WO1996020505A1 - Wet type nonwoven fabric for cell separator, its production method and enclosed secondary cell - Google Patents

Wet type nonwoven fabric for cell separator, its production method and enclosed secondary cell Download PDF

Info

Publication number
WO1996020505A1
WO1996020505A1 PCT/JP1995/002737 JP9502737W WO9620505A1 WO 1996020505 A1 WO1996020505 A1 WO 1996020505A1 JP 9502737 W JP9502737 W JP 9502737W WO 9620505 A1 WO9620505 A1 WO 9620505A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
nonwoven fabric
fibers
battery
separator
Prior art date
Application number
PCT/JP1995/002737
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Tadokoro
Masaru Uesaka
Yoshinori Takata
Fumigo Goto
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to KR1019970704458A priority Critical patent/KR100299559B1/ko
Priority to DE69536049T priority patent/DE69536049D1/de
Priority to JP52037096A priority patent/JP4031529B2/ja
Priority to EP19950942295 priority patent/EP0795916B1/en
Priority to US08/860,492 priority patent/US5888916A/en
Publication of WO1996020505A1 publication Critical patent/WO1996020505A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/49Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation entanglement by fluid jet in combination with another consolidation means
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/689Hydroentangled nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric

Definitions

  • the present invention relates to an improved wet nonwoven fabric for one battery separator, a method for producing the same, and a sealed secondary battery.
  • Non-woven fabric for battery separators can be used to separate the positive and negative electrodes or prevent migration of electrode active materials and electrode fragments to prevent short circuits, retain electrolytes, have low internal electrical resistance, scientific stability against electrolytes, Durability is required.
  • a secondary battery such as a nickel-powered storage battery
  • Japanese Patent Application Laid-Open No. Hei 11-57055 discloses that a melt-blown nonwoven fabric is heated under specific conditions to form a dense structure on its surface layer, thereby providing mechanical strength, short-circuit prevention performance, and electrolyte retention performance. Trying to improve You. However, the mechanical strength of the nonwoven fabric is not sufficiently improved by hot pressing alone, and if high-temperature, high-pressure pressing is applied to obtain high strength, the liquid retention performance of the electrolyte and gas permeability There are problems such as a decrease in Japanese Patent Application Laid-Open No.
  • thermoforming temperature is lowered, sufficient mechanical strength as a non-woven fabric material for the separator cannot be obtained, and the non-woven fabric is poorly entangled, so that the structure of the non-woven fabric is easily crushed by compression. There is a problem that the electrolyte is easily released and the electric resistance of the battery is increased.
  • Japanese Patent Application Laid-Open No. 61-281454 discloses that a melt-blown nonwoven fabric having a fiber diameter of 0.1 to 2 m and a cloth material having a fiber diameter of 5 m or more are laminated and integrated by spraying high-pressure water to form a separator. Describes a nonwoven fabric material for battery separators that has improved air permeability of nonwoven fabric as a separator material, improved separation performance between positive and negative electrodes, and prevention of short circuit due to migration of electrode active material or electrode fragments. are doing. However, in this nonwoven fabric material, through-holes are formed on its surface by injection of high-pressure water, and the performance of preventing the migration of the electrode active material cannot be sufficiently improved. On the other hand, a method of pressing a nonwoven material with rolls having different peripheral speeds in order to reduce the through holes is disclosed in Japanese Patent Application Laid-Open No. 5-8986. It is difficult to do nothing.
  • the nonwoven fabric disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 61-281454 is a nonwoven fabric sheet having a two-layer laminated structure of a meltblown ultrafine nonwoven fabric and a dry web-like material. Since the material is a material, the surface area of the fibers constituting the layer and the density of the fiber layer differ in the cross-sectional direction of the sheet material, and there is a concern that uneven adhesion of the electrolyte may occur, leading to an increase in the electric resistance inside the battery. You. Further, the nonwoven fabric layer of the melt blown fiber has poor uniformity of the basis weight due to the fiber spinning method.
  • Japanese Patent Application Laid-Open No. 5-74440 discloses that a mixed sheet of short fibers, heat-fusible fibers, and synthetic pulp is subjected to fluid treatment, and then the heat-fusible fibers and synthetic pulp fibers are fused.
  • a nonwoven fabric material having improved short-circuit prevention performance, electrolyte retention performance, mechanical strength, and the like has been disclosed.
  • This attempt involves heat treatment aimed at fusing the fusible fibers, which impairs the fiber morphology of the synthetic pulp, lowers the surface area of the fibers within the structure of the nonwoven material, and increases the fiber spacing.
  • the electrolyte in the separator easily migrates to the electrode, which causes an increase in electric resistance.
  • Japanese Patent Application Laid-Open No. 7-272709 discloses a fibrous material having a fibril-like branched structure in a sparse portion including a through hole of an entangled fiber web obtained by hydroentanglement of a wet papermaking web made of splittable conjugate fibers.
  • a separator for a battery is described in which a short proof performance due to the transfer of an electrode active material is improved by attaching a synthetic pulp or the like.
  • a layer of a fibrous material having a different fiber composition and structure from the entangled fiber web is scattered on the surface layer of the entangled fiber web in accordance with the density unevenness of the entangled fiber web.
  • the adhesion state of the electrolyte is uneven and the electrical resistance is increased, and the variation in gas permeability and electrolyte retention is increased.
  • the fibrous material of the separator material has a low entanglement density between the fibrous material itself and the fibrous material and the entangled fiber web, and easily falls off.
  • the fibrous form is lost, and in an extreme case, the fibrous material is formed into a film.
  • the problem is that the uniform adhesion of the electrolyte in the layers is impaired.
  • the fiber diameter is 3 to 10 m, and the ratio (L / D) of the fiber length L to the fiber diameter D (L / D) is 1,000 to 2,000.
  • a battery separator with excellent oxidation resistance which is subjected to hydro-entanglement treatment of the wet papermaking sheet of the fiber and then hot-pressed, is installed.
  • the three-dimensional entangled structure of the fibers is not fixed by heat-fused fibers or the like, and the tension during the battery assembly causes a problem of width insertion, and the separator swells due to swelling of the electrode plate. It is anticipated that it will be compressed and cause the electrolyte to dry out.
  • the hydroentanglement uses a treatment method that does not swing the nozzle header, a large number of continuous traces are seen in the direction of the arrow on the surface of the nonwoven fabric, resulting in poor uniformity of formation. It is concerned that when used as a battery separator, the non-uniform traces of the electrode may cause the migration of the electrode active material and the like, resulting in a reduction in shot resistance. You.
  • An object of the present invention is to solve the various problems of nonwoven fabric materials for battery separators existing in the background art described above, and to provide a wet nonwoven fabric having a high level of performance as a battery separator material. And A more specific object of the present invention is to provide improved performance such as gas permeability, electrolyte retention, and liquid absorption rate as a battery separator, and high tensile strength and high basis weight uniformity.
  • Wet type of structure that combines It is to provide a non-woven fabric.
  • a more specific object of the present invention is to provide a separator for a sealed secondary battery in which generation of a short due to migration of an active material is remarkably reduced, and in which a dry-out of an electrolyte is unlikely to occur, a long charge-discharge operation.
  • the goal is to enable the production of high capacity secondary batteries with a long cycle life.
  • thermo-fusible short fiber and 20 to 95% by weight of at least one kind of thermoplastic short fiber having a diameter of a single fiber of 20 ⁇ m or less.
  • the average inter-entangled distance of the short fibers is 300 / m or less, and at least a part of the heat-fusible fibers is bonded by heat fusion between the fibers to form a single nonwoven structure. Achieved by a wet nonwoven fabric for a battery separator, wherein the body layer is fixed.
  • the staple fiber referred to in the present invention is selected from fiber materials having a length capable of wet papermaking, and the fiber length (Lmm) is the fineness represented by the denier of the single fiber and is calculated by the following formula (I). It is desirable that the ratio (LZD) to the diameter (D) of the circular cross section be within the range of 0.5 ⁇ 10 3 to 2.0 ⁇ 10 3 .
  • Diameter here D is represented by m, p fineness and 7 ⁇ single fiber density, d is that represented in denier represented by g / cm 3 of the high molecular polymer which forms the single fibers Pi)
  • thermoplastic single fiber is selected from synthetic thermoplastic polymer fibers
  • heat-fusible fiber is selected from thermoplastic polymer fibers having a melting point about 20 ° C lower than the melting point of the synthetic thermoplastic fiber.
  • the nonwoven fabric for a separator of the battery of the present invention is basically composed of 20 to 95% by weight of thermoplastic short fiber and the remaining short fiber is a mixed fiber of the above heat-fusible short fiber.
  • the fibers are randomly three-dimensionally entangled with each other within a nonwoven structure cross section, and at least a part of the heat-fusible short fibers forming the entangled structure is a thermoplastic short fiber.
  • the non-woven structure is fixed by bonding to the fibers.
  • the average inter-fiber entanglement distance in the present invention is measured according to the method described in JP-A-58-191280, page 443, lower right column, line 8, page 444, upper left, line ⁇ -2 on page 443. is a measure of fiber mutual entanglement density of the nonwoven fabric structure, when observed enlarged constituent fibers in the surface of the nonwoven fabric Sea Bok a scanning electron microscope, the fibers constituting the second diagram below (f,), (f 2 ) , (f 3 )-
  • any two (f,) of (fn), (f 2) is the point where the entangled (a J, fibers which is above (f 2) intersect in a manner to be below the other fibers
  • the intersection point is defined as (a 2 ), and the horizontal distance between the confounding points (a, a 2 ) is obtained, and this is defined as the distance between the confounding points.
  • the distance between the confounding points for any pair of fibers is calculated and displayed by the arithmetic mean value. The smaller this scale is, the more dense the confounding is.
  • the wet nonwoven fabric for a battery separator of the present invention is characterized in that the fibers having a single fiber diameter of 20 m or less have a dense three-dimensional three-dimensional entangled structure with an average fiber entanglement distance of m or less. While having the uniformity unique to wet nonwoven fabrics, it solves the shortage of strength that has been a disadvantage of wet nonwoven fabrics, and has an unprecedented uniform formation. Migration (where active material passes through the inter-fiber voids of the separator) can be controlled in W, and short-circuit resistance and cycle performance of a secondary battery that repeats charging and discharging are not affected. It will always improve. Higher strength also means that the weight of the battery separator can be reduced, and a large amount of the active material of the electrode can be incorporated into the battery by that much, resulting in higher battery capacity. so You can.
  • the battery separator of the present invention is thought to be caused by an interlacing structure in which the average inter-fiber entanglement distance is 300 m or less.However, since the internal electric resistance as a battery separator is low, the charging of the secondary battery is difficult. It exhibits excellent performance of low voltage and high discharge voltage. Furthermore, since the nonwoven fabric of the present invention has a high compression resistance, the resistance to the change in electrode thickness when charging and discharging are repeated in the secondary battery is strong, and the internal resistance increases due to the compression of the battery separator or the inside of the separator. It is difficult to cause problems such as a decrease in the amount of electrolyte.
  • the wet nonwoven fabric for a battery separator of the present invention achieves three-dimensional entanglement of short fibers by a high-pressure columnar water flow, there is substantially no track streaks caused by the high-pressure columnar water flow. Is also a feature.
  • a fiber sheet is subjected to a high-pressure columnar water flow treatment, a continuous line due to a water flow trajectory remains on the surface of the nonwoven fabric due to a relative movement between a nozzle for jetting a water flow and the fiber sheet. Microscopic observation of the continuous traces shows a concave shape, and a continuous uneven distribution of microfibers consisting of a convex-shaped portion occurs in the immediate vicinity.
  • the active material and the like migrate from the recesses of the continuous trajectory with a small fiber weight, resulting in short-time resistance. causes a decrease.
  • the wet nonwoven fabric of the present invention does not substantially show the above-mentioned continuous trajectory and is extremely uniform. Therefore, the wet nonwoven fabric having a low basis weight is particularly excellent as a battery separator when it is applied to a high capacity secondary battery. Short-circuit resistance and long life cycle performance Demonstrate.
  • the wet nonwoven fabric for a battery separator of the present invention is characterized by a uniform basis weight, and preferably has a formation index of 100 or less. More preferably, it is 80 or less.
  • the sheet formation index referred to in the present invention refers to the dispersion state or the uniformity of fiber distribution of the fibers forming the wet nonwoven structure, and the basis weight (date), thickness, density, etc. of the nonwoven fabric. This is an index for evaluating overall heterogeneity, including Although various methods of measuring the formation index are known, in the present invention, the paper "Evaluation of paper watermark formation" by Junji Osawa of Paper Industry and Technology Association, Vol. 46, No. 5, pp. 78-93, etc.
  • the formation index is more than 100, the unevenness of the small basis weight becomes large, and it is impossible to suppress the passage of the electrode active material from the thin basis weight, leading to an internal short circuit of the battery, or There is a possibility that problems such as shortening the cycle performance of the secondary battery may occur.
  • the wet nonwoven fabric of the present invention preferably has an electric resistance of 1.0 ⁇ or less. More preferably, it is 0.8 ⁇ . If the electric resistance exceeds 1.0 ⁇ , problems may occur such as the charging voltage of the secondary battery becoming high or a predetermined discharge voltage not being obtained.
  • the compressive stress of the wet nonwoven fabric of the present invention is 3.0 kg / cnr or more, the resistance to swelling of the electrode during discharge is large, and the battery separator is not easily crushed. More preferably, the compressive stress is 3.5kgZcnr 'or more: compression When stress is 3.0KgZcm 2 below, charge separators one by the compression of the discharge cycle repetition battery internal electrodes when the is crushed, problems, such as causing an increase in internal resistance and ⁇ electrolytic solution occurs data Li to O o
  • the basis weight of the wet nonwoven fabric for a battery separator of the present invention is 10 to 350 g / m 2 , preferably 25 to 150 g Zm 2 , and more preferably 35 to 100 g / m 2 .
  • Its thickness is between 30 and 1000 m, preferably between 70 and 400 im, more preferably between 90 and 250 m.
  • the basis weight is 10 g / m 2 or less and the thickness is 40 ⁇ m or less, the strength is insufficient because the basis weight is too thin and the passage of active materials cannot be completely prevented, and the amount of retained electrolyte is also small. It becomes difficult to use as a battery separator. Also, the basis weight exceeds 350 g Zm 2, not provide a sufficient fiber entanglement when the thickness is thicker than 1000 ⁇ m, Nari electrical resistance rather large enough electrode active materials much from Takashi ⁇ can rather than as Nalco It is not preferable because a battery such as a battery having a large electric capacity cannot be obtained.
  • the wet-type nonwoven fabric for a separator of the battery of the present invention is basically composed of 20 to 95% by weight of one or more kinds of thermoplastic short fibers and having a melting point 20 ° C lower than the melting point of the thermoplastic short fibers.
  • a fluid flow impinges on the mixed sheet made by the papermaking method from the slurry of the mixed fiber of the adhesive short fibers, and the mixed sheet is three-dimensionally entangled, followed by heat treatment. It can be produced by melting a part or all of the heat-fused fiber.
  • the mixing sheet forming process and the entanglement conditions of the short fibers by the columnar flow based on the following considerations. .
  • the short range of LZD in the specific range of the present invention is required. It is necessary to form a sheet from a uniform fiber slurry dispersed in a single thread using fibers. In fact, as the length of the fiber increases, the dispersion of the fiber decreases, and the uniformity of the formation deteriorates.
  • the critical concentration that can be broken down into single fibers without forming a block of fibers is proportional to the thickness of the fiber and inversely proportional to the square of the length, so the LZD is longer than 1500 It is difficult to obtain a mixed sheet with a formation index of 100 or less using a slurry of fiber length fibers.
  • the following points are important to prevent uneven distribution of fibers due to fiber flow at the time of short fiber entanglement due to columnar flow and to obtain a uniform entangled sheet having a formation index of 100 or less.
  • the fibers are very easy to move and it is difficult to prevent fiber flow by columnar water treatment.
  • the distance between the columnar flow nozzle arranged on the oscillating header and the conveyor net is almost the same.
  • the columnar water flow is intermittently flowed, and the fiber is three-dimensionally entangled without leaving continuous traces on the mixed sheet Take.
  • sufficient suction dehydration is necessary for the treated water to be quickly removed from the lower part of the conveyor net.
  • the confounding process using the intermittent columnar water flow draws a dashed trajectory on the mixed sheet, and a uniform nonwoven fabric structure can be obtained with substantially no trace streaks remaining on the surface as occurs with the conventional continuous trajectory.
  • the static pressure of suction dehydration is at least 30 mmHg, preferably at least 50 Hg, and more preferably at least 80 mmHg, while suppressing the fiber flow. It is possible to achieve uniform intertwining of the fibers.
  • thermoplastic short fibers and the heat-fusible fibers remain three-dimensionally entangled with each other, a part of the heat-fusible fibers is melted at the intersection of the thermoplastic short fibers and the heat-fusible fibers, resulting in thermoplasticity. It has the effect of bonding fibers to short fibers and fixing the three-dimensional entangled structure. Above, no 3D confounding, average fiber If the heat treatment is performed in an insufficiently entangled state exceeding 300 m between the entanglement points, there are few intersections between the thermoplastic short fibers and the heat-fused fibers, and a melted film is formed with the fibers aligned in parallel. Distinction from the present invention.
  • the three-dimensionally entangled structure of the wet nonwoven fabric of the present invention which was three-dimensionally entangled up to a distance of 300 m, was fixed as it was by fusion bonding of the heat-fused fibers at many fiber-to-fiber entanglements.
  • a nonwoven structure exhibiting excellent separator performance such as high resistance to electrode compression, high electrolyte immersion, and low electrical resistance is obtained.
  • the first figure in view schematically showing an enlarged entangled state of fibers when watching the fibers constituting the nonwoven fabric from the surface of the nonwoven fabric (f,), (f 2 ), (f 3), ... ( f 7 ) represents a single fiber, and (a J, (a 2 ), (a 3 ⁇ (a J represents an intersection of fibers).
  • FIG. 2 is a diagram showing the correlation between the electric capacity ratio and the number of cycles of a secondary battery in which the wet nonwoven fabric for a separator of the batteries of Examples 1 to 3 of the present invention is mounted, in comparison with a comparative example.
  • FIG. 3 is a diagram showing a correlation between the electric capacity ratio and the number of cycles of a secondary battery in which the wet nonwoven fabric for a separator of the batteries of Examples 6 to 8 of the present invention is mounted, in comparison with a comparative example. .
  • FIG. 4 is a model diagram showing an example of a surface compressive load-displacement curve of the raised wet nonwoven fabric of the present invention.
  • thermoplastic short fiber and the heat-fusible short fiber used in the present invention a material having durability against an alkali such as an electrolytic solution or an acid liquid is preferable.
  • typical alkaline storage batteries include nickel, power dome type, nickel-hydrogen type, nickel-iron type, silver oxide, zinc type, button type and cylindrical type. The present invention is not limited to these.
  • a polyolefin system such as an alkali-resistant polyethylene or polypropylene, COOH, S0 3 H, OH, COOM, S0 3 M, OM (M is light, heavy metals) port Li-olefin Lee down system with the parent water-based, such as, Nai Russia down 6, Nai Russia down 66, Nai Russia down 610
  • Polyamides such as Nylon 612, Nylon 10 and Nylon 12 and the like or polyamides such as polyparaphenylene terephthalamide alone or a combination thereof are preferred.
  • a lead-acid battery is a typical example in which an acid is used as an electrolyte.
  • a polyester-based battery such as acid-resistant polyethylene terephthalate or polybutylene terephthalate is used.
  • Po Li ethylene Ren, Po Li-olefin Lee down system such as a port re-profile pyrene, COOH, S0, H, OH , COOM, S0 3 M, OM (M is light, heavy metals) port Li having a hydrophilic group, such as Aramids such as olefins, acryls, polyparaphenyleneterephthalamides, etc., alone or in combination, are preferably used.
