発券機、 自動販売機などの個々の 装置 7 3 (以下、 パチンコ台という) の周辺に設置され、 その前方の視野をモニタ している。 各パチンコ台 7 3の玉 検知部 7 4 と検知器 5 1からの検知信号は制御部 7 5に伝 えられる。 制御部 7 5は、 検知器 5 1がその視野に人を検 知していない時には、 玉出し部 7 6から玉を出さないよう に制御する。 また、 自動取引装置や自動販売機の場合は、 検知器の視野に人を検知していない時には、 取引を行わな いように制御する。 これにより、 防犯システムと して機能 する。 FIGS. 20a and 20b show the configuration and circuit of the device according to Example 1j. The detector 51 of this embodiment is used for It is installed around each device 73 (hereinafter referred to as a pachinko machine) such as an ATM, a vending machine, and a vending machine, and monitors the field of view in front of it. Detection signals from the ball detection unit 74 and the detector 51 of each pachinko machine 73 are transmitted to the control unit 75. When the detector 51 does not detect a person in the field of view, the control unit 75 controls so that the ball is not ejected from the ball ejection unit 76. In the case of vending machines and vending machines, control is performed so that transactions are not performed unless a person is detected in the field of view of the detector. This functions as a security system.
( l k) 実施例 1 k  (l k) Example 1 k
図 2 1 a、 2 1 bは実施例 1 kによる装置の構成及び回 路を示す。 本実施例の検知器 5 1は、 デスク 7 8の前をモ 二夕するように設置され、 人がその視野に侵入すると自動 的に照明器 7 9のスィ ッチ 7 1をオンし、 視野から外れる と自動的に照明器 7 9のスィ ッチ 7 1をオフにする。 これ により、 省エネルギー化が図れる。  FIGS. 21a and 21b show the configuration and circuit of the device according to Example 1k. The detector 51 of the present embodiment is installed so as to be in front of a desk 78, and when a person enters the field of view, the switch 71 of the illuminator 79 is automatically turned on, and The switch 71 of the illuminator 79 is automatically turned off when it comes off. This can save energy.
( 1 m) 実施例 1 m  (1 m) Example 1 m
図 2 2 a、 2 2 bは実施例 1 mの装置の構成及び回路を 示す。 本実施例の検知器 5 1は、 部屋や トイ レ内の ドア 8 0の周辺に設置され、 人がその視野に侵入すると自動的に 換気扇 8 1のスィ ッチ 7 1をオンし、 人がその視野から外 れると自動的に換気扇 8 1のスィ ッチ 7 1をオフする。 こ れにより、 上記と同様、 省エネルギー化が図れる。 また、 換気扇の他に、 エアコン等の空調機に適用して、 直接に人 のいる方向には風を吹かないような制御を行う こともでき る Figures 22a and 22b show the configuration and circuit of the device of Example 1m. The detector 51 of this embodiment is installed around the door 80 in a room or toilet, and when a person enters the field of view, the switch 71 of the ventilation fan 81 is automatically turned on, and When it goes out of the field of view, the switch 71 of the ventilation fan 81 is automatically turned off. As a result, energy can be saved as described above. Also, In addition to the ventilation fan, it can be applied to air conditioners such as air conditioners to control so that the wind does not blow in the direction where people are directly.
( I n ) 実施例 1 n  (I n) Example 1 n
図 2 3 a、 2 3 bは実施例 1 nによる装置の構成及び回 路ブロックを示す。 本実施例の検知器 5 1 は、 自動ドア 8 2の付近をモニタするように設置され、 その視野内に人が 侵入すると、 モータ制御部 8 3に検知信号を送り、 モータ 8 4を駆動して、 自動ドア 8 2を開ける。 このような自動 ドアの構成は、 上述したように検知器が電池電源で動作し 得て取付場所の制約が少ないことから、 後付けに適してい o  FIGS. 23a and 23b show the configuration of the device and the circuit block according to Embodiment 1n. The detector 51 of this embodiment is installed so as to monitor the vicinity of the automatic door 82, and when a person enters the field of view, sends a detection signal to the motor control unit 83 to drive the motor 84. And open the automatic door 82. Such an automatic door configuration is suitable for retrofitting, since the detector can operate on battery power and there are few restrictions on the mounting location as described above.
( 1 o ) 実施例 1 o  (1 o) Example 1 o
図 2 4は実施例 1 oによる検知装置の構成及び回路図、 図 2 5はその動作のタイムチヤ一 卜である。  FIG. 24 is a configuration and a circuit diagram of the detection device according to the embodiment 1o, and FIG. 25 is a time chart of the operation.
レンズ 1 1 6 と 2分割 P D 1 3 1 の P D 1 より受光視野 1 を構成し、 レンズ 1 1 6 と 2分割 P D 1 3 1の P D 2 よ り受光視野 2を構成し、 レンズ 1 1 7 と 2分割 P D 1 3 2 の P D 3 より受光視野 3を構成し、 レンズ 1 1 7 と 2分割 P D 1 3 2の P D 4 より受光視野 4を構成する。 これらの 視野には周囲からの自然散乱光 (照明光、 太陽光など) が 照射されている。  The receiving field of view 1 is composed of the lens 1 16 and the PD 1 of the two-part PD 131, and the receiving field of view 2 is composed of the lens 1 16 and the PD 2 of the two-part PD 131, and the lens 1 17 The receiving field of view 3 is composed of the PD 3 of the two-part PD 1 32, and the receiving field of view 4 is composed of the lens 1 17 and the PD 4 of the two-part PD 132. These fields are illuminated by natural scattered light (illumination light, sunlight, etc.) from the surroundings.
各 P Dからは P Dへの入光パワーに応じた光電流が出力 され、 P D 1からは I 1、 P D 2からは I 2、 P D 3から は I 3、 P D 4からは I 4が出力される。 これら光電流は I 変換回路で電圧に変換され、 I 1は I ZV変換回路 1 2 1で V I、 I 2は I / V変換回路 1 2 2で V 2、 1 3 は I V変換回路 1 2 3で V 3、 1 4は I ZV変換回路 1 2 4で V 4に変換される。 電圧 V 1 と V 2は差動増幅回路 1 0 7で引き算され、 (V 1 —V 2 ) を得、 電圧 V 3 と V 4は差動増幅回路 1 0 8で引き算され、 (V 3 —V 4 ) を 得る。 こ こで、 V I〜V 4にはオペアンプのオフセッ ト電 圧、 蛍光灯に含まれる電源低周波ノイズ、 受光素子ゃ受光 回路で発生する高周波ノイズなどのノイズが含まれている。 受光信号は直流成分が支配的なので、 オフセッ ト電圧や低 周波ノィズの除去が困難である。 Each PD outputs a photocurrent according to the light input power to the PD, I 1 from PD 1, I 2 from PD 2, and PD 3 Outputs I 3 and PD 4 outputs I 4. These photocurrents are converted to voltages by the I conversion circuit. V 3 and 14 are converted to V 4 by the I ZV conversion circuit 124. The voltages V 1 and V 2 are subtracted by the differential amplifier circuit 107 to obtain (V 1 —V 2), and the voltages V 3 and V 4 are subtracted by the differential amplifier circuit 108 to obtain (V 3 — V 4). Here, VI to V4 include noise such as the offset voltage of the operational amplifier, the power supply low-frequency noise included in the fluorescent lamp, and the high-frequency noise generated in the light-receiving element / light-receiving circuit. Since the DC component is dominant in the received light signal, it is difficult to remove the offset voltage and low-frequency noise.
そこで、 各受光素子の出力ライ ンに挿入したアナログス イ ッチ 9 1〜 9 4をパルス信号 S Gで周期的にスィ ッチン グすることにより、 各受光素子からの出力を直流信号から パルス信号に変換する。 その場合の、 各 I ZV変換回路の オペアンプ 1, 4及び 2 , 3の出力信号波形を図 2 5 c、 2 5 dに示す。 これらの信号をコンデンサ C 1〜C 4 と抵 抗 R 5〜R 8で構成されたハイパスフィ ルタ (H P F 1〜 H P F 4 ) に通し、 オフセッ ト電圧や低周波ノィズを除去 する。 その信号波形を図 2 5 e、 2 5 ίに示す。 さ らに、 コンデンサ C 5〜C 6 と抵抗 R 9〜R 1 0で構成された口 —パスフィ ルタにより高周波ノイズを除去する。 そのオペ アンプ 5 , 6の信号波形を図 2 5 g、 2 5 hに示す。 ノィ ズ除去されたこれらの信号は差動増幅回路 1 0 9でさ らに 引き算され、 その出力は、 Therefore, by periodically switching the analog switches 91 to 94 inserted in the output lines of the light receiving elements with the pulse signal SG, the output from each light receiving element is converted from a DC signal to a pulse signal. Convert. In this case, the output signal waveforms of operational amplifiers 1, 4 and 2, 3 of each IZV conversion circuit are shown in Figures 25c and 25d. These signals are passed through a high-pass filter (HPF1 to HPF4) composed of capacitors C1 to C4 and resistors R5 to R8 to remove offset voltage and low-frequency noise. The signal waveforms are shown in Figure 25e and 25 2. In addition, high frequency noise is removed by a port-pass filter composed of capacitors C5 to C6 and resistors R9 to R10. The signal waveforms of the operational amplifiers 5 and 6 are shown in Figures 25g and 25h. Noy These noise-removed signals are further subtracted by the differential amplifier circuit 109, and the output is
(出力) = ( V 1 - V 2 ) 一 ( V 3 - V 4 )  (Output) = (V 1-V 2) one (V 3-V 4)
となる。 その信号波形を図 2 5 i に示す。 この結果は予め 設定されたしきい値と比較回路 1 1 0で比較され、 ノイズ 除去のための積分回路 1 1 2を通った後、 出力回路 1 1 3 より出力される。 この比較回路 1 1 0、 積分回路 1 1 2及 び出力回路 1 1 3 の具体例については、 後述する。  Becomes The signal waveform is shown in Figure 25i. This result is compared with a preset threshold value by a comparator circuit 110, passes through an integration circuit 112 for noise removal, and is output from an output circuit 113. Specific examples of the comparison circuit 110, the integration circuit 112, and the output circuit 113 will be described later.
上記構成において、 検出物体がない場合、 2分割 P D 1 3 1 , 1 3 2 には自然散乱光に照らされた背景の像がレン ズ 1 1 6, 1 1 7を通して映っている。 背景にコ ン トラス 卜がない場合、 P D 1 と P D 2への入射光量、 P D 3 と P D 4への入射光量はそれぞれ等しく なり、 差動増幅回路 1 0 9の出力は 0 となるが、 背景にコン トラス 卜があれば、 P D 1 と P D 2への入射光量、 P D 3 と P D 4への入射光 量はそれぞれ異なり、 差動增幅回路 1 0 9の出力は 0 とな らず、 しかも、 背景と検出物体 1 5の反射率の関係によつ ては差動増幅回路 1 0 9の出力は正、 負両方の値を取る。 そのため、 感度設定回路 9 5 により検出物体 1 5のない場 合の出力 V 0 が、 しきい値 V thl と V th2 (図 2 5 i参 照) の中心になるように設定する。 感度設定の方法は、 可 変抵抗により設定する場合、 又は、 差動出力 V 0 を A Z D 変換し、 マイ コ ンにより設定する場合などがある。 また、 感度設定を行う ところは検知装置の内外を問わない。 こ こで、 背景と同等以上の反射率の高い検出物体が受光 視野 1、 4内にある場合は、 検出物体からの反射光が背景 からの反射光より も大き く なるため、 P D上では検出物体 の像が映っている部分の光強度 Pは大き く、 背景が映って いる部分の光強度 Pは小さ く なる。 よって、 In the above configuration, when there is no object to be detected, the background image illuminated by natural scattered light is reflected on the two divided PDs 13 1 and 13 2 through the lenses 1 16 and 1 17. When there is no contrast in the background, the amount of light incident on PD 1 and PD 2 and the amount of light incident on PD 3 and PD 4 are equal, and the output of the differential amplifier circuit 109 becomes 0. If there is a contrast, the amount of light incident on PD 1 and PD 2 and the amount of light incident on PD 3 and PD 4 are different, and the output of the differential amplifier circuit 109 does not become 0, and Depending on the relationship between the background and the reflectance of the detection object 15, the output of the differential amplifier circuit 109 takes both positive and negative values. Therefore, the sensitivity setting circuit 95 sets the output V 0 in the absence of the detection object 15 so that it is the center between the threshold values V thl and V th2 (see Fig. 25i). The sensitivity can be set using a variable resistor or by setting the differential output V 0 to AZD conversion and using a microcomputer. In addition, the sensitivity setting may be performed inside or outside the detection device. Here, if a detection object with a reflectance equal to or higher than that of the background is in the light-receiving fields of view 1 and 4, the light reflected from the detection object will be larger than the light reflected from the background. The light intensity P in the part where the image of the object is reflected is large, and the light intensity P in the part where the background is reflected is small. Therefore,
( V 1 - V 2 ) > 0、 ( V 3 - V 4 ) く 0 となり、 差動増幅回路 1 0 9 の出力は Vthl 以上となり、 初期状態 とは異なるため、 この違いを検知することで物体の侵入を 検出 さる。 .  (V1-V2)> 0, (V3-V4) <0, and the output of the differential amplifier circuit 109 becomes Vthl or more, which is different from the initial state. Detects intrusion. .
また、 背景と同等以下の反射率の低い検出物体が受光視 野 1、 4内にある場合は、 検出物体からの反射光が背景か らの反射光より も小さ く なるため、 P D上では検出物体の 像が映っている部分の光強度 Ρは小さ く、 背景が映ってい る部分の光強度 Ρは大き く なる。 よって、  In addition, if there is a detected object with low reflectance equal to or lower than that of the background in the light-receiving fields 1 and 4, the reflected light from the detected object will be smaller than the reflected light from the background. The light intensity の at the part where the image of the object is reflected is small, and the light intensity の at the part where the background is reflected is large. Therefore,
(V I — V 2 ) く 0、 (V 3 — V 4 ) > 0 となり、  (V I — V 2) <0, (V 3 — V 4)> 0, and
差動増幅回路 1 0 9 の出力は Vth2 以下となり、 初期状態 とは異なるため、 この違いを検知することで物体の侵入を 検出 さる。 Since the output of the differential amplifier circuit 109 becomes Vth2 or less, which is different from the initial state, the intrusion of an object is detected by detecting this difference.
このように本実施例の検知装置によれば、 自ら光を発せ ず、 自然散乱光を光源と して動作し、 受光視野に初期状態 には存在していなかった物体が侵入すると、 2分割 P Dへ の入光量のバランスが崩れ、 その変化量を検出して、 検出 物体の有無を検出するため、 低消費電流化を容易に図れる。 また、 受光視野 1、 2、 3、 4のいずれかに変化があれば 検知信号が出力されるため、 受光器が 1個の場合に比べて、 受光視野は広く取れ、 大きな物体の検出をも可能となり、 また、 各 P Dの光量変化量を足し合わせることになるため、 感度も 2倍となる。 As described above, according to the detection apparatus of the present embodiment, when an object that does not emit light by itself and operates using natural scattered light as a light source and an object that did not exist in the initial state enters the light receiving visual field, the two-divided PD is used. Since the balance of the amount of light entering the device is lost, the amount of change is detected, and the presence or absence of the detected object is detected, so that current consumption can be easily reduced. Also, if there is a change in any of the light receiving fields 1, 2, 3, 4 Since the detection signal is output, the field of view of the received light can be widened and a large object can be detected compared to the case where only one photodetector is used. The sensitivity is also doubled.
さ らに、 上記の比較回路 1 1 0、 積分回路 1 1 2、 出力 回路 1 1 3の具体例を図 2 6に示す。 これらの回路は、 差 動増幅回路 1 0 9のパルス信号出力から、 より確かな 2値 出力を得るための積分方式による判断部を構成する。 比較 回路 1 1 0の入力端の可変抵抗 V Rは上記感度調整回路 9 5に相当し、 しきい値 (ONノ O F Fレベル) を変えるこ とができる。 出力回路 1 1 3の実質内容は比較回路 1 1 3 aである。 図 2 7 a〜図 2 7 dは動作のタィムチヤ一 卜で ある。 差動増幅回路 1 0 9の出力がしきい値 0 Nレベルを 越えると、 比較回路 1 1 0の C OM 3の出力が Lとなる。 このとき、 I N V 1により、 積分回路 1 1 2の トランジス 夕 TR 5は ON状態で、 コンデンサ C 2は電流 I ' により 充電される。 差動増幅回路 1 0 9の出力がしきい値 O F F レベルを下回ると、 C OM 3の出力が Hとなる。 このとき、 I NV 1により、 トランジスタ TR 5は O F F状態で、 コ ンデンサ C 2の充電電荷は抵抗 R 1 3を通して所定の時定 数 (C 2 x、R 1 3 ) で放電される。  FIG. 26 shows specific examples of the comparison circuit 110, the integration circuit 112, and the output circuit 113. These circuits constitute a determination unit based on an integration method for obtaining a more reliable binary output from the pulse signal output of the differential amplifier circuit 109. The variable resistor VR at the input terminal of the comparison circuit 110 corresponds to the sensitivity adjustment circuit 95, and can change the threshold value (ON / OFF level). The substantial content of the output circuit 113 is a comparison circuit 113a. FIG. 27a to FIG. 27d are timing charts of the operation. When the output of the differential amplifier circuit 109 exceeds the threshold value 0N level, the output of the COM 3 of the comparator circuit 110 becomes L. At this time, the transistor TR5 of the integration circuit 112 is turned on by INV1, and the capacitor C2 is charged by the current I '. When the output of the differential amplifier circuit 109 falls below the threshold OFF level, the output of COM3 goes high. At this time, the transistor TR5 is in the OFF state due to INV1, and the charge of the capacitor C2 is discharged at a predetermined time constant (C2x, R13) through the resistor R13.
上記構成を採用することにより、 差動増幅回路 1 0 9の 出力が連続して ONレベルを所定回数越えたときに、 比較 回路 1 1 3 aの出力が変化する。 積分回路 1 1 2の充放電 は緩やかであるので、 信号期間中に外乱があって、 差動増 幅回路 1 0 9の出力が一時的に比較回路 1 1 0の O Nレべ ルを下回るようなことがあっても、 比較回路 1 1 3 aの出 力は O Nが保持される。 このように、 信号は各パルス毎に 2値化して扱われるため、 パルス幅が小さ くて波高の大き なィ ンパルスノィズには反応せず、 それによる誤動作はな くなる。 なお、 上記の図 2 4 に示した実施例は、 一般の信 号処理回路で発生するオフセッ トゃ低周波ノイズの影響を 除去するための技術として知られているチヨ ツバ型増幅器 を導入したものと一見似ているが、 チヨ ツバ型増幅器は出 力側に直流化のための平滑部を有するのに対して、 本実施 例では平滑部を用いず、 上記の図 2 6のような 2値出力を 得るための比較回路を含む判断部を用いている点で相違す る。 このため、 本実施例では、 上記のようにイ ンパルスノ ィズによる誤動作防止という特有の効果が得られる。 By employing the above configuration, when the output of the differential amplifier circuit 109 continuously exceeds the ON level a predetermined number of times, the output of the comparison circuit 113a changes. Charge and discharge of integration circuit 1 1 2 Since the output of the differential amplifier circuit 109 is temporarily lower than the ON level of the comparator circuit 110 due to disturbance during the signal period, The output of circuit 1 13 a remains ON. As described above, since the signal is binarized for each pulse, the signal does not respond to an impulse noise having a small pulse width and a large wave height, thereby eliminating a malfunction due to the pulse width. Note that the embodiment shown in Fig. 24 above introduces a Chiotsuba-type amplifier known as a technique for removing the effects of offset generated by a general signal processing circuit and low-frequency noise. Although apparently similar to the above, the Chitsubasa-type amplifier has a smoothing section for DC conversion on the output side, whereas the present embodiment does not use a smoothing section and has a binary value as shown in FIG. The difference is that a judgment unit including a comparison circuit for obtaining an output is used. For this reason, in the present embodiment, a specific effect of preventing malfunction due to impulse noise as described above can be obtained.
次に、 上記積分方式の判断部の変形例を図 2 8に示す。 その動作のタイムチャー トを図 2 9 a〜図 2 9 eに示す。 比較回路 1 1 0の C 0 M 1の出力が L、 パルス信号 S Gが Hのとき、 トランジスタ T R 1 は 0 N状態で、 A N D 1 は L レベルであるので、 トランジスタ T R 4 は O F F状態に あり、 従つ、て、 コンデンサ C 1 は電流 I ' により充電され る。 C O M 1 の出力が H、 パルス信号 S Gが Hのとき、 ト ランジスタ T R 1 は 0 F F状態で、 A N D 1 は Hレベルで あるので、 トランジスタ T R 4 は O N状態にあり、 従って、 コンデンサ C 1の充電電荷は トランジスタ T R 4を介して 一気に放電されるようになつている。 Next, FIG. 28 shows a modified example of the judgment unit of the integration method. The time chart of the operation is shown in Figs. 29a to 29e. When the output of C0M1 of the comparison circuit 110 is L and the pulse signal SG is H, the transistor TR1 is in the 0N state and AND1 is in the L level, so that the transistor TR4 is in the OFF state. Therefore, the capacitor C 1 is charged by the current I ′. When the output of COM1 is H and the pulse signal SG is H, the transistor TR1 is in the 0FF state and AND1 is at the H level, so that the transistor TR4 is in the ON state. The charge of the capacitor C1 is discharged at once through the transistor TR4.
比較回路 1 1 0は、 差動増幅回路 1 0 9の出力が予め設 定されたしきい値 0 Nレベルを上回っていれば、 Lレベル を出力し、 予め設定されたしきい値 0 F Fレベルを下回つ ていれば Hレベルを出力する。 積分回路 1 1 2は、 比較回 路 1 1 0の出力信号が Lレベルのとき充電され、 コンデン サ C 1の充電電位は 0 [V] から V aとなり (図 2 9 cの ①点) 、 その後、 所定の時定数 (C 1 X R 5 ) にて放電さ れ、 次の入力信号までに充電電位は V aから V b ( V b > 0 ) となり (図 2 9 cの②点) 、 次の入力で V bから V a + V bとなり (図 2 9 cの③点) 、 比較回路 1 1 0の出力 が Hレベルならば積分回路 1 1 2は充電され続ける。 一方、 比較回路 1 1 0の出力が Lレベルならば (図 2 9 cの④ 点) 、 積分回路 1 1 2は一気に放電され、 0 [V] となる。 比較回路 1 1 3 aは積分回路 1 1 2の出力信号が予め設定 されたしきい値 ONレベルを上回っていれば、 Hレベルを 出力し、 物体等の存在を検出する。  The comparator circuit 110 outputs an L level when the output of the differential amplifier circuit 109 exceeds a predetermined threshold value 0 N level, and outputs a predetermined threshold value 0 FF level If the value is lower than, the H level is output. The integrator circuit 112 is charged when the output signal of the comparison circuit 110 is at the L level, and the charged potential of the capacitor C1 changes from 0 [V] to Va (point (1) c in Fig. 29c). After that, it is discharged with a predetermined time constant (C 1 XR 5), and the charging potential changes from Va to Vb (Vb> 0) by the next input signal (point ② in Figure 29c). The input changes from Vb to Va + Vb (point c in Fig. 29c), and if the output of the comparison circuit 110 is at the H level, the integration circuit 112 continues to be charged. On the other hand, if the output of the comparison circuit 110 is at the L level (the point in FIG. 29c), the integration circuit 112 is discharged at once, and becomes 0 [V]. If the output signal of the integration circuit 112 exceeds the predetermined threshold ON level, the comparison circuit 113a outputs an H level to detect the presence of an object or the like.
このような判断部を持つことにより、 図 2 9 a〜図 2 9 eに示したように、 信号期間中でない時で信号と接近して 外乱があつ、て、 差動増幅回路 1 0 9の出力が一時的に比較 回路 1 1 0の ONレベルを上回るようなことがあっても、 比較回路 1 1 3 aの出力が 0 Nすることはなく、 正確な 2 値出力が得られる。 換言すれば、 図 2 8の構成を採用する ことで、 所定以上の大きさの信号が所定期間あれば出力をBy having such a judgment unit, as shown in FIG. 29a to FIG. 29e, when the signal is not in the signal period, the signal comes close to the signal and there is a disturbance. Even if the output temporarily exceeds the ON level of the comparison circuit 110, the output of the comparison circuit 113a does not go to 0 N, and an accurate binary output can be obtained. In other words, adopt the configuration shown in Figure 28 Therefore, if there is a signal of a predetermined size or more for a predetermined period, the output will be
ONするといつた処理が、 該所定期間の直前の信号の履歴 に影響されることなく行え、 また、 出力を ON, O F Fす る条件を独立に設定できるという利点がある。 When turned ON, the process can be performed without being affected by the signal history immediately before the predetermined period, and the conditions for turning ON and OFF the output can be set independently.
判断部のさ らに他の例を図 3 0に示す。 この判断部は、 パルス力ゥン ト方式であり、 比較回路 1 1 0 と判別部 9 6 FIG. 30 shows another example of the judgment unit. This determination unit is a pulse power counting system, and the comparison circuit 110 and the determination unit 96
(ディ ジタルフィ ルタと して機能する) とから構成される。 その動作のタイムチャー トを図 3 1 a〜図 3 1 1 に示す。 比較回路 1 1 0は、 差動増幅回路 1 0 9の出力が 0 Nレべ ル T h (ON) = R 2 x ( I 1 + I 2 ) を上回る入力があ ると、 C OM 1の出力は Hレベルとなる。 差動増幅回路 1 0 9の出力が O F Fレベル T h (O F F) = R 2 x I 1を 下回る入力があると、 C OM 1の出力は Lレベルとなる。 (Functioning as a digital filter). Figure 31a to Figure 311 show the time chart of the operation. When the output of the differential amplifier circuit 109 has an input that exceeds the 0 N level T h (ON) = R 2 x (I 1 + I 2), the comparison circuit 110 The output goes to H level. If the output of the differential amplifier circuit 109 has an input lower than the OF F level T h (O F F) = R 2 × I 1, the output of the COM 1 goes to the L level.
判別部 9 6において、 R— Sラッチ 1は、 C OM 1の出 力信号が Hのとき、 Q 0 =Hとなる。 そして、 Q 0は R S T信号 (図 3 1 c ) により リセッ トされ、 Lレベルとなり、 次の入力信号を待つ。 C OM 1の出力信号が Lのとき、 Q 0 = Lとなり、 そして、 R S Tにより リセッ トされ、 Lレ ベルを持続する。 D— F F 1〜 3は、 クロック C Kの立ち 上がりのタイ ミ ングのとき、 D入力が Hレベルなら Q = H、 D入力が L、レベルなら Q = Lとなる。 AND 1は、 Q l〜 Q 3の ANDを出力するので、 Q 1〜Q 3が全て Hレベル、 つまり、 図 3 1 aの①②③のように、 所定回数、 こ こでは 3回連続して C 0 M 1のスレッ シュレベルを上回る信号が 入力されたとき、 A N D 1の出力は Hレベルに変化する。 A N D 2 は、 反転 Q 1〜反転 Q 3の A N Dを出力するので、 反転 Q 1〜反転 Q 3が全て Hレベル、 つまり全く入力がな いとき、 Hレベルとなるのに対して、 1回でも入力があれ ば、 L レベルとなり、 少なく とも 3周期分は L レベルとな る。 R— Sラッチ 2 は、 A N D 1が Hレベル、 つまり 3回 連続入力信号があると、 Q 4 = Hとして出力し、 また、 反 転 Q 4 により、 C OM 1のスレッ シュ レベルが T h (0 N) から T h (O F F ) となる。 この例においても、 図 2 8の場合と同様の利点が得られる。 In the discriminator 96, the RS latch 1 has Q 0 = H when the output signal of COM 1 is H. Then, Q 0 is reset by the RST signal (Fig. 31c), becomes L level, and waits for the next input signal. When the output signal of CAM1 is L, Q0 = L, and it is reset by RST and maintains L level. D—FF 1 to 3 are at the rising edge of clock CK, Q = H if D input is H level, L = D input, and Q = L if D input. Since AND1 outputs AND of Ql to Q3, all of Q1 to Q3 are at the H level. That is, as shown in (3) in Fig. 31a, a predetermined number of times, and here, C3 Signal above the 0 M1 threshold level When input, the output of AND 1 changes to H level. AND 2 outputs AND of inverted Q 1 to inverted Q 3, so all inverted Q 1 to inverted Q 3 are at H level, that is, when there is no input, they are at H level, but at least once If there is an input, it will be at L level, and it will be at L level for at least three cycles. R—S Latch 2 outputs Q 4 = H when AND 1 is at the H level, that is, when there are three consecutive input signals. Inverting Q 4 sets the threshold level of COM 1 to T h ( 0 N) to T h (OFF). In this example, the same advantages as in the case of FIG. 28 are obtained.
( 2 ) 第 2実施例  (2) Second embodiment
以下、 第 2実施例を図面を参照して説明する。 第 2実施 例においては、 第 1実施例の検知装置を始め、 他の用途に も使用可能なパッ シブ型検知装置を説明する。 図 3 2 はパ ッシブ型の検知装置の基本構成を示す図である。 図 3 2を 参照して、 パッシブ型検知装置 2 0 0は、 検出素子 2 1 1 と、 検出素子スィ ツチング信号 S Gをうけるアナログスィ ツチ 2 1 2 と、 I ZV変換器 2 1 3 と、 ハイパスフィ ルタ 2 1 4 と、 アンプ 2 1 5 とローパスフィルタ 2 1 6 と判断 部 2 1 7 とを含む。 検出素子 2 1 1 により検出対象の物理 量が検出され、 その検出出力はアナ口グスィ ツチ 2 1 2に より周期的に断続されてパルス信号とされ、 I ZV変換器 2 1 3 により電流から電圧に変換され、 ハイパスフィルタ 2 1 4、 アンプ 2 1 5、 ローパスフィ ルタ 2 1 6を通して 信号処理され、 判断部 2 1 7 に与えられる。 判断部 2 1 7 は各パルス信号から検出対象の状態を 2値出力する。 なお、 ノヽィパスフィ ノレ夕 2 1 4 と口一パスフィ ルタ 2 1 6 は、 ァ ナログスィ ッチ 2 1 2のスイ ツチング周波数を含む帯域の 信号は通過させ、 信号処理の回路で発生するオフセッ 卜や 外来の低周波ノイズや高周波ノイズをカツ 卜する。 Hereinafter, a second embodiment will be described with reference to the drawings. In the second embodiment, a description will be given of a passive detection device that can be used for other purposes, including the detection device of the first embodiment. FIG. 32 is a diagram showing the basic configuration of a passive-type detection device. Referring to FIG. 32, the passive detector 200 includes a detecting element 211, an analog switch 211 receiving a detecting element switching signal SG, an IZV converter 211, and a high-pass filter. The filter includes a filter 2 14, an amplifier 2 15, a low-pass filter 2 16 and a decision unit 2 17. The physical quantity to be detected is detected by the detection element 211, and the detection output is periodically intermittently turned into a pulse signal by the analog switch 212, and is converted from the current to the voltage by the IZV converter 211. And then passed through the high-pass filter 2 14, the amplifier 2 15 and the low-pass filter 2 16 The signal is processed and given to the judgment unit 217. The judging unit 217 outputs the state of the detection target from each pulse signal in binary. Note that the no-pass filter and the two-pass filter pass signals in the band including the switching frequency of the analog switch and allow offsets and external signals generated in the signal processing circuit to pass. Low frequency noise and high frequency noise.
以下このパッシブ型検知装置を具体化した光検出器につ いて説明する。  Hereinafter, a photodetector embodying the passive type detection device will be described.
( 2 a ) 実施例 2 a  (2a) Example 2a
実施例 2 aによる光検出器の構成を図 3 3 に示し、 その タイムチヤ一 トを図 3 4 a〜図 3 4 hに示す。 検出部 2 2 0は、 検出素子 2 1 1 と しての 2つの受光素子 (フォ トダ ィオー ド : P D 1, P D 2 ) と 2つのレンズ 2 0 1, 2 0 2で構成されており、 それぞれ受光視野 1 と受光視野 2を 構成している。 これらの視野は互いに分離されており、 自 然散乱光 (太陽光、 蛍光灯などの光) が照射されている。 また、 I ZV変換器 2 1 3 a, 2 1 3 b、 差動増幅器 2 1 5、 フィ ルタ回路 2 1 4, 1 6などの受光回路や、 判断部 2 1 7を構成する比較回路 2 1 8、 判別部 2 1 9への電源 (V s . V r ) の供給は、 スイ ッチング信号 P G (周期 : The configuration of the photodetector according to the embodiment 2a is shown in Fig. 33, and its time chart is shown in Figs. 34a to 34h. The detecting section 220 is composed of two light receiving elements (photodiodes: PD 1 and PD 2) as detecting elements 211 and two lenses 201 and 202, respectively. Light-receiving field 1 and light-receiving field 2 are configured. These fields of view are separated from each other and illuminated by natural scattered light (light from sunlight, fluorescent lights, etc.). In addition, light receiving circuits such as the IZV converters 2 13a and 2 13b, differential amplifiers 2 15 and filter circuits 2 14 and 16 and a comparison circuit 2 1 8. The supply of power (Vs.Vr) to the discriminator 219 is performed by switching signal PG (period:
T、 デュー、ティ比 t p ZT) によるアナログスィ ッチ 2 1 2 c , 2 1 2 dのスイ ッチング (図 3 4 c ) で断続的に行 い、 回路の低消費電流化を図っている。 The switching is performed intermittently by switching the analog switches 2 12 c and 2 12 d (Fig. 34c) using the T, dew, and tee ratios tp ZT) to reduce the current consumption of the circuit.
