WO1996039463A1 - High stretch film for pallet wrapping - Google Patents

High stretch film for pallet wrapping Download PDF

Info

Publication number
WO1996039463A1
WO1996039463A1 PCT/US1996/009577 US9609577W WO9639463A1 WO 1996039463 A1 WO1996039463 A1 WO 1996039463A1 US 9609577 W US9609577 W US 9609577W WO 9639463 A1 WO9639463 A1 WO 9639463A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
weight
cling
stretch
surfactant
Prior art date
Application number
PCT/US1996/009577
Other languages
French (fr)
Inventor
Anil Gambhir Doshi
Frank Thomas Kos
Dattaram Chandrakent Salkar
Original Assignee
Borden, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borden, Inc. filed Critical Borden, Inc.
Publication of WO1996039463A1 publication Critical patent/WO1996039463A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer

Definitions

  • the present invention relates to monolayer stretch cling film produced by the blown f lm process.
  • the cast films exhibit a tendency to tear, it is desirable to produce films by blown methods. Such films are generally stronger than cast films. Blown films, on the other hand possess a higher molecular weight, having a melt index of 1 and a density of approximately 0.918. Such films, however, do not possess the levels of stretch desired, so that more force is required to stretch the film. Increased forces, of course, result in greater wear and tear on machines and other equipment.
  • an object of the invention is to produce a blown film having stretch characteristics similar to cast films.
  • Another object of the invention is to produce a blown film, which upon being unwound for pallet wrapping generates a noise level of below 88 dB.
  • the film of the invention is produced by blending 40 to 80% by weight linear low density polyethylene polymerized with an ⁇ -olefin comonomer having a melt index range of 0.8 to 1.2 and a density range of 0.916 to 0.920; with 60 to 20% by weight of a flexible semi-crystalline polyethylene copolymer having a melt index 0.8 to 2.0 and a density of 0.86 to 0.91; with 3 to 9% by weight liquid polyolefin and 0.1 to 4.0% by weight of a surfactant.
  • Fig. 1 is an elevation view showing the general configuration of a blown film line.
  • the films of the present invention are characterized not only by reduced noise levels and overall improved properties, but also by an evenly matched -two-sided cling. More specifically, each side of or face of the film of the invention possesses substantially similar cling properties.
  • the cling of polyethylene and polyethylene containing films can be increased by adding tackifying agents to mixtures used to form the final films. Such tackifyingr agents are capable of increasing the inherent cling of the film by between 100 and 250% .
  • Cling is measured by ASTM D 4649. Cling is the strength, in grams, required to pull the test film apart at the overlap.
  • the tackifying agent of the claimed invention is a liquid polyolefin preferably having a number average molecular weight greater than 1100, preferably greater than 1300, and up to a number average molecular weight of up to about 1500.
  • the tackifier has a specific gravity range of 0.887 to 0.92.
  • Suitable tackifying agents include hydrocarbon resin such as terpene resin, hydrogenated resins, and resin esters, atactic polypropylenes, polybutenes and the like.
  • the tackifier of the invention is polybutene having a number average molecular weight of 1300 and specific gravity of 0.905.
  • the tackifier is present in the composition of the invention in an amount of 3 to 9% by weight, and more preferably in amounts of 3.5-4.0%.
  • auxiliary components in combination with a tackifier.
  • U.S. Patent No. 4,425,268 herein incorporated by reference teaches the use of tackifiers in combination with components which include alkali metal stearates and monoesters of fatty acids and polyols.
  • Specific compounds include glycerol mono-oleate or an ester of sorbitan.
  • Such auxiliary compounds are present in a film blend in a proportion of between about 0.25 to about
  • surfactants are used in amounts to reduce noise associated with the unravelling of pallet wrap.
  • the use of surfactants in the present invention does not lead to differential cling properties. In fact the two faces of the film exhibit an equal amount of cling.
  • the surfactants are used in amounts of 0.1 to 4.0% by weight of the film composition, preferably in amounts of 0.3 to 0.5% and most preferably in an amount of 0.45% by weight of the composition.
  • Suitable surfactants include monoesters of a polyol, such as, for example, glycerol or sorbitan and a fatty acid of 10-20 carbon atoms.
  • the surfactant is sorbitan mono-oleate.
  • the ratio range of the tackifier to the surfactant is between about 2.0 and 9.2, more preferably 5 to 8.8, and most preferably the ratio is 7.7.
  • the polymer blend used to prepare the two-sided cling film of the invention, having reduced noise characteristics and film properties more nearly like those of cast films is formed of homo and/or copolymers derived from ethylenically unsaturated monomers exhibiting different densities such that when blended with the tackifier and surfactant, the film exhibits the improved properties discussed above.
  • the polymeric composition of the invention will contain two different polymers.
  • the first of these polymers is a linear low density polyethylene polymer, sometimes referred to herein as polymer 1, present in amounts of 40-80% by weight of the overall composition, having a density of about 0.916 to 0.920 and preferably 0.918, a melt index range of 0.8 to 1.2 percent, and a crystallinity of about 47%.
  • the second of the two polymers is a semi-crystalline ⁇ -olefin polymer sometimes referred to as polymer 2, having a density of about 0.860 to 0.910 preferably 0.905 in amounts of 60- 20% by weight of the overall composition, a melt index of 0.8 to 2.0 preferably 0.9, and a degree of crystallinity of about 38%.
  • the polymer exhibiting the greater density, polymer 1 is preferably a conventional linear low density polyethylene polymerized with an ⁇ -olefin comonomer and typically used in blown film processes.
  • LoadmasterTM polymers, manufactured and sold by Borden can be used and are generally composed of ethylene and/or a C 4 ⁇ -olefin or higher, for example 1-butene, 1-pentene, 4-methyl-l-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecen etc. including copolymers of one or more such olefinic monomers, such as 1-butene and 1-hexene.
  • Other conventional linear low- density polyethylenes can be used.
  • the second polymer exhibiting the lower or smaller density is also prepared by copolymerizing ethylene with one or more comonomers such as 1-butene, 1-pentene, 4-methyl-l- pentene, 1-hexene, 1-octene, 1-decene, 1-dodecen etc.
  • comonomers include butene and 1-hexene.
  • the polymer may even be a terpolymer of ethylene, butene and 1-hexene.
  • the tackifier and the surfactant are thoroughly and uniformly blended with the two polymer components of the invention. Uniform and complete mixing is obtained by mixing the tackifier and the surfactant with granules of the polymers rather than conventional pellets. Specifically, granular co ⁇ polymers of a mean diameter size of about 1/32 of an inch are added to a high intensity mixer containing the tackifier and the surfactant. The mix is free-flowing and can be fed to an extruder and melted at conventional temperatures and extruded according to standard blow film or "bubble" processing techniques. Cooling of each of the resulting tubular films is conducted by blowing ambient air across the external film surface.
