WO1996030301A1 - Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant du zinc et leur utilisation au renforcement des elastomeres - Google Patents

Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant du zinc et leur utilisation au renforcement des elastomeres Download PDF

Info

Publication number
WO1996030301A1
WO1996030301A1 PCT/FR1996/000461 FR9600461W WO9630301A1 WO 1996030301 A1 WO1996030301 A1 WO 1996030301A1 FR 9600461 W FR9600461 W FR 9600461W WO 9630301 A1 WO9630301 A1 WO 9630301A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
silicate
added
base stock
reaction medium
Prior art date
Application number
PCT/FR1996/000461
Other languages
English (en)
Inventor
Yves Bomal
Yvonick Chevallier
Evelyne Prat
Original Assignee
Rhone-Poulenc Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9477538&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1996030301(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP52901196A priority Critical patent/JP3304094B2/ja
Priority to RU96124772A priority patent/RU2130896C1/ru
Priority to BR9606288A priority patent/BR9606288A/pt
Priority to US08/737,975 priority patent/US5846311A/en
Priority to EP96910062A priority patent/EP0762991B1/fr
Application filed by Rhone-Poulenc Chimie filed Critical Rhone-Poulenc Chimie
Priority to AT96910062T priority patent/ATE188950T1/de
Priority to KR1019960706796A priority patent/KR100260969B1/ko
Priority to CA002191485A priority patent/CA2191485C/fr
Priority to PL96317422A priority patent/PL183897B1/pl
Priority to AU53378/96A priority patent/AU698315C/en
Priority to DE69606242T priority patent/DE69606242T2/de
Publication of WO1996030301A1 publication Critical patent/WO1996030301A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/12Particle morphology extending in one dimension, e.g. needle-like with a cylindrical shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/39Particle morphology extending in three dimensions parallelepiped-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Definitions

  • the present invention relates to a new process for the preparation of precipitated silica, precipitated silicas in particular in the form of powder, substantially spherical beads or granules, and their application as a reinforcing filler for elastomers. It is known that precipitated silica has been used for a long time as a reinforcing white filler in elastomers.
  • the filler has a very good ability to be incorporated into the matrix during mixing with the elastomer (incorporability of the filler) and to disintegrate or disintegrate in the form of a very fine powder (charge disaggregation), and where, on the other hand, the powder resulting from the abovementioned disintegration process can itself, in turn, disperse perfectly and homogeneously in the elastomer (dispersion of the powder).
  • silica particles have an unfortunate tendency, in the elastomer matrix, to agglomerate with one another.
  • the negative consequence of these silica / silica interactions is to limit the reinforcement properties to a level substantially lower than that which it would theoretically be possible to achieve if all the silica / elastomer interactions capable of being created during the mixing operation, were actually obtained (this theoretical number of silica / elastomer interactions being, as is well known, directly proportional to the external surface, of the silica used).
  • silica / silica interactions tend, in the raw state, to increase the stiffness and the consistency of the mixtures, thus making their use more difficult.
  • the present invention aims to overcome the aforementioned drawbacks and to solve the above-mentioned problem.
  • the invention also relates to precipitated silicas which, preferably, are in the form of powder, substantially spherical beads or, optionally, granules, and which, while having a relatively large size, have very satisfactory reinforcing properties and, advantageously, a very good dispersibility (and deagglomeration) ability. Finally, it relates to the use of said precipitated silicas as reinforcing fillers for elastomers.
  • the BET specific surface is determined according to the BRUNAUER - EMMET - TELLER method described in "The journal of the American Chemical Society", Vol. 60, page 309, February 1938 and corresponding to standard NFT 45007 (November 1987).
  • the CTAB specific surface is the external surface determined according to standard NFT 45007 (November 1987) (5.12).
  • the DOP oil intake is determined according to standard NFT 30-022 (March 1953) using dioctylphthalate.
  • the density of filling in the packed state is measured according to standard NFT-030100.
  • the pH is measured according to ISO standard 787/9 (pH of a 5% suspension in water).
  • the ability to disperse and deagglomerate the silicas according to the invention can be quantified by means of a specific deagglomeration test.
  • the disagglomeration test is carried out according to the following protocol: the cohesion of the agglomerates is assessed by a particle size measurement
  • the deagglomeration under ultrasound is carried out using a VIBRACELL BIOBLOCK sonicator (600 W), equipped with a 19 mm diameter probe.
  • the particle size measurement is carried out by laser diffraction on a SYMPATEC granulometer.
  • the value of the median diameter 0 ⁇ that is obtained is lower the higher the silica has a high deagglomeration ability.
  • the ratio (10 ⁇ volume of suspension introduced (in ml)) / optical density of the suspension detected by the granulometer is also determined (this optical density is of the order of 20). This report is indicative of the rate of fines, that is to say the rate of particles smaller than 0.1 ⁇ m which are not detected by the granulometer.
  • This ratio called ultrasound disaggregation factor (F D ), is all the higher as the silica has a high deagglomeration ability.
  • One of the objects of the invention is a process for the preparation of precipitated silica of the type comprising the reaction of a silicate with an acidifying agent, whereby a suspension of precipitated silica is obtained, then the separation and drying of this suspension, in which the precipitation is carried out as follows: (i) an initial base stock comprising an alkali metal silicate M and an electrolyte is formed, the silicate concentration (expressed as Si0 2 ) in said initial base stock being less than 20 g / 1,
  • step (a) adding, after step (iii), to the reaction medium at least one zinc compound, then a basic agent, and, when said separation involves filtration and disintegration of the cake resulting from this filtration, said disintegration is preferably carried out in the presence of at least one aluminum compound,
  • step (b) adding, after step (iii), to the reaction medium simultaneously a silicate and at least one zinc compound and, when said separation comprises a filtration and a disintegration of the cake resulting from this filtration, the disintegration is preferably performed in the presence of at least one aluminum compound.
  • the process concerned is a process for the synthesis of precipitation silica, that is to say that an acidifying agent is made to act, under very specific conditions. silicate.
  • a strong mineral acid such as sulfuric acid, nitric acid or hydrochloric acid, or an organic acid such as acetic acid, formic acid or carbonic acid.
  • the acidifying agent can be diluted or concentrated; its normality can be between 0.4 and 36 N, for example between 0.6 and 1.5 N.
  • the acidifying agent is sulfuric acid
  • its concentration can be between 40 and 180 g / l, for example between 60 and 130 g / l.
  • silicate any common form of silicates such as metasilicates, disilicates and advantageously an alkali metal silicate, in particular sodium or potassium silicate.
  • the silicate may have a concentration expressed as silica of between 40 and 330 g / l, for example between 60 and 300 g / l, in particular between 60 and 250 g / l.
  • sulfuric acid is used as the acidifying agent
  • sodium silicate as the silicate.
  • sodium silicate In the case where sodium silicate is used, it generally has a weight ratio SIO j Na j O of between 2 and 4, for example between 3.0 and 3.7.
  • SIO j Na j O a weight ratio of between 2 and 4, for example between 3.0 and 3.7.
  • a base stock which comprises silicate (step (i)).
  • the quantity of silicate present in the initial base stock advantageously represents only a part of the total quantity of silicate used in the reaction.
  • the silicate concentration in the initial base stock is (greater than 0 g / l and) less than 20 g of Si0 2 per liter. This concentration can be at most 11 g / l and, optionally, at most 8 g / l.
  • this concentration can be at least 8 g / l, in particular between 10 and 15 g / l, for example between 11 and 15 g / l; the drying used later in the process according to the invention can be carried out by atomization by means of a nozzle atomizer.
  • the base can include an electrolyte.
  • no electrolyte is used during the preparation process according to the invention; in particular, preferably, the initial base stock does not include an electrolyte.
  • electrolyte is understood here in its normal acceptance, that is to say it means any ionic or molecular substance which, when it is in solution, decomposes or dissociates to form charged ions or particles. Mention may be made, as electrolyte, of a salt from the group of alkali and alkaline earth metal salts, in particular the salt of the starting silicate metal and of the acidifying agent, for example sodium sulfate in the case of the reaction of a sodium silicate with sulfuric acid.
  • the second step consists in adding the acidifying agent to the base stock of the composition described above (step (ii)).
  • the acidifying agent is added to said initial base stock until at least 5%, preferably at least 50%, of the quantity M 2 0 present in said initial base stock are neutralized.
  • the acidifying agent is added to said initial base stock until 50 to 99% of the amount of M 2 0 present in said initial base stock is neutralized.
  • step (iii)) of acidifying agent and of an amount of alkali metal silicate M such as the degree of consolidation is then carried out.
  • this simultaneous addition of acidifying agent and of an amount of alkali metal silicate M is carried out such that the degree of consolidation is more particularly between 12 and 100, preferably between 12 and 50, especially between 13 and 40.
  • this simultaneous addition of acidifying agent and of an amount of alkali metal silicate M is carried out such that the degree of consolidation is rather greater than 4 and less than 12, preferably between 5 and 11.5, in particular between 7.5 and 11.
  • This variant is generally used when the silicate concentration in the initial base stock is at least 8 g / l, in particular between 10 and 15 g / l, for example between 11 and 15 g / l.
  • the amount of acidifying agent added is such that 80 to 99%, for example 85 to 97%, of the amount of M 2 0 added is neutralized.
  • step (iii) it is possible to carry out the simultaneous addition of acidifying agent and silicate to a first level of pH of the reaction medium, pH, then to a second level of pH of the reaction medium, pH 2 , such as 7 ⁇ pH 2 ⁇ pH. * ⁇ 9.
  • a first level of pH of the reaction medium pH
  • a second level of pH of the reaction medium pH 2
  • step (b) a silicate and at least one zinc compound are added after step (iii) simultaneously to the reaction medium and, when the separation, used in the process, involves filtration and disintegration of the cake from this filtration, the disintegration is preferably carried out in the presence of at least one aluminum compound.
  • the precipitation is advantageously carried out after having carried out the precipitation according to steps (i), ( ii) and (iii) previously described, the following successive steps:
  • At least one zinc compound is added to the reaction medium (that is to say to the reaction suspension or slurry obtained), (v) a basic agent is added to the reaction medium, preferably up to the obtaining a pH value of the reaction medium of between 7.4 and 10, in particular between 7.8 and 9,
  • acidifying agent is added to the reaction medium, preferably until a pH value of the reaction medium of at least 7, in particular between 7 and 8.5, for example between 7 and 8.
  • stage (iii) it may then be advantageous to carry out, after the simultaneous addition of stage (iii), a maturing of the reaction medium, this maturing being able for example to last from 1 to 60 minutes, in particular from 3 to 30 minutes.
  • step (iii) and step (iv) it may be desirable, between step (iii) and step (iv), and in particular before said optional ripening, to add to the reaction medium an additional amount of acidifying agent.
  • This addition is generally carried out until a pH value of the reaction medium of between 3 and 6.5, in particular between 4 and 6, is obtained.
  • the acidifying agent used during this addition is generally identical to that used during steps (ii), (iii) and (vi) of the first variant of the preparation process according to the invention.
  • the reaction medium is usually matured between step (v) and step (vi), for example for 2 to 60 minutes, in particular for 5 to 45 minutes.
  • a ripening of the reaction medium is most often carried out after step (vi), for example for 2 to 60 minutes, in particular for 5 to 30 minutes.
  • the basic agent used during step (iv) can be an ammonia solution or, preferably, a sodium hydroxide solution (or soda).
  • a sodium hydroxide solution or soda
  • a step (iv) is carried out which consists in adding in the reaction medium simultaneously a silicate and at least one zinc compound.
  • step (iv) it may then be advantageous to carry out, after the simultaneous addition of step (iv), a maturing of the reaction medium, this maturing being able for example to last from 2 to 60 minutes, in particular from 5 to 30 minutes.
  • step (iv) it may be desirable, after step (iv), and in particular after this possible ripening, to add to the reaction medium an additional amount of acidifying agent.
  • This addition is generally carried out until a pH value of the reaction medium of at least 7 is obtained, in particular between 7 and 8.5, for example between 7 and 8.
  • the acidifying agent used during this addition is generally identical to that used during steps (ii) and (iii) of the second variant of the preparation process according to the invention.
  • the reaction medium is usually matured after this addition of acidifying agent, for example for 1 to 60 minutes, in particular for 3 to 30 minutes.
  • the zinc compound used in the preparation process according to the invention is generally an organic or inorganic zinc salt.
  • organic salt mention may in particular be made of the salts of carboxylic or polycarboxylic acids, such as the salts of acetic, citric, tartaric or oxalic acid.
  • inorganic salt mention may in particular be made of halides and oxyhalides (such as chlorides, oxychlorides), nitrates, phosphates, sulfates and oxysulfates.
  • halides and oxyhalides such as chlorides, oxychlorides
  • nitrates such as phosphates, sulfates and oxysulfates.
  • the zinc compound can be used in the form of a solution, generally aqueous.
  • the temperature of the reaction medium is generally between 60 and 98 ° C.
  • the reaction is carried out at a constant temperature between 70 and 96 ° C.
  • the temperature at the end of the reaction is higher than the temperature at the start of the reaction: thus, the temperature at the start of the reaction is preferably maintained between 70 and 96 ° C., then the temperature is increased. temperature in a few minutes, preferably up to a value between 75 and 98 ° C, value at which it is maintained until the end of the reaction; operations (a) or (b) are thus usually carried out at this constant temperature value.
  • this separation generally comprises filtration (followed by washing if necessary ) and a disintegration, said disintegration being carried out in the presence of at least one aluminum compound and, preferably, in the presence of an acidifying agent as described above (in the latter case, the aluminum compound and the acidifying agent are advantageously added simultaneously).
  • the disintegration operation which can be carried out for example by passing the filter cake through a colloidal or ball mill, in particular makes it possible to lower the viscosity of the suspension to be dried later.
  • the separation also generally comprises filtration (followed by washing if necessary) and a disintegration, said disintegration preferably being carried out in the presence of at least one aluminum compound and, in general, in the presence of an acidifying agent as described above (in the latter case, the compound of l aluminum and the acidifying agent are advantageously added simultaneously).
  • the aluminum compound generally consists of an alkali metal aluminate, in particular potassium or, very preferably, sodium.
  • the quantity of zinc compound used in the preparation process according to the invention is such that the precipitated silica prepared contains between 1 and 5%, in particular between 1, 5 and 4%, for example between 1, 5 and 2.5%, by weight of zinc.
  • the separation implemented in the preparation process according to the invention usually comprises a filtration carried out by means of any suitable method, for example by means of a band filter, a rotary vacuum filter or, preferably, a press filter.
  • the precipitated silica suspension thus recovered (filtration cake) is then dried. This drying can be done by any means known per se.
  • the drying is carried out by atomization.
  • any suitable type of atomizer can be used, in particular a turbine, nozzle, liquid pressure or two-fluid atomizer.
  • the drying is for example carried out by atomization by means of a nozzle atomizer in particular when the silicate concentration in the initial base stock is at least 8 g / l (and less than 20 g / l), in particular included between 10 and 15 g / l (and more particularly in the case where it is desired to prepare silicas having a CTAB specific surface of at least 140 m 2 / g).
  • the suspension to be dried has a dry matter content greater than 15% by weight, preferably greater than 17% by weight and, for example, greater than 20% by weight.
  • the drying is then preferably carried out by means of a nozzle atomizer.
  • the precipitated silica capable of being obtained according to this embodiment of the invention and preferably by using a filter press is advantageously in the form of substantially spherical beads, preferably of an average size of at least 80 ⁇ m .
  • the precipitated silica which can then be obtained is generally in the form of a powder, preferably of average size of at least 15 ⁇ m, in particular between 15 and 60 ⁇ m, for example between 20 and 45 ⁇ m.
  • the suspension to be dried has a dry matter content of at most 15% by weight.
  • the drying is then generally carried out by means of a turbine atomizer.
  • Precipitated silica which can then be obtained according to this embodiment of the invention and preferably by implementing a rotary vacuum filter is generally in the form of a powder, preferably of average size of at least 15 ⁇ m, in particular between 30 and 150 ⁇ m, for example between 45 and 120 ⁇ m.
  • the dried (in particular from a suspension having a dry matter content of at most 15% by weight) or ground product can, according to another embodiment of the invention, be subjected to a stage of agglomeration.
  • Agglomeration is understood here to mean any process which enables finely divided objects to be linked together so as to bring them in the form of objects of larger size and more mechanically resistant.
  • These processes include direct compression, wet granulation (i.e. with the use of a binder such as water, silica slurry, ...), extrusion and, preferably, compaction at dry.
  • the precipitated silica capable of being obtained according to this embodiment of the invention is advantageously in the form of granules, preferably of size at least 1 mm, in particular between 1 and 10 mm.
  • the products can be calibrated to a desired size, for example by sieving, then packaged for their future use.
  • the powders, as well as the beads, of precipitated silica obtained by the process according to the invention thus offer the advantage, among other things, of having simple, effective and economical access to granules as mentioned above, in particular by operations conventional shaping, such as for example granulation or compaction, without the latter causing degradation capable of masking, or even annihilating, the good intrinsic properties attached to these powders or these beads, as may be the case in the prior art by using conventional powders.
  • CTAB specific surface of between 90 and 250 m 2 / g, for example between 120 and 230 m 2 / g, - a DOP oil intake of less than 300 ml / 100g, preferably between 200 and 295 ml / 100g ,
  • a porous distribution such that the pore volume constituted by the pores whose diameter is between 175 and 275 A represents less than 50% of the pore volume constituted by the pores with diameters less than or equal to 400 A, - a zinc content included between 1 and 5% by weight, preferably between
  • the number N of stearic acid molecules consumed per nm 2 of silica surface, when reacting stearic acid with said silica in xylene for 2 hours at 120 ° C, is at least 1, preferably at least 1, 2, in particular at least 1, 5.
  • the silica according to the invention preferably has a zinc content of between 1.5 and 4% by weight; this content can be in particular between 1.5 and 2.5% by weight.
  • One of the essential characteristics of the precipitated silica according to the invention is its consumption, in a model medium (xylene), of an ingredient for vulcanizing rubber (stearic acid).
  • stearic acid is reacted in the presence of silica in xylene, for 2 hours at 120 ° C. Then, the quantity of stearic acid remaining in the xylene after reaction is assayed by infrared spectrometry (IR); we can then deduce the amount of stearic acid that was consumed by the silica, and therefore the number N of stearic acid molecules consumed per nm 2 of silica surface.
  • IR infrared spectrometry
  • the refrigerant is removed and the flask is removed from the oil bath.
  • the contents of the flask are filtered on a microfiltration system (MILLIPORE assembly with filters with DURAPORE membranes made of polyvinylidene fluoride (pore size: 0.45 ⁇ m)).
  • MILLIPORE assembly with filters with DURAPORE membranes made of polyvinylidene fluoride (pore size: 0.45 ⁇ m)
  • a solution S is obtained.
  • the IR spectrum of solution S is produced.
  • the value of the characteristic peak of stearic acid reduced to the equation of the calibration line makes it possible to determine the level of stearic acid present in solution S; taking into account the mass of xylene added during dilution, the level of stearic acid in the reaction filtrate is obtained.
  • the level and therefore the amount of stearic acid consumed by the silica during the reaction is deduced from the initial stearic acid level and the stearic acid level after reaction (the latter being the stearic acid level of the filtrate ).
  • the number N of stearic acid molecules consumed per nm 2 of surface of the silica is then determined.
  • the zinc contained in the precipitated silica according to the invention is not, preferably, in crystallized form, but rather occurs in amorphous form (this can be determined by X-ray diffraction).
  • silica according to the invention resides in the distribution, or distribution, of the pore volume, and in particular in the distribution of the pore volume which is generated by the pores of diameters less than or equal to 400 A.
  • This latter volume corresponds to the useful pore volume of fillers which are used in the reinforcement of elastomers.
  • Analysis of the porograms shows that then the silica according to the invention has a porous distribution such that the pore volume constituted by the pores whose diameter is between 175 and 275 A represents less than 50%, for example less than 40%, of the pore volume constituted by the pores of diameters less than or equal to 400 A.
  • the precipitated silica has:
  • a median diameter ( ⁇ ), after deagglomeration with ultrasound, less than 6 ⁇ m, preferably less than 5 ⁇ m.
  • the precipitated silica has:
  • CTAB specific surface of between 90 and 140 m 2 / g, in particular between 100 and 135 m 2 / g, for example between 120 and 135 m 2 / g,
  • the precipitated silica has: - a CTAB specific surface of between 140 and 185 m 2 / g,
  • an ultrasound deagglomeration factor (F D ) greater than 5.5 ml, in particular greater than 11 ml.
  • the precipitated silica has: - a CTAB specific surface greater than 185 m / g and less than
  • the ultrasound deagglomeration factor (F D ) of the precipitated silica according to this particular embodiment of the invention may be greater than 5.5 ml.
  • the silica has a BET specific surface / CTAB specific surface ratio of between 1.0 and 1.2, that is to say it preferably has a low microporosity.
  • the silica has a BET specific surface / CTAB specific surface ratio greater than 1, 2, for example included between 1.21 and 1.4, that is to say that it has a relatively high microporosity.
  • the pH of the silica according to the invention is generally between 8.0 and 9.0, for example between 8.3 and 8.9.
  • the silicas according to the invention can be in the form of powder, substantially spherical beads or, optionally, granules and are in particular characterized by the fact that, while having a relatively large size, they have very satisfactory reinforcing properties and, preferably a good ability to disperse and disagglomerate.
  • the silica powders according to the invention preferably have an average size of at least 15 ⁇ m; this is for example between 15 and 60 ⁇ m (in particular between 20 and 45 ⁇ m) or between 30 and 150 ⁇ m (in particular between 45 and 120 ⁇ m).
  • They preferably have a DOP hulia intake of between 240 and 290 ml / 100 g.
  • the filling density in the packed state (DRT) of said powders is, in general, at least 0.17, and, for example, between 0.2 and 0.3.
  • Said powders generally have a total pore volume of at least 2.5 cm 3 / g, and more particularly between 3 and 5 cm 3 / g. They allow in particular to obtain a very good compromise implementation / mechanical properties in the vulcanized state.
  • the substantially spherical beads according to the invention preferably have an average size of at least 80 ⁇ m.
  • this average size of the beads is at least 100 ⁇ m, for example at least 150 ⁇ m; it is generally at most 300 ⁇ m and is preferably between 100 and 270 ⁇ m.
  • This average size is determined according to standard NF X 11507 (December 1970) by dry sieving and determination of the diameter corresponding to a cumulative refusal of 50%.
  • They preferably have a DOP hulia intake of between 240 and 290 ml / 100 g.
  • the filling density in the packed state (DRT) of said balls (or pearls) is, in general, at least 0.17, and, for example, between 0.2 and 0.34. They usually have a total pore volume of at least
  • such a silica in the form of substantially spherical beads advantageously full, homogeneous, little dusty and of good flowability, preferably has good ability to disaggregate and disperse. In addition, it has good reinforcing properties.
  • Such silica also constitutes a preferred precursor for the synthesis of the powders and granules according to the invention.
  • Such silica in the form of substantially spherical beads constitutes a very advantageous variant of the invention.
  • the dimensions of the granules according to the invention are preferably at least 1 mm, in particular between 1 and 10 mm, along the axis of their largest dimension (length). They preferably have a DOP hulia plug of between
  • Said granules can be in the most diverse forms.
  • the packed filling density (DRT) of said granules is generally at least 0.27 and can range up to 0.37.
  • the silicas according to the invention in particular in the form of powder, substantially spherical beads or granules, are preferably prepared according to one of the appropriate variants of the preparation process according to the invention and described above.
  • the silicas according to the invention or prepared by the process according to the invention find a particularly advantageous application in the reinforcement of elastomers, natural or synthetic. They give these elastomers excellent rheological properties while providing them with good mechanical properties and, in general, good abrasion resistance. In addition, these elastomers are then preferably subject to reduced heating. The invention therefore also relates to the use of these silicas to improve the rheological properties of elastomers.
  • the silicate concentration expressed as Si0 2 in the initial base stock is therefore 14 g / l.
  • the solution is then brought to a temperature of 80 ° C. while keeping it under stirring. The entire reaction is carried out at 80 ° C. with stirring. Then there is introduced, for 9 min, dilute sulfuric acid, density at 20 ° C equal to 1.050, at a rate of 5.4 l / min; at the end of this addition, the neutralization rate of the base stock is 78%, that is to say that 78% of the amount of Na 2 0 present in the initial base stock is neutralized.
  • the instantaneous neutralization rate is 94%, that is to say that 94% of the amount of Na 2 0 added (per minute) are neutralized.
  • the consolidation rate, after this simultaneous addition, is equal to 8.3.
  • an aqueous solution containing 85 g / l of zinc sulphate is then introduced into the reaction medium, for 12 minutes, at a flow rate of 9.3 l / min.
  • an aqueous solution containing 180 g / l of sodium hydroxide is introduced into the reaction medium, until the pH of the reaction medium is equal to 8.9.
  • the introduction of acid is then stopped and the reaction medium is cured for 5 minutes at a temperature of 80 ° C.
  • the total duration of the reaction is 148 minutes.
  • a precipitated silica slurry or suspension is thus obtained which is then filtered and washed using a filter press.
  • the cake obtained is then fluidized by mechanical and chemical action (simultaneous addition of sulfuric acid and a quantity of sodium aluminate corresponding to an Al / Si0 2 weight ratio of 0.30%). After this disintegration operation, the resulting slurry, pH equal to 8.4 and loss on ignition equal to 78.0% (therefore a dry matter content of 22.0% by weight), is atomized by means of a nozzle atomizer.
  • V1 represented by the pores of d ⁇ 400 A 0.95 cm 3 / g
  • the number N of stearic acid molecules consumed per nm 2 of silica surface, when stearic acid is reacted with said silica P1 in xylene for 2 hours at 120 ° C is equal to 1, 4.
  • the silica P1 is subjected to the deagglomeration test as defined previously in the description.
  • the silicate concentration expressed as Si0 2 in the initial base stock is therefore 7.1 g / l.
  • the solution is then brought to a temperature of 95 ° C. while keeping it under stirring. The whole reaction is carried out at 95 ° C. under agitation. Then there is introduced, for 3 min and 20 s, a sulfuric acid solution, concentration equal to 80 g / l, at a flow rate of 5.4 l / min; at the end of this addition, the neutralization rate of the base stock is 67%, that is to say that 67% of the amount of Na 2 0 present in the initial base stock is neutralized.
  • the instantaneous neutralization rate is 79%, that is to say that 79% of the amount of Na 2 0 added (per minute) is neutralized.
  • the consolidation rate, after this simultaneous addition, is equal to
  • an aqueous solution containing 85 g / l of zinc sulphate is then introduced into the reaction medium, for 12 minutes, at a flow rate of 9.3 l / min.
  • an aqueous solution containing 180 g / l of sodium hydroxide is introduced into the reaction medium, until the pH of the reaction medium is equal to 8.9.
  • the introduction of acid is then stopped and the reaction medium is cured for 5 minutes at a temperature of 95 ° C.
  • the total duration of the reaction is 127 minutes.
  • a precipitated silica slurry or suspension is thus obtained which is then filtered and washed using a filter press.
  • the cake obtained is then fluidized by mechanical and chemical action (simultaneous addition of sulfuric acid and an amount of sodium aluminate corresponding to a weight ratio Al / Si0 2 of 0.20%). After this disintegration operation, the resulting slurry, pH equal to 8.4 and loss on ignition equal to 79.0% (therefore a dry matter content of 21.0% by weight), is atomized by means of a nozzle atomizer.
  • the characteristics of the silica obtained P2 in the form of substantially spherical beads are then the following: - specific surface CTAB 135 m 2 / g
  • V1 represented by the pores of d ⁇ 400 A 0.86 cm 3 / g
  • the number N of stearic acid molecules consumed per nm 2 of silica surface, when reacting stearic acid with said silica P2 in xylene for 2 hours at 120 ° C is equal to 1, 7.
  • the silica P2 is subjected to the deagglomeration test as defined previously in the description. After deagglomeration with ultrasound, it has a median diameter
  • This example illustrates the use and the behavior of a silica according to the invention and of a silica not in accordance with the invention in a formulation for industrial rubber.
  • the formulations are prepared as follows:
  • the discharge of the mixer takes place when the temperature of the chamber reaches 165 ° C (that is to say, approximately thyroid+ 5 min 10 s).
  • the mixture is introduced on a roller mixer, maintained at 30 ° C, to be calendered there.
  • CBS, DPG and sulfur are introduced.
  • the final mixture is calendered in the form of sheets 2.5 to 3 mm thick.
  • the results of the tests are as follows:
  • the measurements are carried out on the formulations in the raw state.
  • Vulcanization is carried out by bringing the formulations to 150 ° C for 40 minutes.
  • the measured value is the abrasion loss: the lower it is, the better the abrasion resistance.
  • the silica according to the invention provides better mechanical properties than those obtained with the silica of the prior art.
  • the silica according to the invention leads to a module 300% / module 100% higher ratio than that obtained with the silica of the prior art, proof of a better dispersion of the silica within the rubber matrix .
  • the high reinforcing power of the silica according to the invention is confirmed by the high value obtained for the breaking strength.
  • the measurements are carried out on the vulcanized formulations.
  • Vulcanization is obtained by bringing the formulations to 150 ° C for 40 minutes.
  • the results (illustrating the heating trend) are reported in Table IV below (the lower the value, the lower the heating trend). The apparatus used to conduct the measurements was indicated.
  • the warming tendency obtained from the silica according to the invention is low.

Abstract

L'invention concerne un nouveau procédé de préparation de silice précipitée ayant une bonne aptitude à la dispersion et des propriétés renforçantes très satisfaisantes. Elle est également relative à de nouvelles silices précipitées se présentant sous forme de poudre, de billes sensiblement sphériques ou de granulés, ces silices étant caractérisées par le fait qu'elles possèdent une surface spécifique CTAB comprise entre 90 et 250 m2/g, une prise d'huile DOP inférieure à 300 ml/100 g, une distribution poreuse telle que le volume poreux constitué par les pores dont le diamètre est compris entre 175 et 275 Å représente moins de 50 % du volume poreux constitué par les pores de diamètres inférieurs ou égaux à 400 Å, une teneur en zinc comprise entre 1 et 5 % en poids et par le fait que le nombre N de molécules d'acide stéarique consommées par nm2 de surface de silice, lorsque l'on fait réagir de l'acide stéarique avec ladite silice dans du xylène pendant 2 heures à 120 °C, est d'au moins 1. L'invention concerne aussi l'utilisation desdites silices comme charges renforçantes pour élastomères, notamment pour améliorer leurs propriétés rhéologiques.

Description

Nouveau procédé de préparation de silice précipitée. nouvelles silices précipitées contenant du zinc et leur utilisation au renforcement des élastomères
La présente invention concerne un nouveau procédé de préparation de silice précipitée, des silices précipitées se présentant en particulier sous forme de poudre, de billes sensiblement spheriques ou de granulés, et leur application comme charge renforçante pour les élastomères. On sait que la silice précipitée est utilisée depuis longtemps comme charge blanche renforçante dans les élastomères.
Cependant, comme toute charge renforçante, il convient qu'elle puisse se manipuler d'une part, et surtout s'incorporer d'autre part, facilement dans les mélanges. On sait, d'une manière générale, que pour obtenir les propriétés de renforcement optimales conférées par une charge, il convient que cette dernière soit présente dans la matrice élastomère sous une forme finale qui soit à la fois la plus finement divisée possible et répartie de la façon la plus homogène possible. Or, de telles conditions ne peuvent être réalisées que dans la mesure où, d'une part, la charge présente une très bonne aptitude à s'incorporer dans la matrice lors du mélange avec l'élastomère (incorporabilité de la charge) et à se désagréger ou se désagglomérer sous la forme d'une poudre très fine (désagrégation de la charge), et où, d'autre part, la poudre issue du processus de désagrégation précité peut elle-même, à son tour, se disperser parfaitement et de façon homogène dans l'élastomère (dispersion de la poudre).
De plus, pour des raisons d'affinités réciproques, les particules de silice ont une fâcheuse tendance, dans la matrice élastomère, à s'agglomérer entre elles. Ces interactions silice/silice ont pour conséquence néfaste de limiter les propriétés de renforcement à un niveau sensiblement inférieur à celui qu'il serait théoriquement possible d'atteindre si toutes les interactions silice/élastomère susceptibles d'être créées pendant l'opération de mélange, étaient effectivement obtenues (ce nombre théorique d'interactions silice/élastomère étant, comme cela est bien connu, directement proportionnel à la surface externe, de la silice utilisée). En outre, de telles interactions silice/silice tendent, à l'état cru, à augmenter la raideur et la consistance des mélanges, rendant ainsi leur mise en oeuvre plus difficile. Le problème se pose de disposer de charges qui, tout en pouvant avoir une taille relativement élevée, améliorent les propriétés rhéologiques des élastomères et présentent avantageusement une bonne aptitude à la dispersion dans les élastomères. La présente invention a pour but d'obvier aux inconvénients précités et de résoudre le problème sus-mentionné.
Plus précisément, elle a notamment pour but de proposer un nouveau procédé de préparation de silice précipitée ayant, de manière avantageuse, une bonne aptitude à la dispersion (et à la désagglomération) et des propriétés renforçantes très satisfaisantes, en particulier qui, utilisées à titre de charge renforçante pour élastomères, confère à ces derniers d'excellentes propriétés rhéologiques tout en leur procurant de bonnes propriétés mécaniques.
L'invention concerne également des silices précipitées qui, de préférence, se présentent sous forme de poudre, de billes sensiblement spheriques ou, éventuellement, de granulés, et qui, tout en présentant une taille relativement élevée, ont des propriétés renforçantes très satisfaisantes et, de manière avantageuse, une très bonne aptitude à la dispersion (et à la désagglomération). Elle est relative enfin à l'utilisation desdites silices précipitées comme charges renforçantes pour élastomères. Dans l'exposé qui suit, la surface spécifique BET est déterminée selon la méthode de BRUNAUER - EMMET - TELLER décrite dans "The journal of the American Chemical Society", Vol. 60, page 309, février 1938 et correspondant à la norme NFT 45007 (novembre 1987).
La surface spécifique CTAB est la surface externe déterminée selon la norme NFT 45007 (novembre 1987) (5.12).
La prise d'huile DOP est déterminée selon la norme NFT 30-022 (mars 1953) en mettant en oeuvre le dioctylphtalate.
La densité de remplissage à l'état tassé (DRT) est mesurée selon la norme NFT-030100. Le pH est mesuré selon la norme ISO 787/9 (pH d'une suspension à 5 % dans l'eau).
On précise enfin que les volumes poreux donnés sont mesurés par porosimétrie au mercure, les diamètres de pores étant calculés par la relation de
WASHBURN avec un angle de contact thêta égal à 130° et une tension superficielle gamma égale à 484 Dynes/cm (porosimètre MICROMERITICS
9300). L'aptitude à la dispersion et à la désagglomération des silices selon l'invention peut être quantifiée au moyen d'un test spécifique de désagglomération.
Le test de désagglomération est réalisé selon le protocole suivant : la cohésion des agglomérats est appréciée par une mesure granulométrique
(par diffraction laser), effectuée sur une suspension de silice préalablement désagglomérée par ultra-sonification ; on mesure ainsi l'aptitude à la désagglomération de la silice (rupture des objets de 0,1 à quelques dizaines de microns). La désagglomération sous ultra-sons est effectuée à l'aide d'un sonificateur VIBRACELL BIOBLOCK (600 W), équipé d'une sonde de diamètre 19 mm. La mesure granulométrique est effectuée par diffraction laser sur un granulomètre SYMPATEC.
On pèse dans un pilulier (hauteur : 6 cm et diamètre : 4 cm) 2 grammes de silice et l'on complète à 50 grammes par ajout d'eau permutée : on réalise ainsi une suspension aqueuse à 4 % de silice qui est homogénéisée pendant 2 minutes par agitation magnétique. On procède ensuite à la désagglomération sous ultra-sons comme suit : la sonde étant immergée sur une longueur de 4 cm, on règle la puissance de sortie de manière à obtenir une déviation de l'aiguille du cadran de puissance indiquant 20 % (ce qui correspond à une énergie dissipée par l'embout de la sonde de 120 Watt/cm2). La désagglomération est effectuée pendant 420 secondes. On réalise ensuite la mesure granulométrique après avoir introduit dans la cuve du granulomètre un volume (exprimé en ml) connu de la suspension homogénéisée.
La valeur du diamètre médian 0 que l'on obtient est d'autant plus faible que la silice présente une aptitude à la désagglomération élevée. On détermine également le rapport (10 x volume de suspension introduite (en ml))/densité optique de la suspension détectée par le granulomètre (cette densité optique est de l'ordre de 20). Ce rapport est indicatif du taux de fines, c'est-à-dire du taux de particules inférieures à 0,1 μm qui ne sont pas détectées par le granulomètre. Ce rapport appelé facteur de désagglomération aux ultra-sons (FD) est d'autant plus élevé que la silice présente une aptitude à la désagglomération élevée.
L'un des objets de l'invention est un procédé de préparation de silice précipitée du type comprenant la réaction d'un silicate avec un agent acidifiant ce par quoi l'on obtient une suspension de silice précipitée, puis la séparation et le séchage de cette suspension, dans lequel on réalise la précipitation de la manière suivante : (i) on forme un pied de cuve initial comportant un silicate de métal alcalin M, et un électrolyte, la concentration en silicate (exprimée en Si02) dans ledit pied de cuve initial étant inférieure à 20 g/1,
(ii) on ajoute l'agent acidifiant audit pied de cuve jusqu'à ce qu'au moins 5 % de la quantité de M20 présente dans ledit pied de cuve soient neutralisés,
(iii) on ajoute au milieu réactionnel simultanément de l'agent acidifiant et un silicate de métal alcalin M telle que le rapport quantité de silicate ajoutée
(exprimée en Si02) / quantité de silicate présente dans le pied de cuve initial
(exprimée en Si02), appelé taux de consolidation, soit supérieur à 4 et d'au plus 100, caractérisé en ce que ledit procédé comprend une des deux opéraitons (a) ou (b) suivantes :
(a) on ajoute, après l'étape (iii), au milieu réactionnel au moins un composé du zinc, puis un agent basique, et, lorsque ladite séparation comporte une filtration et un delitage du gâteau issu de cette filtration, ledit delitage est de préférence effectué en présence d'au moins un composé de l'aluminium,
(b) on ajoute, après l'étape (iii), au milieu réactionnel simultanément un silicate et au moins un composé du zinc et, lorsque ladite séparation comporte une filtration et un delitage du gâteau issu de cette filtration, le delitage est de préférence effectué en présence d'au moins un composé de l'aluminium.
Il a été ainsi trouvé que l'introduction de zinc, et ce selon une méthode particulière, combinée à une concentration faible en silicate (exprimée en Si02) dans le pied de cuve initial et à un taux de consolidation approprié lors de l'étape d'addition simultanée constituait une condition importante pour conférer aux produits obtenus leurs très bonnes propriétés, notamments des propriétés renforçantes très satisfaisantes (en particulier au niveau de la rhéologie des élastomères).
Il est à noter, d'une manière générale, que le procédé concerné est un procédé de synthèse de silice de précipitation, c'est-à-dire que l'on fait agir, dans des conditions très particulières, un agent acidifiant sur un silicate.
Le choix de l'agent acidifiant et du silicate se fait d'une manière bien connue en soi.
On peut rappeler que l'on utilise généralement comme agent acidifiant un acide minéral fort tel que l'acide sulfu que, l'acide nitrique ou l'acide chlorhydrique, ou un acide organique tel que l'acide acétique, l'acide formique ou l'acide carbonique.
L'agent acidifiant peut être dilué ou concentré ; sa normalité peut être comprise entre 0,4 et 36 N, par exemple entre 0,6 et 1 ,5 N. En particulier, dans le cas où l'agent acidifiant est l'acide sulfurique, sa concentration peut être comprise entre 40 et 180 g/l, par exemple entre 60 et 130 g/l.
On peut par ailleurs utiliser en tant que silicate toute forme courante de silicates tels que métasilicates, disilicates et avantageusement un silicate de métal alcalin, notamment le silicate de sodium ou de potassium.
Le silicate peut présenter une concentration exprimée en silice comprise entre 40 et 330 g/l, par exemple entre 60 et 300 g/l, en particulier entre 60 et 250 g/l. De manière générale, on emploie, comme agent acidifiant, l'acide sulfurique, et, comme silicate, le silicate de sodium.
Dans le cas où l'on utilise le silicate de sodium, celui-ci présente, en général, un rapport pondéral SIOj NajO compris entre 2 et 4, par exemple entre 3,0 et 3,7. En ce qui concerne plus particulièrement le procédé de préparation de l'invention, la précipitation se fait d'une manière spécifique selon les étapes suivantes.
On forme tout d'abord un pied de cuve qui comprend du silicate (étape (i)). La quantité de silicate présente dans le pied de cuve initial ne représente avantageusement qu'une partie de la quantité totale de silicate engagée dans la réaction.
Selon une caractéristique du procédé de préparation selon l'invention, la concentration en silicate dans le pied de cuve initial est (supérieure à 0 g/l et) inférieure à 20 g de Si02 par litre. Cette concentration peut être d'au plus 11 g/l et, éventuellement, d'au plus 8 g/l.
Notamment lorsque la séparation effectuée ultérieurement lors du procédé selon l'invention comprend une filtration effectuée au moyen d'un filtre presse (et plus particulièrement dans le cas où l'on souhaite préparer des silices ayant une surface spécifique CTAB d'au moins 140 m /g), cette concentration peut être d'au moins 8g/l, en particulier comprise entre 10 et 15 g/l, par exemple entre 11 et 15 g/l ; le séchage mis en oeuvre plus loin dans le procédé selon l'invention peut être effectué par atomisation au moyen d'un atomiseur à buses.
Le pied de cuve peut comprendre un électrolyte. Néanmoins, de préférence, aucun électrolyte n'est utilisé au cours du procédé de préparation selon l'invention ; en particulier, de manière préférée, le pied de cuve initial ne comprend pas d'électrolyte.
Le terme d'électrolyte s'entend ici dan son acceptation normale, c'est-à-dire qu'il signifie toute substance ionique ou moléculaire qui, lorsqu'elle est en solution, se décompose ou se dissocie pour former des ions ou des particules chargées. On peut citer comme électrolyte un sel du groupe des sels des métaux alcalins et alcalino-terreux, notamment le sel du métal de silicate de départ et de l'agent acidifiant, par exemple le sulfate de sodium dans le cas de la réaction d'un silicate de sodium avec l'acide sulfurique.
La deuxième étape consiste à ajouter l'agent acidifiant dans le pied de cuve de composition décrite plus haut (étape (ii)).
Ainsi, dans cette deuxième étape, on ajoute l'agent acidifiant audit pied de cuve initial jusqu'à de qu'au moins 5 %, de préférence au moins 50 %, de la quantité M20 présente dans ledit pied de cuve initial soient neutralisés.
De manière préférée, dans cette deuxième étape, on ajoute l'agent acidifiant audit pied de cuve initial jusqu'à ce que 50 à 99 % de la quantité de M20 présente dans ledit pied de cuve initial soient neutralisés.
Une fois qu'est atteinte la valeur souhaitée de quantité M20 neutralisé, on procède alors à une addition simultanée (étape (iii)) d'agent acidifiant et d'une quantité de silicate de métal alcalin M telle que le taux de consolidation, c'est-à- dire le rapport quantité de silicate ajoutée(exphmée en Si02) / quantité de silicate présente dans le pied de cuve initial (exprimée en Si02), soit supérieur à 4 et d'au plus 100. Selon une variante du procédé de l'invention, on procède à cette addition simultanée d'agent acidifiant et d'une quantité de silicate de métal alcalin M telle que le taux de consolidation est plus particulièrement compris entre 12 et 100, de préférence entre 12 et 50, notamment entre 13 et 40.
Selon une autre variante du procédé de l'invention, on procède à cette addition simultanée d'agent acidifiant et d'une quantité de silicate de métal alcalin M telle que le taux de consolidation est plutôt supérieur à 4 et inférieur à 12, de préférence compris entre 5 et 11,5, notamment entre 7,5 et 11. Cette variante est, en général, mise en oeuvre quand la concentration en silicate dans le pied de cuve initial est d'au moins 8 g/l, en particulier entre 10 et 15 g/l, par exemple entre 11 et 15 g/l.
De manière préférée, pendant toute l'étape (iii), la quantité d'agent acidifiant ajoutée est telle que 80 à 99 %, par exemple 85 à 97 %, de la quantité de M20 ajoutée soient neutralisés.
Dans l'étape (iii), il est possible de procéder à l'addition simultanée d'agent acidifiant et de silicate à un premier palier de pH du milieu réactionnel, pH,, puis à un second palier de pH du milieu réactionnel, pH2, tel que 7 < pH2 < pH.* < 9. Selon une caractéristique essentielle du procédé de préparation selon l'invention, celui-ci comprend une des deux opérations (a) ou (b) mentionnées précédemment, c'est-à-dire :
(a) on ajoute, après l'étape (iii), au milieu réactionnel au moins un composé du zinc, puis un agent basique, et, lorsque la séparation, mise en œuvre dans le procédé, comporte une filtration et un delitage du gâteau issu de cette filtration, ledit delitage est de préférence effectué en présence d'au moins un composé de l'aluminium, ou
(b) on ajoute, après l'étape (iii), au milieu réactionnel simultanément un silicate et au moins un composé du zinc et, lorsque la séparation, mise en œuvre dans le procédé, comporte une filtration et un delitage du gâteau issu de cette filtration, le delitage est de préférence effectué en présence d'au moins un composé de l'aluminium.
Dans une première variante du procédé de préparation selon l'invention (c'est-à-dire lorsque celui-ci comprend l'opération (a)), on effectue avantageusement, après avoir réalisé la précipitation selon les étapes (i), (ii) et (iii) précédemment décrites, les étapes successives suivantes :
(iv) on ajoute au milieu réactionnel (c'est-à-dire à la suspension ou bouillie réactionnelle obtenue) au moins un composé du zinc, (v) on ajoute au milieu réactionnel un agent basique, de préférence jusqu'à l'obtention d'une valeur du pH du milieu réactionnel comprise entre 7,4 et 10, en particulier entre 7,8 et 9,
(vi) on ajoute au milieu réactionnel de l'agent acidifiant, de préférence jusqu'à l'obtention d'une valeur du pH du milieu réactionnel d'au moins 7, en particulier comprise entre 7 et 8,5, par exemple entre 7 et 8.
Il peut être alors avantageux d'effectuer, après l'addition simultanée de l'étape (iii), un mûrissement du milieu réactionnel, ce mûrissement pouvant par exemple durer de 1 à 60 minutes, en particulier de 3 à 30 minutes.
Dans cette première variante, il peut être souhaitable, entre l'étape (iii) et l'étape (iv), et notamment avant ledit mûrissement éventuel, d'ajouter au milieu réactionnel une quantité supplémentaire d'agent acidifiant. Cette addition se fait généralement jusqu'à l'obtention d'une valeur du pH du milieu réactionnel comprise entre 3 et 6,5, en particulier entre 4 et 6.
L'agent acidifiant utilisé lors de cette addition est généralement identique à celui employé lors des étapes (ii), (iii) et (vi) de la première variante du procédé de préparation selon l'invention. Un mûrissement du milieu réactionnel est habituellement effectué entre l'étape (v) et l'étape (vi), par exemple pendant 2 à 60 minutes, en particulier pendant 5 à 45 minutes.
De même, un mûrissement du milieu réactionnel est le plus souvent effectué après l'étape (vi), par exemple pendant 2 à 60 minutes, en particulier pendant 5 à 30 minutes.
L'agent basique utilisé lors de l'étape (iv) peut être une solution d'ammoniaque ou, de préférence, une solution d'hydroxyde de sodium (ou soude). Dans une seconde variante du procédé de préparation selon l'invention
(c'est-à-dire lorsque celui-ci comprend l'opération (b)), on effectue, après les étapes (i), (ii) et (iii) précédemment décrites, une étape (iv) qui consiste à ajouter au milieu réactionnel simultanément un silicate et au moins un composé du zinc.
Il peut être alors avantageux d'effectuer, après l'addition simultanée de l'étape (iv), un mûrissement du milieu réactionnel, ce mûrissement pouvant par exemple durer de 2 à 60 minutes, en particulier de 5 à 30 minutes.
Dans cette seconde variante, il peut être souhaitable, après l'étape (iv), et notamment après ce mûrissement éventuel, d'ajouter au milieu réactionnel une quantité supplémentaire d'agent acidifiant. Cette addition se fait généralement jusqu'à l'obtention d'une valeur du pH du milieu réactionnel d'au moins 7, en particulier comprise entre 7 et 8,5, par exemple entre 7 et 8.
L'agent acidifiant utilisé lors de cette addition est généralement identique à celui employé lors des étapes (ii) et (iii) de la seconde variante du procédé de préparation selon l'invention. Un mûrissement du milieu réactionnel est habituellement effectué après cette addition d'agent acidifiant, par exemple pendant 1 à 60 minutes, en particulier pendant 3 à 30 minutes.
Le composé de zinc employé dans le procédé de préparation selon l'invention est en général un sel organique ou inorganique de zinc. A titre d'exemples de sel organique, on peut citer notamment les sels d'acides carboxyliques ou polycarboxyliques, comme les sels d'acide acétique, citrique, tartrique ou oxalique.
A titre d'exemples de sel inorganique, on peut citer notamment les halogénures et les oxyhalogénures (comme les chlorures, les oxychlorures), les nitrates, les phosphates, les sulfates et les oxysulfates.
Dans la pratique, le composé de zinc peut être utilisé sous la forme d'une solution, en général aqueuse.
De préférence, on emploie à titre de composé du zinc un sulfate de zinc. . La température du milieu réactionnel est généralement comprise entre 60 et 98 °C.
Selon une variante de l'invention, la réaction est effectuée à une température constante comprise entre 70 et 96 °C. Selon une autre variante de l'invention, la température de fin de réaction est plus élevée que la température de début de réaction : ainsi, on maintient la température au début de la réaction de préférence entre 70 et 96 °C, puis on augmente la température en quelques minutes, de préférence jusqu'à une valeur comprise entre 75 et 98 °C, valeur à laquelle elle est maintenue jusqu'à la fin de la réaction ; les opérations (a) ou (b) sont ainsi habituellement effectuées à cette valeur constante de température.
On obtient, à l'issue des étapes qui viennent d'être décrites, une bouillie de silice qui est ensuite séparée (séparation liquide-solide).
Dans la première variante du procédé de préparation selon l'invention (c'est-à-dire lorsque celui-ci comprend l'opération (a)), cette séparation comporte, en général, une filtration (suivie d'un lavage si nécessaire) et un delitage, ledit delitage étant effectué en présence d'au moins un composé de l'aluminium et, de préférence, en présence d'un agent acidifiant tel que décrit précédemment (dans ce dernier cas, le composé de l'aluminium et l'agent acidifiant sont avantageusemement ajoutés de manière simultanée).
L'opération de delitage, qui peut être réalisée par exemple par passage du gâteau de filtration dans un broyeur de type colloïdal ou à bille, permet notamment d'abaisser la viscosité de la suspension à sécher ultérieurement.
Dans la seconde variante du procédé de préparation selon l'invention (c'est- à-dire lorsque celui-ci comprend l'opération (b)), la séparation comporte aussi, en général, une filtration (suivie d'un lavage si nécessaire) et un delitage, ledit delitage étant de préférence effectué en présence d'au moins un composé de l'aluminium et, en général, en présence d'un agent acidifiant tel que décrit précédemment (dans ce dernier cas, le composé de l'aluminium et l'agent acidifiant sont avantageusemement ajoutés de manière simultanée).
Le composé de l'aluminium consiste, en général, en un aluminate de métal alcalin, notamment de potassium ou, de manière très préférée, de sodium.
De préférence, la quantité de composé de zinc utilisée dans le procédé de préparation selon l'invention est telle que la silice précipitée préparée contient entre 1 et 5 %, en particulier entre 1 ,5 et 4 %, par exemple entre 1 ,5 et 2,5 %, en poids de zinc.
La séparation mise en œuvre dans le procédé de préparation selon l'invention comprend habituellement une filtration effectuée au moyen de toute méthode convenable, par exemple au moyen d'un filtre à bande, d'un filtre rotatif sous vide ou, de préférence, d'un filtre presse.
La suspension de silice précipitée ainsi récupérée (gâteau de filtration) est ensuite séchée. Ce séchage peut se faire selon tout moyen connu en soi.
De préférence, le séchage se fait par atomisation.
A cet effet, on peut utiliser tout type d'atomiseur convenable, notamment un atomiseur à turbines, à buses, à pression liquide ou à deux fluides.
Le séchage est par exemple effectué par atomisation au moyen d'un atomiseur à buses notamment quand la concentration en silicate dans le pied de cuve initial est d'au moins 8 g/l (et inférieure à 20 g/l), en particulier comprise entre 10 et 15 g/l (et plus particulièrement dans le cas où l'on souhaite préparer des silices ayant une surface spécifique CTAB d'au moins 140 m2/g).
Selon un mode de réalisation de l'invention, la suspension à sécher présente un taux de matière sèche supérieur à 15 % en poids, de préférence supérieur à 17 % en poids et, par exemple, supérieur à 20 % en poids. Le séchage est alors de préférence effectué au moyen d'un atomiseur à buses.
La silice précipitée susceptible d'être obtenue selon ce mode de réalisation de l'invention et de préférence en mettant en œuvre un filtre presse se présente avantageusement sous forme de billes sensiblement spheriques, de préférence d'une taille moyenne d'au moins 80 μm.
Il est à noter que l'on peut également, après la filtration, à une étape ultérieure du procédé, rajouter au gâteau de filtration de la matière sèche, par exemple de la silice sous forme pulvérulente. A l'issue du séchage, on peut procéder à une étape de broyage sur le produir récupéré, notamment sur le produit obtenu par séchage de suspension présentant un taux de matière sèche supérieur à 15 % en poids. La silice précipitée qui est alors susceptible d'être obtenue se présente généralement sous forme d'une poudre, de préférence de taille moyenne d'au moins 15 μm, en particulier comprise entre 15 et 60 μm, par exemple entre 20 et 45 μm.
Les produits broyés à la granulométrie désirée peuvent être séparés des éventuels produits non conformes au moyen par exemple de tamis vibreurs présentant des tailles de maille appropriées, et les produits non conformes ainsi récupérés être renvoyés au broyage. De même, selon un autre mode de réalisation de l'invention, la suspension à sécher présente un taux de matière sèche d'au plus 15 % en poids. Le séchage est alors en général effectué au moyen d'un atomiseur à turbines. La silice précipitée qui est alors susceptible d'être obtenue selon ce mode de réalisation de l'invention et de préférence en mettant en œuvre un filtre rotatif sous vide se présente généralement sous la forme d'une poudre, de préférence de taille moyenne d'au moins 15 μm, en particulier comprise entre 30 et 150 μm, par exemple entre 45 et 120 μm. Enfin, le produit séché (notamment à partir d'une suspension ayant un taux de matière sèche d'au plus 15 % en poids) ou broyé peut, selon un autre mode de réalisation de l'invention, être soumis à une étape d'agglomération.
On entend ici par agglomération tout procédé qui permet de lier entre eux des objets finement divisés pour les amener sous la forme d'objets de plus grande taille et résistant mieux mécaniquement.
Ces procédés sont notamment la compression directe, la granulation voie humide (c'est-à-dire avec utilisation d'un liant tel que eau, slurry de silice, ...), l'extrusion et, de préférence, le compactage à sec.
Lorsque l'on met en oeuvre cette dernière technique, il peut s'avérer avantageux, avant de procéder au compactage, de désaérer (opération aussi appelée pré-densification ou dégazage) les produits pulvérulents de manière à éliminer l'air inclus dans ceux-ci et assurer un compactage plus régulier.
La silice précipitée susceptible d'être obtenue selon ce mode de réalisation de l'invention se présente avantageusement sous la forme de granulés, de préférence de taille d'au moins 1 mm, en particulier comprise entre 1 et 10 mm.
A l'issue de l'étape d'agglomération, les produits peuvent être calibrés à une taille désirée, par exemple par tamisage, puis conditionnés pour leur utilisation future.
Les poudres, de même que les billes, de silice précipitée obtenues par le procédé selon l'invention offrent ainsi l'avantage, entre autre, d'accéder de manière simple, efficace et économique à des granulés tels que précités, notamment par des opérations classiques de mise en forme, telles que par exemple une granulation ou un compactage, sans que ces dernières n'entraînent de dégradations susceptibles de masquer, voire annihiler, les bonnes propriétés intrinsèques attachées à ces poudres ou ces billes, comme cela peut être le cas dans l'art antérieur en mettant en oeuvre des poudres classiques.
D'autres objets de l'invention consistent en de nouvelles silices précipitées ayant, de manière avantageuse, une bonne aptitude à la dispersion (et à la désagglomération) et des propriétés renforçantes très satisfaisantes, en particulier qui, utilisées à titre de charge renforçante pour élastomères, confère à ces derniers de très bonnes propriétés rhéologiques tout en leur procurant des propriétés mécaniques très satisfaisantes. Ainsi, il est maintenant proposé, selon l'invention, une nouvelle silice précipitée caractérisée en ce qu'elle possède :
- une surface spécifique CTAB comprise entre 90 et 250 m2/g, par exemple entre 120 et 230 m2/g, - une prise d'huile DOP inférieure à 300 ml/100g, de préférence comprise entre 200 et 295 ml/100g,
- une distribution poreuse telle que le volume poreux constitué par les pores dont le diamètre est compris entre 175 et 275 A représente moins de 50 % du volume poreux constitué par les pores de diamètres inférieurs ou égaux à 400 A, - une teneur en zinc comprise entre 1 et 5 % en poids, de préférence entre
1 ,5 et 4 % en poids, et en ce que le nombre N de molécules d'acide stéarique consommées par nm2 de surface de silice, lorsque l'on fait réagir de l'acide stéarique avec de ladite silice dans du xylène pendant 2 heures à 120 °C, est d'au moins 1 , de préférence d'au moins 1 ,2, en particulier d'au moins 1 ,5.
La silice selon l'invention présente, de manière préférée, une teneur en zinc comprise entre 1 ,5 et 4 % en poids ; cette teneur peut être notamment comprise entre 1 ,5 et 2,5 % en poids.
Une des caractéristiques essentielles de la silice précipitée selon l'invention est sa consommation, en milieu modèle (le xylène), d'un ingrédient de vulcanisation du caoutchouc (l'acide stéarique).
La Demanderesse a ainsi constaté que les silices précipitées présentant un nombre N particulier, en combinaison avec les autres caractéristiques mentionnées dans le présent exposé, permettaient notamment de conférer aux élastomères de très bonnes propriétés rhéologiques tout en leur procurant des propriétés mécaniques satisfaisantes.
Pour déterminer cette caractéristique (nombre N), on fait réagir de l'acide stéarique en présence de la silice dans du xylène, pendant 2 heures à 120 °C. Puis, on dose par spectrométrie infra-rouge (IR) la quantité d'acide stéarique restant dans le xylène après réaction ; on peut alors déduire la quantité d'acide stéarique qui a été consommée par la silice, et donc le nombre N de molécules d'acide stéarique consommées par nm2 de surface de la silice.
On décrit plus précisément ci-dessous le mode opératoire utilisé pour déterminer cette caractéristique. On ajoute 60,2 g (soit 70 ml) de xylène dans un ballon contenant 3,17 g d'acide stéarique. On bouche le ballon, puis on le place sous agitation magnétique pendant quelques minutes. On ajoute ensuite 12,04 g de silice. On place le ballon dans un bain d'huile à 120 °C, sous reflux (en y adaptant un réfrigérant). On met alors le ballon sous agitation magnétique pendant
105 mn. Puis on arrête l'agitation et on laisse encore le ballon dans le bain d'huile pendant 15 mn. La durée totale de la réaction à 120 °C est donc de 2 heures.
On retire le réfrigérant et on sort le ballon du bain d'huile. On filtre le contenu du ballon sur un système de microfiltration (ensemble MILLIPORE avec filtres à membranes DURAPORE en fluorure de polyvinylidène (dimension des pores : 0,45 μm)). On dilue ensuite, dans 10 g de xylène, 10 g du filtrat obtenu : on obtient une solution S.
Parallèlement, on prépare des solutions étalon d'acide stéarique dans le xylène (ayant un taux d'acide stéarique inférieur à 2 % en masse) et on réalise les spectres IR (de 400 à 4000 cm-1) de chacunes d'entre elles. Le pic caractéristique de l'acide stéarique se situe à 1710 cm-1. L'amplitude de ce pic associé au taux d'acide stéarique de la solution permet de tracer la droite du taux d'acide stéarique de la solution en fonction de l'absorbance IR à 1710 cm-1 ; par régression linéaire, on obtient l'équation de la droite d'étalonnage.
De même, on réalise le spectre IR de la solution S. La valeur du pic caractéristique de l'acide stéarique ramenée à l'équation de la droite d'étalonnage permet de déterminer le taux d'acide stéarique présente dans la solution S ; en tenant compte de la masse de xylène ajouté lors de la dilution, on obtient le taux d'acide stéarique du filtrat de la réaction. Le taux et donc la quantité d'acide stéarique consommé par la silice au cours de la réaction se déduisent du taux d'acide stéarique initial et du taux d'acide stéarique après réaction (celui-ci étant le taux d'acide stéarique du filtrat) . On détermine alors le nombre N de molécules d'acide stéarique consommées par nm2 de surface de la silice.
Le zinc contenu dans la silice précipitée selon l'invention n'est pas, de manière préférée, sous forme cristallisée, mais se présente plutôt sous forme amorphe (ceci peut être déterminé par diffraction des rayons X).
Une autre caractéristique de la silice selon l'invention réside dans la distribution, ou répartition, du volume poreux, et notamment dans la distribution du volume poreux qui est généré par les pores de diamètres inférieurs ou égaux à 400 A. Ce dernier volume correspond au volume poreux utile des charges qui sont employées dans le renforcement des élastomères. L'analyse des porogrammes montre qu'alors la silice selon l'invention possède une distribution poreuse telle que le volume poreux constitué par les pores dont le diamètre est compris entre 175 et 275 A représente moins de 50 %, par exemple moins de 40 %, du volume poreux constitué par les pores de diamètres inférieurs ou égaux à 400 A.
Selon un premier mode particulier (préféré) de réalisation de l'invention, la silice précipitée possède :
- une surface spécifique CTAB comprise entre 90 et 185 m2/g,
- un diamètre médian ( ^), après désagglomération aux ultra-sons, inférieur à 6 μm, de préférence inférieur à 5 μm.
Elle possède alors généralement une surface spécifique BET comprise entre 90 et 230 m2/g, en particulier entre 100 et 190 m2/g, par exemple entre 120 et 190 m2/g.
Selon une variante de ce mode de réalisation de l'invention, la silice précipitée possède :
- une surface spécifique CTAB comprise entre 90 et 140 m2/g, en particulier entre 100 et 135 m2/g, par exemple entre 120 et 135 m2/g,
- un diamètre médian (0^), après désagglomération aux ultra-sons, inférieur à 4,5 μm, en particulier inférieur à 4 μm, par exemple inférieur à 3,8 μm.
Selon une autre variante de ce mode de réalisation de l'invention, la silice précipitée possède : - une surface spécifique CTAB comprise entre 140 et 185 m2/g,
- un facteur de désagglomération aux ultra-sons (FD) supérieur à 5,5 ml, en particulier supérieur à 11 ml.
Selon un deuxième mode particulier de réalisation de l'invention, la silice précipitée possède : - une surface spécifique CTAB supérieure à 185 m /g et inférieure à
220 m2/g,
- un diamètre médian (0^), après désagglomération aux ultra-sons, inférieur à 8,5 μm, de préférence inférieur à 7 μm.
Elle possède alors généralement une surface spécifique BET comprise entre 190 et 280 m2/g, notamment entre 190 et 250 m2/g.
Le facteur de désagglomération aux ultra-sons (FD) de la silice précipitée selon ce mode particulier de réalisation de l'invention peut être supérieur à 5,5 ml.
Selon une variante de l'invention, la silice possède un rapport surface spécifique BET / surface spécifique CTAB compris entre 1 ,0 et 1 ,2, c'est-à-dire qu'elle présente de préférence une faible microporosité.
Selon une autre variante de l'invention, la silice possède un rapport surface spécifique BET / surface spécifique CTAB supérieur à 1 ,2, par exemple compris entre 1 ,21 et 1 ,4, c'est-à-dire qu'elle présente une microporosité relativement élevée.
Le pH de la silice selon l'invention est, en général, compris entre 8,0 et 9,0, par exemple entre 8,3 et 8,9. Les silices selon l'invention peuvent se présenter sous forme de poudre, de billes sensiblement spheriques ou, éventuellement, de granulés et sont notamment caractérisées par le fait que, tout en ayant une taille relativement élevée, elles présentent des propriétés renforçantes très satisfaisantes et, de préférence, une bonne aptitude à la dispersion et à la désagglomération. Les poudres de silice selon l'invention présentent préférentiellement une taille moyenne d'au moins 15 μm ; celle-ci est par exemple comprise entre 15 et 60 μm (notamment entre 20 et 45 μm) ou entre 30 et 150 μm (notamment entre 45 et 120 μm).
Elles possèdent, de manière préférée, une prise d'hulie DOP comprise entre 240 et 290 ml/100g.
La densité de remplissage à l'état tassé (DRT) desdites poudres est, en général, d'au moins 0,17, et, par exemple, comprise entre 0,2 et 0,3.
Lesdites poudres présentent généralement un volume poreux total d'au moins 2,5 cm3/g, et, plus particulièrement, compris entre 3 et 5 cm3/g. Elles permettent notamment d'obtenir un très bon compromis mise en œuvre/propriétés mécaniques à l'état vulcanisé.
Elles constituent aussi des précurseurs privilégiés pour la synthèse de granulés tels que décrits plus loin.
Les billes sensiblement spheriques selon l'invention présentent préférentiellement une taille moyenne d'au moins 80 μm.
Selon certaines variantes de l'invention, cette taille moyenne des billes est d'au moins 100 μm, par exemple d'au moins 150 μm ; elle est généralement d'au plus 300 μm et se situe de préférence entre 100 et 270 μm. Cette taille moyenne est déterminée selon la norme NF X 11507 (décembre 1970) par tamisage à sec et détermination du diamètre correspondant à un refus cumulé de 50 %.
Elles possèdent, de manière préférée, une prise d'hulie DOP comprise entre 240 et 290 ml/100g.
La densité de remplissage à l'état tassé (DRT) desdites billes (ou perles) est, en général, d'au moins 0,17, et, par exemple, comprise entre 0,2 et 0,34. Elles présentent habituellement un volume poreux total d'au moins
2,5 cm3/g, et plus particulièrement, compris entre 3 et 5 cm3/g.
Comme indiqué ci-avant, une telle silice sous forme de billes sensiblement spheriques, avantageusement pleines, homogènes, peu poussièrantes et de bonne coulabilite, présente, de préférence, bonne aptitude à la désagglomération et à la dispersion. En outre, elle présente de bonnes propriétés renforçantes. Une telle silice constitue également un précurseur privilégié pour la synthèse des poudres et des granulés selon l'invention. Une telle silice sous forme de billes sensiblement spheriques constitue une variante très avantageuse de l'invention.
Les dimensions des granulés selon l'invention sont préférentiellement d'au moins 1 mm, en particulier comprises entre 1 et 10 mm, selon l'axe de leur plus grande dimension (longueur). Ils possèdent, de manière préférée, une prise d'hulie DOP comprise entre
200 et 260 ml/100g.
Lesdits granulés peuvent se présenter sous des formes les plus diverses. A titre d'exemple, on peut notamment citer les formes sphérique, cylindrique, parallélépipédique, de pastille, de plaquette, de boulette, d'extrudé à section circulaire ou polylobée.
La densité de remplissage à l'état tassé (DRT) desdits granulés est en général d'au moins 0,27 et peut aller jusqu'à 0,37.
Ils présentent généralement un volume poreux total d'au moins 1 cm3/g, et, plus particulièrement, entre 1 ,5 et 2 cm3/g. Les silices selon l'invention, notamment sous forme de poudre, de billes sensiblement spheriques ou de granulés, sont de préférence préparées selon l'une des variantes appropriées du procédé de préparation conforme à l'invention et décrit précédemment.
Les silices selon l'invention ou préparées par le procédé selon l'invention trouvent une application particulièrement intéressante dans le renforcement des élastomères, naturels ou synthétiques. Elles confèrent à ces élastomères d'excellentes propriétés rhéologiques tout en leur procurant de bonnes propriétés mécaniques et, en général, une bonne résistance à l'abrasion. De plus, ces élastomères sont alors de préférence sujets à un échauffement réduit. L'invention est donc également relative à l'utilisation de ces silices pour améliorer les propriétés rhéologiques des élastomères.
Les exemples suivants illustrent l'invention sans toutefois en limiter la portée.
EXEMPLE 1
Dans un réacteur en acier inoxydable muni d'un système d'agitation par hélices et d'un chauffage par double enveloppe, on introduit : - 733 litres d'eau, et
- 46,5 litres d'une solution de silicate de sodium (de rapport pondéral S 0:J a_0 égal à 3,4) ayant une concentration exprimée en silice de 235 g/l.
La concentration en silicate exprimée en Si02 dans le pied de cuve initial est donc de 14 g/l. La solution est alors portée à une température de 80 °C tout en la maintenant sous agitation. L'ensemble de la réaction est effectué à 80 °C sous agitation. On y introduit ensuite, pendant 9 mn, de l'acide sulfurique dilué, de densité à 20 °C égale à 1 ,050, à un débit de 5,4 l/mn ; à l'issue de cette addition, le taux de neutralisation du pied de cuve est de 78 %, c'est-à-dire que 78 % de la quantité de Na20 présente dans le pied de cuve initial sont neutralisés.
On introduit ensuite simultanément, pendant 90 mn, dans le milieu réactionnel une solution de silicate de sodium du type décrit ci-avant, à un débit de 4,3 l/mn, et de l'acide sulfurique dilué également du type décrit ci-avant, à un débit régulé de manière à maintenir, dans le milieu réactionnel, le pH :
- à une valeur de 8,5 ± 0,1 pendant les 55 premières minutes, puis
- à une valeur de 7,8 ± 0,1 pendant les 35 dernières minutes.
Lors de cette addition simultanée, le taux de neutralisation instantané est de 94 %, c'est-à-dire que 94 % de la quantité de Na20 ajoutée (par mn) sont neutralisés.
Le taux de consolidation, à l'issue de cette addition simultanée, est égal à 8,3.
Après cette addition simultanée, on introduit ensuite dans le milieu réactionnel, pendant 12 minutes, à un débit de 9,3 l/mn, une solution aqueuse contenant 85 g/l de sulfate de zinc. A l'issue de cette addition, on introduit dans le milieu réactionnel une solution aqueuse contenant 180 g/l de soude, jusqu'à ce que le pH du milieu réactionnel soit égal à 8,9.
On arrête ensuite l'introduction de soude et on maintient le milieu réactionnel pendant 10 minutes sous agitation. Puis on introduit de l'acide sulfurique du type décrit ci-avant, jusqu'à ce que le pH du milieu réactionnel soit égal à 7,1.
On arrête ensuite l'introduction d'acide et on procède à un mûrissement du milieu réactionnel pendant 5 minutes à une température de 80 °C.
La durée totale de la réaction est de 148 minutes. On obtient ainsi une bouillie ou suspension de silice précipitée qui est ensuite filtrée et lavée au moyen d'un filtre presse.
Le gâteau obtenu est ensuite fluidifié par action mécanique et chimique (ajout simultané d'acide sulfurique et d'une quantité d'aluminate de sodium correspondant à un rapport pondéral Al/Si02 de 0,30 %). Après cette opération de delitage, la bouillie résultante, de pH égal à 8,4 et de perte au feu égale à 78,0 % (donc un taux de matière sèche de 22,0 % en poids), est atomisée au moyen d'un atomiseur à buses.
Les caractéristiques de la silice obtenue P1 sous forme de billes sensiblement spheriques sont alors les suivantes :
- surface spécifique CTAB 145 m2/g
- surface spécifique BET 175 m2/g
- prise d'huile DOP 275 ml/100g
- teneur pondéral en zinc 1 ,80 %
- volume poreux V1 représenté par les pores de d < 400 A 0,95 cm3/g
- volume poreux V2 représenté par les pores 175 A ≤ d ≤ 275 A 0,40 cm3/g
- rapport V2/V1 42 %
- pH 8,5
- taille moyenne des particules 210 μm
Le nombre N de molécules d'acide stéarique consommées par nm2 de surface de silice, lorsque l'on fait réagir de l'acide stéarique avec de ladite silice P1 dans du xylène pendant 2 heures à 120 °C (conformément au mode opératoire exposé dans la description) est égal à 1 ,4.
On soumet la silice P1 au test de désagglomération tel que défini précédemment dans la description.
Après désagglomération aux ultra-sons, elle présente un diamètre médian ( 5o) de 2,7 μm et un facteur de désagglomération aux ultra-sons (FD) de 16 ml.
EXEMPLE 2
Dans un réacteur en acier inoxydable muni d'un système d'agitation par hélices et d'un chauffage par double enveloppe, on introduit :
- 626 litres d'eau, et
- 36 litres d'une solution de silicate de sodium (de rapport pondéral SiO^Na^ égal à 3,4) ayant une concentration exprimée en silice de 130 g/l.
La concentration en silicate exprimée en Si02 dans le pied de cuve initial est donc de 7,1 g/l. La solution est alors portée à une température de 95 °C tout en la maintenant sous agitation. L'ensemble de la réaction est effectué à 95 °C sous agitation. On y introduit ensuite, pendant 3 mn et 20 s, une solution d'acide sulfurique, de concentration égale à 80 g/l, à un débit de 5,4 l/mn ; à l'issue de cette addition, le taux de neutralisation du pied de cuve est de 67 %, c'est-à-dire que 67 % de la quantité de Na20 présente dans le pied de cuve initial sont neutralisés.
On introduit ensuite simultanément, pendant 70 mn, dans le milieu réactionnel :
- une solution d'acide sulfurique du type décrit ci-avant, à un débit de 5,4 l/mn, et - une solution de silicate de sodium du type décrit ci-avant, à un débit de
9,2 l/mn.
Lors de cette addition simultanée, le taux de neutralisation instantané est de 79 %, c'est-à-dire que 79 % de la quantité de Na20 ajoutée (par mn) sont neutralisés. Le taux de consolidation, à l'issue de cette addition simultanée, est égal à
17,9.
Après cette addition simultanée, on introduit ensuite dans le milieu réactionnel, pendant 12 minutes, à un débit de 9,3 l/mn, une soulution aqueuse contenant 85 g/l de sulfate de zinc. A l'issue de cette addition, on introduit dans le milieu réactionnel une solution aqueuse contenant 180 g/l de soude, jusqu'à ce que le pH du milieu réactionnel soit égal à 8,9.
On arrête ensuite l'introduction de soude et on maintient le milieu réactionnel pendant 10 minutes sous agitation.
Puis on introduit de une solution d'acide sulfurique du type décrit ci-avant, jusqu'à ce que le pH du milieu réactionnel soit égal à 7,1.
On arrête ensuite l'introduction d'acide et on procède à un mûrissement du milieu réactionnel pendant 5 minutes à une température de 95 °C. La durée totale de la réaction est de 127 minutes.
On obtient ainsi une bouillie ou suspension de silice précipitée qui est ensuite filtrée et lavée au moyen d'un filtre presse.
Le gâteau obtenu est ensuite fluidifié par action mécanique et chimique (ajout simultané d'acide sulfurique et d'une quantité d'aluminate de sodium correspondant à un rapport pondéral Al/Si02 de 0,20 %). Après cette opération de delitage, la bouillie résultante, de pH égal à 8,4 et de perte au feu égale à 79,0 % (donc un taux de matière sèche de 21 ,0 % en poids), est atomisée au moyen d'un atomiseur à buses.
Les caractéristiques de la silice obtenue P2 sous forme de billes sensiblement spheriques sont alors les suivantes : - surface spécifique CTAB 135 m2/g
- surface spécifique BET 147 m2/g
- prise d'huile DOP 250 ml/100g - teneur pondéral en zinc 1 ,90 %
- volume poreux V1 représenté par les pores de d < 400 A 0,86 cm3/g
- volume poreux V2 représenté par les pores 175 A < d < 275 A 0,39 cm3/g - rapport V2/V1 45 %
- pH 8,5
- taille moyenne des particules 220 μm
Le nombre N de molécules d'acide stéarique consommées par nm2 de surface de silice, lorsque l'on fait réagir de l'acide stéarique avec de ladite silice P2 dans du xylène pendant 2 heures à 120 °C (conformément au mode opératoire exposé dans la description) est égal à 1 ,7.
On soumet la silice P2 au test de désagglomération tel que défini précédemment dans la description. Après désagglomération aux ultra-sons, elle présente un diamètre médian
(05o) de 3,2 μm et un facteur de désagglomération aux ultra-sons (FD) de 14,5 ml.
Les caractéristiques des silices préparées dans les exemple 1 et 2, ainsi que celles d'une silice commerciale vendue sous forme de billes sensiblement spheriques par la société RHONE-POULENC CHIMIE comme charge renforçante pour élastomères, en l'occurrence la silice ZEOSIL® 175 MP (référencée MP1 ), sont rassemblées dans le tableau I ci-dessous.
TABLEAU
MP1 P1 P2
SCTAB (m2/g) 162 145 135
SBET (m2/g) 175 175 147
DOP (ml/100g) 280 275 250
Zn (%) < 0,005 1,80 1,90
V1 (cm3/g) 0,95 0,95 0,86
V2 (cm3/g) 0,45 0,40 0,39
V2Λ 1 (%) 47 42 45
PH 6,5 8,5 8.5
Taille moyenne 265 210 220 (μm)
N (mol/nm2) 0,5 1 ,4 1.7
0∞ (μm) 9,1 2,7 3.2
FD (ml) 2,1 16 14,5
EXEMPLE 3
Cet exemple illustre l'utilisation et le comportement d'une silice selon l'invention et d'une silice non conforme à l'invention dans une formulation pour caoutchouc industriel.
On utilise la formulation suivante (les parties sont exprimées en poids)
- Caoutchouc S.B.R. 1955 S 25 0) 50
- Caoutchouc B.R. 1220 < > 25
- Caoutchouc naturel 25
- Silice 51
- ZnO actif <3> 1 ,8
- Acide stéarique 0,35
- 6PPD < > 1 ,45
- CBS <5> 1 ,1
- DPG <6> 1.4
- Soufre 0,9
- Silane X50S <8> 8,15 (1) Copolymère styrène butadiène solution type 1955 S 25
(2) Polymère butadiène type 1220
(3) Oxyde de zinc qualité caoutchouc (4) N-(diméthyl-1 ,3 butyl)-N'-phényl-p-phénylène diamine
(5) N-cyclohexyl 2-benzothiazyl sulfènamide
(6) Diphényl guanidine
(7) Agent vulcanisant
(8) Agent de couplage silice/caoutchouc (produit commercialisé par la Société DEGUSSA)
Les formulations sont préparées de la manière suivante :
Dans un mélangeur interne (type BANBURY), on introduit dans cet ordre et aux temps et températures du mélange indiqués entre parenthèses :
- du S.B.R. 1955 S 25, du B.R.1220 et du caoutchouc naturel (U(60 °C)
- le X50S et les 2/3 de la silice (t0 + 1 mn)(80 °C)
- le ZnO, l'acide stéarique, le 6PPD et 1/3 de la silice (t0 + 2 mn)(100 °C)
La décharge du mélangeur (tombée du mélange) se fait quand la température de la chambre atteint 165 °C (c'est-à-dire, à peu près t„ + 5 mn 10 s). Le mélange est introduit sur un mélangeur à cylindres, maintenus à 30 °C, pour y être calandre. Sur ce mélangeur, on introduit le CBS, le DPG et le soufre. Après homogénéisation et trois passages au fin, le mélange final est calandre sous la forme de feuilles de 2,5 à 3 mm d'épaisseur. Les résultats des essais sont les suivants :
1- Propriétés rhéologiques
Les mesures sont réalisées sur les formulations à l'état cru.
Les résultats sont reportés dans le tableau 11 ci-dessous. On a indiqué l'appareillage utilisé pour conduire les mesures.
TABLEAU
MP1 P1
Consistance MOONEY <1> 130 85
Couple mini (In.lb) <2> 26,5 19,1 (1 ) Viscosimètre MOONEY MV 2000E (mesure de Mooney Large (1+4) à 100 °C)
(2) Rhéomètre MONSANTO 100 S
La formulation obtenue à partir de la silice selon l'invention conduit aux valeurs les plus faibles.
Ceci traduit une plus grande facilité de mise en oeuvre des mélanges préparés à partir de silice selon l'invention, en particulier au niveau des opérations d'extrusion et de calandrages souvent réalisées lors de la confection de compositions élastomériques (moindre dépense d'énergie pour mettre en oeuvre le mélange, plus grande facilité d'injection lors du mélangeage, moindre gonflement en filière lors de l'extrusion, moindre retrait au calandrage,...).
2- Propriétés mécaniques
Les mesures sont réalisées sur les formulations vulcanisées. La vulcanisation est réalisée en portant les formulations à 150 °C pendant 40 minutes.
Les normes suivantes ont été utilisées : (i) essais de traction (modules, résistance à la rupture) :
NFT 46-002 ou ISO 37-1977 (ii) essais de résistance à l'abrasion
DIN 53-516 Les résultats obtenus sont consignés dans le tableau III ci-dessous.
TABLEAU
MP1 P1 module 300 % / module 100 % 3,4 5,4
Résistance rupture (MPa) 17,1 20,8
Résistance abrasion (mm3) <1) 58 54
(1 ) la valeur mesurée est la perte à l'abrasion : plus elle est faible et meilleure est la résistance à l'abrasion.
Ces derniers résultats montrent le bon effet de renforcement conféré par la silice selon l'invention. Ainsi, tout en conduisant à des propriétés rhéologiques plus satisfaisantes, la silice selon l'invention procure des propriétés mécaniques meilleures que celles obtenues avec la silice de l'art antérieur.
D'une part, la silice selon l'invention conduit à un rapport module 300 % / module 100 % supérieur à celui obtenu avec la silice de l'art antérieur, preuve d'une meilleure dispersion de la silice au sein de la matrice caoutchouc.
D'autre part, le haut pouvoir renforçant de la silice selon l'invention est confirmé par la valeur élevée obtenue pour la résistance à la rupture.
Enfin, concernant la résistance à l'abrasion, on note que la perte à l'abrasion est réduite par rapport à la silice comparative.
3- Propriétés dynamiques
Les mesures sont réalisées sur les formulations vulcanisées.
La vulcanisation est obtenue en portant les formulations à 150 °C pendant 40 minutes. Les résultats (illustrant la tendance à réchauffement) sont reportés dans le tableau IV ci-dessous (plus la valeur est faible, moindre est la tendance à échauffement). On a indiqué l'appareillage utilisé pour conduire les mesures.
TABLEAU IV
MP1 P1
Echauffement interne (°C)<1) 90 69
(1) Flexomètre GOODRICH
La tendance à réchauffement obtenu à partir de la silice selon l'invention est faible.

Claims

REVENDICATIONS
1/ Procédé de préparation de silice précipitée du type comprenant la réaction d'un silicate de métal alcalin M avec un agent acidifiant ce par quoi l'on obtient une suspension de silice précipitée, puis la séparation et le séchage de cette suspension, dans lequel on réalise la précipitation de la manière suivante :
(i) on forme un pied de cuve initial comportant un silicate de métal alcalin M, la concentration en silicate (exprimée en Si02) dans ledit pied de cuve initial étant inférieure à 20 g/l,
(ii) on ajoute l'agent acidifiant audit pied de cuve jusqu'à ce qu'au moins 5 % de la quantité de M20 présente dans ledit pied de cuve soient neutralisés,
(iii) on ajoute au milieu réactionnel simultanément de l'agent acidifiant et un silicate de métal alcalin M telle que le rapport quantité de silicate ajoutée (exprimée en Si02) / quantité de silicate présente dans le pied de cuve initial (exprimée en Si02) soit supérieur à 4 et d'au plus 100,
caractérisé en ce que ledit procédé comprend une des deux opérations (a) ou (b) suivantes :
(a) on ajoute, après l'étape (iii), au milieu réactionnel au moins un composé du zinc, puis un agent basique, et, lorsque ladite séparation comporte une filtration et un delitage du gâteau issu de cette filtration, ledit delitage est de préférence effectué en présence d'au moins un composé de l'aluminium,
(b) on ajoute, après l'étape (iii), au milieu réactionnel simultanément un silicate et au moins un composé du zinc et, lorsque ladite séparation comporte une filtration et un delitage du gâteau issu de cette filtration, le delitage est de préférence effectué en présence d'au moins un composé de l'aluminium.
2/ Procédé selon la revendication 1, comprenant la réaction d'un silicate avec un agent acidifiant ce par quoi l'on obtient une suspension de silice précipitée, puis la séparation et le séchage de cette suspension, dans lequel :
- on réalise la précipitation de la manière suivante : (i) on forme un pied de cuve initial comportant un silicate de métal alcalin M, la concentration en silicate (exprimée en Si02) dans ledit pied de cuve initial étant inférieure à 20 g/l,
(ii) on ajoute l'agent acidifiant audit pied de cuve jusqu'à ce qu'au moins 5 % de la quantité de M20 présente dans ledit pied de cuve soient neutralisés,
(iii) on ajoute au milieu réactionnel simultanément de l'agent acidifiant et un silicate de métal alcalin M telle que le rapport quantité de silicate ajoutée (exprimée en Si02) / quantité de silicate présente dans le pied de cuve initial (exprimée en Si02) soit supérieur à 4 et d'au plus 100,
- puis, on effectue les étapes suivantes :
(iv) on ajoute au milieu réactionnel au moins un composé du zinc,
(v) on ajoute au milieu réactionnel un agent basique, de préférence jusqu'à l'obtention d'une valeur du pH du milieu réactionnel comprise entre 7,4 et 10, en particulier entre 7,8 et 9,
(vi) on ajoute au milieu réactionnel de l'agent acidifiant, de préférence jusqu'à l'obtention d'une valeur du pH du milieu réactionnel d'au moins 7, en particulier comprise entre 7 et 8,5,
- la séparation comporte une filtration et un delitage du gâteau issu de la filtration, le delitage étant effectué en présence d'au moins un composé de l'aluminium.
3/ Procédé selon la revendication 2, caractérisé en ce que, entre l'étape (iii) et l'étape (iv), on ajoute au milieu réactionnel de l'agent acidifiant, de préférence jusqu'à l'obtention d'une valeur du pH du milieu réactionnel comprise entre 3 et 6,5.
Al Procédé selon la revendication 1 , comprenant la réaction d'un silicate avec un agent acidifiant ce par quoi l'on obtient une suspension de silice précipitée, puis la séparation et le séchage de cette suspension, dans lequel on réalise la précipitation de la manière suivante : (i) on forme un pied de cuve initial comportant un silicate de métal alcalin M, la concentration en silicate (exprimée en Si02) dans ledit pied de cuve initial étant inférieure à 20 g/l,
(ii) on ajoute l'agent acidifiant audit pied de cuve jusqu'à ce qu'au moins 5 % de la quantité de M20 présente dans ledit pied de cuve soient neutralisés,
(iii) on ajoute au milieu réactionnel simultanément de l'agent acidifiant et un silicate de métal alcalin M telle que le rapport quantité de silicate ajoutée (exprimée en Si02) / quantité de silicate présente dans le pied de cuve initial (exprimée en Si02) soit supérieur à 4 et d'au plus 100,
(iv) on ajoute au milieu réactionnel simultanément un silicate et au moins un composé du zinc.
5/ Procédé selon la revendication 4, caractérisé en ce que, après l'étape (iv), on ajoute au milieu réactionnel de l'agent acidifiant.
6/ Procédé selon l'une des revendications 4 et 5, caractérisé en ce que la séparation comporte une filtration et un delitage du gâteau issu de la filtration, le delitage étant effectué en présence d'au moins un composé de l'aluminium.
Il Procédé selon l'une des revendications 1 à 6, caractérisé en ce que, dans l'étape (ii), on ajoute l'agent acidifiant jusqu'à ce qu'au moins 50 % de la quantité de M20 présente dans ledit pied de cuve initial soient neutralisés.
8/ Procédé selon l'une des revendications 1 à 7, caractérisé en ce que, dans l'étape (iii), on ajoute au milieu réactionnel simultanément de l'agent acidifiant et un silicate de métal alcalin M telle que le rapport quantité de silicate ajoutée (exprimée en Si02) / quantité de silicate présente dans le pied de cuve initial (exprimée en Si02) soit compris entre 12 et 100, de préférence entre 12 et 50.
9/ Procédé selon l'une des revendications 1 à 7, caractérisé en ce que, dans l'étape (iii), on ajoute au milieu réactionnel simultanément de l'agent acidifiant et un silicate de métal alcalin M telle que le rapport quantité de silicate ajoutée
(exprimée en Si02) / quantité de silicate présente dans le pied de cuve initial (exprimée en Si02) soit supérieur à 4 et inférieur à 12, de préférence compris entre 5 et 11 ,5.
10/ Procédé selon l'une des revendications 1 à 9, caractérisé en ce que, pendant toute l'étape (iii), la quantité d'agent acidifiant ajoutée est telle que 80 à 99 % de la quantité de M20 ajoutée soient neutralisés.
11/ Procédé selon l'une des revendications 1 à 10, caractérisé en ce que, dans l'étape (iii), on procède à ladite addition simultanée d'agent acidifiant et de silicate à un premier palier de pH du milieu réactionnel, pH,, puis à un second palier de pH du milieu réactionnel, pH2, tel que 7 < pH2 < pH, < 9.
12/ Procédé selon l'une des revendications 1 à 11 , caractérisé en ce qu'aucun électrolyte n'est utilisé.
13/ Procédé selon l'une des revendications 1 à 12, caractérisé en ce que ladite concentration en silicate exprimée en Si02 dans ledit pied de cuve initial est d'au plus 11 g/l.
14/ Procédé selon l'une des revendications 1 à 12, caractérisé en ce que ladite concentration en silicate exprimée en Si02 dans ledit pied de cuve initial est d'au moins 8 g/l.
15/ Procédé selon la revendication 14, caractérisé en ce que ladite concentration en silicate exprimée en Si02 dans ledit pied de cuve initial est comprise entre 10 et 15 g/l.
16/ Procédé selon l'une des revendications 1 à 15, caractérisé en ce que ladite séparation comprend une filtration effectuée au moyen d'un filtre presse.
17/ Procédé selon l'une des revendications 1 à 13, caractérisé en ce que ledit séchage est effectué par atomisation.
18/ Procédé selon l'une des revendications 14 à 16, caractérisé en ce que ledit séchage est effectué par atomisation au moyen d'un atomiseur à buses.
19/ Procédé selon l'une des revendications 17 et 18, caractérisé en ce que le produit séché est ensuite aggloméré. 20/ Procédé selon l'une des revendications 17 et 18, caractérisé en ce que le produit séché est ensuite broyé, puis, éventuellement, aggloméré.
21/ Procédé selon l'une des revendications 1 à 20, caractérisé en ce que la quantité de composé du zinc utilisée est telle que la silice précipitée préparée contient entre 1 et 5 % en poids de zinc.
22/ Procédé selon l'une des revendications 1 à 21 , caractérisé en ce que le composé du zinc est un sel organique ou inorganique du zinc, le sel organique étant de préférence choisi parmi les sels d'acides carboxyliques ou ploycarboxyliques, et le sel inorganique étant de préférence choisi parmi les halogénures, les oxyhalogénures, les nitrates, les phosphates, les sulfates et les oxysulfates.
23/ Procédé selon l'une des revendications 1 à 22, caractérisé en ce que le composé du zinc est un sulfate de zinc.
24/ Procédé selon l'une des revendications 1 à 23, caractérisé en ce que le composé de l'aluminium est un aluminate de métal alcalin.
25/ Procédé selon l'une des revendications 1 à 24, caractérisé en ce que le composé de l'aluminium est un aluminate de sodium.
26/ Silice précipitée susceptible d'être obtenue par le procédé selon l'une des revendications 1 à 25.
27/ Silice précipitée caractérisée en ce qu'elle présente :
- une surface spécifique CTAB comprise entre 90 et 250 m2/g,
- une prise d'huile DOP inférieure à 300 ml/100g,
- une distribution poreuse telle que le volume poreux constitué par les pores dont le diamètre est compris entre 175 et 275 A représente moins de 50 % du volume poreux constitué par les pores de diamètres inférieurs ou égaux à 400 A, - une teneur en zinc comprise entre 1 et 5 % en poids, et en ce que le nombre N de molécules d'acide stéarique consommées par nm2 de surface de silice, lorsque l'on fait réagir de l'acide stéarique avec de ladite silice dans du xylène pendant 2 heures à 120 °C, est d'au moins 1.
28/ Silice selon la revendication 27, caractérisée en ce que le zinc n'est pas sous forme cristallisée.
29/ Silice selon l'une des revendications 27 et 28, caractérisée en ce que N est d'au moins 1 ,2, de préférence d'au moins 1 ,5.
30/ Silice selon l'une des revendications 27 à 29, caractérisée en ce qu'elle présente une teneur en zinc comprise entre 1 ,5 et 4 % en poids.
31/ Silice selon l'une des revendications 27 à 30, caractérisée en ce qu'elle présente :
- une surface spécifique CTAB comprise entre 90 et 185 m2/g,
- un diamètre médian (0^), après désagglomération aux ultra-sons, inférieur à 6 μm, de préférence inférieur à 5 μm.
32/ Silice selon la revendication 31 , caractérisée en ce qu'elle présente
- une surface spécifique CTAB comprise entre 90 et 140 m2/g,
- un diamètre médian (0^), après désagglomération aux ultra-sons, inférieur à 4,5 μm.
33/ Silice selon la revendication 31 , caractérisée en ce qu'elle présente :
- une surface spécifique CTAB comprise entre 140 et 185 m2/g, - un facteur de désagglomération aux ultra-sons (FD) supérieur à 5,5 ml.
34/ Silice selon l'une des revendications 27 à 30, caractérisée en ce qu'elle présente :
- une surface spécifique CTAB supérieure à 185 m2/g et inférieure à
220 m2/g,
- un diamètre médian (0^), après désagglomération aux ultra-sons, inférieur à 8,5 μm, de préférence inférieur à 7 μm 35/ Silice selon la revendication 34, caractérisée en ce qu'elle présente un facteur de désagglomération aux ultra-sons (F0) supérieur à 5,5 ml.
36/ Silice selon l'une des revendications 27 à 35, caractérisée en ce qu'elle se présente sous forme de billes sensiblement spheriques de taille moyenne d'au moins 80 μm.
37/ Silice selon la revendication 36, caractérisée en ce que ladite taille moyenne est d'au moins 100 μm, en particulier d'au moins 150 μm.
38/ Silice selon l'une des revendications 27 à 35, caractérisée en ce qu'elle se présente sous forme de poudre de taille moyenne d'au moins 15 μm.
39/ Silice selon l'une des revendications 27 à 35, caractérisée en ce qu'elle se présente sous forme de granulés de taille d'au moins 1 mm.
40/ Utilisation comme charge renforçante pour élastomères d'une silice obtenue par le procédé selon l'une des revendications 1 à 25 ou d'une silice selon l'une des revendications 26 à 40.
41/ Utilisation d'une silice obtenue par le procédé selon l'une des revendications 1 à 25 ou d'une silice selon l'une des revendications 26 à 39 pour améliorer les propriétés rhéologiques des élastomères.
PCT/FR1996/000461 1995-03-29 1996-03-28 Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant du zinc et leur utilisation au renforcement des elastomeres WO1996030301A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DE69606242T DE69606242T2 (de) 1995-03-29 1996-03-28 Verfahren zur herstellung von fällungskieselsäure, zink-enthaltende fällungskieselsäuren und verwendung zur verstärkung von elastomeren
RU96124772A RU2130896C1 (ru) 1995-03-29 1996-03-28 Способ получения осажденного диоксида кремния, осажденные диоксиды кремния, содержащие цинк, и их применение для усиления эластомеров
BR9606288A BR9606288A (pt) 1995-03-29 1996-03-28 Processo de preparação de sílica precipitada do tipo compreendendo a reação de um silicato de metal alcalino m com um agente acidificante e silica precipitada susceptível der ser obtida segundo este processo
US08/737,975 US5846311A (en) 1995-03-29 1996-03-28 Process for the preparation of precipitated silica, new precipitated silicas containing zinc and their use for the reinforcement of elastomers
EP96910062A EP0762991B1 (fr) 1995-03-29 1996-03-28 Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant du zinc et leur utilisation au renforcement des elastomeres
JP52901196A JP3304094B2 (ja) 1995-03-29 1996-03-28 沈降シリカの新規製造法、亜鉛を含有する新規な沈降シリカ、及びエラストマーの強化のためのその用途
AT96910062T ATE188950T1 (de) 1995-03-29 1996-03-28 Verfahren zur herstellung von fällungskieselsäure, zink-enthaltende fällungskieselsäuren und verwendung zur verstärkung von elastomeren
KR1019960706796A KR100260969B1 (ko) 1995-03-29 1996-03-28 침강실리카의제조방법,아연-함유침강실리카및이의엘라스토머강화용용도
CA002191485A CA2191485C (fr) 1995-03-29 1996-03-28 Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant du zinc et leur utilisation au renforcement des elastomeres
PL96317422A PL183897B1 (pl) 1995-03-29 1996-03-28 Sposób wytwarzania strącanej krzemionki oraz strącana krzemionka
AU53378/96A AU698315C (en) 1995-03-29 1996-03-28 New process for the preparation of precipitated silica, new precipitated silicas containing zinc and their use for the reinforcement of elastomers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9503677A FR2732331B1 (fr) 1995-03-29 1995-03-29 Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant du zinc et leur utilisation au renforcement des elastomeres
FR95/03677 1995-03-29

Publications (1)

Publication Number Publication Date
WO1996030301A1 true WO1996030301A1 (fr) 1996-10-03

Family

ID=9477538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/000461 WO1996030301A1 (fr) 1995-03-29 1996-03-28 Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant du zinc et leur utilisation au renforcement des elastomeres

Country Status (17)

Country Link
US (2) US5846311A (fr)
EP (1) EP0762991B1 (fr)
JP (1) JP3304094B2 (fr)
KR (1) KR100260969B1 (fr)
CN (1) CN1092140C (fr)
AR (1) AR001456A1 (fr)
AT (1) ATE188950T1 (fr)
BR (1) BR9606288A (fr)
CA (1) CA2191485C (fr)
DE (1) DE69606242T2 (fr)
ES (1) ES2144232T3 (fr)
FR (1) FR2732331B1 (fr)
PL (1) PL183897B1 (fr)
RU (1) RU2130896C1 (fr)
TR (1) TR199600957T1 (fr)
TW (1) TW393503B (fr)
WO (1) WO1996030301A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468030A (zh) * 2013-08-23 2013-12-25 确成硅化学股份有限公司 一种高分散性二氧化硅的制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001322A (en) * 1993-09-29 1999-12-14 Rhone-Poulenc Chimie Precipitated silicas
US6217840B1 (en) 1995-12-08 2001-04-17 Goldendale Aluminum Company Production of fumed silica
US6193944B1 (en) 1995-12-08 2001-02-27 Goldendale Aluminum Company Method of recovering fumed silica from spent potliner
US7704552B2 (en) 1999-08-19 2010-04-27 Ppg Industries Ohio, Inc. Process for producing chemically treated amorphous precipitated silica
US7687107B2 (en) 1999-08-19 2010-03-30 Ppg Industries Ohio, Inc. Process for producing chemically modified amorphous precipitated silica
US6649684B1 (en) 1999-08-19 2003-11-18 Ppg Industries Ohio, Inc. Chemically treated fillers and polymeric compositions containing same
US6248302B1 (en) 2000-02-04 2001-06-19 Goldendale Aluminum Company Process for treating red mud to recover metal values therefrom
FR2824836A1 (fr) * 2001-05-18 2002-11-22 Ressources En Innovation Procede d'amelioration de la dispersion des charges dans les elastomeres
FR2831179B1 (fr) 2001-10-22 2005-04-15 Rhodia Chimie Sa Procede de preparation en milieu aqueux de compositions pigmentaires a base de silice
FR2831178B1 (fr) 2001-10-22 2006-04-14 Rhodia Chimie Sa Compositions pigmentaires a base de silice
FR2833937B1 (fr) * 2001-12-26 2004-11-12 Rhodia Chimie Sa Silices a faible reprise en eau
CN100422080C (zh) * 2002-07-10 2008-10-01 株式会社德山 易分散性沉淀二氧化硅滤饼及其制造方法
NO20040167L (no) * 2004-01-14 2005-07-15 Cod Technologies As Prosess for fremstilling av utfelt silika fra olivin
KR101247858B1 (ko) * 2008-01-18 2013-03-26 가부시키가이샤 브리지스톤 고무 조성물 및 타이어
DE102008017731A1 (de) 2008-04-07 2009-10-08 Continental Aktiengesellschaft Kautschukmischung
DE102008046874A1 (de) 2008-09-11 2010-03-18 Continental Reifen Deutschland Gmbh Gummiartikel
FR2984870B1 (fr) * 2011-12-23 2014-03-21 Rhodia Operations Nouveau procede de preparation de silices precipitees.
FR2988383B1 (fr) * 2012-03-22 2017-06-09 Rhodia Operations Procede de preparation de silice precipitee mettant en oeuvre un malaxeur ou une extrudeuse
FR2994962B1 (fr) * 2012-08-31 2014-12-26 Rhodia Operations Nouveau procede de preparation de silices precitees, nouvelles silices precipitees et leurs utilisations, notamment pour le renforcement de polymeres
FR2994963B1 (fr) * 2012-08-31 2014-10-03 Rhodia Operations Nouveau procede de preparation de silices precipitees, nouvelles silices precipitees et leurs utilisations, notamment pour le renforcement de polymeres
FR2994961B1 (fr) * 2012-08-31 2014-10-03 Rhodia Operations Nouveau procede de preparation de silices precipitee, nouvelles silices precipitees et leur utilisations, notamment pour le renforcement de polymeres

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2303763A1 (fr) * 1975-03-12 1976-10-08 Rhone Poulenc Ind Nouvelle silice precipitee, procede d'obtention et applications
US4040858A (en) * 1974-10-31 1977-08-09 J. M. Huber Corporation Preparation of precipitated silicas having controlled refractive index
EP0407262A1 (fr) * 1989-07-03 1991-01-09 Rhone-Poulenc Chimie Silice à porosité controlée et son procédé d'obtention
WO1995009127A1 (fr) * 1993-09-29 1995-04-06 Rhone-Poulenc Chimie Silice precipitee

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632185B1 (fr) * 1988-06-01 1992-05-22 Rhone Poulenc Chimie Silice pour compositions dentifrices compatible notamment avec le zinc
FR2678259B1 (fr) * 1991-06-26 1993-11-05 Rhone Poulenc Chimie Nouvelles silices precipitees sous forme de granules ou de poudres, procedes de synthese et utilisation au renforcement des elastomeres.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040858A (en) * 1974-10-31 1977-08-09 J. M. Huber Corporation Preparation of precipitated silicas having controlled refractive index
FR2303763A1 (fr) * 1975-03-12 1976-10-08 Rhone Poulenc Ind Nouvelle silice precipitee, procede d'obtention et applications
EP0407262A1 (fr) * 1989-07-03 1991-01-09 Rhone-Poulenc Chimie Silice à porosité controlée et son procédé d'obtention
WO1995009127A1 (fr) * 1993-09-29 1995-04-06 Rhone-Poulenc Chimie Silice precipitee

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468030A (zh) * 2013-08-23 2013-12-25 确成硅化学股份有限公司 一种高分散性二氧化硅的制备方法

Also Published As

Publication number Publication date
KR100260969B1 (ko) 2000-07-01
DE69606242D1 (de) 2000-02-24
AU698315B2 (en) 1998-10-29
EP0762991A1 (fr) 1997-03-19
TR199600957T1 (tr) 1997-03-21
FR2732331A1 (fr) 1996-10-04
CN1152293A (zh) 1997-06-18
PL317422A1 (en) 1997-04-14
US6143066A (en) 2000-11-07
US5846311A (en) 1998-12-08
MX9605927A (es) 1998-06-30
ATE188950T1 (de) 2000-02-15
DE69606242T2 (de) 2000-08-10
FR2732331B1 (fr) 1997-06-20
JP3304094B2 (ja) 2002-07-22
PL183897B1 (pl) 2002-07-31
TW393503B (en) 2000-06-11
CA2191485A1 (fr) 1996-10-03
AR001456A1 (es) 1997-10-22
BR9606288A (pt) 1997-09-23
RU2130896C1 (ru) 1999-05-27
AU5337896A (en) 1996-10-16
ES2144232T3 (es) 2000-06-01
JPH10504010A (ja) 1998-04-14
CA2191485C (fr) 2002-04-23
EP0762991B1 (fr) 2000-01-19
KR970703279A (ko) 1997-07-03
CN1092140C (zh) 2002-10-09

Similar Documents

Publication Publication Date Title
EP0762992B1 (fr) Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant de l&#39;aluminium et leur utilisation au renforcement des elastomeres
EP0762993B1 (fr) Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant de l&#39;aluminium et leur utilisation au renforcement des elastomeres
EP0917519B1 (fr) Silice precipitee utilisable comme charge renfor ante pour elastomeres
EP0670814B1 (fr) Silices precipitees
EP0670813B1 (fr) Silice precipitee
EP0767758B1 (fr) Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant du zinc et leur utilisation au renforcement des elastomeres
EP0762991B1 (fr) Nouveau procede de preparation de silice precipitee, nouvelles silices precipitees contenant du zinc et leur utilisation au renforcement des elastomeres
EP0520862B1 (fr) Procédé de préparation de silice précipitée, silices précipitées obtenues et leur utilisation au renforcement des élastomères
EP1355856B1 (fr) Procede de preparation de silice precipitee contenant de l&#39;aluminium
FR2710629A1 (fr) Nouveau procédé de préparation de silice précipitée, nouvelles silices précipitées et leur utilisation au renforcement des élastomères.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190422.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU BB BG BR BY CA CN CZ EE GE HU IS JP KG KP KR LK LR LT LV MD MG MK MN MX NO NZ PL RO RU SG SI SK TR TT UA US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2191485

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/1996/005927

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 96/00957

Country of ref document: TR

Ref document number: 1019960706796

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996910062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08737975

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996910062

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996910062

Country of ref document: EP