また、 P D 1 と P D 2 は入射光に応じた光電流を出力し、 その光電流をアナログスィ ッチ 2 1 2 a, 2 1 2 bにより スイ ツチング信号 S G (周期 : T、 デューティ比 t s /T、 P Gに同期) でスイ ッチングする (図 3 4 b) 。 スィ ッチ ングされた光電流はそれぞれ I ZV変換器 2 1 3 a, 2 1 3 bで電圧に変換される。 直流成分の支配的な P D 1 と P D 2の受光信号には交流電源の低周波ノィズゃ Iノ V変換 器 2 1 3 a , 2 1 3 bのオペアンプにより生じるオフセッ ト電圧が含まれるが、 これらのノイズ除去を行うため、 上 記のようにスイ ッチングすることにより、 受光信号に高周 波成分をもたせ (図 3 4 d ) 、 後段のハイパスフィ ルタPD 1 and PD 2 output the photocurrent according to the incident light, The photocurrent is switched by the analog switches 211a and 212b using the switching signal SG (period: T, duty ratio ts / T, synchronized with PG) (Fig. 34b). The switched photocurrent is converted to a voltage by the IZV converters 21a and 21b, respectively. The light receiving signals of PD1 and PD2, which dominates the DC component, include the offset voltage generated by the operational amplifiers of the low-frequency noise of the AC power supply and the I / V converters 213a and 213b. In order to remove noise, the received signal is given a high-frequency component by switching as shown above (Fig. 34d), and the high-pass filter at the subsequent stage is used.
H P F 2 1 4 a , 2 1 4 bにより低周波ノイズを除去する (図 3 4 e、 3 4 f ) 。 このとき、 このハイパスフィ ルタ のカッ トオフ周波数はスィ ッチング信号 S Gより も低く、 スイ ッチング信号 P Gより も高く設定するこ とで、 オフセ ッ 卜電圧や電源低周波ノイズの除去が可能となり、 受光信 号のみ取り出せる。 The low frequency noise is removed by HPF 2 14 a and 2 14 b (FIGS. 34 e and 34 f). At this time, by setting the cut-off frequency of this high-pass filter lower than the switching signal SG and higher than the switching signal PG, it is possible to remove the offset voltage and power supply low-frequency noise, Can only be taken out.
低周波ノイズが除去された 2つの受光信号 (V 1 , V 2 ) は、 差動増幅器 2 1 5で差動増幅され、 (V 1 —V 2 ) が得られる (図 3 4 g ) 。 その後、 ハイパスフィ ルタ H P F 2 1 4 cにより再び、 低周波ノィズを除去し、 口一 パスフィ ルタ L P F 2 1 6により高周波ノィズを除去し、 その信号は図 3 4 hに示すものとなる。 この信号は予め設 定されたしきい値と比較回路 2 1 8で比較される。 口一パ スフィ ルタのカ ッ トオフ周波数は、 スイ ッチング信号 S G、 スィ ツチング信号 P Gより も高い。 The two light receiving signals (V 1, V 2) from which the low-frequency noise has been removed are differentially amplified by the differential amplifier 215 to obtain (V 1 −V 2) (FIG. 34 g). After that, the low-frequency noise is removed again by the high-pass filter HPF214c, and the high-frequency noise is removed by the single-pass filter LPF216, and the signal is as shown in Fig. 34h. This signal is compared with a preset threshold value by the comparison circuit 218. The cut-off frequency of the mouth-to-mouth filter is determined by the switching signal SG, Higher than switching signal PG.
こ こで、 受光視野 1のみに人又は物体が侵入すれば、 P D 1には P D 2より も多く の光が入射し、 (V 1 — V 2 ) が大き く なる。 この (V I — V 2 ) がしきい値を上回ると、 比較回路 2 1 8はオン信号を出力し、 その結果に基づいて 判別部 2 1 9は、 ノイズ分を除去して人や物体の存在を知 らせる信号を出力する。 このようにパッシブ形の光検知装 置においては、 受光素子のスィ ツチングと、 後段のフィ ル 夕回路によりノイズ除去を行う ことで、 簡易かつ確実に高 い S ZN比の受光信号を取り出すことが可能となる。  Here, if a person or an object enters only the light receiving field 1, more light enters the PD 1 than the PD 2 and (V 1 −V 2) increases. When this (VI-V 2) exceeds the threshold value, the comparison circuit 218 outputs an ON signal, and based on the result, the discriminating unit 219 removes noise to remove the presence of a person or an object. It outputs a signal that informs the user. As described above, in the passive-type light detection device, by switching the light-receiving element and removing the noise using the filter circuit at the subsequent stage, it is possible to easily and reliably extract a light-receiving signal with a high SZN ratio. It becomes possible.
( 2 b) 実施例 2 b  (2b) Example 2b
次に、 スィ ツチ段のオン · オフの周期及びデューティ比 を可変にした実施例 2 bについて、 図 3 5 aないし図 3 7 を参照して説明する。 図 3 5 aはスィ ツチング信号 S Gを 生成する周期 デューティ比可変回路の構成例を示し、 図 3 5 bはそのタイムチャー トを示す。 同回路は、 電流源 2 3 1 と、 それにより充電されるコンデンサ C O と、 スイ ツ チング信号 S Gを出力するコンパレータ C OM 1等からな り、 電流源 2 3 1の電流 Iで充電されるコ ンデンサ C 0の 電位 Vは、 C OM 1の負入力端子電位となる。 C OM 1が ONする しきい値を V I、 0 F Fするしきい値を V 2 とす ると、 いま、 電位 Vが V 2 と V 1の間にあれば、 C 0 M 1 の出力は Hであり、 スイ ッチング信号 S Gは Hである。 こ のとき、 トラ ンジスタ TR 1 は ON、 トラ ンジスタ TR 2 は 0 F Fである。 この時間は充電時間 t 1 となる。 Next, Embodiment 2b in which the ON / OFF cycle and the duty ratio of the switch stage are made variable will be described with reference to FIGS. 35A to 37. FIG. Fig. 35a shows a configuration example of a variable cycle duty ratio circuit that generates the switching signal SG, and Fig. 35b shows its time chart. This circuit consists of a current source 231, a capacitor CO charged by the current source, a comparator COM1 that outputs a switching signal SG, etc., and a capacitor charged by the current I of the current source 231. The potential V of the capacitor C 0 becomes the potential of the negative input terminal of COM 1. Assuming that the threshold at which COM 1 turns on is VI and the threshold at which 0 FF is turned off is V 2, if the potential V is between V 2 and V 1, the output of C 0 M 1 is H And the switching signal SG is H. At this time, transistor TR1 is ON and transistor TR2 Is 0 FF. This time is the charging time t1.
電位 Vがコンデンサ C 0の充電により上昇して V 1 に達 すると、 C OM 1の出力は L となり、 スィ ッチング信号 S Gは Lとなる。 このとき、 トランジスタ T R 1 は O F F、 トランジスタ T R 2 は O Nとなる。 トランジスタ T R 2が O Nすると、 コンデンサ C Oに充電された電荷は、 抵抗 R 5を通って時定数 ( C 0 X R 5 ) で放電される。 コンデン サ C 0の電位 Vは V 2 に達するまで徐々に低下する。 この 時間が放電時間 t 2 となる。 電位 Vが V 2に達すると、 先 のように C O M 1の出力は Hとなり、 スィ ッチング信号 S Gは Hとなる。 このようにして、 スイ ッチング信号 S Gは コンデンサ C 0の充電時間 t 1の間、 Hとなり、 コンデン サ C 2 0の放電時間 t 2の間、 Lとなり、 これを繰り返し、 発振を行う。 電圧 V 1 , V 2、 電流 I、 充電時間 t 1 は、 次式で表せる。  When the potential V rises due to the charging of the capacitor C0 and reaches V1, the output of COM1 becomes L, and the switching signal SG becomes L. At this time, the transistor TR 1 is OFF and the transistor TR 2 is ON. When the transistor T R2 is turned on, the charge stored in the capacitor C O is discharged through the resistor R5 with a time constant (C 0 X R 5). The potential V of the capacitor C 0 gradually decreases until it reaches V 2. This time is the discharge time t 2. When the potential V reaches V2, the output of COM1 becomes H as described above, and the switching signal SG becomes H. In this way, the switching signal SG becomes H during the charging time t1 of the capacitor C0, becomes L during the discharging time t2 of the capacitor C20, and repeats the oscillation. Voltages V 1 and V 2, current I and charging time t 1 can be expressed by the following equations.
V 1 = R 2 / (R 2 + R 1 //R 3 )  V 1 = R 2 / (R 2 + R 1 // R 3)
V 2 = (R 2 / / 3 ) / (R 1 + R 2 //R 3 )  V 2 = (R 2 / / 3) / (R 1 + R 2 // R 3)
I = { V s - V b e (T R 4 ) } /R 6  I = {Vs-Vbe (TR4)} / R6
t l = C 0 x (V 1 - V 2 ) / I  t l = C 0 x (V 1-V 2) / I
なお、 R 1 //R 3などは、 抵抗 R 1 と抵抗 R 3 との並列 抵抗を、 V、b e ( T R 4 ) は トランジスタ T R 4のべ一ス —ェミ ッタ電位を意味する。 V s は電源電圧である。  Note that R 1 // R 3 and the like represent the parallel resistance of the resistor R 1 and the resistor R 3, and V and be (TR 4) represent the base emitter potential of the transistor TR 4. V s is the power supply voltage.
ところで、 図 3 5 aでは、 電流源 2 3 1の電流値 I は可 変抵抗 R 2 6の値により変更できることを示している。 式 ( 1 ) ( 2 ) では、 コ ンデンサ C 2 0への充電時間 t lは 電流 I により変更できることを示している。 よって、 スィ ツチング信号 S Gの周期 ( t 1 + t 2 ) 、 及び、 パルスデ ュ一ティ比 t l Z ( t l + t 2 ) は可変抵抗 R 6の値によ り変更できる。 By the way, FIG. 35a shows that the current value I of the current source 231 can be changed by the value of the variable resistor R26. formula (1) and (2) show that the charging time tl to the capacitor C 20 can be changed by the current I. Therefore, the cycle (t1 + t2) of the switching signal SG and the pulse duty ratio tlZ (tl + t2) can be changed by the value of the variable resistor R6.
図 3 6は実施例 2 bによる検知装置の構成を示し、 パル ス信号 S Gとハイパスフィ ルタ H P F 2 1 4のフィルタ周 波数とを連動可変と したものである。 スイ ッチング信号 S Gには、 図 3 5 aの回路の出力を用いればよい。 フィ ルタ 周波数を可変とするために、 電流源 2 3 1 とじ 0]^ 1〜 3、 アナログスィ ッチ 2 1 2 b〜 2 1 2 d、 コ ンデンサ C 1に 並列的に接続されるコ ンデンサ C 2 , C 3 , C 4を用いて いる。 C 0 M 1〜 3の入力電圧 V 0は可変抵抗 R 6の値に より変更できる。 H P F 2 1 4のカッ トオフ周波数 f は、 コ ンデンサ C 1〜C 4の並列容量 C i と抵抗 R 8によって、 また、 C OM l〜 3の負入力電圧となる V 0は、 次のよう に表せる。  FIG. 36 shows the configuration of the detection device according to the second embodiment, in which the pulse signal SG and the filter frequency of the high-pass filter HPF 214 are interlocked and variable. As the switching signal SG, the output of the circuit shown in FIG. 35A may be used. In order to make the filter frequency variable, current source 2 3 1 binding 0] ^ 1 to 3, analog switch 2 12 b to 2 12 d, capacitor connected in parallel with capacitor C 1 C 2, C 3 and C 4 are used. The input voltage V 0 of C 0 M 1 to 3 can be changed by the value of the variable resistor R 6. The cutoff frequency f of the HPF 214 is determined by the parallel capacitance C i of the capacitors C 1 to C 4 and the resistor R 8, and V 0, which is the negative input voltage of COM 1 to 3, is as follows: Can be expressed.
f = 1 / 2 ^ R8 C i  f = 1/2 ^ R8 C i
V 0 = I X R 1 1  V 0 = I X R 1 1
図 3 7 は、 回路各部の状態とコ ンデンサ C 1〜 C 4の並 列容量 C i、との関係を示している。 H P F 2 1 4のカツ ト オフ周波数 f は、 電圧 V 0に応じて制御されるアナログス イ ッチ 2 1 2 b〜 2 1 2 dの ONZO F F制御によってコ ンデンサ C 1〜 C 4の接続状態が決まり、 それにより並列 容量 C iの値が変わることで、 変更することができる。 例 えば、 可変抵抗 R 6を大き くすれば、 電流 I は小さ く なり、 充電時間 t 1は長く なり、 スイ ツチング信号 S Gの周波数 は小さ くなる。 また、 電圧 V 0は小さ くなり、 並列容量 C i は大き く なり、 H P F 2 1 4のカッ トオフ周波数 ί もス ィ ツチング信号 S Gの周波数と連動して小さ く なる。 他方、 抵抗 R 6を小さ くすれば、 電流 I は大き くなり、 充電時間 t 1は短く なり、 スィ ツチング信号 S Gの周波数は大き く なる。 また、 電圧 V 0は大き く なり、 並列容量 C i は小さ く なり、 H P F 2 1 4のカ ッ トオフ周波数 f もスィ ッチン グ信号 S Gの周波数と連動して大き く なる。 FIG. 37 shows the relationship between the state of each part of the circuit and the parallel capacitance C i of the capacitors C 1 to C 4. The cut-off frequency f of the HPF 2 14 is controlled by the ONZO FF control of the analog switches 2 12 b to 2 12 d controlled according to the voltage V 0, and the connection state of the capacitors C 1 to C 4 Is determined, thereby parallel It can be changed by changing the value of the capacitance C i. For example, if the variable resistor R6 is made larger, the current I becomes smaller, the charging time t1 becomes longer, and the frequency of the switching signal SG becomes smaller. Further, the voltage V 0 decreases, the parallel capacitance C i increases, and the cutoff frequency の of the HPF 214 also decreases in conjunction with the frequency of the switching signal SG. On the other hand, if the resistance R6 is reduced, the current I increases, the charging time t1 decreases, and the frequency of the switching signal SG increases. Further, the voltage V 0 increases, the parallel capacitance C i decreases, and the cut-off frequency f of the HPF 214 increases in conjunction with the frequency of the switching signal SG.
このように本実施例では、 スイ ッチング信号 S Gの周期、 及びデューティ比を自在に変更できる構成であるため、 使 用環境の外来ノイズと異なる周波数に設定することで、 外 来ノイズを確実に除去でき、 それによる誤動作を防止でき る。  As described above, in this embodiment, since the period and the duty ratio of the switching signal SG can be freely changed, the external noise is reliably removed by setting the frequency to be different from the external noise in the use environment. It is possible to prevent a malfunction caused by the above.
さ らに、 上記の判断部を構成する比較回路 2 1 8、 判別 部 2 1 9の具体例を図 3 8に示す。 これらの回路は、 L P F 2 1 6のパルス信号出力から、 より確かな 2値出力を得 るための積分方式による判断部を構成する。 比較回路 2 1 8の入力端の可変抵抗 V Rは感度調整回路に相当し、 しき い値 (ON/O F Fレベル) を変えることができる。 判別 部 2 1 9は、 積分回路 2 1 9 a と比較回路 2 1 9 bからな る。 図 3 9 a〜図 3 9 dは動作のタイムチャー トである。 L P F 2 1 6の出力がしきい値 ONレベルを越えると、 比 較回路 2 1 8の C OM 3の出力が Lとなる。 このとき、 IFurther, FIG. 38 shows a specific example of the comparison circuit 218 and the judgment unit 219 which constitute the above judgment unit. These circuits constitute a judgment unit based on the integration method for obtaining a more reliable binary output from the pulse signal output of the LPF 2 16. The variable resistor VR at the input terminal of the comparison circuit 218 corresponds to the sensitivity adjustment circuit, and the threshold value (ON / OFF level) can be changed. The discriminating unit 219 includes an integrating circuit 219a and a comparing circuit 219b. Fig. 39a to Fig. 39d are operation time charts. When the output of the LPF 216 exceeds the threshold ON level, the output of the COM 3 of the comparison circuit 218 becomes L. Then I
NV 1により、 積分回路 2 1 9 aの トラ ンジスタ TR 5はThe transistor TR 5 of the integrating circuit 2 19 a
ON状態で、 コ ンデンサ C 2は電流 I ' により充電される。 L P F 2 1 6の出力がしきい値 O F Fレベルを下回ると、In the ON state, the capacitor C2 is charged by the current I '. When the output of LPF2 16 falls below the threshold OFF level,
C OM 3の出力が Hとなる。 このとき、 I NV 1により、 トラ ンジスタ T R 5は 0 F F状態で、 コ ンデンサ C 2の充 電電荷は抵抗 R 1 3を通して所定の時定数 (C 2 X R 1The output of COM 3 becomes H. At this time, the transistor TR5 is in the 0 FF state due to I NV1, and the charged charge of the capacitor C2 passes through the resistor R13 to a predetermined time constant (C2XR1
3 ) で放電される。 Discharged in 3).
上記構成を採用するこ とにより、 L P F 2 1 6 の出力が 連続して ONレベルを所定回数越えたときに、 比較回路 2 By adopting the above configuration, when the output of LPF216 continuously exceeds the ON level a predetermined number of times, the comparison circuit 2
1 9 bの出力が変化する。 積分回路 2 1 9 aの充放電は緩 やかであるので、 信号期間中に外乱があって、 L P F 2 1The output of 19 b changes. Since the charge and discharge of the integration circuit 2 19 a are slow, there is a disturbance during the signal period, and L P F 2 1
6の出力が一時的に比較回路 2 1 8の ONレベルを下回る ようなことがあっても、 比較回路 2 1 9 bの出力は ONが 保持される。 このように、 信号は各パルス毎に 2値化して 扱われるため、 パルス幅が小さ くて波高の大きなィ ンパル スノイズには反応せず、 それによる誤動作はなく なる。 な. お、 上記の図 3 6に示した実施例は、 先の実施例と同様に 一般の信号処理回路で発生するオフセッ 卜や低周波ノイズ の影響を除去するための技術として知られているチヨ ツバ 型増幅器を導入したものと一見似ているが、 チヨ ツバ型増 幅器は出力側に直流化のための平滑部を有するのに対して、 本実施例では平滑部を用いず、 上記の図 3 8のような 2値 出力を得るための比較回路を含む判断部を用いている点で 相違する。 このため、 本実施例では、 上記のようにイ ンパ ルスノィズによる誤動作防止という特有の効果が得られる。 次に、 上記積分方式の判断部の変形例を図 4 0に示す。 その動作のタイムチャー トを図 4 1 a〜図 4 1 eに示す。 比較回路 2 1 8の C OM 1の出力が L、 スィ ツチング信号 S Gが Hのとき、 トランジスタ T R 1は 0 N状態で、 AN D 1は Lレベルであるので、 トランジスタ TR 4は O F F 状態にあり、 従って、 コンデンサ C 1は電流 I ' により充 電される。 C OM 1の出力が H、 スイ ッチング信号 S Gが Hのとき、 トラ ンジスタ T R 1は 0 F F状態で、 AND 1 は Hレベルであるので、 トランジスタ T R 4は 0 N状態に あり、 従って、 コ ンデンサ C 1の充電電荷は トラ ンジスタ T R 4を介して一気に放電されるようになつている。 Even if the output of 6 temporarily drops below the ON level of the comparison circuit 218, the output of the comparison circuit 219b remains ON. In this way, the signal is binarized and handled for each pulse, so it does not react to impulse noise having a small pulse width and a large wave height, and the malfunction due to it is eliminated. Note that the embodiment shown in FIG. 36 described above is known as a technique for removing the effects of offset and low-frequency noise generated in a general signal processing circuit, as in the previous embodiment. At first glance, this is similar to the one using a Chipotle-type amplifier.However, the Chipotter-type amplifier has a smoothing part on the output side for DC conversion, but in this embodiment, no smoothing part is used. Binary values as shown in Figure 3 8 The difference is that a judgment unit including a comparison circuit for obtaining an output is used. For this reason, in the present embodiment, a specific effect of preventing malfunction due to impulse noise as described above can be obtained. Next, FIG. 40 shows a modified example of the judgment unit of the integration method. The time chart of the operation is shown in Figs. 41a to 41e. When the output of COM1 of the comparison circuit 218 is L and the switching signal SG is H, the transistor TR1 is in the 0N state and AND1 is in the L level, so that the transistor TR4 is in the OFF state. Thus, the capacitor C1 is charged by the current I '. When the output of COM1 is H and the switching signal SG is H, the transistor TR1 is in the 0FF state and AND1 is in the H level, so that the transistor TR4 is in the 0N state, and thus the capacitor is The charge of C1 is discharged at once through the transistor TR4.
比較回路 2 1 8は、 L P F 2 1 6の出力が予め設定され たしきい値 ONレベルを上回っていれば、 Lレベルを出力 し、 予め設定されたしきい値 0 F Fレベルを下回っていれ ば Hレベルを出力する。 積分回路 2 1 9 aは、 比較回路 2 1 8の出力信号が Lレベルのとき充電され、 コ ンデンサ C 1の充電電位は 0 [V] から V aとなり (図 4 1 cの① 点) 、 その後、 所定の時定数 (C 1 X R 5 ) にて放電され、 次の入力信号までに充電電位は V aから V b ( V b > 0 ) となり (図 4 1 cの②点) 、 次の入力で V bから V a + V bとなり (図 4 1 cの③点) 、 比較回路 2 1 8の出力が Hレベルならば積分回路 2 1 9 aは充電され続ける。 一方、 比較回路 2 1 8の出力が Lレベルならば (図 4 1 cの④ 点) 、 積分回路 2 1 9 aは一気に放電され、 0 [V] とな る。 比較回路 2 1 9 bは積分回路 2 1 9 aの出力信号が予 め設定されたしきい値 ONレベルを上回っていれば、 Hレ ベルを出力し、 物体等の存在を検出する。 The comparison circuit 218 outputs the L level when the output of the LPF 216 exceeds the preset threshold ON level, and outputs the L level when the output is below the preset threshold 0 FF level. Outputs H level. The integrator circuit 219a is charged when the output signal of the comparator circuit 218 is at the L level, and the charged potential of the capacitor C1 changes from 0 [V] to Va (point cc in FIG. 41). After that, the battery is discharged with a predetermined time constant (C 1 XR 5), and the charged potential changes from Va to Vb (Vb> 0) by the next input signal (② point in FIG. 41 c). The input changes from Vb to Va + Vb (point 3 in Fig. 4 1c), and the output of the comparison circuit 2 18 If it is at the H level, the integration circuit 2 19 a continues to be charged. On the other hand, if the output of the comparison circuit 218 is at the L level (the point in FIG. 41 c), the integration circuit 219 a is discharged at once and becomes 0 [V]. If the output signal of the integration circuit 219b exceeds the preset threshold ON level, the comparison circuit 219b outputs an H level to detect the presence of an object or the like.
このような判断部を持つこ とにより、 図 4 1に示したよ うに、 信号期間中でない時で信号と接近して外乱があって、 L P F 2 1 6の出力が一時的に比較回路 2 1 8の ONレべ ルを上回るようなことがあっても、 比較回路 2 1 9 bの出 力が 0 Nすることはなく、 正確な 2値出力が得られる。 換 言すれば、 図 4 0の構成を採用することで、 所定以上の大 きさの信号が所定期間あれば出力を 0 Nするといつた処理 が、 該所定期間の直前の信号の履歴に影響されることなく 行え、 また、 出力を ON, 0 F Fする条件を独立に設定で きるという利点がある。  By having such a determination unit, as shown in FIG. 41, when the signal is not in the signal period, the signal comes close to the signal and there is a disturbance, and the output of the LPF 216 is temporarily changed to the comparison circuit 218. Even if the ON level exceeds the ON level, the output of the comparison circuit 219b does not go to 0 N, and an accurate binary output can be obtained. In other words, by adopting the configuration of FIG. 40, when a signal having a magnitude equal to or greater than a predetermined value is provided for a predetermined period, the process of setting the output to 0 N affects the signal history immediately before the predetermined period. This has the advantage that the conditions for turning on and off the output can be set independently.
判断部のさ らに他の例を図 4 2に示す。 この判断部は、 パルスカウン ト方式であり、 比較回路 2 1 8 と判別部 2 1 9 (これはディ ジタルフィ ルタと して機能する) とから構 成される。 その動作のタイムチャー トを図 4 3 a〜図 4 3 1 に示す。 、比較回路 2 1 8は、 L P F 2 1 6の出力が 0 N レベル T h (ON) = R 2 x ( I 1 + I 2 ) を上回る入力 があると、 C OM 1の出力は Hレベルとなる。 L P F 2 1 6の出力が O F Fレベル T h (O F F) = R 2 x I 1を下 回る入力があると、 C OM 1の出力は Lレベルとなる。 判別部 2 1 9において、 R— Sラッチ 1は、 C OM 1の 出力信号が Hのとき、 Q 0 =Hとなる。 そして、 Q 0は R S T信号 (図 4 3 c ) により リセッ トされ、 Lレベルとな り、 次の入力信号を待つ。 C OM 1の出力信号が Lのとき、 Q 0 = Lとなり、 そして、 R S Tにより リセッ トされ、 L レベルを持続する。 D— F F 1〜 3は、 クロック C Kの立 ち上がりのタイ ミ ングのとき、 D入力が Hレベルなら Q = H、 D入力が Lレベルなら Q = Lとなる。 AND 1は、 Q 1〜Q 3の ANDを出力するので、 Q 1〜Q 3が全てHレ ベル、 つまり、 図 4 3 aの①②③のように、 所定回数、 こ こでは 3回連続して C OM 1のスレッシュレベルを上回る 信号が入力されたとき、 AND 1の出力は Hレベルに変化 する。 AND 2は、 反転 Q 1〜反転 Q 3の ANDを出力す るので、 反転 Q 1〜反転 Q 3が全て Hレベル、 つま り全く 入力がないとき、 Hレベルとなるのに対して、 1回でも入 力があれば、 Lレベルとなり、 少なく とも 3周期分は Lレ ベルとなる。 R— Sラッチ 2は、 A N D 1が Hレベル、 つ まり 3回連続入力信号があると、 Q 4 =Hとして出力し、 また、 反転 Q 4により、 C 0 M 1のスレッシュレベルが T h (ON)、から T h (O F F) となる。 この例においても、 図 4 0の場合と同様の利点が得られる。 Fig. 42 shows another example of the judgment unit. This judging unit is of a pulse count type and is composed of a comparing circuit 218 and a judging unit 219 (which functions as a digital filter). The time chart for the operation is shown in Figs. When the output of the LPF 2 16 has an input higher than the 0 N level Th (ON) = R 2 x (I 1 + I 2), the output of the COM 1 changes to the H level. Become. LPF2 16 output is off level T h (OFF) = below R 2 x I 1 When there is a rotating input, the output of COM 1 goes to L level. In the discriminator 219, the RS latch 1 has Q 0 = H when the output signal of COM 1 is H. Then, Q 0 is reset by the RST signal (Fig. 43c), becomes L level, and waits for the next input signal. When the output signal of CAM1 is L, Q0 = L, and it is reset by RST and maintains L level. D—FF 1 to 3 are at the rising edge of clock CK, Q = H if the D input is H level, and Q = L if the D input is L level. AND 1 outputs AND of Q 1 to Q 3, so that all of Q 1 to Q 3 are at the H level, that is, a predetermined number of times, as shown in (1) and (3) in FIG. When a signal that exceeds the threshold level of COM 1 is input, the output of AND 1 changes to H level. AND 2 outputs AND of inverted Q 1 to inverted Q 3, so once inverted Q 1 to inverted Q 3 are all at H level, that is, once there is no input, they are at H level once. However, if there is an input, it will be at the L level, and at least three cycles will be at the L level. The R-S latch 2 outputs Q 4 = H when AND 1 is at the H level, that is, when there are three consecutive input signals, and the inverted level of Q 4 causes the threshold level of C 0 M 1 to be T h ( ON), then T h (OFF). Also in this example, the same advantages as in the case of FIG. 40 can be obtained.
( 2 c ) 実施例 2 c  (2c) Example 2c
本発明の実施例 2 cによる赤外線検出器の構成を図 4 4 に示す。 検出部 2 2 0の赤外線検出素子であるサーモパイ ル 2 1 1 aは、 赤外線光量に応じた起電力が得られる素子 である。 検知エリア内に人が侵入すると、 人から放射され る赤外線はサ一モパイル 2 1 1 aで検出され、 バッファを 介しアナログスィ ッチ 2 1 2でスィ ッチング信号 S G (周 波数 ί ) にてスイ ッチングされる。 スイ ッチングされた信 号は、 カツ トオフ周波数がスィ ッチング周波数 f より低い H P F 2 1 を通過し、 アンプ 2 1 5で増幅される。 増幅 された信号は、 カツ トオフ周波数がスィ ツチング周波数 ί より高い L P F 2 1 6を通過し、 しきい値を上回れば比較 回路 2 1 8 は 0 Ν信号を出力し、 判別部 2 1 9で人の侵入 及び存在があるかが判断され、 出力される。 FIG. 4 shows a configuration of an infrared detector according to Embodiment 2c of the present invention. Shown in The thermopile 211a, which is an infrared detecting element of the detecting section 220, is an element that can obtain an electromotive force according to the amount of infrared light. When a person enters the detection area, the infrared radiation emitted from the person is detected by the thermopile 211a, and is switched by a switching signal SG (frequency ί) at the analog switch 212 via a buffer. Is cut. The switched signal passes through the HPF 21 whose cut-off frequency is lower than the switching frequency f, and is amplified by the amplifier 215. The amplified signal passes through the LPF 216 whose cut-off frequency is higher than the switching frequency ί. If the cut-off frequency exceeds the threshold value, the comparison circuit 218 outputs a 0 Ν signal. It is determined whether there is any intrusion and existence of, and it is output.
( 2 d ) 実施例 2 d  (2d) Example 2d
本発明の実施例 2 dによる温度検出器の検出部の構成を 図 4 5に示す。 検出部より後段の構成は図 3 6 と同様でよ い。 図中に示した温度検出素子の温度サ一ミ スタ R t hは 温度に応じて抵抗値が変化する素子である。 その変化は、 電圧値 V 0 と して検出され、 温度の制御などに使用する。 検出結果は 2値化して出力されるので、 それを用いてヒ一 夕のオン · オフ制御を行う ことができる。 また、 温度検出 器としては、 熱電対等を用いてもよい。 なお、 温度サ一ミ スタ R t hと抵抗 Rとの接続点の出力電圧 V 0 は、 次式で 表せる。 但し、 V sで電源電圧である。  FIG. 45 shows the configuration of the detection unit of the temperature detector according to Embodiment 2d of the present invention. The configuration downstream of the detection unit may be the same as in Fig. 36. The temperature thermistor Rth of the temperature detection element shown in the figure is an element whose resistance value changes according to the temperature. The change is detected as a voltage value V 0 and used for temperature control and the like. Since the detection result is binarized and output, it can be used to perform on / off control over the night. Further, a thermocouple or the like may be used as the temperature detector. The output voltage V 0 at the connection point between the temperature thermistor R th and the resistor R can be expressed by the following equation. However, Vs is the power supply voltage.