  • the heat-sealing fiber constituting the nonwoven fabric of the present invention has a heat-sealing temperature lower than the melting point of the thermoplastic short fiber by 20 ° C or more, and has a lowest melting point when there are two or more thermoplastic short fibers. Preferably it is at least 20 ° C lower than the fiber. If the temperature is lower than 20 ° C, a part of the short fibers may be melted when the heat-fused fibers are melted by heat, so that the desired nonwoven fabric strength cannot be obtained and the retention rate of the electrolyte decreases. There's a problem.
  • heat-fusible fibers in the present invention examples include sheath-core type, side-by-side type composite fibers, and single-component types used in conventional heat-sealing dry nonwoven fabrics and heat-sealing wet nonwoven fabrics.
  • sheath-core type heat is especially preferred in terms of obtaining high liquid retention, tensile strength and dimensional stability.
  • it is a fused fiber.
  • the core component is nylon 66 and the sheath component is nylon 6, or the core component is nylon 6 Or 66, the copolymer component is nylon 612, 610, etc., and the copolymer is nylon and polyolefin such as polyethylene and polypropylene, and the core is polypropylene and the sheath component is poly.
  • Combinations such as ethylene are preferably used.
  • the core component is a polyester such as polyethylene terephthalate or polybutylene terephthalate
  • the sheath component is a copolymerized polyester or a polyester such as polyethylene or polypropylene.
  • Olefins can be suitably used in the present invention.
  • the mixing ratio of the heat-fusible fibers is 5 to 80% by weight of the whole nonwoven fabric. It is preferably between 10 and 70% by weight, most preferably between 10 and 40% by weight.
  • the mixing ratio exceeds 80% by weight, the fiber surface area decreases due to the increase in the inter-fiber bond, which causes a decrease in the liquid retention.
  • the mixing ratio is less than 5%, the tensile strength and the dimensional stability will be low, and even if the short fibers are nonwoven fabrics that are densely and three-dimensionally entangled, they will be stretched by pulling, and electrodes will be assembled during battery assembly.
  • this causes problems such as short-circuiting and crushing, which makes the electrolyte unsuitable for use in separators, for example, causing the electrolyte solution to wither.
  • the single yarn diameter of the thermoplastic short fiber and the heat fusion fiber in the present invention needs to be 20 m or less from the viewpoint of gas permeability, short circuit prevention, and liquid retention. Preferably, it is between l and 20 m, more preferably between 2 and 20 m. If the diameter of the single yarn is too small, the gas permeability is insufficient, and if it exceeds 20 m, the distance between the single yarns becomes large and short-circuit prevention performance is deteriorated, so that the object of the present invention cannot be achieved.
  • the diameter of the single yarn of the thermoplastic short fiber is selected to be 1 to 8 m in order to obtain a high-performance wet nonwoven fabric for battery separator, a dense and uniform separator can be obtained, short-circuit prevention performance, and hydration. It has excellent performance.
  • the gas in the sealed secondary battery it is necessary to improve the performance of passing gas generated by the electrode reaction and to further increase the compression resistance against the swelling of the electrode.
  • thermoplastic short fibers of 1 to 8 m and thermoplastic short fibers that are thicker than the short fibers they are densely entangled three-dimensionally. It is preferable to further improve the air permeability and compressive stress of the steel.
  • the difference between the diameter of the thermoplastic short fiber of ⁇ to 8 / m and the diameter of the thermoplastic short fiber which is thicker than the short fiber is preferably 50% or more, preferably 1% or more, of the fine denier fiber. Preferably, it is at least 00%.
  • the preferable composition ratio of the thermoplastic nonwoven fabric having a single yarn diameter of 1 to 8 m is 5 to 95% by weight, more preferably 10 to 90% by weight, and most preferably 20 to 90% by weight. ⁇ 80% by weight.
  • composition ratio of the short fibers exceeds 95% by weight, the composition ratios of the thicker thermoplastic short fibers and the heat-fusible fibers become small, and the mechanical strength, dimensional stability, and air permeability decrease. Not good.
  • the composition ratio of the short fibers is less than 5% by weight, the short-circuit prevention performance, the electrolyte retention performance, and the hydration performance are deteriorated, so that the short fibers can be sufficiently applied to a general-purpose separator. I don't like it.
  • the thermoplastic short fiber having a single yarn diameter of 1 to 8 zm may be a fiber obtained by direct spinning, or may be a splittable or sea-island fiber called a conjugate fiber.
  • conjugate fiber single yarn diameter is 1 to 8 / m by water flow, mechanical force and dissolution extraction
  • the non-woven fabric may be made into a nonwoven fabric by a wet method, or the non-woven fabric may be made into a single yarn diameter of 1 to 8 am by water flow, mechanical force, and dissolution extraction.
  • the cross section of the single yarn may be circular or various non-circular cross sections. If the cross section of a single yarn is circular, the diameter measured directly is taken as the diameter of the single yarn, and if the cross section is irregular, the fineness (denier) is measured by the gravimetric method. When the single yarn is assumed to be circular, it is represented by the average diameter obtained by the following equation.
  • D is the diameter of the single fiber (am)
  • p is the density of the polymer that constitutes the single fiber (gZcm 3 )
  • d is the single fiber fineness (denier)
  • 7 ⁇ is the pi.
  • the ratio LZD fiber length L of thermoplastic staple fibers and thermal bonding fibers in the present invention (negation) and single fiber diameter D (state) is correct preferred to satisfaction of 0.5X 10 3 ⁇ 2.0 X 10 ' .
  • LZD is closely related to the ease with which fibers are entangled.If the flow rate is less than 0.5 ⁇ 10 3 , the fibers will move and entangle easily when a fluid flow collides, but on the other hand, the contact point of the interaction between fibers The absolute number is too small to achieve high strength. On the other hand, when it exceeds 2.0 ⁇ 10 3 , the movement of the fibers at the time of entanglement is suppressed, the entanglement between the fibers becomes small, and high strength cannot be exhibited.
  • the degree of entanglement between fibers can be expressed by measuring the average inter-fiber entanglement distance.
  • the entanglement of the fibers increases, and when the fiber single yarns are tightly entangled, the average distance between the entangled fibers becomes shorter. On the other hand, when the entanglement is small, the distance becomes longer.
  • the three-dimensional entangled structure is uniform within the cross section and the average distance between the entangled fibers is 300 m or less. Preferably less than 250 m, more preferably less than 200 m, most preferably less than 150 m.
  • the wet nonwoven fabric for a battery separator of the present invention has an unconventional uniform formation, so that even a separator having a thin basis weight may have a migration of electrode active material (a void between fibers of the separator). Active material) can be suppressed, and the short-circuit resistance and the cycle performance of a secondary battery that repeats charging and discharging are greatly improved.
  • high strength means that the weight of the battery separator can be reduced, and that much of the active material of the electrode can be incorporated into the battery, thereby achieving a high capacity ratio of the battery. You can.
  • the battery separator of the present invention has a force caused by an interlacing structure of 300 m or less in average inter-fiber interlacing point ⁇ , because the internal resistance of the battery separator is low, the charging voltage of the secondary battery is low, and the discharging voltage is low.
  • the battery has a high compression resistance, and has a high compression resistance, so it has a strong resistance to changes in electrode thickness when charging and discharging are repeated in a secondary battery, and the battery separator is compressed.
  • problems such as a decrease in electrolyte in the separator and an increase in internal resistance are unlikely to occur. Therefore, when the distance between the fiber entanglement points of the present invention is 300 m or more and the degree of fiber entanglement is low, the characteristics and effects of the battery separator as described above cannot be exhibited.
  • the wet nonwoven fabric for a battery separator of the present invention is characterized by a uniform basis weight, and its formation index is preferably 100 or less. More preferred Or 80 or less.
  • the formation index is more than 100, the spots become large and the phenomenon of electrode active material passing through the thinned area cannot be suppressed, causing an internal short circuit in the battery or the cycle performance of the secondary battery. Problems such as shortening the number of times may occur.
  • the wet nonwoven fabric of the present invention preferably has an electric resistance of 1.0 ⁇ or less. More preferably, it is 0.8 ⁇ . If the electric resistance exceeds 1.0 ⁇ , problems may occur such as the charging voltage of the secondary battery becoming high or a predetermined discharge voltage not being obtained.
  • the compressive stress of the wet nonwoven fabric of the present invention is not less than 3.0 kgZcnr ', the resistance to swelling of the electrode at the time of discharge is large, and the battery separator is not easily swollen. More preferably, the compressive stress is 3.5 kgZcn ⁇ or more. When the compressive stress is less than S. OkgZcm 2 , the separator is crushed in the battery with time, causing settling and causing an increase in internal resistance.
  • the basis weight of the wet nonwoven fabric for a battery separator of the present invention is 10 to 350 g / m 2 , preferably 25 to 150 g Zm 2 , and more preferably 35 to 100 g / m 2 .
  • It has a thickness of 30 to 1000 m, preferably 70 to 400 m, and more preferably 90 to 250 m.
  • the thickness is insufficient strength to thin too with eyes falls below 40 m, the passage of the active materials also can not completely prevent, also holding amount of the electrolyte less This makes it difficult to use it as a battery separator.
  • the basis weight exceeds 350 g Zm 2, not obtain sufficient fiber entanglement when the thickness is thicker than 1000 m, Nari electrical resistance rather large, sufficient electrical capacity from becoming impossible Takashi ⁇ much an electrode active materials It is not preferable because problems such as not being able to be obtained occur.
  • the apparent density of the wet nonwoven fabric is calculated from the basis weight and thickness 0.26 g / cm: 'above is rather preferred, good Ri preferred to rather is 0.3 ⁇ 0.7 g / cm 3, and La preferred and rather is a 0.35 ⁇ 0.6 g Roh cm 3.
  • the apparent density is less than 0.26 g Zcnr ', gas permeability is high, but the electrolyte retention is insufficient, and the electrolyte is easily absorbed by the electrodes. The problem of poor discharge cycle performance is likely to occur.
  • the air permeability significantly decreases, and the gas generated by the electrode reaction becomes difficult to move, which lowers the performance of the cycle characteristics of the sealed secondary battery. It is easy to get up.
  • the wet nonwoven fabric for a battery separator of the present invention is manufactured by a process that uses a large amount of water, such as papermaking and hydroentanglement, so that almost all surfactants on the fiber surface derived from spinning are washed away, and a polymer of thermoplastic fibers is produced. If there is no hydrophilic group (C00H, S0, H, OH, C00M, SO.M, 0M (M is light, heavy metal) etc.) in its own skeleton, the affinity of the acid and alkali for the electrolyte is poor.
  • hydrophilic group C00H, S0, H, OH, C00M, SO.M, 0M (M is light, heavy metal) etc.
  • Examples of the method for imparting hydrophilicity to the wet nonwoven fabric of the present invention include a method for imparting a surfactant, a method for sulfonation with a chemical such as fuming sulfuric acid and chlorsulfonate, and a method for fluorination.
  • the method for forming a carbonyl group, a carboxyl group, a hydroxy group or the like on the fiber surface by corona discharge, plasma discharge or the like can be appropriately selected.
  • the amount of the surfactant attached to the nonwoven fabric is preferably 2 wt% or less.
  • the content is 0.05-1% by weight or less, and since it does not decrease the lyophilicity of the electrolyte, it has the effect of improving the cycle performance of the sealed secondary battery. If the amount of adhesion exceeds 2 wt%, the hydrophilicity is high and the liquid absorption rate is satisfactory, but the drop-off into the electrolyte increases and the surfactant is re-adhered to the electrode plate, so the time elapses At the same time, the electrolyte in the separator The problem of shifting to a plate tends to occur.
  • a general hydrophilic agent can be used, but preferably, a surfactant such as polyoxyethylene alkyl ether or polyoxyethylene alkyl phenyl ether having an alcohol resistance is used. It is a nonionic surfactant.
  • the HLB indicating the hydrophilicity or lipophilicity of the nonionic surfactant is not particularly limited, but is preferably from 10 to 17, and more preferably from 12 to 16.
  • Surfactants having an HLB of more than 17 have a low intended hydrophilicity, making it difficult to produce the battery separator of the present invention.
  • the wet nonwoven fabric for battery separator 1 of the present invention has a raised surface so that the electrolyte in the separator 1 is more difficult to be sucked up by the electrode, and the performance of immersion of the electrolyte is improved.
  • the fine voids formed by the brushing have been found to have the effect of accelerating the gas absorption reaction at the electrodes, and the sealed secondary battery in which the voids are arranged exhibits even better cycle performance and improved overcharge characteristics. It is.
  • the voids generated in the parts without brushing are extremely fine and discontinuous.
  • the contact points between the raised fibers of the separator constituent fibers and the electrode are discontinuous, albeit at a high density, and contain a large number of fine voids, so that the transfer of the electrolyte from the separator to the electrode is suppressed. is there. Therefore, the electrode has sufficient electrolyte retention ability to withstand the compression caused by the increase in the thickness of the electrode during the charge / discharge cycle of the secondary battery.
  • the rise in internal resistance caused by the transfer of the lysis solution is low, and an extremely high cycle life improvement effect can be obtained.
  • the dense discontinuous voids generated between the electrode and the wet non-woven fabric for a battery separator having a raised brush according to the present invention are formed by a gas phase, a liquid phase and a liquid phase in the case of a nigel one-piece dome sealed hermetic secondary battery. It shows the effect of further promoting the oxygen gas absorption reaction at the three-phase interface of the solid phase, and is thought to show the effect of enhancing the cycle performance and overcharge performance.
  • the preferred range of the brushed surface can be expressed by measuring the compressive stress in the thickness direction. That is, when the repulsion force (hereinafter referred to as the raising stress F) at a position 0.1 IM1 away from the thickness of the nonwoven fabric in a state where the surface raising is completely turned down is large, the raising is long and the density is high. Conversely, when the brushing stress F is small, the brushing is short and the brushing density is low.
  • the preferred range of the raised stress F of the battery separator of the present invention is 0.5 to 5.0, more preferably 1.0 to 4.0, and still more preferably 1.5 to 4.0.
  • the brushing stress F is 0.5 or less, the brushing amount is small and the length is short, so that the discontinuous contact with the electrode through the brushing with sufficiently high density, which is the object of the present invention, cannot be sufficiently achieved, and The effect of suppressing the transfer of the liquid to the electrode is insufficient.
  • the napping stress exceeds 5.0, it is not preferable because other harmful effects such as falling off of the napping may be caused.
  • thermoplastic short fibers and heat-fusible fibers with a single yarn diameter D of 20 and a ratio L ZD of the fiber length L (mm) to the single yarn diameter D (mm) of 0.5x10 3 to 2.0 x 10 '
  • L ZD the ratio of the fiber length L (mm) to the single yarn diameter D (mm) of 0.5x10 3 to 2.0 x 10 '
  • the coating fiber disperse it in water to a concentration of 0.1 to 3% by weight, and prepare a slurry.
  • the L / D ratio is in the range of 0.5 ⁇ 10 ′ to 1.5 ⁇ 10 3 , a more uniform formation of the nonwoven fabric is preferably obtained.
  • the slurry is made by a long net, inclined long net, or round net type paper machine.
  • the obtained mixed sheet is placed on a competition, and entangled with a cylindrical fluid flow jetted from a nozzle on the upper side.
  • the fluid is preferably a liquid, but water is most preferred in terms of ease of handling, cost, and the size of the collision energy.
  • the water pressure varies depending on the type of yarn used and the basis weight of the mixed sheet.
  • the range is 3 to 100 kg / cm 2 , preferably 3 to 50 kg Zcm 2 to obtain sufficient confounding between fibers. Collide with.
  • the water pressure may be set lower as the basis weight and the processing speed are lower, and may be set higher as the basis weight and the processing speed are higher.
  • a high strength which is the object of the present invention, can be obtained by treating with a high water pressure when the yarn has a high Young's modulus.
  • the diameter of the nozzle that injects the water flow can be 0.01 to 1 mm, but is more preferably 0.05 to 0.3 mm, and more preferably 0 considering the prevention of sheet surface roughness and perforation.
  • the preferred range of nozzle pitch is 0.5 mm to 10 mm, which is processed in the range of 0.8 to 0.2 mm.
  • the nozzle pitch is narrow.
  • the spill trajectory overlaps in the weft direction, causing unevenness in the form of a weft step, causing fiber flow and forming formation. Therefore, oscillating the nozzle header
  • the preferred range of nozzle pitch is 1 to 10 mm, more preferably 2 to 5 mm.
  • the shape of the trajectory of the water flow may be a straight line parallel to the traveling direction of the mixed sheet, but it is obtained by the rotational motion of the header with the nozzle attached and the oscillating motion reciprocating perpendicular to the traveling direction of the sheet.
  • the confounding of multiple overlapping circular water flow trajectories obtained by rotational motion increases the area of water jet per sheet per nozzle and increases efficiency. At the same time, the spots on the water trajectory that reduce the product value become less visible.
  • the distance between the injection nozzle and the component on which the sheet is mounted is 100 mm or less, preferably 50 mm or less, and the distance between the injection nozzle and the component, for example, the component. Inserting a 10-mesh yuka or 80-mesh wire mesh at a distance of 25 mm from Toka, 25 mm, changing continuous columnar water flow to intermittent columnar water flow and sprinkling water flow, and performing confounding of sheeting This is the most preferable mode to suppress the occurrence of formation irregularities due to continuous trajectory, maintain the initial uniformity of the paper sheet, and obtain sufficient confounding.
  • the preferred mode of the present invention is achieved only when both the swinging of the nozzle header and the introduction of the wire mesh of 10 to 80 mesh are performed.
  • intermittent columnar water flow is not achieved, and a continuous straight water flow trajectory is drawn depending on the opening state of the wire mesh immediately below the nozzle.
  • the columnar flow is interrupted by the wire of the wire mesh, and there is no water flow trajectory, so that a preferred embodiment of the present invention is a confounding mode in which a wavy trajectory is drawn over the entire sheet by the intermittent columnar water flow. Can not be.
  • the nozzle head is fixed and the inserted wire mesh is rocked.It is preferable to rock the nozzle head and fix the wire mesh from the viewpoint of increasing the confounding coverage. .
  • the confounding process that draws a non-continuous wavy curved line trajectory due to the intermittent columnar water flow, an extremely uniform formation with a formation index of 100 or 80 is wet-processed. Achieved with single-column flow entangled nonwovens.
  • the water jet treatment method for the jet nozzle and the net sheet may be a method of alternately jetting the water flow on the front and back, or a method of treating only one side.
  • the number of times of processing may be set to an optimum condition according to the purpose.
  • the water pressure conditions for the water treatment of these mixed sheets are selected under conditions that obtain the desired sufficient fiber entanglement and obtain uniformity. For example, a relatively small basis weight of 10 to 100 g / m 2 is used. is preferred arbitrariness of the case of ⁇ Sea Bok single-sided or double-sided processing in a water pressure of 3 ⁇ 40kg // cni 2.
  • the average fiber inter-woven distance is less than 300 / m, preferably less than 200 // m, more preferably less than 150 // m. No.
  • the constituent fibers of the mixed sheet are moved by the water flow and become entangled with each other to obtain a strong bond. That is, the constituent short fibers and the heat-fused fibers are three-dimensionally entangled with each other, and the entangled bond obtained in this manner is extremely strong.
  • the obtained entangled sheet is heat-treated to form a heat-bonded fiber. Melt some or all of the fiber.
  • the heat treatment conditions are preferably short-time treatment for 5 seconds to 10 minutes using a non-contact hot air dryer.
  • the heat treatment temperature is set to a temperature higher than the melting point of the heat-fused fiber and lower than the melting point of the short fiber.
  • thermoplastic short fiber By the heat treatment as described above, a part of the heat-fusible fiber is melted at the intersection of the thermoplastic short fiber and the heat-fusible fiber while keeping the thermoplastic short fibers and the heat-fusible fiber three-dimensionally entangled with each other.
  • the fibers are bonded to the thermoplastic short fibers. If there is no three-dimensional entanglement or heat treatment is performed in an insufficient entangled state exceeding 300 m average fiber entanglement distance, the number of intersections between thermoplastic short fibers and heat-fused fibers is small, and This is distinguished from the present invention because a molten film is formed in a state of being arranged in parallel.
  • the structure which is three-dimensionally entangled up to a state where the distance between the average fiber entanglement points is 300 m is fixed as it is by fusion of the heat-fused fibers at many entanglement points, resulting in high resistance to electrode compression.
