WO1996041217A1 - Flat diffraction grating light valve - Google Patents

Flat diffraction grating light valve Download PDF

Info

Publication number
WO1996041217A1
WO1996041217A1 PCT/US1996/008804 US9608804W WO9641217A1 WO 1996041217 A1 WO1996041217 A1 WO 1996041217A1 US 9608804 W US9608804 W US 9608804W WO 9641217 A1 WO9641217 A1 WO 9641217A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
light
plane
group
modulator according
Prior art date
Application number
PCT/US1996/008804
Other languages
French (fr)
Inventor
David M. Bloom
Dave B. Corbin
William C. Banyai
Bryan P. Staker
Original Assignee
Silicon Light Machines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Light Machines filed Critical Silicon Light Machines
Priority to EP96917143A priority Critical patent/EP0830624B1/en
Priority to AT96917143T priority patent/ATE192241T1/en
Priority to DK96917143T priority patent/DK0830624T3/en
Priority to KR1019970708749A priority patent/KR100320997B1/en
Priority to DE69607960T priority patent/DE69607960T2/en
Priority to AU59811/96A priority patent/AU5981196A/en
Priority to JP50129397A priority patent/JP3164824B2/en
Publication of WO1996041217A1 publication Critical patent/WO1996041217A1/en
Priority to NO975696A priority patent/NO975696D0/en
Priority to GR20000401506T priority patent/GR3033806T3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1828Diffraction gratings having means for producing variable diffraction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0808Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more diffracting elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S359/00Optical: systems and elements
    • Y10S359/904Micromirror

Definitions

  • This invention relates to a method of and an apparatus for modulation of a beam of light. More particularly, this invention is for a substantially flat reflective surface having selectively deformable portions for providing a diffraction grating.
  • a light modulator which can operate alone or together with other modulators.
  • Such modulators should provide high resolution, high operating speeds (KHz frame rates), multiple gray scale levels, eg., 100 levels or be compatible with the generation of color, a high contrast ratio or modulation depth, have optical flatness, be compatible with VLSI processing techniques, be easy to handle and be relatively low in cost.
  • KHz frame rates high operating speeds
  • multiple gray scale levels eg., 100 levels or be compatible with the generation of color
  • a high contrast ratio or modulation depth have optical flatness, be compatible with VLSI processing techniques, be easy to handle and be relatively low in cost.
  • U.S. Patent 5,311,360 which is incorporated in its entirety herein by reference.
  • a diffraction grating is formed of a multiple mirrored-ribbon structure such as shown in Figure 1.
  • a pattern of a plurality of deformable ribbon structures 100 are formed in a spaced relationship over a substrate 102. Both the ribbons and the substrate between the ribbons are coated with a light reflective material 104 such as an aluminum film. The height difference that is designed between the surface of the reflective material 104 on the ribbons 100 and those on the substrate
  • the structure is ⁇ /2 when the ribbons are in a relaxed, up state. If light at a wavelength ⁇ impinges on this structure perpendicularly to the surface of the substrate 102, the reflected light from the surface of the ribbons 100 will be in phase with the reflected light from the substrate 102. This is because the light which strikes the substrate travels ⁇ /2 further than the light striking the ribbons and then returns ⁇ /2, for a total of one complete wavelength ⁇ . Thus, the structure appears as a flat mirror when a beam of light having a wavelength of ⁇ impinges thereon.
  • the ribbons 100 can be made to bend toward and contact the substrate 102 as shown in Figure 2.
  • the thickness of the ribbons is designed to be ⁇ /4. If light at a wavelength ⁇ impinges on this structure perpendicularly to the surface of the substrate 102, the reflected light from the surface of the ribbons 100 will be completely out of phase with the reflected light from the substrate 102. This will cause interference between the light from the ribbons and light from the substrate and thus, the structure will diffract the light. Because of the diffraction, the reflected light will come from the surface of the structure at an angle ⁇ from perpendicular.
  • One very important criteria is the contrast ratio between a dark pixel and a lighted pixel.
  • the best way to provide a relatively large contrast ratio is to ensure that a dark pixel has no light.
  • One technique for forming a display device using the structure described above is to have a source of light configured to provide light with a wavelength ⁇ which impinges the surface of the structure from the perpendicular.
  • a light collection device e.g., optical lenses, can be positioned to collect light at the angle ⁇ . If the ribbons for one pixel are in the up position, all the light will be reflected back to the source and the collection device will receive none of the light. That pixel will appear black. If the ribbons for the pixel are in the down position, the light will be diffracted to the collection device and the pixel will appear bright.
  • the inventors of the '360 patent envisioned using three distinct valve structures having distinct periodicity of spacings between the ribbons. This structure thereby requires a larger number of ribbons to achieve color. Further, a light source that includes red, green and blue components impinges on these structures to diffract the light to the desired receptors. Accordingly, the intensity of the light is reduced for color.
  • the '360 patent teaches an alternate structure as shown in Figure 3.
  • a plurality of elongated elements are disposed over a substrate 200.
  • a first plurality of the elongated elements 202 are suspended by their respective ends (not shown) over an air gap 204 as in the embodiment of Figures 1 and 2.
  • a second plurality of the elongated elements 206 are mounted to the substrate 200 via a rigid support member 208.
  • the height of the support members 208 is designed to be ⁇ /4.
  • a reflective material 210 is formed over the surface of all the elongated elements 202 and 206.
  • the elongated elements 202 and 206 are designed to be at the same height when at rest.
  • a layer In order build a structure such as shown in Figure 3, a layer must be formed of a first material having a predetermined susceptibility to a known etchant. Portions of that layer are removed through known techniques such as photolithography and etching. A second material is then formed in the voids of the removed material such as by deposition. This second material has a known susceptibility to the etchant which is different than the first material. The layer is formed of the elongated element material. This structure is etched to form ribbons of the elongated elements. Finally, the second material is removed by etching to form the suspended elongated elements 202. It is difficult to consistently manufacture the device such that the first material and the second material are coplanar.
  • the two sets of elongated elements are not likely to be perfectly coplanar.
  • most conventional techniques for forming the selectively removable layers of the first and second materials will provide a support member 208 that will swell (or shrink) during processing. This will further exacerbate the problem because such discontinuities will be at precisely the same period as the desired grating and as such the optics will capture this unwanted diffracted light.
  • a diffraction grating light valve modulates an incident beam of light.
  • a plurality of elongated elements each have a reflective surface.
  • the elongated elements are suspended with their respective ends substantially coplanar. Alternate ones of the elongated elements are electrically coupled for receiving a first bias voltage.
  • the other elongated elements are electrically coupled for receiving a second bias voltage.
  • the diffraction grating light valve When all the elongated elements are in the first plane, the diffraction grating light valve reflects the beam of light.
  • a predetermined group of the elongated elements preferably alternate ones, are deformable to be substantially coplanar in a second plane which is parallel to the first plane. When the predetermined group of elements is in the second plane, the diffraction grating light valve diffracts the beam of light.
  • Figure 1 shows a cross section view of a prior art diffraction grating light valve wherein ribbon elements are in an up position.
  • Figure 2 shows a cross section view of the prior art diffraction grating light valve of Figure 1 wherein the ribbon elements are in a down position.
  • Figure 3 shows a cross section view of an alternate embodiment prior art diffraction grating light valve having a plurality of planarly arrayed elongated elements, a portion of which are supported by support members.
  • Figure 4 shows a cross section view of the diffraction grating light valve in the non-diffracting/up mode according to the preferred embodiment.
  • Figure 5 shows a cross section view of the diffraction grating light valve of Figure
  • Figure 6 shows a cross section view of the diffraction grating light valve of Figure 4 taken through 90° and across two pixels.
  • Figure 7 shows a cross section view of the diffraction grating light valve of Figure
  • Figure 8 shows a plan view of the diffraction grating light valve of Figure 4 and adjacent pixels.
  • Figure 9 is a graph showing the intensity of light from one of the elongated elements of Figure 4 relative to a voltage applied between the elongated element and the substrate in the case where no bias voltage is applied.
  • Figure 4 shows a cross section view of the diffraction grating light valve in the non-diffracting/up mode according to the preferred embodiment.
  • the details of a manufacturing process are disclosed in a co-owned, co-filed, co-pending U.S. Patent application, serial number 08/480,459, entitled A METHOD OF MAKING AND AN
  • a substrate 300 is provided and can be any convenient material such as a grown silicon.
  • a passivating layer 302 such as silicon nitride Si 3 N 4 is formed over the substrate.
  • a conducting layer 304 is formed over the passivating layer 302.
  • the conducting layer 304 is formed of a material that is resistant to subsequent processing steps, for example tungsten or a tungsten alloy.
  • a suspended element is formed next and includes layers collectively known as a ribbon 318.
  • the suspended element includes a ribbon layer 306 formed above and spaced from the conducting layer 304.
  • the ribbon layer 306 material is preferably silicon nitride.
  • a reflecting layer 308 is formed on the ribbon layer 306 and is preferably formed of aluminum.
  • a thin protection layer 310 is formed over the reflecting layer 308 an is preferably a PECVD oxide.
  • An air gap 312 is left between the conducting layer 304 and the ribbon layer 306.
  • Figure 5 shows a cross section view of the diffraction grating light valve of Figure 4 in the diffracting/down mode according to the preferred embodiment.
  • the same reference numerals will be used where appropriate to identify the same structures when shown in different drawings to avoid confusion.
  • electrostatic attractive forces cause those predetermined suspended elements to deform and contact the conducting layer 304.
  • the two of the four suspended elements are shown in the down position. This causes diffraction of light reflected from adjacent elements.
  • the distance between the heights of the adjacent elongated elements is ⁇ /4.
  • the losses due to changing the wavelength to red or blue is on the order of 5%. This is partly due to the fact that the intensity of collected light varies as a sine-squared function of the wavelength. Thus, small changes in wavelength will only have small changes in received intensity.
  • the ability to make a device that moves ⁇ /4 is easier than in the prior art.
  • the ⁇ /4 difference comprises a combination of the spacer thickness and the elongated element thickness. This required very tight manufacturing tolerances for two layers.
  • the thickness of the air gap determines the wavelength conformance of the design; the- elongated element can be any thickness.
  • the air gap is preferably formed by removing a sacrificial oxide. Because oxide formation is well characterized under many easily controllable conditions, it is a routine matter to manufacture spacers of the correct dimension. It will be understood that the thickness of the air gap will be adjusted and controlled by the application of voltages to the ribbon or underlying conductor during normal operation of the device. It is also possible to include a light sensor in an apparatus incorporating the diffraction grating light valve of the present invention. The sensor measures the diffracted light and adjusts the bias voltage (described below) in to maximize the sensed diffracted light. In this way the sensor and bias voltage adjusting circuit can drive the elongated elements that are still in the up position to maintain a precise ⁇ /4 relationship even though the wavelength of the light source is changed.
  • the optical system collects essentially zero light.
  • 100% of the light is collected in the on state and zero light is collected in the off state the contrast ratio is co (indeed, any number divided by zero is co).
  • Even modest degradation in the dark state dramatically effects the contrast ratio. For example, if only 5% of unwanted light is collected in the dark state while still 100% of the light is collected in the on state reduces the contrast ratio from co o about 20. If on the other hand, the dark state continues to collect zero light but the on state collects 95%, the contrast ratio continues to be co. Note that the intensity of the display degrades in this example but the contrast ratio remains good.
  • the diffraction grating light valve of the present invention Because of the relative wavelength independence of the diffraction grating light valve of the present invention, it is possible to build a system that utilizes a single structure to formulate color images. For example, three light sources, including red green and blue, can illuminate a pixel of interest. To formulate red, only the red source is activated. The same is true for green or blue. To make other colors, the pixel can be time multiplexed with the light sources. In other words, first the red source is illuminated and the pixels diffract or not as desired, then the blue and finally the green. The order of illumination is not important. The viewer's eye integrates the colors of the display to perceive the desired color.
  • Figure 6 shows a cross section view of the diffraction grating light valve of Figure 4 in the non-diffracting/up mode taken through 90° and across two pixels.
  • Figure 6 only shows schematically the approximate geometries of the various structures. The various shapes and bending angles can change with process variations, selection of materials, thickness of layers and environmental conditions.
  • a pixel 314 is formed along the suspended region and between anchorages 316. The pixels 314 are suspended to allow for deformation to provide selective diffraction as discussed herein.
  • the anchorages allow separation between pixels 314 and also provide a mechanical support on the substrate 300 for the pixel structure.
  • Figure 7 shows a cross section view of the diffraction grating light valve of Figure 5 in the diffracting/down mode taken through 90° and across two pixels.
  • an electrostatic attractive force bends the pixel into contact with the substrate.
  • the conducting layer 304 extends into and out of the page and passes under many pixels.
  • the ribbon 318 from which the pixel is formed passes beyond both borders of the drawing and cross over many conducting layers. This interrelatedness between the pixel ribbons and the conducting layers provides for a unique addressing technique which will be described in more detail in reference to the drawing of Figures 8 and 9.
  • Figure 8 shows a plan view of the diffraction grating light valve of Figure 4 and adjacent pixels.
  • a diffraction grating light valve according to the present invention for a commercially viable display will include at least the number of pixels presently available with other types of display technologies. Thus, for a commercial diffraction grating light valve there will be many more than two con ducting layers 304 and many more ribbons 318 than are shown. For example, one commercially available display includes 1024 rows and 1280 columns of pixels. In addition to the pixels, I/O port bonding pads 326 for coupling electric signals to the ribbons 318 are also shown.
  • Each pixel 320 includes four adjacent ribbons 318.
  • One set 322 of alternating ribbons 318 are coupled to a biasing bus 324. Indeed, two alternating ribbons for each one of the pixels are coupled to the biasing bus 324. The other two ribbons in the pixel 320 are coupled to receive a control voltage from the bond pad 326A.
  • the biasing bus 324 is formed at the same time as the conducting layer 304.
  • the angle the light is deflected is determined by the width of the ribbons 318 and the spacing between adjacent ribbons. Because alternate ribbons are toggled in the preferred embodiment, the period is defined by two adjacent ribbons. In the preferred embodiment, the ribbons are 3.5 microns wide and the space between adjacent ribbons is 1.5 microns. Thus, the period of the structure is 10 microns. It will be appreciated that the space between the ribbons causes light to be lost. It is preferable that the space be minimized relative to the width of the ribbons.
  • Figure 9 is a graph showing the intensity of light from a display structure of two pairs of elongated elements of Figure 4 relative to a voltage applied between an elongated element and the substrate in the case where alternate lines are not biased.
  • the elongated elements exhibit a hysteresis.
  • the elongated element begins to bend slightly as the voltage is increased as exhibited by an increase in light intensity.
  • V D the elongated element snaps down into contact with the conductive layer. The voltage can then be reduced below that level and the elongated element will remain in the down position.
  • V U5 the elongated element will relax and return to the up position.
  • the voltage V D necessary to cause an elongated element to snap into the down position is in the range of 20 volts DC. Depending upon the manufacturing processes, materials and layer thicknesses used to build such devices it is possible that this voltage could range significantly above and below that value.
  • the elongated elements are biased at a midrange voltage V B between the bend voltage V D and the lower voltage V ⁇ . In this way, a considerably smaller voltage excursion is required to cause an elongated element to snap or relax.
  • the bias voltage V B will cause some modest flexing of the elongated elements.
  • the bias voltage V B is applied to all the ribbons of the pixel by applying V B to the bond pad 326A and to the conductor 324. All the ribbons in the pixel 320 will flex slightly and remain planar so that the dark state remains dark.
  • every other ribbon is permanently coupled to the bias voltage V B . The voltage on the respective interdigitated ribbons is changed up or down to cause those ribbons to snap down or relax up.
  • the incremental voltage necessary to switch the ribbon is ⁇ V S as shown in Figure 9. If at least ⁇ V S were added to the voltage applied to the bond pad 326A, all the pixels in the row connected to that bond pad would toggle down to the diffracting state. Alternatively, if ⁇ V S were subtracted from the voltage applied to the conducting layer 328 (also labeled 304 to show the correspondence to Figures 4-7), all the ribbons of all the pixels in column above this conducting layer would also toggle down. Under these conditions, the ribbons would all be in the down state so that these pixels would remain dark. To provide addressing of the pixel 320, the voltage ⁇ V s /2 is added to the bond pad 326A and the voltage ⁇ V s /2 is subtracted from the conducting layer 328. Any other voltage combination can be used so long as neither voltage alone will cause the ribbons to toggle down but the combination of both do cause the ribbons to toggle down.
  • a single pixel 320 can be erased by appropriately applying +/- ⁇ V s /2 to the row and column with the opposite polarity used to toggle the pixel 320 down. As described above, other combinations of voltages can be used to erase a pixel 320.
  • a row of data is set up and then toggled into the row.
  • the conducting layers 304 comprise the columns
  • the data is placed onto the columns by appropriately coupling - ⁇ V s /2 to all the columns wherein the pixels are desired to be bright.
  • the ribbons move common mode so there is common mode rejection of any such changes. In other words, because the electrostatic attractive force is equally applied to all the elongated elements in a row those ribbons move together and unwanted diffraction is prevented.
  • the reflective surfaces are not precisely within a single plane due to the fact that a modest sag is induced along the elongated element. Nevertheless, all corresponding points along adjacent elongated elements will be biased to an essentially identical height which effectively prevents diffraction.
  • the voltage on the bond pads coupled to ribbons that move in the desired row is then raised from V B to (V B + ⁇ V s /2) and all the appropriate pixels will be toggled. If on the other hand, the data were set up on the ribbons and then toggled in with the underlying conducting layer, the display would twinkle in response to the ⁇ V s /2 being selectively applied to predetermined ones of the ribbons.
  • the present invention has been described relative to a preferred embodiment.