V 0 = { R / ( R t h + R ) } V s ( 2 e ) 実施例 2 e V 0 = {R / (R th + R)} V s (2 e) Example 2 e
本発明の実施例 2 eによる圧力検出器の構成を図 4 6 a, 4 6 bに、 等価回路を図 4 6 cに、 その信号処理部を図 4 6 dに、 そのタイムチヤ一トを図 4 7 a〜図 4 7 hに示す。 この検出器は、 流体の圧力制御などに使用する。 圧力検出 素子は、 図 4 6 a, 4 6 bに示すように、 S i単結晶基板 2 2 1上に感圧ダィャフラム 2 2 2が設けられ、 ひずみゲ —ジ (拡散抵抗) R l, R 2, R 3, R 4が配置された構 成である。 ひずみゲージの圧力によるひずみは、 半径方向 のゲージ R l , R 3の変化率のほうが円周方向のゲージ R 2 , R 4の変化率より大きい。 この差は、 図 4 6 cの等価 回路に示すホイ一ス トンブリ ツジで検出され、 図 4 6 dに 示す信号処理部で処理され、 出力される。 この等価回路の 出力電圧 V 0は、 次式で表せる。  Fig. 46a and 46b show the configuration of the pressure detector according to Embodiment 2e of the present invention, Fig. 46c shows the equivalent circuit, Fig. 46d shows the signal processing unit, and Fig. 46 shows the time chart. 47a to 47h. This detector is used for fluid pressure control. As shown in FIGS. 46a and 46b, the pressure sensing element is provided with a pressure-sensitive diaphragm 22 on an Si single crystal substrate 221, and a strain gauge (diffusion resistance) R l, R In this configuration, 2, R3 and R4 are arranged. Regarding the strain due to the pressure of the strain gauge, the rate of change of the radial gauges Rl and R3 is greater than the rate of change of the circumferential gauges R2 and R4. This difference is detected by the wheel bridge shown in the equivalent circuit of Fig. 46c, processed by the signal processing unit shown in Fig. 46d, and output. The output voltage V 0 of this equivalent circuit can be expressed by the following equation.
V 0 = (V 1 - V 2 )  V 0 = (V 1-V 2)
= {R 4 / (R 1 +R 4 ) - R 3 / (R 2 + R  = (R 4 / (R 1 + R 4)-R 3 / (R 2 + R
3 ) } V 1  3)} V 1
検出部に圧力が加えられたとき、 上記のように抵抗値が 変化して、 V Iの電位は降下し (図 4 7 c ) 、 逆に、 V 2 の電位は上昇 (図 4 7 d ) する。 そして、 V Iはアナログ スィ ッチ 2 1 2 aで、 V 2はアナログスィ ッチ 2 1 2 bで それぞれスィ ツチング信号 S Gでスイ ッチングされた後、 H P F 2 4 1 , 2 4 2で低周波ノイズをカッ トされる (図 4 7 e、 4 7 f :) 。 その後、 差動増幅器 2 1 5で増幅され (図 4 7 g ) 、 そして、 L P F 2 1 6で高周波ノイズは除 去される (図 4 7 h ) 。 検知信号がしきい値を上回れば、 比較回路 2 1 8 は O N信号を出力し、 判別部 2 1 9 にて圧 力が設定値より高いか低いかが判断され、 出力される。 こ の圧力検出器は、 都市ガスの弁開放による異常減圧の検出 等に適用可能である。 When pressure is applied to the detector, the resistance changes as described above, causing the potential of VI to drop (Fig. 47c) and conversely, the potential of V2 to rise (Fig. 47d). . VI is analog switch 2 12a and V 2 is analog switch 2 12b. (Figures 47e and 47f :). After that, it is amplified by the differential amplifier 2 15 (Fig. 47g), and the high-frequency noise is removed by the LPF 216 (Fig. 47h). If the detection signal exceeds the threshold value, the comparison circuit 218 outputs an ON signal, and the judgment unit 219 judges whether the pressure is higher or lower than the set value, and outputs the result. This pressure detector can be applied to the detection of abnormal pressure reduction due to the opening of city gas valves.
( 2 f ) 実施例 2 f  (2 f) Example 2 f
本発明の実施例 2 f による湿度センサの検出部の構成を 図 4 8 に示す。 検出部より後段の構成は図 4 6 dと同様で よい。 この検出器は、 空調器の制御などに使用できる。 検 知センサ素子 2 2 5 ( R 1 ) は検出対象空気中に配置され、 補償センサ素子 2 2 6 ( R 4 ) は乾燥空気中に配置される。 これらの素子 2 2 5, 2 2 6 は湿度に応じて抵抗値が変化 する素子で、 他の抵抗 R 2, R 3 と共にブリ ッジ接続され、 湿度に応じた抵抗値の変化は、 検出端に電圧値 V 0に変換 され、 出力される。 この湿度センサの出力は加湿器のオン • オフ制御に使用することができる。 また、 この湿度検 出素子を混合ガスの混合比に応じて抵抗値が変化する素子 に置き換えたものがガスセンサであり、 混合ガスの制御や ガス漏れ検知などに使用する。 この場合、 検知センサ素子 2 2 5 ( R、 l ) は検出対象ガス中に、 補償センサ素子 2 2 6 ( R 4 ) は基準ガス中に配置される。 抵抗値の変化量は 電圧値 V 0に変換された後、 検出される。 このガスセンサ は、 都市ガス漏れセンサと して使用できる。 ( 2 g ) 実施例 2 g FIG. 48 shows the configuration of the detection unit of the humidity sensor according to Embodiment 2f of the present invention. The configuration subsequent to the detection unit may be the same as in FIG. 46d. This detector can be used for controlling air conditioners. The detection sensor element 2 25 (R 1) is arranged in the air to be detected, and the compensation sensor element 2 26 (R 4) is arranged in the dry air. These elements 2 25 and 2 26 are elements whose resistance changes according to the humidity. They are bridge-connected together with the other resistors R 2 and R 3. Is converted to a voltage value V 0 and output. The output of this humidity sensor can be used for on / off control of the humidifier. A gas sensor replaces this humidity detection element with an element whose resistance changes according to the mixture ratio of the gas mixture, and is used for controlling the gas mixture and detecting gas leakage. In this case, the detection sensor element 225 (R, l) is disposed in the gas to be detected, and the compensation sensor element 226 (R4) is disposed in the reference gas. The change amount of the resistance value is detected after being converted into the voltage value V 0. This gas sensor can be used as a city gas leak sensor. (2 g) Example 2 g
本発明の実施例 2 gによる構成を図 4 9 に示す。 この例 は、 検出素子 2 1 1 による検出信号をスィ ツチングするた めのスィ ッチ 2 1 2 aを、 F E T (電界効果トランジス 夕) で構成したものである。 この構成によれば、 高速でス ィ ツチングが可能となり、 漏れ電流がほとんどないので、 微小量の検出が可能となる。 また、 F E Tは電圧制御のた め低消費電力化が図れる。  FIG. 49 shows a configuration according to Example 2g of the present invention. In this example, a switch 211a for switching a detection signal from the detection element 211 is constituted by an FET (field effect transistor). According to this configuration, switching can be performed at a high speed, and since there is almost no leakage current, a very small amount can be detected. In addition, the power consumption of FET can be reduced because of voltage control.
( 2 h ) 実施例 2 h  (2h) Example 2h
本発明の実施例 2 hによる構成を図 5 0に示す。 この例 は、 検出素子 2 1 1 による検出信号をスィ ツチングするス イ ッチ 2 1 2 bを、 バイポーラ トラ ンジスタで構成したも のである。 この構成によれば、 スイ ッチングによるスパイ クノィズが小さいという効果がある。  FIG. 50 shows a configuration according to Example 2h of the present invention. In this example, a switch 212b for switching a detection signal from the detection element 211 is constituted by a bipolar transistor. According to this configuration, there is an effect that spike noise due to switching is small.
( 3 ) 第 3実施例  (3) Third embodiment
以下、 本発明の第 3実施例を図面を参照して説明する。  Hereinafter, a third embodiment of the present invention will be described with reference to the drawings.
( 3 a ) 実施例 3 a  (3a) Example 3a
図 5 1 は実施例 3 aによる検知器のプロック図であり、 図 5 2 a〜図 5 2 i はこの検知器の動作を示すタイムチヤ 一卜である。 検知器 3 0 1 は、 検知器 3 0 1の置かれる場 所の自然散乱光 (たとえば照明装置、 太陽光) の背景 1 4 や検出物体 1 5 による反射光を受光することにより、 検出 物体の有無検知等を行なうパッ シブ方式の検知器である。 検知器 3 0 1 は、 受光部と しての受光用レンズ 3 0 3 と、 この受光用レンズ 3 0 3の背後に設けられた 2分割フォ ト ダイオー ド 3, 0 2 (受光素子、 以下、 P D 1 , P D 2 と 略す) により構成され、 第 1および第 2の受光視野を構成 している。 なお図 5 1には検出物体 1 5が 2つの受光視野 内の一方 (視野 2 ) に侵入した状態を示している。 FIG. 51 is a block diagram of the detector according to the embodiment 3a, and FIGS. 52a to 52i are time charts showing the operation of the detector. The detector 301 receives the background 14 of natural scattered light (for example, lighting equipment and sunlight) at the place where the detector 301 is placed and the reflected light from the detection object 15 to detect the object. It is a passive type detector that detects presence / absence. The detector 301 includes a light-receiving lens 303 as a light-receiving unit, It is composed of a two-division photo diode 3, 02 (light receiving element, hereinafter abbreviated as PD1, PD2) provided behind the light receiving lens 303, and the first and second light receiving fields are provided. It is composed. FIG. 51 shows a state in which the detection object 15 has entered one of the two light receiving visual fields (the visual field 2).
通常は、 背景 (例えば白色一面) 1 4からの反射光がレ ンズ 3 0 3を通して? 0 1、 P D 2に入射されている。 P D 1 , P D 2に入射した光は、 ここで光一電流変換され、 P D 1からの検出電流 I 1、 及び P D 2からの検出電流 I 2は、 スィ ッチ SW 1, S W 2で断続的に受光回路 3 0 8 に送られる。 このスィ ッチ SW 1, SW2は、 発振回路 3 Normally, reflected light from the background (for example, all over white) 14 passes through the lens 303? 0 1, incident on PD2. The light incident on PD 1 and PD 2 is converted to light-to-current here, and the detection current I 1 from PD 1 and the detection current I 2 from PD 2 are intermittently switched by switches SW 1 and SW 2. It is sent to the light receiving circuit 308. The switches SW1 and SW2 are connected to the oscillation circuit 3
0 7より供給される発振パルス信号 S G 1 , S G 2のクロ ックで交互にスイ ッチングされるようになっており、 これ により、 スィ ッチ SW 1, SW 2を通過する電流 I 1, I 2のタイ ミ ングは非同期で時分割となる。 検出電流 I 1 ,Oscillation pulse signals SG1 and SG2 supplied from 07 are switched alternately by the clock of SG1 and SG2, so that the currents I1 and I2 passing through the switches SW1 and SW2 are switched. Timing 2 is asynchronous and time division. Detection current I 1,
1 2は受光回路 3 0 8で電圧に変換された後、 増幅回路 3 0 9で増幅され、 検出電圧 V 1 , V 2 となる。 この電圧 V 1 , V 2は S ZH回路 3 1 0で発振回路 3 0 7のサンプル ホールド信号 S Hのタイ ミ ングでサンプリ ングされた後、 A/D変換回路 3 1 1でデジタル信号に変換され、 それぞ れ出力 D l、, D 2 となる。 これら出力 D l, D 2は演算部 3 1 2で差演算 (D 1 — D 2 ) され、 演算結果 Dを得る。 この演算結果 Dの上下にあるレベルに差を付けたしきい値12 is converted into a voltage by the light receiving circuit 308 and then amplified by the amplifying circuit 309 to become detection voltages V 1 and V 2. The voltages V 1 and V 2 are sampled by the SZH circuit 310 at the timing of the sample and hold signal SH of the oscillation circuit 307, and then converted to digital signals by the A / D conversion circuit 311. And outputs Dl, D2, respectively. These outputs Dl and D2 are subjected to a difference operation (D1-D2) in the operation unit 312 to obtain an operation result D. Threshold value that differentiates the level above and below this operation result D
( V T 1 , V T 2 ) がしきい値設定回路 3 1 4に設定され る o (VT 1, VT 2) is set in the threshold setting circuit 3 1 4 O
いま、 検出物体 (黒色一面) 1 5が視野 2に侵入すると、 P D 2への入光量が減少し、 D 2が小さ く なる。 この時の 演算部による演算結果 Dは先の Dより も大き く なる。 これ が上記しきい値 ( V T 1 , V T 2 ) と比較回路 3 1 6にお いて比較され、 図 5 2のごと く、 出力 Dが VT 1を上回る、 又は VT 2を下回ると、 比較回路 3 1 6より 0 N信号が出 力される。 この ON信号はノイズを除去するために積分回 路 3 1 7を通った後、 出力回路 3 1 8から検知器 3 0 1外 部に ONZO F F信号として出力される。 なお、 積分回路 3 1 7は、 比較回路 3 1 6出力の 0 N信号が連続して 3個 以上になれば 0 N信号を出力し、 比較回路 3 1 6出力の 0 F F信号が連続して 3個以上になれば、 0 F F信号を出力 するものとなっている。  Now, when the detection object (one black surface) 15 enters the field of view 2, the amount of light entering the PD 2 decreases and D 2 decreases. At this time, the operation result D by the operation unit becomes larger than the previous D. This is compared with the above threshold value (VT1, VT2) in the comparison circuit 316. When the output D exceeds VT1 or falls below VT2 as shown in FIG. 16 0N signal is output. This ON signal passes through an integration circuit 317 to remove noise, and is then output from the output circuit 318 to the outside of the detector 301 as an ONZO FF signal. The integrator circuit 317 outputs the 0N signal when the number of consecutive 0N signals of the comparison circuit 316 becomes three or more, and the 0FF signal of the comparison circuit 316 output continues. If the number becomes three or more, a 0FF signal is output.
このように、 2系統の検出信号 ( 1 1, 1 2 ) を交互に スイ ッチングし、 各検出信号をペアとして、 1系統の信号 処理回路で処理するようにしたことにより、 従来のセンサ と比べて、 受光出力数と同数の受光回路、 増幅回路、 SZ H回路、 AZD変換回路等が不要となるので、 信号処理回 路の規模の縮小を図ることができ、 回路部品の削減、 消費 電流の低減、 外形の縮小、 コス トの削減、 製造不良率の低 減等を図るこ とができる。 また、 回路構成を簡略化するこ とにより、 複数の回路の特性のマッチングを図る必要がな く なるので、 高精度の部品が要求されることもない。 また、 この構成においては、 投光電流が不要なパッ シブ方式で検 出を行うので、 低消費電流化を図ることができる。 また、 この低消費電流化により、 バッテリ駆動時においてはバッ テリの長寿命化を図ることができる。 In this way, two systems of detection signals (11, 12) are alternately switched, and each detection signal is processed as a pair and processed by one system of signal processing circuit. This eliminates the need for the same number of light-receiving circuits, amplifier circuits, SZH circuits, AZD conversion circuits, etc. as the number of light-receiving outputs, thus reducing the size of the signal processing circuit, reducing the number of circuit components and reducing current consumption. It is possible to reduce the size, the size, the cost, and the manufacturing defect rate. Further, by simplifying the circuit configuration, it is not necessary to match the characteristics of a plurality of circuits, so that high-precision components are not required. Also, In this configuration, detection is performed by a passive method that does not require a light emission current, so that current consumption can be reduced. In addition, by reducing the current consumption, the life of the battery can be extended when the battery is driven.
( 3 b) 実施例 3 b  (3b) Example 3b
図 5 3は実施例 3 bに係る検知器のプロック図である。 この検知器 3 2 0は上述の図 5 1に示した検知器 3 0 1に おいて、 P D 1, P D 2 と受光回路 3 0 8間に備えられて いたスィ ッチ SW 1, SW2を、 増幅回路 3 0 9 と S H 回路 3 1 0の間に備えるようにしたものである。 P D 1 , P D 2からの検出電流 I 1, I 2はそれぞれの受光回路 3 0 8 a , 3 0 8 bで電圧に変換され、 増幅回路 3 0 9 a , 3 0 9 bで増幅された後、 スィ ッチ SW 1 , SW2で信号 S G 1, S G 2のクロックにあわせて交互にスイ ッチング され、 電圧 V I , V 2 となる。 このように、 スイ ッチング を増幅回路 3 0 9 a, 3 0 9 bにおいて検出信号を増幅し た後に行うようにしたことにより、 ィ ンピ一ダンスの高い ライ ン (微小信号ライ ン) にスイ ッチング素子を入れずに すむので、 受光信号に重畳するスィ ツチングノィズを低減 することができる。  FIG. 53 is a block diagram of a detector according to Example 3b. This detector 320 is different from the detector 301 shown in FIG. 51 in that the switches SW 1 and SW 2 provided between the PD 1 and PD 2 and the light receiving circuit 308 are replaced by This is provided between the amplifier circuit 309 and the SH circuit 310. After the detection currents I 1 and I 2 from PD 1 and PD 2 are converted to voltages by the respective light receiving circuits 3 08 a and 3 08 b and amplified by the amplifier circuits 3 0 9 a and 3 09 b , And are switched alternately by switches SW1 and SW2 in accordance with the clocks of signals SG1 and SG2, and become voltages VI and V2. In this way, switching is performed after amplifying the detection signal in the amplifier circuits 309a and 309b, thereby switching to a high impedance line (small signal line). Since no element is required, switching noise superimposed on the received light signal can be reduced.
( 3 c )、 実施例 3 c  (3c), Example 3c
図 5 は実施例 3 cに係る検知器のスィ ッチ近傍の構成 図である。 本実施例 3 cはスィ ッチ S Wを電界効果 卜ラ ン ジスタ (以下、 F E Tという) で構成したものである。 こ れにより、 高速でのスィ ッチングが可能となり、 また、 漏 れ電流がほとんどなく なるので、 微小な検出電流の変化を とらえることができ、 より正確な物体の有無検出が可能と なる。 さ らに、 F E Tは電圧で制御されるものであるので、 より一層、 消費電流を抑えることができる。 FIG. 5 is a configuration diagram near the switch of the detector according to Example 3c. In Example 3c, the switch SW is constituted by a field-effect transistor (hereinafter, referred to as FET). This As a result, high-speed switching becomes possible, and since there is almost no leakage current, a minute change in the detection current can be detected, and the presence or absence of an object can be detected more accurately. In addition, since the FET is controlled by voltage, current consumption can be further reduced.
( 3 d) 実施例 3 d  (3d) Example 3d
図 5 5は本実施例 3 dに係る検知器のスィ ツチ S W近傍 の構成図である。 本実施例はスィ ツチ SWをバイポーラ 卜 ランジスタで構成したものである。 バイポーラ トランジス タはスイ ッチングによるスパイクノイズが小さいので、 微 小な検出電流の変化をとらえるこ とができ、 より正確な物 体の有無検出が可能となる。  FIG. 55 is a configuration diagram near the switch SW of the detector according to Example 3d. In this embodiment, the switch SW is constituted by a bipolar transistor. Since the bipolar transistor has a small spike noise due to switching, it can detect minute changes in the detection current, and can more accurately detect the presence or absence of an object.
( 3 e ) 実施例 3 e  (3 e) Example 3 e
図 5 6は本実施例 3 eに係る検知器 3 2 1のブロック図、 図 5 7 a〜図 5 7 mはこの検知器の動作のタイムチャー ト である。 この検知器 3 2 1は、 上述の図 5 1に示した検知 器 3 0 1において、 スィ ッチ SW2を、 信号 S G 2 と第 2 の比較回路 3 2 2の出力信号の A N Dでスィ ツチングされ るようにしたものである。 P D 1, P D 2で受光された光 は検出電流 1 1 , 1 2に変換され、 この電流 I I, I 2は 上述の実施例 3 aと同様、 受光回路 3 0 8、 増幅回路 3 0 9、 SZH回路 3 1 0、 AZD変換回路 3 1 1を通り、 出 力 D l , D 2になる。 こ こで、 出力 D 1は、 第 2の比較回 路 3 2 2に入力され、 この出力 D 1の値がサンプリ ングデ 一夕の前後で異つていると、 比較回路 3 2 2から ON信号 が出力される。 この出力信号と信号 S G 2の A N Dにより スィ ッチ S W 2はスイ ッチングされる。 一方、 出力 D 2は データ保持回路 3 2 3で第 2の比較回路 3 2 2の ON信号 による解除信号が入力されるまで、 前回のデータを出力し 続け、 第 2の比較回路 3 2 2の 0 N信号による解除信号が 入力されると、 データ保持回路 3 2 3に保持されたデータ は更新される。 この出力 D 2 と出力 D 1は演算部 3 1 2に おいて差動演算され、 演算結果 Dが得られる。 演算結果 D は、 比較回路 3 1 6で予め設定されたしきい値 V T 1, V T 2 と比較される。 比較回路 3 1 6は、 演算結果 Dが V T 1を上回るか、 V T 2を下回ることで 0 N信号を出力する。 この 0 N信号が連続して 3個以上になれば、 積分回路 3 1 7より 2値化された ON信号が得られ、 この信号は出力回 路 3 1 8より出力され、 検知器 3 2 1外部に受光視野内へ の検出物体 1 5の侵入を知らせる。 FIG. 56 is a block diagram of the detector 3221 according to the third embodiment 3e, and FIGS. 57a to 57m are time charts of the operation of the detector. This detector 3221 is obtained by switching the switch SW2 in the detector 301 shown in FIG. 51 described above by ANDing the signal SG2 with the output signal of the second comparison circuit 322. That's what I did. The light received by PD 1 and PD 2 is converted into detection currents 11 and 12, and the currents II and I 2 are supplied to the light receiving circuit 308, the amplifying circuit 309, After passing through the SZH circuit 310 and the AZD conversion circuit 311, the outputs become D 1 and D 2. Here, the output D1 is input to the second comparison circuit 32, and the value of the output D1 is sampled. If they are different before and after one evening, the comparator circuit 3 2 2 outputs an ON signal. Switch SW 2 is switched by ANDing this output signal with signal SG 2. On the other hand, the output D 2 continues to output the previous data until the release signal due to the ON signal of the second comparison circuit 32 2 is input by the data holding circuit 32 3, and the second comparison circuit 32 2 When the release signal by the 0 N signal is input, the data held in the data holding circuit 3 2 3 is updated. The output D 2 and the output D 1 are subjected to a differential operation in the operation unit 3 12 to obtain an operation result D. The calculation result D is compared with threshold values VT 1 and VT 2 set in advance by the comparison circuit 316. The comparison circuit 316 outputs the 0N signal when the operation result D exceeds VT1 or falls below VT2. If the number of 0 N signals becomes three or more in succession, a binary ON signal is obtained from the integrating circuit 3 17, and this signal is output from the output circuit 3 18 and the detector 3 2 1 Inform the outside that the object 15 has entered the field of view.
このように、 片側の経路 (SW 1 ) の信号 ( I 1 ) をモ 二夕 し、 それに変化があれば、 もう一方の経路 (SW2 ) を動作させるような構成としているので、 上述の検知器 3 0 1 と比して、 消費電流をより低減させることができる。 また、 パッ、シブ方式で得られた 2系統の検出信号 ( I 1, I 2 ) を 1系統の受光回路を含む信号処理回路で処理する ので、 信号処理回路の規模を縮小することができ、 上述の 第 1の実施例と同様の作用効果を得ることができる。 ( 3 f ) 実施例 3 f As described above, since the signal (I 1) of one path (SW 1) is monitored, and if there is a change, the other path (SW 2) is operated. The current consumption can be further reduced as compared with 301. Also, since the two detection signals (I1, I2) obtained by the passive and sieve methods are processed by the signal processing circuit including one light receiving circuit, the scale of the signal processing circuit can be reduced. The same operation and effect as those of the first embodiment can be obtained. (3 f) Example 3 f
図 5 8は実施例 3 f に係る検知器 3 2 6のブロック図、 図 5 9 a〜図 5 9 i はこの検知器の動作のタイムチャー ト である。 この検知器 3 2 6は、 上述の図 5 1に示した検知 器 3 0 1に変調回路 3 2 8を加えたものである。 この変調 回路 3 2 8は、 発振回路 3 2 7より供給される s g 1, s g 2 , s h, a / dの各正弦波をパルス時間変調し、 S G 1, S G 2 , S H, AZDのパルス信号に変換する もので ある。  FIG. 58 is a block diagram of the detector 32 6 according to the embodiment 3f, and FIGS. 59a to 59i are time charts of the operation of the detector. The detector 326 is obtained by adding a modulation circuit 328 to the detector 301 shown in FIG. 51 described above. The modulation circuit 328 performs pulse time modulation of sg1, sg2, sh, and a / d sine waves supplied from the oscillation circuit 327, and generates pulse signals of SG1, SG2, SH, and AZD. Is converted to.
P D 1 , P D 2に入射した光は、 ここで光一電流変換さ れ、 P D 1からの検出電流 I 1、 及び P D 2からの検出電 流 1 2は、 スィ ッチ SW 1, S W 2で断続的に受光回路 3 0 8に送られる。 このスィ ッチ SW 1, SW2は、 発振回 路 3 0 7より供給される発振パルス信号 S G 1, S G 2の クロックで交互にスイ ッチングされるようになっており、 これにより、 スィ ッチ SW 1 , SW2を通過する電流 I 3 1 , I 3 2のタイ ミ ングは非同期で時分割となる。 検出電 流 I 1, 1 2は受光回路 3 0 8で電圧に変換された後、 增 幅回路 3 0 9で増幅され、 検出電圧 V 1 , V 2 となる。 こ の電圧 V I , V 2は S ZH回路 3 1 0で発振回路 3 0 7の サンプルホールド信号 S Hのタイ ミ ングでサンプリ ングさ れた後、 AZD変換回路 3 1 1でデジタル信号に変換され、 それぞれ出力 D l, D 2 となる。 これら出力 D l , D 2は 演算部 3 1 2で差演算 (D 1 — D 2 ) され、 演算結果 Dを 得る。 この値 Dが、 比較回路 3 1 6でしきい値 V Tと比較 され、 V Tを上回ると 0 N信号が出力される。 この O N信 号が連続して 3個以上になれば、 積分回路 3 1 7 より 2値 化された 0 N信号が得られ、 この信号は出力回路 3 1 8よ り出力され、 検出器 3 2 6外部に検出物体 2の侵入を知ら せる。 The light incident on PD 1 and PD 2 is converted to light-to-current here, and the detection current I 1 from PD 1 and the detection current 12 from PD 2 are intermittent at switches SW 1 and SW 2 Is sent to the light receiving circuit 308. The switches SW1 and SW2 are alternately switched by the clock of the oscillating pulse signals SG1 and SG2 supplied from the oscillating circuit 307, whereby the switches SW1 and SW2 are switched. 1, The timing of currents I31 and I32 passing through SW2 is asynchronous and time-division. The detection currents I 1 and I 2 are converted into voltages by the light receiving circuit 308 and then amplified by the amplifier circuit 309 to become the detection voltages V 1 and V 2. These voltages VI and V2 are sampled by the SZH circuit 310 at the timing of the sample and hold signal SH of the oscillation circuit 307, and then converted to digital signals by the AZD conversion circuit 311. The outputs are Dl and D2, respectively. These outputs D l and D 2 are subjected to a difference operation (D 1 — D 2) in the operation section 3 1 2, and the operation result D is obtained. obtain. This value D is compared with the threshold value VT by the comparison circuit 316, and if it exceeds VT, the 0N signal is output. If the number of ON signals becomes three or more in succession, a binarized 0 N signal is obtained from the integrating circuit 3 17, and this signal is output from the output circuit 3 18 and the detector 3 2 6 Notify the detection object 2 invasion to the outside.
このように、 パッシブ方式で得られた 2系統の検出信号 I I, I 2を交互にスイ ッチングし、 各検出信号をペアと してサンプルホールドすることにより、 データの保持を行 い、 1系統の受光回路を含む信号処理回路で処理するので、 信号処理回路の規模を縮小することができ、 上述の実施例 3 a と同様の作用効果を得ることができる。 加えて、 検出 信号のスィ ッチングを行うクロック信号をパルス時間変調 し、 その信号と同期をとり、 信号処理することで、 周期的 な検出対象と異なる物理量的なノイズや電気的なノイズを 除去することができるので、 高 S Z Nの検出信号を得るこ とができる。 これにより、 より微小な検出電流の変化を取 り扱う ことができるので、 より正確な物体の有無検出が可 能となる。  In this way, data is held by alternately switching the two detection signals II and I2 obtained by the passive method, sampling and holding each detection signal as a pair, and holding the data. Since the processing is performed by the signal processing circuit including the light receiving circuit, the scale of the signal processing circuit can be reduced, and the same operation and effect as those of the third embodiment can be obtained. In addition, the clock signal that performs switching of the detection signal is pulse-time modulated, synchronized with the signal, and processed to remove physical and electrical noise that is different from the periodic detection target. Therefore, a high SZN detection signal can be obtained. As a result, a smaller change in the detected current can be handled, so that the presence / absence of an object can be detected more accurately.
( 3 g ) 実施例 3 g  (3 g) Example 3 g
図 6 0 は実施例 3 gによる検知器のプロック図、 図 6 1 a〜図 6 1 i はこの検知器のタィムチャー トである。 この 検知器 3 3 0 は、 上述の図 5 1 に示した検知器 3 0 1 に、 信号処理回路への電源供給のタイ ミ ングを制御するための スィ ッチ S W 3を加えたものである。 このスィ ッチ S W 3 は発振回路 3 0 7 より供給される信号 S G 1 , S G 2 とそ れぞれ同期している信号 A Gによりスイ ッチングされる。 これにより、 電源の供給は図 6 1 のタイムチャー トに示さ れるように、 信号 S G 1, 及び信号 S G 2のそれぞれに関 わる信号処理に必要な時間だけ行われる。 FIG. 60 is a block diagram of the detector according to Example 3g, and FIGS. 61 a to 61 i are timing charts of this detector. The detector 330 is different from the detector 310 shown in FIG. 51 in that the timing of power supply to the signal processing circuit is controlled. Switch SW 3 is added. This switch SW3 is switched by a signal AG synchronized with the signals SG1 and SG2 supplied from the oscillation circuit 307, respectively. As a result, power is supplied only for the time necessary for signal processing for each of the signals SG1 and SG2, as shown in the time chart of FIG.
このように、 パッ シブ方式で得られた 2系統の検出信号 1 1 , 1 2を交互にスィ ツチングし、 各検出信号をペアと してサンプルホールドすることにより、 データの保持を行 い、 1系統の受光回路を含む信号処理回路で処理するので、 信号処理回路の規模を縮小するこ とができ、 上述の実施例 3 a と同様の作用効果を得るこ とができる。 加えて、 各信 号処理回路への電源の供給を信号処理に必要な時間だけ断 続的に行うようにしたので、 消費電流をより低減させるこ とができる。 また、 信号 S G 1 と信号 S G 2のそれぞれの 発振パルス信号に応じて電源を供給しているため、 電圧 V 1 と電圧 V 2の信号がお互いに干渉しないように信号 S G 1 と信号 S G 2のパルス間隔を広く とっても、 低消費電流 化の効果を維持したまま、 過大入力検出信号に対応するこ とができる。  As described above, the two systems of the detection signals 11 and 12 obtained by the passive method are alternately switched, and each of the detection signals is sampled and held as a pair. Since the processing is performed by the signal processing circuit including the light receiving circuit of the system, the scale of the signal processing circuit can be reduced, and the same operation and effect as those of the third embodiment can be obtained. In addition, power supply to each signal processing circuit is intermittently performed for the time required for signal processing, so that current consumption can be further reduced. In addition, since power is supplied according to the respective oscillation pulse signals of the signal SG1 and the signal SG2, the signal SG1 and the signal SG2 are controlled so that the signals of the voltage V1 and the voltage V2 do not interfere with each other. Even if the pulse interval is wide, it is possible to respond to an excessive input detection signal while maintaining the effect of reducing current consumption.
( 3 h)、 実施例 3 h  (3 h), Example 3 h
図 6 2 a〜図 6 2 j に実施例 3 hに係る検知器の動作の タイムチヤ一卜を示す。 本実施例に係る検知器は上述の実 施例 3 による検知器 3 3 0 と同じ構成である。 スィ ッチ S W 3 は発振回路より供給される信号 S G 1, S G 2をべ ァの信号と し、 このペアの信号に同期している信号 A Gに よりスイ ッチングされる。 これにより、 電源の供給は、 図 6 2 a〜図 6 2 j のタイムチャー トに示されるように、 信 号 S G 1 と信号 S G 2に同時にそれらに関わる信号処理に 必要な時間だけ行われる。 Figures 62a to 62j show time charts of the operation of the detector according to Example 3h. The detector according to the present embodiment has the same configuration as the detector 330 according to the third embodiment. Switch SW3 uses the signals SG1 and SG2 supplied from the oscillating circuit as the ground signals, and is switched by the signal AG synchronized with this pair of signals. Thus, as shown in the time charts of FIGS. 62a to 62j, the power is supplied only for the time required for the signal SG1 and the signal SG2 at the same time for the signal processing related thereto.