  • the separator exhibits excellent separator performance, such as high electrolyte immersion property and small electric resistance.
  • the new nonwoven fabric thus obtained may be subjected to pressure treatment using a calender dryer or embossing machine if the thickness can be adjusted, for example, if the thickness can be adjusted, for example, for a battery separator or the like. .
  • conditions must be selected so that the gas permeability and the retention of the electrolyte are not extremely reduced.
  • the hydrophilization treatment can be performed by a commonly used method such as a method of attaching a surfactant, a sulfonation treatment, a fluorination treatment, a plasma treatment, or a corona discharge treatment.
  • the order of the compression treatment step and the hydrophilic treatment step using a single calender or an embossing machine may be either first, but if a more uniform hydrophilic treatment is to be obtained, the hydrophilic treatment is performed. After processing, press bonding It is better to do it. That is, when the hydrophilization treatment is performed after the pressure-bonding treatment, the treatment unevenness is apt to occur on the fiber surface, and thus, the permeation of the electrolytic solution is easily generated, which is not preferable.
  • the wet-type nonwoven fabric thus obtained has the following characteristics: separation of the positive electrode and the negative electrode, prevention of short-circuit, retention of electrolyte, gas permeability in secondary batteries, and deterioration of the performance due to repeated charging and discharging. It is useful for battery separator applications that require performance such as small size.
  • the wet woven fabric of the present invention Since the wet woven fabric of the present invention has the above-described configuration and characteristics, it is used for primary batteries such as a manganese battery using zinc for the negative electrode and manganese dioxide for the positive electrode, and an alkaline manganese battery using alkaline for the electrolyte. Although it can be used as a separator for batteries, it is used as a separator for secondary batteries that requires repeated use of charge and discharge and that the function of the separator does not change due to repeated use. It is preferably used.
  • a typical secondary battery uses sulfuric acid for the electrolyte, lead storage battery composed of lead for the negative electrode and lead dioxide for the positive electrode, alkali for the electrolyte, force dome for the negative electrode, and oxide for the positive electrode.
  • Nickel-powered nickel-type alkaline storage batteries made of nickel hydroxide, nickel-iron type alkaline storage batteries that use iron powder instead of negative electrode power dome, and hydrogen (hydrogen storage alloy)
  • nickel-hydrogen type alkaline storage battery or the like used for the negative electrode, and the separator of the present invention can be suitably arranged and applied to these secondary batteries.
  • the required performance of a secondary battery is that, like a primary battery, the electromotive force is high, the internal resistance is low, the electric capacity that can be extracted per unit mass and volume of the battery is large, and the self-discharge is small. In particular, high charge-discharge cycle performance, high safety during overcharge and overdischarge, and no performance degradation are required. Sealing is possible by suppressing or consuming the generation of oxygen and hydrogen generated by the decomposition of water during charging.
  • the above-mentioned typical secondary batteries are considered sealed secondary batteries. It is used as a power source for portable equipment. When a separator is placed in a cylindrical sealed alkaline battery, the nonwoven fabric is stretched in the vertical direction at a constant tension, and compressed in the thickness direction before mounting.
  • the wet separator nonwoven fabric of the present invention has excellent liquid retention and liquid retention properties.
  • the separator made of wet nonwoven fabric of the present invention has excellent gas permeability and moderate wetting characteristics on the surface, suppresses internal pressure rise during overcharge, and blows out electrolyte by operating a safety valve.
  • the present invention provides an excellent rechargeable battery that prevents the occurrence of a battery.
  • the separator of the present invention has a uniform and dense entangled structure, and has no unevenness in formation.
  • the separator can prevent the separator from being broken through by the electrode active material and dendritic metal deposited on the electrode plate during charge / discharge, and can provide a long-life secondary battery.
  • portable appliances and miniaturization of electric appliances have been rapidly progressing, and secondary batteries for supplying electricity to these appliances have also been required to be miniaturized, have higher capacities, extend their life, and extend their cycle performance. To provide performance batteries Significantly depends on high performance.
  • the separator having a thin and thin thickness is required to have excellent electrolyte hydrating property, gas permeability, and short circuit prevention performance.
  • the wet nonwoven fabric of the present invention has a high strength and uniform It can be suitably used for this kind of high-performance secondary battery because of its excellent properties such as liquid hydration.
  • the measured values are measured by the following methods, and all percentages are by weight.
  • the test sample affected by the temperature and humidity should be left indoors or in the equipment under standard conditions (temperature: 23 ⁇ 3 ° C, relative humidity 65 ⁇ 5%), and the condition of the sample should be adjusted.
  • test pieces having a size of 20 ⁇ 20 cm were sampled, and 10 different points were measured with a micrometer for each piece, and the average value was shown.
  • J I SLI 096 Measure in the vertical (progressing) direction of the nonwoven fabric according to the strip method. Five test pieces (length in the vertical direction: 18 cm x horizontal direction: 2.5 cm) were sampled, and the gripping interval: 10 cm, the pulling speed: 200 minutes, and the test piece using a pulling speed tester Measure the maximum load that will cut.
  • test specimens 20cm x 2.5cm and adjust to the standard condition.
  • test pieces cut into a 3.4 cm x 5 cm shape were collected, adjusted to the standard condition, and weighed (a J up to 1 mg. Then, a 31% strength aqueous solution of potassium hydroxide was used. Hold the test piece on the filter paper (ADVANTE No4A) and apply a load of 100 g. After 30 seconds, measure the weight (a.) Of the test piece, and determine the hydration rate (%). Calculate a, x 100 and evaluate the hydrating performance
  • the formation index is the value obtained by dividing the standard deviation ( ⁇ ) of the absorbance at each micro site (0.78 mm x 0.78 mm) in the measurement sample by the average absorbance ( ⁇ ) (the following formula). The most straightforward, the smaller the value, the higher the uniformity, the better the formation.
  • Formation index 1000 X ⁇ ⁇ ⁇
  • Fig. 4 Measure the surface compression load-displacement curve (Fig. 4) of a sample whose brushed surface has been hair straightened with a soft pig hair brush using a KES-3 compression tester.
  • the thickness at a load of 7 g / cm 2 is defined as the thickness of the sample with the brush raised, and the stress at the thickness obtained by adding +0.1 mm to this sample thickness is read as the brush raising stress F.
  • FIG. 1 is an enlarged schematic diagram when the constituent fibers of the nonwoven fabric sheet according to the present invention are observed from the surface. Let the constituent fibers be f,, f, f 3 ..., and let the point at which any two fibers f,, f 2 intersect be a ,, And goes to the point where the upper fiber f ′ intersects below the other fiber, and the intersection point is a:. Similarly, let a 3 , a 4.... Next, the line horizontal distance a between the entangled points determined in this manner, ⁇ a 2, a z ⁇ a 3 ... measured, the average value of a number of these measurements, which between the entangled points distance And
  • a closed-type nickel-powered dome secondary battery of SC size with a nominal capacity of 1.2 AH was prepared and subjected to a cycle characteristic test.
  • the condition at this time is that after charging for 1 hour with a current of 1.8A, the battery is discharged to a cutoff voltage of 1.0V with a current of 1.2A.
  • the mixed sheet obtained was placed on an 80-mesh wire mesh, and the wire mesh was moved at a speed of 12 m / min.
  • a nozzle head mounted at a pitch of 2 mm is moved circularly at 285 rpm between the sheet on the wire mesh and the nozzle.
  • a 40-mesh wire mesh was inserted at a position 25 mm from the wire mesh, and water at a pressure of 30 kgZcm 2 was jetted to collide the intermittent columnar water stream with the mixed sheet.
  • dewatering and suction was performed at a static pressure of -80 mmHg from the lower part of the compartment to remove water on the sheet continuously and promptly, thereby reducing the formation of water due to water flow trajectory and fiber flow. Short fibers and heat-sealed fibers were entangled without causing any entanglement. After performing the same process six more times, the sheet was turned upside down and the same process was performed seven times.
  • the obtained entangled sheet is dried with a pintent dryer set at a temperature of 180 ° C, and at the same time, the sheath (melting point 140 ° C) of unity 1 ⁇ -61 between the entangled sheets is melted.
  • the sample was immersed in an aqueous solution containing 0.2% of nonionic surfactant Sintol KP (manufactured by Takamatsu Oil & Fat Co., Ltd.), and the adhesion rate was reduced. It was squeezed to 200% of the nonwoven fabric, and dried with a pin drier set at a temperature of 160 ° C.
  • the entangled sheet is guided to a pair of rolls heated to 100 ° C, and subjected to calendar processing at a linear pressure of 30 kg / cm to produce a nonwoven fabric for a battery separator having a basis weight of 72 g / m and a thickness of 0.18 mm.
  • Example 2 entanglement treatment, addition of a surfactant, and calendering were performed to obtain a nonwoven fabric for a battery separator having a basis weight of 72 g / m 2 and a thickness of 0.18 and having no trace on the surface.
  • the sheet surfactant imparts one bets in the same way as the actual Example 1, subjected to mosquitoes Le emissions da one working basis weight 72 g / m 2, the separator of uniform cell without formation spots and trajectories muscle thickness 0.18mni A nonwoven fabric was obtained overnight.
  • Example 2 20% (core: nylon 6, sheath: copolymerized nylon) were mixed, and a mixed sheet was obtained by a card method.
  • the sheet was entangled in the same manner as in Example 1 and a surfactant was applied to the sheet to perform a calendaring process.
  • a nonwoven fabric having a basis weight of 73 gZm 2 and a thickness of 0.18 mm was obtained.
  • the obtained entangled sheet was dried with a 180-degree pintent drier in the same manner as in the example, and at the same time, the sheath of unity 1 ⁇ -61 in the entangled sheet and SWP (U 410: melting point 125 ° C) After melting), a surfactant was similarly applied and calendering was performed to obtain a battery separator with a basis weight of 73 g Zm 2 and a thickness of 0.18 ⁇ .
  • Table 1 shows the results of performance tests of the nonwoven fabrics obtained in Examples 1 to 3 and Comparative Examples 1 to 4 as a battery separator.
  • the nonwoven fabrics of Examples 1 to 3 have higher tensile strength, lower electric resistance, and are superior in the liquid holding ratio to the nonwoven fabrics of Comparative Examples 1 and 2. This is due to the improvement in tensile strength, the increase in the number of confounding points, and the separation due to the confounding treatment until the distance between the confounding points becomes 120 to 200 m. -As the arrangement of the fibers progresses in the cross-sectional direction of the nonwoven fabric, the compressive stress also increases, and the electrical resistance decreases due to the interaction such as the increase in the adhesion between the separator and the nickel plate. This is interpreted as the effect of increasing the liquid holding rate by increasing the number of confounding points.
  • the nonwoven fabric of Comparative Example 3 Since the nonwoven fabric of Comparative Example 3 has a higher entanglement density than those of Comparative Examples 1 and 2, it has a lower electric resistance and an excellent liquid immersion rate. is there. This is due to the fact that the nonwoven fabric of Comparative Example 3 has a large formation index, and that the contact area between the separator and the nigel plate is substantially reduced due to the large non-uniformity. I guess. In addition, due to the poor formation, migration of the electrode active material could not be sufficiently suppressed, and there was a problem in the short-circuit resistance in the cycle performance of the secondary battery (see FIG. 2).
  • SC-size sealed nickel-metal dome storage batteries with a nominal capacity of 1, 2 AH were prepared.
  • the cycle characteristics were examined. The condition at this time is to charge for 1 hour with a current of 1.8 A and then discharge to a final voltage of 1.0 V with a current of 1.2 A.
  • FIG. 2 shows the results.
  • the batteries using the nonwoven fabric separators of Examples 1, 2, and 3 of the present invention exhibited lower battery capacity as the cycle progressed than the batteries using the nonwoven fabric separators of Comparative Examples 1, 2, 3, and 4. It was small and showed excellent cycle characteristics.
  • the batteries of Comparative Examples 1, 2 and 4 had a reduced electrolyte solution (dryout) in the separator due to charge / discharge cycles, and the batteries of Comparative Example 3 had a short life due to the transfer of the electrode active material.
  • the wet nonwoven fabric of the present invention has a uniform formation and a finely entangled fiber structure of 300 m or less, so that it has excellent performance such as excellent compressive stress, electric resistance, and hydrating property.
  • the electrolyte is not easily absorbed by the electrode, and the electrode active material It can be said that it was proved that migration was difficult.
  • the sheet was obtained in the same manner as in Example 1. Further, in the same manner as in Example 1, a confounding treatment, a treatment for applying a surfactant, and a calendering treatment were performed to obtain a nonwoven fabric for a battery separator having a basis weight of 85 g / m 2 and a thickness of 0.20 mm.
  • Example of mixed sheet made of denier (single yarn diameter 14.1 m: L7D 710) unity UL-61 25%. Temperature was 160 ° C and pressure was 70 g without any fluid flow treatment as described above. The sheet was hot-pressed under the condition of / cm 2 , and then the unit 1 ⁇ -61 in the sheet was dissolved by a pintent dryer set at a temperature of 180 ° C. Further, in the same manner as in Example 1, the same treatment for applying a surfactant and calendering were performed to obtain a nonwoven fabric having a basis weight of 86 g / m 2 and a thickness of 0.2 lmm.
  • Example 5 Same as that used in Example 5, except that the fiber length L is 5 mm.
  • Table 2 shows the battery separator performance test results for the nonwoven fabrics obtained in Examples 4 to 5 and Comparative Examples 5 to 7 above.
  • Example 4 is a wet nonwoven fabric composed of short fibers having a relatively large fiber diameter.However, due to sufficient entanglement density and uniformity, the tensile strength and electrical resistance are superior to those of Comparative Example 5. Excellent electrical resistance as compared to Comparative Example 6, which was satisfactory as a general-purpose separator
  • the inner layer of the nonwoven fabric of Example 5 has a dense entangled structure formed by ultrafine fibers split by the columnar flow treatment, the inner layer has a structure in which the undivided composite fibers of 2 denier still remain.
  • nonwoven fabric sheets and electrical resistance were high, they could be used as separators.
  • the LZD of Nylon 6 / Nylon 612 composite staple fiber was as small as 354, so that a very uniform mixed sheet was obtained.However, the fiber was easily moved by the jet water flow treatment. However, the fiber flow caused poor sheet formation and many pinholes were observed. Although pinholes were eliminated by laminating the synthetic pulp, the synthetic pulp on the surface was spotty and did not lead to an improvement in formation failure. Also, the dispersion of hydrophilicity was remarkable. The electrolyte immersion performance was low, and the electrical resistance was high, and it was not something that could withstand practical use as a separator overnight.
  • the obtained entangled sheet is dried with a pin tenter dryer set at a temperature of 160 ° C, and at the same time, the sheath (melting point 140 ° C) of unity U61 between the entangled sheets is melted to obtain a nonwoven fabric.
  • This product is useful as a battery separator as it is.
  • ⁇ Nonionic surfactant Emulgen 910 manufactured by Kao Corporation for the purpose of improving the initial affinity with the electrolyte. After immersion in an aqueous solution containing 0.5% of the nonwoven fabric, the sample was squeezed so that the adhesion ratio became 400% of the nonwoven fabric, and dried with a pinten dryer at a temperature of 160 ° C.
  • the sheet with hydrophilic processing is led to a pair of rolls heated to 100 ° C, and subjected to calendar processing at a linear pressure of 30 kg / cm to produce a separator with a weight of 65 g Z m-and a thickness of 0.15 mm.
  • a non-woven fabric was obtained.
  • Example 6 a nonwoven fabric made of nylon 6 having an average fiber diameter of 2 m, a basis weight of 65 g Zm 2 , and a thickness of 0.3 mm was entangled and treated with a surfactant. A calendering process was performed to obtain a nonwoven fabric having a basis weight of 65 g Zm and a thickness of 0.15 mm. As compared with Examples 6, 7, and 8, the mechanical strength and the air permeability were considerably lower, and the liquid holding performance was also inferior. (Comparative Example 9)
  • Table 3 shows the test results of the performance of the nonwoven fabrics obtained in Examples 6, 7, and 8 and Comparative Examples 8 and 9 as battery separators.
  • the non-woven fabric of Comparative Example 9 has lower mechanical strength and air permeability, lower liquid immersion performance, and lower sheets than the non-woven fabrics of Examples 6, 7 and 8. The formation was quite poor.
  • the separator nonwoven fabric of the battery according to the present invention has excellent sheet formation, high tensile strength, gas permeability, high liquid holding performance and liquid holding performance, and high liquid absorption speed. Good performance.
  • it is effective to use a thermoplastic short fiber of less than 0.5 denier to suppress the rise in internal resistance, and to further improve the charge / discharge cycle performance of the sealed secondary battery. was determined.
  • Sheet formation reference data 52 (PPC paper)
  • Example 2 The entangled sheet obtained in Example 1 was dried with a pintent dryer set at 180 ° C, and at the same time, the sheath between the entangled sheets was removed. (Melting point 140 ° C). Then, 0.05%, 0.1%, 0.25%, and 90% of nonionic surfactant Emulgen 120 (manufactured by Kao Corporation), respectively.
  • the adhesion rate becomes 200% of the nonwoven fabric Squeezed as above and dried with a Pinten Yuichi dryer set at a temperature of 160 ° C. Furthermore, the battery was guided to a pair of metal rolls heated to 100 ° C, and subjected to calendaring at a linear pressure of 30 kgZcm 2 in the same manner as in Example 1 to produce a battery with a basis weight of 73 g / m 2 and a thickness of 0.18 mm. The non-woven fabric for separator was obtained. Table 4 shows the physical properties and performance of the obtained nonwoven fabric as a battery separator. Those to which no nonionic activator is adhered have poor hydrophilicity, and as the amount of activator adhered increases, the tendency for the one-sided hydrate to increase in hydrophilicity to decrease.
  • the entangled sheet obtained in Example 1 is dried with a pin-tenter dryer set at 180 ° C, and at the same time, the sheath between the entangled sheets U-61 (Melting point 140 ° C). Then, after immersion in an aqueous solution containing 0.2% of nonionic surfactant Sintol KP (manufactured by Takamatsu Oil & Fats Co., Ltd.), squeezing was performed so that the adhesion rate became 200% of the nonwoven fabric, and the temperature was set to 160 ° C. It was dried in the specified pin-entry dryer.
  • Example 2 The entangled sheet obtained in Example 1 was dried with a pin tenter dryer set at 180 ° C, and at the same time, the sheath (melting point 140 ° C) of the unit 61 between the entangled sheets was melted. .
  • the nonionic surfactant KP manufactured by Takamatsu Oil & Fat Co., Ltd.
  • the basis weight is 72 g / m2. 2.
  • a non-woven fabric for a battery separator having a thickness of 0.18 mm and a brushing stress of 2.5 g / cm 2 was obtained.
  • a nonwoven fabric for a battery separator having a basis weight of 72 g / m-, a thickness of 0.18 mm and a brushing stress of 1.3 g Z cnr was obtained in the same manner as in Example 6, except that both sides were brushed with a roll brush in which pig hair was planted. .
  • Table 6 shows the performance of the nonwoven fabric for separators of the batteries obtained in Example 1 and Examples 11 to 14.
  • the battery separators of Examples 11 to 14 having a raised surface on the surface further improved the electrolytic solution immersion ability and the gas permeability as compared with Example 1. It has a low rise in internal resistance and has better performance as a high-performance battery separator.
  • a sealed nickel-low-power battery with a non-woven battery attached to the battery separator of the non-woven fabric obtained here was actually manufactured, and its overcharge characteristics were evaluated.
  • the batteries using the non-woven fabrics of Examples 11 to 14 were evaluated. Separe for The safety valve leak rate was further improved for those equipped with overnight. This is probably because oxygen gas generated from the positive electrode passed through the nonwoven fabric separator of the battery and the consumption reaction at the negative electrode proceeded easily.
  • the present invention it is possible to obtain a nonwoven fabric for a battery separator having excellent gas permeability, liquid retention properties, and liquid absorption speed.
  • the nonwoven fabric for a battery separator of the present invention has a high basis weight uniformity, a high tensile strength, and a low electric resistance, and can provide an unprecedented excellent battery separator.
  • the separator nonwoven fabric of the battery of the present invention has sufficient mechanical strength so that it does not break when mounting the battery and does not have a width, and has a uniform and dense entangled structure. Excellent in gas permeability, liquid retention rate, and liquid absorption rate performance, and particularly excellent in electrolytic solution immersion ability and gas consumption reactivity. As a result, it is possible to sufficiently respond to the recent increase in the capacity of secondary batteries.
  • the secondary battery actually mounted as the separator of the nonwoven fabric of the present invention has excellent overcharge characteristics and a long charge / discharge cycle life, and is used for the battery separator of the present invention.
  • the industrial value of nonwovens is extremely high.

Description

明 細 書 電池セパレーター用湿式不織布、 その製造方法及び密閉型二次電池 技術分野
本発明は、 電池セパレータ一用の改良された湿式不織布及びその 製造法並びに密閉型二次電池に関するものである。 背景技術
電池のセパレーター用の不織布は、 正極と負極の分離又は電極活 物質や電極の破片の移行防止による短絡の防止、 電解液の保持、 内 部電気抵抗の低いこと、 電解液に対する科学的安定性、 耐久性等が 要求される。 特にニッケル—力 ドミニゥム蓄電池の様な二次電池に おいては過充電時に正極反応で発生する酸素ガスを負極でスムーズ に消費される必要があり、 又充放電による電極の厚み変化に抗して 、 セパレーターからの電解液の消失が抑制される必要がある。 従つ て、 セパレーターの性能と して、 ガス通過性が良好であること、 及 び圧縮の繰り返しに対しての電解液抱液性が高いことが要求される 。 又、 電池製造工程の張力に耐え得る機械強度も重要な要求性能で あ《3。
しかしながら、 従来のメ ル トブロー ン不織布、 フ ラ ッ シュ紡糸法 不織布、 スパンボン ド不織布、 乾式不織布、 湿式不織布等による電 池セパレ—ターは、 前記の要求性能が充分に実現するものでなかつ
例えば、 特開平 1 一 1 57055号公報はメ ル トブロー ン不織布を特定 の条件で加熱し、 その表層部に緻密構造を形成することによって、 機械的強度、 短絡防止性能及び電解液の保液性能の向上を試みてい る。 しかし、 不織布の熱プレスのみによる機械的強度の向上は充分 なものが得られないし、 高強度を得よう と して高温、 高圧プレス処 理を適用する と電解液の保液性能、 ガス透過性が低下する等の問題 がある。 特開平 2 — 259 1 89号公報は、 耐アルカ リ性の繊維と熱融着 性の繊維との混合湿式抄紙シー トを熱融着成形するこ とで、 不織シ 一卜の強度と電解液の保液性とを向上させる試みを開示している。 しかし、 高強度を得よう と して熱融着性の繊維の量を増加させ、 熱 成形温度を高く する と、 繊維表面やシー トの空隙率の低下を招いて 充分な電解液の保液性能を得るこ とができな く なる。 逆に熱成形温 度を低く するとセパレーター用不織布材料と しての充分な機械的強 度が得られないし、 不織布の繊維交絡が乏しいので圧縮に対して不 織布の構造が潰れ易いのでいわゆる ドライアゥ 卜 と呼ばれる電解液 の放出を起し易く 、 電池の電気抵抗を高く してしま う等の問題があ る
特開昭 6 1 _ 28 1454号公報は、 繊維直径が 0. 1〜 2 mのメ ル トブ ローン不織布と繊維直径が 5 m以上の布帛状物を高圧水の噴射に より積層一体化し、 セパレー 卜材料と しての不織布の通気性の向上 、 正極と負極の分離性能、 電極活物質又は電極破片の移行による短 絡の防止性等の改良された電池セパレ一ター用の不織布材料につい て記載している。 しかし、 この不織布材料はその面に高圧水の噴射 による貫通孔が生じて、 電極活物質の移行防止の性能を充分に高め る こ とができない。 一方、 貫通孔を小さ く するために周速度の異な るロールで不織材料をプレスする方法が特開平 5 - 8986号公報に開 示されている力 <、 一度不織布表面に生じた貫通孔をな く すこ とは困 難である。
前記の特開昭 6 1— 28 1 454号公報に開示される不織布は、 メ ル トブ ローン極細不織布と乾式ウェブ状物の 2層積層構造の不織布シ一 ト 材料であるから、 シー ト材料の断面方向で層を構成する繊維の表面 積と繊維層の密度が異なり電解液の付着斑が発生して、 電池内部の 電気抵抗の上昇を招く ことが懸念される。 又、 メル トブローン繊維 の不織布層は、 繊維の紡糸方法に起因して目付の均一性が劣るので 、 目付の薄い部分では活物質の移行の抑制ができず、 耐ショー ト性 に問題があり、 かつ、 二次電池の充放電に伴なう電極の繰返し体積 変化による圧縮に対して 「へタ リ」 易いため、 電解液の放出が起き 易く二次電池の充放電サイクルに耐える性能の低下のおそれがある 特開平 5 - 74440 号公報は、 短繊維と熱融着性繊維及び合成パル プの混抄シー 卜に流体処理を施した後、 熱融着繊維と合成パルプ繊 維とを融着させることで短絡防止性能、 電解液の保持性能及び機械 的強度等の向上図った不織布材料が開示されている。 この試みは、 融着性繊維の融着を目的とする熱処理によつて、 合成パルプの繊維 の形態が損なわれ、 不織布材料の構造内での繊維の表面積の低下、 繊維間隔の増大を招いてセパレーター内部の電解液が電極に移行し 易く なり、 電気抵抗の上昇を招く。
特開平 7 — 272709号公報は、 分割性複合繊維からなる湿式抄造ゥ エブの水流交絡処理で得られる絡合繊維ウェブの貫通孔を含む疎な 部分にフ ィ ブリル状分岐構造を有する繊維状物、 例えば合成パルプ 等を付着させることにより、 電極活物質の移行による耐ショー ト性 能を改良した電池用セパレーターが記載されている。 しかしながら 、 このセパレーターは、 絡合繊維ウェブの表面層に前記絡合繊維ゥ エブとは繊維組成や構造の異なる繊維状物の層が前記絡合繊維ゥェ ブの疎密斑に応じて斑々に積層した 2層構造を形成していることか ら、 電解液の付着状態に斑付きを起して電気抵抗を高く したり、 通 気性、 電解液の保液性のバラツキを大き く してしま う欠点がある。 更に、 このセパレ一ター材料の繊維状物は、 繊維状物自身及び繊維 状物と前記絡合繊維ウェブとの交絡の密度が小さ く 、 脱落し易い。 又前記繊維状物が前記絡合繊維ウェブ上で熱処理によ り接着させよ う とすると繊維の形態が失なわれ極端なケースではフ ィ ルム化して 、 電解液の保持性能の低下と材料表面層の電解液の均一な付着が損 なわれてしま う という問題がある。
又、 特開平 6 — 295715号公報に於いては繊維径が 3 〜1 0 m、 繊維 長 L と繊維径 Dの比 ( L / D ) が 1 000〜2000の金属イオン付加ァク リ ル短繊維の湿式抄造シー トを水流交絡処理後、 熱圧加工する耐酸 化性に優れた電池セパレ一ターが配載されている。 しかしながら、 この湿式不織布材料は熱融着繊維等によ り繊維の三次元交絡構造が 固定されておらず、 電池組立て時の張力により幅入れの問題や、 電 極板の膨潤によりセパレ一ターが圧縮され、 電解液の枯渴を引き起 こす問題等が予想される。 又、 水流交絡はノ ズルヘッ ダーを揺動さ せない処理方法を実施している事から該不織布表面にはタ方向に多 数の連続的な軌跡筋が見られ、 地合の均一性に劣る ものであり、 電 池セパレ—ターと して使用 した際にその不均一な軌跡筋部分におい て、 電極活物質等の移行が起こ り耐シ ョ ー ト性が低下するこ とが懸 念される。
発明の開示
本発明の目的は、 前述した背景技術に現存する電池のセパレー夕 —用の不織布材料の諸々の問題を解決し、 電池のセパレーター用材 料と して水準の高い性能を示す湿式不織布を提供する こ とである。 本発明のより具体的な目的は、 電池のセパレータ一と して改良さ れたガス通過性、 電解液の保持性及び液体吸液速度等の性能を奏し 、 しかも高い引張り強度と高い目付均一性を兼ね備えた構造の湿式 不織布を提供することである。
本発明の更に具体的な目的は、 活物質の移行によるショー トの発 生が著しく低減し、 且つ電解液の ドライアゥ トを起こ し難い密閉型 二次電池用のセパレーターであって、 長い充放電サイ クル寿命の高 容量 2次電池の製作を可能にすることである。
本発明の前記目的は、 基本的に単繊維の直径が 20 u m以下の少く とも 1 種の熱可塑性短繊維 20〜95重量%と熱融着性短繊維とが相互 に三次元立体交絡されており、 前記短繊維の平均交絡点間距離が 3 00/ m以下であって、 かつ前記熱融着性繊維の少く とも一部が熱融 解により繊維間を接着して単一の不織構造体層を固定していること を特徴とする電池のセパレ一ター用湿式不織布によって達成される o
本発明においていう短繊維は、 湿式抄造が可能な長さの繊維材料 から選ばれるが、 繊維長さ ( Lmm) がその単繊維のデニールで表わ される繊度で次式 ( I ) で算出される円形断面の直径 (D ) との比 ( LZD) が 0.5X 103 〜 2.0X 103 を満足する範囲であることが 望ま しい。
D = ^ C 4 d / ( π- X 9 X 105 x ρ ) ) x 10 ( I )
(こ こで Dは mで表わされる直径、 pは単繊維を形成している高 分子重合体の g/cm3 で表わされる密度、 dはデニールで表わされ る単繊維の繊度及び 7Γは円周率である)
そして、 熱可塑性単繊維は、 合成熱可塑性重合体繊維から選ばれ 、 熱融着性繊維は、 前記合成熱可塑性繊維の融点より も約 20°C低い 融点をもつ熱可塑性重合体繊維から選ばれる。
本発明の電池のセパレーター用不織布は、 基本的に熱可塑性短繊 維 20〜95重量%と残り短繊維が前記の熱融着性の短繊維の混合繊維 でもつて構成される。 本発明の湿式不織布は、 前記繊維が相互に不織構造断面内でラ ン ダムに三次元立体交絡し、 その交絡構造を形成する熱融着性短繊維 の少く と も一部が熱可塑性短繊維と接着してその不織構造が固定さ れている。
本発明でいう平均繊維交絡点間距離とは、 特開昭 58 - 191280号公 報第 443頁右下欄第 8行第 444頁左上攔〜 2行に記載される方法に 準じて測定される不織布構造の繊維相互の交絡密度の尺度であり、 不織布シー 卜の表面における構成繊維を走査型電子顕微鏡で拡大し 観察したとき、 後述の第 2図の構成繊維 ( f ,) , ( f 2) , ( f 3)-
( f n ) の任意の 2本の ( f ,) , ( f 2)が交絡する点を ( a Jで、 上になっている繊維 ( f 2)が他の繊維の下になる形で交差する点ま でたどって行き、 その交差した点を ( a 2)と し、 この交絡点間の直 線水平距離 ( a , 〜 a 2)を求めこれを交絡点間距離と し、 同様に他 の任意の繊維の対について交絡点間距離 50個を求めその算術平均値 によって表示される。 そ してこの尺度が小さい程交絡が緻密である こ とを示す。
本発明の電池セパレーター用湿式不織布は、 前記した単繊維直径 が 20 m以下の繊維が平均繊維交絡点間距離 m以下の緻密な 三次元立体交絡構造を有しているこ とで、 短繊維からなる湿式不織 布特有の均一性をもちながら、 湿式不織布の欠点とされてきた強度 不足を解決し、 従来に例の無い均一な地合を有するため薄い目付の セパレーターであっても電極活物資のマイ グレーシ ョ ン (セパレー ターの繊維間空隙を活物資が通過するこ と) を W制するこ とができ 、 耐シ ョ ー ト性及び充放電を繰り返す二次電池のサイ クル性能を非 常に改善する ものである。 又強度が強いこ とは、 電池セパレーター の目付を薄く するこ とが可能であり、 その分だけ電極の多量の活物 質を電池に組み込むこ とが可能となるので電池の高容量化が達成で きるのである。
更に本発明の電池セパレータ一は、 平均繊維交絡点間距離 300 m以下という交絡構造に起因していると思われるが、 電池セパレー ターと しての内部電気抵抗が低いために二次電池の充電電圧が低く 、 放電電圧が高く とれるという優れた性能を発揮する。 更には本発 明の不織布は圧縮抵抗が高いために、 二次電池で充放電を繰り返す ときの電極の厚み変化に対する抵抗が強く、 電池セパレーターが圧 縮されて内部抵抗が上昇したり、 セパレーター内の電解液が減少す るなどの問題が起こりにく い。 そして、 これらの性能は平均繊維交 絡点距離が 250 m以下、 更には 200 /z m以下あるいはそれ以下で より顕著に向上する。 従って、 本発明の繊維交絡点間距離が 300 / m以上で繊維の絡みの程度が低い場合は先に述べた様な電池セパレ 一ターと しての特徴、 効果を発揮し得ないのである。
更に本発明の電池用セパレーター用湿式不織布は、 高圧の柱状水 流により短繊維の三次元交絡を達成しているにも係わらず、 該高圧 の柱状水流に起因する軌跡筋が実質的に無いのも特徴である。 従来 、 繊維シー トを高圧柱状水流処理を行う と水流を噴射するノ ズルと 繊維シー 卜の相対的な移動によって不織布表面に水流軌跡に起因す る連続筋が残る。 この連続した軌跡筋の部分を微視的に観察すると 凹部形状をなしており、 その直近には凸部形状の部分からなる連続 的な微少繊維の偏在が起こっている。 従って、 この様な水流交絡に よる微視的な連続軌跡が表面に存在する湿式不織布をセパレーター に適用すると、 繊維目付の少ない連続軌跡の凹部から活物質等の移 行がおこ り耐ショー ト性の低下をもたらす。 本発明の湿式不織布は 、 上記の連続軌跡が実質的に認められず、 極めて均一であるので、 電池セパレーターと して特に低目付の湿式不織布を高容量の二次電 池に適用 した際も優れた耐ショー ト性、 寿命の長いサイ クル性能を 発揮する。
本発明の電池セパレーター用湿式不織布の目付の均一性が特徴で あり、 その地合指数が 100以下で有る こ とが好ま しい。 よ り好ま し く は 80以下である。
本発明でいう地合指数 (Sheet formation)は、 湿式不織布構造を 形成している繊維の分散状態乃至は繊維分布の均一性をいい、 不織 布の坪量 (日付) 、 厚さ、 密度などを含めた総合的な不均一性の評 価指数である。 いろいろの地合指数の測定方法が知られているが、 本発明では、 紙パ技協会第 46巻第 Ί号第 78頁〜第 93頁の大沢純二等 による論文 「紙の透かし地合いの評価 (第 1 報) 市販地合い計によ る評価」 に紹介される 「画像解析型地合い型 ( C ) 」 の原理に従う 後述の市販のフ ォーメ ーシ ョ ンテスタ一(FMT- 1000A: 野村商事 (株 ) ) により測定し評価した 「地合指数」 をいう。 この地合指数は、 不織布の微小単位の目付のバラ ツキを適格に表わしており、 均一性 の代用値であり、 値が小さいほど不織布の繊維分布により依存する 均一性が高いと評価される。
地合指数が 100を超えると微小目付の斑のバラ ツキが大き く なり 、 目付の薄い部分からの電極活物資の通過現象を抑制するこ とがで きず、 電池の内部短絡を招いたり、 二次電池のサイ クル性能回数を 短く する等の問題が生じる恐れがある。
又、 本発明の湿式不織布はその電気抵抗が 1.0 Ω以下が好ま しい 。 より好ま し く は 0.8Ωである。 電気抵抗が 1.0Ω以上になると二 次電池の充電電圧が高く なつたり、 所定の放電電圧が得られない等 の問題を生じる可能性がある。
更に、 本発明の湿式不織布の圧縮応力が 3.0kg/cnr 以上で有る と、 放電時の電極の膨潤に対する抵抗が大き く 電池セパレーターが 潰れ難い。 よ り好ま し く は圧縮応力 3.5kgZcnr' 以上である: 圧縮 応力が 3.0kgZcm2 以下になると、 充放電サイ クルの繰り返し時に 電池内部電極の圧縮によりセパレータ一がつぶされ、 へタ リが生じ 電解液が枯渴して内部抵抗の上昇を招く などの問題を起こすこ とが め O o
本発明の電池セパレーター用湿式不織布の目付は、 10〜 350 g / m 2 であり、 好ま し く は 25〜 150g Zm2 で、 より好ま し く は 35〜 100 g /m 2 である。
又その厚みは 30〜1000 mであり、 好ま し く は 70〜 400 i m、 よ り好ま し く は 90〜 250〃 mである。
目付が 10g/m 2 以下で、 厚みが 40^ m以下になると余りにも目 付が薄いために強度が不足し、 活物資の通過も完全に防止出来ず、 又、 電解液の保持量も少な く なるなど電池セパレーターと しての使 用が困難となる。 又、 目付が 350 g Zm 2 を超え、 厚みが 1000〃 m より厚く なると十分な繊維交絡が得られず、 電気抵抗も大き く なり 、 電極活物資を多く 充塡できな く なるこ とから十分な電気容量の電 池が得られないなどの問題が生じるため好ま し く ない。
本発明の電池のセパレータ一用湿式不織布は、 基本的には 1 種以 上の熱可塑性短繊維 20〜95重量%と前記熱可塑性短繊維の融点よ り も 20°C低い融点を有する熱融着性短繊維の混合繊維のスラ リ ーから 、 抄造法によって作成される混抄シー ト に流体流を衝突させて、 上 記混抄シー トを三次元的に立体交絡させた後、 熱処理によつて上記 熱融着繊維の一部又は全部が溶融するこ とにより製造する こ とがで き る。
前記した地合指数 100以下の均一な不織構造の湿式不織布は、 混 抄シ一トの形成工程と柱状流による短繊維の交絡処理条件を以下の 考えに基いて選定するこ とが望ま しい。
地合の良い混抄シー トを得るには本発明の特定範囲の L ZDの短 繊維を用い単糸状に分散された均一な繊維スラ リ ーから、 シー トを 形成する必要がある。 実際に繊維の長さが大き く なるほど繊維の分 散性は低下し、 地合の均一性が悪化してく る。 繊維の塊 (ブロ ッ ク ) を形成せずに単繊維にわかれて存在できる限界濃度は、 繊維の太 さに比例し、 長さの 2乗に逆比例する したがって L Z Dが 1 500を越 える長い繊維長の繊維のスラ リ一を用いて地合指数 1 00以下の混抄 シ一 トを得るのは難しい。
一方、 柱状流による短繊維交絡時における繊維流れによる繊維の 偏在を防止し、 地合指数 1 00以下の均一な交絡シー 卜を得るには次 の点が重要である。 L / Dが 500未満の短い繊維では、 繊維が非常 に動きやすく 、 柱状水流処理で繊維流れを防止するこ とは難しい。 又、 繊維流れを防止し、 且つ柱状水流の軌跡による連続筋を残さな い為には、 揺動しているヘッ ダ一に配置された柱状流ノ ズルと コ ン ベアネ ッ トの距離のほぼ中間位置に 1 0〜 60メ ッ シュ相当の金網を配 置するこ とで、 柱状水流を間歇水流状態に して混抄シー トに連続軌 跡筋を残さずに繊維を三次元交絡処理する方法をとる。 一方、 コ ン ベアーネ ッ ト下部からは該処理水が素早く 除去されるために十分な 吸引脱水が必要である。 この間歇柱状水流による交絡処理は混抄シ ー ト上に破線様軌跡を描き、 従来の連続軌跡で生じるよ うな表面に 軌跡筋が実質的に残らずに均一な不織布構造が得られる。 この際、 吸引脱水の静圧と しては— 30mmH g以上、 好ま し く は— 50随 H g以上で あり、 更に好ま し く は— 80mmH g以上ある と繊維の流れを抑制しなが ら繊維の均一な交絡を達成する こ とが可能である。
熱処理は、 熱可塑性短繊維と熱融着繊維が相互に三次元交絡した 状態を保ちながら、 熱可塑性短繊維と熱融着繊維の交点で熱融着繊 維の一部が溶融して熱可塑性短繊維と繊維接着し三次元交絡構造を 固定させる作用をもつ。 前記、 三次元交絡が全く 無いか、 平均繊維 交絡点間距離 300 mを越える不十分な交絡状態で熱処理された場 合は、 熱可塑性短繊維と熱融着繊維の交点が少なく 、 繊維同志が平 行に並んだ状態で溶融した膜を形成し本発明と区別される。 本発明 の湿式不織布の平均繊維交絡点間距離 300 mの状態まで三次元交 絡した構造体が多く の繊維一繊維交絡点で熱融着繊維の溶融接合し ていることにより、 そのまま固定された結果、 電極の圧縮に対する 抵抗が高い、 電解液抱液性が高く、 電気抵抗が小さい等の優れたセ パレーター性能を発揮する不織構造が得られる。 図面の簡単な説明
第 1 図は、 不織布を構成する繊維を不織布の表面から観たときの 繊維の交絡状態を拡大して模式的に示す図において ( f , ) , ( f 2 ) , ( f 3 ), … ( f 7 )は単繊維を、 ( a J , ( a 2 ) , ( a 3 ·· ( a J は繊維の交差点を表わす。
第 2図は、 本発明の実施例 1 〜 3の電池のセパレーター用湿式不 織布を実装した二次電池の電気容量比とサイ クル回数の相関を比較 例と対照して示す図である。
第 3図は、 本発明の実施例 6〜 8の電池のセパレーター用湿式不 織布を実装した二次電池の電気容量比とサイ クル回数の相関を関係 比較例と対照して示す図である。
第 4図は、 起毛した本発明の湿式不織布の表面圧縮荷重-変位曲 線の一例をモデル的に示す図である。
発明を実施するための最良の形態
本発明に用いる熱可塑性短繊維、 熱融性短着繊維の素材と しては 、 電解液などのアルカ リ、 あるいは酸の液体に対し耐久性を有する 素材が好ま しい。 例えばアルカ リ蓄電池の代表的なものと してニッ ケル , 力 ド ミ ゥ ム型、 ニッケル · 水素型、 ニッ ケル · 鉄型、 酸化銀 , 亜鉛型でボタ ン形状や円筒形状のものがあり、 本発明はこれらに限定される もの ではないが、 この種の様に電解液がアルカ リ を使用する場合には耐 アルカ リ性のポ リエチレン、 ポ リ プロ ピレンなどのポ リ オレフ ィ ン 系、 COOH, S03H, OH, COOM, S03M, OM ( Mは軽、 重金属) などの親 水基を持つポ リ オレフ イ ン系、 ナイ ロ ン 6 、 ナイ ロ ン 66、 ナイ ロ ン 610 、 ナイ ロ ン 612 、 ナイ ロ ン 10、 ナイ ロ ン 12などのポ リ ア ミ ド系 等、 ポ リパラフ ヱニレンテレフ タルア ミ ドなどのァラ ミ ド系等の単 独または組合せたものが好ま しい。
電解液に酸を用いる ものと しては鉛蓄電池が代表的であり、 この よ うな場合には耐酸性のポ リ エチレンテレフタ レー 卜、 ポ リ ブチレ ンテレフ タ レー ト、 などのポ リ エステル系、 ポ リ エチ レン、 ポ リ プ ロ ピレンなどのポ リ オレフ イ ン系、 COOH, S0,H, OH, COOM, S03M, OM ( Mは軽、 重金属) などの親水基を持つポ リ オ レフ イ ン系、 ァク リ ル系、 ポ リパラフ エ二レンテレフ タルア ミ ドなどのァラ ミ ド系等 の単独または組合せたものが好ま し く 用いられる。
本発明の不織布を構成する熱融着繊維は熱融着温度が熱可塑性短 繊維の融点より も 20°C以上低いもので、 熱可塑性短繊維が 2 種以上 の場合は最も低い融点を持つ短繊維より 20°C以上低いこ とが好ま し い。 20°C未満であると熱融着繊維が熱溶融の際短繊維の一部も溶融 する恐れがあり、 目的とする充分な不織布強度が得られず、 又電解 液の保持率が低下する という問題がある。
本発明における熱融着繊維と しては、 従来の熱融着乾式不辙布や 熱融着湿式不織布に使用されている鞘芯型、 サイ ドバイサイ ド型の 複合繊維、 あるいは単一成分タイプなどが挙げられるが、 高い液体 保持性、 引張強度及び寸法安定性を得る という点から特に鞘芯型熱 融着繊維であるこ とが好ま しい。
例えば、 具体的な鞘芯型熱融着繊維と しては、 耐アルカ リ性の場 合は芯成分がナイ ロ ン 66で鞘成分がナイ ロ ン 6 、 或は芯成分はナイ ロ ン 6又は 66で艄成分がナイ ロ ン 612, 6 10などの共重合ナイ ロ ン及 びポ リ エチレン、 ポ リ プロ ピレンなどのポ リ オレフ イ ン、 更には芯 がポリ プロ ピレンで鞘成分がポ リエチレンの様な組合せが好適に用 いられる。
一方、 耐酸性の場合は芯成分がポ リエチレンテレフ タ レー ト、 ポ リ ブチレンテレフタ レー ト等のポ リ エステルで鞘成分が共重合ポ リ エステル又はポ リエチレン、 ポ リ プロ ピレン等のポ リ オレフ ィ ンが 好適に本発明に使用できる。
本発明の不織布は、 熱融着繊維の混合比率が不織布全体の 5〜80 重量%である。 好ま し く は 10〜70重量%であり、 最も好ま し く は 1 0 〜40重量%である。
混合比率が 80重量%を超えると繊維間接着部の増大で繊維表面積 が減少し、 液体の保持率の低下を引き起こす。 一方混合比率が 5 % 未満であると引張強度、 及び寸法安定性が低く なり、 たとえ短繊維 同志が緻密に三次元交絡された不織といえども引張り による巾入れ を起こ し電池の組立時に電極がシ ョ ー トする問題を起したり、 つぶ れ易く なるため、 電解液の枯渴を引き起すなどセパレーター用途と して適さな く なる。
本発明における熱可塑性短繊維、 熱融着繊維の単糸直径はガス通 過性、 短絡防止、 液体保持の点から見て 20 m以下である事が必要 である。 好ま し く は l 〜20〃 mであり、 さ らに好ま し く は 2 〜20〃 mである。 単糸直径が細すぎるとガス通過性が不十分であり、 20 mを超えると単糸間距離が広く なり短絡防止性能が劣るので本発明 の目的を達成するこ とができない。 本発明において、 高性能の電池セパレーター用湿式不織布を得る ために熱可塑性短繊維の単糸の直径が 1 〜 8 mを選択する場合、 緻密で均質なセパレーターが得られ、 短絡防止性能、 抱液性に優れ た性能を有する。 一方、 密閉型二次電池に配置するためには電極反 応によつて生じるガスを通過させる性能、 及び電極の膨らみに対す る圧縮抵抗をより高める事が要求されるため、 前記単糸の直径 1 〜 8 mの熱可塑性短繊維と該短繊維より も太い熱可塑性短繊維を混 合し、 三次元的に緻密に交絡せしめる こ とで優れた短絡防止性能、 抱液性能に加えて、 前述の通気性及び圧縮応力をさ らに向上するこ とが好ま しい。 更に、 この場合 〗 〜 8 / mの熱可塑性短繊維と該短 繊維よ り も太い熱可塑性短繊維の直径の差は、 デニール表示でいう と細いデニールの繊維の 50 %以上好ま し く は 1 00 %以上である こ と が好ま しい。 例えば 0. 5 デニールと 0. 8 デニール、 0. 05デニールと 0. 08デニール、 0. 5 デニールと 1 . 0 デニールなどがある。 この際、 単糸直径 1 〜 8 mの熱可塑性短繊維の不織布全体の好ま しい構成 比率は 5 〜95重量%、 さ らに好ま し く は 1 0〜90重量%、 最も好ま し く は 20〜80重量%である。 該短繊維の構成比率が 95重量%を越える と、 さ らに太い熱可塑性短繊維及び熱融着性繊維の構成比率が小さ く なり、 機械的強度、 寸法安定性及び通気性等の低下が起こ り好ま し く ない。 一方、 該短繊維の構成比率が 5 重量%未満では短絡防止 性能や電解液の保持性能、 抱液性能が低下し汎用用途のセパレータ 一には充分に適用可能であるが高性能用途のセパレ一ターと しては 好ま し く ない。
本発明において単糸直径 1 ~ 8 z mの熱可塑性短繊維は直接的に 紡糸によって得られる繊維であってもよいが、 複合繊維と呼ばれる 分割性又は海島性繊維であっても良い。 複合繊維の場合は、 不織布 にする前に水流や機械的力、 溶解抽出によ り単糸直径が 1 〜 8 / m の短繊維にしておいて、 湿式法により不織布と しても良いし、 不織 布と した後に水流や機械的力、 溶解抽出により単糸直径 1 〜 8 a m にしても良い。 均一で地合指数の良い湿式不織布を得るには前記の 直接的な紡糸によって得られる極細繊維、 又は複合繊維を極細化し た後、 不織布の材料とする方法がより好ま しい。
単糸の断面は円形であっても非円形の種々の断面であってもよい 。 単糸の断面が円形の場合は直接的にその直径を測定した値でもつ て単糸の直径と し、 異形断面の場合は重量法によりその繊度 (デニ ール) を測定し、 このデニールを単糸が円形と仮定した場合の次式 で得られる平均直径でもって表すこととする。
D = ^ ( 4 <5// ( π- 9 ΐ05 Χ χ) )) χ ΐ04
(こ こで Dは単繊維直径 ( a m) 、 pは単繊維を構成する高分子重 合体の密度 ( gZcm3)、 dは単繊維繊度 (デニール) 、 7Γは円周率 である。 )
又本発明における熱可塑性短繊維及び熱融着繊維の繊維長 L (匪 ) と単糸直径 D (態) の比 LZDは、 0.5X 103 〜 2.0 X 10 ' を満 足することが好ま しい。 LZDは繊維同士の交絡のし易さと密接な 関係があり、 0.5X 103 未満の場合流体流を衝突させると繊維は動 き易く交絡も進み易いが、 反面、 繊維間相互作用の接触点の絶対数 が少なく高強度が発現できない。 又、 2. 0 X 103 を超える場合は、 交絡時に繊維の動きが抑制され繊維同士の絡みが小さ く なり高強度 が発現できない。
繊維相互の交絡の程度は平均繊維交絡点間距離を測定することで 表すことが出来る。
即ち、 繊維の交絡が高ま り、 繊維単糸が緻密に絡み合う と この平 均繊維交絡点間距離が短く なる、 一方、 絡み合いが少ない場合は同 距離が長く なる。 本発明の電池セパレーター用湿式不織布は、 三次元交絡構造が断 面内で一様であり この平均繊維交絡点間距離が 300 m以下である こ とが必要である。 好ま し く は 250 m以下、 より好ま し く は 200 m以下、 最も好ま し く は 1 50 m以下である。 平均繊維交絡点間 距離が 300 m以下の緻密な交絡形態を取るこ とで、 短繊維からな る湿式不織布特有の均一性をもちながら、 湿式不織布の欠点とされ てきた強度不足を見事に解決したものである。 その結果、 本発明の 電池セパレ一ター用湿式不織布は、 従来に無い均一な地合を有する ため薄い目付のセパレ一ターであっても電極活物資のマイ グレーシ ヨ ン (セパレーターの繊維間空隙を活物資が通過するこ と) を抑制 する こ とが出来、 耐シ ョー ト性及び充放電を繰り返す二次電池のサ ィ クル性能が非常に改善される ものである。 又、 強度が強いこ とは 、 電池セパレーターの目付を薄く するこ とが可能であり、 その分だ け電極の活物質を多く 電池に組み込むこ とが可能となるので電池の 高容量比が達成できるのである。
更に本発明の電池セパレーターは平均繊維交絡点間距離 300 m 以下という交絡構造に起因している力〈、 電池セパレーターと しての 内部抵抗が低いために二次電池の充電電圧が低く 、 放電電圧が高く とれると言う優れた性能を発揮する もので有り、 更には、 圧縮抵抗 が高い為に二次電池で充放電を繰り返すときの電極の厚み変化に対 する抵抗が強く 、 電池セパレーターが圧縮されてセパレーター内の 電解液が減少し内部抵抗が上昇したりする、 などの問題が起こ り に く いのである。 従って、 本発明の繊維交絡点間距離が 300 m以上 で繊維の絡みの程度が低い場合は先に述べた様な電池セパレーター と しての特徴、 効果を発揮し得ないのである。
本発明の電池セパレーター用湿式不織布は目付の均一性が特徴で あり、 その地合指数が 1 00以下で有るこ とが好ま しい。 より好ま し く は 80以下である。
地合指数が 100を超えると目付斑が大き く なり、 目付の薄い部分 からの電極活物資の通過現象を抑制することができず、 電池の内部 短絡を招いたり、 二次電池のサイ クル性能回数を短く する等の問題 が生じる恐れがある。
又、 本発明の湿式不織布はその電気抵抗が 1.0Ω以下が好ま しい 。 より好ま しく は 0.8Ωである。 電気抵抗が 1.0Ω以上になると二 次電池の充電電圧が高く なつたり、 所定の放電電圧が得られない等 の問題を生じる可能性がある。
更に、 本発明の湿式不織布の圧縮応力が 3.0kgZcnr' 以上で有る と、 放電時の電極の膨潤に対する抵抗が大き く電池セパレーターが 濱れ難い。 より好ま しく は圧縮応力 3.5kgZcn^ 以上である。 圧縮 応力が S. OkgZcm2 以下になると、 経時的に電池内部でセパレ一タ 一がつぶされ、 へタ リが生じ内部抵抗の上昇を招く などの問題を起 こすこと力くある。
本発明の電池セパレーター用湿式不織布の目付は、 10~ 350 g / m 2 であり、 好ま しく は 25〜 150g Zm 2 で、 より好ま しく は 35〜 100g /m 2 である。
又、 その厚みは 30〜1000〃 mであり、 好ま しく は 70〜 400〃 m、 より好ま しく は 90〜 250 mである。
目付が 10 gノ m 2 以下で、 厚みが 40 m以下になると余りにも目 付が薄いために強度が不足し、 活物資の通過も完全に防止出来ず、 又、 電解液の保持量も少なく成るなど電池セパレーターと しての使 用が困難となる。 又、 目付が 350 g Zm 2 を超え、 厚みが 1000 m より厚く なると十分な繊維交絡を得られず、 電気抵抗も大き く なり 、 電極活物資を多く充塡出来なく なる事から十分な電気容量が得ら れないなどの問題が生じるため好ま しく ない。 本発明の電池セパレーターにおいて、 上記目付と厚みから計算さ れる湿式不織布の見掛け密度は 0.26g /cm:' 以上が好ま し く 、 よ り 好ま し く は 0.3〜 0.7 g /cm3 、 さ らに好ま し く は 0.35〜 0.6 gノ cm3 である。 見掛け密度が 0.26g Zcnr' 未満になると、 ガス通過性 は高いが、 電解液の抱液性が不足し、 電極に電解液が吸い取られや すいため、 密閉型二次電池に配置した場合、 充放電サイ クル性能が 低く なる問題が生じやすい。 一方、 見掛け密度が 0.7 g Zcm3 以上 になると逆に通気度の低下が著し く 、 電極反応による発生するガス が移動し難く なる為、 密閉型二次電池のサイ クル特性の性能低下を 引き起こ し易い。
本発明の電池セパレーター用湿式不織布はその製造方法が抄造、 水流交絡という水を多量に使うプロセスの為、 紡糸に由来する繊維 表面の界面活性剤をほとんど全て洗い流され、 熱可塑性繊維のポ リ マー自身の骨格に親水基 (C00H, S0,H, OH, C00M, SO.M, 0M (Mは 軽、 重金属) 等) を持たない場合は、 酸、 アルカ リの電解液に対す る親和性は乏しい。 本発明の湿式不織布に親水性を付与する方法と しては、 界面活性剤を付与する方法や発煙硫酸、 ク ロルスルホ ン酸 等の化学薬品によるスルホ ン化、 フ ッ素化等の方法、 更には、 コロ ナ放電、 プラズマ放電等によ り カルボニル基、 カルボキシル基、 ヒ ドロキ シル基等を繊維表面に形成させる方法等を適宜選択する事が 出来る。 界面活性剤処理による親水化処理の場合は、 界面活性剤の 不織布に対する付着量が 2 wt%以下である こ とが好ま しい。 より好 ま し く は 0.05- 1 重量%以下であり、 電解液の抱液性を低下させな いため、 密閉型二次電池のサイ クル性能を向上する効果がある。 付着量が 2 wt%を超える と親水性能が高く 吸液速度は満足する も のの電解液中への脱落が多 く なり界面活性剤の再付着が電極板上に 行われるため、 時間の経過と と もにセパレ一ター中の電解液が電極 板に移行するという問題が生じ易い。
界面活性剤の種類と しては、 一般的な親水化剤が適用できるが、 好ま し く は耐アル力 リ性を有するポ リ オキシエチレンアルキルエ ー テル、 ポ リ オキシエチ レ ンアルキルフ ヱニルエーテル等のノ ニオ ン 系界面活性剤である。
ノニオン系界面活性剤の親水性あるいは親油性を表す H LBは特に 限定する ものではないが 1 0〜 1 7、 好ま し く は 1 2〜 1 6がよい。
H L Bが 1 0未満の界面活性剤は水への溶解性が極めて悪く イ ソプロ ピルアルコール等の溶剤と併用するこ とになり製造工程が複雑にな な
HL Bが 1 7を超える界面活性剤は目的である親水性能が低く 、 本発 明の電池用セパレーターを作り難い。
本発明の電池セパレータ一用湿式不織布は、 表面に起毛を有する こ とでセパ レータ一内の電解液がさ らに電極に吸い取られに く く な り電解液の抱液性能が向上すると共に、 その起毛による微細な空隙 は電極でのガス吸収反応を促進する効果が見いだされ、 それを配置 した密閉型二次電池はさ らに優れたサイ クル性能と過充電特性の向 上効果をしめすものである。
原理については定かではないが、 表面に起毛を有するこ とで、 不 織布繊維と電極との接触密度が高められ、 構成繊維の単糸レベル、 ミ ク ロ ンメ ーター細さのレベルで且つ高密度で電極に接触するため
、 起毛のない部分に生じる空隙も極めて微細であり且つ不連続にな る。 その結果、 セパレーター構成繊維の起毛繊維と電極の接触点が 高密度ながらも不連続であり、 微細な多数の空隙を含む為、 セパレ 一夕一から電極への電解液の移行が抑制されるのである。 従って、 二次電池の充放電サイ クルにと もなう電極の厚み増加に起因する圧 縮に対しても十分に抗する電解液保持能力を有するため電極への電 解液の移行で生じる内部抵抗の上昇は低く 、 極めて高いサイ クル寿 命の向上効果が得られる。 更に、 本発明の起毛を有する電池セパレ 一ター用湿式不織布と電極との間に生じる緻密な不連続空隙はニッ ゲル一力 ド ミ ゥム密閉型二次電池の場合における気相一液相一固相 の 3相界面の酸素ガス吸収反応をさ らに促進する効果を示し、 サイ クル性能と過充電性能を高める作用効果を表すとおもわれる。
表面の起毛の程度の好ま しい範囲については起毛の長さ、 密度を 定量的に評価する方法を検討した結果、 厚み方向の圧縮応力を測定 することで表す事ができるこ とをみいだした。 即ち、 表面起毛が完 全に伏せられた状態の不織布厚みから 0. 1IM1離れた位置での反撥応 力 (以後、 起毛応力 F と称する) が大きい場合は起毛が長く 、 密度 が高い。 逆に、 起毛応力 Fが小さいこ とは起毛が短く 、 起毛密度も 小さいといえる。 本発明の電池用セパレーターの起毛応力 Fの好ま しい範囲は 0.5〜5.0 、 より好ま し く は 1.0〜4.0 、 更により好ま し く は 1.5〜4.0 である。 起毛応力 Fが 0.5以下では起毛量が少な く 、 長さ も短い為、 本発明の目的である十分に密度の高い起毛を介 しての電極との不連続な接触が十分達成されず、 電解液の電極への 移行を抑制する効果が不十分である。 一方、 起毛応力が 5.0を超え る様な場合は起毛の脱落等の別な弊害をまねく 恐れがあるので好ま し く ない。
次に本発明の電池セパレ一タ一用湿式不織布の製造方法について 説明する。
単糸直径 Dが 20 で、 繊維長 L (mm) と単糸径 D (mm) の比 L ZDが 0.5x 103 〜 2.0 X 10 ' である 1 種以上の熱可塑性短 ¾維と 熱融着繊維を準備して、 これを 0.1〜 3重量%の濃度になるよう に 水に分散させスラ リ ーを調合する。 前記 L / Dの比が 0. 5 X 10 ' 〜 1.5x 103 範囲である とより均一な地合の不織布が得られ好ま しい 例えば LZDが 0.5X 103 以下のような太く て短い短繊維の場合 は抄造シー トは均一な物が得られるが、 その後の水流交絡の際に短 繊維が動きやすく 糸流れ現象をおこ し、 表面凹凸で目付斑の激しい 強度の弱い交絡シー ト しか得られず地合指数 100を越え好ま し く 無 い。 一方、 LZDが 2.0X 103 以上になると短繊維の分散性が低下 するため、 抄造時に繊維の絡み合いによる繊維固ま り欠点が増加す ると共に、 ゥロ コ雲状の目付斑が発生し地合指数 100以上となり好 ま し く ない。
このスラ リ一を長網式或は傾斜型長網式、 丸網式の抄造機で抄造 する。 次いで得られた混抄シー トをコ ンペァネ ッ 卜上に載せ、 上部 のノ ズルから噴射される円柱形状の流体流にて交絡させる。 こ こで いう流体とは液体が好ま しいが、 取扱易さ、 コス ト、 衝突エネルギ 一の大きさ等の点から水が最も好ま しい。
水を用いる場合水圧は、 用いる原糸の種類及び混抄シー 卜の目付 量により異なる力 繊維間の充分な交絡を得るためには 3〜 100kg /cm2 、 好ま し く は 3〜50kgZcm2 の範囲で衝突させる。
同一繊維の場合低目付及び処理速度が遅い程水圧は低く 、 高目付 及び高速になるほど高水圧に設定すればよい。 又、 同一目付の場合 、 ヤング率の高い原糸の時には高水圧で処理すると本発明の目的と する高強度が得られる。 水流を噴射する ノ ズルの径は 0.01〜 1 mmが 使用可能であるが、 シー トの表面荒れ及び穴あき防止を考慮し、 よ り好ま し く は 0.05〜0.3mm 、 更に好ま し く は 0. 08〜0. 2mm で処理さ れる、 ノ ズルピッチの好ま しい範囲は 0.5mm〜 10mmである力 ノ ズ ルヘッ ダーを以下に記載するような揺動を実施する場合はノ ズルピ ツチが狭いと ノ ズル軌跡が緯方向に重なり、 緯段様の凹凸斑、 繊維 流れを引き起こ し地合斑となる。 従って、 ノ ズルヘッ ダーを揺動す る場合のノ ズルピッチの好ま しい範囲は 1〜1 0mm、 より好ま し く は 2〜 5 mmである。 水流の軌跡形状は混抄シー 卜の進行方向に対し並 行な直線状であっても良いが、 ノ ズルを取り付けたヘッ ダーの回転 運動やシー トの進行方向に直角に往復する振動運動によって得られ る曲線形状の方が好ま し く 、 特に回転運動により得られる幾重にも 重なった円形状の水流軌跡の交絡は、 ノ ズル 1 錘あたりのシー 卜に 対する水流の噴射面積が大き く なり効率的であると同時に、 商品価 値を低下させる水流軌跡の斑が見えに く く なる。
さ らに、 噴射ノ ズルと シ一 卜を載せたコ ンペァネ ッ 卜の距離は、 1 00mm以下、 好ま し く は 50mm以下で、 該噴射ノ ズルと コ ンペァネ ッ 卜の間、 例えばコ ンペァネ ッ トカ、ら 25 mmの距離に 1 0メ ッ シユカ、ら 80 メ ッ シュの金網を挿入し、 連続の柱状水流を間歇の柱状水流及び散 水流に換え、 抄造シー トを交絡処理する こ とは連続軌跡による地合 の斑発生を抑制し、 抄造シー トの初期の均一性を維持し、 且つ十分 な交絡を得るためにも最も好ま しい態様といえる。
この時、 ノ ズルへ ッ ダ一の揺動と上記 1 0〜 80メ ッ シ ュの金網揷入 は両方実施して初めて本発明の好ま しい態様となる。 即ち、 ノ ズル ヘッ ダ一を揺動せずに金網を挿入した場合は、 間歇の柱状水流は達 成されず、 ノ ズル直下の金網の開孔状態によって連続直線の水流軌 跡を描いたり、 金網の針金に柱状流が遮られ、 全く 水流軌跡の無い 状態になったり して、 本発明の好ま しい態様である間歇の柱状水流 による シー 卜全面に波線状の軌跡を描く 交絡態様を得るこ とは出来 ない。 ノ ズルヘッ ダ一を固定し、 挿入した金網を揺動させる態様も 考えられる力く、 交絡の網羅性をあげる点から考えると ノ ズルヘッ ダ 一を揺動させ、 挿入金網は固定する方が好ま しい。 この様な、 間歇 柱状水流による連続ではない波線様の曲線形状軌跡を描く 交絡処理 により、 地合指数 1 00好ま し く は 80という極めて均一な地合を湿式 一柱状流交絡不織布で達成する。
更に、 コ ンベア一ネ ッ ト下部からは該処理水が素早く 除去される ために十分な吸引脱水を行う。 この際、 吸引脱水の静圧と しては一
30圆 H g以上、 好ま し く は— 50 mmH g以上であり、 更に好ま し く は— 80 mmH g以上あると繊維の流れを抑制しながら繊維の均一な交絡を達成 するこ とが可能となり、 地合を乱さずに高強度の湿式不織布をえる 好ま しい態様である。
噴射ノ ズルとネ ッ 卜 シー トに対する水流処理の方法は、 表裏交互 に水流を噴射する方法でも良いし、 片面だけを処理する方法でも良 い。
又、 処理回数も目的に応じて最適条件を選択すれば良い。 これら 混抄シー 卜の水流処理の水圧条件は目的とする充分な繊維交絡を得 、 且つ均一性を得るような条件下で選択させるが、 例えば 10〜 1 00 g / m 2 の比較的小さい目付の混抄シー 卜の場合は 3〜40kg// cni 2 の水圧で片面或は両面処理するのが好ま しい。
いずれの条件にしても、 交絡処理は平均繊維交絡点間距離が 300 / m以下、 好ま し く は 200 // m以下、 更に好ま し く は 1 50 // m以下 に達するまで交絡させなければならない。
この交絡処理によ って混抄シー トの構成繊維は水流によって移動 し相互に絡み合って強固な結合を得るに至る。 すなわち構成短繊維 、 熱融着繊維は相互に三次元立体交絡しており、 このよう にして得 られる交絡結合はきわめて強固である。
平均繊維交絡点間距離が mを超える場合には充分な機械強 度が得られず、 又、 不織布断面方向への繊維配列が不足するため充 分な圧縮応力が得られず電気抵抗も高く なるなど、 実用に供するこ とが出来る様な電池用セパレーターが得られない。
次いで、 得られた交絡シー トを熱処理するこ とによって熱融着繊 維の一部または全部を溶融せしめる。 熱処理条件はガスの通過性や 電解液の保持率を損なわないよう にするため、 非接触式の熱風乾燥 機を用いて 5秒〜 10分の短時間処理が好ま しい。 熱処理温度は熱融 着繊維の融点以上、 短繊維の融点以下の温度に設定する。
以上の様な熱処理により、 熱可塑性短繊維と熱融着繊維が相互に 三次元交絡した状態を保ちながら、 熱可塑性短繊維と熱融着繊維の 交点で熱融着繊維の一部が溶融して熱可塑性短繊維と繊維接着して いる。 前記、 三次元交絡が全く 無いか、 平均繊維交絡点間距離 300 mを越える不十分な交絡状態で熱処理された場合は、 熱可塑性短 繊維と熱融着繊維の交点が少な く 、 繊維同志が平行に並んだ状態で 溶融した膜を形成するので本発明とは区別される。 従って、 本発明 は平均繊維交絡点間距離 300 mの状態まで三次元交絡した構造体 が多く の交絡点で熱融着繊維の溶融により、 そのまま固定された結 果、 電極の圧縮に対する抵抗が高い、 電解液抱液性が高く 、 電気抵 杭が小さいなどの優れたセパレーター性能を発揮する ものと考えら れる。
このよう にして得られた新規な不織布は、 例えば電池用セパレ一 ター等の用途に使用できる力 <、 厚みの調整がいる場合はカ レ ンダー 乾燥機やエンボス機等で圧着処理してもよい。 しかしこの場合ガス 通過性と電解液の保持率を極度に低下させないような条件を選択し なければならない。 又、 電解液との初期親和性を高めるために親水 処理を施すこ と も好ま しい。 親水化処理は一般に用いられている界 面活性剤を付着させる方法、 スルホ ン化処理、 フ ッ素化処理、 ブラ ズマ処理、 コ ロナ放電処理などの方法が実施できる。
カ レンダ一機やエンボス機等による圧着処理工程と親水化処理工 程の順序は本発明に於いてどち らが先でも良いが、 より均一な親水 化処理を得よ う とすれば親水化処理をおこなった後に、 圧着処理を 実施する方が好ま しい。 即ち、 圧着処理后に親水化処理を実施した 場合、 繊維表面に処理斑を起こ し易く なるため、 電解液の浸透斑が 生じやすく 好ま し く ない。
この様にして得られた湿式不織布は、 正極と負極の分離、 短絡防 止、 電解液の保持性の他、 二次電池においてはガス通過性や、 繰り 返しの充放電による前記性能の低下が小さいなどの性能が要求され る電池セパレーター用途に有用である。
本発明の湿式織布は上記の様な構成と特徴を有する こ とで、 負極 に亜鉛、 正極に二酸化マンガンを用いるマンガン電池、 電解質にァ ルカ リを用いるアル力 リ マンガン電池等の一次電池用のセパレータ 一と しても使用可能であるが、 充電一放電の繰り返し使用がなされ 、 その繰り返しによってセパレ一ターの機能が変化しないこ とが要 求される二次電池用のセパレ一ターと して好適に用いられる。
二次電池の代表的なものと しては、 電解質に硫酸を用い、 負極に 鉛、 正極に二酸化鉛からなる鉛蓄電池、 電解質にアルカ リ を用い、 負極に力 ド ミ ゥム、 正極にォキシ水酸化ニッケルからなるニッ ケル 力 ドミ ニゥム型アルカ リ蓄電池、 及び負極の力 ド ミ ゥムの代わり に 鉄粉を用いるニ ッ ケル · 鉄型アルカ リ蓄電池、 更に、 水素 (水素吸 蔵合金) を負極に用いるニッ ケル · 水素型アルカ リ蓄電池等があり 、 本発明のセパレーターを好適にこれら二次電池に配置、 適用する 事が出来る。 二次電池の要求性能と しては一次電池同様に起電力が 高く 、 内部抵抗が小さい、 電池の単位質量 · 体積あたり取り出 し う る電気容量が大き く 、 自己放電が小さい等に加えて特に、 充放電の サイ クル性能が高い事、 及び過充電 , 過放電時における安全性の高 いこ と及び性能低下が無いこ とが求められる。 充電時の水の分解に よって生じる酸素や水素の発生を抑制するか、 消費する こ とによ り 密閉化が可能となり、 上記代表的な二次電池は密閉型二次電池と し て、 ポータブル機器の電源と して用いられている。 筒型の密閉型ァ ルカ リニ次電池にセパレ一ターを配置する場合不織布は一定張力で 縦方向に引張られ、 厚み方向に圧縮されて装着される。 従って、 圧 縮された状態で且つポーラ ス構造を有し極めて親水性の高い電極に 抵抗して電解液をセパレーター内部に保持し続ける能力が特に要求 される。 更に、 充放電の繰り返しに伴い極板の体積変化 (水酸化二 ッゲルと 3—ォキシ水酸化ニッ ケルの密度変化に起因する) が起き 、 セパレーターから電極への電解液の移行、 即ちセパレーター内の 電解液の枯渴 ( ドライアウ ト) が起こ り易いため、 これを防止する に十分な液体保持性能が要求されるが、 本発明のセパレーター湿式 不織布は液体保液性、 液体抱液性に優れるため、 圧縮されたセパレ 一ター内部に十分に電解液を保持する こ とが可能なため、 内部抵抗 の上昇が抑えられ、 サイ クル寿命の高い二次電池を提供出来る。 一 方、 充電時には水の加水分解により正極で酸素ガスが発生し電池の 内圧が上昇するが、 発生した酸素ガスは速やかにセパレーターを通 過して負極での酸素吸収反応により消費されなければな らず、 本発 明の湿式不織布によるセパレーターは、 優れたガス通過性、 表面の 適度な濡れ特性を有しており、 過充電時の内圧上昇を抑制し、 安全 弁の作動による電解液吹き出 しを防止する優れた二次電池を提供す る。 又、 充放電の過酷な繰り返しに対して耐え得る短絡防止性能 ( 耐シ ョー 卜性) が要求されるが、 均一で緻密な交絡構造を有し、 地 合の斑がない本発明のセパレ一ターは電極活物質及び充放電時に極 板に析出する樹枝状の金属等によるセパレーターの突き破りを防止 し寿命の長い二次電池を提供するこ とができる。 又、 昨今電気器具 のポータブル化、 小型化が急速に進み、 これらの器具に電気を供給 する二次電池にも小型化、 高容量化、 寿命、 サイ クル性能の延長が 要求され、 これらの高性能電池を提供するには電池セパレーターの 高性能化に負う ところが大きい。 即ち、 電池の高容量化を達成する ためには電極活物質を多く充填する必要があり、 必然的に電池セパ レーターは薄目付 · 薄厚み化が要求される。 従って、 薄目付け · 薄 厚みセパレーターにおいて、 優れた電解液の抱液性、 ガス通過性、 短絡防止性能が要求されるが、 本発明の湿式不織布は、 高強度でバ ラツキのない均一な地合、 優れた液体抱液性等の性能から全く この 種の高性能二次電池に好適に使用 し得る。 実施例
以下実施例でもって本発明をさ らに詳しく説明する。 実施例中、 測定値は以下の方法によって測定したものであり%はすべて重量% である。 温湿度が影響する試験試料は、 室内又は装置内にて、 標準 状態 (温度 : 23 ± 3 °C、 相対湿度 65 ± 5 % ) に放置し、 試料の状態 を調整する。
1 ) 厚さ
20 X 20 cmの大きさの試験片を 3枚採取し、 一枚につきそれぞれ異 なる 1 0箇所をマイ ク ロメーターで測定し、 その平均値を示した。
2 ) 目付
厚さ試験に使用した 20 x 20 cmの大きさの試験片を標準状態に調整 後、 その重量を測定し、 1 平方メー トル当たりの重量 (目付) に換 算する。
3 ) 引張強度 (タテ方向)
J I S L I 096 ス ト リ ップ法に準じ、 不織布のタテ (進行) 方向につ いて測定する。 試験片 (タテ方向長さ : 1 8 cm xョコ方向 : 2. 5 cm) を 5枚採取し、 つかみ間隔 : 1 0 cm、 引張速度 : 200議ノ分で、 引張 速度試験機により試験片の切断される最大荷重を測定する。
4 ) ガス通過性 JIS L1096 フラ ジール法に準じ測定する。 13X 13cm以上の試験片 を 5枚採取し、 差圧 12.7mmaq時の通気度を測定する。
5 ) 液体保持率
10cm X 10cmの正方形にカ ツ 卜 した試験片を 3枚採取し標準状態に 調整して重量 (W , )を 1 mgまで測定する。 次に 31%濃度の水酸化力 リ ウム水溶液中に 1 時間以上広げて浸した後、 液中から引き上げて 正方形の 1 角を上に して 10分間吊 した後の試験片重量 (W2)を測定 し、 保液率 (%) の (W 2 - W , )/W 3 x 100 を算出 し保液性を評 価 る。
6 ) 液体吸液速度
20cmx 2.5cmの試験片を 5 枚採取し標準状態に調整する。 試験片 の下端 5 mmを 31 %水酸化カ リ ウム水溶液に垂直に浸漬し、 毛細管現 象による水酸化カウム水溶液の 30分後の上昇高さ (mm) を測定し、 液体吸液速度を評価する。
7 ) 液体抱液率
3.4cm X 5 cmの形にカ ツ 卜 した試験片を 2 枚採取し標準状態に調 整して重量 ( a Jを 1 mgまで測定する。 次に 31 %濃度の水酸化カ リ ゥム水溶液を同量 ( a 保持させる。 試験片を濾紙 (ADVANTE No4 A)上に置き荷重 100 gをかける。 30秒後の試験片の重量 ( a .)を測 定し、 抱液率 (%) の a 」 ノ a , X 100 を算出 し抱液性能を評価す
8 ) 地合指数
フ ォ ーメ ー シ ョ ンテスタ ー (FMT- 1000A : 野村商事 (株))によ り 測定する。 15cmx 15cmの試験片を 3枚採取し、 拡散板上に置かれた 試料の下から直流定電圧 ( 6 V 30W ) のタ ン グステ ン電流で照射す る。 CCD カメ ラによ り lOOmmx 100mm の範囲を撮影した透過像を 1 28 X 128 の画素に分解し、 各々の画素の受ける光の強さを測定し、 その透過率から各々の吸光度が算出される。 地合指数は測定サンプ ル中の各微少部位 (0.78mm X 0.78mm) の吸光度の標準偏差 ( σ ) を 平均吸光度 ( Ε ) で除した値 (下式) であり、 微少単位目付のバラ ツキを最も端的に表しており、 値が小さいほど均一性が高く 、 良い 地合といえる。
地合指数 = 1000 X σ Ζ Ε
9 ) 電気抵抗
3.4cmx 5 cmの試験片に、 試験片重量の 90%相当の 31 % K0H水溶 液を注液し、 厚み 3 mmの二ッケル板でサン ドィ ッチ状に挟んだ後に 標準状態でミ リオームメータ一で電気抵抗を測定する。
10) 圧縮応力
5 mmx 5 mmの試験片 (20°C、 65%RH) を圧縮し、 厚みが初期厚み の 80 %に達した時の応力を KES-Fシステムの圧縮試験機で測定し、 圧縮応力とする。
11) 起毛応力 Fの測定試験
起毛面を柔らかい豚毛ブラ シで逆目に整毛したサンプルの表面圧 縮荷重 -変位曲線 (第 4図) を KES-3圧縮試験機で測定する。 荷重 7 g /cm2 での厚みを起毛が伏せられた状態のサンプル厚みと し、 このサンプル厚みに + 0. lmm 加えた厚みでの応力を読み取り起毛応 力 Fとする。
12) 交絡点間距離
ここでいう交絡点間距離とは、 特開昭 58— 191280号公報で公知の 次の方法で測定した値のことであり、 繊維相互の交絡密度を示す 1 つの尺度と して値が小さいほど交絡が緻密であることを示すもので ある。 第 1 図は、 本発明による不織布シー トにおける構成繊維を表 面から観察した時の拡大模式図である。 構成繊維を f , , f , f 3 …と し、 そのうち任意の 2本の繊維 f , , f 2 が交絡する点を a , で、 上になっている繊維 f 」 が他の繊維の下になる形で交差する 点までたどっていき、 その交差した点を a : とする。 同様に、 a 3 , a 4 …とする。 次に、 この様にして求めた交絡点間の直線水平距 離 a , 〜 a 2 , a z 〜 a 3 …を測定し、 これら多数の測定値の平均 値を求め、 これを交絡点間距離とする。
13) 電池サイ クル特性試験
本発明の電池セパレ一夕一を用い公称容量 1.2AHの SCサイズの密 閉型ニ ッ ケル一力 ド ミ ゥ ム二次電池を作成しサイ ク ル特性試験を行 つた。 この時の条件は、 1.8Aの電流で 1 時間充電を行った後、 1 .2Aの電流で終止電圧 1.0Vまで放電する という ものである。
14) 電池過充電特性試験
本発明の電池セパレーターを用い公称容量 1.2AHの SCサイズの密 閉型ニ ッ ケル一力 ド ミ ゥム二次電池 100個を作成し過充電特性試験 を行った。 1 週間充電し続けた後、 二次電池の安全弁が作動して内 部の電解液が漏れた (フ エ ノ ールフタ レイ ン指示薬で検出) 個数を 百分率で表す。
〔実施例 1 〕
繊維長 L = 7.5mm である 0.5デニール (単糸直径 D = ". Su m ; L / D = 960) のナイ ロ ン 66短繊維 (融点 250°C ) を 80%、 L = 10 mmである 2 デニール (単糸直径 D = 14. 1mm ; L / D = 709)の熱融着 繊維ュニメ ル ト UL- 61(ュニチ力 (株) 製、 芯部 : ナイ ロ ン 6 、 鞘部 : 共重合ナイ ロ ン) 20%を水に分散し 1 %濃度のスラ リ ー液に調整 した。 このスラ リ ー液から傾斜型長網抄紙機により 75 g Zm ' の混 抄シ一 トを得た。 得られた混抄シー トを 80メ ッ シュの金網に乗せ、 金網は 12m/分で移動させた。 該金網から上方へ 50 離れて配置さ れており ノ ズル径 0. 15mmのノ ズルをノ ズルピッチ 2 mmで装着したノ ズルへッ ダ一を 285 r pmで円運動させ、 金網上の シー ト と ノ ズルの間 、 金網から 25mmの位置に 40メ ッ シュの金網を挿入し圧力 30kgZcm2 の水を噴射させて間歇柱状水流を混抄シー トに衝突させた。 またそ の際コ ンペァネ ッ 卜の下部からは静圧— 80mmHgで脱水吸引 し、 シ一 ト上の水を連続的に且つ速やかに除去するこ とにより、 水流軌跡や 繊維流れによる地合低下を引き起すこ とな く 短繊維、 熱融着繊維を 交絡させた。 更に同じ処理を 6回行った後、 シー トの表裏を逆転さ せて同じ処理を 7 回施した。 続いてノ ズルへッ ダーを 420rpmで回転 させ、 シー 卜 とノ ズルの間の金網を 40メ ッ シユカ、ら 60メ ッ シュに換 えて挿入し、 水圧 25kgZcm2 の散水流で表裏各 2 回ずつ処理して交 絡シー トが完成した。 交絡シー トには、 柱状水流による連続的な軌 跡筋は全く 認められなかった。
得られた交絡シー 卜を温度を 180°Cに設定したピ ンテ ンター乾燥 機で乾燥する と同時に交絡シー ト間のュニメ ル ト 1^-61 の鞘部 (融 点 140°C) を溶融せしめた。 次に、 電解液との初期親和性を向上す る目的でノニオ ン系界面活性剤シ ン トール KP (高松油脂 (株) 製) 0 .2%を含有する水溶液に浸漬した後、 付着率が不織布の 200%にな るように絞り、 温度を 160°Cに設定したピ ンテ ンター乾燥機で乾燥 した。 次いで該交絡シー トを 100¾に加熱した一対のロ ールに導き 、 線圧 30kg/ cmでカ レ ンダ一加工を施して目付 72 g /m 、 厚さ 0. 18mmの電池のセパレーター用の不織布を得た。
〔実施例 2 〕
繊維長 L = 7.5mm である 0.5デニール (単糸直径 D = 7.8 z m ; L Z D = 960) のナイ ロ ン 66短繊維を 40%、 及び繊維長 L = 10關で ある 1.0デニール (単糸直径 11〃 m ; L / D = 940) のナイ ロ ン 66 の短繊維を 40%、 L = 10mmである 2 デニール (単糸直径 D = 14. 1〃 m ; L Z D = 709)の熱融着繊維ュニメ ル ト Uい 61 (ュニチ力 (株) 製 、 芯部 : ナイ ロ ン 6 、 鞘部 : 共重合ナイ ロ ン) 20%を水に分散し調 整した 1 %濃度のスラ リ ー液から、 実施例 1 と同じ方法で 75g Zm 2 の混抄シー トを得た。 更に実施例 1 と同 じ方法で交絡処理、 界面 活性剤付与、 カ レンダー加工を行い目付 72g /m 2 、 厚さ 0.18 の 表面に軌跡筋のない電池セパレーター用の不織布を得た。
〔実施例 3 〕
実施例 1 と同様に繊維長 L = 7.5mm である 0.5デニールのナイ 口 ン 66短繊維 80%、 L二 10mmであるュニメ ル ト Uい 61 20%、 からなる 混抄シ一 トを 80メ ッ シュの金網に乗せ、 実施例 1 で処理水圧 30kg/ cm2 を 25kgZcm2 に変え、 25kgZcm2 を 20kgZcm に変えた以外は 実施例 1 と同じように処理して交絡シー トを得た。 このシ一 トを実 施例 1 と同じ方法で界面活性剤付与、 カ レ ン ダ一加工を行い目付 72 g / m 2 、 厚み 0.18mniの地合斑や軌跡筋のない均一な電池のセパレ 一夕一不織布を得た。
〔比較例 1 〕
実施例 1 と同様に繊維長 L = 7.5πιπι である 0.5デニールのナイ 口 ン 66短繊維 80%、 L = 10mmであるュニメ ル ト Uい 61 20%、 からなる 混抄シー トに実施例 1 に記載の流体流処理を全く 施さず、 温度 160 °C、 圧力 TOg Zcn^ の条件で熱プ レス し、 続いて温度を 180てに設 定したピンテンター乾燥機でシ一 ト内のュニメ ル ト 1^-61 を溶解せ しめた。 更に実施例 1 と同様に同 じ く 界面活性剤の付与、 次いで力 レ ンダ一加工を行い目付 74g Zm」 、 厚さ 0.18mm電池のセパレー夕 一に使える不織布を得た。
〔比較例 2〕
実施例 1 と同様に繊維長 L = 7.5mm である 0.5デニールのナイ 口 ン 66短繊維 80%、 L = 10mmであるュニメ ル ト Uい 61 20%、 からなる 混抄シー 卜を 80メ ッ シュの金網に乗せ、 実施例 1 で処理水圧 30kgZ cm-' を 15kgZcm- に変え、 25kgZcnr を lOkg cnr に変えた以外は 実施例 1 と同じよう に処理して交絡シ一 卜が完成した。 このシー ト を実施例 1 と同じ方法で界面活性剤の付与、 次いでカ レ ンダー加工 を行い目付 73g Zm 2 、 厚さ 0.18mmの電池のセパレーターと して使 える不織布を得た。
〔比較例 3 〕
繊維長 L =38mmである 0.5デニール (単糸直径 D = 7.8〃 m ; L /Ό = 4870) のナイ ロ ン 66短繊維を 80%、 L = 51mmである 2 デニー ル (単糸直径 D = 14. lmm) の熱融着繊維ュニメ ル ト Uい 61(ュニチカ
(株) 製、 芯部 : ナイ ロ ン 6 、 鞘部 : 共重合ナイ ロ ン) 20%を混合 し、 カー ド法によって混合シー トを得た。 このシー トを実施例 1 と 同 じ方法で交絡処理し界面活性剤を付与しカ レ ンダー加工を行い目 付 73gZm2 、 厚さ 0.18mmの電池のセパレーターに使える不織布を 得た。
〔比較例 4 〕
実施例 1 と同様に繊維長 L =7.5mm である 0.5デニールのナイ 口 ン 66短繊維 45部、 L = 15nunで 2 デニールであるュニメ ル ト Uい 61 を 25部、 ポ リ エチ レ ンから成る熱融着性有機合成パルプ SWPCUL-410 : 三井石油化学工業 (株) 製) 30部を水に分散し 1 %濃度のスラ リ ー 液から抄紙機により同様に して得られた目付 80 gZm: の混抄シー トを実施例 1 と同様に水噴射処理を行い交絡シー トを得た。 得られ た交絡シー 卜を実施例と同様に 180度のピ ンテ ンター乾燥機で乾燥 すると同時に交絡シー ト内のュニメ ル ト 1^-61 の鞘部及び SWP(Uい 4 10 : 融点 125度) を溶融せしめた後、 同様に界面活性剤の付与し、 カ レ ンダー加工を行い目付 73 g Z m 2 、 厚さ 0.18ππηの電池セパレー ターに使えるを得た。
上記の実施例 1 〜 3 及び比較例 1 〜 4 で得られた不織布の電池用 セパレーターと しての性能試験の結果を表 1 に示す。 表 1
表 1 から明らかなように、 比較例 1 ~ 2の不織布に対して、 実施 例 1 〜 3の不織布は引張強度が高く電気抵抗が低く、 且つ液体抱液 率にも優れる。 これは交絡点間距離が 1 20〜 200〃 mになるまで交 絡処理されたことによる引張強度向上、 交絡点の増加、 セパレー夕 —と しての不織布の断面方向へ繊維の配列が進むこ とから圧縮応力 も向上し、 セパレ一ターとニ ッ ケル板の密着性が高ま る等の相互作 用による電気抵抗の低下及び交絡点の増加による液体抱液率の向上 効果と解釈される。 比較例 3 の不織布は比較例 1 〜 2 のそれらに比 ベて交絡密度が高いので、 電気抵抗が低く 液体抱液率に優れている 力 実施例 1 に比べるとかなり レベルが低く 実用上問題がある。 こ れは比較例 3 の不織布が地合指数が大きいこ とから判るよう に、 目 付斑が大きいこ とからセパレーターとニ ッ ゲル板の接触面積が実質 的に少なく なるこ とに起因していると推察する。 又その地合不良は 、 電極活物質の移行を十分抑制できず、 二次電池のサイ クル性能に おける耐シ ョー ト性に問題がみられた (第 2図参照) 。
実施例 1 、 2及び 3の不織布並びに比較例 1 、 2、 3 及び 4 の不 織布によるセパレーターを用い、 公称容量 1 , 2AHの S Cサイズの密閉 型ニッ ケル—力 ド ミ ゥム蓄電池を作成しサイ クル特性を調べた。 こ の時の条件は 1 . 8 Aの電流で 1 時間充電を行った後、 1 . 2 Aの電流 で終止電圧 1 . 0 Vまで放電するという ものである。
第 2 図にこの結果を示す。 本発明の実施例 1 、 2及び 3 の不織布 によるセパレーターを用いる電池は比較例 1 、 2、 3 及び 4 の不織 布によるセパレーターを用いる電池に比べサイ クルの進行に伴う電 池容量の低下が小さ く 、 極めて優れたサイ クル特性を示した。 比較 例 1 、 2 及び 4 の電池は充放電サイ クルによるセパレーター内の電 解液の減少 ( ドライアウ ト) 、 比較例 3 の電池は電極活物質の移行 による シ ョ ー トによる寿命であった。
このこ とから、 本発明の湿式用不織布は、 地合の均一性と 300 m以下という緻密に交絡された繊維構造のものであるので、 優れた 圧縮応力、 電気抵抗、 抱液性等の性能が二次電池の充放電サイ クル 時において、 電解液が電極への吸い取られに く い、 及び電極活物質 が移行し難いこ とが実証されたといえる。
〔実施例 4 〕
繊維長 L = 15mmである 2.0デニール (単糸直径 D = 14.1 m ; L /Ό = 1060) のナイ ロ ン 66短繊維を 75%、 熱融着繊維ュニメ ル ト UL - 61 25%からなる混抄シー トを実施例 1 と同 じ方法で得た。 更に実 施例 1 と同じ方法で交絡処理、 界面活性剤の付与処理及びカ レ ンダ 一加工を行い目付 85 g /m 2 、 厚さ 0.20mmの電池のセパレ一ター用 不織布を得た。
〔比較例 5 〕
実施例 3 と同様に繊維長 L = 15脑である 2.0デニール (単糸直径 D = 14. l〃 m ; L / D = 1060) のナイ ロ ン 66短繊維 75%、 L = 10mm である 2.0デニール (単糸直径 14.1 m : L 7 D = 710)ュニメ ル ト UL-61 25%. からなる混抄シー ト に実施例 】 記載の流体流処理を全 く 施さず、 温度 160°C、 圧力 70g /cm2 の条件で熱プレス し、 続い て温度 180°Cに設定したピ ンテ ン タ ー乾燥機でシー 卜 内のュニメ ル ト 1^-61 を溶解せしめた。 更に実施例 1 と同様に同じ界面活性剤の 付与処理及びカ レンダー加工を行い目付 86g /m 2 、 厚さ 0.2 lmmの 不織布を得た。
〔比較例 6〕
繊維長 L = 5 lmmである 2.0デニール (単糸直径 D = 14.1〃 m ; L / D = 3600) のナイ ロ ン 66短繊維を 75%、 L = 51mmである 2 デニ一 ル (単糸直径 D = 14.1 z m ; L / D = 3600) の熱融着繊維ュニメ ル 卜 Uレ 61 (ュニチカ (株) 製、 芯部 : ナイ ロ ン 6 、 鞘部 : 共重合ナイ ロ ン) 25 %を混合し、 カー ド法によって混合シー トを得た。 このシ ー トを実施例 1 と同 じ方法で交絡処理、 界面活性剤の付与及びカ レ ンダ一加工を行い目付 84 g /m 、 厚さ 0.20mmの不織布を得た。 〔実施例 5 〕 繊維長 L = 15mmである 2.0デニール (単糸直径 D = 14. 1〃 m ; L /Ώ = 1060) のナイ ロ ン 6 Ζナイ ロ ン 612(80 : 20) の花弁型 6分割 性複合短繊維 (0.27デニールのナイ ロ ン 6 が 6本と、 0.4デニール のナイ ロ ン 612 力く 1 本に割繊する) を 80%、 及び L = 10mmである 2 デニール (単糸直径 D = 14. 1 m ; L Z D = 710)の熱融着繊維ュニ メ ル ト UL-61Cュニチカ (株) 製、 芯部 : ナイ ロ ン 6 、 鞘部 : 共重合 ナイ ロ ン) 20%を水に分散し調整した 1 %濃度のスラ リ ー液から、 実施例 1 と同じ方法で 75 g Zm 2 の混抄シー トを得た。 その後、 実 施例 1 と同じ方法で交絡処理を行い温度 160°Cに設定したピンテ ン ター乾燥機でシー ト内のュニメル ト Uい 61 を融解せしめた。 更に実 施例 1 と同 じ方法で交絡処理、 界面活性剤付与及びカ レ ンダー加工 を行い目付 72 g Zm 、 厚さ 0. 18關の不織布を得た。
〔比較例 7〕
繊維長 L = 5 mmであるこ と以外は実施例 5 で使用 したものと同 じ 2.0デニール (単糸直径 D = 14. 1〃 m) のナイ ロ ン 6 Zナイ ロ ン 61 2 複合短繊維 80%、 L = 10mmであるュニメル ト UL— 61 25%、 から なる混抄シー トを得て、 実施例 5 と同 じ方法で流体流処理を施し、
180°Cのピンテ ンダ一乾燥機で乾燥した結果、 柱状流処理に際し繊 維の流れを起こ してシー ト地合が不良で、 ピンホールのある交絡シ 一 卜であった。 この交絡シー ト表面に、 比較例 4 で用いたポ リ ェチ レンからなる熱融着性合成パルプ SWPCUL— 410)の 0.01%水分散スラ リ 一を特開平 7 — 272709号公報実施例 1 に記載の類似の方法で流下 させ、 約 5 g /m の合成パルプをシー 卜の表面に堆積させ、 130 °Cで乾燥した。 得られた堆積シー トは確かに、 ピ ンホールは改善さ れたが交絡シー 卜の目付斑から く る地合不良を改善するには至らな かった。 該積層シー トを、 実施例 5 と同様に最終のカ レ ンダー加工 、 界面活性剤付与を行って目付 72 gZm 2 、 厚さ 0. 18mmの不織布を 得た。
上記の実施例 4 〜実施例 5 、 比較例 5〜 7 で得られた不織布につ いて電池用セパレーターの性能試験結果を表 2 に示す。
表 2 から明らかなように、 実施例 4 は比較的繊維直径の太い短繊 維からなる湿式不織布であるが、 十分な交絡密度と均一性から比較 例 5 に比べ引張強度と電気抵抗が優れ、 比較例 6 に比べ電気抵抗が 優れており、 汎用タイプのセパレ一ターと して満足でき る ものであ つた
実施例 5 の不織布の表面層は、 柱状流処理で割繊された極細繊維 による緻密な交絡構造形成しているが、 内層部分には未だ未分割の 2 デニールからなる複合繊維が残った構造を していた。 不織布シー ト地合、 電気抵抗が高めであるがセパレーターと して運用出来る物 であった。 一方、 比較例 7 はナイ ロ ン 6 /ナイ ロ ン 612複合短繊維 の L Z D = 354と小さい為、 非常に均一な混抄シ一 卜を得られたが 、 噴射水流処理によ り繊維が動きやすく 、 繊維の流れを起こ してシ 一ト地合が不良でピンホールが多数見られたものあった。 合成パル プを積層する事でピンホールが無く なったものの、 表面の合成パル プは斑付きをしており、 地合不良の改良には至らなかった。 又親水 性のバラ ツキが顕著であった。 電解液抱液性能が低く 、 電気抵抗も 高く 、 セパレ一夕一と して実用に耐える ものではなかった。
表 2
〔実施例 6〕
繊維長 L = 6 mmである 0.25デニール (単糸直径 D = 5.4 // m ; L / D = 1100) のナイ ロ ン 6短繊維を 80%、 L = 10mmである 2 デニー ル (単糸直径 D = 14. l〃 m : L Z D = 709)の熱融着繊維ュニメ ル ト UL-6Kュニチカ (株) 製、 芯部 : ナイ ロ ン 6 、 鞘部 : 共重合ナイ 口 ン) 20%を水に分散し 1 %濃度のスラ リ ー液に調整した。 このスラ リ ー液から傾斜型長網抄紙機により 68 g /m の混抄シー 卜を得た 。 得られた混抄シー トを 80メ ッ シュの金網に乗せ、 速度 12mノ分で 搬送した。 ノ ズル径 0. 15mmのノ ズルをノ ズルピッチ 2 mm装着したノ ズルへッ ダーを 285rpmで円運動させ、 金網から 25mmの位置に 40メ ッ シュの金網を揷人し圧力 25kgZcm2 の水を噴射させて間歇柱状水流 を混抄シー トに衝突させる こ とにより短繊維、 熱融着繊維を交絡さ せた。 更に同じ処理を 6 回行った後、 シー トの表裏を逆転させて同 じ処理を 7 回施した。 続いてノ ズルへッ ダ一を 420rpn)で回転させ、 60メ ッ シ ュの金網を挿入し水圧 20kg/cm で散水流を各 2 回ずっ処 理して交絡シー トが完成した。
得られた交絡シー トを温度を 160°Cに設定したピンテ ンター乾燥 機で乾燥すると同時に交絡シー 卜間のュニメ ル ト Uい 61 の鞘部 (融 点 140°C) を溶融せしめ不織布を得た。 このものはそのままでも電 池セパレ—ターと して有用である力 <、 電解液との初期親和性を向上 する目的でノニオ ン系界面活性剤ェマルゲ ン 910(花王 (株) 製) 0. 05%を含有する水溶液に浸漬した後、 付着率が不織布の 400%にな るよ う に絞り、 温度を 160°Cに設定したピ ンテ ン夕一乾燥機で乾燥 した。 次いで親水加工処理シー トを 100°Cに加熱した一対のロール に導き、 線圧 30kg/ cmでカ レ ン ダ一加工を施して目付 65 g Z m - 、 厚さ 0. 15mmの電池のセパレーター用不織布を得た。
〔実施例 Ί〕
繊維長 L = 6 mmである 0.25デニール (単糸直径 D = 5.4〃 m ) の ナイ ロ ン 6 短繊維 40%、 繊維長 L = 7.5mm である 0.5デニール (単 糸直径 D 二 l. S m ) のナイ ロ ン 66短繊維を 40%、 熱融着繊維ュニ メ ル ト Uい 61 20%からなる混抄シー トを実施例 6 と同 じ方法で得た 。 更に実施例 6 と同じ方法で交絡処理、 界面活性剤付与及びカ レ ン ダー加工を行い目付 65 g 2 、 厚さ 0.15mmの電池のセパレーター 用不織布を得た。
〔実施例 8〕
繊維長 L二 3 mmである 3.8デニール (単糸直径 D = 21 m) の海 島割繊性繊維 (コーロ ン社製、 海部 : 共重合ポ リ エステル、 島部 : ナイ ロ ン 66、 36分割) を 4 %水酸化ナ ト リ ウム溶液にて海部を溶解 抽出し、 島部 0.05デニールのナイ ロ ン 66を得た。 島部繊維長 3 mmで ある 0.05デニール (単糸径0 = 2.3iz m ; L / D = 1300) のナイ 口 ン 66短繊維 80%、 熱融着繊維ュニメル ト 1^-61 20%からなる混抄シ 一 卜を実施例 6 と同じ方法で得た。 更に実施例 6 と同じ方法で交絡 処理、 界面活性剤付与及びカ レンダー加工を行い目付 65g Zm : 、 厚さ 0.15mmの電池のセパレーター用不織布を得た。
〔比較例 8〕
平均繊維径 2 m、 目付 65g Zm 2 、 厚さ 0.3mmとなるよう に製 造されたナイ ロ ン 6 から成るメ ル トブロー ン不織布に実施例 6 と同 様に交絡処理、 界面活性剤付与、 カ レンダー加工を行い目付 65g Z m 、 厚さ 0.15mmの不織布を得た。 実施例 6 、 7 、 8 に比べ、 機械 的強度、 通気度がかなり低く 、 液体抱液性能も劣る結果とな っ た。 〔比較例 9 〕
平均繊維径 2 m、 目付 36 g Z m 2 、 厚さ 0.3mmとなるよう に製 造されたナイ ロ ン 6 から成るメ ル トブロー ン不織布に繊維長 L = 7. 5mm である 0.5デニール (単糸直径 D = 7.8〃 m) のナイ 口 ン 66短 繊維を 80%、 熱融着繊維ュニメ ル ト Uい 61 20%、 からなる目付 30g Zm 2 の混抄シー トを積層させ実施例 1 と同様に交絡処理、 界面活 性剤付与、 カ レ ンダー加工を行い目付 65 g /m 、 厚さ 0.15關の不 織布を得た。 上記の実施例 6、 7、 8及び比較例 8、 9 で得られた不織布の電 池用セパレ一ターと しての性能の試験結果を表 3 に示す。 表 3 によ り明らかなよう に、 比較例 9 の不織布は、 実施例 6、 7及び 8 の不 織布に比べ、 機械的強度、 通気度が低く 、 液体抱液性能が劣り、 シ 一 ト地合はかなり劣る結果となった。 また、 表 3 で明らかなよう に 、 本発明による電池のセパレ一ター不織布は、 シー ト地合に優れ、 引張強度、 ガス通過性、 液体の保持性能や抱液性能が高く 、 液体吸 液速度性能が良好である。 次に、 第 3 図から 0. 5デニール未満の熱 可塑性短繊維を用いると内部抵抗の上昇を押さえるのに効果的であ る、 密閉型 2 次電池の充放電サイ クル性能も更に向上するこ とが判 明した。
表 3
シ一 ト地合参考データ : 52(PPC用紙)
〔実施例 9 〕
実施例 1 で得られた交絡シー トを 180°Cに設定したピ ンテ ンター 乾燥機で乾燥すると同時に交絡シ一 ト間のュニメ ル ト Uい 61 の鞘部 (融点 140°C ) を溶融せしめた。 次いで、 ノニオ ン系界面活性剤ェ マルゲン 120 (花王 (株) 製) のそれぞれ 0.05%、 0. 1%、 0.25%、
0.5%、 1 % , 2 %濃度の水溶液及び活性剤を含まない水のみに浸 漬した後 (それぞれのサ ンプル No.を 1 〜 7 とする) 、 付着率が不織 布の 200%に成るよう に絞り、 温度 160°Cに設定したピンテ ン夕一 乾燥機で乾燥した。 更に、 100°Cに加熱した一対の金属ロールに導 き、 線圧 30kgZcm2 で実施例 1 と同 じよう にカ レ ンダー加工を施し て目付 73 g /m 2 、 厚さ 0. 18mmの電池のセパレ一ター用不織布を得 た。 得られた不織布の電池セパレーターと しての物性、 性能を表 4 に示した。 ノニオ ン系活性剤を全く 付着していないものは、 親水性 が乏し く 、 活性剤付着量が多 く なるにつれて、 親水性が高く なる一 方抱液率が低下する傾向が認められる。
表 4 実施例 9
〔実施例 10〕
実施例 1 で得られた交絡シ一 トを 180°Cに設定したピ ンテ ン ター 乾燥機で乾燥する と同時に交絡シー ト間のュニメ ル 卜 Uい 61 の鞘部 (融点 140°C) を溶融せしめた。 次いで、 ノニオン系界面活性剤シ ン トール KP (高松油脂 (株) 製)0.2%を含有する水溶液に浸漬した 後、 付着率が不織布の 200%になるように絞り、 温度を 160°Cに設 定したピ ンテ ンター乾燥機で乾燥した。
ついで、 加熱した一対の金属ロールに導きカ レンダー加工を施す 際に、 それぞれマングルの線圧 0, 5 , 10, 20, 30, 40, 50kgZcm 2 と温度を変更して、 厚み違いのサンプル No. 1〜 7 の電池のセパレ 一ター用不織布を得た。 その物性、 性能を表 5 に示した。 不織布の 密度が低いと保液量は高いが、 抱液量は低下する傾向が認められる 表 5 実施例 10
〔実施例 11〕
実施例 1 で得られた交絡シ一 トを 180°Cに設定したピンテ ンター 乾燥機で乾燥すると同時に交絡シー ト間のュニメ ル 卜 Uい 61 の鞘部 (融点 140°C) を溶融せしめた。 次いで、 ノニオン系界面活性剤シ ン トール KP (高松油脂 (株) 製) 0.2%を含有する水溶液に浸漬した 後、 付着率が不織布の 200%になるように絞り、 温度を 160°Cに設 定したピンテンター乾燥機で乾燥した。
更に 100°Cに加熱した一対の金属ロールに導き、 線圧 35kgZcmで 力 レンダ一加工を施した後、 500メ ッ シュのサン ドペーパーで両面 を起毛するこ とによ り 目付 72 g /m 2 、 厚さ 0.18mm、 起毛応力 2.5 g /cm2 の電池のセパレ一タ一用不織布を得た。
〔実施例 12〕
180メ ッ シュのサン ドペーパーで両面を起毛する以外は実施例 6 と同様に実施して目付 62 gZm 2 、 厚さ 0.18mm、 起毛応力 3.5 g / cm2 の電池のセパレーター用不織布を得た。
〔実施例 13〕
ナイ 口 ン繊維を植え付けたロールブラ シで両面を起毛する以外は 実施例 6 と同様に実施して目付 72g /m - ' 、 厚さ 0.18min、 起毛応力 1.8 g /cm2 の電池のセパレーター用不織布を得た。
〔実施例 14〕
豚毛を植え付けたロールブラ シで両面を起毛する以外は実施例 6 と同様に実施して目付 72 g /m - 、 厚さ 0.18mm、 起毛応力 1.3g Z cnr の電池のセパレーター用不織布を得た。
実施例 1 及び実施例 11 ~ 14で得られた電池のセパレーター用不織 布の性能を表 6 に示した。 表 6から も明らかなよう に、 表面に起毛 を有する実施例 11 ~ 14の電池用セパレ一ターは実施例 1 に比較して 更に電解液抱液能力を向上し、 ガス通気性も良好で、 内部抵抗の上 昇も低く 高性能電池セパレーターと してよ り好ま しい性能を有する ものである。 実際にこ こで得られた不織布の電池用セパレーターを 装着した密閉型ニッ ケル一力 ド ミ ゥムニ次電池を製作し、 その過充 電特性を評価したと ころ実施例 11〜14の不織布による電池用セパレ 一夕一を装着したものは安全弁リ ーク率が更に改善された。 のこ とは、 正極から発生した酸素ガスが電池の不織布セパレータ ■¾ 通 過し負極での消費反応が容易に進行した結果と考えられる。
表 6
産業上の利用可能性
本発明によれば、 ガス通過性、 液体保持性、 液体吸液速度の優れ た電池のセパレーター用不織布を得るこ とができる。 しかも本発明 の電池のセパレーター用不織布は、 高い目付均一性と引張強度及び 低い電気抵抗を有しており、 従来にない優れた電池セパレーター ¾· 提供するこ とができる。
本発明の電池のセパレーター不織布は、 機械強度が十分な為電池 装着時の破断、 幅入れが無い上に、 目付が均一で緻密な交絡構造な ため、 活物質の移行による耐シ ョ ー ト性に優れ、 更にガス通気性、 保液率、 吸液速度性能が良好で、 且つ電解液抱液能力、 及びガス消 費反応性に特に優れるこ とから、 密閉型 2 次電池に好適に採用する こ とができ、 最近の 2 次電池の高容量化にも十分に対応する こ とが 可能である。 実際に本発明の電池不織布のセパレー夕一と して装着 した二次電池は、 過充電特性に優れ、 且つ充放電サイ クル寿命が長 い特性を有しており、 本発明の電池のセパレーター用不織布の工業 的価値が極めて大きい。

Claims

請 求 の 範 囲
1 . 単繊維の直径が 20// m以下の少く とも 1 種の熱可塑性短繊維 20〜95重量%と熱融着性短繊維が相互に三次元立体交絡されており 、 前記短繊維の平均交絡点間距離が 300 m以下であって、 かつ前 記熱融着性短繊維の少く とも一部が熱融解により繊維間を接着し単 一の不織構造体層を固定していることを特徴とする電池のセパレー ター用湿式不織布。
2. 前記熱可塑性短繊維及び熱融着性短繊維の繊維長 ( Lmm) と 単繊維の直径 ( Dmm) の比 ( L ZD ) が 0.5X 103 〜 2.0x 10 s で あることを特徴とする請求の範囲 1 記載の電池のセパレーター用湿 式不織布。
3. 前記熱可塑性短繊維は、 単繊維の直径が l 〜 8 ^ mの短繊維 と単繊維の直径が該単繊維より も大き く且つ 20 / mを越えない 8 mを越える短繊維の少く とも一種とが混用されていることを特徴と する請求の範囲 1 又は 2記載の電池のセパレーター用湿式不織布。
4 . 地合い指数が 100以下であることを特徴とする請求の範囲 1 から 3のいずれかに記載の電池のセパレーター用湿式不織布 c
5. 見かけ密度が 0.260 g /cnr' 以上である請求の範囲 1 から 4 のいずれかに記載の電池のセパレーター用湿式不織布。
6. 界面活性剤が 2重量%以下付着している請求の範囲 1 から 5 のいずれかに記載の電池のセパレーター用湿式不織布。
7. 圧縮応力が 3.0kg/ cmJ 以上である請求の範囲 1 から 6のい ずれかに記載の電池のセパレ一ター用湿式不織布。
8. 電気抵抗が 1.0Ω以下の請求の範囲 1 から 7のいずれかに記 載の電池のセパレーター用湿式不織布。
9 . 1 種以上の熱可塑性短繊維 20〜95重量%と前記短繊維の融点 より も 20 °C低い融点を有する熱融着性短繊維からなって、 抄造法に よって作成される混抄シー トに間歇化された流体流を衝突させて、 上記混抄シ一 卜を三次元的に立体交絡させた後、 熱処理によって上 記熱融着繊維の一部又は全部が溶融するこ とを特徴とする電池セパ レーター用湿式不織布の製造方法。
1 0. 請求の範囲 1 から 8 のいずれかに記載の電池のセパレ一ター 用湿式不織布をセパレ一ターと して配置し組立てられた密閉型二次 電池。
PCT/JP1995/002737 1994-12-28 1995-12-27 Wet type nonwoven fabric for cell separator, its production method and enclosed secondary cell WO1996020505A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019970704458A KR100299559B1 (ko) 1994-12-28 1995-12-27 전지세퍼레이터용습식부직포와그의제조방법및밀폐형2차전지
DE69536049T DE69536049D1 (de) 1994-12-28 1995-12-27 Ung und sekundärzelle
JP52037096A JP4031529B2 (ja) 1994-12-28 1995-12-27 電池セパレーター用湿式不織布、その製造方法及び密閉型二次電池
EP19950942295 EP0795916B1 (en) 1994-12-28 1995-12-27 Wet type nonwoven fabric for cell separator, its production method and enclosed secondary cell
US08/860,492 US5888916A (en) 1994-12-28 1995-12-27 Wet-laid nonwoven fabric for battery separator, its production method and sealed type secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP33769194 1994-12-28
JP33769094 1994-12-28
JP6/337690 1994-12-28
JP6/337691 1994-12-28

Publications (1)

Publication Number Publication Date
WO1996020505A1 true WO1996020505A1 (en) 1996-07-04

Family

ID=26575882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002737 WO1996020505A1 (en) 1994-12-28 1995-12-27 Wet type nonwoven fabric for cell separator, its production method and enclosed secondary cell

Country Status (6)

Country Link
US (1) US5888916A (ja)
EP (1) EP0795916B1 (ja)
JP (1) JP4031529B2 (ja)
KR (1) KR100299559B1 (ja)
DE (1) DE69536049D1 (ja)
WO (1) WO1996020505A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848436A3 (en) * 1996-12-13 1999-05-26 Matsushita Electric Industrial Co., Ltd. Separator material for alkaline storage batteries
JP2006049797A (ja) * 2004-07-06 2006-02-16 Asahi Kasei Corp 蓄電デバイス用セパレータ

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025771A1 (en) * 1995-02-17 1996-08-22 Mitsubishi Paper Mills Limited Nonwoven fabric for an alkaline battery separator and method for producing the same
JPH11162440A (ja) * 1997-11-25 1999-06-18 Sanyo Electric Co Ltd アルカリ蓄電池の製造方法
DK0935305T3 (da) 1998-02-06 2011-09-26 Hoppecke Batterie Systeme Gmbh Elektrodeanordning til nikkel-cadmium-akkumulatorer og fremgangsmåde til dens fremstilling
DE19804649A1 (de) * 1998-02-06 1999-08-12 Hoppecke Batterie Systeme Gmbh Elektrodenanordnung für Nickel-Cadmium-Akkumulatoren und Verfahren zu ihrer Herstellung
DE19828118A1 (de) * 1998-06-24 1999-12-30 Fleissner Maschf Gmbh Co Vorrichtung mit einem Düsenbalken zur Erzeugung von Flüssigkeitsstrahlen zur Strahlverflechtung von Fasern an einer textilen Bahn
DE60032735T2 (de) 1999-01-08 2007-11-08 Ahlstrom Mount Holly Springs, Llc Dauerhafte hydrophile, nichtgewebte matte für wiederaufladbare alkalische batterien
JP2000215873A (ja) * 1999-01-25 2000-08-04 Sanyo Electric Co Ltd アルカリ蓄電池およびその製造方法
USRE41203E1 (en) * 1999-02-08 2010-04-06 Japan Vilene Company, Ltd. Alkaline battery separator and process for producing the same
CA2333151C (en) * 1999-03-23 2009-08-18 Toray Industries, Inc. Complex fiber reinforced material, preform, and method of producing fiber reinforced plastic
US7091140B1 (en) 1999-04-07 2006-08-15 Polymer Group, Inc. Hydroentanglement of continuous polymer filaments
US6680144B2 (en) * 1999-10-29 2004-01-20 Kvg Technologies, Inc. Battery separator
EP1282737B1 (en) * 2000-05-16 2006-08-23 Polymer Group, Inc. Method of making nonwoven fabric comprising splittable fibers
US7402539B2 (en) * 2000-08-10 2008-07-22 Japan Vilene Co., Ltd. Battery separator
DE10064687A1 (de) 2000-12-22 2002-07-04 Fleissner Maschf Gmbh Co Verfahren zur hydrodynamischen Beaufschlagung einer auch mit endlichen Produkten versehenen Warenbahn mit Wasserstrahlen und Düseneinrichtung zur Erzeugung von Flüssigkeitsstrahlen
US7063917B2 (en) 2001-02-21 2006-06-20 Ahlstrom Mount Holly Springs, Llc Laminated battery separator material
WO2003089731A1 (en) 2002-04-22 2003-10-30 Lydall, Inc Gradient density padding material and method of making same
EP2264230B1 (en) * 2003-04-03 2012-10-24 E. I. du Pont de Nemours and Company Rotary process for forming uniform material
US20110139386A1 (en) * 2003-06-19 2011-06-16 Eastman Chemical Company Wet lap composition and related processes
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
JP4419549B2 (ja) * 2003-07-18 2010-02-24 東レ株式会社 極細短繊維不織布および皮革様シート状物ならびにそれらの製造方法
DE10336380B4 (de) 2003-08-06 2005-08-25 Carl Freudenberg Kg Ultradünner, poröser und mechanisch stabiler Vliesstoff und dessen Verwendung
US7194789B2 (en) * 2003-12-23 2007-03-27 Kimberly-Clark Worldwide, Inc. Abraded nonwoven composite fabrics
DE102005005852A1 (de) * 2005-02-08 2006-08-10 Carl Freudenberg Kg Vliesstoff, Faser und elektrochemische Zelle
DE102005054726A1 (de) * 2005-08-02 2007-02-15 Carl Freudenberg Kg Vliesstoffe und Verfahren zu deren Herstellung
US7170739B1 (en) 2005-09-30 2007-01-30 E.I. Du Pont De Nemours And Company Electrochemical double layer capacitors including improved nanofiber separators
US7635745B2 (en) * 2006-01-31 2009-12-22 Eastman Chemical Company Sulfopolyester recovery
ITPD20060454A1 (it) * 2006-12-19 2008-06-20 Orv Spa Guaina multitubolare per elettrodi di batterie industriali
KR100969405B1 (ko) * 2008-02-26 2010-07-14 엘에스엠트론 주식회사 에너지 저장장치
JP2012519357A (ja) 2009-02-26 2012-08-23 ジョンソン コントロールズ テクノロジー カンパニー 電池電極およびその製造方法
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
JP5807794B2 (ja) * 2010-09-22 2015-11-10 ダラミック エルエルシー 改良された鉛蓄電池セパレータ、電池及び関連の方法
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
US9666848B2 (en) 2011-05-20 2017-05-30 Dreamweaver International, Inc. Single-layer lithium ion battery separator
US8906200B2 (en) 2012-01-31 2014-12-09 Eastman Chemical Company Processes to produce short cut microfibers
US9525160B2 (en) * 2012-05-15 2016-12-20 The Regents Of The University Of California High-rate overcharge-protection separators for rechargeable lithium-ion batteries and the method of making the same
US10700326B2 (en) 2012-11-14 2020-06-30 Dreamweaver International, Inc. Single-layer lithium ion battery separators exhibiting low shrinkage rates at high temperatures
KR101292657B1 (ko) * 2013-02-06 2013-08-23 톱텍에이치앤에스 주식회사 역구조를 갖는 하이브리드 난워븐 세퍼레이터
US10607790B2 (en) 2013-03-15 2020-03-31 Dreamweaver International, Inc. Direct electrolyte gelling via battery separator composition and structure
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
JP6402005B2 (ja) * 2014-11-04 2018-10-10 太陽ホールディングス株式会社 樹脂含有シート、並びに、それを用いた構造体および配線板
WO2017113275A1 (zh) * 2015-12-31 2017-07-06 宁波艾特米克锂电科技有限公司 电化学元件用复合纳米纤维隔膜、制备方法及储能器件
JP6848051B2 (ja) * 2017-03-28 2021-03-24 株式会社東芝 電極構造体および二次電池
CN111876846A (zh) * 2020-07-10 2020-11-03 深圳市骏鼎达新材料股份有限公司 复合尼龙单丝及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138863A (en) * 1980-03-31 1981-10-29 Toshiba Corp Separator for battery
JPH026651A (ja) * 1987-12-16 1990-01-10 Asahi Chem Ind Co Ltd 高強度湿式不織布及びその製造方法
JPH0314694A (ja) * 1989-06-09 1991-01-23 Asahi Chem Ind Co Ltd 寸法安定性に優れた湿式不織布及びその製造方法
JPH0574440A (ja) * 1991-09-11 1993-03-26 Asahi Chem Ind Co Ltd 新規な不織布並びにその製造方法
JPH0594813A (ja) * 1991-10-01 1993-04-16 Nippon Muki Co Ltd アルカリ蓄電池用抄紙式セパレータ並にその製造法
JPH06295715A (ja) * 1993-04-06 1994-10-21 Mitsubishi Paper Mills Ltd アルカリ電池セパレータ用不織布およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140941A (en) * 1978-04-26 1979-11-01 Mitsui Petrochemical Ind Method of producing battery separator
DE3381143D1 (de) * 1982-03-31 1990-03-01 Toray Industries Vlies aus ultra feinen verwirrten fasern, und verfahren zur herstellung desselben.
JPS58191280A (ja) * 1982-05-06 1983-11-08 東レ株式会社 皮革様シ−ト物
JPS61281454A (ja) * 1985-06-06 1986-12-11 Asahi Chem Ind Co Ltd 電池用セパレ−タ
JP2625785B2 (ja) * 1987-12-11 1997-07-02 東洋紡績株式会社 電池セパレーター用不織布およびその製造方法
US4939016A (en) * 1988-03-18 1990-07-03 Kimberly-Clark Corporation Hydraulically entangled nonwoven elastomeric web and method of forming the same
JPH02259189A (ja) * 1989-03-31 1990-10-19 Mitsubishi Rayon Co Ltd 耐アルカリ性に優れたシート状成型物
JP3217094B2 (ja) * 1991-09-27 2001-10-09 日本バイリーン株式会社 電池用セパレータの製造方法
US5202178A (en) * 1992-02-28 1993-04-13 International Paper Company High-strength nylon battery separator material and related method of manufacture
DE4233412C1 (de) * 1992-10-05 1994-02-17 Freudenberg Carl Fa Hydrophiliertes Separatorenmaterial aus Faservliesstoff für elektrochemische Energiespeicher und Verfahren zu seiner Herstellung
JP3411089B2 (ja) * 1994-03-28 2003-05-26 日本バイリーン株式会社 不織布、その製造方法、及びこれを用いた電池用セパレータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138863A (en) * 1980-03-31 1981-10-29 Toshiba Corp Separator for battery
JPH026651A (ja) * 1987-12-16 1990-01-10 Asahi Chem Ind Co Ltd 高強度湿式不織布及びその製造方法
JPH0314694A (ja) * 1989-06-09 1991-01-23 Asahi Chem Ind Co Ltd 寸法安定性に優れた湿式不織布及びその製造方法
JPH0574440A (ja) * 1991-09-11 1993-03-26 Asahi Chem Ind Co Ltd 新規な不織布並びにその製造方法
JPH0594813A (ja) * 1991-10-01 1993-04-16 Nippon Muki Co Ltd アルカリ蓄電池用抄紙式セパレータ並にその製造法
JPH06295715A (ja) * 1993-04-06 1994-10-21 Mitsubishi Paper Mills Ltd アルカリ電池セパレータ用不織布およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0795916A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848436A3 (en) * 1996-12-13 1999-05-26 Matsushita Electric Industrial Co., Ltd. Separator material for alkaline storage batteries
CN1089192C (zh) * 1996-12-13 2002-08-14 松下电器产业株式会社 镍-金属氢化物蓄电池隔片材料
JP2006049797A (ja) * 2004-07-06 2006-02-16 Asahi Kasei Corp 蓄電デバイス用セパレータ
JP4628764B2 (ja) * 2004-07-06 2011-02-09 旭化成株式会社 蓄電デバイス用セパレータ

Also Published As

Publication number Publication date
DE69536049D1 (de) 2010-04-08
JP4031529B2 (ja) 2008-01-09
EP0795916A1 (en) 1997-09-17
KR100299559B1 (ko) 2001-09-03
US5888916A (en) 1999-03-30
EP0795916A4 (en) 2005-03-30
EP0795916B1 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
WO1996020505A1 (en) Wet type nonwoven fabric for cell separator, its production method and enclosed secondary cell
JP4850794B2 (ja) アルカリ電池セパレータ用不織布
JP4699899B2 (ja) アルカリ二次電池用セパレータ材料とその製造方法及びアルカリ二次電池用セパレータ
WO2008047542A1 (en) Alkaline battery separator, process for production thereof and alkaline batteries
JP4174160B2 (ja) 耐突き刺し性に優れた不織布、その製造方法および電池用セパレータ
JP2984561B2 (ja) 電池セパレータおよびその製造方法
JP3372317B2 (ja) アルカリ電池セパレ−タ用不織布の製造方法
JP3012801B2 (ja) 電池セパレータ
JP3770748B2 (ja) アルカリ電池セパレータ用不織布およびその製造方法
JP3372321B2 (ja) アルカリ電池セパレ−タ用不織布の製造方法
JP3775814B2 (ja) 電池用セパレーター及びその製造方法とアルカリ蓄電池
JP2002151043A (ja) 電池セパレータ用湿式不織布およびその製造方法
JP2003059482A (ja) セパレータ材料とその製造方法および電池
JP4390956B2 (ja) アルカリ電池用セパレータ
JP3372346B2 (ja) アルカリ電池セパレータ用不織布及びその製造方法
JPH11149911A (ja) 電池セパレータとその製造方法および電池
TW308742B (ja)
JP2002231210A (ja) 電池用セパレータ及び電池
JP2005276842A (ja) 電池用セパレータおよびこれを用いた電池
JPH08212997A (ja) 電池用セパレータ及びその製造法と密閉型二次電池
JPH07238463A (ja) アルカリ電池セパレ−タ用不織布の製造方法
JP4014340B2 (ja) アルカリ電池セパレータ用不織布の製造方法
JP4047412B2 (ja) アルカリ電池用セパレータ
KR20000016831A (ko) 전지세퍼레이터와그제조방법및전지
JP3864153B2 (ja) アルカリ電池用セパレータおよびアルカリ電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970704458

Country of ref document: KR

Ref document number: 08860492

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995942295

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995942295

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970704458

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019970704458

Country of ref document: KR