  • Fig. 1 shows an overall typical configuration of an apparatus for producing blown film.
  • an extruder 30 is operably connected with an annular die assembly 20.
  • An air ring assembly 10 is located adjacent to the discharge side of an annular die assembly 20.
  • tubular extruded plastic On extrusion, tubular extruded plastic is inflated from the interior, cooled and then flattened by nip rolls 60 and optionally by a set of collapsers 59. The flattened and collapsed film is then longitudinally cut and the two halves are led to separate winding devices 80 of conventional construction by guiding and transfer means 70.
  • a blower assembly 50 Connected to air ring 10 is a blower assembly 50 attached by one or more conduits 52.
  • the ring assembly is a dual flow air ring as disclosed in US patent No. 4,750,874 herein incorporated by reference.
  • blown film tube 40 is produced from a mixture of granular polymers 1 and 2, a tackifier and a surfactant preferably as described. These components of the mixture are thoroughly and uniformly blended in a high intensity mixer to obtain a free flowing mix.
  • the blend is extruded and forced from a circular die 20 at temperatures in the range of from about 220°C to 240°C and then blown, forming tube 40.
  • Die 20 is of conventional construction and may be a single or multiple die rotating or non-rotating system. It is preferable that the system be rotatable when used in conjunction with winding devices 80. From cooling ring 10 a cooling air flow contacts the outside of tube 40 after extrusion. The temperature of the air flow is about between 20°C to 30°C. Nip rolls 60 assist in collapsing the film, and the film is then split and then rolled.
  • Rolling of the film can impart significant properties to the film.
  • a tension differential is maintained between the winding mechanism and the nip rolls.
  • Benefits can also be realized using such dual flow air ring for compositions containing less than 40% of polymer, i.e., 20% - 40% of polymer 2.
  • the force-to-stretch properties of the compositions: of the invention are improved using a dual flow air ring.
  • the monolayer stretch films of the invention exhibit performance characteristics or qualities similar to cast stretch films and better performance characteristics than commercial mono- and multi-layer blown stretch films.
  • the films of the invention can withstand stretch levels of 270% and higher on powered pre-stretch pallet wrap machines without failure while maintaining excellent wrap, clarity, cling, puncture and load properties.
  • the film also offer biaxial stretch (MD and TD direction). A low force to stretch the film allows the film to be used interchangeably on powered pre-stretch pallet wrap machines that have historically been adjusted and set-up to operate with cast films.
  • the invention is further illustrated by reference to the Examples and Tables below:
  • polymer 1 composed of linear low density polyethylene resin sold by Exxon under the designation LL1001.09 and having a density of 0.918 g/cc and a melt index of 1.0
  • polymer 2 38 parts by weight (114 lbs) of polymer 2
  • a very low density (0.905) granular polyethylene having a melt index of 0.8 were added to a liquid mixture of 12 lbs (4 parts by weight of the final mixture) of polyisobutylene having a number average molecular weight of 1300, and a specific gravity of 0.905, sold under the designation PB32 by
  • the four components were mixed in a high-speed mixer to produce a free-flowing uniform granule product.
  • the product was added to an extruder and melted.
  • a film was extruded from the melted blend by passage through a blown film die having a 0.09 inch die gap' at approximately 430°F.
  • the film was cooled by a dual lip or dual flow air ring. The film was subjected to testing, and me results are reported in Table 1 infra.
  • Example 2 The procedure of Example 1 was repeated except this film was composed of 76 parts of resin 1 (228 lbs), 19 parts (57 lbs) of resin 2, 4 parts by weight (12 lbs) of polyisobutylene and .45 parts by weight (1.30 lbs) of sorbitan mono-oleate.
  • the produced film prepared as described in Example 1 was subjected to the test of Example 1, and the results are reported below:
  • Example 3 The procedure of Example 1 was repeated except the film was composed of 47.50 parts (142 lbs) of polymer 1 , 47.50 parts (142 lbs) of polymer 2, 4 parts by weight of polyisobutylene and 0.45 parts by weight of sorbitan mono-oleate.
  • Example 4 The procedure of Example 1 was repeated except die film was composed of 66.50 parts
  • the produced film was subjected to standard industry testing, and the results are reported in Table 1 below.
  • ASTMD 4649 100% 200 217 235 270 275 275 Cling 200% 132 142 212. 230 230 235
  • TLC film is a control, i.e., a typical film produced by me cast process.
  • LoadmasterTM film is a control, i.e., a typical film produced by die blown film method.
  • the high performance blown films of the present invention are stretched between the two rollers of the machine and compared.
  • the force required to stretch the films of invention is equal to or less than the force necessary to stretch the cast film to obtain a similar or improved result.
  • the standard blown film is also tested.
  • film modulus values also listed in Table 1 correlate directly to stretch performance; a higher value generally indicating a stiff er film and hence, a reduction in percentage stretch under d e same machine conditions.
  • Telescoping is an objective test procedure based on observations of roll stability (i.e., prevention of roll deformation) at elevated temperatures simulating long-term storage conditions. Results provide an indication that roll winding tension employed during fabrication is within processing specifications.
  • me roll widdis are- measured.
  • the rolls are then placed in an oven set at 150°F for a period of Uiree days. After ⁇ iree days die rolls are removed and roll widfli is again measured. If me widdi has increased by about 25%, dien the roll is deemed “fail. " If the roll widdi remains unchanged or has an increase of less man 25%, then the roll is deemed "pass.” Comparative Example 1
  • Example 2 The procedure of Example 1 was repeated except diat film A was composed of 57.6 parts by weight of polymer 1, 38.4 parts by weight of polymer 2, 3.5 parts by weight of polyisobutylene and 0.45 parts by weight of sorbitan monoleate. Comparison samples B and C were prepared in a similar manner less an ingredient as more fully explained by die text below and as shown in Table 2. The compositions of A, B and C are set forth in Table 2.
  • Film A a film of me claimed invention contains both isobutylene and sorbitan mono- oleate in amounts within the target ranges of the invention.
  • Comparison film B contains no sorbitan mono-oleate and comparison C contains no polybutene.
  • compositions A, B and C are set forth below.
  • film C produces die smallest noise level on being unwound from storage rolls, witi and without a simultaneous stretch.
  • film C exhibits an unacceptable cling property of only 67 grams. This is unacceptable for pallet wrapping wherein minimum standards require a cling of at least 70 grams.
  • Film B containing the tackifier devoid of sorbitan monoleate exhibits excellent cling properties but creates unacceptable noise levels when unraveled from a storage roll regardless of whether unraveling occurs with or without stretch.
  • composition A is representative of the present invention.