このように、 パッシブ方式で得られた 2系統の検出信号 1 1 , 1 2を交互にスィ ツチングし、 各検出信号をペアと してサンプルホールドすることにより、 データの保持を行 い、 1系統の受光回路を含む信号処理回路で処理するので、 信号処理回路の規模を縮小することができ、 上述の第 1の 実施例と同様の作用効果を得ることができる。 加えて、 各 信号処理回路への電力の供給を信号 S G 1 と信号 S G 2の 信号処理に必要な時間だけ行う構成としたので、 信号 S G 1 と信号 S G 2のパルス周期を長くすれば、 電力供給時間 がより短く なるので、 より一層の低消費電流化を図ること が可能となる。  In this way, the data is held by alternately switching the two detection signals 11 and 12 obtained by the passive method and sampling and holding each detection signal as a pair. Since the signal is processed by the signal processing circuit including the light receiving circuit, the size of the signal processing circuit can be reduced, and the same operation and effect as those of the first embodiment can be obtained. In addition, power is supplied to each signal processing circuit only for the time required for signal processing of signal SG1 and signal SG2.If the pulse period of signal SG1 and signal SG2 is lengthened, power Since the supply time is shorter, it is possible to further reduce the current consumption.
( 3 i ) 実施例 3 i  (3i) Example 3i
図 6 3 は実施例 3 i による検知器 3 3 1のブロック図、 図 6 4 はこの検知器のタイムチャー トである。 この検知器 3 3 1 は、、上述の図 6 0 に示した検知器 3 3 0において、 スィ ッチ S W 3のスイ ッチングを発振回路 3 0 7 より供給 される信号 S G 1, S G 2 により行う ものである。 このよ うに、 各回路への電源の供給と検出信号のスイ ッチングを 同一の信号により行う こ とで、 発振パルス信号を削減でき、 発振回路 7の構成を簡略化できるので、 回路規模の縮小と 消費電流の低減をより一層図ることが可能となる。 FIG. 63 is a block diagram of a detector 331 according to the embodiment 3i, and FIG. 64 is a time chart of this detector. The detector 331 performs the switching of the switch SW3 by the signals SG1 and SG2 supplied from the oscillation circuit 307 in the detector 3330 shown in FIG. Things. In this way, supply of power to each circuit and switching of the detection signal are performed. By using the same signal, the number of oscillation pulse signals can be reduced, and the configuration of the oscillation circuit 7 can be simplified, so that the circuit scale and current consumption can be further reduced.
( 3 j ) 実施例 3 j  (3j) Example 3j
図 6 5は本実施例による検知器のブロック図、 図 6 6 a FIG. 65 is a block diagram of the detector according to the present embodiment, and FIG.
〜図 6 6 j はこの検知器のタイムチャー トである。 この検 知器 3 3 2は上述の図 5 1に示した検知器 3 0 1において、 P D 1 , P D 2 と受光回路 3 0 8 との間にスィ ッチ3 4 を加え、 さ らに、 増幅回路 3 0 9 と SZH回路 3 1 0 との 間に帯域通過フィルタ 3 1 9を加えたものである。 スイ ツ チ SW 4は信号 S G 1, S G 2 とそれぞれに同期している 信号 F Gによりスイ ッチングされるものである。 ~ Figure 66 j is the time chart of this detector. This detector 3332 is the same as the detector 301 shown in FIG. 51 except that a switch 34 is added between PD1 and PD2 and the light receiving circuit 308. A bandpass filter 319 is added between the amplifier circuit 309 and the SZH circuit 310. The switch SW4 is switched by a signal FG synchronized with the signals SG1 and SG2.
各 P Dからは P Dへの入光パワーに応じた検出電流が出 力され、 P D 1からは電流 I I, P D 2からは電流 I 2が 出力される。 この検出電流 I I , 1 2はそれぞれスィ ッチ S W 1 , SW 2を通り、 さ らにスィ ッチ SW 4を通り、 受 光回路 3 0 8に送られる。 このスィ ッチ SW3 0 を制御 する信号 F Gのパルス幅を、 信号 S G 1 , S G 2のパルス 幅より も小さいものとしたので、 検出電流 I 1, I 2をチ ョ ッ ビングし高周波信号に変換することが可能となる。 こ の検出電流 I I, I 2は受光回路 3 0 8により電圧に変換 され、 増幅回路 3 0 9で増幅され、 電圧 V 1 , V 2 となる。 この電圧 V I, V 2を帯域通過フィ ルタ 3 1 9に通すこと により、 光源として蛍光灯を用いたときに発生する電源低 周波ノイズや、 受光素子 P D 1, P D 2ゃ受光回路 3 0 8 で発生する高周波ノィズなどのノィズを除去することがで きる。 ノィズ除去された信号 F 1 , F 2は SZH回路 3 1 0で発振回路 3 0 7のサンプルホールド信号 S Hの夕イ ミ ングでサンプリ ングされた後、 AZ D変換回路 3 1 1でデ ジタル信号に変換され、 それぞれ出力 D 1, D 2 となる。 これら出力 D l, D 2は演算部 3 1 2で差演算 (D 1 — D 2 ) され、 演算結果 Dを得る。 この値 Dが、 比較回路 3 1 6でしきい値 VTと比較され、 VTを上回ると ON信号が 出力される。 この 0 N信号が連続して 3個以上になれば、 積分回路 3 1 7より 2値化された ON信号が得られ、 この 信号は出力回路 3 1 8から出力され、 検出器 3 3 2外部に 検出物体 1 5の侵入を知らせる。 Each PD outputs a detection current in accordance with the light input power to the PD, PD 1 outputs a current II, and PD 2 outputs a current I 2. The detection currents II and 12 pass through the switches SW 1 and SW 2, respectively, pass through the switch SW 4, and are sent to the light receiving circuit 308. Since the pulse width of the signal FG that controls the switch SW30 is smaller than the pulse widths of the signals SG1 and SG2, the detection currents I1 and I2 are chopped and converted to high-frequency signals. It is possible to do. The detection currents II and I2 are converted into voltages by the light receiving circuit 308 and amplified by the amplifier circuit 309 to become voltages V1 and V2. By passing these voltages VI and V2 through the bandpass filter 319, the power supply generated when a fluorescent lamp is used as the light source is reduced. Noise such as frequency noise and high-frequency noise generated by the light receiving elements PD1, PD2 and the light-receiving circuit 308 can be eliminated. The noise-removed signals F 1 and F 2 are sampled by the SZH circuit 310 at the sampling and holding signal SH of the oscillation circuit 307, and then digitalized by the AZD conversion circuit 311. And output D 1 and D 2 respectively. These outputs Dl and D2 are subjected to a difference operation (D1-D2) in the operation unit 312 to obtain an operation result D. This value D is compared with the threshold value VT by the comparison circuit 316. When the value exceeds VT, an ON signal is output. If this 0 N signal becomes three or more consecutively, a binary ON signal is obtained from the integrating circuit 3 17, and this signal is output from the output circuit 3 18, and the detector 3 3 2 Inform the detection object 15 of the intrusion.
このように、 本実施例の検知器 3 3 2によれば、 パッシ ブ方式で得られた 2系統の検出信号 I 1, 1 2を交互にス イ ッチングし、 各検出信号をペアとしてサンプルホールド することにより、 データの保持を行い、 1系統の受光回路 を含む信号処理回路で処理するので、 信号処理回路の規模 を縮小することができ、 上述の実施例 3 aと同様の作用効 果を得ることができる。 加えて、 検出信号をチョ ッ ビング し、 高周波信号に変換し、 さ らにフィ ルタ 3 1 9でノイズ 除去することで、 光学的なノイズや、 電気的なノイズを除 去することができるため、 高 S/Nの検出信号が得られる。 これにより、 より微小な検出信号の変化を取り扱う ことが できるので、 より正確な物体の有無検出が可能となる。 As described above, according to the detector 33 of the present embodiment, the two detection signals I 1 and 12 obtained by the passive method are switched alternately, and each detection signal is sampled and held as a pair. As a result, since the data is held and processed by the signal processing circuit including one light receiving circuit, the scale of the signal processing circuit can be reduced, and the same operational effects as those of the above-described embodiment 3a can be obtained. Obtainable. In addition, by chopping the detection signal, converting it to a high-frequency signal, and removing the noise with a filter 319, optical and electrical noise can be removed. A high S / N detection signal can be obtained. This makes it possible to handle smaller changes in the detection signal. As a result, the presence or absence of an object can be detected more accurately.
( 3 k) 実施例 3 k  (3k) Example 3k
図 6 7は実施例 3 kによる検知器 3 3 3のブロック図、 図 6 8 a〜図 6 8 j はこの検知器の夕ィムチヤ一 トである。 本実施例に係る検知器 3 3 3は、 スィ ッチ SW 1, S W 2 のスイ ツチング時において検出信号を高周波信号に変換す るようにしたものである。 すなわち、 P D 1からの電流 I FIG. 67 is a block diagram of the detector 33 33 according to the embodiment 3k, and FIGS. 68a to 68j are schematic diagrams of the detector. The detector 333 according to the present embodiment converts the detection signal into a high-frequency signal when the switches SW1 and SW2 are switched. That is, the current I from P D 1
I、 及び P D 2からの電流 1 2は、 スィ ッチ SW 1, S W 2により信号 S G I , S G 2のクロックで交互にスィ ッチ ングされる。 これらの検出電流 I 1 , I 2には、 光源とし て蛍光灯を用いたときに発生する電源低周波ノィズが含ま れている。 それらを除去するために、 スィ ッチ SW 1, S W 3 2のスイ ッチング時に低周波ノイズと分離される高周 波信号への変換も行い、 その後、 帯域通過フィルタ 3 1 9 に通す o The currents 12 from I and PD 2 are alternately switched by switches SW 1 and SW 2 with the clocks of signals SGI and SG 2. These detection currents I 1 and I 2 include power supply low-frequency noise generated when a fluorescent lamp is used as a light source. In order to remove them, conversion to high-frequency signals that are separated from low-frequency noise when switching switches SW1 and SW32 are also performed, and then pass through a band-pass filter 319.
このように、 パッシブ方式で得られた 2系統の検出信号 Thus, the two detection signals obtained by the passive method
I I , 1 2を交互にスィ ッチングし、 各検出信号をペアと してサンプルホール ドすることにより、 データの保持を行 い、 1系統の受光回路を含む信号処理回路で処理するので、 信号処理回路の規模を縮小するこ とができ、 上述の実施例Switching between II and 12 alternately, sample-holding each detection signal as a pair, and holding the data, which is processed by a signal processing circuit including a single light-receiving circuit. The circuit scale can be reduced.
3 aと同様の作用効果を得ることができる。 加えて、 時間 の規正と波形の整形を同時に行うことにより、 波形整形の ための専用のスィ ツチングゲ一卜とそれに与える発振パル ス信号が削除できるので、 上述の検知器 3 3 2 と比して回 路規模を削減することができる。 The same operation and effect as 3a can be obtained. In addition, by performing time regulation and waveform shaping at the same time, a dedicated switching gate for waveform shaping and an oscillating pulse signal given to it can be deleted. Times The road scale can be reduced.
( 3 1 ) 実施例 3 1  (31) Example 31
図 6 9は実施例 3 1 による検知器 3 3 4のブロック図で ある。 この検知器 3 3 4は、 上述の図 6 7に示した検知器 3 3 3において、 発振回路 3 0 7を複数の周波数の発振パ ルス信号を出力する構成とし、 この発振周波数の変更に応 じてフィ ルタ 3 1 9の通過周波数を変更する構成とするこ とにより、 使用環境の変化により生じるノイズ状況の変化 に対応できるようにしたものである。  FIG. 69 is a block diagram of a detector 334 according to the embodiment 31. This detector 334 is different from the detector 333 shown in FIG. 67 in that the oscillation circuit 307 is configured to output an oscillation pulse signal having a plurality of frequencies. By changing the pass frequency of the filter 319 in the same way, it is possible to cope with a change in the noise situation caused by a change in the use environment.
P D 1 , P D 2に入射した光は、 こ こで光—電流変換さ れ、 P D 1からの検出電流 I 1、 及び P D 2からの検出電 流 I 2は、 スィ ッチ S W 1 , S W 2で断続的に受光回路 3 The light incident on PD 1 and PD 2 is converted from light to current here, and the detection current I 1 from PD 1 and the detection current I 2 from PD 2 are converted into switches SW 1 and SW 2 Light receiving circuit 3 intermittently
0 8に送られる。 このスィ ッチ SW 1, SW2は、 発振回 路 3 0 7より供給される発振パルス信号 S G 1 , S G 2の クロックで交互にスィ ツチングされるようになつており、 これにより、 スィ ッチ S W 1 , S W 2を通過する電流 I 1 ,Sent to 08. The switches SW1 and SW2 are alternately switched by the oscillation pulse signals SG1 and SG2 supplied from the oscillation circuit 307. 1, current I 1, passing through SW 2
1 3 2のタイ ミ ングは非同期で時分割となる。 電流 I 1 ,The timing of 132 is asynchronous and time division. Current I 1,
I 2は受光回路 3 0 8で電圧に変換された後、 増幅回路 3 0 9で増幅され、 電圧 V 1, V 2 となる。 電圧 V I, V 2 は、 帯域通過フィルタ 3 1 9を通され、 低周波ノイズを除 去され、 電圧 F 1, F 2 となる。 この電圧 F 1, F 2は、 SZH回路 3 1 0でサンプルホールド信号 S Hのタイ ミ ン グでサンプリ ングされる。 サンプリ ングされた検出信号は、 AZD変換回路 3 1 1でデジタル信号に変換された後、 そ れぞれ出力 D l, D 2 となる。 これら出力 D l, D 2は演 算部 3 1 2で差演算 (D 1 — D 2 ) され、 演算結果 Dを得 る。 この演算結果 Dが、 比較回路 3 1 6でしきい値 VTと 比較され、 V Tを上回ると 0 N信号が出力される。 この 0 N信号が連続して 3個以上になれば、 積分回路 3 1 7より 2値化された ON信号が得られ、 出力回路 3 1 8から検出 器 3 3 4外部に検出物体 1 5の侵入を知らせる。 I2 is converted into a voltage by the light receiving circuit 308 and then amplified by the amplifying circuit 309 to become voltages V1 and V2. The voltages VI and V 2 are passed through a band-pass filter 319 to remove low-frequency noise and become voltages F 1 and F 2. The voltages F 1 and F 2 are sampled by the SZH circuit 310 at the timing of the sample and hold signal SH. The sampled detection signal is converted to a digital signal by the AZD conversion circuit 311 and then converted to a digital signal. The outputs are Dl and D2, respectively. These outputs Dl and D2 are subjected to a difference operation (D1-D2) in the operation unit 312 to obtain an operation result D. The calculation result D is compared with the threshold value VT by the comparison circuit 316. When the threshold value VT is exceeded, a 0 N signal is output. If the number of consecutive 0 N signals becomes three or more, a binarized ON signal is obtained from the integrating circuit 3 17, and the detection circuit 3 3 4 is output to the outside of the detector 3 3 4 from the output circuit 3 18. Signal an intrusion.
検知器 3 3 4の置かれた使用環境が変化すると、 P Dか ら出力される検出信号に含まれる電源低周波ノィズ等のノ ィズの周波数も変化する。 従って、 正確な物体の有無検出 を行うためには、 使用環境の変化に応じて発振回路 3 0 7 から出力される発振パルス信号 S G 1, S G 2の発振周波 数を変化させ、 さ らにそれに連動して検出信号のみを取り 出すようにフィ ルタ 3 1 9の通過周波数を変更する必要が ある。 本実施の形態に係る検知器 3 3 4は、 使用環境のノ ィズの周波数を避けるため、 信号 S G 1, S G 2の周波数 を外部より変更するスィ ツチ S W 5を付加したものであり、 このスィ ツチ SW 5の位置により、 フィ ルタ 3 1 9の低域 遮断周波数 1 ( 2 7Γ R s C s ) を発振パルス信号 S G 1, S G 2の発振周波数 1 Z ( 2 7Γ R o C o ) に連動して変更 できるようになっている。  When the use environment in which the detector 334 is placed changes, the frequency of noise such as a power supply low-frequency noise included in the detection signal output from the PD also changes. Therefore, in order to accurately detect the presence or absence of an object, the oscillation frequency of the oscillation pulse signals SG 1 and SG 2 output from the oscillation circuit 307 is changed according to the change in the use environment, and It is necessary to change the pass frequency of the filter 319 so as to take out only the detection signal in conjunction with it. The detector 3 3 4 according to the present embodiment is provided with a switch SW 5 for externally changing the frequency of the signals SG 1 and SG 2 in order to avoid the noise frequency of the use environment. Depending on the position of the switch SW5, the low cut-off frequency 1 (27ΓR s C s) of the filter 319 is changed to the oscillation frequency 1Z (27ΓR Co) of the oscillation pulse signals SG1, SG2. It can be changed in conjunction with it.
このように、 パッ シブ方式で得られた 2系統の検出信号 ( 1 1, 1 2 ) を交互にスィ ツチングし、 各検出信号をべ ァと してサンプルホールドすることにより、 データの保持 を行い、 1系統の受光回路を含む信号処理回路で処理する ので、 信号処理回路の規模を縮小するこ とができ、 上述の 実施例 3 a と同様の作用、 効果を得ることができる。 さら に、 受光信号の発振パルス信号 S G 1, S G 2の発振周波 数を使用環境のノイズ状況に応じて変更し、 それと連動し て、 その信号のみを取り出すフィ ルタ 1 9の通過周波数を 変更するこ とで、 周期的な検出対象と異なる物理量ノイズ や電気的なノイズを除去することができるため、 高 S/N の検出信号が得られ、 より微小な信号を取り扱う ことがで さる In this way, the two systems of detection signals (11, 12) obtained by the passive method are alternately switched, and each detection signal is sampled and held as a base to retain data. Is performed, and processing is performed by a signal processing circuit including a single light receiving circuit. Therefore, the scale of the signal processing circuit can be reduced, and the same operation and effect as those of the third embodiment can be obtained. Furthermore, the oscillation frequency of the oscillating pulse signals SG 1 and SG 2 of the received light signal is changed according to the noise situation in the use environment, and in conjunction with this, the pass frequency of the filter 19 that extracts only that signal is changed. This makes it possible to remove physical quantity noise and electrical noise that are different from the periodic detection target, so that a high S / N detection signal can be obtained and smaller signals can be handled.
( 3 m) 実施例 3 m  (3 m) Example 3 m
図 7 0は実施例 3 mによる検知器 3 3 5のブロック図で ある。 本実施例に係る検知器 3 3 5は、 発振パルス S G 1 , S G 2の発振周波数の変化に連動して増幅回路 3 0 9のゲ ィ ンを変更することができる構成と したものである。  FIG. 70 is a block diagram of the detector 335 according to the third embodiment. The detector 335 according to the present embodiment has a configuration in which the gain of the amplifier circuit 309 can be changed in accordance with a change in the oscillation frequency of the oscillation pulses SG 1 and SG 2.
P D 1 , P D 2に入射した光は、 こ こで光—電流変換さ れ、 P D 1からの検出電流 I 1、 及び P D 2からの検出電 流 I 2は、 スィ ッチ S W 1, S W 2で断続的に受光回路 3 The light incident on PD 1 and PD 2 undergoes photo-current conversion, and the detection current I 1 from PD 1 and the detection current I 2 from PD 2 are converted into switches SW 1 and SW 2 Light receiving circuit 3 intermittently
0 8に送られる。 このスィ ッチ SW 1, SW 2は、 発振回 路 3 0 7より供給される発振パルス信号 S G 1, S G 2の クロックで交互にスィ ツチングされるようになつており、 これにより、 スィ ッチ SW 1, S W 2を通過する電流 I 1 ,Sent to 08. The switches SW1 and SW2 are alternately switched by the oscillation pulse signals SG1 and SG2 supplied from the oscillation circuit 307. The current I 1, passing through SW 1 and SW 2
1 2の夕イ ミ ングは非同期で時分割となる。 電流 I 1, I 2は受光回路 3 0 8で電圧に変換された後、 増幅回路 3 0 9で増幅され、 電圧 V 1 , V 2 となる。 電圧 V 1, V 2 は、 帯域通過フィ ルタ 3 1 9を通され、 低周波ノイズを除去さ れ、 電圧 F 1, F 2 となる。 この電圧 F 1, F 2 は、 S / H回路 3 1 0でサンプルホ一ルド信号 S Hのタイ ミ ングで サンプリ ングされる。 サンプリ ングされた検出信号は、 A ZD変換回路 3 1 1でデジタル信号に変換された後、 それ ぞれ出力 D l, D 2 となる。 これら出力 D l, D 2 は演算 部 3 1 2で差演算 (D 1 - D 2 ) され、 演算結果 Dを得る。 この演算結果 Dが、 比較回路 3 1 6でしきい値 V Tと比較 され、 V Tを上回ると O N信号が出力される。 この O N信 号が連続して 3個以上になれば、 積分回路 3 1 7 より 2値 化された O N信号が得られ、 出力回路 3 1 8から検出器 3 3 5外部に検出物体 1 5の侵入を知らせる。 The evening of 1 and 2 is asynchronous and time division. After the currents I 1 and I 2 are converted into voltages by the photodetector circuit 108, It is amplified by 9 and becomes voltages V 1 and V 2. The voltages V 1 and V 2 are passed through a band-pass filter 319 to remove low-frequency noise and become voltages F 1 and F 2. The voltages F 1 and F 2 are sampled by the S / H circuit 310 at the timing of the sample hold signal SH. The sampled detection signal is converted into a digital signal by the AZD conversion circuit 311 and then output as Dl and D2, respectively. These outputs Dl and D2 are subjected to a difference operation (D1-D2) in the operation unit 312 to obtain the operation result D. The calculation result D is compared with the threshold value VT by the comparison circuit 316, and when it exceeds VT, an ON signal is output. If the number of ON signals becomes three or more in succession, a binarized ON signal is obtained from the integrating circuit 3 17, and the detection circuit 3 3 5 Signal an intrusion.
検知器 3 3 5の置かれた使用環境が変化すると、 P D 1, P D 2から出力される検出信号に含まれる電源低周波ノィ ズ等のノイズの周波数も変化する。 従って、 正確な物体の 有無検出を行うためには、 使用環境の変化に応じて発振回 路 3 0 7から出力される発振パルス信号 S G 1 , S G 2の 発振周波数を変化させ、 さ らにそれに連動して検出信号の みを取り出すように増幅回路 3 0 9のゲイ ンを変更する必 要がある p 本実施例に係る検知器 3 3 5 は、 使用環境のノ ィズの周波数を避けるため、 信号 S G 1 , S G 2の周波数 を外部より変更するスィ ツチ S W 5を付加したものであり、 このスィ ッチ S W 5の位置により、 増幅回路 3 0 9 のゲイ ン R f Z R sを発振パルス信号 S G 1, S G 2 の発振周波 数 1 / ( 2 TT R O C O ) に連動して変更できるようになつ ている。 When the use environment where the detector 335 is placed changes, the frequency of noise such as power supply low-frequency noise included in the detection signals output from PD1 and PD2 also changes. Therefore, in order to accurately detect the presence or absence of an object, the oscillating frequency of the oscillating pulse signals SG 1 and SG 2 output from the oscillating circuit 307 is changed according to the change of the use environment, and furthermore, It is necessary to change the gain of the amplifier circuit 309 so that only the detection signal is taken out in conjunction with it.p The detector 335 according to this embodiment is designed to avoid noise frequencies in the operating environment. The switch SW5 for changing the frequency of the signals SG1 and SG2 from the outside is added, and the position of the switch SW5 allows the gain of the amplifying circuit 309 to be changed. R f ZRs can be changed in conjunction with the oscillation frequency 1 / (2TTROCO) of the oscillation pulse signals SG1, SG2.
このように、 パッ シブ方式で得られた 2系統の検出信号 I I, I 2を交互にスイ ッチングし、 各検出信号をペアと してサンプルホールドすることにより、 データの保持を行 い、 1系統の受光回路を含む信号処理回路で処理するので、 信号処理回路の規模を縮小することができ、 上述の実施例 3 a と同様の作用、 効果を得ることができる。 さ らに、 受 光信号の発振パルス信号 S G 1, S G 2の発振周波数を使 用環境のノイズ状況に応じて変更し、 それと連動して、 増 幅回路 3 0 9のゲイ ンを変更することで、 周期的な検出対 象と異なる物理量ノイズや電気的なノイズの除去をより正 確に行う ことができるため、 高 S Z Nの検出信号が得られ、 より微小な信号を取り扱う ことができる。  In this way, data is retained by alternately switching the two detection signals II and I2 obtained by the passive method and sampling and holding each detection signal as a pair. Since the processing is performed by the signal processing circuit including the light receiving circuit, the scale of the signal processing circuit can be reduced, and the same operation and effect as those of the above-described embodiment 3a can be obtained. Furthermore, it is necessary to change the oscillation frequency of the oscillation pulse signals SG 1 and SG 2 of the light reception signal according to the noise situation of the use environment, and to change the gain of the amplification circuit 309 in conjunction with it. Therefore, it is possible to more accurately remove physical quantity noise and electrical noise that are different from those to be detected periodically, so that a high SZN detection signal can be obtained and a smaller signal can be handled.
( 3 n ) 実施例 3 n  (3 n) Example 3 n
図 7 1 は実施例 3 mによる赤外線センサの構成を示す図 である。 本実施例による赤外線センサ 3 4 0 は、 上述の 3 aないし 3 mの実施例に示した検出器において、 P Dに代 えて赤外線検出素子 3 4 2 (サ一モパイルなど) を備えた ものである。 これにより、 検出エリア内への人等 3 4 3の 侵入を検出する赤外線センサ 3 4 2の回路規模の縮小、 及 び簡略化を図ることができるので、 センサ 3 4 0の外形の 縮小、 コス トの削減等を図ることができる。 ( 3 o ) 実施例 3 o FIG. 71 is a diagram showing a configuration of an infrared sensor according to Example 3m. The infrared sensor 340 according to this embodiment is the same as the detector shown in the above embodiments 3a to 3m, except that an infrared detecting element 342 (such as a thermopile) is provided instead of the PD. . As a result, the circuit size and simplification of the infrared sensor 342 for detecting the intrusion of a person 343 into the detection area can be reduced, and the size of the sensor 340 can be reduced. Can be reduced. (3o) Example 3o
図 7 2 は実施例 3 oによる温度センサの構成を示す図で ある。 本実施例による温度センサ 3 4 4 は、 上述の 3 aな いし 3 mの実施例に示した検出器において、 P Dに代えて 温度検出素子 3 4 5を備えたものである。 これにより、 成 形機などの機器内の温度制御等に用いられる温度センサ 3 4 4の回路規模の縮小、 及び簡略化を図ることができる。  FIG. 72 is a diagram illustrating the configuration of the temperature sensor according to the third embodiment. The temperature sensor 344 according to this embodiment is the same as the detector shown in the above-described 3a or 3 m embodiment, except that a temperature detection element 345 is provided instead of the PD. This makes it possible to reduce and simplify the circuit scale of the temperature sensor 344 used for temperature control and the like in a device such as a molding machine.
( 3 p ) 実施例 3 p  (3p) Example 3p
図 7 3 a、 7 3 bは本実施例による圧力センサの構成及 びその等価回路を示す図である。 本実施例による圧力セン サ 3 4 6 は、 上述の 3 aないし 3 mの実施例に示した検出 器において、 P Dに代えて圧力検出素子 3 4 7を備えたも のである。 これにより、 成形機などの機器の圧力部を制御 する圧力センサ 3 4 6の回路規模の縮小、 及び簡略化を図 るこ とができる。  FIGS. 73a and 73b are diagrams showing a configuration of a pressure sensor according to the present embodiment and an equivalent circuit thereof. The pressure sensor 346 according to the present embodiment is the same as the detector shown in the above-described embodiments 3a to 3m, except that a pressure detecting element 347 is provided instead of the PD. This makes it possible to reduce and simplify the circuit scale of the pressure sensor 346 that controls the pressure section of a device such as a molding machine.
( 3 q ) 実施例 3 q  (3 q) Example 3 q
図 7 4 は実施例 3 qによるガスセンサの構成を示す図で ある。 本実施例によるガスセンサ 3 4 8は、 上述の 3 aな いし 3 mの実施例に示した検出器において、 P Dに代えて ガス検出素子 3 4 9を備えたものである。 これにより、 混 合ガスの制御やガス漏れなどを検出するガスセンサ 3 4 8 の回路規模の縮小、 及び簡略化を図ることができる。  FIG. 74 is a diagram showing the configuration of the gas sensor according to the third embodiment q. The gas sensor 348 according to this embodiment is the same as the detector shown in the above-described 3a or 3 m embodiment, except that a gas detection element 349 is provided instead of the PD. This makes it possible to reduce and simplify the circuit scale of the gas sensor 348 for controlling mixed gas and detecting gas leakage and the like.
( 4 ) 第 4実施例  (4) Fourth embodiment
次に第 4実施例について説明する。 第 4実施例において は、 第 1実施例の背景 1 4 に明暗のパターンが設けられる。 Next, a fourth embodiment will be described. In the fourth embodiment A light-dark pattern is provided on the background 14 of the first embodiment.
( 4 a ) 実施例 4 a  (4a) Example 4a
図 7 5に第 4実施例に係る物体検知器 4 0 1の基本構成 を示す。 光学系部分は反射板 4 1 4、 受光レンズ 4 0 3、 光検出素子 4 1 8で構成される。 周期からの自然散乱光  FIG. 75 shows the basic configuration of the object detector 401 according to the fourth embodiment. The optical system portion includes a reflector 414, a light receiving lens 403, and a photodetector 418. Natural scattered light from the period
(照明装置、 太陽光など) が反射板 4 1 4、 検出物体 1 5 で反射される。 その反射光が受光レンズ 4 0 3へと入射す る。 さ らに受光レンズ 4 0 3 によって光検出素子 4 1 8へ 集光される。 本実施例では、 光検出素子 4 1 8に 2分割 P D a P D bを用いる。 各 P Dからは受光面に入射する光量 に比例した電流が出力される。 また他の光検出素子と して P S Dを用いた場合には、 受光面内の光量分布の重心位置 に対応した電流が出力される。 2分割 P Dを用いた場合、 受光視野は図 7 5のように受光視野 a, bの 2つとなり、 それに対応して反射板のコン トラス トパターンは 2パター ンとなる。 ここでは簡略化のため白と黒のパターンとする。  (Lighting equipment, sunlight, etc.) are reflected by the reflector 4 14 and the detection object 15. The reflected light enters the light receiving lens 403. Further, the light is condensed on the light detecting element 418 by the light receiving lens 403. In the present embodiment, the photodetecting element 418 uses two divided PDaPDb. Each PD outputs a current proportional to the amount of light incident on the light receiving surface. When PSD is used as another photodetector, a current corresponding to the position of the center of gravity of the light intensity distribution in the light receiving surface is output. When a two-segment PD is used, the light receiving field of view is two, light receiving fields a and b, as shown in Fig. 75, and the contrast pattern of the reflector is correspondingly two patterns. Here, a white and black pattern is used for simplification.
2分割された P D a, P D bそれぞれの出力電流 I a, I bは P D出力ライ ンに揷入されたアナログスィ ッチ 4 1 2 a , 4 1 2 bによりパルス信号 S Gで周期的にスィ ッチ ングされ、 直流信号からパルス信号に変換される。 出力電 流 I a, I、 bは I / V変換器 4 2 1, 4 2 2により電圧変 換され、 V a も V b となる。 次に差動増幅回路 4 0 9で V b— V a となり、 この V b— V aが受光視野 b , a間の光 量差信号となる。 図 7 6 a〜 7 6 eに検出物体の位置と P D a, P D b上 の受光量分布、 光量差信号 V b - V aの関係を示す。 検出 物体 1 5なしの状態では、 P D a , P D b上の受光量分布 は図 7 6 aのようになり、 反射板 4 1 4のコ ン トラス トパ ターンに対応して P D aの受光量は小さ く、 P D bの受光 量が大き く なる。 P Dからの出力電流は I b > I a となり、 アナログスィ ッチ 4 1 2 a , 4 1 2 bによってスィ ッチン グされた差動増幅回路 4 0 9からの出力 (光量差信号) V b— V aは、 図 7 6 aのようになる。 この検出物体 1 5な しの状態に対して検出物体が受光視野内に侵入してきた場 合、 P D上の受光量分布、 光量差信号は図 7 6 b→図 7 6 c—図 7 6 d→図 7 6 eへと変わっていく。 The output currents Ia and Ib of the two divided PDa and PDb are periodically switched by a pulse signal SG by analog switches 412a and 412b input to the PD output line. The DC signal is converted to a pulse signal. The output currents Ia, I, and b are voltage-converted by the I / V converters 421 and 422, and Va also becomes Vb. Next, Vb−Va is obtained by the differential amplifier circuit 409, and this Vb−Va is a light amount difference signal between the light receiving fields b and a. Figures 76a to 76e show the relationship between the position of the detected object, the distribution of the received light amount on PDa and PDb, and the light amount difference signal Vb-Va. In the state without the detection object 15, the distribution of received light on PD a and PD b is as shown in Figure 76a, and the received light of PD a corresponds to the contrast pattern of the reflector 4 14. It is small and the amount of light received by PD b is large. The output current from the PD is I b> I a, and the output (light intensity difference signal) V b— from the differential amplifier circuit 409 switched by the analog switches 412 a and 412 b V a is as shown in FIG. If the detection object enters the light receiving field of view without this detection object 15, the received light distribution and light intensity difference signal on the PD are changed from Fig. 76 b to Fig. 76 c-Fig. 76 d → It changes to Figure 76 e.