Abstract

A diffraction grating light valve modulates an incident beam of light. A plurality of elongated elements each have a reflective surface. The elongated elements are suspended with their respective ends substantially coplanar. Alternate ones of the elongated elements are electrically coupled for receiving a first bias voltage. The interdigitated elongated elements are electrically coupled for receiving a second bias voltage. By applying an appropriate first and second biasing voltages, all the reflective surfaces can be maintained in a first plane. When all the elongated elements are in the first plane, the diffraction grating light valve reflects the beam of light. A predetermined group of the elongated elements, preferably alternate ones, are deformable to be substantially coplanar in a second plane which is parallel to the first plane. When the predetermined group of elements is in the second plane, the diffraction grating light valve diffracts the beam of light.

Description

FLAT DIFFRACTION GRATING LIGHT VALVE
Field of the Invention
This invention relates to a method of and an apparatus for modulation of a beam of light. More particularly, this invention is for a substantially flat reflective surface having selectively deformable portions for providing a diffraction grating.
Background of the Invention
Designers and inventors have sought to develop a light modulator which can operate alone or together with other modulators. Such modulators should provide high resolution, high operating speeds (KHz frame rates), multiple gray scale levels, eg., 100 levels or be compatible with the generation of color, a high contrast ratio or modulation depth, have optical flatness, be compatible with VLSI processing techniques, be easy to handle and be relatively low in cost. In attempting to develop just such a system, one of the present inventors co-invented the method and apparatus of U.S. Patent 5,311,360 which is incorporated in its entirety herein by reference. According to the teachings of the '360 patent, a diffraction grating is formed of a multiple mirrored-ribbon structure such as shown in Figure 1. A pattern of a plurality of deformable ribbon structures 100 are formed in a spaced relationship over a substrate 102. Both the ribbons and the substrate between the ribbons are coated with a light reflective material 104 such as an aluminum film. The height difference that is designed between the surface of the reflective material 104 on the ribbons 100 and those on the substrate
102 is λ/2 when the ribbons are in a relaxed, up state. If light at a wavelength λ impinges on this structure perpendicularly to the surface of the substrate 102, the reflected light from the surface of the ribbons 100 will be in phase with the reflected light from the substrate 102. This is because the light which strikes the substrate travels λ/2 further than the light striking the ribbons and then returns λ/2, for a total of one complete wavelength λ. Thus, the structure appears as a flat mirror when a beam of light having a wavelength of λ impinges thereon.
By applying appropriate voltages to the ribbons 100 and the substrate 102, the ribbons 100 can be made to bend toward and contact the substrate 102 as shown in Figure 2. The thickness of the ribbons is designed to be λ/4. If light at a wavelength λ impinges on this structure perpendicularly to the surface of the substrate 102, the reflected light from the surface of the ribbons 100 will be completely out of phase with the reflected light from the substrate 102. This will cause interference between the light from the ribbons and light from the substrate and thus, the structure will diffract the light. Because of the diffraction, the reflected light will come from the surface of the structure at an angle Θ from perpendicular.
In formulating a display device, one very important criteria is the contrast ratio between a dark pixel and a lighted pixel. The best way to provide a relatively large contrast ratio is to ensure that a dark pixel has no light. One technique for forming a display device using the structure described above, is to have a source of light configured to provide light with a wavelength λ which impinges the surface of the structure from the perpendicular. A light collection device, e.g., optical lenses, can be positioned to collect light at the angle Θ. If the ribbons for one pixel are in the up position, all the light will be reflected back to the source and the collection device will receive none of the light. That pixel will appear black. If the ribbons for the pixel are in the down position, the light will be diffracted to the collection device and the pixel will appear bright.
If a wavelength of other than λ impinges thereon, there will only be partial reflectivity when the ribbons are in the up state. Similarly, the light will only be partially diffracted to the angle Θ when the ribbons are in the down state. Thus, the so-called dark pixel will display some light and the so-called bright pixel will not display all the light if the wavelength of the light is not exactly at λ. It is very expensive to utilize a light source that has only a single wavelength. Commercially viable light sources typically provide light over a range of wavelengths. Because single wavelength light is impractical to provide, the contrast ratio available from a real-world display device that relies on the above principles is much poorer than theoretically possible. Assume for the sake of argument that single wavelength light were available and commercially viable. For the above described device to function in a way that provides an acceptable contrast ratio requires the heights and thickness of the ribbons and reflecting layers to provide structures that are precisely λ/2 when up and λ/4 when down. Because of variances in manufacturing processing, the contrast ratios between any two devices can vary dramatically. Because the likelihood is small that the relative heights will be precisely λ/2 when up and λ/4 when down, the contrast ratio will be much poorer than theoretically possible. Another difficulty with the above described structure results from an artifact of the physical construction. In particular, the inventors have discovered that once in the down position, the ribbons tend to adhere to the substrate. The inventors have learned that texturing the surface of the substrate aids in overcoming this adhesion. Unfortunately, the textured surface substantially degrades the reflective properties of the surface. This degrades the performance of the light valve.
Finally, to achieve color using the above structure, the inventors of the '360 patent envisioned using three distinct valve structures having distinct periodicity of spacings between the ribbons. This structure thereby requires a larger number of ribbons to achieve color. Further, a light source that includes red, green and blue components impinges on these structures to diffract the light to the desired receptors. Accordingly, the intensity of the light is reduced for color.
The '360 patent teaches an alternate structure as shown in Figure 3. According to this prior art structure, a plurality of elongated elements are disposed over a substrate 200. A first plurality of the elongated elements 202 are suspended by their respective ends (not shown) over an air gap 204 as in the embodiment of Figures 1 and 2. A second plurality of the elongated elements 206 are mounted to the substrate 200 via a rigid support member 208. The height of the support members 208 is designed to be λ/4. A reflective material 210 is formed over the surface of all the elongated elements 202 and 206. In theory, the elongated elements 202 and 206 are designed to be at the same height when at rest. Thus, when all the elongated elements are up and at the same height there will be no diffraction. (In fact there may be some modest amount of diffraction due to the periodic discontinuities of the gaps between elongated elements. However, this period is half the period of the grating so that it diffracts at twice the angle of the desired diffracted light. Because the optics are configured to pick up diffracted light from only the desired angle, this unwanted diffraction is not captured and does not degrade the contrast ratio.) Indeed, there will be no dependence upon the wavelength of the impinging light for forming a dark pixel if the elongated elements are at the same height.
In order build a structure such as shown in Figure 3, a layer must be formed of a first material having a predetermined susceptibility to a known etchant. Portions of that layer are removed through known techniques such as photolithography and etching. A second material is then formed in the voids of the removed material such as by deposition. This second material has a known susceptibility to the etchant which is different than the first material. The layer is formed of the elongated element material. This structure is etched to form ribbons of the elongated elements. Finally, the second material is removed by etching to form the suspended elongated elements 202. It is difficult to consistently manufacture the device such that the first material and the second material are coplanar. Thus, the two sets of elongated elements are not likely to be perfectly coplanar. Further, most conventional techniques for forming the selectively removable layers of the first and second materials will provide a support member 208 that will swell (or shrink) during processing. This will further exacerbate the problem because such discontinuities will be at precisely the same period as the desired grating and as such the optics will capture this unwanted diffracted light.
Though there are no drawings, the '360 patent suggests that structure can be built with all the elements suspended. The '360 patent teaches that this is an advantage for controlling amplitude and phase. Unfortunately, there is no teaching as to addressing, biasing or structure to such devices.
What is needed is a flat diffraction grating system that positively maintains a planar relationship between adjacent elongated elements. Further, a system is desired that does not rely upon a predetermined wavelength of light. Additionally, a system is needed that does not required precise manufacturing process tolerances to support predetermined light wavelengths.
Summary of the Invention
A diffraction grating light valve modulates an incident beam of light. A plurality of elongated elements each have a reflective surface. The elongated elements are suspended with their respective ends substantially coplanar. Alternate ones of the elongated elements are electrically coupled for receiving a first bias voltage. The other elongated elements are electrically coupled for receiving a second bias voltage. By applying an appropriate biasing voltage, all the reflective surfaces can be maintained in a predetermined plane. It will be understood that in fact, the reflective surfaces are not precisely within a single plane due to the fact that a modest sag is induced along the elongated element. Nevertheless, all corresponding points along adjacent elongated elements will be biased to an essentially identical height which effectively prevents diffraction. When all the elongated elements are in the first plane, the diffraction grating light valve reflects the beam of light. A predetermined group of the elongated elements, preferably alternate ones, are deformable to be substantially coplanar in a second plane which is parallel to the first plane. When the predetermined group of elements is in the second plane, the diffraction grating light valve diffracts the beam of light.
Brief Description of the Drawings
Figure 1 shows a cross section view of a prior art diffraction grating light valve wherein ribbon elements are in an up position. Figure 2 shows a cross section view of the prior art diffraction grating light valve of Figure 1 wherein the ribbon elements are in a down position.
Figure 3 shows a cross section view of an alternate embodiment prior art diffraction grating light valve having a plurality of planarly arrayed elongated elements, a portion of which are supported by support members. Figure 4 shows a cross section view of the diffraction grating light valve in the non-diffracting/up mode according to the preferred embodiment.
Figure 5 shows a cross section view of the diffraction grating light valve of Figure
4 in the diffracting/down mode according to the preferred embodiment.
Figure 6 shows a cross section view of the diffraction grating light valve of Figure 4 taken through 90° and across two pixels.
Figure 7 shows a cross section view of the diffraction grating light valve of Figure
5 taken through 90° and across two pixels.
Figure 8 shows a plan view of the diffraction grating light valve of Figure 4 and adjacent pixels. Figure 9 is a graph showing the intensity of light from one of the elongated elements of Figure 4 relative to a voltage applied between the elongated element and the substrate in the case where no bias voltage is applied. Detailed Description of the Preferred Embodiment
Figure 4 shows a cross section view of the diffraction grating light valve in the non-diffracting/up mode according to the preferred embodiment. The details of a manufacturing process are disclosed in a co-owned, co-filed, co-pending U.S. Patent application, serial number 08/480,459, entitled A METHOD OF MAKING AND AN
APPARATUS FOR A FLAT DIFFRACTION GRATING LIGHT VALVE, and filed concurrently on June 7, 1995 by at least one of the same inventors. Only representative materials are disclosed herein and are not deemed to be in any way limiting.
A substrate 300 is provided and can be any convenient material such as a grown silicon. A passivating layer 302 such as silicon nitride Si3N4 is formed over the substrate.
Next, a conducting layer 304 is formed over the passivating layer 302. Preferably the conducting layer 304 is formed of a material that is resistant to subsequent processing steps, for example tungsten or a tungsten alloy.
A suspended element is formed next and includes layers collectively known as a ribbon 318. The suspended element includes a ribbon layer 306 formed above and spaced from the conducting layer 304. The ribbon layer 306 material is preferably silicon nitride. A reflecting layer 308 is formed on the ribbon layer 306 and is preferably formed of aluminum. Finally, a thin protection layer 310 is formed over the reflecting layer 308 an is preferably a PECVD oxide. An air gap 312 is left between the conducting layer 304 and the ribbon layer 306.
In this up state, because the elongated elements can be driven by appropriate voltages to be precisely the same height, incident light is not diffracted. This provides a true dark pixel when the elongated elements are coplanar. This provides the distinct advantage that the dark state of the pixels is wavelength independent. Recall that there will be a modest amount of diffraction due to the periodic nature of the gaps between adjacent elongated elements. However, the period of this diffraction is half that of the diffraction grating and thus can be eliminated optically.
Figure 5 shows a cross section view of the diffraction grating light valve of Figure 4 in the diffracting/down mode according to the preferred embodiment. The same reference numerals will be used where appropriate to identify the same structures when shown in different drawings to avoid confusion. By applying appropriate voltages between predetermined ones of the suspended elements and the conducting layer, electrostatic attractive forces cause those predetermined suspended elements to deform and contact the conducting layer 304. In Figure 5, the two of the four suspended elements are shown in the down position. This causes diffraction of light reflected from adjacent elements.
Here there is only a modest wavelength dependence for the diffraction grating light valve. It is preferable that the distance between the heights of the adjacent elongated elements is λ/4. However, if the throw is optimized for green light, the losses due to changing the wavelength to red or blue is on the order of 5%. This is partly due to the fact that the intensity of collected light varies as a sine-squared function of the wavelength. Thus, small changes in wavelength will only have small changes in received intensity. Additionally, the ability to make a device that moves λ/4 is easier than in the prior art. There, the λ/4 difference comprises a combination of the spacer thickness and the elongated element thickness. This required very tight manufacturing tolerances for two layers. Here, the thickness of the air gap determines the wavelength conformance of the design; the- elongated element can be any thickness. The air gap is preferably formed by removing a sacrificial oxide. Because oxide formation is well characterized under many easily controllable conditions, it is a routine matter to manufacture spacers of the correct dimension. It will be understood that the thickness of the air gap will be adjusted and controlled by the application of voltages to the ribbon or underlying conductor during normal operation of the device. It is also possible to include a light sensor in an apparatus incorporating the diffraction grating light valve of the present invention. The sensor measures the diffracted light and adjusts the bias voltage (described below) in to maximize the sensed diffracted light. In this way the sensor and bias voltage adjusting circuit can drive the elongated elements that are still in the up position to maintain a precise λ/4 relationship even though the wavelength of the light source is changed.
Because the losses for such modest wavelength changes are small there will only be a small impact on the contrast ratio because in the dark state, the optical system collects essentially zero light. In an ideal system, where 100% of the light is collected in the on state and zero light is collected in the off state the contrast ratio is co (indeed, any number divided by zero is co). Even modest degradation in the dark state dramatically effects the contrast ratio. For example, if only 5% of unwanted light is collected in the dark state while still 100% of the light is collected in the on state reduces the contrast ratio from co o about 20. If on the other hand, the dark state continues to collect zero light but the on state collects 95%, the contrast ratio continues to be co. Note that the intensity of the display degrades in this example but the contrast ratio remains good.
Because of the relative wavelength independence of the diffraction grating light valve of the present invention, it is possible to build a system that utilizes a single structure to formulate color images. For example, three light sources, including red green and blue, can illuminate a pixel of interest. To formulate red, only the red source is activated. The same is true for green or blue. To make other colors, the pixel can be time multiplexed with the light sources. In other words, first the red source is illuminated and the pixels diffract or not as desired, then the blue and finally the green. The order of illumination is not important. The viewer's eye integrates the colors of the display to perceive the desired color.
Figure 6 shows a cross section view of the diffraction grating light valve of Figure 4 in the non-diffracting/up mode taken through 90° and across two pixels. Figure 6 only shows schematically the approximate geometries of the various structures. The various shapes and bending angles can change with process variations, selection of materials, thickness of layers and environmental conditions. A pixel 314 is formed along the suspended region and between anchorages 316. The pixels 314 are suspended to allow for deformation to provide selective diffraction as discussed herein. The anchorages allow separation between pixels 314 and also provide a mechanical support on the substrate 300 for the pixel structure.
Figure 7 shows a cross section view of the diffraction grating light valve of Figure 5 in the diffracting/down mode taken through 90° and across two pixels. By applying an appropriate voltage potential between the conducting layer 304 and the reflecting layer 308, an electrostatic attractive force bends the pixel into contact with the substrate. It will be appreciated that the conducting layer 304 extends into and out of the page and passes under many pixels. Similarly, the ribbon 318 from which the pixel is formed passes beyond both borders of the drawing and cross over many conducting layers. This interrelatedness between the pixel ribbons and the conducting layers provides for a unique addressing technique which will be described in more detail in reference to the drawing of Figures 8 and 9. Figure 8 shows a plan view of the diffraction grating light valve of Figure 4 and adjacent pixels. Six pixels 320 are shown in the drawing of Figure 8. It will be appreciated that this limited number of pixels is schematic only. A diffraction grating light valve according to the present invention for a commercially viable display will include at least the number of pixels presently available with other types of display technologies. Thus, for a commercial diffraction grating light valve there will be many more than two con ducting layers 304 and many more ribbons 318 than are shown. For example, one commercially available display includes 1024 rows and 1280 columns of pixels. In addition to the pixels, I/O port bonding pads 326 for coupling electric signals to the ribbons 318 are also shown.
Each pixel 320 includes four adjacent ribbons 318. One set 322 of alternating ribbons 318 are coupled to a biasing bus 324. Indeed, two alternating ribbons for each one of the pixels are coupled to the biasing bus 324. The other two ribbons in the pixel 320 are coupled to receive a control voltage from the bond pad 326A. Preferably the biasing bus 324 is formed at the same time as the conducting layer 304.
The angle the light is deflected is determined by the width of the ribbons 318 and the spacing between adjacent ribbons. Because alternate ribbons are toggled in the preferred embodiment, the period is defined by two adjacent ribbons. In the preferred embodiment, the ribbons are 3.5 microns wide and the space between adjacent ribbons is 1.5 microns. Thus, the period of the structure is 10 microns. It will be appreciated that the space between the ribbons causes light to be lost. It is preferable that the space be minimized relative to the width of the ribbons.
Figure 9 is a graph showing the intensity of light from a display structure of two pairs of elongated elements of Figure 4 relative to a voltage applied between an elongated element and the substrate in the case where alternate lines are not biased. The elongated elements exhibit a hysteresis. The elongated element begins to bend slightly as the voltage is increased as exhibited by an increase in light intensity. At a bend threshold VD, the elongated element snaps down into contact with the conductive layer. The voltage can then be reduced below that level and the elongated element will remain in the down position. At some lower voltage VU5 the elongated element will relax and return to the up position. The voltage VD necessary to cause an elongated element to snap into the down position is in the range of 20 volts DC. Depending upon the manufacturing processes, materials and layer thicknesses used to build such devices it is possible that this voltage could range significantly above and below that value. In the preferred embodiment, the elongated elements are biased at a midrange voltage VB between the bend voltage VD and the lower voltage Vυ. In this way, a considerably smaller voltage excursion is required to cause an elongated element to snap or relax.
It is apparent from studying the graph of Figure 9 that the bias voltage VB will cause some modest flexing of the elongated elements. Consider the voltages necessary to switch the pixel 320. For this discussion, reference will be made to both Figures 8 and 9. In one addressing scheme, the bias voltage VB is applied to all the ribbons of the pixel by applying VB to the bond pad 326A and to the conductor 324. All the ribbons in the pixel 320 will flex slightly and remain planar so that the dark state remains dark. In the preferred embodiment, every other ribbon is permanently coupled to the bias voltage VB. The voltage on the respective interdigitated ribbons is changed up or down to cause those ribbons to snap down or relax up.
The incremental voltage necessary to switch the ribbon is ΔVS as shown in Figure 9. If at least ΔVS were added to the voltage applied to the bond pad 326A, all the pixels in the row connected to that bond pad would toggle down to the diffracting state. Alternatively, if ΔVS were subtracted from the voltage applied to the conducting layer 328 (also labeled 304 to show the correspondence to Figures 4-7), all the ribbons of all the pixels in column above this conducting layer would also toggle down. Under these conditions, the ribbons would all be in the down state so that these pixels would remain dark. To provide addressing of the pixel 320, the voltage ΔVs/2 is added to the bond pad 326A and the voltage ΔVs/2 is subtracted from the conducting layer 328. Any other voltage combination can be used so long as neither voltage alone will cause the ribbons to toggle down but the combination of both do cause the ribbons to toggle down.
Once the +ΔVs/2 and -ΔVs/2 are removed, the ribbons that were toggled into the down position will remain down due to the inherent hysteresis of the ribbons until ΔVS of the opposite polarity is applied across the same elements. To avoid erasing an entire row or column at once, a single pixel 320 can be erased by appropriately applying +/-ΔVs/2 to the row and column with the opposite polarity used to toggle the pixel 320 down. As described above, other combinations of voltages can be used to erase a pixel 320.
In the preferred embodiment, a row of data is set up and then toggled into the row. If the conducting layers 304 comprise the columns, the data is placed onto the columns by appropriately coupling -ΔVs/2 to all the columns wherein the pixels are desired to be bright. Even though all the ribbons for all the pixels in each such columns will move slightly as a result of this change in voltage, there will be no change in the image displayed because these ribbons remain coplanar. Thus, the ribbons move common mode so there is common mode rejection of any such changes. In other words, because the electrostatic attractive force is equally applied to all the elongated elements in a row those ribbons move together and unwanted diffraction is prevented. It will be understood that in fact, the reflective surfaces are not precisely within a single plane due to the fact that a modest sag is induced along the elongated element. Nevertheless, all corresponding points along adjacent elongated elements will be biased to an essentially identical height which effectively prevents diffraction. The voltage on the bond pads coupled to ribbons that move in the desired row is then raised from VB to (VB + ΔVs/2) and all the appropriate pixels will be toggled. If on the other hand, the data were set up on the ribbons and then toggled in with the underlying conducting layer, the display would twinkle in response to the ΔVs/2 being selectively applied to predetermined ones of the ribbons. The present invention has been described relative to a preferred embodiment.
Improvements or modifications that become apparent to persons of ordinary skill in the art only after reading this disclosure are deemed within the spirit and scope of the application.

Claims

C L A I M SWhat is claimed is:
1. A modulator for modulating an incident beam of light comprising: a. a plurality of elongated elements, each element having a first end and a second end and a light reflective planar surface, wherein the elements are grouped into a first group and a second group such that the elements of the first group are interdigitated with the elements of the second group, the elements being arranged parallel to each other; b. means for suspending the elements of the first group and the second group by their ends; c. means for applying a first bias voltage to the first group and means for applying a second bias voltage to the second group such that the reflective surfaces are substantially coplanar and in a first plane such that the incident beam of light is reflected; and d. means for selectively deflecting the elements of the first group perpendicular to the plane to a second plane which is parallel to the first plane such that the incident beam of light is diffracted.
2. The modulator according to claim 1 further comprising means for adjusting a position of the second group perpendicular to the plane, independently of the first group.
3. The modulator according to claim 1 wherein adjacent elements are spaced from one another by a gap such that the extent of each reflective surface is larger than each gap.
4. The modulator according to claim 1 wherein the second plane is approximately λ/4 from the first plane, where λ is the wavelength of the bean of light.
5. The modulator according to claim 1 wherein the elements do not lie in the first plane when the first bias voltage is removed.
6. A flat diffraction grating light valve for modulating comprising: a. a substrate; b. a plurality of elongated elements each having two ends, including means for suspending the elements in a parallel relationship by the ends over the substrate; c. a light reflective material formed over each element and away from the substrate; d. means for applying a biasing voltage to maintain the elongated elements in a single first plane for reflecting an incident beam of light; and e. means for selectively moving the a predetermined collection of the elongated elements to a second plane that is parallel to the first plane for diffracting the beam of light.
7. The modulator according to claim 6 wherein adjacent elements are spaced from one another by a gap such that the extent of each reflective surface is larger than each gap.
8. The modulator according to claim 6 wherein the second plane is approximately λ/4 from the first plane, where λ is the wavelength of the bean of light.
9. The modulator according to claim 6 wherein the elements do not lie in the first plane when the first bias voltage is removed.
10. A modulator for modulating an incident beam of light comprising: a. a plurality of equally spaced apart elements, each including a light reflective planar surface, the elements being arranged parallel to each other with each light reflective surface lying in a first plane wherein the modulator reflects the incident beam of light; b. means for moving all the elements to a second plane such that all elements lie in a second plane wherein the modulator also reflects the incident beam of light; c. means for moving predetermined ones of the elements to a third plane parallel to the second plane wherein the modulator diffracts the incident beam of light.
11. The modulator according to claim 10 wherein the means for moving comprises generation of electrostatic attraction.
12. The modulator according to claim 11 wherein the predetermined ones of the elements are alternately disposed amongst all the elements.
13. The modulator according to claim 12 wherein the predetermined ones of the elements are electrically coupled together.
14. The modulator according to claim 13 wherein the electrostatic attraction is formed by coupling an electrical potential across the elements and an underlying conductor.
15. The modulator according to claim 13 wherein the elements are coupled to an electrical biased for adjustment from the first plane to the second plane.
16. The modulator according to claim 15 further comprising a means for sensing a diffracted light and for automatically adjusting the electrical bias in response thereto.
17. The modulator according to claim 10 wherein elements reflect light when in the second regardless of wavelength.
18. A digital display system for displaying an image comprising: a. a plurality of pixels, each pixel for displaying a portion of the image, wherein the pixels are arranged in an array having a plurality of rows and plurality of columns, and further wherein each pixel comprises: (1) a plurality of elongated elements, each element having a first end and a second end and a light reflective planar surface, wherein the elements are grouped into a first group and a second group such that the elements of the first group are interdigitated with the elements of the second group, the elements being arranged parallel to each other; and (2) means for suspending the elements of the first group and the second group over a substrate by their ends; b. means for electrically coupling all the elongated elements of the first group in each row together; c. means for electrically coupling all the elongated elements of the second group in each row together; d. means for applying a first bias voltage to the first group and means for applying a second bias voltage to the second group such that the reflective surfaces are substantially coplanar and in a first plane such that the incident beam of light is reflected; and e. means for selectively deflecting the elements of the first group perpendicular to the plane to a second plane which is parallel to the first plane such that the incident beam of light is diffracted.
19. The apparatus according to claim 18 wherein the means for selectively deflecting the elements of the first group comprises a conductive layer mounted to the substrate and under all the elongated elements in a column.
PCT/US1996/008804 1995-06-07 1996-06-05 Flat diffraction grating light valve WO1996041217A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP96917143A EP0830624B1 (en) 1995-06-07 1996-06-05 Flat diffraction grating light valve
AT96917143T ATE192241T1 (en) 1995-06-07 1996-06-05 FLAT DIFFRACTION GRID LIGHT VALVE
DK96917143T DK0830624T3 (en) 1995-06-07 1996-06-05 Light valve with flat deflection grille
KR1019970708749A KR100320997B1 (en) 1995-06-07 1996-06-05 Flat diffraction grating light valve
DE69607960T DE69607960T2 (en) 1995-06-07 1996-06-05 Flat diffraction grating light valve
AU59811/96A AU5981196A (en) 1995-06-07 1996-06-05 Flat diffraction grating light valve
JP50129397A JP3164824B2 (en) 1995-06-07 1996-06-05 Flat grating light valve
NO975696A NO975696D0 (en) 1995-06-07 1997-12-05 Flat diffraction grating light valve
GR20000401506T GR3033806T3 (en) 1995-06-07 2000-06-28 Flat diffraction grating light valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/482,188 US5841579A (en) 1995-06-07 1995-06-07 Flat diffraction grating light valve
US08/482,188 1995-06-07

Publications (1)

Publication Number Publication Date
WO1996041217A1 true WO1996041217A1 (en) 1996-12-19

Family

ID=23915073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/008804 WO1996041217A1 (en) 1995-06-07 1996-06-05 Flat diffraction grating light valve

Country Status (14)

Country Link
US (1) US5841579A (en)
EP (1) EP0830624B1 (en)
JP (1) JP3164824B2 (en)
KR (1) KR100320997B1 (en)
CN (1) CN1158546C (en)
AT (1) ATE192241T1 (en)
AU (1) AU5981196A (en)
DE (1) DE69607960T2 (en)
DK (1) DK0830624T3 (en)
ES (1) ES2147380T3 (en)
GR (1) GR3033806T3 (en)
NO (1) NO975696D0 (en)
PT (1) PT830624E (en)
WO (1) WO1996041217A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041893A1 (en) * 1997-03-20 1998-09-24 Silicon Light Machines, Inc. Display device incorporating one-dimensional high-speed grating light valve array
US6425656B1 (en) 1998-01-09 2002-07-30 Seiko Epson Corporation Ink-jet head, method of manufacture thereof, and ink-jet printer
US6470107B2 (en) 2001-03-13 2002-10-22 President And Fellows Of Harvard College Fluidic all-optical switch
EP1431951A2 (en) * 2002-12-16 2004-06-23 Eastman Kodak Company Method and system for generating enhanced gray levels in an electromechanical grating display
US6785001B2 (en) 2001-08-21 2004-08-31 Silicon Light Machines, Inc. Method and apparatus for measuring wavelength jitter of light signal
US6947195B2 (en) 2001-01-18 2005-09-20 Ricoh Company, Ltd. Optical modulator, optical modulator manufacturing method, light information processing apparatus including optical modulator, image formation apparatus including optical modulator, and image projection and display apparatus including optical modulator
KR100632547B1 (en) * 2004-09-06 2006-10-09 삼성전기주식회사 Diffraction type optical modulator using cantilever
DE102016208049A1 (en) 2015-07-09 2017-01-12 Inb Vision Ag Device and method for image acquisition of a preferably structured surface of an object
US9641826B1 (en) 2011-10-06 2017-05-02 Evans & Sutherland Computer Corporation System and method for displaying distant 3-D stereo on a dome surface
US10544032B2 (en) 2017-01-31 2020-01-28 Ricoh Company, Ltd. MEMS device
US11187890B2 (en) 2017-03-15 2021-11-30 Ricoh Company, Ltd. Movable diffraction element and spectroscope