Abstract

An improved stretch/cling film suitable for pallet wrap, produced by the blown film process exhibits superior performance qualities similar to stretch cling film produced by the cast film process, but with an improved tear resistance; such film has reduced noise characteristics. The film of the invention is produced by blending 40 to 80 % by weight linear low density polyethylene polymerized with an α-olefin comonomer having a melt index range of 0.8 to 1.2 and a density range of 0.916 to 0.920; with 60 to 20 % by weight of a flexible semi-crystalline polyethylene with a melt index 0.8 to 2.0 and a density of 0.86 to 0.91; with 3 to 9 % by weight liquid polyolefin and 0.1 to 4.0 % by weight of a surfactant. The films of the invention exhibit a two-sided cling.

Description

HIGH STRETCH FILM FOR PALLET WRAPPING
Field of the Invention
The present invention relates to monolayer stretch cling film produced by the blown f lm process.
Background of the Invention
In the packaging and/or palletizing art, it is known to package individual articles and/or to bundle together or palletize a plurality of articles using a so-called "stretch wrapping" technique. According to such technique, a relatively thin film web of a polymeric material is stretched or elongated, creating tension in the film web, while being wrapped several times around the article or articles to be packaged or palletized. Upon the release of the stretching or elongating forces, at the conclusion of the wrapping operation, the film attempts to relax or spring at least partially back to its original non-stretched dimension thereby tightly or snugly engaging the article or articles wrapped therein. In connection with such a stretch wrapping operation, it is possible in theory to secure the stretched and wrapped film in place around the packaged article or articles in a variety of ways (i.e. so as to prevent the stressed or tensioned film from returning or relaxing back to its original dimensions). However, as a matter of practical expediency, efficiency and economy, it is common practice to employ film which exhibits sufficient cling to itself to hold the film in place around the packaged article, to prevenr significant slippage of the stretched overlaid film layers, and to prevent relaxation or shrinkage of the film back to its original pre-packaging unstretched dimensions.
While a variety of films are currently available on the commercial market for use in stretch/cling packaging or palletizing operations, such currently available films all suffer from one or more notable deficiencies, drawbacks, or limitations. For example, some of the films which are currently available are produced via the cast film processes. While such cast films are typically characterized by having high Elmendorf tear ratings in the transverse direction, they also generally have relatively low tear resistance in the machine direction. As such, these cast films have a pronounced tendency to tear on the corners or at other sharp protrusions of articles being stretch wrapped or palletized therewith.
Second, because the cast films exhibit a tendency to tear, it is desirable to produce films by blown methods. Such films are generally stronger than cast films. Blown films, on the other hand possess a higher molecular weight, having a melt index of 1 and a density of approximately 0.918. Such films, however, do not possess the levels of stretch desired, so that more force is required to stretch the film. Increased forces, of course, result in greater wear and tear on machines and other equipment.
Third, many blown films upon being unraveled and stretched from a storage roll or packaged pallet wrap or the like are noisy. When used to palletize a plurality of articles, the film creates noise at levels of about 88-95 dB. Though not painful to many, such noise levels are uncomfortable and sustained exposure to such noise levels, without protective ear gear, will result in both temporary and permanent hearing deficiencies.
Summary of die Invention
In view of the foregoing deficiencies, it would be highly desirable to produce films by the blown process having properties more closely resembling the stretch properties of cast film,- and when unraveled exhibit a reduction in noise levels relative to the prior art compositions. Accordingly, an object of the invention is to produce a blown film having stretch characteristics similar to cast films.
Another object of the invention is to produce a blown film, which upon being unwound for pallet wrapping generates a noise level of below 88 dB. These and other objects will be made apparent by reference to text and appended claims set forth below. In accordance with the present invention, an improved stretch/cling film suitable for pallet wrap, produced by the blown film process exhibits superior performance qualities similar to stretch cling film produced by the cast film process, in terms of stretch performance; such film also has reduced noise characteristics. The film of the invention is produced by blending 40 to 80% by weight linear low density polyethylene polymerized with an α-olefin comonomer having a melt index range of 0.8 to 1.2 and a density range of 0.916 to 0.920; with 60 to 20% by weight of a flexible semi-crystalline polyethylene copolymer having a melt index 0.8 to 2.0 and a density of 0.86 to 0.91; with 3 to 9% by weight liquid polyolefin and 0.1 to 4.0% by weight of a surfactant.
Brief Description of the Drawing
Fig. 1 is an elevation view showing the general configuration of a blown film line.
Detailed Description of the Invention
The films of the present invention are characterized not only by reduced noise levels and overall improved properties, but also by an evenly matched -two-sided cling. More specifically, each side of or face of the film of the invention possesses substantially similar cling properties. As is known in the art, the cling of polyethylene and polyethylene containing films can be increased by adding tackifying agents to mixtures used to form the final films. Such tackifyingr agents are capable of increasing the inherent cling of the film by between 100 and 250% . Cling is measured by ASTM D 4649. Cling is the strength, in grams, required to pull the test film apart at the overlap.
The tackifying agent of the claimed invention is a liquid polyolefin preferably having a number average molecular weight greater than 1100, preferably greater than 1300, and up to a number average molecular weight of up to about 1500. The tackifier has a specific gravity range of 0.887 to 0.92. Suitable tackifying agents include hydrocarbon resin such as terpene resin, hydrogenated resins, and resin esters, atactic polypropylenes, polybutenes and the like. Most preferably, the tackifier of the invention is polybutene having a number average molecular weight of 1300 and specific gravity of 0.905. Preferably the tackifier is present in the composition of the invention in an amount of 3 to 9% by weight, and more preferably in amounts of 3.5-4.0%.
It is also known in the art to use auxiliary components, in combination with a tackifier. U.S. Patent No. 4,425,268 herein incorporated by reference teaches the use of tackifiers in combination with components which include alkali metal stearates and monoesters of fatty acids and polyols. Specific compounds include glycerol mono-oleate or an ester of sorbitan. Such auxiliary compounds are present in a film blend in a proportion of between about 0.25 to about