なお、 図中 wは検出物体が占める範囲を示す。 また、 図 7 6 aは検出物体 1 5がない場合を示し、 図 7 6 bは検出 物体 1 5が受光視野 aを遮り始めた場合を示し、 図 7 6 c は検出物体が受光視野 aをすベて遮った場合を示し、 図 7 6 dは検出物体 1 5が受光視野 bを遮り始めた場合を示し、 図 7 6 e は検出物体 1 5が受光視野 bをすベて遮つた場合 を示す。  In the figure, w indicates the range occupied by the detected object. Figure 76a shows the case where there is no sensing object 15; Figure 76b shows the case where sensing object 15 has begun to obstruct the light receiving field of view a; Fig. 76 d shows the case where the detection object 15 has begun to block the light-receiving field b, and Fig. 76 e shows the case where the detection object 15 has completely blocked the light-receiving field b. Is shown.
この検出物体 1 5の有無による光量差信号の変化を見る ために、 検出器の感度調整は次のようにして行なう。 検出 物体 1 5がある状態の V b— V aは、 検出物体 1 5の反射 率によって検出物体 1 5なしの状態の V b— V aより も大 き くなる場合と小さ くなる場合の両方がある。 そのため、 しきい値は V t h l、 V t h 2の 2つのレベルとなる。 感 度調整回路 4 1 1によつて検出物体 1 5なしの状態の V b 一 V aのピーク レベル V 0がしきい値 V t h l、 V t h 2 の中心にく るように設定する。 感度設定の方法は、 可変抵 抗により設定する方法や、 光量差信号 V b— V aを AZD 変換し、 マイコンにより設定する方法などがある。 また、 感度設定を行なう ところは検知器 4 0 1の内外を問わない。 In order to see the change in the light amount difference signal due to the presence or absence of the detection object 15, the sensitivity of the detector is adjusted as follows. Vb—Va with sensing object 15 is both larger and smaller than Vb—Va without sensing object 15 due to the reflectance of sensing object 15 There is. for that reason, The threshold value has two levels, V thl and V th2. The sensitivity adjustment circuit 4 1 1 is set so that the peak level V 0 of V b -V a without the detection object 15 comes to the center of the threshold values V thl and V th2. The sensitivity can be set by a variable resistor, or by a AZD conversion of the light intensity difference signal Vb-Va and then by a microcomputer. Also, the sensitivity setting may be performed inside or outside the detector 401.
この光量差信号 V b— V aと感度調整回路 4 1 1で設定 したしきい値を比較回路 4 1 0で比較し、 判別回路 4 1 2 で出力の ON, O F Fを判別し、 出力回路 4 1 3からその 判別結果を出力する。  The light amount difference signal Vb—Va is compared with the threshold value set by the sensitivity adjustment circuit 4 1 1 by the comparison circuit 4 10, and the ON / OFF of the output is determined by the determination circuit 4 1 2. The result of the determination is output from 13.
図 7 7に比較回路 4 1 0、 判別回路 4 1 2の内部構成、 図 7 8 a〜図 7 8 pにその動作のタイムチヤ一 トを示す。 比較回路 4 1 0は差動増幅信号が V t h 1を上回った場合、 C 0 M 1の出力が Hレベルとなり、 下回った場合 Lレベル となる。 同様に V t h 2を上回つた場合は C 0 M 2の出力 が Hレベルとなる。 判別回路 4 1 2では最初に C 0 M 1 , 2の出力に対して AND 1 , 2ゲ一 トによってスィ ッチン グ周期との同期を取る (ゲー ト信号 GAT Eとする) 。 次 に D F F 1 , 2ではクロック信号の立上がり (S G信号の 立下がり)、 における C 0 M 1, 2の出力が出力される (図 7 8 a〜図 7 8 pのようなタイ ミ ングチャー トとなる) 。 さ らに、 D F F 1 , 2の出力に対して E N O Rゲー トによ つて差動増幅信号 V b— V aがしきい値 V t h 1、 V t h 2の両方を上回るまたは下回る場合は H レベル、 V t h l、 V t h 2の間にある場合は L レベルとなる論理構成とする。 次の D F F 3〜 5 は 3段シフ ト レジスタであり、 D F F 3〜 5の出力、 反転出力の A N Dを取り、 その出力をそれ ぞれ R S F Fのセッ ト信号、 リセッ ト信号とすることによ つて、 E N 0 R出力が S G信号を 3周期以上 Hレベルでな いと R S F Fがセッ トされない。 E N 0 R出力が同様に S G信号を 3周期以上 L レベルでないと リセッ 卜されない。 そして、 この R S F F出力が出力回路へと送られ、 センサ 出力となる。 つまり、 差動増幅信号 V b— V aが S G信号 を 3周期以上の間 V t h 1、 V t h 2両方を上回るか下回 る場合にセンサ出力が 0 N、 V b— V aが S G信号を 3周 期以上の間 V t h 1、 V t h 2の間にある場合にセンサ出 力が 0 F Fとなる。 Figure 77 shows the internal configuration of the comparison circuit 410 and the discrimination circuit 4122, and Figure 78a to Figure 78p show the time chart of its operation. When the differential amplified signal exceeds V th 1, the output of C 0 M 1 goes to H level, and when it falls below V th 1, it goes to L level. Similarly, when the voltage exceeds V th 2, the output of C 0 M 2 becomes H level. The discriminating circuit 412 first synchronizes the output of C0M1,2 with the switching period by AND1,2 gate (referred to as gate signal GATE). Next, at DFF 1 and 2, the output of C0M1 and 2 at the rising edge of the clock signal (falling edge of the SG signal) is output (see the timing charts in Figs. 78a to 78p). Become) . In addition, the differentially amplified signal Vb—Va is applied to the output of DFF 1 and 2 by the ENOR gate, and the threshold value Vth1, Vth The logic configuration is H level if both are above or below both, and L level if between V thl and V th 2. The next DFFs 3 to 5 are three-stage shift registers, which take the AND of the outputs of DFFs 3 to 5 and the inverted output, and use that output as the RSFF set signal and reset signal, respectively. RSFF is not set unless the EN0R output is at the H level for at least three periods of the SG signal. Similarly, the EN 0 R output is not reset unless the SG signal is at the L level for at least three cycles. Then, this RSFF output is sent to the output circuit and becomes the sensor output. In other words, if the differential amplified signal Vb—Va exceeds or falls below both Vth1 and Vth2 for at least three cycles of the SG signal, the sensor output is 0 N, and Vb—Va is the SG signal. Is between V th1 and V th2 for more than 3 cycles, the sensor output becomes 0FF.
本実施例では、 2つの受光視野の光量差信号を用いて反 射板 1 4 と検出物体 1 5の判別をしたが、 2つの受光視野 の光量の割算値、 または光量差/光量和の値を用いて判別 することも可能である。  In the present embodiment, the reflection plate 14 and the detection object 15 are discriminated using the light amount difference signal of the two light receiving fields, but the divided value of the light amount of the two light receiving fields or the sum of the light amount difference and the light amount sum is obtained. It is also possible to determine using values.
( 4 b ) 実施例 4 b  (4b) Example 4b
実施例 4 bでは、 反射板は白と黒のパ夕一ンと したが、 検出物体がコン トラス トを持っている場合、 逆に反射板は コ ン トラス トがないつま り、 同一の反射率または反射指向 性を持っている方が検出物体との差が付きやすい。 また反 射率も大き く ことなる方が判別しやすい。 たとえば、 自動 車の製造ライ ンで車体の通過検出をする場合、 検出物体 1 5が金属面つまりコン トラス 卜のない正反射面であるから 反射板 1 4 はコン トラス 卜のある拡散反射面 (たとえば白 紙と黒紙を組合せたもの) である方がよい。 また、 梱包物 の搬送ライ ンにおいて段ボール箱の通過検出をする場合、 検出物体 1 5が拡散反射面であるから、 反射板は正反射面 (たとえばミ ラ一) の方がよい。 In Example 4b, the reflector was a black-and-white pattern, but if the object to be detected had a contrast, the reflector had no contrast. The difference between the object and the detected object is more likely to occur when the object has the reflectance or the reflection directivity. In addition, it is easier to discriminate if the reflectance is large. For example, automatic When detecting the passage of a vehicle body on a car production line, the detection object 15 is a metal surface, that is, a regular reflection surface without contrast. Therefore, the reflection plate 14 is a diffuse reflection surface with contrast (for example, blank paper). And black paper). In addition, when detecting the passage of a cardboard box on a transport line of a packaged article, since the detection object 15 is a diffuse reflection surface, the reflection plate is preferably a regular reflection surface (for example, a mirror).
また、 受光視野より反射面の数の方が多い場合もある。 図 7 9にその 1構成を挙げる。 図 7 9に示すように、 分割 された 4つの反射面に対して受光視野は 1つである。 検出 物体 1 5の位置に対応して、 受光量は図 8 0のように変化 する。 しきい値を図 8 0の aまたは bのレベルに設定すれ ば検出物体 1 5が反射板 1 4上の①または③の領域にある ことが判別できる。 反射板②, ④の部分と検出物体の反射 率は同じとする。  In some cases, the number of reflective surfaces is larger than the light receiving field. Fig. 79 shows one configuration. As shown in FIG. 79, there is one light-receiving field for the four divided reflecting surfaces. The received light amount changes as shown in FIG. 80 according to the position of the detection object 15. If the threshold is set to the level of a or b in FIG. 80, it can be determined that the detection object 15 is located in the area of ① or ③ on the reflection plate 14. It is assumed that the reflectances of the reflectors ② and と and the detection object are the same.
( 4 c ) 実施例 4 c  (4c) Example 4c
図 8 1 に電源に電池を用い、 電源の供給を間欠供給とし た物体検知装置の検知器 4 5 0を示す。 電源に電池 4 1 6 を用いたため、 検知器設置時に電源配線のための工事が必 要なく、 取付場所の制約がなくなる。 また、 I Z V変換回 路 4 2 1、 差動増幅回路 4 0 9などの信号処理部への電源 供給を発振回路 4 1 4のクロックで間欠的に供給すること により、 さ らに消費電力を低減でき、 電池の寿命を長くす ることができる。 図 8 2 に太陽電池 4 1 7 によって蓄電池 4 1 6 に給電さ れる検知器を示す。 太陽電池 4 1 7 により外部からの電源 供給を全く必要と しないため、 設置後のメ ンテナンスが不 要になる。 Figure 81 shows a detector 450 of an object detection device that uses a battery as the power supply and supplies power intermittently. Since batteries 416 are used as the power supply, no work is required for wiring the power supply when installing the detector, and the installation location is not restricted. In addition, the power supply to the signal processing units such as the IZV conversion circuit 421 and the differential amplifier circuit 409 is intermittently supplied by the clock of the oscillation circuit 414, further reducing power consumption. Battery life can be prolonged. Fig. 82 shows a detector powered by the solar cell 4 17 to the storage battery 4 16. No external power supply is required by the solar cell 417, so maintenance after installation is not required.
図 8 3 に水力発電 4 3 2 によって蓄電池 4 1 6 に給電さ れる検知器 4 5 0を示す。 太陽電池を用いた検知器と同様 に、 設置後のメ ンテナンスが不要となる。  Fig. 83 shows a detector 450 that is supplied to the storage battery 4 16 by the hydroelectric power 4 32. As with detectors using solar cells, maintenance after installation is not required.
( 4 d ) 実施例 4 d  (4d) Example 4d
従来の回帰反射型光電センサにおいてはセンサと反射板 の位置調整が必要であるが、 本検知器においても同様であ る。 調整箇所を図 8 4に示す。 調整箇所は、 図 X軸周り、 Y軸周りの 2軸である。 反射板 1 4 と検知器 4 5 0 との距 離が短い場合には目視で位置調整をすることも可能である が、 距離が長く なると目視による調整は難しく なる。 そこ で、 図 8 5に示すように検知器 4 5 1 に投光用 L E D 4 4 2を内蔵させ、 その投光ビームを用いて検知器 4 5 1 と反 射板 4 1 4の位置調整を行なう方法がある。 図 8 5 はダイ クロイ ツク ミ ラー 4 4 1を用いて受光素子光軸と投光用 L E D 4 4 2 の光軸を同軸にした構成を示す図である。 ダイ クロイ ツク ミ ラ一 4 4 1 は投光用 L E D 4 4 2の波長域の 光のみを反射する特性を持つ。 投光用 L E D 4 4 2からの 投光ビームはダイクロイ ツク ミ ラー 4 4 1で反射され、 受 光レンズ 4 0 3 に入射し、 反射板 4 1 4へと投光される。 位置調整時には、 反射板 4 1 4 に映る投光ビームを見なが ら検知器 4 1 5の位置調整を行なう。 In the case of the conventional regression reflection type photoelectric sensor, it is necessary to adjust the position of the sensor and the reflector, but the same applies to the present detector. Figure 84 shows the adjustment points. There are two adjustment points around the X-axis and Y-axis in the figure. When the distance between the reflector 14 and the detector 450 is short, it is possible to adjust the position visually, but when the distance is long, the visual adjustment becomes difficult. Therefore, as shown in Fig. 85, the detector 4 51 has a built-in light emitting LED 4 42, and the position of the detector 4 5 1 and the reflector 4 14 4 is adjusted using the light beam. There is a way to do it. FIG. 85 is a diagram showing a configuration in which the optical axis of the light receiving element and the optical axis of the light-emitting LED 442 are made coaxial by using a die mirror 441. The die mirror has the property of reflecting only the light in the wavelength range of the LED for light emission. The light beam emitted from the light-emitting LED 442 is reflected by the dichroic mirror 441, enters the light-receiving lens 403, and is emitted to the reflector 414. When adjusting the position, look at the projected beam reflected on the reflector 4 1 4 Adjust the position of the detector 4 15 from this.
他の位置調整方法と して、 図 8 6 a, 8 6 bに示す反射 板 4 1 4 と 4分割 P D 4 1 8 aを用いる方法がある。 反射 板 4 1 4の中央の丸の部分は受光レンズ 4 0 3 によって 4 分割 P D 4 1 8 a上に図 8 0 bの点線のように結像する。  As another position adjustment method, there is a method using a reflector 414 and a four-divided PD 418a shown in FIGS. 86a and 86b. The circle at the center of the reflector 4 14 forms an image as shown by the dotted line in FIG. 80 b on the four-divided PD 418 a by the light receiving lens 40 3.
4分割 P D 4 1 8 aからの出力 I I, 1 2, 1 3, 1 4の 差動出力 1 3 — I I、 1 4 — 1 2を用いると反射板 4 1 の中央の丸と 4分割 P D 4 1 8 aの中心のずれに応じた出 力が得られる。 反射板 4 1 4中央の丸と 4分割 P D 4 1 8 aの中心が一致している場合、 1 3 — 1 1 = 0、 1 4 一 I 2 = 0 となるが、 たとえば図 8 6 bのように反射板中央の 丸と 4分割 P D 4 1 8 aの中心がずれている場合は、 I 3 一 1 1 = 0、 1 4 一 1 2 く 0 となる。 1 3 — 1 1、 1 4 一 I 2の出力を見れば反射板 4 1 4の中央と 4分割 P D 4 1 8 aの中心のずれ方向がわかり、 位置調整時に検知器 4 5 1 に設けた表示等でその方向を示せば調整を簡略化できる。  Using the output II, 12, 13, and 14 differential outputs 13-II and 14-1-2 from the 4-split PD 4 18a, the center circle of the reflector 41 and the 4-split PD 4 An output corresponding to the displacement of the center of 18a is obtained. When the center circle of the reflector 4 1 4 and the center of the 4-split PD 4 18 a coincide with each other, 1 3 — 1 1 = 0, 1 4 1 I 2 = 0. For example, in FIG. If the center circle of the reflector and the center of the four-divided PD 4 18a are displaced as described above, I 3 1 1 1 = 0 and 1 4 1 1 2 are 0. 1 3 — 1 1, 1 4 1 By looking at the output of I 2, the direction of deviation between the center of the reflector 4 14 and the center of the 4-split PD 4 18 a can be determined, and it is provided on the detector 4 51 during position adjustment. If the direction is indicated on a display or the like, the adjustment can be simplified.
( 4 e ) 実施例 4 e  (4 e) Example 4 e
光検出素子は点ではなく面であるため、 距離が長く なる につれて受光視野は広くなる。 そのため、 反射板 4 1 4を 遠距離に置いた場合受光視野が反射板 4 1 4より も大き く なり、 反射板 4 1 4外にある物体により受光視野内の光量 が変化する場合がある。 この場合、 検知器 4 5 1 と反射板 4 1 との間に検出物がないのに、 受光視野内の光量が変 化して検出物体があると判別してしまう ことがある。 その ため、 図 8 7 に示すように光検出素子 4 1 8 と受光レンズ 4 0 3の間に絞り 4 4 3を設けて受光視野を制限する。 つ まり受光視野を反射板内に収める方法がある。 Since the photodetector is a surface rather than a point, the light receiving field of view increases as the distance increases. Therefore, when the reflector 414 is placed at a long distance, the light receiving field becomes larger than the reflector 414, and the amount of light in the light receiving field may change due to an object outside the reflector 414. In this case, even though there is no detection object between the detector 45 1 and the reflection plate 41, the amount of light in the light receiving field of view changes and it may be determined that there is a detection object. That Therefore, as shown in FIG. 87, an aperture 443 is provided between the photodetector element 418 and the light receiving lens 403 to limit the light receiving field. In other words, there is a method in which the light-receiving field is contained within the reflector.
( 4 f ) 実施例 4 f  (4 f) Example 4 f
本検知器を用いた駐車場システムについて説明する。 図 A parking lot system using the detector will be described. Figure
8 8に検知器の配置図を、 図 8 9にシステム構成図を示す。 駐車場と してはビルなどの屋内駐車場が考えられ、 各駐車 場の天井に検知器 4 5 2が設置される。 車のない状態での 検知器 4 5 2の受光視野内にはマーク 4 4 7、 たとえば駐 車場の番号しかない。 これに対して車 4 4 6がある場合に は、 車のボディからの反射光が検知器 4 5 2に受光され、 車がない (マークだけある) 場合と車がある場合の受光視 野間の光量差を比較することによつて駐車場に車があるか ないかが検知器 4 5 2から出力される。 さ らに各駐車場に 設置された検知器 4 5 2からの出力を処理部 4 4 4で処理 して表示ディ スプレイ 4 4 5に空いている駐車場を入口で 表示することによつて駐車場利用者はスムーズに車を停め ることが可能である。 Figure 8 shows the layout of the detectors, and Figure 89 shows the system configuration. Indoor parking lots such as buildings can be considered as parking lots, and detectors 45 2 are installed on the ceiling of each parking lot. There is only the mark 447, for example, the number of the parking lot, in the field of view of the detector 452 when there is no car. On the other hand, if there is a car 4446, the reflected light from the car body is received by the detector 452, and the distance between the light-receiving field when there is no car (only with a mark) and when there is a car The detector 452 outputs whether or not there is a car in the parking lot by comparing the light quantity difference. In addition, the output from the detectors 45 2 installed at each parking lot is processed by the processing unit 4 44 4, and the parking lot is displayed by displaying the empty parking lot at the entrance on the display display 44 5. Parking lot users can stop the car smoothly.
( 4 g ) 実施例 4 g  (4 g) Example 4 g
本検知器を用いた車両検出システムについて説明する。 図 8 9 にシステム構成図を示す。 従来からある感応式信号 機と同様で、 検知器 4 5 2から車があるという出力があれ ば信号制御部 4 4 9で信号を赤から青に切換える構成とな つている。 検知器 4 5 2の下の路上にマーク 4 4 7を設け て反射板と して用い、 検知器 4 5 2の下で停車する車の有 無を判別する。 A vehicle detection system using the detector will be described. Figure 89 shows the system configuration diagram. As with the conventional sensitive traffic lights, the signal control unit 449 switches the signal from red to blue if there is an output from the detector 452 that there is a car. Mark 4 4 7 is provided on the road below detector 4 5 2 It is used as a reflector to determine the presence or absence of a vehicle that stops under the detector 452.
( 4 h ) 実施例 4 h  (4 h) Example 4 h
本検知器を用いた車軸数測定システムについて説明する。 図 9 1 にシステム構成図を示す。 この車軸数測定システム は高速道路の無人料金所で用いる車種判別システムにおい て用いられる。 検知器 4 5 3の配置は検知器 4 5 3 と反射 板 4 1 4の間を車が通過する配置となっている。 車が通過 すると検知器 4 5 3の出力が O Nする。 検知器 4 5 3から の出力をもとに車軸数力ゥン ト部 4 6 1 で車軸が力ゥン ト され、 さ らにその車軸数出力を用いて判別部 4 6 2で車種 の判別が行なわれる。  The axle number measurement system using the detector will be described. Figure 91 shows the system configuration diagram. This axle number measurement system is used in the vehicle type discrimination system used at unmanned toll booths on expressways. The detector 453 is arranged so that the car passes between the detector 453 and the reflector 414. When the car passes, the output of detector 453 turns ON. Based on the output from the detector 453, the axle force is counted at the axle number force point part 461, and the discriminator part 462 is used to determine the vehicle type using the axle number output. Is performed.
( 4 i ) 実施例 4 i  (4i) Example 4i
本検知器を用いたパスゲ一 ト システムについて説明する。 図 9 2 にシステム構成図を示す。 図 9 3 に検知器配置を示 す。 駅の自動改札のパスゲー トシステムは、 通過できない 切符が入った場合、 出口の ドアを閉めパスゲー ト 4 6 3内 に人がいなくなつたことを確認してから ドアを再び開ける という システムになっている。 本センサはパスゲー ト 4 6 3内に人がいないことを確認するために用いる。 反射板 4 1 と検知器 4 5 4の間を人が通過するとき、 通過方向を 判別することによつて通過者がパスゲ一 ト 4 6 3 に入って いる人か出ていく人かを判別し、 その出力を人数カウン ト 部 4 6 4で処理してパスゲ一 ト 4 6 3内にいる人の人数を カウン 卜する。 パスゲー 卜内の人の数が 0であるかどうか を処理部 4 6 5で判断する。 もし 0であれば、 ドアを開け るという指示を制御部 4 6 6 に出力し、 ドアが開く。 A passgate system using this detector will be described. Figure 92 shows the system configuration. Figure 93 shows the detector arrangement. The passgate system of the automatic ticket gate at the station is a system that closes the exit door when a ticket that cannot be passed is entered, confirms that there are no more people in the passgate 463, and then opens the door again. I have. This sensor is used to confirm that no one is in passgate 463. When a person passes between the reflector 41 and the detector 45 54, it is determined whether the passer is in or out of the passgate 463 by judging the direction of passage. The output is processed by the people counting section 464 to determine the number of people in the passgate 463. Count. The processing unit 465 determines whether the number of people in the passgate is 0 or not. If it is 0, an instruction to open the door is output to the controller 466, and the door is opened.
( 4 j ) 実施例 4 j  (4 j) Example 4 j
本検知器を用いた入退者数管理システムについて説明す る。 図 9 4にシステム構成を示す。 検知器 4 5 5は出入口 の天井部分に設置される。 その下に反射板 (たとえば床に ペイ ン 卜 したマーク) 4 1 4 aを置く。 検知器 4 5 5 と反 射板 4 1 4 aの間を人が通過することによつてその通過者 が部屋を出て行く人か入って行く人かを判別でき、 部屋へ の入退者数をカウン トすることが可能である。  An entry / exit management system using this detector is described. Figure 94 shows the system configuration. Detector 455 is installed on the ceiling of the entrance. A reflector (for example, a mark painted on the floor) 4 14 a is placed underneath. When a person passes between the detector 4 5 5 and the reflecting plate 4 14 a, it is possible to determine whether the person passing through the room exits or enters the room. It is possible to count the number.
( 4 k ) 実施例 4 k  (4 k) Example 4 k
本検知器を用いた位置決め装置について説明する。 図 9 5にその構成を示す。 検知器 4 5 6 と反射板 4 1 4の間を 検知物 1 5が通過する際、 受光視野間の光量差信号は反射 板 4 1 4を遮る量によって変化する。 その変化量を検知器 4 5 6内で処理して図 9 6のようなアナ口グ信号を出力す る。 その出力と位置設定部 4 7 4で設定されたデータを用 いて設定位置に検出物体 1 5があるかどうかを判断する。 設定位置にある場合には検出物体 1 5を送り出すモータ 4 7 1を処理部 4 7 3を用いて制御して検出物体 1 5の位置 決めを行なう。  A positioning device using the present detector will be described. Figure 95 shows the configuration. When the object 15 passes between the detector 4 56 and the reflecting plate 4 14, the light amount difference signal between the light receiving fields changes according to the amount of blocking the reflecting plate 4 14. The change amount is processed in the detector 456 to output an analog signal as shown in FIG. Using the output and the data set by the position setting section 474, it is determined whether or not the detected object 15 is at the set position. When it is at the set position, the position of the detection object 15 is determined by controlling the motor 471 which sends out the detection object 15 using the processing unit 473.
( 4 m ) 実施例 4 m  (4 m) Example 4 m
本検知器を用いた長さ測定装置について図 9 7を参照し て説明する。 本実施例では、 検出物体 1 5 と して車を用い ているが、 当然車以外でも検出可能である。 検知器 4 5 7 の光検出素子と しては P Dアレイを用いたリニアイメージ センサが考えられる。 長さに応じたリニァ出力が得られる。 またリニアイメージセンサを使う代わりに反射板 4 1 4を 多数の反射面で構成してもよい。 本実施例のように車が検 出物の場合、 長さ Wを測定するこ とによって車種判別のデ —タと して用いたり、 駐車場において駐車可能な車両幅か どうかを判別することができる。 Refer to Fig.97 for the length measuring device using this detector. Will be explained. In this embodiment, a car is used as the detection object 15, but it is naturally possible to detect other objects than the car. A linear image sensor using a PD array can be considered as the photodetector of the detector 457. A linear output according to the length is obtained. Further, instead of using a linear image sensor, the reflecting plate 4 14 may be constituted by a large number of reflecting surfaces. If the vehicle is a detected object as in this embodiment, the length W can be measured to be used as data for vehicle type determination or to determine whether or not the vehicle width can be parked in a parking lot. it can.
( 4 n ) 実施例 4 n  (4 n) Example 4 n
本検知器を用いた監視システムについて図 9 8を参照し て説明する。 本システムは高価な美術品などの展示物 4 7 2、 つまりほとんど静止状態である物体が移動したことを 検出するシステムである。 受光視野内の光量差が少しでも 変化すれば、 検知器 4 5 7の出力が O Nする。 展示物 4 7 2が動いたことを検出し、 防犯監視システム 4 7 3を通し て展示物 4 7 2 に異常があつたことを警備会社 4 7 4 に通 報する。  A monitoring system using this detector will be described with reference to FIG. This system detects the movement of an exhibit, such as an expensive artwork, that is, an almost stationary object. If the light amount difference in the light receiving field changes even a little, the output of detector 457 turns ON. The movement of the exhibit 472 is detected, and the security company 474 is notified of the abnormality of the exhibit 472 through the security monitoring system 473.
( 5 ) 第 5実施例  (5) Fifth embodiment
第 5実施例における検知器は基本的に第 4実施例のもの と同じである。 反射板 4 1 4の明暗パターンの明部を発光 体と した点のみが異なる。  The detector in the fifth embodiment is basically the same as that in the fourth embodiment. The only difference is that the light portion of the light-dark pattern of the reflector 4 14 is used as the light-emitting body.
図 9 9を参照して、 第 5実施例においては、 反射板 4 1 4 は光源 4 1 4 a と基準面 4 1 4 bを含む。 この構成によ り、 夜間でも安定して検出物体 1 5の通過を検知すること ができる。 Referring to FIG. 99, in the fifth embodiment, a reflector 414 includes a light source 414a and a reference plane 414b. With this configuration Therefore, the passage of the detection object 15 can be detected stably even at night.
検知器 4 5 0 は第 4実施例のものと同様であるため、 光 源 4 1 4 eは指向性を持つ必要がなく、 たとえば一般の照 明器具のようなものでもよい。 また、 指向性を持つ必要が ないため、 図 1 0 0に示すように、 1つの光源で容易に複 数エリアを検出できるエリァセンサを構成できる。  Since the detector 450 is the same as that of the fourth embodiment, the light source 414 e does not need to have directivity, and may be, for example, a general lighting device. Further, since it is not necessary to have directivity, as shown in FIG. 100, an area sensor that can easily detect a plurality of areas with one light source can be configured.
さ らに図 1 0 1 に示すように、 非常灯 5 1 1などを光源 とし、 火災時の人体検知にも使用可能である。 検知器 4 5 0は極めて低消費電力で実現できるため、 電池駆動と無線 信号伝送とを組合せれば、 既設の建物にも極めて容易に設 置できる。 また、 平常時には非常灯の電球切れを検出する 故障検知器としても使えるメ リ ッ 卜がある。  Furthermore, as shown in Fig. 101, the emergency light 511 is used as a light source and can be used for human body detection in case of fire. Since the detector 450 can be realized with extremely low power consumption, it can be very easily installed in an existing building by combining battery driving and wireless signal transmission. In addition, there is a merit that can be used as a failure detector that detects an emergency light bulb burnout in normal times.
図 1 0 2 —図 1 0 4 は本実施例の検知器 4 5 0を用いた エリアセンサの利用例を示す図である。 相互干渉のないェ リアセンサを容易に実現することができる。 本方式によれ ば、 検出物体の有り、 なしだけではなく、 検出物体の移動 方向も検出することができる。 なお、 常に照明がある場所 では、 光源の代わりにコン トラス トパターンを受光器の対 向位置に配置しても同様の効果が得られる。  FIG. 102—FIG. 104 is a diagram showing an example of use of an area sensor using the detector 450 of the present embodiment. An area sensor having no mutual interference can be easily realized. According to this method, it is possible to detect not only the presence or absence of a detected object but also the moving direction of the detected object. In a place where there is always illumination, a similar effect can be obtained by arranging a contrast pattern instead of the light source at a position facing the light receiver.
( 6 ) 、第 6実施例  (6), sixth embodiment
第 6実施例においては、 第 1実施例に対して補助光が追 加されている。 以下、 第 6実施例の具体例を図面を参照し て説明する。 ( 6 a ) 実施例 6 a In the sixth embodiment, an auxiliary light is added to the first embodiment. Hereinafter, a specific example of the sixth embodiment will be described with reference to the drawings. (6a) Example 6a
図 1 0 5 は実施例 6 aによる検知器 6 0 0の構成を示す 図、 図 1 0 6 a〜図 1 0 6 1 はその動作のタイムチャー ト である。 この検知器 6 0 0 は、 通常は検知器 6 0 0の置か れる場所の自然散乱光 (例えば照明装置、 太陽光) の背景 物 1 4や検出物体 1 5 による反射光を受光することにより 検知を行うパッ シブ方式の検知器 6 0 0であり、 受光部 6 0 1 は、 受光用レンズ 6 0 2 と、 この受光用レンズ 6 0 2 の背後に配置された 2分割フォ トダイオー ド 6 0 3 により 構成され、 コ ン トラス トのある背景を対象と して第 1 , 及 び第 2の受光視野を構成している。 なお、 図 1 0 5 に示し た検出物体 1 5 は受光部 6 0 1の複数の受光視野の内の一 方に進入した状態を示している。 受光視野内に検出物体 1 5が進入した時に補助光を投光し、 その検出物体 1 5にお ける反射光を受光するこ とにより検知動作を行う ものであ る。  FIG. 105 shows a configuration of the detector 600 according to the embodiment 6a, and FIGS. 106a to 1061 are time charts of the operation. This detector 600 is normally detected by receiving the natural scattered light (for example, lighting equipment and sunlight) reflected from the background object 14 and the detection object 15 at the place where the detector 600 is placed. A passive type detector 600 that performs light detection. The light receiving section 600 is composed of a light receiving lens 602 and a two-part photodiode 603 disposed behind the light receiving lens 602. The first and second light-receiving fields are configured for a contrasted background. Note that the detection object 15 shown in FIG. 105 has entered one of a plurality of light-receiving fields of the light-receiving unit 601. A detection operation is performed by emitting auxiliary light when the detection object 15 enters the light receiving field of view and receiving reflected light from the detection object 15.