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969635B2 (en) 2000-12-07 2005-11-29 Reflectivity, Inc. Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US6177980B1 (en) * 1997-02-20 2001-01-23 Kenneth C. Johnson High-throughput, maskless lithography system
US6421179B1 (en) 1997-05-02 2002-07-16 Interscience, Inc. Wavelength division multiplexing system and method using a reconfigurable diffraction grating
US5999319A (en) * 1997-05-02 1999-12-07 Interscience, Inc. Reconfigurable compound diffraction grating
US6392775B1 (en) * 1998-01-13 2002-05-21 Seagate Technology Llc Optical reflector for micro-machined mirrors
IL123579A0 (en) 1998-03-06 1998-10-30 Heines Amihai Apparatus for producing high contrast imagery
US6004912A (en) 1998-06-05 1999-12-21 Silicon Light Machines Vapor phase low molecular weight lubricants
US6303986B1 (en) 1998-07-29 2001-10-16 Silicon Light Machines Method of and apparatus for sealing an hermetic lid to a semiconductor die
US6962419B2 (en) 1998-09-24 2005-11-08 Reflectivity, Inc Micromirror elements, package for the micromirror elements, and projection system therefor
US6144481A (en) * 1998-12-18 2000-11-07 Eastman Kodak Company Method and system for actuating electro-mechanical ribbon elements in accordance to a data stream
US6238581B1 (en) * 1998-12-18 2001-05-29 Eastman Kodak Company Process for manufacturing an electro-mechanical grating device
US6243194B1 (en) * 1998-12-18 2001-06-05 Eastman Kodak Company Electro-mechanical grating device
US6038057A (en) * 1998-12-18 2000-03-14 Eastman Kodak Company Method and system for actuating electro-mechanical ribbon elements in accordance to a data stream
US6252697B1 (en) * 1998-12-18 2001-06-26 Eastman Kodak Company Mechanical grating device
US6188519B1 (en) 1999-01-05 2001-02-13 Kenneth Carlisle Johnson Bigrating light valve
US6724125B2 (en) 1999-03-30 2004-04-20 Massachusetts Institute Of Technology Methods and apparatus for diffractive optical processing using an actuatable structure
US6169624B1 (en) * 1999-08-11 2001-01-02 Asif A. Godil Achromatic optical modulators
US6501600B1 (en) 1999-08-11 2002-12-31 Lightconnect, Inc. Polarization independent grating modulator
US6826330B1 (en) 1999-08-11 2004-11-30 Lightconnect, Inc. Dynamic spectral shaping for fiber-optic application
US6674563B2 (en) 2000-04-13 2004-01-06 Lightconnect, Inc. Method and apparatus for device linearization
US6282012B1 (en) * 1999-12-10 2001-08-28 Eastman Kodak Company Method for damping ribbon elements in a micromechanical grating device by selection of actuation waveform
US6497490B1 (en) 1999-12-14 2002-12-24 Silicon Light Machines Laser beam attenuator and method of attenuating a laser beam
US6663790B2 (en) 2000-01-26 2003-12-16 Eastman Kodak Company Method for manufacturing a mechanical conformal grating device with improved contrast and lifetime
US6307663B1 (en) * 2000-01-26 2001-10-23 Eastman Kodak Company Spatial light modulator with conformal grating device
US6407851B1 (en) 2000-08-01 2002-06-18 Mohammed N. Islam Micromechanical optical switch
WO2001057577A2 (en) * 2000-02-07 2001-08-09 Celeste Optics, Inc. Micromechanical optical switch
US6479811B1 (en) 2000-03-06 2002-11-12 Eastman Kodak Company Method and system for calibrating a diffractive grating modulator
US6888983B2 (en) 2000-04-14 2005-05-03 Lightconnect, Inc. Dynamic gain and channel equalizers
JP2002006241A (en) * 2000-06-19 2002-01-09 Sony Corp Optical switching element, switching device and image display device using the same
US6611377B1 (en) * 2000-07-10 2003-08-26 Intel Corporation Micromechanical diffraction phase grating
CA2352729A1 (en) 2000-07-13 2002-01-13 Creoscitex Corporation Ltd. Blazed micro-mechanical light modulator and array thereof
US6795605B1 (en) * 2000-08-01 2004-09-21 Cheetah Omni, Llc Micromechanical optical switch
US7167297B2 (en) 2000-08-30 2007-01-23 Reflectivity, Inc Micromirror array
US6466354B1 (en) 2000-09-19 2002-10-15 Silicon Light Machines Method and apparatus for interferometric modulation of light
US6411425B1 (en) 2000-09-27 2002-06-25 Eastman Kodak Company Electromechanical grating display system with spatially separated light beams
CA2429831A1 (en) * 2000-11-22 2002-05-30 Flixel Ltd. Microelectromechanical display devices
US6476848B2 (en) 2000-12-21 2002-11-05 Eastman Kodak Company Electromechanical grating display system with segmented waveplate
US7136588B1 (en) 2000-12-22 2006-11-14 Cheetah Omni, Llc Apparatus and method for optical add/drop multiplexing
US6721475B1 (en) 2000-12-22 2004-04-13 Cheetah Omni, Llc Apparatus and method for providing gain equalization
US6856459B1 (en) 2000-12-22 2005-02-15 Cheetah Omni, Llc Apparatus and method for controlling polarization of an optical signal
US7116862B1 (en) 2000-12-22 2006-10-03 Cheetah Omni, Llc Apparatus and method for providing gain equalization
US6493488B1 (en) 2000-12-22 2002-12-10 Celeste Optics, Inc. Apparatus and method for high speed optical signal processing
US6384959B1 (en) 2001-01-09 2002-05-07 Eastman Kodak Company Optical data modulation system with self-damped electromechanical conformal grating
US6387723B1 (en) 2001-01-19 2002-05-14 Silicon Light Machines Reduced surface charging in silicon-based devices
US6445502B1 (en) 2001-02-02 2002-09-03 Celeste Optics, Inc. Variable blazed grating
US7145704B1 (en) 2003-11-25 2006-12-05 Cheetah Omni, Llc Optical logic gate based optical router
US7339714B1 (en) 2001-02-02 2008-03-04 Cheetah Omni, Llc Variable blazed grating based signal processing
US6721473B1 (en) 2001-02-02 2004-04-13 Cheetah Omni, Llc Variable blazed grating based signal processing
US6567584B2 (en) 2001-02-12 2003-05-20 Silicon Light Machines Illumination system for one-dimensional spatial light modulators employing multiple light sources
US20020167695A1 (en) * 2001-03-02 2002-11-14 Senturia Stephen D. Methods and apparatus for diffractive optical processing using an actuatable structure
US7177081B2 (en) * 2001-03-08 2007-02-13 Silicon Light Machines Corporation High contrast grating light valve type device
US7903337B1 (en) 2001-03-08 2011-03-08 Silicon Light Machines High contrast grating light valve
US6614580B2 (en) 2001-04-10 2003-09-02 Silicon Light Machines Modulation of light out of the focal plane in a light modulator based projection system
US6707591B2 (en) 2001-04-10 2004-03-16 Silicon Light Machines Angled illumination for a single order light modulator based projection system
US6747781B2 (en) 2001-06-25 2004-06-08 Silicon Light Machines, Inc. Method, apparatus, and diffuser for reducing laser speckle
US6782205B2 (en) 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US6485150B1 (en) 2001-07-03 2002-11-26 The United States Of America As Represented By The Secretary Of The Navy Tunable spectral source
KR100421871B1 (en) * 2001-07-19 2004-03-09 엘지전자 주식회사 grating light-valve device
US6646778B2 (en) 2001-08-01 2003-11-11 Silicon Light Machines Grating light valve with encapsulated dampening gas
US6639722B2 (en) 2001-08-15 2003-10-28 Silicon Light Machines Stress tuned blazed grating light valve
US6587253B2 (en) * 2001-08-16 2003-07-01 Silicon Light Machines Enhance thermal stability through optical segmentation
US6894836B2 (en) 2001-08-28 2005-05-17 Delphi Technologies, Inc. Diffraction grating, method of making and method of using
US6930364B2 (en) * 2001-09-13 2005-08-16 Silicon Light Machines Corporation Microelectronic mechanical system and methods
US7046410B2 (en) 2001-10-11 2006-05-16 Polychromix, Inc. Actuatable diffractive optical processor
US6532097B1 (en) 2001-10-11 2003-03-11 Applied Materials, Inc. Image registration apparatus having an adjustable reflective diffraction grating and method
US6900915B2 (en) 2001-11-14 2005-05-31 Ricoh Company, Ltd. Light deflecting method and apparatus efficiently using a floating mirror
JP2005512119A (en) * 2001-12-03 2005-04-28 フリクセル リミテッド Display device
US6800238B1 (en) 2002-01-15 2004-10-05 Silicon Light Machines, Inc. Method for domain patterning in low coercive field ferroelectrics
KR100459396B1 (en) * 2002-02-01 2004-12-03 엘지전자 주식회사 Optical modulator and manufacturing method thereof
JP3690598B2 (en) 2002-03-19 2005-08-31 大日本スクリーン製造株式会社 Image recording device
JP2004004601A (en) * 2002-04-04 2004-01-08 Sony Corp Optical switching element, optical switching element array, and picture display device
JP4207666B2 (en) 2002-05-28 2009-01-14 ソニー株式会社 Electrostatic mechanical element, light diffraction modulation element, and image display device
US6728023B1 (en) 2002-05-28 2004-04-27 Silicon Light Machines Optical device arrays with optimized image resolution
US6767751B2 (en) * 2002-05-28 2004-07-27 Silicon Light Machines, Inc. Integrated driver process flow
US6822797B1 (en) 2002-05-31 2004-11-23 Silicon Light Machines, Inc. Light modulator structure for producing high-contrast operation using zero-order light
US6813059B2 (en) 2002-06-28 2004-11-02 Silicon Light Machines, Inc. Reduced formation of asperities in contact micro-structures
US6777258B1 (en) 2002-06-28 2004-08-17 Silicon Light Machines, Inc. Conductive etch stop for etching a sacrificial layer
US6714337B1 (en) 2002-06-28 2004-03-30 Silicon Light Machines Method and device for modulating a light beam and having an improved gamma response
US6801354B1 (en) 2002-08-20 2004-10-05 Silicon Light Machines, Inc. 2-D diffraction grating for substantially eliminating polarization dependent losses
US6712480B1 (en) 2002-09-27 2004-03-30 Silicon Light Machines Controlled curvature of stressed micro-structures
TWI226940B (en) * 2002-10-01 2005-01-21 Sony Corp Optical scan device, image position calibration method, and image display device
JP2004157522A (en) * 2002-10-17 2004-06-03 Sony Corp Image generating device, image display device, image display method, and device for adjusting optical modulation element
US6947459B2 (en) * 2002-11-25 2005-09-20 Eastman Kodak Company Organic vertical cavity laser and imaging system
US6724515B1 (en) * 2002-12-31 2004-04-20 Eastman Kodak Company Conformal grating device for producing enhanced gray levels
JP2004219843A (en) * 2003-01-16 2004-08-05 Seiko Epson Corp Optical modulator, and display device and their manufacturing methods
US6894822B2 (en) * 2003-02-04 2005-05-17 Silicon Light Machines Corporation Robust reflective surface for light modulators
US6885494B2 (en) * 2003-02-12 2005-04-26 Reflectivity, Inc. High angle micro-mirrors and processes
US6922272B1 (en) * 2003-02-14 2005-07-26 Silicon Light Machines Corporation Method and apparatus for leveling thermal stress variations in multi-layer MEMS devices
US6829077B1 (en) 2003-02-28 2004-12-07 Silicon Light Machines, Inc. Diffractive light modulator with dynamically rotatable diffraction plane
US6806997B1 (en) 2003-02-28 2004-10-19 Silicon Light Machines, Inc. Patterned diffractive light modulator ribbon for PDL reduction
US6947199B2 (en) * 2003-03-28 2005-09-20 Silicon Light Machines Corporation Loosely-packed two-dimensional modulator arrangement
US6930817B2 (en) * 2003-04-25 2005-08-16 Palo Alto Research Center Incorporated Configurable grating based on surface relief pattern for use as a variable optical attenuator
US6873398B2 (en) * 2003-05-21 2005-03-29 Esko-Graphics A/S Method and apparatus for multi-track imaging using single-mode beams and diffraction-limited optics
JP3767577B2 (en) * 2003-05-29 2006-04-19 三菱電機株式会社 Scanning device
JP4411875B2 (en) * 2003-06-20 2010-02-10 ソニー株式会社 Light modulation element and image display apparatus using the same
US6856449B2 (en) * 2003-07-10 2005-02-15 Evans & Sutherland Computer Corporation Ultra-high resolution light modulation control system and method
US7099084B2 (en) * 2003-12-01 2006-08-29 Baokang Bi Diffractive wave modulating devices
CN1295522C (en) * 2003-12-19 2007-01-17 上海交通大学 High precision combined optical grating device for optical 3D measurement
US20050135761A1 (en) * 2003-12-23 2005-06-23 Cannon Bruce L. Optical element for uniform illumination and optical system incorporating same
US7016014B2 (en) * 2004-02-27 2006-03-21 Asml Netherlands B.V Lithographic apparatus and device manufacturing method
US7227618B1 (en) 2004-03-24 2007-06-05 Baokang Bi Pattern generating systems
US7099064B2 (en) 2004-06-03 2006-08-29 Samsung Electro-Mechanics Co., Ltd. Electrostatic-type variable diffractive light modulator and manufacturing method thereof
US7304718B2 (en) * 2004-08-17 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4852835B2 (en) * 2004-09-02 2012-01-11 ソニー株式会社 Grating-light modulator assembly
JP4750396B2 (en) * 2004-09-27 2011-08-17 キヤノン株式会社 Exposure apparatus and device manufacturing method
US7286277B2 (en) * 2004-11-26 2007-10-23 Alces Technology, Inc. Polarization light modulator
US7054054B1 (en) 2004-12-20 2006-05-30 Palo Alto Research Center Incorporated Optical modulator with a traveling surface relief pattern
KR100815362B1 (en) 2005-01-05 2008-03-19 삼성전기주식회사 Interdigitate-type diffraction optical modulator
GB0510470D0 (en) * 2005-05-23 2005-06-29 Qinetiq Ltd Coded aperture imaging system
KR100832622B1 (en) * 2005-05-25 2008-05-27 삼성전기주식회사 Optical modulator and mobile unit using the projector of optical modulator
JP4484778B2 (en) 2005-07-08 2010-06-16 富士フイルム株式会社 Small thin film movable element, small thin film movable element array, and driving method of small thin film movable element
KR100897666B1 (en) * 2005-07-20 2009-05-14 삼성전기주식회사 Display apparatus which scans both the forward path and backward path
US7438423B2 (en) * 2005-08-29 2008-10-21 3M Innovative Properties Company Illumination system and projection system incorporating same
JP2007079443A (en) * 2005-09-16 2007-03-29 Sony Corp Electrostatic driving element and picture display device using the same
KR100832621B1 (en) * 2005-09-23 2008-05-27 삼성전기주식회사 Mobile projector which scans both forward path and backward path
US7429983B2 (en) 2005-11-01 2008-09-30 Cheetah Omni, Llc Packet-based digital display system
US7411735B2 (en) * 2005-12-06 2008-08-12 3M Innovative Property Company Illumination system incorporating collimated light source
US7733493B2 (en) * 2005-12-23 2010-06-08 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Fourier transform spectrometer
US7595876B2 (en) * 2006-01-11 2009-09-29 Baker Hughes Incorporated Method and apparatus for estimating a property of a fluid downhole
US7645675B2 (en) * 2006-01-13 2010-01-12 International Business Machines Corporation Integrated parallel plate capacitors
WO2007089770A2 (en) * 2006-01-31 2007-08-09 Polychromix Corporation Hand-held ir spectrometer with a fixed grating and a diffractive mems-array
GB2434877A (en) * 2006-02-06 2007-08-08 Qinetiq Ltd MOEMS optical modulator
GB2434934A (en) * 2006-02-06 2007-08-08 Qinetiq Ltd Processing coded aperture image data by applying weightings to aperture functions and data frames
GB2434937A (en) 2006-02-06 2007-08-08 Qinetiq Ltd Coded aperture imaging apparatus performing image enhancement
GB2434935A (en) * 2006-02-06 2007-08-08 Qinetiq Ltd Coded aperture imager using reference object to form decoding pattern
GB2434936A (en) 2006-02-06 2007-08-08 Qinetiq Ltd Imaging system having plural distinct coded aperture arrays at different mask locations
GB0602380D0 (en) * 2006-02-06 2006-03-15 Qinetiq Ltd Imaging system
US20070280622A1 (en) * 2006-06-02 2007-12-06 3M Innovative Properties Company Fluorescent light source having light recycling means
US20070279914A1 (en) * 2006-06-02 2007-12-06 3M Innovative Properties Company Fluorescent volume light source with reflector
GB0615040D0 (en) * 2006-07-28 2006-09-06 Qinetiq Ltd Processing method for coded apperture sensor
US7549759B2 (en) * 2006-08-28 2009-06-23 Alces Technology, Inc. Micro-electromechanical light modulator with enhanced contrast
KR100905554B1 (en) * 2006-08-30 2009-07-02 삼성전기주식회사 Mobile unit using the projector of optical modulator
US7857457B2 (en) * 2006-09-29 2010-12-28 3M Innovative Properties Company Fluorescent volume light source having multiple fluorescent species
EP2104930A2 (en) 2006-12-12 2009-09-30 Evans & Sutherland Computer Corporation System and method for aligning rgb light in a single modulator projector
JP2009058676A (en) 2007-08-30 2009-03-19 Sony Corp Image forming apparatus
US9151884B2 (en) * 2008-02-01 2015-10-06 3M Innovative Properties Company Fluorescent volume light source with active chromphore
US8358317B2 (en) 2008-05-23 2013-01-22 Evans & Sutherland Computer Corporation System and method for displaying a planar image on a curved surface
US8702248B1 (en) 2008-06-11 2014-04-22 Evans & Sutherland Computer Corporation Projection method for reducing interpixel gaps on a viewing surface
US7656571B1 (en) 2008-07-31 2010-02-02 Eastman Kodak Company Balanced light valve
US8077378B1 (en) 2008-11-12 2011-12-13 Evans & Sutherland Computer Corporation Calibration system and method for light modulation device
GB0822281D0 (en) * 2008-12-06 2009-01-14 Qinetiq Ltd Optically diverse coded aperture imaging
US8699141B2 (en) 2009-03-13 2014-04-15 Knowles Electronics, Llc Lens assembly apparatus and method
US8659835B2 (en) 2009-03-13 2014-02-25 Optotune Ag Lens systems and method
US8023170B1 (en) 2010-03-24 2011-09-20 Eastman Kodak Company Total internal reflection modulator
US8111444B2 (en) * 2010-03-24 2012-02-07 Eastman Kodak Company Total internal reflection light valve
JP2011203156A (en) * 2010-03-26 2011-10-13 Dainippon Screen Mfg Co Ltd Distance measuring device
US8872111B2 (en) 2011-02-04 2014-10-28 Raytheon Company Infrared spatial modulator for scene-based non-uniformity image correction and systems and methods related thereto
US8970827B2 (en) * 2012-09-24 2015-03-03 Alces Technology, Inc. Structured light and time of flight depth capture with a MEMS ribbon linear array spatial light modulator
US9967546B2 (en) 2013-10-29 2018-05-08 Vefxi Corporation Method and apparatus for converting 2D-images and videos to 3D for consumer, commercial and professional applications
US20150116458A1 (en) 2013-10-30 2015-04-30 Barkatech Consulting, LLC Method and apparatus for generating enhanced 3d-effects for real-time and offline appplications
US10158847B2 (en) 2014-06-19 2018-12-18 Vefxi Corporation Real—time stereo 3D and autostereoscopic 3D video and image editing
JP7035671B2 (en) * 2017-03-23 2022-03-15 大日本印刷株式会社 Diffractive optical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306308A2 (en) * 1987-09-04 1989-03-08 New York Institute Of Technology Video display apparatus
WO1993022694A1 (en) * 1992-04-28 1993-11-11 Leland Stanford Junior University Modulating a light beam

Family Cites Families (290)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE16767E (en) * 1927-10-11 Charles prancis jenkins
USRE16757E (en) * 1922-10-31 1927-10-04 knight
US1548262A (en) * 1924-07-02 1925-08-04 Freedman Albert Manufacture of bicolored spectacles
US1814701A (en) * 1930-05-31 1931-07-14 Perser Corp Method of making viewing gratings for relief or stereoscopic pictures
US2415226A (en) * 1943-11-29 1947-02-04 Rca Corp Method of and apparatus for producing luminous images
US2991690A (en) * 1953-09-04 1961-07-11 Polaroid Corp Stereoscopic lens-prism optical system
US2783406A (en) * 1954-02-09 1957-02-26 John J Vanderhooft Stereoscopic television means
US3553364A (en) * 1968-03-15 1971-01-05 Texas Instruments Inc Electromechanical light valve
US3576394A (en) * 1968-07-03 1971-04-27 Texas Instruments Inc Apparatus for display duration modulation
US3600798A (en) * 1969-02-25 1971-08-24 Texas Instruments Inc Process for fabricating a panel array of electromechanical light valves
BE757764A (en) * 1969-10-21 1971-04-21 Itt SOLID STATE EXPLORATION SYSTEM
GB1356583A (en) * 1970-10-27 1974-06-12 Lucas Industries Ltd Centrifugal pumps
US4093346A (en) * 1973-07-13 1978-06-06 Minolta Camera Kabushiki Kaisha Optical low pass filter
US3886310A (en) * 1973-08-22 1975-05-27 Westinghouse Electric Corp Electrostatically deflectable light valve with improved diffraction properties
US3947105A (en) * 1973-09-21 1976-03-30 Technical Operations, Incorporated Production of colored designs
US3896338A (en) * 1973-11-01 1975-07-22 Westinghouse Electric Corp Color video display system comprising electrostatically deflectable light valves
US3969611A (en) * 1973-12-26 1976-07-13 Texas Instruments Incorporated Thermocouple circuit
JPS5742849B2 (en) * 1974-06-05 1982-09-10
US4001663A (en) * 1974-09-03 1977-01-04 Texas Instruments Incorporated Switching regulator power supply
US3935500A (en) * 1974-12-09 1976-01-27 Texas Instruments Incorporated Flat CRT system
US4020381A (en) * 1974-12-09 1977-04-26 Texas Instruments Incorporated Cathode structure for a multibeam cathode ray tube
US3935499A (en) * 1975-01-03 1976-01-27 Texas Instruments Incorporated Monolythic staggered mesh deflection systems for use in flat matrix CRT's
US4017158A (en) * 1975-03-17 1977-04-12 E. I. Du Pont De Nemours And Company Spatial frequency carrier and process of preparing same
US4012116A (en) * 1975-05-30 1977-03-15 Personal Communications, Inc. No glasses 3-D viewer
US4084437A (en) * 1975-11-07 1978-04-18 Texas Instruments Incorporated Thermocouple circuit
US4184700A (en) * 1975-11-17 1980-01-22 Lgz Landis & Gyr Zug Ag Documents embossed with optical markings representing genuineness information
CH595664A5 (en) * 1975-11-17 1978-02-15 Landis & Gyr Ag
US4127322A (en) * 1975-12-05 1978-11-28 Hughes Aircraft Company High brightness full color image light valve projection system
CH594495A5 (en) * 1976-05-04 1978-01-13 Landis & Gyr Ag
US4135502A (en) * 1976-09-07 1979-01-23 Donald Peck Stereoscopic patterns and method of making same
US4139257A (en) * 1976-09-28 1979-02-13 Canon Kabushiki Kaisha Synchronizing signal generator
US4067129A (en) * 1976-10-28 1978-01-10 Trans-World Manufacturing Corporation Display apparatus having means for creating a spectral color effect
CH604279A5 (en) * 1976-12-21 1978-08-31 Landis & Gyr Ag
US4093922A (en) * 1977-03-17 1978-06-06 Texas Instruments Incorporated Microcomputer processing approach for a non-volatile TV station memory tuning system
US4093921A (en) * 1977-03-17 1978-06-06 Texas Instruments Incorporated Microcomputer processing approach for a non-volatile TV station memory tuning system
CH616253A5 (en) * 1977-06-21 1980-03-14 Landis & Gyr Ag
CH622896A5 (en) * 1978-03-20 1981-04-30 Landis & Gyr Ag
US4225913A (en) * 1978-09-19 1980-09-30 Texas Instruments Incorporated Self-referencing power converter
US4338660A (en) * 1979-04-13 1982-07-06 Relational Memory Systems, Inc. Relational break signal generating device
US4327966A (en) * 1980-02-25 1982-05-04 Bell Telephone Laboratories, Incorporated Variable attenuator for laser radiation
US4327411A (en) * 1980-03-04 1982-04-27 Bell Telephone Laboratories, Incorporated High capacity elastic store having continuously variable delay
US4430584A (en) * 1980-05-29 1984-02-07 Texas Instruments Incorporated Modular input/output system
US4454591A (en) * 1980-05-29 1984-06-12 Texas Instruments Incorporated Interface system for bus line control
US4418397A (en) * 1980-05-29 1983-11-29 Texas Instruments Incorporated Address decode system
US4447881A (en) * 1980-05-29 1984-05-08 Texas Instruments Incorporated Data processing system integrated circuit having modular memory add-on capacity
US4503494A (en) * 1980-06-26 1985-03-05 Texas Instruments Incorporated Non-volatile memory system
US4443845A (en) * 1980-06-26 1984-04-17 Texas Instruments Incorporated Memory system having a common interface
US4420717A (en) * 1980-10-06 1983-12-13 Texas Instruments Incorporated Use of motor winding as integrator to generate sawtooth for switch mode current regulator
US4594501A (en) * 1980-10-09 1986-06-10 Texas Instruments Incorporated Pulse width modulation of printhead voltage
JPS57122981U (en) * 1981-01-27 1982-07-31
US4440839A (en) * 1981-03-18 1984-04-03 United Technologies Corporation Method of forming laser diffraction grating for beam sampling device
US4408884A (en) * 1981-06-29 1983-10-11 Rca Corporation Optical measurements of fine line parameters in integrated circuit processes
US4571603A (en) * 1981-11-03 1986-02-18 Texas Instruments Incorporated Deformable mirror electrostatic printer
US4571041A (en) * 1982-01-22 1986-02-18 Gaudyn Tad J Three dimensional projection arrangement
US4484188A (en) * 1982-04-23 1984-11-20 Texas Instruments Incorporated Graphics video resolution improvement apparatus
US4468725A (en) * 1982-06-18 1984-08-28 Texas Instruments Incorporated Direct AC converter for converting a balanced AC polyphase input to an output voltage
US4492435A (en) * 1982-07-02 1985-01-08 Xerox Corporation Multiple array full width electro mechanical modulator
JPS602073A (en) * 1983-04-06 1985-01-08 テキサス・インスツルメンツ・インコ−ポレイテツド Ac converting device and method
US4655539A (en) * 1983-04-18 1987-04-07 Aerodyne Products Corporation Hologram writing apparatus and method
CH661683A5 (en) * 1983-09-19 1987-08-14 Landis & Gyr Ag DEVICE FOR MAINTAINING HIGH-RESOLUTION RELIEF PATTERNS.
US4561044A (en) * 1983-09-22 1985-12-24 Citizen Watch Co., Ltd. Lighting device for a display panel of an electronic device
US4809078A (en) * 1983-10-05 1989-02-28 Casio Computer Co., Ltd. Liquid crystal television receiver
FR2553893B1 (en) * 1983-10-19 1986-02-07 Texas Instruments France METHOD AND DEVICE FOR DETECTING A TRANSITION OF THE CONTINUOUS COMPONENT OF A PERIODIC SIGNAL, IN PARTICULAR FOR A TELEPHONE TRUNK
JPS60127888A (en) * 1983-12-15 1985-07-08 Citizen Watch Co Ltd Liquid crystal display device
JPS60185918A (en) * 1984-03-05 1985-09-21 Canon Inc Optical modulating method
JPS60214684A (en) * 1984-04-10 1985-10-26 Citizen Watch Co Ltd Liquid crystal television device
CH664030A5 (en) * 1984-07-06 1988-01-29 Landis & Gyr Ag METHOD FOR GENERATING A MACROSCOPIC SURFACE PATTERN WITH A MICROSCOPIC STRUCTURE, IN PARTICULAR A STRUCTURALLY EFFECTIVE STRUCTURE.
US4566935A (en) * 1984-07-31 1986-01-28 Texas Instruments Incorporated Spatial light modulator and method
US4710732A (en) * 1984-07-31 1987-12-01 Texas Instruments Incorporated Spatial light modulator and method
US5096279A (en) 1984-08-31 1992-03-17 Texas Instruments Incorporated Spatial light modulator and method
US4662746A (en) * 1985-10-30 1987-05-05 Texas Instruments Incorporated Spatial light modulator and method
US5061049A (en) 1984-08-31 1991-10-29 Texas Instruments Incorporated Spatial light modulator and method
US4596992A (en) * 1984-08-31 1986-06-24 Texas Instruments Incorporated Linear spatial light modulator and printer
JPS6188676A (en) * 1984-10-05 1986-05-06 Citizen Watch Co Ltd Liquid crystal television device
US4615595A (en) * 1984-10-10 1986-10-07 Texas Instruments Incorporated Frame addressed spatial light modulator
US5281957A (en) 1984-11-14 1994-01-25 Schoolman Scientific Corp. Portable computer and head mounted display
US4772094A (en) * 1985-02-05 1988-09-20 Bright And Morning Star Optical stereoscopic system and prism window
US4866488A (en) * 1985-03-29 1989-09-12 Texas Instruments Incorporated Ballistic transport filter and device
US4623219A (en) * 1985-04-15 1986-11-18 The United States Of America As Represented By The Secretary Of The Navy Real-time high-resolution 3-D large-screen display using laser-activated liquid crystal light valves
US4719507A (en) * 1985-04-26 1988-01-12 Tektronix, Inc. Stereoscopic imaging system with passive viewing apparatus
US4751509A (en) * 1985-06-04 1988-06-14 Nec Corporation Light valve for use in a color display unit with a diffraction grating assembly included in the valve
US4728185A (en) * 1985-07-03 1988-03-01 Texas Instruments Incorporated Imaging system
JPH0535388Y2 (en) * 1985-07-29 1993-09-08
US5299037A (en) 1985-08-07 1994-03-29 Canon Kabushiki Kaisha Diffraction grating type liquid crystal display device in viewfinder
US5172262A (en) 1985-10-30 1992-12-15 Texas Instruments Incorporated Spatial light modulator and method
US4811210A (en) * 1985-11-27 1989-03-07 Texas Instruments Incorporated A plurality of optical crossbar switches and exchange switches for parallel processor computer
US4744633A (en) * 1986-02-18 1988-05-17 Sheiman David M Stereoscopic viewing system and glasses
US4803560A (en) * 1986-02-21 1989-02-07 Casio Computer Co., Ltd. Liquid-crystal television receiver with cassette tape recorder
US4829365A (en) * 1986-03-07 1989-05-09 Dimension Technologies, Inc. Autostereoscopic display with illuminating lines, light valve and mask
US4856869A (en) * 1986-04-08 1989-08-15 Canon Kabushiki Kaisha Display element and observation apparatus having the same
GB2198867A (en) * 1986-12-17 1988-06-22 Philips Electronic Associated A liquid crystal display illumination system
US4807965A (en) * 1987-05-26 1989-02-28 Garakani Reza G Apparatus for three-dimensional viewing
US4814759A (en) * 1987-07-08 1989-03-21 Clinicom Incorporated Flat panel display monitor apparatus
US4859012A (en) * 1987-08-14 1989-08-22 Texas Instruments Incorporated Optical interconnection networks
US5072418A (en) 1989-05-04 1991-12-10 Texas Instruments Incorporated Series maxium/minimum function computing devices, systems and methods
US5155812A (en) 1989-05-04 1992-10-13 Texas Instruments Incorporated Devices and method for generating and using systems, software waitstates on address boundaries in data processing
US5142677A (en) 1989-05-04 1992-08-25 Texas Instruments Incorporated Context switching devices, systems and methods
US5024494A (en) 1987-10-07 1991-06-18 Texas Instruments Incorporated Focussed light source pointer for three dimensional display
HU197469B (en) 1987-10-23 1989-03-28 Laszlo Holakovszky Spectacle like, wearable on head stereoscopic reproductor of the image
US5155604A (en) 1987-10-26 1992-10-13 Van Leer Metallized Products (Usa) Limited Coated paper sheet embossed with a diffraction or holographic pattern
US4952925A (en) * 1988-01-25 1990-08-28 Bernd Haastert Projectable passive liquid-crystal flat screen information centers
US4956619A (en) * 1988-02-19 1990-09-11 Texas Instruments Incorporated Spatial light modulator
EP0330738B1 (en) * 1988-03-03 1991-11-13 Landis & Gyr Betriebs AG Document
JPH01296214A (en) 1988-05-25 1989-11-29 Canon Inc Display device
US4827391A (en) * 1988-06-01 1989-05-02 Texas Instruments Incorporated Apparatus for implementing output voltage slope in current mode controlled power supplies
JPH01306886A (en) 1988-06-03 1989-12-11 Canon Inc Volume phase type diffraction grating
JP2585717B2 (en) 1988-06-03 1997-02-26 キヤノン株式会社 Display device
US4856863A (en) * 1988-06-22 1989-08-15 Texas Instruments Incorporated Optical fiber interconnection network including spatial light modulator
US5028939A (en) 1988-08-23 1991-07-02 Texas Instruments Incorporated Spatial light modulator system
US5058992A (en) 1988-09-07 1991-10-22 Toppan Printing Co., Ltd. Method for producing a display with a diffraction grating pattern and a display produced by the method
DE58906429D1 (en) 1988-09-30 1994-01-27 Landis & Gyr Business Support Diffraction element.
US4915463A (en) * 1988-10-18 1990-04-10 The United States Of America As Represented By The Department Of Energy Multilayer diffraction grating
JPH07121097B2 (en) 1988-11-18 1995-12-20 株式会社日立製作所 Liquid crystal television and manufacturing method thereof
US4982184A (en) * 1989-01-03 1991-01-01 General Electric Company Electrocrystallochromic display and element
US5079544A (en) 1989-02-27 1992-01-07 Texas Instruments Incorporated Standard independent digitized video system
US5128660A (en) 1989-02-27 1992-07-07 Texas Instruments Incorporated Pointer for three dimensional display
US5446479A (en) 1989-02-27 1995-08-29 Texas Instruments Incorporated Multi-dimensional array video processor system
US5192946A (en) 1989-02-27 1993-03-09 Texas Instruments Incorporated Digitized color video display system
US5214420A (en) 1989-02-27 1993-05-25 Texas Instruments Incorporated Spatial light modulator projection system with random polarity light
US5287096A (en) 1989-02-27 1994-02-15 Texas Instruments Incorporated Variable luminosity display system
US5214419A (en) 1989-02-27 1993-05-25 Texas Instruments Incorporated Planarized true three dimensional display
US5206629A (en) 1989-02-27 1993-04-27 Texas Instruments Incorporated Spatial light modulator and memory for digitized video display
US5170156A (en) 1989-02-27 1992-12-08 Texas Instruments Incorporated Multi-frequency two dimensional display system
US5272473A (en) 1989-02-27 1993-12-21 Texas Instruments Incorporated Reduced-speckle display system
US5162787A (en) 1989-02-27 1992-11-10 Texas Instruments Incorporated Apparatus and method for digitized video system utilizing a moving display surface
KR100202246B1 (en) 1989-02-27 1999-06-15 윌리엄 비. 켐플러 Apparatus and method for digital video system
US4978202A (en) * 1989-05-12 1990-12-18 Goldstar Co., Ltd. Laser scanning system for displaying a three-dimensional color image
US5060058A (en) 1989-06-07 1991-10-22 U.S. Philips Corporation Modulation system for projection display
US5022750A (en) * 1989-08-11 1991-06-11 Raf Electronics Corp. Active matrix reflective projection system
JPH0343682U (en) 1989-09-06 1991-04-24
GB8921722D0 (en) 1989-09-26 1989-11-08 British Telecomm Micromechanical switch
US4954789A (en) * 1989-09-28 1990-09-04 Texas Instruments Incorporated Spatial light modulator
JP2508387B2 (en) 1989-10-16 1996-06-19 凸版印刷株式会社 Method of manufacturing display having diffraction grating pattern
US5037173A (en) 1989-11-22 1991-08-06 Texas Instruments Incorporated Optical interconnection network
US5237340A (en) 1989-12-21 1993-08-17 Texas Instruments Incorporated Replaceable elements for xerographic printing process and method of operation
US5105369A (en) 1989-12-21 1992-04-14 Texas Instruments Incorporated Printing system exposure module alignment method and apparatus of manufacture
US5101236A (en) 1989-12-21 1992-03-31 Texas Instruments Incorporated Light energy control system and method of operation
US5041851A (en) 1989-12-21 1991-08-20 Texas Instruments Incorporated Spatial light modulator printer and method of operation
US5072239A (en) 1989-12-21 1991-12-10 Texas Instruments Incorporated Spatial light modulator exposure unit and method of operation
US5142303A (en) 1989-12-21 1992-08-25 Texas Instruments Incorporated Printing system exposure module optic structure and method of operation
DE4001448C1 (en) 1990-01-19 1991-07-11 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
JPH03217814A (en) 1990-01-24 1991-09-25 Canon Inc Liquid crystal projector
US5291473A (en) 1990-06-06 1994-03-01 Texas Instruments Incorporated Optical storage media light beam positioning system
US5502481A (en) 1992-11-16 1996-03-26 Reveo, Inc. Desktop-based projection display system for stereoscopic viewing of displayed imagery over a wide field of view
US5165013A (en) 1990-09-26 1992-11-17 Faris Sadeg M 3-D stereo pen plotter
JP2622185B2 (en) 1990-06-28 1997-06-18 シャープ株式会社 Color liquid crystal display
US5142405A (en) 1990-06-29 1992-08-25 Texas Instruments Incorporated Bistable dmd addressing circuit and method
US5099353A (en) 1990-06-29 1992-03-24 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
DE69113150T2 (en) 1990-06-29 1996-04-04 Texas Instruments Inc Deformable mirror device with updated grid.
US5018256A (en) * 1990-06-29 1991-05-28 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
US5083857A (en) 1990-06-29 1992-01-28 Texas Instruments Incorporated Multi-level deformable mirror device
US5216537A (en) 1990-06-29 1993-06-01 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
US5291317A (en) 1990-07-12 1994-03-01 Applied Holographics Corporation Holographic diffraction grating patterns and methods for creating the same
US5121343A (en) 1990-07-19 1992-06-09 Faris Sadeg M 3-D stereo computer output printer
US5148157A (en) 1990-09-28 1992-09-15 Texas Instruments Incorporated Spatial light modulator with full complex light modulation capability
US5113285A (en) 1990-09-28 1992-05-12 Honeywell Inc. Full color three-dimensional flat panel display
US5331454A (en) 1990-11-13 1994-07-19 Texas Instruments Incorporated Low reset voltage process for DMD
US5231363A (en) 1990-11-26 1993-07-27 Texas Instruments Incorporated Pulse width modulating producing signals centered in each cycle interval
US5181231A (en) 1990-11-30 1993-01-19 Texas Instruments, Incorporated Non-volatile counting method and apparatus
US5151718A (en) 1990-12-31 1992-09-29 Texas Instruments Incorporated System and method for solid state illumination for dmd devices
US5159485A (en) 1990-12-31 1992-10-27 Texas Instruments Incorporated System and method for uniformity of illumination for tungsten light
US5172161A (en) 1990-12-31 1992-12-15 Texas Instruments Incorporated Unibody printing system and process
US5105299A (en) 1990-12-31 1992-04-14 Texas Instruments Incorporated Unfolded optics for multiple row deformable mirror device
US5105207A (en) 1990-12-31 1992-04-14 Texas Instruments Incorporated System and method for achieving gray scale DMD operation
CA2060057C (en) 1991-01-29 1997-12-16 Susumu Takahashi Display having diffraction grating pattern
US5178728A (en) 1991-03-28 1993-01-12 Texas Instruments Incorporated Integrated-optic waveguide devices and method
CA2063744C (en) 1991-04-01 2002-10-08 Paul M. Urbanus Digital micromirror device architecture and timing for use in a pulse-width modulated display system
US5226099A (en) 1991-04-26 1993-07-06 Texas Instruments Incorporated Digital micromirror shutter device
US5148506A (en) 1991-04-26 1992-09-15 Texas Instruments Incorporated Optical crossbar switch
US5170269A (en) 1991-05-31 1992-12-08 Texas Instruments Incorporated Programmable optical interconnect system
US5155778A (en) 1991-06-28 1992-10-13 Texas Instruments Incorporated Optical switch using spatial light modulators
US5221982A (en) 1991-07-05 1993-06-22 Faris Sadeg M Polarizing wavelength separator
US5179274A (en) 1991-07-12 1993-01-12 Texas Instruments Incorporated Method for controlling operation of optical systems and devices
US5287215A (en) 1991-07-17 1994-02-15 Optron Systems, Inc. Membrane light modulation systems
US5170283A (en) 1991-07-24 1992-12-08 Northrop Corporation Silicon spatial light modulator
US5240818A (en) 1991-07-31 1993-08-31 Texas Instruments Incorporated Method for manufacturing a color filter for deformable mirror device
US5168406A (en) 1991-07-31 1992-12-01 Texas Instruments Incorporated Color deformable mirror device and method for manufacture
CA2075026A1 (en) 1991-08-08 1993-02-09 William E. Nelson Method and apparatus for patterning an imaging member
US5254980A (en) 1991-09-06 1993-10-19 Texas Instruments Incorporated DMD display system controller
US5255100A (en) 1991-09-06 1993-10-19 Texas Instruments Incorporated Data formatter with orthogonal input/output and spatial reordering
US5245686A (en) 1991-09-06 1993-09-14 Faris Sadeg M Method of fabricating an image plane translator device and apparatus incorporating such device
US5307056A (en) 1991-09-06 1994-04-26 Texas Instruments Incorporated Dynamic memory allocation for frame buffer for spatial light modulator
CA2081753C (en) 1991-11-22 2002-08-06 Jeffrey B. Sampsell Dmd scanner
EP0841810B1 (en) 1991-12-05 2000-06-21 Texas Instruments Incorporated Method to improve a video signal
US5231388A (en) 1991-12-17 1993-07-27 Texas Instruments Incorporated Color display system using spatial light modulators
US5212555A (en) 1991-12-17 1993-05-18 Texas Instruments Incorporated Image capture with spatial light modulator and single-cell photosensor
US5311349A (en) 1991-12-18 1994-05-10 Texas Instruments Incorporated Unfolded optics for multiple row spatial light modulators
US5247593A (en) 1991-12-18 1993-09-21 Texas Instruments Incorporated Programmable optical crossbar switch
US5202785A (en) 1991-12-20 1993-04-13 Texas Instruments Incorporated Method and device for steering light
CA2084923A1 (en) 1991-12-20 1993-06-21 Ronald E. Stafford Slm spectrometer
US5233456A (en) 1991-12-20 1993-08-03 Texas Instruments Incorporated Resonant mirror and method of manufacture
CA2085961A1 (en) 1991-12-23 1993-06-24 William E. Nelson Method and apparatus for steering light
US5247180A (en) 1991-12-30 1993-09-21 Texas Instruments Incorporated Stereolithographic apparatus and method of use
US5285407A (en) 1991-12-31 1994-02-08 Texas Instruments Incorporated Memory circuit for spatial light modulator
US5296950A (en) 1992-01-31 1994-03-22 Texas Instruments Incorporated Optical signal free-space conversion board
US5504514A (en) 1992-02-13 1996-04-02 Texas Instruments Incorporated System and method for solid state illumination for spatial light modulators
US5212582A (en) 1992-03-04 1993-05-18 Texas Instruments Incorporated Electrostatically controlled beam steering device and method
DE69310974T2 (en) 1992-03-25 1997-11-06 Texas Instruments Inc Built-in optical calibration system
US5312513A (en) 1992-04-03 1994-05-17 Texas Instruments Incorporated Methods of forming multiple phase light modulators
US5319214A (en) 1992-04-06 1994-06-07 The United States Of America As Represented By The Secretary Of The Army Infrared image projector utilizing a deformable mirror device spatial light modulator
US5459592A (en) 1992-04-24 1995-10-17 Sharp Kabushiki Kaisha Projection display system including a collimating tapered waveguide or lens with the normal to optical axis angle increasing toward the lens center
US5311360A (en) 1992-04-28 1994-05-10 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for modulating a light beam
GB2267579A (en) 1992-05-15 1993-12-08 Sharp Kk Optical device comprising facing lenticular or parallax screens of different pitch
US5307185A (en) 1992-05-19 1994-04-26 Raychem Corporation Liquid crystal projection display with complementary color dye added to longest wavelength imaging element
US5347433A (en) 1992-06-11 1994-09-13 Sedlmayr Steven R Collimated beam of light and systems and methods for implementation thereof
US5486841A (en) 1992-06-17 1996-01-23 Sony Corporation Glasses type display apparatus
US5315418A (en) 1992-06-17 1994-05-24 Xerox Corporation Two path liquid crystal light valve color display with light coupling lens array disposed along the red-green light path
US5256869A (en) 1992-06-30 1993-10-26 Texas Instruments Incorporated Free-space optical interconnection using deformable mirror device
US5430524A (en) 1992-07-22 1995-07-04 Texas Instruments Incorporated Unibody printing and copying system and process
US5313479A (en) 1992-07-29 1994-05-17 Texas Instruments Incorporated Speckle-free display system using coherent light
US5327286A (en) 1992-08-31 1994-07-05 Texas Instruments Incorporated Real time optical correlation system
US5348619A (en) 1992-09-03 1994-09-20 Texas Instruments Incorporated Metal selective polymer removal
US5325116A (en) 1992-09-18 1994-06-28 Texas Instruments Incorporated Device for writing to and reading from optical storage media
GB9220412D0 (en) 1992-09-28 1992-11-11 Texas Instruments Holland Transponder systems for automatic identification purposes
US5285196A (en) 1992-10-15 1994-02-08 Texas Instruments Incorporated Bistable DMD addressing method
US5289172A (en) 1992-10-23 1994-02-22 Texas Instruments Incorporated Method of mitigating the effects of a defective electromechanical pixel
GB2272555A (en) 1992-11-11 1994-05-18 Sharp Kk Stereoscopic display using a light modulator
DE59309409D1 (en) 1992-11-20 1999-04-08 Ascom Tech Ag Light modulator
US5450088A (en) 1992-11-25 1995-09-12 Texas Instruments Deutschland Gmbh Transponder arrangement
US5410315A (en) 1992-12-08 1995-04-25 Texas Instruments Incorporated Group-addressable transponder arrangement
US5420655A (en) 1992-12-16 1995-05-30 North American Philips Corporation Color projection system employing reflective display devices and prism illuminators
KR100285696B1 (en) 1992-12-16 2001-09-17 윌리엄 비. 켐플러 Cleaning method of patterned metal layer
US5357369A (en) 1992-12-21 1994-10-18 Geoffrey Pilling Wide-field three-dimensional viewing system
US5418584A (en) 1992-12-31 1995-05-23 Honeywell Inc. Retroreflective array virtual image projection screen
AU5306494A (en) 1993-01-08 1994-07-14 Richard A Vasichek Magnetic keeper accessory for wrench sockets
US5371543A (en) 1993-03-03 1994-12-06 Texas Instruments Incorporated Monolithic color wheel
US5293511A (en) 1993-03-16 1994-03-08 Texas Instruments Incorporated Package for a semiconductor device
US5435876A (en) 1993-03-29 1995-07-25 Texas Instruments Incorporated Grid array masking tape process
US5455602A (en) 1993-03-29 1995-10-03 Texas Instruments Incorporated Combined modulation schemes for spatial light modulators
US5461410A (en) 1993-03-29 1995-10-24 Texas Instruments Incorporated Gray scale printing using spatial light modulators
US5461411A (en) 1993-03-29 1995-10-24 Texas Instruments Incorporated Process and architecture for digital micromirror printer
US5451103A (en) 1993-04-06 1995-09-19 Sony Corporation Projector system
US5321450A (en) 1993-05-11 1994-06-14 Proxima Corporation Low profile liquid crystal projector and method of using same
KR970003007B1 (en) 1993-05-21 1997-03-13 대우전자 주식회사 Optical path regulating apparatus and the driving method
US5445559A (en) 1993-06-24 1995-08-29 Texas Instruments Incorporated Wafer-like processing after sawing DMDs
US5453747A (en) 1993-06-28 1995-09-26 Texas Instruments Deutschland Gmbh Transponder systems for automatic identification purposes
US5491715A (en) 1993-06-28 1996-02-13 Texas Instruments Deutschland Gmbh Automatic antenna tuning method and circuit
US5345521A (en) 1993-07-12 1994-09-06 Texas Instrument Incorporated Architecture for optical switch
US5489952A (en) 1993-07-14 1996-02-06 Texas Instruments Incorporated Method and device for multi-format television
US5365283A (en) 1993-07-19 1994-11-15 Texas Instruments Incorporated Color phase control for projection display using spatial light modulator
US5461547A (en) 1993-07-20 1995-10-24 Precision Lamp, Inc. Flat panel display lighting system
US5510824A (en) 1993-07-26 1996-04-23 Texas Instruments, Inc. Spatial light modulator array
US5453778A (en) 1993-07-30 1995-09-26 Texas Instruments Incorporated Method and apparatus for spatial modulation in the cross-process direction
US5389182A (en) 1993-08-02 1995-02-14 Texas Instruments Incorporated Use of a saw frame with tape as a substrate carrier for wafer level backend processing
US5459492A (en) 1993-08-30 1995-10-17 Texas Instruments Incorporated Method and apparatus for printing stroke and contone data together
US5485354A (en) 1993-09-09 1996-01-16 Precision Lamp, Inc. Flat panel display lighting system
EP0657760A1 (en) 1993-09-15 1995-06-14 Texas Instruments Incorporated Image simulation and projection system
US5457493A (en) 1993-09-15 1995-10-10 Texas Instruments Incorporated Digital micro-mirror based image simulation system
KR970003466B1 (en) 1993-09-28 1997-03-18 대우전자 주식회사 Manufacturing method of optical path regulating apparatus for projector
US5347321A (en) 1993-09-30 1994-09-13 Texas Instruments Incorporated Color separator for digital television
US5497197A (en) 1993-11-04 1996-03-05 Texas Instruments Incorporated System and method for packaging data into video processor
US5367585A (en) 1993-10-27 1994-11-22 General Electric Company Integrated microelectromechanical polymeric photonic switch
US5452024A (en) 1993-11-01 1995-09-19 Texas Instruments Incorporated DMD display system
US5398071A (en) 1993-11-02 1995-03-14 Texas Instruments Incorporated Film-to-video format detection for digital television
CA2134370A1 (en) 1993-11-04 1995-05-05 Robert J. Gove Video data formatter for a digital television system
US5450219A (en) 1993-11-17 1995-09-12 Hughes Aircraft Company Raster following telecentric illumination scanning system for enhancing light throughout in light valve projection systems
US5517347A (en) 1993-12-01 1996-05-14 Texas Instruments Incorporated Direct view deformable mirror device
US5491510A (en) 1993-12-03 1996-02-13 Texas Instruments Incorporated System and method for simultaneously viewing a scene and an obscured object
US5442411A (en) 1994-01-03 1995-08-15 Texas Instruments Incorporated Displaying video data on a spatial light modulator with line doubling
US5499060A (en) 1994-01-04 1996-03-12 Texas Instruments Incorporated System and method for processing video data
US5448314A (en) 1994-01-07 1995-09-05 Texas Instruments Method and apparatus for sequential color imaging
CA2139794C (en) 1994-01-18 2006-11-07 Robert John Gove Frame pixel data generation
US5500761A (en) 1994-01-27 1996-03-19 At&T Corp. Micromechanical modulator
US5467106A (en) 1994-02-10 1995-11-14 Hughes-Avicom International, Inc. Retractable face-up LCD monitor with off-monitor power supply and back-EMF braking
US5412186A (en) 1994-02-23 1995-05-02 Texas Instruments Incorporated Elimination of sticking of micro-mechanical devices
US5444566A (en) 1994-03-07 1995-08-22 Texas Instruments Incorporated Optimized electronic operation of digital micromirror devices
US5447600A (en) 1994-03-21 1995-09-05 Texas Instruments Polymeric coatings for micromechanical devices
US5467146A (en) 1994-03-31 1995-11-14 Texas Instruments Incorporated Illumination control unit for display system with spatial light modulator
US5459528A (en) 1994-03-31 1995-10-17 Texas Instruments Incorporated Video signal processor and method for secondary images
US5486698A (en) 1994-04-19 1996-01-23 Texas Instruments Incorporated Thermal imaging system with integrated thermal chopper
US5512374A (en) 1994-05-09 1996-04-30 Texas Instruments Incorporated PFPE coatings for micro-mechanical devices
US5442414A (en) 1994-05-10 1995-08-15 U. S. Philips Corporation High contrast illumination system for video projector
US5458716A (en) 1994-05-25 1995-10-17 Texas Instruments Incorporated Methods for manufacturing a thermally enhanced molded cavity package having a parallel lid
US5497172A (en) 1994-06-13 1996-03-05 Texas Instruments Incorporated Pulse width modulation for spatial light modulator with split reset addressing
US5482564A (en) 1994-06-21 1996-01-09 Texas Instruments Incorporated Method of unsticking components of micro-mechanical devices
US5454906A (en) 1994-06-21 1995-10-03 Texas Instruments Inc. Method of providing sacrificial spacer for micro-mechanical devices
US5499062A (en) 1994-06-23 1996-03-12 Texas Instruments Incorporated Multiplexed memory timing with block reset and secondary memory
US5523878A (en) 1994-06-30 1996-06-04 Texas Instruments Incorporated Self-assembled monolayer coating for micro-mechanical devices
US5504504A (en) 1994-07-13 1996-04-02 Texas Instruments Incorporated Method of reducing the visual impact of defects present in a spatial light modulator display
US5512748A (en) 1994-07-26 1996-04-30 Texas Instruments Incorporated Thermal imaging system with a monolithic focal plane array and method
US5485304A (en) 1994-07-29 1996-01-16 Texas Instruments, Inc. Support posts for micro-mechanical devices
US5483307A (en) 1994-09-29 1996-01-09 Texas Instruments, Inc. Wide field of view head-mounted display
US5490009A (en) 1994-10-31 1996-02-06 Texas Instruments Incorporated Enhanced resolution for digital micro-mirror displays
US5519450A (en) 1994-11-14 1996-05-21 Texas Instruments Incorporated Graphics subsystem for digital television
US5516125A (en) 1994-11-30 1996-05-14 Texas Instruments Incorporated Baffled collet for vacuum pick-up of a semiconductor die
US5463347A (en) 1994-12-12 1995-10-31 Texas Instruments Incorporated MOS uni-directional, differential voltage amplifier capable of amplifying signals having input common-mode voltage beneath voltage of lower supply and integrated circuit substrate
US5524155A (en) 1995-01-06 1996-06-04 Texas Instruments Incorporated Demultiplexer for wavelength-multiplexed optical signal
US5517340A (en) 1995-01-30 1996-05-14 International Business Machines Corporation High performance projection display with two light valves
US5504614A (en) 1995-01-31 1996-04-02 Texas Instruments Incorporated Method for fabricating a DMD spatial light modulator with a hardened hinge
US5508750A (en) 1995-02-03 1996-04-16 Texas Instruments Incorporated Encoding data converted from film format for progressive display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306308A2 (en) * 1987-09-04 1989-03-08 New York Institute Of Technology Video display apparatus
WO1993022694A1 (en) * 1992-04-28 1993-11-11 Leland Stanford Junior University Modulating a light beam

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRINKLER W ET AL: "Deformation Behavior of Thin Viscoelastic Layers used in an Active-Matrix Addressed Spatial Light Modulator", PROCEEDINGS OF THE SPIE: ELECTRO-OPTIC AND MAGNETO-OPTIC MATERIALS, vol. 1018, 22 September 1988 (1988-09-22) - 23 September 1988 (1988-09-23), HAMBURG, DE, pages 79 - 84, XP002013958 *
SOLGAARD O ET AL: "DEFORMABLE GRATING OPTICAL MODULATOR", OPTICS LETTERS, vol. 17, no. 9, 1 May 1992 (1992-05-01), pages 688 - 690, XP000265233 *
UTSUNOMIYA ET AL: "Electrically Deformable Echelette Grating and its Application to Tunable Laser Resonator", ELECTRONICS AND COMMUNICATIONS IN JAPAN, vol. 63-c, no. 10, 1980, NEW YORK US, pages 94 - 100, XP002013959 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041893A1 (en) * 1997-03-20 1998-09-24 Silicon Light Machines, Inc. Display device incorporating one-dimensional high-speed grating light valve array
US6425656B1 (en) 1998-01-09 2002-07-30 Seiko Epson Corporation Ink-jet head, method of manufacture thereof, and ink-jet printer
US6709089B2 (en) 1998-01-09 2004-03-23 Seiko Epson Corporation Ink-jet head, method of manufacture thereof, and ink-jet printer
US7166486B2 (en) 2001-01-18 2007-01-23 Ricoh Company, Ltd. Optical modulator, optical modulator manufacturing method, light information processing apparatus including optical modulator, image formation apparatus including optical modulator, and image projection and display apparatus including optical modulator
US6947195B2 (en) 2001-01-18 2005-09-20 Ricoh Company, Ltd. Optical modulator, optical modulator manufacturing method, light information processing apparatus including optical modulator, image formation apparatus including optical modulator, and image projection and display apparatus including optical modulator
US6470107B2 (en) 2001-03-13 2002-10-22 President And Fellows Of Harvard College Fluidic all-optical switch
US6785001B2 (en) 2001-08-21 2004-08-31 Silicon Light Machines, Inc. Method and apparatus for measuring wavelength jitter of light signal
EP1431951A2 (en) * 2002-12-16 2004-06-23 Eastman Kodak Company Method and system for generating enhanced gray levels in an electromechanical grating display
EP1431951A3 (en) * 2002-12-16 2009-12-30 Eastman Kodak Company Method and system for generating enhanced gray levels in an electromechanical grating display
KR100632547B1 (en) * 2004-09-06 2006-10-09 삼성전기주식회사 Diffraction type optical modulator using cantilever
US9641826B1 (en) 2011-10-06 2017-05-02 Evans & Sutherland Computer Corporation System and method for displaying distant 3-D stereo on a dome surface
US10110876B1 (en) 2011-10-06 2018-10-23 Evans & Sutherland Computer Corporation System and method for displaying images in 3-D stereo
DE102016208049A1 (en) 2015-07-09 2017-01-12 Inb Vision Ag Device and method for image acquisition of a preferably structured surface of an object
WO2017005254A1 (en) 2015-07-09 2017-01-12 Inb Vision Ag Device and method for detecting an image of a preferably structured surface of an object
US10544032B2 (en) 2017-01-31 2020-01-28 Ricoh Company, Ltd. MEMS device
US11187890B2 (en) 2017-03-15 2021-11-30 Ricoh Company, Ltd. Movable diffraction element and spectroscope

Also Published As

Publication number Publication date
DE69607960T2 (en) 2000-08-17
NO975696L (en) 1997-12-05
EP0830624B1 (en) 2000-04-26
DE69607960D1 (en) 2000-05-31
AU5981196A (en) 1996-12-30
KR19990022270A (en) 1999-03-25
DK0830624T3 (en) 2000-09-25
GR3033806T3 (en) 2000-10-31
PT830624E (en) 2000-08-31
KR100320997B1 (en) 2002-03-08
EP0830624A1 (en) 1998-03-25
US5841579A (en) 1998-11-24
ES2147380T3 (en) 2000-09-01
JPH10510374A (en) 1998-10-06
JP3164824B2 (en) 2001-05-14
NO975696D0 (en) 1997-12-05
CN1158546C (en) 2004-07-21
CN1187247A (en) 1998-07-08
ATE192241T1 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
US5841579A (en) Flat diffraction grating light valve
EP0875010B1 (en) Method and apparatus for using an array of grating light valves to produce multicolor optical images
EP1090322B1 (en) Method and apparatus for modulating an incident light beam for forming a two-dimensional image
US6307663B1 (en) Spatial light modulator with conformal grating device
US20050068609A1 (en) High-density spatial light modulator
US6529310B1 (en) Deflectable spatial light modulator having superimposed hinge and deflectable element
CA2133335C (en) Modulating a light beam
US6836352B2 (en) High frequency deformable mirror device
EP1143287A2 (en) Method and system for calibrating a diffractive grating modulator
KR100861785B1 (en) Spatial Optic Modulating System with speckle reduction and method thereof
EP2943834B1 (en) Asymmetrical deformable diffractive grating modulator
WO2005122123A1 (en) Light valve
EP1540405A1 (en) A method and device for modulating a light beam and having an improved gamma response
JP4207666B2 (en) Electrostatic mechanical element, light diffraction modulation element, and image display device
US8861067B2 (en) Asymmetrical deformable diffractive grating modulator
US7099064B2 (en) Electrostatic-type variable diffractive light modulator and manufacturing method thereof
GB2433327A (en) Open hole-based diffractive light modulator
JP2002214549A (en) Optical modulator and its manufacturing method, image forming apparatus equipped with optical modulator and image projection/display unit equipped with optical modulator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96194557.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU BB BG BR CA CN CZ EE FI GE HU IS JP KG KP KR LK LR LT LV MD MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996917143

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970708749

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1996917143

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1019970708749

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996917143

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019970708749

Country of ref document: KR