3.0% by weight. It is disclosed in U.S. Patent No. 4,425,268 that such compounds are used to convey tackifiers to the film surface and to impart preferential one-sided cling to such films.
In the present invention, surfactants are used in amounts to reduce noise associated with the unravelling of pallet wrap. The use of surfactants in the present invention does not lead to differential cling properties. In fact the two faces of the film exhibit an equal amount of cling. In particular, the surfactants are used in amounts of 0.1 to 4.0% by weight of the film composition, preferably in amounts of 0.3 to 0.5% and most preferably in an amount of 0.45% by weight of the composition. Suitable surfactants include monoesters of a polyol, such as, for example, glycerol or sorbitan and a fatty acid of 10-20 carbon atoms. Preferably the surfactant is sorbitan mono-oleate.
Preferably the ratio range of the tackifier to the surfactant is between about 2.0 and 9.2, more preferably 5 to 8.8, and most preferably the ratio is 7.7.
The polymer blend used to prepare the two-sided cling film of the invention, having reduced noise characteristics and film properties more nearly like those of cast films is formed of homo and/or copolymers derived from ethylenically unsaturated monomers exhibiting different densities such that when blended with the tackifier and surfactant, the film exhibits the improved properties discussed above.
In general, the polymeric composition of the invention will contain two different polymers. The first of these polymers is a linear low density polyethylene polymer, sometimes referred to herein as polymer 1, present in amounts of 40-80% by weight of the overall composition, having a density of about 0.916 to 0.920 and preferably 0.918, a melt index range of 0.8 to 1.2 percent, and a crystallinity of about 47%.
The second of the two polymers is a semi-crystalline α-olefin polymer sometimes referred to as polymer 2, having a density of about 0.860 to 0.910 preferably 0.905 in amounts of 60- 20% by weight of the overall composition, a melt index of 0.8 to 2.0 preferably 0.9, and a degree of crystallinity of about 38%.
The polymer exhibiting the greater density, polymer 1 , is preferably a conventional linear low density polyethylene polymerized with an α-olefin comonomer and typically used in blown film processes. Loadmaster™ polymers, manufactured and sold by Borden can be used and are generally composed of ethylene and/or a C4 α-olefin or higher, for example 1-butene, 1-pentene, 4-methyl-l-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecen etc. including copolymers of one or more such olefinic monomers, such as 1-butene and 1-hexene. Other conventional linear low- density polyethylenes can be used. The second polymer exhibiting the lower or smaller density is also prepared by copolymerizing ethylene with one or more comonomers such as 1-butene, 1-pentene, 4-methyl-l- pentene, 1-hexene, 1-octene, 1-decene, 1-dodecen etc. Preferably, such comonomers include butene and 1-hexene. The polymer may even be a terpolymer of ethylene, butene and 1-hexene.
In order to obtain the uniform two-sided cling properties of the invention the tackifier and the surfactant are thoroughly and uniformly blended with the two polymer components of the invention. Uniform and complete mixing is obtained by mixing the tackifier and the surfactant with granules of the polymers rather than conventional pellets. Specifically, granular co¬ polymers of a mean diameter size of about 1/32 of an inch are added to a high intensity mixer containing the tackifier and the surfactant. The mix is free-flowing and can be fed to an extruder and melted at conventional temperatures and extruded according to standard blow film or "bubble" processing techniques. Cooling of each of the resulting tubular films is conducted by blowing ambient air across the external film surface.
Fig. 1 shows an overall typical configuration of an apparatus for producing blown film. As shown, an extruder 30 is operably connected with an annular die assembly 20. An air ring assembly 10 is located adjacent to the discharge side of an annular die assembly 20.
On extrusion, tubular extruded plastic is inflated from the interior, cooled and then flattened by nip rolls 60 and optionally by a set of collapsers 59. The flattened and collapsed film is then longitudinally cut and the two halves are led to separate winding devices 80 of conventional construction by guiding and transfer means 70. Connected to air ring 10 is a blower assembly 50 attached by one or more conduits 52.
In a preferred embodiment of the invention, the ring assembly is a dual flow air ring as disclosed in US patent No. 4,750,874 herein incorporated by reference.
In operation, blown film tube 40 is produced from a mixture of granular polymers 1 and 2, a tackifier and a surfactant preferably as described. These components of the mixture are thoroughly and uniformly blended in a high intensity mixer to obtain a free flowing mix. The blend is extruded and forced from a circular die 20 at temperatures in the range of from about 220°C to 240°C and then blown, forming tube 40. Die 20 is of conventional construction and may be a single or multiple die rotating or non-rotating system. It is preferable that the system be rotatable when used in conjunction with winding devices 80. From cooling ring 10 a cooling air flow contacts the outside of tube 40 after extrusion. The temperature of the air flow is about between 20°C to 30°C. Nip rolls 60 assist in collapsing the film, and the film is then split and then rolled.
Rolling of the film can impart significant properties to the film. In practice a tension differential is maintained between the winding mechanism and the nip rolls.
In me events leading to production of the films of the invention it was observed that the addition of polymer 2 in amounts of greater than 45 percent produced extruded films of improved flexibility and cling but exhibited unacceptable telescoping. Cling and flexibility could be further improved by additions of polymer 2 of up to amounts of 50%-60% but such amounts led to even greater telescoping during storage of the rolls. The present inventors men found that by maintaining polymer 2 percentages at levels of about 40% it was possible to produce extruded films with improved flexibility and cling properties similar to those exhibited by a product containing 50% of polymer 2, when the formed film mbe was cooled with a dual flow air ring disclosed in US patent No. 4,750,874 supra. Benefits can also be realized using such dual flow air ring for compositions containing less than 40% of polymer, i.e., 20% - 40% of polymer 2. In essence the force-to-stretch properties of the compositions: of the invention are improved using a dual flow air ring.
Not wishing to be bound by any theory regarding the benefit of using such a dual flow air ring, it appears that the support generated by successive streams of cooling air to me exterior surface of the film mbe 40 during mbe preparation and/or uniform cooling by the air flows emanating from the ring leads to the unexpected result of greater flexibility and cling relative to reduced amounts of polymer 2.
The monolayer stretch films of the invention exhibit performance characteristics or qualities similar to cast stretch films and better performance characteristics than commercial mono- and multi-layer blown stretch films. The films of the invention can withstand stretch levels of 270% and higher on powered pre-stretch pallet wrap machines without failure while maintaining excellent wrap, clarity, cling, puncture and load properties. The film also offer biaxial stretch (MD and TD direction). A low force to stretch the film allows the film to be used interchangeably on powered pre-stretch pallet wrap machines that have historically been adjusted and set-up to operate with cast films. The invention is further illustrated by reference to the Examples and Tables below:
Example 1
Fifty-seven parts by weight (171 lbs) of polymer 1, composed of linear low density polyethylene resin sold by Exxon under the designation LL1001.09 and having a density of 0.918 g/cc and a melt index of 1.0, and 38 parts by weight (114 lbs) of polymer 2, a very low density (0.905) granular polyethylene having a melt index of 0.8 were added to a liquid mixture of 12 lbs (4 parts by weight of the final mixture) of polyisobutylene having a number average molecular weight of 1300, and a specific gravity of 0.905, sold under the designation PB32 by
Soltex, and 1.30 lbs (0.45 parts by weight) of sorbitan mono-oleate sold under the description Glycomul O by Lonza.
The four components were mixed in a high-speed mixer to produce a free-flowing uniform granule product. The product was added to an extruder and melted. A film was extruded from the melted blend by passage through a blown film die having a 0.09 inch die gap' at approximately 430°F. The film was cooled by a dual lip or dual flow air ring. The film was subjected to testing, and me results are reported in Table 1 infra.
Example 2 The procedure of Example 1 was repeated except this film was composed of 76 parts of resin 1 (228 lbs), 19 parts (57 lbs) of resin 2, 4 parts by weight (12 lbs) of polyisobutylene and .45 parts by weight (1.30 lbs) of sorbitan mono-oleate. The produced film prepared as described in Example 1 was subjected to the test of Example 1, and the results are reported below:
Example 3 The procedure of Example 1 was repeated except the film was composed of 47.50 parts (142 lbs) of polymer 1 , 47.50 parts (142 lbs) of polymer 2, 4 parts by weight of polyisobutylene and 0.45 parts by weight of sorbitan mono-oleate.
The film was subjected to standard industry testing, and the results are reported in Table 1 below.
Example 4 The procedure of Example 1 was repeated except die film was composed of 66.50 parts
(200 lbs) of polymer 1, 28.50 parts (86 lbs) of polymer 2, 4 parts by weight (12 lbs) of polyisobutylene and .45 Parts by weight (130 lbs) of sorbitan mono-oleate.
The produced film was subjected to standard industry testing, and the results are reported in Table 1 below.
TABLE 1 - RESULTS
TLC Loadmaster Exp.l Exp.2 Exp.3 Exp.4 cast film blown film
TENSILE MD 7500 7500 7476 7322 6450 7338 STRENGTH TD 4500 4250 4074 3980 4550 3962
ELONGA¬ MD 680 709 634 666 702 642 TION TD 940 995 1015 990 908 1001
100% MD 1400 1700 1612 1537 1300 1522 Modulus TD 1250 1300 1187 1251 1150 1235
TEAR MD 171 45 55 34 110 47 STRENGTH TD 519 422 359 337 232 341
Ball Burst 6.2 4.3 5.4 4.9 6.7 5.2
Highlight % Stretch 250% 165% 256% 231% 287% 242%
Telescoping Pass Pass Pass Pass Fail Pass
ASTMD 4649 100% 200 217 235 270 275 275 Cling 200% 132 142 212. 230 230 235
Unwind noise at 250% 74dB 78dB 80dB 81dB 83dB 82dB stretch
TLC film is a control, i.e., a typical film produced by me cast process.
Loadmaster™ film is a control, i.e., a typical film produced by die blown film method.
The tensile strength, elongation and 100% modulus tests were conducted in accordance with ASTM D882. Tear strength and ball burst were conducted in accordance with ASTM D1922 and ASTM D3420, respectively. The highlight stretch procedure is performed on a Highlight Industries Synergy 3HP machine. This test is a quick measure of the stretch performance of pallet wrap films. Utilizing the hydro-stretch powered pre-stretch systems of this machine, the percentage of stretch occurring between two rollers can be easily adjusted to any specific level. Data collected for Table 1 is obtained by stretching the control cast film to a level of 250% . With the machine set¬ up for this control film, i.e. calibrated, the high performance blown films of the present invention are stretched between the two rollers of the machine and compared. The force required to stretch the films of invention is equal to or less than the force necessary to stretch the cast film to obtain a similar or improved result. In addition, the standard blown film is also tested. Aside from the actual measured stretch performance as an indicator of "equal film force to stretch properties," film modulus values also listed in Table 1 correlate directly to stretch performance; a higher value generally indicating a stiff er film and hence, a reduction in percentage stretch under d e same machine conditions. Telescoping is an objective test procedure based on observations of roll stability (i.e., prevention of roll deformation) at elevated temperatures simulating long-term storage conditions. Results provide an indication that roll winding tension employed during fabrication is within processing specifications.
Following the production of film and die winding of film into rolls, me roll widdis are- measured. The rolls are then placed in an oven set at 150°F for a period of Uiree days. After ύiree days die rolls are removed and roll widfli is again measured. If me widdi has increased by about 25%, dien the roll is deemed "fail. " If the roll widdi remains unchanged or has an increase of less man 25%, then the roll is deemed "pass." Comparative Example 1
The procedure of Example 1 was repeated except diat film A was composed of 57.6 parts by weight of polymer 1, 38.4 parts by weight of polymer 2, 3.5 parts by weight of polyisobutylene and 0.45 parts by weight of sorbitan monoleate. Comparison samples B and C were prepared in a similar manner less an ingredient as more fully explained by die text below and as shown in Table 2. The compositions of A, B and C are set forth in Table 2.
Film A, a film of me claimed invention contains both isobutylene and sorbitan mono- oleate in amounts within the target ranges of the invention. Comparison film B contains no sorbitan mono-oleate and comparison C contains no polybutene.
The noise and cling properties of compositions A, B and C are set forth below.
TABLE 2
Sample B Test Method
Butene LLDPE resin 57.6 57.9 59.7 VLDPE resin 38.4 38.6 39.8 PiB 3.5 3.5 SMO 0.45 0.45
Noise during unwind (dB) @ 0% stretch 83 94 78 @250% stretch 80 87 78
Cling, gms ASTM 4649
@100% stretch 235 335 67 @200% stretch 212 285 67
As seen from Table 2, film C produces die smallest noise level on being unwound from storage rolls, witi and without a simultaneous stretch. However, film C exhibits an unacceptable cling property of only 67 grams. This is unacceptable for pallet wrapping wherein minimum standards require a cling of at least 70 grams. Film B containing the tackifier devoid of sorbitan monoleate exhibits excellent cling properties but creates unacceptable noise levels when unraveled from a storage roll regardless of whether unraveling occurs with or without stretch.
Only film A of films A, B and C exhibits acceptable cling properties and reduced and acceptable noise levels upon being unraveled when unaccompanied or accompanied with stretch. Composition A is representative of the present invention.
Various changes could be made in die above method and products without departing from the scope of the invention. It is intended that all matter contained in the description shall be interpreted as illustration and is not meant to limit the invention.
SUSSr sTE SHEET (RULE 26)

Claims

What is claimed is:
1. A two-sided cling wrap film, comprising:
40 to 80% by weight of a linear low density polyethylene polymerized witii an α-olefin comonomer having a melt index range of 0.8 to 1.2 and a density range of 0.916 to 0.920; 60 to 20% by weight of a flexible semi-crystalline ethylene α-olefin copolymer having a melt index of 0.8 to 2.0 and a density range of 0.86 to 0.91;
3 to 9% by weight of a liquid polyolefin; and
0.1 to 4.0% by weight of a surfactant.
2. The cling wrap film of claim 1 wherein the cling of a first face of me film is substantially equal to me cling of a second face.
3. The cling wrap film of claim 1 wherein the liquid polyolefin is selected from the group consisting of polybutylene, polyoctene and polyhexene.
4. The cling film of claim 3 wherein me liquid polyolefin is polyisobutylene wi i a specific gravity of between 0.887 to 0.92.
5. The cling film of claim 1 wherein said surfactant is sorbitan mono-oleate.
6. The cling film of claim 1 wherein me ratio of liquid polyolefin to surfactant is between 5 and 8.8.
7. The cling film of claim 1 wherein said semi-crystalline ethylene α-olefin has a crystallinity of about 47 % .
8. The cling film of claim 1 wherein said flexible semi-crystalline emylene polymer is a comonomer produced from emylene, butene and 1-hexene.
9. A memod of producing a two-sided cling- wrap film having reduced noise characteristics, comprising: mixing 40 to 80% by weight of a linear low density polyemylene polymerized witii an alpha-olefin comonomer having a melt-index range of 0.8 to 1.2 and a density range of 0.916 to 0.920, with
60 to 20% by weight of a flexible semi-crystalline ethylene alpha-olefin copolymer having a melt index of 0.8 to 2.0 and a density range of 0.86 to 0.91, and
3 to 9% by weight of a liquid polyolefin and, 0.1 to 4.0% by weight of a surfactant to create an extrudable mixture;
SϋBSIHϋlE SHEET (RULE 26) extruding the mixture according to blow-film techniques, creating a film tube; and cooling the film mbe.
10. The method of claim 9 further comprising cooling the film with an air ring having means for supplying two successive streams of cooling air to me exterior surface of the film tube.
11. A method of producing a two-sided cling- wrap film having reduced noise characteristics and exhibiting force-to-stretch properties similar to cast extruded cling films, comprising: mixing 40 to 80% by weight of a linear low density polyediylene polymerized wi an alpha-olefin comonomer having a melt-index range of 0.8 to 1.2 and a density range of 0.916 to 0.920, with
20 to 40% by weight of a flexible semi-crystalline ethylene alpha-olefin copolymer having a melt index of 0.8 to 2.0 and a density range of 0.86 to 0.91, and
3 to 9% by weight of a liquid polyolefin and, 0.1 to 4.0% by weight of a surfactant to create an extrudable mixture; extruding the mixture according to blow-film techniques, creating a film mbe; and cooling me film mbe.
12. The med od of claim 9 further comprising collapsing die film mbe by tension means, and winding said film on winding means wherein a differential in tension between me nip and said winding means exists.
13. The memod of claim 11 further comprising collapsing me film mbe by tension means, and winding said film onto rolls by winding means wherein a differential in tension between the nip and said winding means exists.
14. The method of claim 9 wherein me low density polyediylene and die flexible semi-crystalline ethylene copolymer are mixed in granular form.
15. The me od of claim 14 where me extrudable mixture is free flowing.
16. The method of claim 9 wherein me liquid polyolefin is polyisobutylene having a specific weight of between 0.887 to 0.92.
SUBSTT lTE SHEET (RULE 26)
PCT/US1996/009577 1995-06-05 1996-06-05 High stretch film for pallet wrapping WO1996039463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/463,859 US5569693A (en) 1995-06-05 1995-06-05 High stretch film for pallet wrapping
US08/463,859 1995-06-05

Publications (1)

Publication Number Publication Date
WO1996039463A1 true WO1996039463A1 (en) 1996-12-12

Family

ID=23841595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/009577 WO1996039463A1 (en) 1995-06-05 1996-06-05 High stretch film for pallet wrapping

Country Status (2)

Country Link
US (1) US5569693A (en)
WO (1) WO1996039463A1 (en)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849394A (en) * 1996-06-13 1998-12-15 Cpi Packaging, Inc. Self sticking packaging wrap
US6032801A (en) * 1997-01-17 2000-03-07 Jupille Design Incorporated Pallet system
US6117553A (en) * 1996-11-28 2000-09-12 Sumitomo Chemical Company, Limited Multi-layer self-tack wrapping film
DE69821358T2 (en) * 1997-06-25 2004-07-22 Eastman Chemical Co., Kingsport SINGLE LAYER FILM
US6204335B1 (en) 1997-09-12 2001-03-20 Eastman Chemical Company Compositions of linear ultra low density polyethylene and propylene polymers and films therefrom
US6153702A (en) * 1997-09-12 2000-11-28 Eastman Chemical Company Polymers, and novel compositions and films therefrom
US6070394A (en) * 1997-09-12 2000-06-06 Eastman Chemical Company Lownoise stretch wrapping process
US6197887B1 (en) 1997-09-12 2001-03-06 Eastman Chemical Company Compositions having particular utility as stretch wrap cling film
US6420022B2 (en) 1998-02-02 2002-07-16 Reynolds Consumer Products, Inc. Differential cling forage wrapping film; wrapped bale; method for producing differential cling film; and method for wrapping forage
EP1061099A4 (en) * 1998-03-02 2001-08-01 Kureha Chemical Ind Co Ltd Polypropylene resin compositions and packaging stretched film made thereof
US6413346B1 (en) * 1998-05-18 2002-07-02 Macro Engineering & Technology Inc. Production of stretch plastic film
US6592699B1 (en) 1999-10-28 2003-07-15 Illinois Tool Works, Inc. Process for making stretch film having heat-sealed edges
US6375781B1 (en) 1999-10-28 2002-04-23 Illinois Tool Works Inc. Apparatus and high speed process for making highly stretched film
US6602598B1 (en) 1999-12-07 2003-08-05 Sls Patent Corporation Quiet unwind stretch wrap film
KR100637713B1 (en) * 1999-12-23 2006-10-23 삼성토탈 주식회사 Compounds for extrusion laminate with high adhesion
US8083764B2 (en) * 2001-02-28 2011-12-27 Dedo Richard G Tourniquet padding
US7326227B2 (en) * 2001-02-28 2008-02-05 Richard G. Dedo Tourniquet padding
US7220801B2 (en) * 2001-06-22 2007-05-22 Exxonmobil Chemical Patents Inc. Metallocene-produced very low density polyethylenes or linear low density polyethylenes as impact modifiers
CN100345896C (en) 2002-08-12 2007-10-31 埃克森美孚化学专利公司 Plasticized polyolefin compositions
US7652094B2 (en) * 2002-08-12 2010-01-26 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
US7652092B2 (en) 2002-08-12 2010-01-26 Exxonmobil Chemical Patents Inc. Articles from plasticized thermoplastic polyolefin compositions
US7271209B2 (en) 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
US7531594B2 (en) 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US7235607B2 (en) * 2002-09-05 2007-06-26 Exxonmobil Chemical Patents Inc. Shrink film
ATE494321T1 (en) * 2002-09-05 2011-01-15 Exxonmobil Chem Patents Inc STRETCH FILM WRAPPING PROCESS
WO2004029149A1 (en) * 2002-09-27 2004-04-08 Ferro Corporation Impact modified thermoplastic olefin compositions
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US7399509B2 (en) * 2003-12-23 2008-07-15 Kari Virtanen Thin polyethylene pressure sensitive labels
ES2311221T3 (en) * 2004-04-19 2009-02-01 Dow Global Technologies Inc. SUITABLE COMPOSITION FOR A STRETCHING ADHERENT FILM, LOW NOISE OF A SINGLE FACE AND FILMS MANUFACTURED FROM THE SAME.
JP4453432B2 (en) * 2004-05-06 2010-04-21 住友化学株式会社 Biaxially oriented multilayer polypropylene film
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
WO2007011541A1 (en) 2005-07-15 2007-01-25 Exxonmobil Chemical Patents Inc. Elastomeric compositions
WO2007130277A1 (en) * 2006-05-05 2007-11-15 Exxonmobil Chemical Patents Inc. Linear low density polymer blends and articles made therefrom
US8247065B2 (en) * 2006-05-31 2012-08-21 Exxonmobil Chemical Patents Inc. Linear polymers, polymer blends, and articles made therefrom
US20090156764A1 (en) * 2007-12-18 2009-06-18 Malakoff Alan M Ethylene-Based Polymers and Articles Made Therefrom
US8765874B2 (en) * 2008-01-28 2014-07-01 Exxonmobil Chemical Patents Inc. Ethylene based polymers and articles made therefrom
US9388306B2 (en) * 2008-03-04 2016-07-12 Exxonmobil Chemical Patents Inc. Polyethylene stretch film
EP2172510A1 (en) * 2008-10-01 2010-04-07 Dow Global Technologies Inc. Barrier films and method for making and using the same
US8722804B2 (en) 2010-04-13 2014-05-13 Univation Technologies, Llc Polymer blends and films made therefrom
US9790012B2 (en) 2010-07-19 2017-10-17 The Glad Products Company Incrementally stretched films with tailored properties and methods for making the same
IN2014DN08742A (en) 2012-04-06 2015-05-22 Exxonmobil Chem Patents Inc
EP2997053B1 (en) 2013-05-14 2016-11-16 ExxonMobil Chemical Patents Inc. Ethylene-based polymers and articles made therefrom
US11760851B2 (en) 2014-06-30 2023-09-19 Formosa Plastics Corporation, U.S.A. Cast film component layer exhibiting an outstanding cling property
US10208143B2 (en) 2014-10-03 2019-02-19 Exxonmobil Chemical Patents Inc. Polyethylene polymers, films made therefrom, and methods of making the same
US10183773B2 (en) 2014-10-31 2019-01-22 Brenton Llc Easy thread carriage for stretch film wrapping system
EP3271172B1 (en) 2015-03-17 2020-06-17 ExxonMobil Chemical Patents Inc. Multilayer films and methods thereof
CN107531034B (en) 2015-03-17 2019-08-20 埃克森美孚化学专利公司 Multilayer film and preparation method thereof
EP3184301A1 (en) * 2015-12-22 2017-06-28 Trioplast AB Prestretched balewrap
SG11201806038XA (en) 2016-01-29 2018-08-30 Univation Tech Llc Polyolefin film with improved toughness
US20180319964A1 (en) 2016-02-10 2018-11-08 Exxonmobil Chemical Patents Inc. Polyethylene Shrink Films and Processes for Making the Same
WO2017155609A1 (en) 2016-03-11 2017-09-14 Exxonmobil Chemical Patents Inc. Multilayer films and methods of making the same
US20190322088A1 (en) 2017-01-26 2019-10-24 Exxonmobil Chemical Patents Inc. Multilayer Films and Methods of Making the Same
WO2018194740A1 (en) 2017-04-19 2018-10-25 Exxonmobil Chemical Patents Inc. Multilayer films and methods of making the same
WO2019022801A1 (en) 2017-07-24 2019-01-31 Exxonmobil Chemical Patents Inc. Polyethylene films and methods od making the same
WO2019027524A1 (en) 2017-08-02 2019-02-07 Exxonmobil Chemical Patents Inc. Multilayer films and methods of making the same
US11691398B2 (en) 2017-11-28 2023-07-04 Exxonmobil Chemical Patents Inc. Multilayer films and methods of making the same
WO2020068497A1 (en) 2018-09-25 2020-04-02 Exxonmobil Chemical Patents Inc. Multilayer films and methods of making the same
WO2020167441A1 (en) 2019-02-13 2020-08-20 Exxonmobil Chemical Patents Inc. Oriented multilayer polyethylene films and laminates thereof
WO2020167929A1 (en) 2019-02-13 2020-08-20 Exxonmobil Chemical Patents Inc. Methods for making films and films made thereby
WO2020190507A1 (en) 2019-03-19 2020-09-24 Exxonmobil Chemical Patents Inc. Multilayer oriented films
CN114269829A (en) 2019-08-20 2022-04-01 埃克森美孚化学专利公司 Film and method for producing same
US11518154B2 (en) 2020-01-27 2022-12-06 Exxonmobil Chemical Patents Inc. Barrier films for packaging
WO2021216280A1 (en) 2020-04-22 2021-10-28 Exxonmobil Chemical Patents Inc. Tear resistant blown polyethylene films
WO2023244901A1 (en) 2022-06-15 2023-12-21 Exxonmobil Chemical Patents Inc. Ethylene-based polymers, articles made therefrom, and processes for making same
WO2024044423A1 (en) 2022-08-22 2024-02-29 Exxonmobil Chemical Patents, Inc. Polyethylene compositions and films made therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680330A (en) * 1984-12-28 1987-07-14 Bp Chemicals Limited Stretchable cling film composition based on polyethylene
US4996094A (en) * 1988-09-26 1991-02-26 Mobil Oil Corporation One-sided cling/one-sided slip stretch wrap films
US5114763A (en) * 1990-12-28 1992-05-19 Exxon Chemical Patents Inc. Tackified polyethylene layers in stretch/cling films
US5407732A (en) * 1993-10-29 1995-04-18 Mobil Oil Corporation Multi-layer coextruded polyolefin stretch wrap films

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337188A (en) * 1979-12-17 1982-06-29 Du Pont Canada Inc. Polyolefin composition for manufacture of film having cling properties
US4362835A (en) * 1980-12-08 1982-12-07 The Goodyear Tire & Rubber Company Composition of pelletized and powdery LLDPE and liquid polyolefin for the production of film
US4367256A (en) * 1981-05-15 1983-01-04 Union Carbide Corporation Cling-wrap polyethylene film
US4542188A (en) * 1981-11-25 1985-09-17 The Dow Chemical Company Polymeric films having one-sided cling and compositions useful in their preparation
US4664866A (en) * 1981-11-25 1987-05-12 The Dow Chemical Company Method for preparing a film having preferential one-sided cling
US4379197A (en) * 1981-12-02 1983-04-05 El Paso Polyolefins Company Stretch wrap film composition
ZA832777B (en) * 1982-04-27 1984-11-28 Bp Chem Int Ltd Polyethylene blend and film
US4588650A (en) * 1982-09-29 1986-05-13 The Dow Chemical Company Olefin polymer stretch/cling film
US5112674A (en) * 1989-11-07 1992-05-12 Exxon Chemical Company Inc. Cling packaging film for wrapping food products
US5085927A (en) * 1990-04-10 1992-02-04 Paragon Films, Inc. Stretch film cling enhancement by addition of elastomers
US5341557A (en) * 1992-11-12 1994-08-30 Brandeis University Use of non-adhesive stretch-film as a laboratory container closure
US5334428A (en) * 1992-12-28 1994-08-02 Mobil Oil Corporation Multilayer coextruded linear low density polyethylene stretch wrap films

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680330A (en) * 1984-12-28 1987-07-14 Bp Chemicals Limited Stretchable cling film composition based on polyethylene
US4996094A (en) * 1988-09-26 1991-02-26 Mobil Oil Corporation One-sided cling/one-sided slip stretch wrap films
US5114763A (en) * 1990-12-28 1992-05-19 Exxon Chemical Patents Inc. Tackified polyethylene layers in stretch/cling films
US5407732A (en) * 1993-10-29 1995-04-18 Mobil Oil Corporation Multi-layer coextruded polyolefin stretch wrap films

Also Published As

Publication number Publication date
US5569693A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
US5569693A (en) High stretch film for pallet wrapping
US6265055B1 (en) Multilayer stretch cling film
US4588650A (en) Olefin polymer stretch/cling film
AU689239B2 (en) Polyolefin stretch film
US4504434A (en) Process and polymer blend composition for stretch wrap film
US4425268A (en) Polymer blend composition for stretch wrap film
US4436788A (en) Composite stretch wrap film
US7572519B2 (en) Multilayer stretch film having cling properties, a method of preparation thereof and its use for stretch wrapping operations
USRE38694E1 (en) Low shrink force shrink film
US5114763A (en) Tackified polyethylene layers in stretch/cling films
US6132827A (en) Tacky stretch film and method of making and using the same
EP1023364B1 (en) Compositions of linear ultra low density polyethylene and propylene polymers and films therefrom
WO2011024562A1 (en) Stretch wrap film
NO334179B1 (en) Elastomeric film with anti-slip additive
NZ205697A (en) Olefin polymer stretch/cling films
US6361875B1 (en) Premium hand wrap multi-layer film products
US6858288B2 (en) Wrap film
US5756219A (en) Industrial stretch films
US6299968B1 (en) General purpose multilayer film products
US5147709A (en) Stretch film with reduced noise and neck
EP0168928A2 (en) Wrapping film of ethylene copolymers
JP3751965B2 (en) Polyolefin multilayer shrink film
JP4654052B2 (en) Food packaging film
JP3477283B2 (en) Polyolefin wrap stretch film
JPH093225A (en) Porous sheet and absorbing material using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA NZ

NENP Non-entry into the national phase

Ref country code: CA