検出物体 1 5の有無が図 1 0 6 a、 周囲照度が図 1 0 6 bの状態のとき、 2分割フ ォ トダイオー ド 6 0 3 により光 -電流変換された 2つの受光信号は、 低周波ノイズ除去の ためパルス信号 S G (図 1 0 6 c ) によりパルス変調され、 さ らに、 第 1, 及び第 2 の増幅回路 6 0 6 a, 6 0 6 bに より増幅される。 この増幅された 2つの受光信号 (図 1 0 6 d , 1 0 6 e ) は差動増幅器 6 0 7 により差動演算され、 この差動演算出力 (図 1 0 6 ί ) は第 1, 及び第 2の比較 回路 6 0 8 a , 6 0 8 bにより、 予め設定された 2つのし きい値 Vthl, Vth2( Vth2 < Vthl ) と比較され (図 1 0 6 g, 1 0 6 h) 、 さ らに、 演算部 6 0 9 と判断部 6 1 0 からなる信号処理部 6 1 1 により処理される (図 1 0 6 i 1 0 6 j ) 。 また、 演算部 6 0 9 と判断部 6 1 0の出力は 投光ト リガ発生回路 6 1 3 に与えられる。 補助光を投光す る捕助投光器 6 1 4 は、 投光ト リガ回路 6 1 3の出力を受 けて動作する投光素子駆動回路 6 1 5 と投光素子 6 1 6 と からなる。 発振回路 6 1 7 は発振出力を演算部 6 0 9、 判 断部 6 1 0、 投光素子駆動回路 6 1 5に与え、 また、 信号 S Gを出力する。 上記信号処理部 6 1 1 において、 第 1, 第 2の比較回路 6 0 8 a, 6 0 8 bの出力 (図 1 0 6 g, 1 0 6 h ) は、 演算部 6 0 9により一致演算され (図 1 0 6 i ) 、 演算部 6 0 9の出力がパルス信号 S Gの 3パルス 分 Hレベルであれば、 判断部 6 1 0は Hレベル信号を出力 し (図 1 0 6 j ) 、 検知出力が出力回路 6 1 2 より出力さ れる (図 1 0 6 1 ) 。 比較回路 6 0 8 a , 6 0 8 bの出力 が Hレベルで一致していると補助投光部 6 1 4より補助光 の投光が開始される (図 1 0 6 k ) 。 また、 判断部 6 1 0 が Hレベル信号を出力すると捕助光の投光は停止される。 When the presence or absence of the sensing object 15 is as shown in Fig. 106a and the ambient illuminance is as shown in Fig. 106b, the two light-to-current converted light signals by the two-part The signal is pulse-modulated by the pulse signal SG (FIG. 106c) for noise removal, and further amplified by the first and second amplifier circuits 606a and 606b. The amplified two light receiving signals (FIG. 106 d and 106 e) are subjected to differential operation by the differential amplifier 607, and the differential operation output (FIG. 106 ί) is output to the first, and second signals. Second comparison The circuits 608 a and 608 b compare the thresholds Vthl and Vth2 (Vth2 <Vthl) with two preset thresholds (Fig. 106 g, 106 h). The signal is processed by a signal processing unit 611 composed of a unit 609 and a judgment unit 610 (FIG. 106i106j). The outputs of the arithmetic unit 609 and the judging unit 610 are supplied to a light emitting trigger generating circuit 613. The auxiliary light projector 614 that emits the auxiliary light includes a light emitting element driving circuit 615 that receives an output of the light emitting trigger circuit 613 and operates and a light emitting element 616. The oscillating circuit 617 supplies the oscillating output to the calculating section 609, the judging section 610, and the light emitting element driving circuit 615, and outputs a signal SG. In the signal processing unit 611, the outputs of the first and second comparison circuits 608a and 608b (FIGS. 106g and 106h) are subjected to coincidence calculation by the calculation unit 609. Then, if the output of the arithmetic unit 609 is at the H level for three pulses of the pulse signal SG, the judgment unit 610 outputs an H level signal (FIG. 106 j), and The detection output is output from the output circuit 612 (Fig. 1061). If the outputs of the comparison circuits 608a and 608b match at the H level, the auxiliary light emitting section 614 starts emitting auxiliary light (FIG. 106k). When the determination unit 6110 outputs an H level signal, the emission of the assist light is stopped.
このようにして、 出力回路 6 1 2からは、 Vth2 < (差 動演算出力) く Vthl の場合に非検知出力 (O F F : 受光 視野内に検出物体がない状態つまり背景物体のみ存在す る) が出力され、 (差動演算出力) く Vth2 、 または、 V thl く (差動演算出力) の場合に検知出力 (O N : 受光視 野内に検出物体が存在する) が出力される。 In this way, from the output circuit 612, if Vth2 <(differential operation output) and Vthl, the non-detection output (OFF: no detection object in the light-receiving field, ie, only the background object exists) Output, (differential output) Vth2 or V In case of thl (differential operation output), detection output (ON: detection object is present in the light receiving field) is output.
こ こで、 補助投光方法について、 図 1 0 7 a, 1 0 7 b を参照して説明する。 図 1 0 7 aに示した投光素子駆動回 路 6 1 5 においては、 投光ト リガ回路 6 1 3からの投光ト リガ信号が L レベルのとき、 トランジスタ T R 1 は 0 F F 状態であるので、 トランジスタ T R 2 は 0 F F状態であり、 投光素子 6 1 6 は点灯されない。 投光ト リガ回路 6 1 3か らの投光ト リガ信号が Hレベルのとき、 トランジスタ T R 1 は O N状態となるので、 トラ ンジスタ T R 2 は発振回路 6 1 7の投光駆動パルスによりパルス駆動され、 投光素子 6 1 6 は点灯される。 また、 図 1 0 7 bは、 投光素子駆動 回路 6 1 5 に投光ト リガ信号を送る投光ト リガ回路 6 1 3 の論理回路と論理図であり、 論理図に示した通り、 投光卜 リガ回路 6 1 3 は、 演算部出力 (図 1 0 6 i ) が Hレベル で、 しかし、 判断部出力 (図 1 0 6 j ) が L レベルのとき に H レベルの投光ト リガ信号を出力する。  Here, the auxiliary light emitting method will be described with reference to FIGS. 107A and 107B. In the light emitting element driving circuit 6 15 shown in FIG. 107a, when the light emitting trigger signal from the light emitting trigger circuit 613 is at the L level, the transistor TR 1 is in the 0 FF state. Therefore, the transistor TR 2 is in the 0FF state, and the light emitting element 6 16 is not turned on. When the light emission trigger signal from the light emission trigger circuit 6 13 is at the H level, the transistor TR 1 is turned on, so that the transistor TR 2 is pulse-driven by the light emission drive pulse of the oscillation circuit 6 17 Then, the light emitting elements 6 16 are turned on. Further, FIG. 107b is a logic circuit and a logic diagram of the light emission trigger circuit 613 for sending a light emission trigger signal to the light emission element drive circuit 615, and as shown in the logic diagram, the light emission is performed. The optical trigger circuit 613 outputs an H level light trigger signal when the operation unit output (Fig. 106i) is at H level, but the judgment unit output (Fig. 106j) is at L level. Is output.
このように、 検出物体 1 5が受光視野内に進入したとき、 またはノイズにより演算部 6 0 9の出力が Hレベルとなつ たとき、 補助光の投光が開始され、 被検出物体面の照度が 高く なり、 差動演算の出力が大き く なるので、 確実な検出 を行う こ とができる。 また、 その投光時間も極めて短いた め、 その消費電流量は極めて小さ く、 バッテリー駆動させ たときにも長時間の駆動を行う ことができる。 さ らに、 こ の構成は、 補助投光に対する受光信号を処理するパッシブ 方式の受光回路と自然散乱光に対する受光信号を処理する 受光回路とを共用しているので、 部品点数の削減ができ、 ローコス ト化を図ることができる。 In this way, when the detection object 15 enters the light receiving field of view, or when the output of the calculation unit 609 becomes H level due to noise, the emission of the auxiliary light is started, and the illuminance of the surface of the detection target object is started. And the output of the differential operation increases, so that reliable detection can be performed. Also, since the light emission time is extremely short, the amount of current consumption is extremely small, and it is possible to perform long-time driving even when driven by a battery. In addition, In this configuration, the passive type light receiving circuit that processes the light receiving signal for the auxiliary light projection and the light receiving circuit that processes the light receiving signal for the naturally scattered light are shared, so the number of components can be reduced and the cost is reduced. be able to.
( 6 b ) 実施例 6 b  (6b) Example 6b
図 1 0 8 は実施例 6 bによる検知器の構成図である。 本 実施例の検知器は、 上述の実施例 6 aの検知器をバッテリ —駆動させ、 さ らに、 同検知器にバッテリー量を検知する 電池切れ検知回路 6 1 8 と、 この電池切れ検知回路 6 1 8 の検知出力を表示する表示灯駆動回路 6 1 9 とを加えた構 成としたものであり、 この表示灯駆動回路 6 1 9 は、 上述 の実施例 6 aの投光素子駆動回路 6 1 5 と共用されている。 即ち、 この表示灯駆動回路 6 1 9 は、 電池切れ検知回路 6 1 8の出力信号と投光ト リガ回路 6 1 3の投光ト リガに応 じて投光パルスを変更する発振回路 6 1 7のパルス信号に より駆動される。 また、 この表示と して点灯させるときの 投光パルスと、 補助投光の投光パルスは同期していないパ ルス信号である。  FIG. 108 is a configuration diagram of a detector according to Embodiment 6b. The detector according to the present embodiment is configured to drive the detector of the above-described embodiment 6a with a battery, further detect the amount of battery by the detector, and a battery exhaustion detection circuit 618, And a display light driving circuit 619 for displaying the detection output of the light emitting element 619 of the above-described embodiment 6a. Shared with 6 1 5. That is, the indicator light drive circuit 6 19 is an oscillation circuit 6 1 that changes a light emission pulse in accordance with the output signal of the battery exhaustion detection circuit 6 18 and the light emission trigger of the light emission trigger circuit 6 13. Driven by 7 pulse signals. In addition, the light emission pulse for lighting this display and the light emission pulse for the auxiliary light emission are unsynchronized pulse signals.
このように、 本実施例の検知器は電池切れ検知回路 6 1 8を備えたので、 バッテリー量が少なく なつたこ とを予め 知るこ とができ、 電源電圧低下による誤動作を少なくする ことができる。 また、 補助投光器と表示灯を共用したので、 部品点数の削減ができ、 ローコス ト化を図ることができる。  As described above, since the detector of this embodiment is provided with the dead battery detection circuit 618, it is possible to know in advance that the battery level is low, and it is possible to reduce malfunctions due to a drop in power supply voltage. In addition, since the auxiliary projector and indicator light are shared, the number of parts can be reduced and cost can be reduced.
( 6 c ) 実施例 6 c 図 1 0 9は実施例 6 c による検知器の構成図、 図 1 1 0 はその動作のタイムチャー トである。 この検知器は、 図 1 0 5 に示した構成の検知器に、 しきい値補正回路 6 2 0 と 補助光の受光信号を処理する受光回路 6 2 1 を加えたもの である。 この補助光の受光信号を処理する受光回路 6 2 1 は、 足し算回路 6 2 2 と投光パルス周波数のみを通過させ る B. P. F . 2 3 と第 3の比較回路 6 0 8 cからなる。 以下、 図 1 1 O a〜図 1 1 O nのタイムチャー トを参照 し、 この検知器の検知動作について、 上述の実施例 6 a と の相違点を挙げることにより説明する。 (6c) Example 6c FIG. 109 is a configuration diagram of the detector according to the embodiment 6c, and FIG. 110 is a time chart of the operation. This detector is obtained by adding a threshold value correction circuit 620 and a light receiving circuit 621 for processing a light receiving signal of auxiliary light to the detector having the configuration shown in FIG. The light receiving circuit 621, which processes the light receiving signal of the auxiliary light, includes an addition circuit 62, a BP F.23 that passes only the light emission pulse frequency, and a third comparison circuit 608c. Hereinafter, the detection operation of this detector will be described with reference to the time charts of FIG. 11Oa to FIG. 11On by listing differences from the above-described embodiment 6a.
(1) 演算部出力 (図 1 1 0 i ) と判断部出力 (図 1 1 0 j ) がー致していないときには、 投光ト リガが Hレベルと なり投光行い (図 1 1 0 k) 、 補助投光による検出をする。  (1) When the output of the operation unit (Fig. 110i) and the output of the judgment unit (Fig. 110j) do not match, the light emission trigger becomes H level and light is emitted (Fig. 110k). Detects by auxiliary light emission.
(2) 周囲照度が低下したときにも (図 1 1 0 b ) 、 Vth 1 < (差動演算出力) となるので (図 1 1 0 ί ) 、 演算部 (2) Even when the ambient illuminance decreases (Fig. 110b), Vth1 <(differential operation output) (Fig. 110ί).
6 0 9 は Ηレベルとなり (図 1 1 0 i ) 、 補助光が投光さ れる (図 1 1 O k ) 。 しかし、 補助光による検出によって も検出物体 1 5の存在が検知されなかったときは、 投光は 停止され (図 1 1 O k) 、 検知出力は出力されない (図 1 1 0 1 ) 。 そして, 差動演算出力がしきい値の間に入るよ うに、 しきい値補正回路 6 2 0 により、 しきい値が自動補 正される (図 1 1 0 f ) 。 609 becomes the Η level (Fig. 110i), and the auxiliary light is projected (Fig. 11Ok). However, when the presence of the detection object 15 is not detected by the detection using the auxiliary light, the light emission is stopped (FIG. 11Ok), and the detection output is not output (FIG. 1101). Then, the threshold value is automatically corrected by the threshold value correction circuit 62 so that the differential operation output falls between the threshold values (FIG. 110f).
このように、 演算部 6 0 9の出力が検出物体 1 5の進入 により Hレベルになったのか、 ノイズや照度変化、 または、 背景物体の変化により Hレベルになつたのかを補助投光に より確認することができるので、 検出精度を上げることが できる。 また、 しきい値の自動補正により、 照度変化や、 背景物体の変化に対しても誤動作せず、 安定に検出を行う ことができる。 As described above, whether the output of the arithmetic unit 609 has become the H level due to the entry of the detection object 15, noise, illuminance change, or The auxiliary light can be used to confirm whether the H level has been reached due to a change in the background object, and the detection accuracy can be improved. In addition, automatic detection of the threshold value enables stable detection without erroneous operation with respect to changes in illuminance and changes in background objects.
次に、 本実施例における捕助投光のアルゴリズムについ て、 図 1 1 1 aのタイムチャー トを参照して説明する。 本 実施例の検知方式は、 下記の①〜④の方式が考えられる。 Next, the algorithm of the auxiliary light emission in this embodiment will be described with reference to the time chart of FIG. As the detection method of this embodiment, the following methods (1) to (4) can be considered.
①検出物体 1 5の受光視野への進入により演算部 6 0 9 の出力が反転し H レベルになると投光を開始し、 検出物体①When the object 15 enters the light-receiving field of view, the output of the calculation unit 609 is inverted, and when it becomes H level, light emission starts, and the object
1 5の存在が検知されると判断部 6 1 0の出力が反転し H レベルになり、 検知出力が出力され、 同時に投光を停止す る。 そして、 検出物体 1 5が受光視野から出ていき、 演算 部 6 0 9の出力が反転し L レベルになると投光を開始し、 検出物体 1 5の存在が検知されないと判断部 6 1 0の出力 が反転し L レベルになり、 非検知出力が出力され、 同時に 投光を停止する。 When the presence of 15 is detected, the output of the judgment unit 61 is inverted and goes to H level, the detection output is output, and the light emission stops at the same time. Then, when the detection object 15 goes out of the light receiving field of view and the output of the arithmetic unit 609 is inverted and becomes L level, light emission starts, and the judgment unit 6100 determines that the presence of the detection object 15 is not detected. The output is inverted and goes to L level, non-detection output is output, and emission stops at the same time.
②検出物体 1 5の受光視野への進入により演算部 6 0 9 の出力が H レベルになり、 判断部 6 1 0 により積分され出 力が反転し Hレベルになると投光が開始され、 検出物体 1 5の存在が検知されると検知出力が出力され同時に投光を 停止する。 そして、 検出物体 1 5が受光視野から出ていき、 演算部 6 0 9 の出力が L レベルになり、 判断部 6 1 0 によ り積分され出力が反転し L レベルになると非検知出力が出 力され、 同時に投光を停止する。 (2) When the detection object 15 enters the light-receiving field of view, the output of the calculation unit 609 goes to H level, the output is inverted by the judgment unit 6100 and the output is inverted. When the presence of 15 is detected, the detection output is output and the light emission stops at the same time. Then, the detection object 15 comes out of the light receiving field of view, the output of the calculating section 609 becomes L level, the output is inverted by the judging section 6100 and the output is inverted. And stop emitting light at the same time.
③検出物体 1 5の受光視野への進入により演算部 6 0 9 の出力が反転し Hレベルになると投光を開始し、 検出物体 1 5の存在が検知され判断部 6 1 0 の出力が反転し Hレべ ルになり、 検知出力が出力される。 その後、 投光による検 知動作により受光視野内での検出物体 1 5の存在が検知さ れなく なると、 判断部 6 1 0の出力が反転し L レベルにな り、 非検知出力が出力され同時に投光を停止する。  (3) When the detection object 15 enters the light-receiving field of view, the output of the calculation unit 609 is inverted. When the H level is reached, light emission starts, and the presence of the detection object 15 is detected and the output of the judgment unit 6100 is inverted. Then, it becomes H level and the detection output is output. Thereafter, when the presence of the detected object 15 in the light-receiving field of view is no longer detected due to the detection operation by light emission, the output of the judgment unit 6100 is inverted to L level, and a non-detection output is output and Stop emitting light.
④検出物体 1 5の受光視野への進入により演算部 6 0 9 の出力が H レベルになり、 判断部 6 1 0により積分され出 力が反転し H レベルになると投光が開始され、 検出物体 1 5の存在が検知されると検知出力が出力される。 その後、 投光による検知動作により受光視野内での検出物体 1 5の 存在が検知されなくなると、 演算部 6 0 9 の出力が L レべ ルになり判断部 6 1 0 により積分され出力が反転し L レべ ルになり、 非検知出力が出力され同時に投光を停止する。  に よ り When the detection object 15 enters the light-receiving field of view, the output of the calculation unit 609 becomes H level, the output is inverted by the judgment unit 610 and the output is inverted. When the presence of 15 is detected, a detection output is output. After that, when the presence of the detected object 15 in the light-receiving field of view is no longer detected due to the detection operation by light emission, the output of the arithmetic unit 609 becomes L level, the output is integrated by the judgment unit 610 and the output is inverted. Then, the L level is output, the non-detection output is output, and the emission stops at the same time.
また、 図 1 1 1 bは、 上述の①〜④の検知方式の特徴を 示す図である。 同図に示すように、 ①〜④の検知方式は、 検出精度、 応答時間、 消費電流において異なる特徴を持つ ている。 従って、 それぞれの特徵を生かすことにより 目的 にあつた、検知器を提供することができる。  FIG. 11b is a diagram showing the features of the detection methods (1) to (4) described above. As shown in the figure, the detection methods ① to ④ have different characteristics in detection accuracy, response time, and current consumption. Therefore, it is possible to provide a detector that meets the purpose by utilizing each characteristic.
( 6 d ) 実施例 6 d  (6 d) Example 6 d
図 1 1 2 は実施例 6 dによる検知器の構成図である。 こ の検知器は、 自然散乱光 (例えば照明装置、 太陽光) の反 射光を受光することにより検知を行うパッ シブ方式の検知 器に、 検出照度に応じて出力を禁止する出力禁止回路 6 2 4を加えたものであり、 その他の構成で前述と同番号は同 部材を示す。 本実施例では上記各実施例とは違って、 補助 投光器を備えていない。 FIG. 112 is a configuration diagram of a detector according to Embodiment 6d. This detector is designed to counter natural scattered light (eg lighting, sunlight). This is a passive type detector that performs detection by receiving emitted light, with the addition of an output prohibition circuit 624 that prohibits output in accordance with the detected illuminance. Is shown. In this embodiment, unlike the above embodiments, no auxiliary projector is provided.
この検知器の検知動作について、 図 1 1 3 a〜図 1 1 3 eのタイムチャー トを参照して説明する。 図 1 1 3 aのよ うに、 自然散乱光の照度が低下し、 パッシブ型では検出不 可能な照度となったとき、 2つの受光素子 P D 1, P D 2 の全受光量を足し算回路 6 2 2で検出する照度検出器の出 力 (図 1 1 3 c ) が比較回路 6 0 8 cのしきい値 V th3 を 下回り、 出力禁止回路 6 2 4から Hレベル信号が出力され る (図 1 1 3 e:) 。  The detection operation of this detector will be described with reference to the time charts of FIGS. As shown in Fig. 11a, when the illuminance of the naturally scattered light decreases and the illuminance becomes undetectable with the passive type, the sum of the received light amounts of the two light receiving elements PD 1 and PD 2 is added. The output of the illuminance detector (Figure 13c), which is detected by the above, falls below the threshold value Vth3 of the comparison circuit 608c, and an H level signal is output from the output inhibition circuit 624 (Figure 11) 3 e :).
出力禁止回路 6 2 4の構成は図 1 1 4に示す通りである。 比較回路 6 0 8 cから L レベル信号が出力されると、 D— フ リ ップフロ ップ回路 6 2 5の出力 Qは L レベルになこの L レベル信号はィ ンバータにより反転され、 H レベル信号 となる。 この Hレベル信号により信号処理部 6 1 1 内の出 力強制 0 F F回路をなす トラ ンジスタ T R 1 は O N状態と なるので、 検知出力は強制的に L レベルとなり、 O F Fさ れ O o 、  The configuration of the output inhibition circuit 624 is as shown in FIG. When an L level signal is output from the comparison circuit 6 08 c, the output Q of the D flip-flop circuit 6 25 becomes L level. This L level signal is inverted by the inverter, and the H level signal is inverted. Become. The H level signal causes the output TR in the signal processing unit 6 1 1 to form a 0 FF circuit, and the transistor TR 1 becomes the ON state, so that the detection output is forcibly set to the L level and the output is OFF.
このように、 本実施例の検知器は、 照度変化に応じて検 知出力を禁止する出力禁止回路 6 2 4を備えているので、 検知器で制御する機器を誤動作させることがない。 なお、 この出力禁止回路 6 2 4の出力を上述の実施例 6 aの投光 ト リガ回路 6 1 3 に接続すると、 パッシブ方式では検出不 可能な照度下でも補助投光により検出可能となり、 検出し 続けることができる。 As described above, the detector of the present embodiment includes the output prohibition circuit 624 that prohibits the detection output in accordance with the change in the illuminance, so that the device controlled by the detector does not malfunction. In addition, If the output of this output prohibition circuit 6 24 is connected to the light emission trigger circuit 6 13 of the above-described embodiment 6a, it can be detected by the auxiliary light emission even under illuminance that cannot be detected by the passive method, and detection is continued be able to.
( 6 e ) 実施例 6 e  (6 e) Example 6 e
図 1 1 5 は実施例 6 eによる検知器の構成図である。 上 述の実施例 6 dの検知器は受光素子の全受光量を検出する ことにより照度検出を行っていたが、 本実施例の検知器は 1つの受光素子の受光量を検出することにより照度検出を 行う ものである。 また、 その検知動作は上述の実施例 6 d と同様である。 これにより、 上述の実施例 6 dの検知器と 比して、 部品点数を削減することができる。  FIG. 115 is a configuration diagram of a detector according to Example 6e. Although the detector of Example 6d described above performs illuminance detection by detecting the total amount of light received by the light receiving element, the detector of this embodiment detects the illuminance by detecting the amount of light received by one light receiving element. It performs detection. Further, the detection operation is the same as that in the above-described embodiment 6d. This makes it possible to reduce the number of parts as compared with the detector according to Embodiment 6d described above.
( 6 f ) 実施例 6 f  (6 f) Example 6 f
図 1 1 6 は実施例 6 f による検知器の構成図である。 本 実施例は上述の実施例 6 dの構成に第 2の受光部 6 0 4 b を加えたものである。 この検知器は 2つの受光部を備え、 第 1の受光部 6 0 4 aにより検出物体の検出を行い、 第 2 の受光部 6 0 4 bにより照度検出を行う ものであり、 この 第 2の受光部 6 0 4 bの受光回路を照度検出に限定した仕 様で設計できるので、 精度よく照度の検出を行う ことがで きる。 また、 照度検出の受光視野を検出物体とは別の視野、 例えば、 照明を見る構成とすると、 照明の点灯、 消灯を確 実に検知することができ、 精度良く検出を行う ことができ o ( 6 g ) 実施例 6 g FIG. 116 is a configuration diagram of a detector according to Example 6f. This embodiment is obtained by adding a second light receiving section 604b to the configuration of the above-described embodiment 6d. This detector is provided with two light receiving sections, detects a detection object by a first light receiving section 604a, and performs illuminance detection by a second light receiving section 604b. Since the light receiving circuit of the light receiving section 604b can be designed with specifications limited to illuminance detection, illuminance can be detected with high accuracy. Also, if the light receiving field of illuminance detection is configured to look at a field of view different from that of the object to be detected, for example, the illumination, it is possible to reliably detect whether the illumination is on or off, and to perform accurate detection. (6 g) Example 6 g
図 1 1 7 は実施例 6 gによる検知器の出力部付近の構成 を示す回路図であり、 本実施例は上述の実施例 6 d〜 6 f に示した検知器に、 電源投入直後において検知出力が出力 されるのを禁止する電源リセッ 卜時出力禁止回路を加えた ものである。 O R回路 6 2 6には、 照度変化に応じて動作 する出力禁止回路 6 2 4からの信号と電源リセッ ト時出力 禁止回路からの信号が入力される。 そして、 これら 2つの 信号のうち、 どちらか一方が Hレベル信号であれば、 禁止 信号を出力する。 この禁止信号により トランジスタ 6 2 7 は O N状態となるので、 信号処理部 6 1 1からの検知出力 は出力されない。 このように、 電源投入時において電源電 圧が正常動作可能な電圧より低いときは、 電源リセッ ト時 出力禁止回路が作動し、 検知出力の出力を禁止するので、 電源投入時における電源電圧の低下による誤動作を少なく することができ、 安定した検知動作を行う ことができる。  Fig. 117 is a circuit diagram showing the configuration near the output unit of the detector according to the embodiment 6g.This embodiment uses the detectors described in the above embodiments 6d to 6f to detect This is an addition of an output prohibition circuit at power reset that prohibits output from being output. To the OR circuit 626, a signal from the output prohibition circuit 624 that operates in response to a change in illuminance and a signal from the output prohibition circuit when the power is reset are input. Then, if one of these two signals is an H level signal, a prohibition signal is output. Since the transistor 627 is turned ON by this prohibition signal, the detection output from the signal processing unit 611 is not output. As described above, when the power supply voltage is lower than the voltage at which normal operation can be performed when the power is turned on, the output prohibition circuit operates when the power is reset, and the output of the detection output is prohibited. Malfunctions due to the above can be reduced, and a stable detection operation can be performed.
なお、 上述の電源リセッ 卜時出力禁止回路を電源電圧低 下による出力禁止回路 (以下、 電圧低下時出力禁止回路と いう) としてもよく、 そのような構成にすれば、 検知動作 時における電源電圧低下による誤動作を少なくすることが できる。 さ らに、 O R回路 6 2 6を 3つの入力端子を備え るものと してもよく、 この端子に 3つの出力禁止回路 (照 度変化に応じて動作する出力禁止回路', 電源リセッ ト時出 力禁止回路, 電圧低下時出力禁止回路) を接続すると、 よ り確実な検知動作を行う ことができる。 In addition, the above-described output prohibition circuit at power supply reset may be an output prohibition circuit due to a drop in power supply voltage (hereinafter referred to as an output prohibition circuit at voltage drop). Malfunctions due to the decrease can be reduced. In addition, the OR circuit 626 may be provided with three input terminals. These terminals are connected to three output inhibit circuits (output inhibit circuits that operate in response to changes in illuminance) and power reset. Output inhibit circuit, output inhibit circuit when voltage drops) A more reliable detection operation can be performed.
こ こで、 電源リセッ ト時出力禁止と電圧低下時出力禁止 の両出力禁止回路を共用した構成を図 1 1 8 に示し、 この 検知回路の検知動作について、 図 1 1 9のタイムチャー ト を参照して説明する。  Here, Fig. 118 shows a configuration in which both output prohibition circuits for output prohibition at power supply reset and output prohibition at voltage drop are shared, and the detection operation of this detection circuit is shown in the time chart of Fig. 119. It will be described with reference to FIG.
まず、 電源リセッ ト時出力禁止回路について説明する。 スィ ッチ S Wにより電源が投入されると電圧 V ccは R Cの 時定数により徐々に上昇していくが、 V ccが低電圧のとき は、 検知が不安定な状態にあるため、 検知出力が出力され るのを禁止する必要がある。 V ccが比較回路 6 2 9のしき い値 V thl (検知器が正常動作可能な電圧) より低いとき は、 比較回路 6 2 9 は L レベル信号を出力し、 この L レべ ル信号はィ ンバ一夕 6 3 1 により反転され Hレベル信号と なり、 O R回路 6 2 6を介して トランジスタ 6 2 7を O N 状態にするので、 検知出力は出力されない。 逆に、 V ccが V thl を上回ると、 比較回路 6 2 9の出力は Hレベルとな り、 禁止状態は解除される。  First, the output prohibition circuit at power reset will be described. When the power is turned on by the switch SW, the voltage Vcc gradually rises due to the RC time constant, but when Vcc is low, the detection output is unstable because the detection is unstable. Output must be prohibited. When V cc is lower than the threshold value V thl (a voltage at which the detector can operate normally) of the comparator circuit 629, the comparator circuit 629 outputs an L level signal, and the L level signal is an The signal is inverted by the signal 631 and becomes an H level signal, and the transistor 627 is turned on via the OR circuit 626. Therefore, no detection output is output. Conversely, when V cc exceeds V thl, the output of the comparison circuit 629 becomes H level, and the disabled state is released.
次に、 電圧低下時出力禁止回路について説明する。 電圧 V ccが低下すると、 検知が不安定な状態となるため、 検知 出力が出力されるのを禁止する必要がある。 V ccが電圧検 知器 3 0の検知電圧 V th2 より低く なると、 電圧検知器 6 3 0 は L レベル信号を出力し、 この L レベル信号はィ ンバ —夕 6 3 1 により反転され Hレベル信号となり、 0 R回路 6 2 6を介して トラ ンジスタ 6 2 7を O N状態とするので、 検知出力は出力されない。 逆に、 V ccが V th2 を上回って いるときは、 電圧検知器 6 3 0 は Hレベル信号を出力する ので、 検知出力は出力される。 Next, the output prohibition circuit when the voltage drops will be described. If the voltage Vcc decreases, the detection becomes unstable, and it is necessary to prohibit the output of the detection output. When V cc becomes lower than the detection voltage V th2 of the voltage detector 30, the voltage detector 63 0 outputs an L level signal, and this L level signal is inverted by the inverter — the H level signal Since the transistor 6 27 is turned on via the 0 R circuit 6 26, No detection output is output. Conversely, when V cc is higher than V th2, the voltage detector 630 outputs an H-level signal, and the detection output is output.
この構成により、 出力禁止により検知器を制御する機器 を誤動作させるこ とがない。 また、 2つの禁止回路の共用 により部品点数の削減ができ、 口一コス 卜化を図ることが できる。  With this configuration, devices that control the detector due to output prohibition do not malfunction. Also, by sharing the two prohibited circuits, the number of parts can be reduced and the cost can be reduced.
( 6 h ) 実施例 6 h  (6 h) Example 6 h
図 1 2 0 は実施例 6 hを示し、 上述の実施例 6 c!〜 6 g に示したような出力禁止回路 6 2 4の出力により検知が困 難になつたことを表示する警告表示器を備えたものである。 出力禁止回路 6 2 4の出力が H レベル信号であれば、 トラ ンジスタ 6 3 3 は O N状態となり、 発光素子 6 3 4 は点灯 され、 検知が困難となったことを表示する。 一方、 出力禁 止回路 6 2 4の出力が L レベル信号であれば、 トランジス 夕 6 3 3 は 0 F F状態となり、 発光素子 6 3 4 は駆動され ない。 このようにして、 周囲照度が低くなり検知動作を行 つていないこと、 また、 電池電圧が低下して使用できなぐ なったことを使用者は知ることができる。  FIG. 120 shows Example 6h, and Example 6c! A warning indicator is provided to indicate that detection has become difficult by the output of the output prohibition circuit 624 as shown in Figs. If the output of the output prohibition circuit 624 is an H level signal, the transistor 633 is in the ON state, and the light emitting element 634 is turned on to indicate that the detection becomes difficult. On the other hand, if the output of the output inhibition circuit 624 is an L-level signal, the transistor 633 is in the 0 FF state, and the light emitting element 634 is not driven. In this way, the user can know that the ambient illuminance has decreased and no detection operation has been performed, and that the battery voltage has dropped and the battery cannot be used.
( 6 i ) 実施例 6 i  (6i) Example 6i
図 1 2、1、 1 2 2 は実施例 6 i を示し、 出力禁止の方法 について説明するものである。 図 1 2 1 は検知器の比較部 6 3 3、 演算部 6 0 9、 判断部 6 1 0の構成を示す図であ り、 図 1 2 2 は出力強制 O F F回路の構成図である。 上述 した出力禁止回路 6 2 4からの出力禁止信号により トラン ジスタ T R 6 1 は O Nし、 強制的に検出信号を 0 F Fする。 O F Fされる信号は、 A, B, C, Dの 4つの信号が考え られる。 0 F Fされる信号が検知出力信号 Dのときは、 出 力禁止の信号に対してすばやく 出力が禁止される。 それに 対し、 差動増幅器の出力信号 A、 信号処理部の E x - N O R出力信号 B、 信号処理部のシフ 卜 レジスタの A N Dゲ一 卜への入力信号 Cの信号を 0 F Fする方法は差動増幅器に 近いほど出力禁止信号に対して出力禁止遅れを生じるが、 確実に検知出力の禁止をかけることができる。 FIGS. 12, 1, and 122 show the embodiment 6i and explain a method of prohibiting output. FIG. 12 1 is a diagram showing a configuration of a comparison unit 633, a calculation unit 609, and a determination unit 610 of the detector, and FIG. 122 is a configuration diagram of an output forced OFF circuit. Above The transistor TR61 is turned on by the output prohibition signal from the output prohibition circuit 624, and the detection signal is forcibly turned off. The four signals A, B, C, and D can be considered as OFF signals. 0 When the signal to be flipped is the detection output signal D, the output is quickly inhibited in response to the output inhibit signal. On the other hand, the method of 0FFing the signal of the output signal A of the differential amplifier, the Ex-NOR output signal B of the signal processing unit, and the input signal C to the AND gate of the shift register of the signal processing unit is differential. The closer to the amplifier, the more the output prohibition signal is delayed, but the detection output can be reliably prohibited.
( 6 j ) 実施例 6 j  (6 j) Example 6 j
図 1 2 3、 図 1 2 4 a〜図 1 2 4 dは実施例 6 j を示し、 出力禁止回路 6 2 4を備えた検知器に、 その出力禁止の出 力に応じて検知器への電力供給パルスを変更する電力供給 周期変更器を加えたものである。 同図 1 2 3 にその構成、 図 1 2 4 a〜図 1 2 4 dにその動作のタイムチャー トを示 す。 電力供給周期変更器は、 発振周期が互いに異なる第 1 , 及び第 2の発振回路 6 3 5 a , 6 3 5 b と 2入力マルチプ レクサ 6 3 6からなる。 この検知器は、 通常は第 1 の発振 回路 6 3 5 aから発振されたパルス周期により検知を行つ ており、 周囲照度の低下等により出力禁止回路 6 2 4から 出力禁止信号が出力されたときは、 2入力マルチプレクサ 3 6 に選択信号が入力され、 第 1 の発振回路 6 3 5 aから 発振周期の長い第 2の発振回路 6 3 5 bにパルス周期を切 り換える。 これにより、 低消費電流化を図るこ とができる。 FIGS. 12 3 and 12 24 a to 12 4 d show the embodiment 6 j, in which a detector having an output inhibition circuit 6 24 is supplied to the detector according to the output inhibition output. A power supply cycle changer that changes the power supply pulse is added. Fig. 123 shows the configuration, and Figs. 124a to 124d show the time chart of the operation. The power supply cycle changer includes first and second oscillation circuits 635a and 635b having different oscillation cycles and a two-input multiplexer 636. This detector normally performs detection based on the pulse period oscillated from the first oscillation circuit 635a, and an output inhibition signal is output from the output inhibition circuit 624 due to a decrease in ambient illuminance, etc. In this case, the selection signal is input to the 2-input multiplexer 36, and the pulse cycle is switched from the first oscillation circuit 635a to the second oscillation circuit 635b with longer oscillation cycle. Change. Thereby, low current consumption can be achieved.
( 7 ) 第 7実施例  (7) Seventh embodiment
次に第 7実施例について説明する。 第 7実施例において は、 第 1実施例における信号処理内容を特定している。  Next, a seventh embodiment will be described. In the seventh embodiment, the content of the signal processing in the first embodiment is specified.
( 7 a ) 実施例 7 a  (7a) Example 7a
本実施例の具体例を図面を参照して説明する。 図 1 2 5 は実施例 7 a による検知装置 7 0 0のブロ ッ ク図、 図 1 2 6 a〜図 1 2 6 i は同検知装置における動作のタイムチヤ ー トである。 検知装置 7 0 0 は、 初期状態にはなかった物 体等を検知するものであり、 該検知装置 7 0 0が設置され る場所における照明光や太陽光などの自然散乱光により被 検出物体 1 5を検出する光検出部 7 0 1 と、 検出された受 光信号を処理し出力する差動増幅回路 7 0 6等の各種の処 理回路とから構成される。  A specific example of this embodiment will be described with reference to the drawings. Fig. 125 is a block diagram of the detection device 700 according to the embodiment 7a, and Figs. 126a to 126i are time charts of operations in the detection device. The detection device 700 detects an object or the like that was not in the initial state, and the object to be detected 1 is detected by natural scattered light such as illumination light or sunlight at the place where the detection device 700 is installed. It comprises a photodetector 701 for detecting the signal No. 5 and various processing circuits such as a differential amplifier circuit 706 for processing and outputting the detected light receiving signal.
光検出部 7 0 1 は、 検出物体 1 5や背景物体 1 から反 射された自然散乱光を集光する受光レンズ 7 0 3 と、 光を 電流に変換する 2つのフォ トダイオー ド P D 1及び P D 2 とから構成される。 処理回路は、 2つの増幅回路 7 0 4及 び 7 0 5 と、 差動増幅回路 7 0 6 と、 ハイパスフィ ルタ H P F 7 0 7 と、 比較回路 7 0 8 と、 積分回路 7 0 9 と、 出 力回路 7 、 1 0 と、 発振回路 7 1 とから構成される。 また、 初期設定を行うために、 初期設定回路 7 1 1 と、 初期設定 時の変化量検出回路 (調整量検出器) 7 1 2 と、 弁別レべ ル設定回路 (しきい値設定器) 7 1 3 とが含まれる。 検出物体 1 5や背景物体 1 4による反射光は、 受光用レ ンズ 7 0 3により集光され、 このレンズ 7 0 3を通過した 光は 2つの受光視野を構成する 2つに分割されたフォ 卜ダ ィオー ド P D 1、 P D 2 (光検出部) でなる受光器で受光 され、 光一電流変換される。 The light detection section 701 is composed of a light receiving lens 703 that collects naturally scattered light reflected from the detection object 15 and the background object 1, and two photo diodes PD 1 and PD that convert light into current. 2 The processing circuit includes two amplifier circuits 704 and 705, a differential amplifier circuit 706, a high-pass filter HPF 707, a comparison circuit 708, an integration circuit 709, and an output circuit. It comprises a power circuit 7, 10 and an oscillation circuit 71. To perform the initial setting, the initial setting circuit 7 11, the change amount detection circuit (adjustment amount detector) 7 1 2 at the time of initial setting, and the discrimination level setting circuit (threshold value setting device) 7 1 and 3 are included. Light reflected by the detection object 15 and the background object 14 is condensed by the light-receiving lens 703, and the light passing through the lens 703 is divided into two light-receiving fields forming two light-receiving fields. The light is received by the photo diode PD1, PD2 (photodetector) and converted into light-current.
これら光一電流変換された 2つの受光信号は、 スィ ッチ ングパルス S G (図 1 2 6 b ) で高周波信号に変換され、 それぞれ増幅回路 7 0 4、 増幅回路 7 0 5により増幅され る (図 1 2 6 c、 1 2 6 d) 。 こ こに、 検出物体 1 5が 1 つの受光視野内に入ってきたことにより (図 1 2 6 a) 、 両増幅回路の出力は変化を示す。 これら増幅された 2つの 受光信号は、 差動演算回路 7 0 6により差動演算される (図 1 2 6 e) 。 この差動演算された受光信号は、 H. P. F. 7 0 7で低周波ノイズを除去され (図 1 2 6 ί ) 、 比 較回路 1 0 8により、 予め設定された 2つのしきい値 V t h l、 V t h 2 ( V t h 2 < V t h 1 ) と比較される。 これらのしきい値は、 受光信号のノイズ量により出力が 不安定にならないように、 積分回路 7 0 9の出力で、 大き い方のしきい値 V t h 1を V t h 1— Sに、 小さい方のし きい値 V t h 2を V t h 2 + y ( β , r > 0 ) に、 それぞ れ変更される。 比較回路 7 0 8は、 差動出力が弁別範囲を 外れていれば Hレベル信号を、 弁別範囲内を外れていなけ れば Lレベル信号を出力する (図 1 2 6 g) 。  These two light-to-current converted light receiving signals are converted into high-frequency signals by a switching pulse SG (FIG. 12B), and are amplified by the amplifier circuits 704 and 705, respectively (see FIG. 1). 26 c, 126 d). Here, when the detection object 15 enters one light receiving field of view (Fig. 12 26a), the outputs of both amplifier circuits show a change. These two amplified light receiving signals are subjected to differential operation by the differential operation circuit 706 (FIG. 12E). The low-frequency noise is removed from the differentially calculated light-receiving signal by the HPF 707 (see FIG. 126), and the comparison circuit 108 sets two thresholds V thl and V th 2 (V th 2 <V th 1). In order to prevent the output from becoming unstable due to the noise amount of the received light signal, the larger threshold V th1 is set to V th1−S at the output of the integrating circuit 709, The threshold V th2 is changed to V th 2 + y (β, r> 0), respectively. The comparison circuit 708 outputs an H level signal if the differential output is out of the discrimination range, and outputs an L level signal if the differential output is not out of the discrimination range (Fig. 126g).
続いて、 比較回路 7 0 8の出力信号は積分回路 7 0 9に よりノイズを除去され (図 1 2 6 h ) 、 出力回路 7 1 0に より出力される。 具体的には、 図 1 2 6 i に示すように、 V t h 2 < (差動演算された受光信号) < V t h 1 の場合 は、 非検知出力 (O F F : 受光視野内に検出物体がない状 態、 つま り背景物体のみが存在する状態) がセンサ外部に 出力される。 また、 (差動演算された受光信号) く V t h 2、 または、 V t h 1 < (差動演算された受光信号) の塲 合は、 検知出力 (O N : 受光視野内に検出物体が存在す る) がセンサ外部に出力される。 このように、 2つの受光 信号の変動に基づいて物体の検知を行う ことができるので め O o Subsequently, the output signal of the comparison circuit 708 is sent to the integration circuit 709. The noise is further removed (Fig. 126h), and output by the output circuit 710. Specifically, as shown in Fig. 126 i, if V th 2 <(the differentially calculated light receiving signal) <V th 1, the non-detection output (OFF: no detected object is in the light receiving field) (Ie, the state where only the background object exists) is output to the outside of the sensor. In addition, when (differentially calculated light receiving signal) is less than V th2 or V th 1 <(differentially calculated light receiving signal), the detection output (ON: the detected object is within the light receiving field) Is output outside the sensor. In this way, the object can be detected based on the fluctuations of the two received light signals, so that O o
次に、 初期状態 (検出物体がない状態) での受光信号に ついて説明する。 初期状態において、 2つの受光視野間に コン トラス トが無いことはほとんどなく、 いく らかのコン トラス トがあるので、 差動演算回路 7 0 6の差動出力の信 号成分は、 ある信号レベルがある。 また、 2つの受光視野 から受光された受光信号に含まれるノィズ成分は受光量に 応じて大き く なる。 その 2つの受光信号を差動演算すると、 2つの受光信号に差がない (コ ン トラス トがない状態) と、 2つの受光信号のノィズ成分はほぼ等しいので除去されて、 差動出力のノィズ成分はほぼ 0 となる。 逆に、 2つの受光 信号に差がある (コン トラス トがある) と、 差動出力のノ ィズ成分は 2つの受光信号の差、 つまり、 差動出力の信号 成分の大きさに応じて大き く なる。 そこで、 初期状態の差動出力の信号成分の変化や検知装 置の使用される環境によらず適正に検知信号が出力される ように、 検知装置は初期設定される必要がある。 初期設定 とは、 初期状態 (検出物体がない状態) における差動演算 出力を 2つのしきい値 V t h 1、 V t h 2 ( V t h 2 < V t h 1 ) のレベル内に入れるための処置である。 初期設定 の対象は、 初期設定回路 7 1 1、 初期設定時の変化量検出 回路 7 1 2、 及び弁別レベル設定回路 7 1 3である。 Next, the light receiving signal in the initial state (the state where there is no detected object) will be described. In the initial state, there is almost no contrast between the two light receiving fields, and there is some contrast, so that the signal component of the differential output of the differential arithmetic circuit 706 is a signal There are levels. In addition, the noise component included in the light reception signals received from the two light reception fields increases according to the amount of received light. When the two light receiving signals are subjected to differential operation, if there is no difference between the two light receiving signals (there is no contrast), the noise components of the two light receiving signals are almost equal and are removed, and the noise of the differential output is reduced. The component is almost zero. Conversely, if there is a difference (contrast) between the two received light signals, the noise component of the differential output will depend on the difference between the two received light signals, that is, the magnitude of the signal component of the differential output. growing. Therefore, the detection device needs to be initialized so that the detection signal is output properly regardless of the change in the signal component of the differential output in the initial state and the environment in which the detection device is used. The initial setting is a process to put the differential operation output in the initial state (the state where there is no sensing object) within the levels of the two thresholds Vth1, Vth2 (Vth2 <Vth1). is there. The target of the initial setting is the initial setting circuit 711, the change amount detection circuit 712 at the time of the initial setting, and the discrimination level setting circuit 713.
初期設定回路 7 1 1 は、 検出物体がない状態で差動演算 出力を 2つのしきい値 V t h l、 V t h 2のレベル内に入 れるための回路で、 差動演算出力を変更する方法と、 差動 出力は変更せずに、 しきい値を変更する方法がある。  The initial setting circuit 7 1 1 is a circuit that allows the differential operation output to fall within the levels of the two thresholds V thl and V th 2 when there is no sensing object. There is a way to change the threshold without changing the differential output.
初期設定時の変化量検出回路 7 1 2 は、 初期設定時に差 動演算出力をどれだけ変更したか、 または、 しきい値をど れぐらい変更したか、 その物理量を検出する回路である。 弁別レベル設定回路 7 1 3 は、 初期設定時の変化量検出回 路 7 1 2で検出した物理量に応じてしきい値とヒステリ シ ス幅を設定する回路である。 初期設定時に、 差動出力は変 更せずに、 しきい値を変更する方法では、 ヒステリ シス幅 のみを設定する。  The change amount detection circuit 7 1 2 at the time of the initial setting is a circuit which detects how much the differential operation output has been changed at the time of the initial setting, or how much the threshold value has been changed, and the physical quantity thereof. The discrimination level setting circuit 713 is a circuit that sets a threshold value and a hysteresis width according to the physical quantity detected by the change amount detection circuit 712 at the time of initial setting. The method of changing the threshold value without changing the differential output at the time of initial setting only sets the hysteresis width.
このようにするこ とで、 初期設定時の変化量 (初期状態 の差動出力の信号成分) に応じたしきい値、 ヒステリ シス 幅の設定が可能であるので、 より的確なしきい値のレベル を設定し得、 使用環境に影響されて検知装置が誤動作する ことがない。 また、 しきい値を検知信号の上下に設定し、 そのレベル内から外れたときに出力信号を出すので、 受光 出力の変化方向が限定されることがない。 ここに、 本実施 例の検知装置によれば、 検出物体を検知する視野や背景と のコン トラス 卜の関係を選ぶことなく物体の検出が可能と なり、 センサの感度が大いに向上する。 In this way, it is possible to set the threshold and hysteresis width according to the amount of change at the time of initial setting (the signal component of the differential output in the initial state). The detection device malfunctions due to the usage environment Nothing. Further, the threshold value is set above and below the detection signal, and an output signal is output when the detection signal deviates from the level. Therefore, the direction in which the light-receiving output changes is not limited. Here, according to the detection device of the present embodiment, the object can be detected without selecting the contrast between the visual field and the background for detecting the detected object, and the sensitivity of the sensor is greatly improved.
以下、 初期設定の方法を図 1 2 7ないし図 1 2 9 dを参 照して説明する。 図 1 2 7ないし図 1 2 9 dにおいては、 初期設定方法のみを示し、 それによる しきい値、 ヒステリ シス幅の設定方法については示していない。 それらについ ては図 1 3 1以降で説明する。 図 1 2 7は初期設定の基本 概念を説明する図である。 この図に示すように、 初期設定 とは、 検出物体がない状態で差動増幅出力の出力信号レべ ル V s pを 2つのしきい値 V t h l、 V t h 2 (V t h 2 < V t h 1 ) のレベルの間に入れることである。  Hereinafter, the method of initial setting will be described with reference to FIGS. In FIG. 127 to FIG. 127 d, only the initial setting method is shown, and the threshold value and the hysteresis width setting method are not shown. They will be described in Figure 13 1 and thereafter. FIG. 127 illustrates the basic concept of the initial setting. As shown in this figure, the initial setting means that the output signal level Vsp of the differential amplification output is set to two thresholds Vthl, Vth2 (Vth2 <Vth1 ) Level.
図 1 2 8 a及び 1 2 8 bは差動増幅回路 7 0 6の基準電 圧を変更する場合の回路図及びその時の基準電圧と 2つの しきい値との関係を示す図である。 この場合、 増幅回路の 出力 V s [= V r e f - (R i /R s ) v] は、 基準電圧 V r e f を変更すること (V r e f — A e ) により、 図 1 2 7に示した V 0が変化して、 V s pをしきい値のレベル 内に設定する。 この方法においては、 増幅器のダイナミ ッ ク レンジを有効に利用できる。  FIGS. 128a and 128b are a circuit diagram when the reference voltage of the differential amplifier circuit 706 is changed and a diagram showing the relationship between the reference voltage and two thresholds at that time. In this case, the output V s [= V ref-(R i / R s) v] of the amplifier circuit is changed by changing the reference voltage V ref (V ref —A e) to obtain the V s shown in FIG. 127. 0 changes to set Vsp within the threshold level. In this way, the dynamic range of the amplifier can be used effectively.
図 1 2 8 c及び 1 2 8 dは増幅回路 7 0 6の增幅率の変 更による場合の回路図及びその時の基準電圧と 2つのしき い値との関係を示す図である。 この場合、 増幅回路 7 0 6 の増幅率 (R f ZR s ) を変更する こ とにより、 出力 V s を変化させ、 V s pをしきい値のレベル内に設定する。 こ の方法においては、 高照度な環境でも使用できる。 Figure 128c and 128d show changes in the amplification factor of the amplifier circuit 706. FIG. 9 is a circuit diagram in a case where the threshold voltage is changed, and a diagram showing a relationship between a reference voltage and two threshold values at that time. In this case, the output Vs is changed by changing the amplification factor (RfZRs) of the amplifier circuit 706, and Vsp is set within the threshold level. In this method, it can be used even in a high-light environment.
図 1 2 9 a及び 1 2 9 bは受光信号の減衰による場合の 回路図及びその時の基準電圧と 2つのしきい値との関係を 示す図である。 この場合、 増幅回路の出力が、 抵抗分圧で (R a 1 /R a ) 倍に減衰されるこ とにより、 出力 V sを しきい値のレベル内に設定する。 この方法においては、 構 成が簡単であるのでコス 卜の削減ができる。  FIGS. 12a and 12b are a circuit diagram in the case of attenuation of the received light signal and a diagram showing the relationship between the reference voltage and the two thresholds at that time. In this case, the output Vs is set within the threshold level by the output of the amplifier circuit being attenuated by (R a 1 / R a) times by the resistance voltage division. In this method, the cost is reduced because the configuration is simple.
図 1 2 9 c及び 1 2 9 dは増幅回路出力の D Cオフセッ ト値の変更による場合の回路図及びその時の基準電圧と 2 つのしきい値との関係を示す図である。 この場合、 増幅回 路の出力の D Cオフセッ トを変更するこ とにより、 図 1 2 7 に示した V 0を変化させ、 出力 V sが、 V s = V c c x (R D 2ノ R D) - (R f /R s ) X vとなり、 出力 V s をしきい値のレベル内に設定する。 この方法においては、 図 1 2 9 a、 1 2 9 b と同等の効果が得られる。  FIGS. 1229c and 1229d are a circuit diagram in the case where the DC offset value of the output of the amplifier circuit is changed, and a diagram showing the relationship between the reference voltage and the two threshold values at that time. In this case, by changing the DC offset of the output of the amplification circuit, V 0 shown in Fig. 127 is changed, and the output V s becomes V s = V ccx (RD 2 RD)-( R f / R s) X v, and sets the output V s within the threshold level. In this method, the same effect as in FIGS.
( 7 b ) 実施例 7 b  (7b) Example 7b
図 1 3 0、に示す実施例は、 検知装置の外部からの指令に より、 初期設定及びしきい値の設定を自動的に行うティ 一 チング方式である。  The embodiment shown in FIG. 130 is a teaching method in which the initial setting and the setting of the threshold value are automatically performed by a command from the outside of the detecting device.
図 1 3 0 において、 差動演算された受光出力は、 サンプ ルホールド回路 7 1 5によりサンプルホールドされ、 A Z D変換回路 7 1 6により AZD変換され、 比較回路 1 0 8 において、 初期設定によりメモリ 1 2 1に記憶された弁別 範囲と比較され、 比較回路 7 0 8の出力はノイズ除去用の 積分回路 7 0 9を通過した後、 出力回路 7 1 0によりセン サ外部に出力される。 In Fig. 130, the differential output of the received light Sample and hold by the sample and hold circuit 715, AZD conversion by the AZD conversion circuit 716, and comparison by the comparison circuit 108 with the discrimination range stored in the memory 122 by the initial setting. After passing through an integrating circuit 709 for noise removal, the output of is output to the outside of the sensor by an output circuit 710.
初期設定は、 その実行命令をする外部スィ ッチ SW 1が 0 Nされると、 初期設定回路 7 1 7の ト リガ信号により、 複数のメモリ 7 1 8、 7 1 9で複数の受光出力が記憶され る。 その記憶された受光信号は演算回路 7 2 0により演算 され (例えば、 平均値、 最大値と最小値の中間値) 、 弁別 範囲が設定される。 その設定された値はメモリ 7 2 1に記 憶され、 初期設定がなされる。 この方式によれば、 初期設 定が非常に容易にできる。  The initial setting is that when the external switch SW1 that executes the execution command is set to 0 N, a plurality of light-receiving outputs are output from a plurality of memories 718 and 719 by the trigger signal of the initialization circuit 717. It is memorized. The stored light receiving signal is calculated by the arithmetic circuit 720 (for example, an average value, an intermediate value between the maximum value and the minimum value), and a discrimination range is set. The set value is stored in the memory 721, and the initial setting is performed. According to this method, initial settings can be made very easily.
次に、 図 1 3 3を参照して、 上記の実施例 7 bの具体回 路構成について説明する。 図 1 3 3において、 初期設定回 路 7 1 1は、 差動増幅回路 7 0 6 (図 1 2 5 ) の出力段増 幅器である AM P 1の基準電圧 V 0 = V c c X (R 3 1 / R 3 ) を変更するものである。 同回路 7 1 1のバッファ出 力 V 0は絶対値回路 7 3 1に入力される。 絶対値回路 7 3 1により、、増幅部の基準電圧値 V r e f と V 0の差 V l = V r e f + | V r e f - V O iが出力される。 そして、 差 動増幅器 7 2 2により、 V 1 と V r e f の差動演算をして V 2 = V BE 1 + I V r e f - V 0 Iが出力される。 電圧 V 2 は電流源 1 により、 電流 I l = (VBE l + | V r e f — V 0 I - V BE 2 ) /R 1 0 ^ | V r e f - V 0 I /R 1 0 に変換される。 検出装置の出力 0 F F時は h y sが Hレべ ルとなり、 トランジスタ T R 3 は 0 F F状態である。 従つ て、 I 0 = (R 1 4 /R 1 6 ) X I I V t h l = V r e f + R 1 7 x I 0. V t h 2 = V r e f - R 1 8 X I 0で ある。 検出装置の出力 O N時は h y sが L レベルとなり ト ランジスタ T R 3 は O Nする。 従って、 I 0 ( (R 1 3 //R 1 4 ) /R 1 6 ) X I 1 (尚、 R 1 3 //R 1 4は、 R 1 3 と R 1 4 との並列接続抵抗を表わす。 :) 、 V t h 1 = V r e f + R 1 7 x I 0、 V t h 2 = V r e f - R 1 8 x I 0である。 従って、 初期設定回路 7 1 1 の抵抗 R 3 1 を変化させるこ とで初期設定、 しきい値、 ヒステリ シス幅 を連動して変更することができる。 この構成では最適な初 期設定が容易にできる。 Next, a specific circuit configuration of the above-described embodiment 7b will be described with reference to FIG. In FIG. 13 3, the initial setting circuit 71 1 is a reference voltage V 0 = V cc X (R 3 1 / R 3). The buffer output V 0 of the same circuit 71 1 is input to the absolute value circuit 73 1. The absolute value circuit 731 outputs the difference Vl = Vref + | Vref-VOi between the reference voltage value Vref and V0 of the amplifier. Then, the differential amplifier 722 performs a differential operation between V 1 and V ref, and outputs V 2 = V BE 1 + IV ref -V 0 I. Voltage V 2 is converted by the current source 1 into a current I l = (V BE l + | V ref — V 0 I-V BE 2) / R 1 0 ^ | V ref-V 0 I / R 10. When the output of the detection device is 0 FF, hys is at the H level, and the transistor TR 3 is in the 0 FF state. Therefore, I0 = (R14 / R16) XIIV thl = Vref + R17xI0. Vth2 = Vref-R18XI0. When the output of the detector is ON, hys is at L level and transistor TR3 is ON. Therefore, I 0 ((R 1 3 // R 1 4) / R 1 6) XI 1 (where R 1 3 // R 1 4 represents the parallel connection resistance of R 1 3 and R 1 4). :), Vth1 = Vref + R17xI0, Vth2 = Vref-R18xI0. Therefore, by changing the resistance R31 of the initial setting circuit 711, the initial setting, the threshold value, and the hysteresis width can be changed in conjunction. With this configuration, optimal initial settings can be easily made.
なお、 絶対値回路 7 3 1 の動作については、 V 0 < V r e f のとき、 ダイオー ド D 1が 0 Nして、 ダイオー ド D 1、 増幅器 AM P 4、 抵抗 R 5を通る負帰還ループができ、 出 力は V l = V r e f + V r e f — V 0 となる。 V 0 ≥ V r e iのとき、 ダイオー ド D 1 は O F F して増幅器 A M P 3 と増幅器 AM P 4 は切り離され、 出力は V l = V r e f — ( V r e f - V 0 ) となる。  Regarding the operation of the absolute value circuit 731, when V 0 <V ref, the diode D 1 becomes 0 N, and the negative feedback loop passing through the diode D 1, the amplifier AMP 4, and the resistor R 5 The output is Vl = Vref + Vref-V0. When V 0 ≥ V r e i, the diode D 1 is turned off and the amplifiers A M P 3 and A M P 4 are separated, and the output becomes V l = V r e f — (V r e f-V 0).
図 1 3 2 は、 初期設定時の変化量に応じてヒステリ シス 幅のみを変更する方式の弁別レベル設定回路 7 1 3の回路 図である。 初期設定時の変化量 V 2 は、 電流源 1, 2で、 電流値 I 1 = ( V 2 - V BE 1 ) / R 1 に変換される。 また、 電流源 2の電流値は I 2 = ( V 2 - V BE 2 - V BE 3 ) / R 6である。 検出装置の出力 O F F時は h y sが Hレベルと なり、 トラ ンジスタ T R 1 は 0 Nする。 従って、 抵抗 R 4, R 5 には電流源 1 の電流 I 1 と電流源 2 の電流 I 2の和が 流れ、 V t h l = V r e f + R 4 x ( 1 1 + 1 2 ) , V t h 2 = V r e f - R 5 x ( 1 1 + 1 2 ) となる。 検出装置 の出力 O N時は h y sが L レベルとなり、 トラ ンジスタ T R 1 は O F F し、 I 1 = 0 となる。 従って、 V t h l = V r e f + R 4 X I 2 , V t h 2 = V r e f — R 5 x I 2 と なる。 従って、 変化量 V 2に応じて電流源の電流値 I 1 = ( V 2 - V BE 1 ) /R 1が変化するので、 初期設定時の変 化量に応じてヒステリ シス幅のみ変化し設定される。 この 構成によれば、 初期設定時の差動演算出力が小さいところ (背景のコ ン トラス トがないところ) で、 周囲照度に合わ せて微妙な初期設定ができ、 検出精度を向上できる。 Fig. 13 2 shows the discrimination level setting circuit 7 1 3 that changes only the hysteresis width according to the amount of change at the time of initial setting. FIG. The change amount V2 at the time of initial setting is converted to the current value I1 = (V2-VBE1) / R1 by the current sources 1 and 2. Also, the current value of the current source 2 is I 2 = (V 2 −V BE 2 −V BE 3) / R 6. When the output of the detector is OFF, hys is at H level and transistor TR1 is set to 0N. Therefore, the sum of the current I 1 of the current source 1 and the current I 2 of the current source 2 flows through the resistors R 4 and R 5, and V thl = V ref + R 4 x (1 1 + 1 2), V th 2 = V ref-R 5 x (1 1 + 1 2). When the output of the detector is ON, hys is at L level, transistor TR1 is OFF, and I1 = 0. Therefore, V thl = V ref + R 4 XI 2, V th 2 = V ref —R 5 xI 2. Therefore, the current value I 1 = (V 2-V BE 1) / R 1 of the current source changes according to the change amount V 2, so that only the hysteresis width changes according to the change amount at the initial setting. Is done. According to this configuration, when the differential operation output at the time of initial setting is small (where there is no background contrast), fine initial setting can be performed in accordance with the ambient illuminance, and detection accuracy can be improved.
図 1 3 3 は、 初期設定時の変化量に応じてしきい値のみ を変更する方式の弁別レベル設定回路 7 1 3の回路図であ る。 初期設定時の変化量 V 2 は、 電流源 1 , 2で、 電流値 I 1 = ( V 2 - V BE 1 ) / R 1 に変換される。 また、 電流 源 2 の電流値は I 2 = ( V 2 - V BE 2 - V BE 3 ) Z R 6で ある。 検出装置の出力 O F F時は h y sが Hレベルとなり、 トランジスタ T R 1 は 0 Nする。 従って、 抵抗 R 4, R 5 には電流源 1の電流 I 1 と電流源 2の電流 I 2の和が流れ、 V t h l =V r e f + R 4 x ( 1 1 + 1 2 ) , V t h 2 = V r e f — R 5 x ( 1 1 + 1 2 ) となる。 検出装置の出力 ON時は h y sが Lレベルとなり、 トランジスタ TR 1は O F Fし、 1 2 = 0 となる。 従って、 V t h l =V r e f + R 4 X I 1 , V t h 2 =V r e f — R 5 X I 1 となる。 従って, 変化量 V 2に応じて電流源の電流値 I 1 = (V 2 - VBE 1 ) /R 1が変化するので、 初期設定時の変化量に 応じて、 しきい値のみ変化し設定される。 この構成によれ ば、 初期設定時の差動演算出力が大きいと ころ (背景のコ ン トラス トがあるところ) での、 初期設定が容易である。 図 1 3 4 a、 1 3 4 bは、 上述した初期設定時の変化量 検出回路 7 1 2の変形例であり、 A C信号の変化量を検出 するのに適した回路を示す図で、 図 1 3 4 aはその一部の 回路図、 図 1 3 6 bはそのタイムチャー トである。 上述し た初期設定器が受光出力の減衰や D Cオフセッ 卜の変更を する場合、 本実施例は V 0の大きさを検出し、 その検出信 号を図 1 3 1の絶対値回路 7 3 1に入力し変化量を検出す る。 そして、 その変化量に応じて、 上述の弁別レベル設定 回路 7 1 3により しきい値、 ヒステリ シス幅の設定をする。 V 0の大きさの検出については、 トランジスタ TR 1の制 御信号 C T Lが Hレベルのとき、 ダイオー ド D 1は導通せ ず、 V S、 V G間は同電位となり トラ ンジスタ T R 1は 0 N状態となる。 従って、 コンデンサ C Hは V Sまで充電さ れる。 制御信号 C T Lが L レベルになると、 ダイオー ド D 1 は導通し、 V S、 V G間に電位差が発生し、 トラ ンジス タ T R 1 は 0 F F状態となる。 従って、 コンデンサ C Hは その直前の電位 V 0で保持される。 バッファアンプ 2 によ り V = V 0 と出力される。 この構成は、 変化量を検出した い信号が A C信号のときに有効である。 FIG. 13 is a circuit diagram of a discrimination level setting circuit 7 13 in which only the threshold value is changed according to the amount of change at the time of initial setting. The change amount V2 at the time of the initial setting is converted into a current value I1 = (V2-VBE1) / R1 by the current sources 1 and 2. The current value of the current source 2 is I 2 = (V 2 -V BE 2 -V BE 3) ZR 6. When the output of the detector is OFF, hys is at H level and transistor TR1 is set to 0N. Therefore, the resistors R 4 and R 5 , The sum of the current I 1 of the current source 1 and the current I 2 of the current source 2 flows, and V thl = V ref + R 4 x (1 1 +1 2), V th 2 = V ref — R 5 x ( 1 1 + 1 2). When the output of the detector is ON, hys is at L level, transistor TR1 is OFF, and 1 2 = 0. Therefore, V thl = V ref + R 4 XI 1, and V th 2 = V ref —R 5 XI 1. Therefore, the current value I 1 = (V 2-V BE 1) / R 1 of the current source changes according to the change amount V 2, and only the threshold value changes according to the change amount at the initial setting. Is done. According to this configuration, initial setting is easy when the differential operation output at the time of initial setting is large (where there is a background contrast). FIGS. 13A and 13B are modified examples of the change amount detection circuit 7 12 at the time of the initial setting described above, and are diagrams showing circuits suitable for detecting the change amount of the AC signal. 1334a is a part of the circuit diagram, and Fig.136b is its time chart. In the case where the initial setting unit described above attenuates the received light output or changes the DC offset, the present embodiment detects the magnitude of V 0 and outputs the detected signal to the absolute value circuit 7 3 1 in FIG. To detect the amount of change. Then, the threshold and the hysteresis width are set by the above-described discrimination level setting circuit 711 according to the amount of change. Regarding the detection of the magnitude of V0, when the control signal CTL of the transistor TR1 is at the H level, the diode D1 does not conduct and the potential between VS and VG becomes the same potential, and the transistor TR1 changes to the 0N state. Become. Therefore, capacitor CH is charged to VS It is. When the control signal CTL goes to L level, the diode D1 conducts, a potential difference occurs between VS and VG, and the transistor TR1 becomes 0FF. Therefore, the capacitor CH is held at the immediately preceding potential V 0. Buffer amplifier 2 outputs V = V 0. This configuration is effective when the signal whose variation is to be detected is an AC signal.
図 1 3 5は、 しきい値とヒステリ シス幅を変更すること で初期設定を行う方式の弁別レベル設定回路 7 1 3の回路 図であり、 2つのしきい値レベルの中心値に応じて、 しき い値とヒステリ シス幅を変更する変更器を示している。 し きい値の中心値は初期設定回路 7 1 1 としての抵抗 R 1の VR を変更することで行なう。 VB はバッ フ ァを介して図 1 3 1の初期設定時の変化量検出回路 7 1 2のバッ フ ァの +入力へ入力され、 図 1 3 1の差動増幅器の出力 V 2に応 じた電流源電流 I 1 = ( V 2 - VBE) /R 1 に変換される。 検出装置の出力 0 F F時は h y sが Hレベルとなり、 トラ ンジスタ T R 1 は O F F状態である。 従って、 I 0 = (R 2 /R 4 ) X I I , V t h l = V r e f + R 8 x l O , V t h 2 = V r e f - R 9 x I 0である。 検出装置の出力 0 N時は h y sが L レベルとなり、 トランジスタ T R 1 は 0 Nする。 従って、 I 0 ^ ( (R 2 / /R 5 ) ZR 4 ) x I 1 , V t h l = V r e f + R 8 x I 0 , V t h 2 = V r e i — R 9 X I 0である。 従って、 しきい値の中心値の電圧 に応じて 2つのしきい値間の電圧、 ヒステリ シス幅が変化 する。 この構成を採用すれば、 差動増幅回路 (図 1 2 5の 7 0 6 ) の変更がないので安定な受光信号が得られる。 Fig. 13 5 is a circuit diagram of the discrimination level setting circuit 7 13 that performs initial setting by changing the threshold and the hysteresis width, and according to the center value of the two threshold levels, It shows a changer that changes the threshold and the hysteresis width. The center value of the threshold value is determined by changing the VR of the resistor R1 as the initial setting circuit 711. VB is input via the buffer to the + input of the buffer in the change amount detection circuit 7 12 in the initial setting shown in Figure 13 1 according to the output V 2 of the differential amplifier in Figure 13 1. Current source current I 1 = (V 2-V BE ) / R 1. When the output of the detection device is 0 FF, hys is at the H level, and the transistor TR1 is in the OFF state. Therefore, I0 = (R2 / R4) XII, Vthl = Vref + R8xlO, Vth2 = Vref-R9xI0. When the output of the detection device is 0 N, hys is at the L level and the transistor TR 1 is set to 0 N. Therefore, I0 ^ ((R2 // R5) ZR4) xI1, Vthl = Vref + R8xI0, Vth2 = Vrei-R9XI0. Therefore, the voltage between the two thresholds and the hysteresis width change according to the voltage at the center of the threshold. I do. If this configuration is adopted, a stable light receiving signal can be obtained because there is no change in the differential amplifier circuit (706 in FIG. 125).
( 7 c ) 実施例 7 c  (7c) Example 7c
実施例 7 cの回路図を図 1 3 6 に示し、 その動作のタイ ムチャー トを 1 3 7 a〜 1 3 7 gに示す。 本実施例は、 検 出素子として 3個のフォ トダイオー ド P D 1 , P D 2 , P D 3を有するものである。 前述したように検出素子が 2つ の場合では、 検出物体面にコン トラス トがなく、 視野すベ てを覆ってしまうような大きな物体の検出はできない。 そ れに対して、 検出素子を 3つにして視野を広げ、 それぞれ の検出信号を図示のごと く増幅することにより、 差動増幅 器 AM P 3の出力でもって大きな物体の検出も可能となる。  The circuit diagram of the embodiment 7c is shown in Fig. 136, and the timing chart of the operation is shown in 137a to 137g. In this embodiment, three photodiodes PD1, PD2, and PD3 are used as detection elements. As described above, when there are two detection elements, there is no contrast on the detection object surface, and a large object that covers the entire field of view cannot be detected. On the other hand, by expanding the field of view by using three detection elements and amplifying each detection signal as shown in the figure, it is also possible to detect large objects with the output of the differential amplifier AMP3 .
このように検出物体の大きさや検出したいエリアに応じ て検出素子の数を決めることでより確実な検出ができる。 なお、 初期設定は、 上述した各種の方法のいずれかを用い て行えばよい。 産業上の利用可能性  Thus, more reliable detection can be performed by determining the number of detection elements according to the size of the detection object and the area to be detected. Note that the initial setting may be performed using any of the various methods described above. Industrial applicability
以上のように、 本発明に係る物体検知装置は、 洗面所、 トイ レでの自動給水器や、 人がいるときにのみ自動的に作 動させる必要のある機械の運転用の検知器と して有用であ り、 特に省エネルギが要求されるもとでの機器の自動運転 制御に用いるのに適している。  As described above, the object detection device according to the present invention is an automatic water supply device in a washroom or a toilet, or a detector for operating a machine that needs to be automatically operated only when a person is present. It is particularly suitable for use in automatic operation control of equipment where energy saving is required.

Claims

請求の範囲 The scope of the claims
1 . 物体の有無を光学的に検知する検知装置であって、 光学系と、 前記光学系を通過した光を受ける光検出素子 とにより複数の受光視野を構成する受光手段と、 1. A detecting device for optically detecting the presence or absence of an object, comprising: an optical system; and a light detecting element configured to form a plurality of light receiving fields by a light detecting element that receives light passing through the optical system;
前記光検出素子からの出力をもとに、 前記複数の受光視 野間の光量変動を検出する光量変動検出手段とを含む、 物 体検知装置。  An object detection device, comprising: a light amount fluctuation detecting unit configured to detect a light amount fluctuation between the plurality of light-receiving fields based on an output from the light detection element.
2 . 前記光学系は光ファイバを含む、 請求の範囲第 1項に 記載の装置。  2. The apparatus according to claim 1, wherein said optical system includes an optical fiber.
3 . 前記背景は第 1の色と前記第 1 と異なる第 2の色とか らなるパターンを含む、 請求の範囲第 1項に記載の装置。  3. The apparatus according to claim 1, wherein the background includes a pattern composed of a first color and a second color different from the first color.
4 . 前記第 1の色は明るい色を含み、 前記明るい色のバタ ーンは発光体で形成される、 請求の範囲第 3項に記載の装 m. o  4. The apparatus according to claim 3, wherein the first color includes a light color, and the light-colored pattern is formed of a luminous body.
5 . 前記光学系は受光用レンズを含む、 請求の範囲第 1項 記載の装置。  5. The device according to claim 1, wherein the optical system includes a light receiving lens.
6 . 前記受光視野が隣接している請求の範囲第 1項記載の 物体検知装置。  6. The object detection device according to claim 1, wherein the light receiving visual fields are adjacent to each other.
7 . 前記光検出素子が複数に分割されたフォ 卜ダイォ一 ド で構成されている、 請求の範囲第 6項記載の物体検知装置。  7. The object detection device according to claim 6, wherein the photodetection element is constituted by a plurality of divided photodiodes.
8 . 前記受光視野が、 複数の前記受光手段により構成され ている、 請求の範囲第 1項記載の物体検知装置。  8. The object detecting device according to claim 1, wherein the light receiving field of view is constituted by a plurality of the light receiving means.
9 . 前記複数の受光視野の間隔が離れている、 請求の範囲 第 8項記載の物体検知装置。 9. The plurality of light-receiving fields are spaced apart from each other. Item 9. The object detection device according to Item 8.
1 0 . 前記複数の受光視野が重複している、 請求の範囲第 8項記載の物体検知装置。  10. The object detection device according to claim 8, wherein the plurality of light-receiving fields overlap.
1 1 . 弁を開閉して給水を制御する給水部と、 該給水部か ら給水される水洗器と、 該水洗器が使用されたことを感知 する感知部と、 該感知部からの感知信号に基づいて前記給 水部の弁を開閉する信号を出力する制御部とから構成され、 電池を駆動電源とし、 前記感知部に請求の範囲第 1項に記 載の検知装置を用いたことを特徴とする給水制御装置。  11. A water supply unit that controls water supply by opening and closing a valve, a water washer supplied from the water supply unit, a sensing unit that senses that the water washer has been used, and a sensing signal from the sensing unit A control unit that outputs a signal for opening and closing the valve of the water supply unit based on the following.A battery is used as a driving power source, and the detection unit described in claim 1 is used for the sensing unit. Characteristic water supply control device.
1 2 . 人の存在が検知された時、 取引処理が可能となる自 動発券機等の取引装置において、 その人体検知に請求の範 囲第 1項に記載の検知装置を用いたことを特徴とする自動 発券機等の取引装置。  1 2. In a transaction device such as an automatic ticketing machine that enables transaction processing when the presence of a person is detected, the detection device described in claim 1 is used for detecting the human body. Transaction machines such as automatic ticketing machines.
1 3 . 人の存在が検知された時、 電源がオンされるデイ ス プレイ装置において、 その人体検知に請求の範囲第 1項に 記載の検知装置を用いたことを特徴とするディ スプレイ装 m. o  13. A display device which is turned on when the presence of a person is detected, wherein the detection device according to claim 1 is used for detecting the human body. o
1 . 人の存在が検知された時、 電源がオンされるパチン コ玉出し装置において、 その人体検知に請求の範囲第 1項 に記載の検知装置を用いたことを特徴とするパチンコ玉出 し装置。 、  1. A pachinko ball-feeding device which is powered on when the presence of a person is detected, wherein the detection device according to claim 1 is used for detecting the human body. . ,
1 5 . 人の存在が検知された時、 電源がオンされる自動照 明又は空調装置において、 その人体検知に請求の範囲第 1 項に記載の検知装置を用いたことを特徴とする自動照明又 は空調装置。 15. Automatic lighting or an air conditioner that is turned on when the presence of a person is detected, characterized in that the detecting device according to claim 1 is used for detecting the human body. or Is an air conditioner.
1 6 . 人体が検知された時、 ドアを自動的に開く 自動ドア 装置において、 その人体検知に請求の範囲第 1項に記載の 検知装置を用いたことを特徴とする自動ドア装置。  16. An automatic door device which automatically opens a door when a human body is detected, wherein the human body is detected using the detection device according to claim 1.
1 7 . 物体の有無を光学的に検知する検知装置であって、 受光用レンズと、 前記受光用レンズを通過した光を受光 する光検出素子とにより受光視野を構成する受光手段と、 前記光検出素子からの出力を信号処理することにより、 前記受光視野内の光重心位置の変動を検出する信号処理手 段とを含む、 物体検知装置。  17. A detection device for optically detecting the presence or absence of an object, comprising: a light-receiving lens; a light-receiving unit that forms a light-receiving field by a light-detecting element that receives light passing through the light-receiving lens; A signal processing means for detecting a change in the position of the center of gravity of the light in the light receiving visual field by performing signal processing on an output from the detection element.
1 8 . 物体の有無を検出するパッシブ型の検知装置であつ て、  1 8. A passive detection device that detects the presence or absence of an object.
物理量を検出する検出素子と、  A detection element for detecting a physical quantity,
前記検出素子からの出力を増幅する増幅器と、  An amplifier for amplifying the output from the detection element;
前記増幅器の出力から検出対象の状態を 2値判断する判 断手段と、  Judging means for judging the state of the detection target from the output of the amplifier,
前記検出素子の出力の前記増幅器への伝達を周期的に断 続するスィ ッチ手段とを含む、 パッ シブ型検知装置。  Switch means for periodically interrupting transmission of the output of the detection element to the amplifier.
1 9 . 前記判断手段は、 前記スィ ッチ手段でパルス化され 前記増幅器で増幅された各パルスごとの信号の大きさが所 定値を連銃して所定回数超えたときに出力を変化させる、 請求の範囲第 1 8項に記載の物体検知装置。  19. The determining means changes the output when the magnitude of the signal for each pulse pulsed by the switch means and amplified by the amplifier exceeds a predetermined value by a predetermined number of times, 19. The object detection device according to claim 18, wherein:
2 0 . 前記判断手段は、 20. The determining means
前記スィ ッチ手段でパルス化され前記増幅器で増幅され た信号を所定の基準値との大小関係に基づいて 2値パルス 化する第 1の比較手段と、 Pulsed by the switch means and amplified by the amplifier First comparing means for binarizing the received signal into a binary pulse based on a magnitude relationship with a predetermined reference value;
前記第 1 の比較手段の出力を積分する積分手段と、 前記積分手段の出力を所定の基準値との大小関係に基づ いて 2値化して出力する第 2の比較手段とを含む、 請求の 範囲第 1 8項に記載の物体検知装置。  An integrating means for integrating an output of said first comparing means, and a second comparing means for binarizing and outputting the output of said integrating means based on a magnitude relationship with a predetermined reference value. Item 19. The object detection device according to Item 18.
2 1 . 前記スィ ッチ手段のスイ ッチング周波数を含む帯域 の信号を通過させるフィ ルタをさ らに含む、 請求の範囲第 1 8項に記載の物体検知装置。  21. The object detection device according to claim 18, further comprising a filter that passes a signal in a band including a switching frequency of the switching means.
2 2 . 前記検出素子が光検出素子で構成されている、 請求 の範囲第 1 8項に記載の物体検知装置。 22. The object detection device according to claim 18, wherein the detection element is configured by a light detection element.
2 3 . 前記検出素子が赤外線検出素子である、 請求の範囲 第 1 8項に記載の物体検知装置。 23. The object detection device according to claim 18, wherein the detection element is an infrared detection element.
2 4 . 前記検出素子が温度センサである、 請求の範囲第 1 8項に記載の物体検知装置。  24. The object detection device according to claim 18, wherein the detection element is a temperature sensor.
2 5 . 前記検出素子が圧力センサである、 請求の範囲第 1 8項に記載の物体検知装置。  25. The object detection device according to claim 18, wherein the detection element is a pressure sensor.
2 6 . 前記検出素子が湿度センサである、 請求の範囲第 1 8項に記載の物体検知装置。  26. The object detection device according to claim 18, wherein the detection element is a humidity sensor.
2 7 . 前記検出素子がガスセンサである、 請求の範囲第 1 8項に記載の物体検知装置。  27. The object detection device according to claim 18, wherein the detection element is a gas sensor.
2 8 . 被検出物体からの光を受光するこ とによって前記被 検出物体を検知するパッ シブ型検知器であって、  28. A passive detector for detecting the detected object by receiving light from the detected object,
複数の受光視野を構成し、 前記受光視野内に存する前記 被検出物体または背景物体からの光を複数の受光素子によ り受光し、 この受光量に基づいて複数の系統の検出信号を 出力する受光手段と、 Configuring a plurality of light-receiving fields; Light receiving means for receiving light from a detected object or a background object by a plurality of light receiving elements and outputting detection signals of a plurality of systems based on the amount of received light;
前記複数の系統の各検出信号をそれぞれ時分割するゲ一 ト手段と、  Gate means for respectively time-dividing each of the detection signals of the plurality of systems,
前記各検出信号が前記ゲ一 ト手段を通過するタイ ミ ング が非同期で時分割となるように前記ゲー ト手段にパルス信 号を供給するパルス発生手段と、  Pulse generation means for supplying a pulse signal to the gate means so that the timing at which the detection signals pass through the gate means is asynchronous and time-division;
前記ゲ一 ト手段により時分割された前記各検出信号を組 合せて 1系統で信号処理をするこ とにより、 前記受光視野 間の光量変動を検出する信号処理手段とを含む、 パッシブ 型検知器。  A signal processing means for detecting a light quantity fluctuation between the light receiving fields by performing signal processing in one system by combining the respective detection signals time-divided by the gate means. .
2 9 . 前記信号処理手段への電源の供給を制御する制御手 段を備え、  29. A control means for controlling supply of power to the signal processing means,
前記制御手段は、 前記パルス発生手段のパルスと同期し、 かつ前記組合せられた検出信号を前記信号処理手段が処理 するに必要な時間だけ電源を供給する、 請求の範囲第 2 8 項記載のパッ シブ型検知器。  29. The package according to claim 28, wherein said control means supplies power in synchronization with a pulse of said pulse generation means and for a time necessary for said signal processing means to process said combined detection signal. Shiv type detector.
3 0 . 被検出物体からの光を受光することによて、 前記被 検出物体を検知するパッシブ型検知器であって、  30. A passive detector for detecting the detected object by receiving light from the detected object,
複数の受光視野を構成し、 前記受光視野内に存在する前 記被検出物体または背景物体からの光を受光し、 この受光 量に基づいて受光信号を出力する受光手段と、  A plurality of light-receiving fields, light-receiving means for receiving light from the detected object or the background object present in the light-receiving field, and outputting a light-receiving signal based on the amount of received light;
前記受光手段の出力に基づいて前記被検出物体の有無を 判断する判断手段と、 The presence or absence of the detected object is determined based on the output of the light receiving unit. Determining means for determining;
前記判断手段の出力に応じて前記受光視野内に向けて補 - 助光を投光する補助光投光手段とを含む、 パッ シブ型検知 器。  A supplementary light projecting unit for projecting supplementary / assisting light toward the inside of the light receiving field according to the output of the determining unit.
3 1 . 前記検知器は検知出力を表示する出力表示手段をさ らに含み、  3 1. The detector further includes output display means for displaying a detection output,
前記表示手段と前記補助光投光手段とを共用する、 請求 の範囲第 3 0項記載のパッシブ型検知器。  30. The passive type detector according to claim 30, wherein said display means and said auxiliary light projecting means are shared.
3 2 . 前記受光手段は、 前記補助光投光手段により投光さ れ、 前記被検出物体において反射された光を受光する受光 部と、 この捕助光投光手段と異なる光源より投光され、 前 記被検出物体において反射された光を受光する受光部とを 共用している、 請求の範囲第 3 0項記載の検知器。 32. The light receiving unit is a light receiving unit that receives light emitted by the auxiliary light projecting unit and reflected by the detected object, and is projected from a light source different from the auxiliary light projecting unit. 30. The detector according to claim 30, wherein said detector shares a light receiving unit for receiving light reflected by said detected object.
3 3 . 前記受光手段は、 前記補助光投光手段により投光さ れ、 前記被検出物体において反射された光を受光する第 1 受光部と、 前記捕助光投光手段とは異なる光源により投光 され、 前記被検出物体において反射された光を受光する第 33. The light receiving unit is a first light receiving unit that receives light emitted by the auxiliary light projecting unit and reflected by the detected object, and a light source different from the trapping light projecting unit. A second light-receiving portion that receives light reflected by the detected object.
2受光部とを含む、 請求の範囲第 3 0項記載の検知器。 30. The detector according to claim 30, comprising two light receiving units.
3 4 . 前記判断手段は、 前記受光手段が前記補助光投光手 段とは異なる光源からの光を受光したときの第 1受光信号 と、 前記補助光投光手段による補助光を受光したときの第  34. The determination means comprises: a first light reception signal when the light receiving means receives light from a light source different from the auxiliary light projection means; and a light reception signal when the auxiliary light is received by the auxiliary light projection means. No.
2受光信号との組合せにより、 前記被検出物体の有無を判 断する、 請求の範囲第 3 0項記載のパッシブ型検知器。  30. The passive detector according to claim 30, wherein the presence / absence of the detected object is determined based on a combination with two light receiving signals.
3 5 . 被検出物体からの光を受光するこ とによって前記被 検出物体を検知するパッ シブ型検知器であつて、 3 5. By receiving light from the object to be detected, A passive type detector that detects a detection object,
複数の受光視野を構成し、 前記受光視野内に存在する前 記被検出物体または背景物体からの光を受光し、 その受光 量に基づいて受光信号を出力する受光手段と、  A plurality of light-receiving fields, light-receiving means for receiving light from the detected object or the background object present in the light-receiving field, and outputting a light-receiving signal based on the amount of received light;
前記受光信号を演算する演算部と、 前記演算部の出力と 所定のしきい値との比較に基づいて前記被検出物体の有無 を判断する判断部とを含む信号処理手段と、  A signal processing unit including: a calculation unit that calculates the light reception signal; and a determination unit that determines the presence or absence of the detected object based on a comparison between an output of the calculation unit and a predetermined threshold value.
前記信号処理手段による検知出力を外部に出力する出力 手段と、  Output means for outputting a detection output by the signal processing means to the outside,
前記受光視野内の照度を検出する照度検出手段と、 前記照度検出手段により検出された照度に応じて前記検 知出力が出力されるのを禁止する出力禁止手段とを含む、 パッシブ型検知器。  A passive type detector comprising: illuminance detection means for detecting illuminance in the light-receiving field; and output inhibition means for inhibiting output of the detection output in accordance with the illuminance detected by the illuminance detection means.
3 6 . 検知装置自らが投光した光ではない光を受光するこ とによって物体を検知するパッシブ型物体検知装置であつ て、  36. A passive object detection device that detects an object by receiving light that is not the light emitted by the detection device itself.
2つの受光信号を出力する光検出部と、  A light detection unit that outputs two light reception signals,
前記 2つの受光信号を差動演算する差動演算手段と、 前記差動演算手段の出力と 2つのしきい値との比較に基 づいて物体の有無を判断する判断手段と、  Differential operation means for performing a differential operation on the two light receiving signals; determining means for determining the presence or absence of an object based on a comparison between an output of the differential operation means and two thresholds;
初期状態において前記差動演算手段の出力が所定に値に なるように前記差動演算手段の出力を調整する調整手段と、 前記調整手段によって差動演算出力が調整された量を検 出する調整量検出手段と、 前記調整量検出手段の出力に基づいて前記 2つのしきい 値または前記各しきい値に与えられるヒステリ シス幅を設 定する しきい値設定手段とを含む、 パッ シブ型物体検知装 置。 Adjusting means for adjusting the output of the differential arithmetic means so that the output of the differential arithmetic means has a predetermined value in an initial state; and adjusting for detecting the amount of the differential arithmetic output adjusted by the adjusting means. Quantity detection means; A threshold value setting unit that sets the two threshold values or the hysteresis width given to each of the threshold values based on the output of the adjustment amount detection unit.
3 7 . 検知装置自らが投光した光ではない光を受光するこ とによつて物体を検知するパッシブ型物体検知装置であつ て、  37. A passive object detection device that detects an object by receiving light that is not the light emitted by the detection device itself.
2つの受光信号を出力する光検出部と、  A light detection unit that outputs two light reception signals,
前記 2つの受光信号を演算する差動演算手段と、  Differential operation means for calculating the two light receiving signals,
前記差動演算手段の出力と 2つのしきい値との比較に基 づいて物体の有無を判断する判断手段と、  Determining means for determining the presence or absence of an object based on a comparison between the output of the differential operation means and two thresholds;
初期状態において前記差動演算手段の出力が所定の値に なるように前記差動演算手段の出力を調整する調整手段と、 前記調整手段によって 2つのしきい値が調整された量を 検出する調整量検出手段と、  Adjusting means for adjusting the output of the differential operation means so that the output of the differential operation means has a predetermined value in an initial state; and adjusting for detecting an amount of two threshold values adjusted by the adjustment means. Quantity detection means;
前記調整量検出手段の出力に基づいて前記各しきい値に 与えられるヒステリ シス幅を設定するしきい値設定手段と を含む、 パッ シブ型物体検知装置。  A threshold setting means for setting a hysteresis width given to each of the thresholds based on an output of the adjustment amount detecting means.
3 8 . 検知装置自らが投光した光ではない光を受光するこ とによつて物体を検知するパッ シブ型の検知装置であつて、  3 8. A passive detection device that detects an object by receiving light that is not the light emitted by the detection device itself.
2つの受、光信号を出力する光検出部と、  Two light receiving and light detecting units for outputting light signals,
前記 2つの受光信号を差動演算する差動演算手段と、 前記差動演算手段の出力と 2つのしきい値との比較に基 づいて物体の有無を判断する判断手段と、 初期状態において前記差動演算手段の出力が前記 2つの しきい値のほぼ中心値となるように前記 2つのしきい値を 連動して調整するための調整手段と、 Differential operation means for performing a differential operation on the two light receiving signals; determining means for determining the presence or absence of an object based on a comparison between an output of the differential operation means and two thresholds; Adjusting means for interlockingly adjusting the two threshold values so that the output of the differential operation means is substantially the center value of the two threshold values in an initial state;
前記調整手段によつて 2つのしきい値に関して調整され た量を検出する調整量検出手段と、  Adjusting amount detecting means for detecting an amount adjusted with respect to the two threshold values by the adjusting means;
前記調整量検出手段の出力に基づいて前記 2つのしきい 値の間隔又は各しきい値に与えられるヒステリ シス幅を設 定するしきい値設定手段とからなる物体等の検知装置。  An object or the like detection device comprising: threshold value setting means for setting an interval between the two threshold values or a hysteresis width given to each threshold value based on an output of the adjustment amount detection means.
PCT/JP1996/002086 1995-07-27 1996-07-25 Detector WO1997005507A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP50745597A JP3548847B2 (en) 1995-07-27 1996-07-25 Object detection device
AU65309/96A AU6530996A (en) 1995-07-27 1996-07-25 Detector

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP21262895 1995-07-27
JP7/212627 1995-07-27
JP7/212628 1995-07-27
JP21262795 1995-07-27
JP8/80927 1996-03-08
JP8092796 1996-03-08
JP8326896 1996-03-11
JP8/83268 1996-03-11

Publications (1)

Publication Number Publication Date
WO1997005507A1 true WO1997005507A1 (en) 1997-02-13

Family

ID=27466494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002086 WO1997005507A1 (en) 1995-07-27 1996-07-25 Detector

Country Status (3)

Country Link
JP (1) JP3548847B2 (en)
AU (1) AU6530996A (en)
WO (1) WO1997005507A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207852A (en) * 2002-12-24 2004-07-22 Denso Wave Inc Image communication system
WO2004083897A1 (en) * 2003-02-19 2004-09-30 Sumitomo Electric Industries, Ltd. Motor vehicle-detecting system
EP1798577A2 (en) 2005-12-16 2007-06-20 Sick Ag Optoelectronic device and method for operating an optoelectronic device
US8955822B2 (en) 2002-12-04 2015-02-17 Sloan Valve Company Passive sensors for automatic faucets and bathroom flushers
JP2018036260A (en) * 2016-08-24 2018-03-08 エクセリタス テクノロジーズ シンガポール プライヴェート リミテッド Infrared presence sensing with modeled background subtraction

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121177A (en) * 1974-08-14 1976-02-20 Seikosha Kk
JPS60159677A (en) * 1984-01-30 1985-08-21 Nippon Air Brake Co Ltd Body detector
JPS62280628A (en) * 1986-05-29 1987-12-05 Murata Mfg Co Ltd Mirror body for dual type pyroelectric infrared sensor
JPH04104081A (en) * 1990-08-23 1992-04-06 Yamatake Honeywell Co Ltd Traveling body sensor
JPH0436466Y2 (en) * 1987-07-24 1992-08-27
JPH0534436A (en) * 1991-08-02 1993-02-09 Mitsubishi Electric Corp Distance measuring apparatus for automobile
JPH0675059A (en) * 1992-08-25 1994-03-18 Atsumi Denki Kk Hot-wire sensor system
JPH07145632A (en) * 1993-06-30 1995-06-06 Geberit Technik Ag Method and equipment for controlling water flow in plumbing equipment by noncontact form and lavatory equipment with above-mentioned equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121177A (en) * 1974-08-14 1976-02-20 Seikosha Kk
JPS60159677A (en) * 1984-01-30 1985-08-21 Nippon Air Brake Co Ltd Body detector
JPS62280628A (en) * 1986-05-29 1987-12-05 Murata Mfg Co Ltd Mirror body for dual type pyroelectric infrared sensor
JPH0436466Y2 (en) * 1987-07-24 1992-08-27
JPH04104081A (en) * 1990-08-23 1992-04-06 Yamatake Honeywell Co Ltd Traveling body sensor
JPH0534436A (en) * 1991-08-02 1993-02-09 Mitsubishi Electric Corp Distance measuring apparatus for automobile
JPH0675059A (en) * 1992-08-25 1994-03-18 Atsumi Denki Kk Hot-wire sensor system
JPH07145632A (en) * 1993-06-30 1995-06-06 Geberit Technik Ag Method and equipment for controlling water flow in plumbing equipment by noncontact form and lavatory equipment with above-mentioned equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8955822B2 (en) 2002-12-04 2015-02-17 Sloan Valve Company Passive sensors for automatic faucets and bathroom flushers
JP2004207852A (en) * 2002-12-24 2004-07-22 Denso Wave Inc Image communication system
WO2004083897A1 (en) * 2003-02-19 2004-09-30 Sumitomo Electric Industries, Ltd. Motor vehicle-detecting system
CN100357765C (en) * 2003-02-19 2007-12-26 住友电气工业株式会社 Motor vehicle-detecting system
US7835853B2 (en) 2003-02-19 2010-11-16 Sumitomo Electric Industries, Ltd. Vehicle detection system
EP1798577A2 (en) 2005-12-16 2007-06-20 Sick Ag Optoelectronic device and method for operating an optoelectronic device
EP1798577A3 (en) * 2005-12-16 2013-02-13 Sick Ag Optoelectronic device and method for operating an optoelectronic device
JP2018036260A (en) * 2016-08-24 2018-03-08 エクセリタス テクノロジーズ シンガポール プライヴェート リミテッド Infrared presence sensing with modeled background subtraction

Also Published As

Publication number Publication date
AU6530996A (en) 1997-02-26
JP3548847B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
JP3684970B2 (en) Passive detection device
US6402338B1 (en) Enclosure illumination system
CN106937461A (en) A kind of corridor energy-saving illuminator based on step price
JPH08239877A (en) Method and equipment for operating plumbing equipment controlled in noncontact manner
KR100977006B1 (en) CCTV camera apparatus using passive infrared sensor and illumination sensor, and controlling method thereof
US7106187B2 (en) Fire detector
KR100524233B1 (en) Energy saving automatic illumination dimming control device using combination senor
WO1997005507A1 (en) Detector
JPH09501253A (en) Infrared type intrusion detector
CA2619630C (en) Multiple sensor lighting system
CN102105006A (en) Pyroelectric infrared induction lamp controller and control method thereof
CN203691674U (en) Intelligent passageway illumination system
US7876056B2 (en) Multiple sensor variable illumination level lighting system
JPS5818147A (en) Discriminating device for state of road surface
KR100504603B1 (en) Multi-purpose warning system including emergency power source and control method therefor
US4237452A (en) Smoke detection system and method
JPH06241788A (en) Static human-sensitive device and human-sensitive lighting system
US4237453A (en) Smoke detection system and method
JPH0430552Y2 (en)
JPH0587629A (en) Hot-wire detector
WO1987005115A1 (en) Passive optical detector
JPS6234430A (en) Receiver for optical communication
KR101611883B1 (en) An apparatus for objects sensing and method of thereof sensing
JPS6012236Y2 (en) Smoke detector with indicator light
CN106922063A (en) It is a kind of based on solar powered corridor energy-saving illuminator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ HU JP KR MX NO NZ PL SG TR US VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA