WO1996016691A1 - Medicament dispenser - Google Patents

Medicament dispenser Download PDF

Info

Publication number
WO1996016691A1
WO1996016691A1 PCT/US1995/015715 US9515715W WO9616691A1 WO 1996016691 A1 WO1996016691 A1 WO 1996016691A1 US 9515715 W US9515715 W US 9515715W WO 9616691 A1 WO9616691 A1 WO 9616691A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
housing
reservoir
stored energy
flow control
Prior art date
Application number
PCT/US1995/015715
Other languages
French (fr)
Inventor
Marshall S. Kriesel
Original Assignee
Science Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Science Incorporated filed Critical Science Incorporated
Priority to AU44146/96A priority Critical patent/AU704888B2/en
Priority to EP95942976A priority patent/EP0796121A4/en
Priority to JP8519127A priority patent/JPH10510450A/en
Publication of WO1996016691A1 publication Critical patent/WO1996016691A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M5/1454Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons spring-actuated, e.g. by a clockwork
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M2005/14506Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons mechanically driven, e.g. spring or clockwork
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14248Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic

Definitions

  • the present invention relates generally to fluid medicament dispensers. More particularly, the invention concerns a dispenser for use in controllably dispensing a liquid medicament as, for example, an insulin solution.
  • conventional syringes are used to inject many beneficial agent solutions such as insulin.
  • the prescribed dose is first drawn into the syringe and a visual check is made to make certain that the correct amount of insulin is present in the syringe.
  • air is expelled from the syringe and the dose is injected manually.
  • the Rex, et al device comprises an elongated body formed from two separable sections one of which contains an operating mechanism and the other of which contains a pre-filled cartridge.
  • the operating mechanism of the device mechanically advances an axially movable piston rod which, in turn, drives a piston plug located inside the cartridge so as to expel fluid from the device via a needle located at the bottom end of the body.
  • the piston rod advances in successive axial steps of fixed length through rotation of a rotatable piston rod nut.
  • the piston rod nut is driven by a rotatable worm, which is rotated by the advancing axial movement of a pressure device located at the top of the elongated body.
  • the EPO application discloses a dispensing device somewhat similar to the Rex, et al. device, but embodies an operating mechanism that comprises a pawl which permits relative movement of a ratchet-toothed member in a substantially rectilinear arrangement. As in the Rex, et al. device, the operating mechanism drives the plunger of a medicament vial to expel fluid therefrom.
  • Electrically operated syringe pumps are also well known, however, they are typically of considerable complexity and are designed to inject very small doses of medicine with considerable accuracy over a long period, which may be up to 24 hours. Such syringe pumps do not provide the inexpensive, simple and manually operated device suitable for the slow injection of drugs over a shorter period of time, which may range from one to 15 minutes.
  • the apparatus of the present invention uniquely overcomes the drawbacks of the prior art by providing a novel, disposable dispenser of simple but highly reliable construction.
  • a particularly important aspect of the apparatus of the present invention resides in the provision of a novel, self-contained energy source in the form of a uniquely constructed elastomeric member that provides the force necessary to uniformly and precisely dispense solutions, such as insulin, from standard pre-filled containers that can be conveniently loaded into the apparatus. Because of the simplicity of construction of the apparatus of the invention, and the non-mechanical nature of the energy source, the apparatus can be manufactured at low cost without in any way sacrificing accuracy and reliability.
  • fluid medicaments such as insulin, antibiotics, oncolytics and the like
  • Another object of the invention is to provide a dispenser of the aforementioned character in which a stored energy source is provided in the form of a highly novel, expandable, elastomeric member that provides the force necessary to continuously and uniformly expel fluid from the pre-filled container.
  • Another object of the invention is to provide a dispenser of the character described in the preceding paragraph in which the expandable elastomeric member comprises a polymeric mass which can be controllably deformed and, after being deformed, exhibits a tendency to predictably return toward a non-deformed configura ⁇ tion.
  • Another object of the invention is to provide a fluid dispenser of the class described which is compact, lightweight, is easy for ambulatory patients to use, is fully disposable, and is extremely accurate so as to enable the infusion of precise doses of insulin over prescribed periods of time.
  • Another object of the invention is to provide a self-contained medicament dispenser which is of very simple construction and yet extremely reliable in use.
  • Another object of the invention is to provide a dispenser of the class described which includes means for interconnecting the device with the body or clothing of the patient.
  • Another object of the invention is to provide a fluid dispenser as described in the preceding paragraphs which is easy and inexpensive to manufacture in large quantities.
  • Figure 1 is a generally perspective view of one embodiment of the dispensing apparatus of the present invention for dispensing fluids at a uniform rate.
  • Figure 2 is a generally perspective view showing the appearance of the apparatus of Figure 1 after a portion of the operating member has been threadably advanced into the body portion of the apparatus.
  • Figure 2A is a generally perspective, diagrammatic view illustrating the manner in which a portion of the operating member is advanced by the user into the body of the apparatus.
  • Figure 3 is an enlarged right end view of the apparatus shown in Figures 1 and 2.
  • Figure 4 is a generally perspective, exploded view of the apparatus of Figure 1.
  • Figures 5 is a generally perspective, exploded view of the fluid flow control assembly of the apparatus which functions to control the rate of fluid flow from the apparatus.
  • Figure 6 is an enlarged, cross-sectional view taken along lines 6-6 of Figure 3.
  • Figure 7 is a cross-sectional view taken along lines 7-7 of Figure 6.
  • Figure 8 is a cross-sectional view similar to Figure 7, but illustrating the operation of the housing release mechanism of the base support assembly.
  • Figure 9 is a cross-sectional view taken along lines 9-9 of Figure 6.
  • Figure 10 is a cross-sectional view taken along lines 10-10 of Figure 6.
  • Figure 11 is an enlarged, cross-sectional view similar to Figure 6, but showing the position of the component parts of the apparatus after a portion of the operating member has been threadably advanced into the body.
  • Figure 12 is a fragmentary, cross-sectional view of the dispensing end portion of the apparatus illustrating the position of the cooperating component parts after the cannula has pierced the pierceable septum of the medicament vial.
  • Figure 13 is a development view taken along lines 13-13 of Figure 11 illustrating the manner in which the locking teeth and locking tabs of the device cooperate to lock the operating member to the housing.
  • Figure 14 is a generally perspective view of an alternate embodiment of the dispensing apparatus of the present invention for dispensing fluids at a uniform rate.
  • Figure 15 is a generally perspective view showing the appearance of the apparatus of Figure 14 after a portion of the operating member has been threadably advanced into the body portion of the apparatus.
  • Figure 16 is a generally perspective, exploded view of the apparatus of Figure 14.
  • Figure 17 is a generally perspective, exploded view of the fluid flow control assembly of this latest form of the apparatus which functions to control the rate of fluid flow from the apparatus.
  • Figure 18 is a generally perspective, diagrammatic view illustrating the manner in which a portion of the operating member is threadably advanced by the user into the body of the apparatus.
  • Figure 19 is an enlarged left end view of the apparatus shown in Figures 14 and
  • Figure 20 is an enlarged, cross-sectional view taken along lines 20-20 of Figure
  • Figure 21 is a cross-sectional view taken along lines 21-21 of Figure 20.
  • Figure 22 is a cross-sectional view taken along lines 22-22 of Figure 20.
  • Figure 23 is a cross-sectional view taken along lines 23-23 of Figure 20.
  • Figure 24 is an enlarged, cross-sectional view similar to Figure 20, but showing the position of the component parts of the apparatus after a portion of the operating member has been threadably advanced into the body.
  • Figure 25 is a cross-sectional view similar to Figure 24 but illustrating the position of the cooperating component parts after the cannula has pierced the pierceable septum of the medicament vial.
  • Figure 26 is a cross-sectional view taken along lines 26-26 of Figure 25.
  • Figure 27 is a cross-sectional view taken along lines 27-27 of Figure 25.
  • Figure 28 is an enlarged, fragmentary, cross-sectional view of the dispensing end of the apparatus as shown in Figure 25.
  • Figure 29 is a generally perspective view of an alternate embodiment of the dispensing apparatus of the present invention for dispensing fluids at a uniform rate.
  • Figure 32 is a generally perspective, exploded view of the fluid flow control assembly of this next form of the apparatus which functions to control the rate of fluid flow from the apparatus.
  • Figure 33 is a generally perspective, diagrammatic view illustrating the manner in which a portion of the operating member is advanced by the user into the body of the apparatus.
  • Figure 34 is an enlarged left-end view of the apparatus shown in Figures 29 and 30.
  • Figure 35 is an enlarged, cross-sectional view taken along lines 35-35 of Figure 34.
  • Figure 36 is a cross-sectional view taken along lines 36 : 36 of Figure 35.
  • Figure 37 is a cross-sectional view taken along lines 37-37 of Figure 35.
  • Figure 38 is a cross-sectional view taken along lines 38-38 of Figure 35.
  • Figure 39 is an enlarged, cross-sectional view similar to Figure 35, but showing the position of the component parts of the apparatus after a portion of the operating member has been threadably advanced into the body.
  • Figure 40 is a cross-sectional view similar to Figure 39 but illustrating the position of the cooperating component parts after a portion of the operating member has been further advanced into the body and the cannula has pierced the piercable septum of the medicament vial.
  • Figure 41 is a cross-sectional view taken along lines 41-41 of Figure 40.
  • Figure 42 is a cross-sectional view taken along lines 42-42 of Figure 40.
  • Figure 43 is an enlarged, fragmentary, cross-sectional view of the dispensing end of the apparatus as shown in Figure 41.
  • Figure 44 is a generally perspective view of yet another embodiment of the dispensing apparatus of the present invention for dispensing fluids at a uniform rate.
  • Figure 45 is a generally perspective, diagrammatic view illustrating the manner in which the threaded compression cap is advanced by the user into the body of the apparatus.
  • Figure 46 is a generally perspective, exploded view of the apparatus of Figure 44.
  • Figure 47 is an enlarged left end view of the apparatus shown in Figure 44.
  • Figure 48 is a cross-sectional view taken along lines 48-48 of Figure 47.
  • Figure 49 is a cross-sectional view taken along lines 49-49 of Figure 48.
  • Figure 50 is a cross-sectional view taken along lines 50-50 of Figure 48.
  • Figure 51 is an enlarged, fragmentary view showing the manner in which the locking tabs of the device interlock with the locking teeth.
  • Figure 52 is a cross-sectional view taken along lines 52-52 of Figure 48.
  • Figure 53 is a cross-sectional view taken along lines 53-53 of Figure 48.
  • Figure 54 is a cross-sectional view taken along lines 54-54 of Figure 48.
  • Figure 55 is a cross-sectional view similar to Figure 48, but showing the position of the component parts of the apparatus after the control rod of the device has been threadably advanced into the body.
  • Figure 56 is a generally perspective view of still another embodiment of the dispensing apparatus of the present invention.
  • Figure 57 is a generally perspective, fragmentary view illustrating the appearance of the device after the locking push button has been advanced by the user into the forward portion of the body of the apparatus.
  • Figure 58 is a generally perspective, exploded view of the apparatus shown in Figure 56.
  • Figure 59 is an enlarged left end view of the apparatus shown in Figure 56.
  • Figure 60 is a cross-sectional view taken along lines 60-60 of Figure 59.
  • Figure 62 is a cross-sectional view taken along lines 62-62 of Figure 60.
  • Figure 73 is a generally perspective, exploded view of yet another form of supporting base shown here as comprising a spring loaded clip.
  • the apparatus of this form of the invention comprises an elongated body 14, which is made up of three interconnected, generally tubular shaped portions 16, 18, and 20 respectively, portion 20 comprising the operating means of the invention, the purpose of which will presently be described.
  • portions 16, 18, and 20 are interconnected to form elongated body 14, they define first, second and third communicating interior chambers 22, 24, and 26 respectively.
  • Removably receivable within first chamber 22 is a pre-filled medicament vial
  • plunger engaging means Disposed within second chamber 24 of elongated body 14 is plunger engaging means for moving plunger 34 of the vial assembly axially of chamber 30c. The details of construction and operation of this plunger engaging means and its interrelationship with the operating means will presently be described. Disposed within third chamber
  • This unique stored energy means here comprises a compressively deformable elastomeric, polymeric mass 36 which is movable from a first configuration shown in Figure 6 to a second, more compressed configuration wherein it has a tendency to return toward its first expanded configuration.
  • the method and apparatus for controllably compressively deforming elastomeric member 36, which includes operating member 20 and its finger-engaging portion 20a ( Figure 1), will be described in the paragraphs which follow.
  • flow control means for controlling the outward flow of fluid flowing from the reservoir or internal chamber 30c of vial 30.
  • This flow control means here comprises a body portion provided in the form of an end cap assembly 40 which is threadably interconnectable with body portion 16.
  • cap assembly 40 comprises an internally threaded cap 42 having a fluid outlet
  • a cannula assembly 48 which comprises a hollow cannula 50 and a cannula support plate 52.
  • Cannula 50 can be either a conventional, sharp, hollow needle or a blunt end cannula of a character well known in the art.
  • Cannula assembly 48 is held in position within cap 42 by sonic bonding or the like.
  • a spacer means shown here as a compressible, elastomeric spacer plug assembly 54, which includes a pierceable membrane 54a that is receivable within the mouth of cap chamber 46 in the manner shown in Figure 6.
  • Rate control means Disposed between cannula support plate 52 and an end wall 42a of cap 42 ( Figure 6) is rate control means for controlling the rate of fluid flowing outwardly through outlet 44 of cap 42.
  • This fluid rate control means comprises a part of the fluid flow control means of the invention and, in the form of the invention shown in the drawings, includes a rate control membrane 60.
  • Rate control membrane 60 which can be constructed from any suitable porous material such as a polycarbonate, a metal or a ceramic, is disposed between two fluid distribution plates 62 and 64. These distribution plates, which comprise a part of the fluid distribution means of the invention, function to uniformly distribute fluid flowing through cannula 50 in radially outwardly directions so that the fluid will uniformly flow through the face of the rate control membrane 60.
  • End assembly 42 is then threadably interconnected with body portion 16.
  • the plunger engaging means shown here as an elongated pusher member 70 is inserted into second chamber 24 in the manner shown in Figure 6. This done, the stored energy means, or elastomeric member 36, is inserted into chamber 26 of the third, or operating member, portion of elongated body 14.
  • covering 76 is pealed away from body portion 20 in the manner depicted in Figure 1. This done member 20 is threadably advanced inwardly of body portion 18 using finger-engaging portion 20a in the manner illustrated in
  • FIG. 11 it is to be noted that, as operating member 20 is threaded into body portion 18, the head portion 70a of pusher member 70 will engage and progressively deform elastomeric member 36 between member 70 and the internal end wall 21 of member 20 in the manner indicated by the phantom lines of Figure 11. It is to be understood that member 36 can be deformed at a uniform rate or it can be deformed at a non-uniform rate depending upon the material used to con ⁇ struct the stored energy means and the specific end application to be made of the apparatus. As member 36 is strategically compressively deformed, the opposite end 70b of pusher member 70 will forcefully engage plunger 34 of the vial assembly tending to urge the plunger inwardly of the fluid reservoir in the manner shown in Figure 6.
  • Conduit 80 is typically provided in the form of a microbore, flexible tubing which can be interconnected with a conventional infusion needle or a conventional infusion set (not shown).
  • the stored energy source, or elastomeric member 36 has a tendency to return toward its initial, less deformed starting configuration.
  • member 36 can be either partially compressed, fully extended or strategically elongated. Expansion of compressed member 36 during the stored energy unloading phase causes plunger 34 to move axially of reservoir 30c from a first position shown in Figure 6 to a second position shown in Figures 11 and 12. As the plunger moves within the reservoir, the fluid contained therein will be urged into a central fluid passageway 50a of cannula 50 and toward the flow control means of the apparatus. Fluid flowing from passageway 50a will controllably flow through rate control member 64, outwardly of outlet 44 and into conduit 80.
  • a wide variety of materials can be used to form the stored energy means including rubbers, plastics and other thermoplastic elastomers (TPE) and thermoplastic urethane (TPU).
  • suitable materials include latex rubber, rubber polyolefins, polyisoprene (natural rubber), butyl rubber, nitrile rubber, polyurethane, vinyls, vinyl-end-blocked polydimethylsiloxanes, other homopolymer, copolymers (random alternating, block, graft cross-link and star block), silicones and other flouropolymers, mechanical poly-blends, polymer alloys and interpenetrating polymer networks.
  • porous and cellular systems including open and closed cell products such as highly resilient, flexible polyurethane foams, elastomeric silicone foams, latex rubber foam and other cellular rubber materials such as styrenebutadiene rubber (SBR).
  • open and closed cell products such as highly resilient, flexible polyurethane foams, elastomeric silicone foams, latex rubber foam and other cellular rubber materials such as styrenebutadiene rubber (SBR).
  • SBR styrenebutadiene rubber
  • the stored energy means can be constructed in a wide variety of shaped forms and configurations. It is to be noted that, particularly in latex rubber constructions, coring patterns in shaped form configurations significantly influence the compressive behavior of the cellular polymer.
  • Teeth 84 along with tab-like members 86, comprise the locking means of this form of the invention for irreversibly interlocking the operating means or portion 20, with body portion 18 so as to effectively prevent accidental interruption of the unloading of the stored energy means.
  • Figure 13 in which a segment of the locking means portion of the device shown in a linear portrayal, it can be seen that as member 20 moves into seating engagement with member 18, teeth 84 will yieldably deform flexible locking tabs 86 in the manner shown.
  • the locking tabs will readily pass over the teeth as the operating member is tightened, but then will spring outwardly against the vertical faces of the teeth so as to block rotation in an opposite direction thereby effectively preventing retraction of the operating member once it has been seated.
  • FIG. 14 through 28 of the drawings an alternate form of the dispensing apparatus of the present invention is there illustrated and generally designated by numeral 102.
  • the apparatus of this alternate form of the invention is similar in certain respects to the embodiment just described and like numbers have been used in Figures 14 through 18 to identify like components.
  • a pre- filled medicament vial 120 of the general character previously described having a first end 120a sealed by a piercable member 32 and a second end 120b sealed by an elasto ⁇ meric plunger 34 which is telescopically movable longitudinally of the internal fluid reservoir of chamber 120c of vial 120.
  • pierceable member 32 comprises a part of the outlet means of the reservoir for permitting fluid flow therefrom.
  • plunger engaging means Disposed within second chamber 114 of elongated body 108 is plunger engaging means for moving plunger 34 of the vial assembly axially of chamber 120c. The details of construction and operation of this plunger engaging means will presently be described.
  • the apparatus of this latest form of the invention also includes flow control means for controlling the outward flow of fluid flowing from the reservoir or internal chamber 120c of vial 120.
  • the flow control means here comprises an end cap assembly 124 which is interconnectable with body portion 106 in any appropriate way, such as by adhesive, sonic, or radio frequency bonding.
  • cap assembly 124 comprises a hollow cap 126 having a fluid outlet 128 ( Figure 20) and defining an interior chamber 130.
  • a cannula assembly Disposed within chamber 130 and forming a part of the flow control means of the invention is a cannula assembly
  • cannula 134 which comprises a hollow cannula 134 and a cannula support plate 136.
  • cannula 134 can be either a conventional, sharp, hollow piercing needle or a blunt end cannula mateable with a suitably configured septum 32 of a character well known in the art.
  • Cannula assembly 132 is held in position within cap 126 by appropriate bonding.
  • a compressible, elastomeric spacer plug 138 such as a low durometer silicone foam, is receivable within the mouth of cap chamber 130 in the manner shown in Figure 20.
  • a tear-away cap 140 Prior to the cap assembly being interconnected with body portion 106 interior chamber 130 of the cap assembly is closed and maintained in a sterile configuration by a tear-away cap 140 which is bonded to the cap ( Figures 16 and 17).
  • Rate control means Disposed between cannula support plate 132 and an end wall 126a ( Figure 20) of cap 126 is rate control means for controlling the rate of fluid flowing outwardly through outlet 128 of cap 126.
  • This fluid rate control means comprises a part of the fluid flow control means of the invention and in this latest form of the invention includes a rate control assembly 142.
  • Rate control assembly 142 comprises a laminate, which can be constructed from specially designed wafers 142a and 142b ( Figure 17), one of which comprises a filtering means or filter 145, for filtering particulates from the solution flowing from chamber 120c.
  • the remaining wafers are constructed of porous material such as various polymers with alternate flow control pores of selected diameters and distribution patterns.
  • body 110 of the operating member is provided with threads 154 ( Figure 16) which engage internal threads 156 that are formed internally of second body portion 108 ( Figure 20).
  • member 110 Prior to use of the device, member 110 is connected to, but not fully threaded into body portion 108.
  • the operating member extends outwardly from body portion 108 in the manner shown in Figures 14 and 20.
  • a covering 76 surrounds body portion 110 in the manner shown in Figures 14 and 20.
  • vial assembly 120 will be moved to the right as viewed in Figure 24 causing the compression of elastomeric spacer 138 and simultaneously causing cannula 134 to pierce piercable member 32 of the medicament vial assembly in the manner best seen in Figure 25.
  • a fluid flow path will be opened between the medicament reservoir of the vial and the outlet port 128 of cap assembly 124 permitting the medicament to flow from the reservoir, through the flow control means of the invention and then outwardly of the apparatus through a conduit 163 which is connected to the outlet 128 of the cap assembly in the manner shown in Figure 25.
  • elastomeric spacer plug 138 will once again be compressed from the expanded configuration shown in Figure 24 to the compressed configuration shown in Figures 25 and 28.
  • the plunger engaging means for moving plunger 34 of the vial assembly has been eliminated and movement of the plunger of the vial assembly is accomplished in a different manner presently to be described.
  • This unique stored energy means comprises a generally cylindrically shaped elastomeric plug 197 which is movable from a first configuration shown in Figure 39 to a second, deformed configuration wherein it has a tendency to uniformly return toward its first configuration.
  • the apparatus of this latest form of the invention includes flow control means for controlling the outward flow of fluid flowing from the reservoir or internal chamber 120c of vial 120.
  • the flow control means is essentially identical to that shown in Figure 43, but here comprises an end cap assembly 194 which is threadably interconnectable with body portion 186 rather than being bonded thereto.
  • cap assembly 194 comprises a hollow cap 196 having a fluid outlet 128 ( Figure 43) and defining an interior chamber 198.
  • a cannula assembly 132 Disposed within chamber 198 and forming a part of the flow control means of the invention is a cannula assembly 132 which comprises a hollow cannula 134 and a cannula support plate 136.
  • flow control means Disposed between cannula support plate 136 and an end wall 194a (Figure 39) of cap 194 is flow control means for controlling fluid flowing outwardly through outlet 128 of cap 196.
  • This fluid rate control means is similar to that described in connection with Figures 1 through 5, but includes a combination filter and rate control laminate 60a which functions to control the rate of flow of fluid outwardly of the device.
  • Laminate 60a comprises wafers similar in construction to previously described wafers 142a and 142b.
  • operating member 190 of this latest form of the invention includes a unit condition indicator means for indicating that the apparatus has been placed into an operational condition.
  • This indicator means here comprises an indicator element 202 which is carried within finger-engaging portion 190a of operating member 190.
  • Element 202 includes an elongated, cylindrical body 202a, an enlarged diameter portion 202b, a circumferentially extending groove 202c disposed proximate portion 202b ( Figure 35) and a head portion 202d.
  • Portion 202d is telescopically receivable within an opening 204 of member 190.
  • Resiliently deformable locking tabs 204a are provided in opening
  • the component parts of the apparatus are assembled in the manner previously described and as shown in Figure 35.
  • the body 190 of the operating member is provided with threads 206 ( Figure 31) which engage internal threads 208 that are formed internally of second body portion 188 (see also Figure 39).
  • member 190 Prior to use of the device, member 190 is connected to but not fully threaded into body portion 188. When initially connected, the operating member extends outwardly from body portion
  • a frangible covering 76 is placed around body portion 190 in the manner shown in Figures 29 and 35.
  • a fluid flow path will be opened between the medicament reservoir of the vial and the outlet port 128 of cap assembly 194 permitting the medicament to flow from the reservoir, through the flow control means of the invention and then outwardly of the apparatus through a conduit 163 which is connected to the outlet 128 of the cap assembly in the manner shown in Figure 43.
  • elastomeric spacer plug 138 will be compressed.
  • the stored energy source, or elastomeric member 197 is free to move toward its initial starting configuration.
  • plunger 34 Engagement of plunger 34 by the inboard end of elastomeric member 197 will cause plunger 34 to move axially of reservoir 120c from a first position shown in Figure 36 to a second position shown in Figures 40 and 41.
  • the fluid contained therein will be uniformly urged into the fluid passageway 134a of cannula 134 and toward the flow control means of the apparatus ( Figure 43). The fluid will then flow through rate control assembly 60a, outwardly of outlet 128 and into conduit 163.
  • Detent assembly 168 is of the character previously described and comprises the locking means of this latest form of the invention for locking member 190 to body portion 188. As member 190 moves into seating engagement, detent assembly 168 will move into locking engagement within aperture 209 in the manner shown in Figure 41 thereby effectively preventing removal of the operating member once it has been seated.
  • This latest embodiment of the invention also includes a support means for removably supporting body 182.
  • This support means is of identical construction to that previously described and operates in the same manner. Accordingly, the details of construction of the support means or base assembly will not be here repeated.
  • FIG. 44 through 55 of the drawings yet another form of the dispensing apparatus of the present invention is there illustrated and generally designated by numeral 222.
  • the apparatus of this alternate form of the invention is similar in some respects to the previously described embodiments of the invention and like numbers have been used in Figures 44 through 55 to identify like components.
  • the apparatus of this latest form of the invention comprises an elongated body 224, which is made up of four interconnected, generally tubular shaped portions 226, 228, 230, and 232 respectively, the operating means of the invention being generally designated as 242 ( Figure 48). Portions 226, 228, 230, and 232 are interconnected to form elongated body 224 and, when interconnected, define first, second, third and fourth communicating interior chambers 233, 234, 235 and 236 respectively.
  • a pre-filled medicament vial 120 of the character previously described having a first end 120a sealed by a piercable member 32 ( Figure 48) and a second end 120b sealed by an elastomeric plunger 34 which is telescopically movable longitudinally of the internal fluid reservoir of chamber 120c of vial 120.
  • pierceable member 32 comprises a part of the outlet means of the reservoir for permitting fluid flow therefrom.
  • Receivable within second chamber 234 of elongated body 224 is plunger engaging means, or displacement piston 240 for moving plunger 34 of the vial assembly axially of chamber 120c. The details of construction and operation of displacement piston 240 will presently be described.
  • This unique stored energy means here comprises an elongated, substan ⁇ tially flat member 242 which is provided with a plurality of longitudinally spaced, oval shaped apertures 244.
  • Member 242 is movable from a substantially undeformed condition shown in Figure 48 to a second, more compressively deformed configuration wherein it has a tendency to return toward its first configuration. It should be understood that in some circumstances, it may be desirable to partially load, deform, or compress the stored energy means depending upon the materials used and the flow curve desired.
  • member 242 also has a plurality of longitudinally spaced apart grooves and ridges 242a and 242b respectively.
  • Member 242 can be constructed from materials of the character previously described herein and may be constructed from a polymer foam.
  • the apparatus of this latest form of the invention also includes flow control means for controlling the outward flow of fluid following from the reservoir or internal chamber 120c of vial 120.
  • the flow control means of this embodiment is similar in construction and operation to the flow control means of the previously described embodiment and the details of its construction will not be repeated here.
  • portion 232 here rotatably supports a finger-engaging housing, which is controllably rotated to place the apparatus into a flow discharge condition.
  • the operating means comprises an internally threaded, rotatable, finger-engaging housing 247 and a cooperating, externally threaded control rod 248, a portion of which is receivable within third body portion 230 as the apparatus is placed in the flow discharge mode (see Figure 55).
  • a retaining ring 247a Disposed within member 232 is a retaining ring 247a to which the forwardly extending finger-engaging housing 247 is connected.
  • a fluid flow path will be opened between the medicament reservoir of the vial and the outlet port 128 of cap assembly 124 accommodating fluid flow from the reservoir, through the flow control means of the invention and then outwardly of the apparatus through a conduit 163 which is connected to the outlet 128 of cap assembly by a standard connector, such as a luer connector 163a in the manner shown in Figures 48 and 55.
  • a standard connector such as a luer connector 163a in the manner shown in Figures 48 and 55.
  • the stored energy source or elastomeric member 242
  • the stored energy source is free to return toward its initial starting configuration.
  • This causes plunger 34 to move axially of reservoir 120c from a first position shown in Figure 48 to a second position shown in Figure 55.
  • the fluid contained therein will be uniformly urged into the fluid passageway 134a of cannula 134 and toward the flow control means of the apparatus ( Figure 48). the fluid will then flow through rate control assembly 142, outwardly of outlet 128 and into conduit 163.
  • member 247 is provided with a vent aperture 256 and includes proximate its inboard end a plurality of circumferentially spaced locking tabs 258 which lockably engage circumferentially spaced teeth 260 provided internally of portion 232 (see also Figures 50 and 51).
  • Tabs 258 and teeth 260 comprise the locking means of this latest form of the invention for preventing counter rotation of housing 247. With this construction, once control rod 248 has been fully advanced counterclockwise or loosening rotation of the finger-engaging housing is positively prevented.
  • the apparatus of this latest form of the invention like the embodiment just described, comprises an elongated body 274, which is made up of four interconnected, generally tubular shaped portions 276, 278, 280, and 282 respectively, a portion of the operating means of this form of the invention being designated as 282 ( Figure 56). These portions are interconnected to form elongated body 274 and, when interconnected, define first, second, third and fourth communicating interior chambers 284, 286, 288 and 290 respectively ( Figure 60).
  • a pre-filled medicament vial 120 of the character previously described having a first end 120a sealed by a pierceable member 291 which is retained in position by a crimp cap 139 ( Figure 60).
  • Vial 120 also has a second end 120b which is sealed by an elastomeric plunger 34 which is telescopically movable longitudinally of the internal fluid reservoir of chamber 120c of vial 120.
  • plunger engaging means for moving plunger 34 of the vial assembly axially of chamber 120c.
  • push rod 292 for moving plunger 34 of the vial assembly axially of chamber 120c.
  • this latest form of the invention is of a substantially different construction than that previously described herein and includes a number of special features not found in the previously described embodiments.
  • this latest form of the invention includes different and quite novel operating means for placing the apparatus into an armed, operational condition, that is a condition wherein the stored energy means is placed under load deformation.
  • the operating means here includes tactile sensing means that permits the user to tactilely sense the advance of the control rod portion of the operating means during the loading step.
  • the device includes novel indicator means for indicating the extent of advancement of the control rod during the loading step.
  • control rod 298 moves toward its advanced or extended position, it will controllably compressively deform elastomeric member 294.
  • Member 294 will, in turn, exert a longitudinal force on push rod 292.
  • a va ing means such as a valve 195 in the manner shown in Figure 60
  • the valve means can be used to control fluid flow outwardly of the outlet port. Accordingly, when the valve is closed, the resistance offered by the fluid within the vial reservoir to axial movement of plunger 34 will cause the controlled compression of elastomeric member 294.
  • a non-rotatable locking ring 327 which is affixed to extension 280c as by sonic bonding.
  • ring 327 is provided with circumferentially extending teeth 327a which lockably engage serrations 329 provided within push button 314 when the push button is fully inserted as shown in Figure 67. Because key 326 is locked within keyway 314a, rotation of the push button relative to the finger-engaging member is prevented. Therefore, when the push button is locked against rotation with respect to fixed ring 327, rotation of member 282 is also positively prevented.
  • the apparatus of this latest form of the invention comprises an elongated body 352, which is made up of three interconnected, generally tubular shaped portions which house the medicament vial 120, the push rod 292, and the stored energy means, all of which are identical to those just described.
  • the operating means of this form of the invention is of a different construction and the indicator means provided in the previous embodiment has been eliminated.
  • the apparatus of this latest form of the invention includes flow control means for controlling the outward flow of fluid flowing from the reservoir or internal chamber 120c of vial 120.
  • This flow control means is identical to that shown in Figures 55 through 67 and, therefore, will not here be described.
  • arcuate retaining segments 360 which are engagable with a first collar 320 formed within chamber 318. Also formed within chamber 318 is a second set retention collar 324 which is engagable by retaining segments 360 when push button 314 is pushed inwardly of body portion 354.
  • the push button is provided with a keyway 314a ( Figure 69) which slidably receives a key 364 formed within body portion 354.
  • variable pitch threads is not limited to the construction shown in Figures 55 through 69, but can be employed in the design and construction of the operating means of any of the forms of the invention shown in the drawings and previously described herein.
  • Assembly 380 which is also designed to be lockably interconnected with elongated body 352.
  • Assembly 380 includes a flat base plate 382 which is provided with longitudinally extending channel 384 that slidably receives the flange portion 352a of body 352.
  • base plate 382 is adapted to be removably locked to body 352 by means of locking protuberance 352b provided on flange 352a.
  • base assembly 380 is designed to be interconnected with a section of the belt "B" of the user and includes a forward path-like member 386 which is connected to base plate 382 by a living hinge 388 that bias the outer end 386a of member 388 toward base plate 382.
  • a clip plate is pivotally connected to base plate 392 by biasing means shown where as a metal spring 397 which continuously urges edge portion 396a of clip plate 396 toward base plate 392 in the manner shown. Edge portion 396a can be moved away from plate 392 against the urging of spring 397 by pressing on edge portion 396b.

Abstract

An injectable medicament dispenser (12) for use in controllably dispensing fluid medicaments such as insulin, antibiotics, oncolytics, and the like from a pre-filled container at a uniform rate. The dispenser includes a stored energy source (36) in the form of a compressively deformable, polymeric, elastomeric member that provides the force necessary to controllably discharge the medicament from the pre-filled container.

Description

O 96/16691 PCI7US95/15715
MEDICAMENT DISPENSER
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to fluid medicament dispensers. More particularly, the invention concerns a dispenser for use in controllably dispensing a liquid medicament as, for example, an insulin solution.
2. Description of the prior art
Traditionally, conventional syringes are used to inject many beneficial agent solutions such as insulin. In accordance with conventional procedures, the prescribed dose is first drawn into the syringe and a visual check is made to make certain that the correct amount of insulin is present in the syringe. Next, air is expelled from the syringe and the dose is injected manually.
These conventional procedures have numerous drawbacks including adverse reaction caused by the bolus injection of drugs by hand via a syringe. In the majority of cases, the adverse reactions are not due to the drug itself, but rather are due to an improper rate of injection of the drug. Ideally, the contents of a syringe should be delivered over a number of minutes or hours. However, in clinical practice, this rarely occurs due to time pressure on the staff who must operate the syringe manually. Because diabetics generally require regular and repeated injections of insulin, the use of self-delivering devices, such as conventional syringes, is cumbersome, time consuming, and dangerous if not properly performed. In addition, the process of sticking one's self and expulsing the liquid medicament can be extremely unpleasant for the medically untrained. For this reason, several types of dispensing devices have been suggested for automatically dispensing a predetermined quantity of a liquid medicament such as insulin from a multi-does container. Exemplary of such devices are those described in European Patent Application No. 37696 and in U.S. Patent No. 4,592,745 issued to Rex, et al. Both of the aforementioned devices dispense a prede¬ termined quantity of liquid from a liquid reservoir or container and both include mechanical operating mechanisms for expelling the fluid from the reservoir. The Rex, et al device comprises an elongated body formed from two separable sections one of which contains an operating mechanism and the other of which contains a pre-filled cartridge. The operating mechanism of the device mechanically advances an axially movable piston rod which, in turn, drives a piston plug located inside the cartridge so as to expel fluid from the device via a needle located at the bottom end of the body. The piston rod advances in successive axial steps of fixed length through rotation of a rotatable piston rod nut. The piston rod nut is driven by a rotatable worm, which is rotated by the advancing axial movement of a pressure device located at the top of the elongated body.
The EPO application discloses a dispensing device somewhat similar to the Rex, et al. device, but embodies an operating mechanism that comprises a pawl which permits relative movement of a ratchet-toothed member in a substantially rectilinear arrangement. As in the Rex, et al. device, the operating mechanism drives the plunger of a medicament vial to expel fluid therefrom.
Electrically operated syringe pumps are also well known, however, they are typically of considerable complexity and are designed to inject very small doses of medicine with considerable accuracy over a long period, which may be up to 24 hours. Such syringe pumps do not provide the inexpensive, simple and manually operated device suitable for the slow injection of drugs over a shorter period of time, which may range from one to 15 minutes.
Many of the prior art medicament dispensing devices are of complex construction and, therefore, are often very expensive to manufacture. Additionally, such devices tend to be somewhat unreliable in use and frequently have a limited useful life. In using certain of the prior art devices, maintaining sterility has also proven to be a problem.
As will be appreciated from the discussion which follows, the apparatus of the present invention uniquely overcomes the drawbacks of the prior art by providing a novel, disposable dispenser of simple but highly reliable construction. A particularly important aspect of the apparatus of the present invention resides in the provision of a novel, self-contained energy source in the form of a uniquely constructed elastomeric member that provides the force necessary to uniformly and precisely dispense solutions, such as insulin, from standard pre-filled containers that can be conveniently loaded into the apparatus. Because of the simplicity of construction of the apparatus of the invention, and the non-mechanical nature of the energy source, the apparatus can be manufactured at low cost without in any way sacrificing accuracy and reliability.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a fluid dispenser for use in controllably dispensing fluid medicaments, such as insulin, antibiotics, oncolytics and the like from a pre-filled container at a uniform rate.
Another object of the invention is to provide a dispenser of the aforementioned character in which a stored energy source is provided in the form of a highly novel, expandable, elastomeric member that provides the force necessary to continuously and uniformly expel fluid from the pre-filled container.
Another object of the invention is to provide a dispenser of the character described in the preceding paragraph in which the expandable elastomeric member comprises a polymeric mass which can be controllably deformed and, after being deformed, exhibits a tendency to predictably return toward a non-deformed configura¬ tion.
Another object of the invention is to provide a dispenser of the class described which includes a fluid flow control assembly that filters and precisely controls the flow of the medicament solution from the pre-filled container. Another object of the invention is to provide a fluid dispenser which is adapted to be used with conventional pre-filled insulin drug vials to deliver an insulin solution therefrom in a precise and sterile manner.
Another object of the invention is to provide a fluid dispenser of the class described which is compact, lightweight, is easy for ambulatory patients to use, is fully disposable, and is extremely accurate so as to enable the infusion of precise doses of insulin over prescribed periods of time.
Another object of the invention is to provide a self-contained medicament dispenser which is of very simple construction and yet extremely reliable in use.
Another object of the invention is to provide a dispenser of the class described which includes means for interconnecting the device with the body or clothing of the patient.
Another object of the invention is to provide a fluid dispenser as described in the preceding paragraphs which is easy and inexpensive to manufacture in large quantities.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a generally perspective view of one embodiment of the dispensing apparatus of the present invention for dispensing fluids at a uniform rate. Figure 2 is a generally perspective view showing the appearance of the apparatus of Figure 1 after a portion of the operating member has been threadably advanced into the body portion of the apparatus.
Figure 2A is a generally perspective, diagrammatic view illustrating the manner in which a portion of the operating member is advanced by the user into the body of the apparatus.
Figure 3 is an enlarged right end view of the apparatus shown in Figures 1 and 2.
Figure 4 is a generally perspective, exploded view of the apparatus of Figure 1. Figures 5 is a generally perspective, exploded view of the fluid flow control assembly of the apparatus which functions to control the rate of fluid flow from the apparatus.
Figure 6 is an enlarged, cross-sectional view taken along lines 6-6 of Figure 3.
Figure 7 is a cross-sectional view taken along lines 7-7 of Figure 6. Figure 8 is a cross-sectional view similar to Figure 7, but illustrating the operation of the housing release mechanism of the base support assembly.
Figure 9 is a cross-sectional view taken along lines 9-9 of Figure 6.
Figure 10 is a cross-sectional view taken along lines 10-10 of Figure 6. Figure 11 is an enlarged, cross-sectional view similar to Figure 6, but showing the position of the component parts of the apparatus after a portion of the operating member has been threadably advanced into the body.
Figure 12 is a fragmentary, cross-sectional view of the dispensing end portion of the apparatus illustrating the position of the cooperating component parts after the cannula has pierced the pierceable septum of the medicament vial.
Figure 13 is a development view taken along lines 13-13 of Figure 11 illustrating the manner in which the locking teeth and locking tabs of the device cooperate to lock the operating member to the housing.
Figure 14 is a generally perspective view of an alternate embodiment of the dispensing apparatus of the present invention for dispensing fluids at a uniform rate.
Figure 15 is a generally perspective view showing the appearance of the apparatus of Figure 14 after a portion of the operating member has been threadably advanced into the body portion of the apparatus.
Figure 16 is a generally perspective, exploded view of the apparatus of Figure 14.
Figure 17 is a generally perspective, exploded view of the fluid flow control assembly of this latest form of the apparatus which functions to control the rate of fluid flow from the apparatus.
Figure 18 is a generally perspective, diagrammatic view illustrating the manner in which a portion of the operating member is threadably advanced by the user into the body of the apparatus.
Figure 19 is an enlarged left end view of the apparatus shown in Figures 14 and
15.
Figure 20 is an enlarged, cross-sectional view taken along lines 20-20 of Figure
19.
Figure 21 is a cross-sectional view taken along lines 21-21 of Figure 20.
Figure 22 is a cross-sectional view taken along lines 22-22 of Figure 20.
Figure 23 is a cross-sectional view taken along lines 23-23 of Figure 20. Figure 24 is an enlarged, cross-sectional view similar to Figure 20, but showing the position of the component parts of the apparatus after a portion of the operating member has been threadably advanced into the body.
Figure 25 is a cross-sectional view similar to Figure 24 but illustrating the position of the cooperating component parts after the cannula has pierced the pierceable septum of the medicament vial.
Figure 26 is a cross-sectional view taken along lines 26-26 of Figure 25.
Figure 27 is a cross-sectional view taken along lines 27-27 of Figure 25.
Figure 28 is an enlarged, fragmentary, cross-sectional view of the dispensing end of the apparatus as shown in Figure 25. Figure 29 is a generally perspective view of an alternate embodiment of the dispensing apparatus of the present invention for dispensing fluids at a uniform rate.
Figure 30 is a generally perspective view showing the appearance of the apparatus of Figure 29 after a portion of the operating member has been threadably advanced into the body portion of the apparatus. Figure 31 is a generally perspective, exploded view of the apparatus of Figure 29.
Figure 32 is a generally perspective, exploded view of the fluid flow control assembly of this next form of the apparatus which functions to control the rate of fluid flow from the apparatus.
Figure 33 is a generally perspective, diagrammatic view illustrating the manner in which a portion of the operating member is advanced by the user into the body of the apparatus.
Figure 34 is an enlarged left-end view of the apparatus shown in Figures 29 and 30.
Figure 35 is an enlarged, cross-sectional view taken along lines 35-35 of Figure 34.
Figure 36 is a cross-sectional view taken along lines 36:36 of Figure 35. Figure 37 is a cross-sectional view taken along lines 37-37 of Figure 35. Figure 38 is a cross-sectional view taken along lines 38-38 of Figure 35.
Figure 39 is an enlarged, cross-sectional view similar to Figure 35, but showing the position of the component parts of the apparatus after a portion of the operating member has been threadably advanced into the body.
Figure 40 is a cross-sectional view similar to Figure 39 but illustrating the position of the cooperating component parts after a portion of the operating member has been further advanced into the body and the cannula has pierced the piercable septum of the medicament vial.
Figure 41 is a cross-sectional view taken along lines 41-41 of Figure 40.
Figure 42 is a cross-sectional view taken along lines 42-42 of Figure 40. Figure 43 is an enlarged, fragmentary, cross-sectional view of the dispensing end of the apparatus as shown in Figure 41.
Figure 44 is a generally perspective view of yet another embodiment of the dispensing apparatus of the present invention for dispensing fluids at a uniform rate. Figure 45 is a generally perspective, diagrammatic view illustrating the manner in which the threaded compression cap is advanced by the user into the body of the apparatus.
Figure 46 is a generally perspective, exploded view of the apparatus of Figure 44. Figure 47 is an enlarged left end view of the apparatus shown in Figure 44.
Figure 48 is a cross-sectional view taken along lines 48-48 of Figure 47.
Figure 49 is a cross-sectional view taken along lines 49-49 of Figure 48.
Figure 50 is a cross-sectional view taken along lines 50-50 of Figure 48.
Figure 51 is an enlarged, fragmentary view showing the manner in which the locking tabs of the device interlock with the locking teeth.
Figure 52 is a cross-sectional view taken along lines 52-52 of Figure 48.
Figure 53 is a cross-sectional view taken along lines 53-53 of Figure 48.
Figure 54 is a cross-sectional view taken along lines 54-54 of Figure 48.
Figure 55 is a cross-sectional view similar to Figure 48, but showing the position of the component parts of the apparatus after the control rod of the device has been threadably advanced into the body.
Figure 56 is a generally perspective view of still another embodiment of the dispensing apparatus of the present invention.
Figure 57 is a generally perspective, fragmentary view illustrating the appearance of the device after the locking push button has been advanced by the user into the forward portion of the body of the apparatus.
Figure 58 is a generally perspective, exploded view of the apparatus shown in Figure 56. Figure 59 is an enlarged left end view of the apparatus shown in Figure 56.
Figure 60 is a cross-sectional view taken along lines 60-60 of Figure 59.
Figure 61 is a cross-sectional view taken along lines 61-61 of Figure 60.
Figure 62 is a cross-sectional view taken along lines 62-62 of Figure 60.
Figure 63 is a cross-sectional view taken along lines 63-63 of Figure 60. Figure 64 is a cross-sectional view taken along lines 64-64 of Figure 60.
Figure 65 is a cross-sectional view taken along lines 65-65 of Figure 60.
Figure 66 is a cross-sectional view taken along lines 66-66 of Figure 60.
Figure 67 is a cross-sectional view similar to Figure 60 but showing the position of the components of the device following the dispensing of the fluid from the fluid reservoir.
Figure 67A is a fragmentary cross-sectional view of an alternate form of the flow control assembly of the invention shown in Figure 67.
Figure 68 is a generally perspective, fragmentary view of yet another embodiment of the dispensing apparatus of the present invention. Figure 69 is an enlarged cross-sectional view taken along lines 69-69 of Figure
68.
Figure 70 is a generally perspective, diagrammatic view illustrating the special threaded configuration of the operating means of this latest form of the invention.
Figure 71 is a generally perspective, exploded view of another form of supporting base of the dispensing apparatus of the invention.
Figure 72 is a generally perspective, exploded view of still another form of the supporting base, shown here as comprising a belt clip.
Figure 73 is a generally perspective, exploded view of yet another form of supporting base shown here as comprising a spring loaded clip.
Figure 74 is a generally perspective view of another form of supporting base to which a connector strap can be interconnected.
DETAILED DESCRIPTION OF THE INVENTION
Referring to the drawings and particularly to Figures 1 through 5, one embodiment of the dispensing apparatus of the present invention is there illustrated and generally designated by the numeral 12. The apparatus of this form of the invention comprises an elongated body 14, which is made up of three interconnected, generally tubular shaped portions 16, 18, and 20 respectively, portion 20 comprising the operating means of the invention, the purpose of which will presently be described. As best seen by referring to Figure 6, when portions 16, 18, and 20 are interconnected to form elongated body 14, they define first, second and third communicating interior chambers 22, 24, and 26 respectively. Removably receivable within first chamber 22 is a pre-filled medicament vial
30 having a first end 30a sealed by a piercable member 32 and a second end 30b sealed by an elastomeric plunger 34 which is telescopically movable longitudinally of the internal fluid reservoir or chamber 30c of vial 30. Pierceable member 32 comprises a part of the outlet means of the reservoir for permitting fluid flow therefrom.
Disposed within second chamber 24 of elongated body 14 is plunger engaging means for moving plunger 34 of the vial assembly axially of chamber 30c. The details of construction and operation of this plunger engaging means and its interrelationship with the operating means will presently be described. Disposed within third chamber
26 of the elongated body is the highly novel and important stored energy means of the invention, which provides energy necessary to move plunger 34 longitudinally of reservoir 30c. This unique stored energy means here comprises a compressively deformable elastomeric, polymeric mass 36 which is movable from a first configuration shown in Figure 6 to a second, more compressed configuration wherein it has a tendency to return toward its first expanded configuration. The method and apparatus for controllably compressively deforming elastomeric member 36, which includes operating member 20 and its finger-engaging portion 20a (Figure 1), will be described in the paragraphs which follow. Also comprising an important aspect of the apparatus of the present form of the invention is flow control means for controlling the outward flow of fluid flowing from the reservoir or internal chamber 30c of vial 30. This flow control means here comprises a body portion provided in the form of an end cap assembly 40 which is threadably interconnectable with body portion 16. As best seen by referring to Figures 5 and 6, cap assembly 40 comprises an internally threaded cap 42 having a fluid outlet
44 and defining an interior chamber 46. Disposed within chamber 46 and forming a part of the flow control means of the invention is a cannula assembly 48 which comprises a hollow cannula 50 and a cannula support plate 52. Cannula 50 can be either a conventional, sharp, hollow needle or a blunt end cannula of a character well known in the art. Cannula assembly 48 is held in position within cap 42 by sonic bonding or the like. Disposed adjacent plate 52 is a spacer means, shown here as a compressible, elastomeric spacer plug assembly 54, which includes a pierceable membrane 54a that is receivable within the mouth of cap chamber 46 in the manner shown in Figure 6. Prior to the cap assembly being interconnected with body portion
16 interior chamber 46 of the cap assembly is closed and maintained in a sterile configuration by a tear-away cap 58 (Figure 5).
Disposed between cannula support plate 52 and an end wall 42a of cap 42 (Figure 6) is rate control means for controlling the rate of fluid flowing outwardly through outlet 44 of cap 42. This fluid rate control means comprises a part of the fluid flow control means of the invention and, in the form of the invention shown in the drawings, includes a rate control membrane 60. Rate control membrane 60, which can be constructed from any suitable porous material such as a polycarbonate, a metal or a ceramic, is disposed between two fluid distribution plates 62 and 64. These distribution plates, which comprise a part of the fluid distribution means of the invention, function to uniformly distribute fluid flowing through cannula 50 in radially outwardly directions so that the fluid will uniformly flow through the face of the rate control membrane 60. Distribution plate 62 functions as a substrate support for membrane 60 and also functions to redistribute and manifold the fluid and direct its flow uniformly inwardly toward outlet 44 of cap assembly 42. Distribution plates 62 and 64 can be constructed of any suitable porous material of a character well known by those skilled in the art as by way of example, porous polypropylene, porous polycarbonate, and porous polysulfone.
In using the apparatus of the invention shown in Figures 1 through 13, the component parts of the apparatus are assembled in the manner shown in Figure 6. More particularly, fluid vial 30 containing a fluid such as the medicament "M", which may be insulin, antibiotics, oncolytics, human growth hormones, or any other type of injectable beneficial agent, is inserted into first chamber 22 of the elongated body. End assembly 42 is then threadably interconnected with body portion 16. Next, the plunger engaging means shown here as an elongated pusher member 70 is inserted into second chamber 24 in the manner shown in Figure 6. This done, the stored energy means, or elastomeric member 36, is inserted into chamber 26 of the third, or operating member, portion of elongated body 14. It is to be noted that body 20 of the operating member is provided with threads 72 (Figure 4) which engage internal threads 74 that are formed internally of second body portion 18. Prior to use of the device, member 20 is connected to, but not fully threaded into body portion 18. When initially connected, the operating member extends outwardly from body portion 18 in the manner shown in Figure 1. To protect threads 72 and to prevent accidental loading of the stored energy means, a scored plastic, tubular tearaway covering 76 surrounds body portion 20 in the manner shown in Figures 1 and 6.
After the apparatus has been assembled in the manner shown in Figures 1 and 6, and prior to its being used, covering 76 is pealed away from body portion 20 in the manner depicted in Figure 1. This done member 20 is threadably advanced inwardly of body portion 18 using finger-engaging portion 20a in the manner illustrated in
Figures 2 and 2A. Turning to Figure 11, it is to be noted that, as operating member 20 is threaded into body portion 18, the head portion 70a of pusher member 70 will engage and progressively deform elastomeric member 36 between member 70 and the internal end wall 21 of member 20 in the manner indicated by the phantom lines of Figure 11. It is to be understood that member 36 can be deformed at a uniform rate or it can be deformed at a non-uniform rate depending upon the material used to con¬ struct the stored energy means and the specific end application to be made of the apparatus. As member 36 is strategically compressively deformed, the opposite end 70b of pusher member 70 will forcefully engage plunger 34 of the vial assembly tending to urge the plunger inwardly of the fluid reservoir in the manner shown in Figure 6. It is to be noted that upon initial assembly of the apparatus spacer means, or spacer 54, maintains separation between cannula 50 and septum 32. However, because of the resistance offered by the fluid within the vial reservoir to axial movement of plunger 34, the entire vial assembly 30 will be moved to the right as viewed in Figure 6 causing the compression of elastomeric spacer 54 and simultaneously causing cannula 50 to pierce piercable member 32 of the medicament vial assembly in the manner best illustrated in Figure 12. As the cannula pierces the septum, or member 32, a fluid flow path will be opened between the medicament reservoir of the vial and the outlet port 44 of cap assembly 42 permitting the medicament to flow from the reservoir, through the flow control means of the invention and then outwardly of the apparatus through a conduit 80 which is connect¬ ed to the outlet 44 of the cap assembly in the manner shown in Figure 12. Conduit 80 is typically provided in the form of a microbore, flexible tubing which can be interconnected with a conventional infusion needle or a conventional infusion set (not shown). As seen in Figures 11 and 12, as the medicament vial moves to the right, elastomeric spacer plug 54, which previously maintained a spaced relationship between cannula 50 and piercable member 32, will be compressed from the expanded configuration shown in Figure 6 to the compressed configuration shown in Figures 11 and 12.
After the fluid flow path between reservoir 30c and outlet 44 is open, the stored energy source, or elastomeric member 36 has a tendency to return toward its initial, less deformed starting configuration. In this regard, it is to be understood that, at the time of initial assembly of the device, member 36 can be either partially compressed, fully extended or strategically elongated. Expansion of compressed member 36 during the stored energy unloading phase causes plunger 34 to move axially of reservoir 30c from a first position shown in Figure 6 to a second position shown in Figures 11 and 12. As the plunger moves within the reservoir, the fluid contained therein will be urged into a central fluid passageway 50a of cannula 50 and toward the flow control means of the apparatus. Fluid flowing from passageway 50a will controllably flow through rate control member 64, outwardly of outlet 44 and into conduit 80.
The various fluids that can be dispensed from vial 30, in addition to those previously described, include, by way of example, beneficial agents, such as medicaments of various types, drugs, pharmaceuticals, hormones, antibodies, biologically active materials, elements, chemical compounds or any other material useful in the diagnosis, cure, mitigation, treatment or prevention of disease, and for the maintenance of the good health of the patient.
With respect to the important stored energy means, a wide variety of materials can be used to form the stored energy means including rubbers, plastics and other thermoplastic elastomers (TPE) and thermoplastic urethane (TPU). By way of example, suitable materials include latex rubber, rubber polyolefins, polyisoprene (natural rubber), butyl rubber, nitrile rubber, polyurethane, vinyls, vinyl-end-blocked polydimethylsiloxanes, other homopolymer, copolymers (random alternating, block, graft cross-link and star block), silicones and other flouropolymers, mechanical poly-blends, polymer alloys and interpenetrating polymer networks.
Examples of material found particularly well suited for constructing the stored energy means include porous and cellular systems including open and closed cell products such as highly resilient, flexible polyurethane foams, elastomeric silicone foams, latex rubber foam and other cellular rubber materials such as styrenebutadiene rubber (SBR).
Interpenetrating polymer networks (IPNS), which can also be used for the stored energy means, are unique blends of cross-linked polymers containing essentially no covalent bonds, or grafts between them. True IPNS are also homogeneous mixtures of component polymers.
The stored energy means can be constructed in a wide variety of shaped forms and configurations. It is to be noted that, particularly in latex rubber constructions, coring patterns in shaped form configurations significantly influence the compressive behavior of the cellular polymer.
Manufactures of materials suitable for use in the construction of stored energy source, include Advance Elastomer Systems, Dow Chemical, General Electric, B.P. Polymers, Mobay Chemical, Shell Oil Corp., Petrarch Systems, DuPont, Akron Rubber, Concept Polymers and Union Carbide Corp. Referring now to Figures 9, 10 and 13, it is to be noted that housing portion
20 is provided with a plurality of circumferentially spaced teeth 84 while body portion 18 is provided with a plurality of circumferentially spaced, flexible, tab-like mating members 86. Teeth 84 along with tab-like members 86, comprise the locking means of this form of the invention for irreversibly interlocking the operating means or portion 20, with body portion 18 so as to effectively prevent accidental interruption of the unloading of the stored energy means. Referring particularly to Figure 13, in which a segment of the locking means portion of the device shown in a linear portrayal, it can be seen that as member 20 moves into seating engagement with member 18, teeth 84 will yieldably deform flexible locking tabs 86 in the manner shown. Due to the sloping configuration of teeth 84, the locking tabs will readily pass over the teeth as the operating member is tightened, but then will spring outwardly against the vertical faces of the teeth so as to block rotation in an opposite direction thereby effectively preventing retraction of the operating member once it has been seated.
Turning next to Figures 1, 5, 7 and 8, the embodiment of the invention there shown comprises a support means for removably supporting body 14. This support means here includes a supporting base assembly 90, which is designed to be lockably interconnected with and securely support elongated body 14 in the manner shown in Figure 2. As best seen in Figure 3, base assembly 90 includes a curved base plate 91 which is provided with longitudinally extending channel 92 and a locking assembly 94 which includes a transversely extending, release arm 94a having a locking protuberance 94b (Figure 4). Locking protuberance 94b is provided with a sloping face that is adapted to engage one of a plurality of outwardly extending locking ridges 96 provided on the base of body member 18 as flange portion 18a of member 18 is slidably received within groove 92 (Figure 7).
With this construction, as flange 18a slides into groove 92 protuberance 94b will ratchet over teeth 96 until body portion 18 is finally seated within the base assembly. At this point (Figure 11), tooth 96 will block removal of flange 18a (see also Figure 7). However, upon depressing arm 94a in the manner shown in Figure 8, protuberance 94b will pivot downwardly about leg 94c (Figure 5) of the release mechanism so as to move clear of tooth 96 so that body portion 18 can be disengaged from the base assembly. As will later be discussed, body 14 can be interconnected with other types of base assemblies which permit the interconnection therewith of a variety of fastening devices that enable the apparatus to be readily interconnected with the body or clothing of the ambulatory patient. These fastening devices are shown in Figures 71, 72, 73, and 74 and will be discussed hereinafter. When body 14 is disconnected from the base assembly, the body assembly can be conveniently carried in the users pocket with the pocket gripping finger 20b of finger-engaging portion 20a being used to frictionally engage the pocket.
Materials particularly well suited for the construction of the elongated body and the operating member include polycarbonates, nylons, and acrylics. Preferred materials for the construction of the pusher-engaging member include polypropylene, polystyrene and polyoxnyl chloride.
Referring now to Figures 14 through 28 of the drawings, an alternate form of the dispensing apparatus of the present invention is there illustrated and generally designated by numeral 102. The apparatus of this alternate form of the invention is similar in certain respects to the embodiment just described and like numbers have been used in Figures 14 through 18 to identify like components.
The apparatus of this alternate form of the invention comprises an elongated body 104, which is made up of three interconnected, generally tubular shaped portions 106, 108, and 110 respectively, portion 110 comprising a part of the operating means of this embodiment of the invention. As best seen by referring to Figure 20, when portions 106, 108, and 110 are interconnected to form elongated body 104, they define first, second and third communicating interior chambers 112, 114, and 116 respectively. As shown in Figure 24, removably receivable within first chamber 112 is a pre- filled medicament vial 120 of the general character previously described having a first end 120a sealed by a piercable member 32 and a second end 120b sealed by an elasto¬ meric plunger 34 which is telescopically movable longitudinally of the internal fluid reservoir of chamber 120c of vial 120. As before, pierceable member 32 comprises a part of the outlet means of the reservoir for permitting fluid flow therefrom. Disposed within second chamber 114 of elongated body 108 is plunger engaging means for moving plunger 34 of the vial assembly axially of chamber 120c. The details of construction and operation of this plunger engaging means will presently be described.
Disposed within third chamber 116 of the elongated body is a slightly different form of the important stored energy means of the invention, which functions to operate the plunger engaging means. This unique stored energy means here comprises a specially configured elastomeric spring-like member 123 which is movable from a first configuration shown in Figure 20 to a second, more compressed configuration wherein it has a tendency to return toward its first configuration. As best seen in Figure 16, member 123 comprises an elongated member having a plurality of longitudinally spaced apart grooves and ridges 123a and 123b respectively.
The apparatus of this latest form of the invention also includes flow control means for controlling the outward flow of fluid flowing from the reservoir or internal chamber 120c of vial 120. The flow control means here comprises an end cap assembly 124 which is interconnectable with body portion 106 in any appropriate way, such as by adhesive, sonic, or radio frequency bonding. As best seen by referring to Figures 17 and 20, cap assembly 124 comprises a hollow cap 126 having a fluid outlet 128 (Figure 20) and defining an interior chamber 130. Disposed within chamber 130 and forming a part of the flow control means of the invention is a cannula assembly
132 which comprises a hollow cannula 134 and a cannula support plate 136. As before, cannula 134 can be either a conventional, sharp, hollow piercing needle or a blunt end cannula mateable with a suitably configured septum 32 of a character well known in the art. Cannula assembly 132 is held in position within cap 126 by appropriate bonding. A compressible, elastomeric spacer plug 138, such as a low durometer silicone foam, is receivable within the mouth of cap chamber 130 in the manner shown in Figure 20. Prior to the cap assembly being interconnected with body portion 106 interior chamber 130 of the cap assembly is closed and maintained in a sterile configuration by a tear-away cap 140 which is bonded to the cap (Figures 16 and 17).
Disposed between cannula support plate 132 and an end wall 126a (Figure 20) of cap 126 is rate control means for controlling the rate of fluid flowing outwardly through outlet 128 of cap 126. This fluid rate control means comprises a part of the fluid flow control means of the invention and in this latest form of the invention includes a rate control assembly 142. Rate control assembly 142 comprises a laminate, which can be constructed from specially designed wafers 142a and 142b (Figure 17), one of which comprises a filtering means or filter 145, for filtering particulates from the solution flowing from chamber 120c. The remaining wafers are constructed of porous material such as various polymers with alternate flow control pores of selected diameters and distribution patterns. Assembly 142 is supported by substrate 62 which functions as a distribution manifold for both the through flow and cross-flow of the fluid. The filter means can be constructed from a variety of materials including a porous polysulfone sold under the name and style "Supor" by Gilman Scientific of Detroit, Michigan.
Turning particularly to Figures 15, 16, 20, and 24, it is to be noted that portion 110 of this latest form of the invention includes a unit condition indicator means for indicating that the apparatus has been placed into an operational condition. This indicator means here comprises an indicator element 146 which is carried within finger-engaging portion 110a of member 110. As seen in Figure 25, element 146 includes a cylindrical body 146a, an enlarged diameter flange 146b, and a circumferentially extending groove 146c disposed proximate flange 146b. Body 146a is telescopically receivable within opening 148 provided in the end wall 111 of portion 110. Resiliently deformable locking tabs 150 are provided within opening 148 for locking engagement with groove 146c when the indicator is in the extended position shown in Figure 25.
In using the apparatus of the invention shown in Figures 14 through 28, the component parts of the apparatus are assembled in the manner previously described and as shown in Figure 20. As was the case with the earlier described embodiment, body 110 of the operating member is provided with threads 154 (Figure 16) which engage internal threads 156 that are formed internally of second body portion 108 (Figure 20). Prior to use of the device, member 110 is connected to, but not fully threaded into body portion 108. When initially connected the operating member extends outwardly from body portion 108 in the manner shown in Figures 14 and 20. As before, to protect threads 154, a covering 76 surrounds body portion 110 in the manner shown in Figures 14 and 20.
After the apparatus has been assembled in the manner shown in Figures 14 and 20, and prior to its being used, frangible covering 76 is pealed away from body portion 110 in the manner depicted in Figure 14. This done, member 110 is threadably advanced inwardly of body portion 108 in the manner illustrated in Figures 15 and 18. Turning now to Figure 24, it is to be noted that as the operating member 110 is threaded into body portion 108 using finger-grip portion 110a, the cup-shaped head portion 160a of a pusher member 160 will engage and progressively compress elastomeric member 123 either uniformly or non-linearly. Simultaneously the opposite end 160b of pusher member 160 will engage plunger 34 of the vial assembly in the manner shown in Figure 24. As portion 110 moves toward a seated position, indicator element 146 will move from the retracted position shown in Figure 20 to the extended position shown in Figure 24. As the indicator element moves to its fully extended position, resiliently deformable tabs 150 will move into groove 146c so as to lock the indicator element in the fully extended position (see Figures 24 and 25). Indicator element 146 can be fabricated of a plastic material having a color different from that of member 110 and can carry indicia indicating that the device has been placed in a fluid condition. As before, because of the resistance offered by the fluid within the vial reservoir to axial movement of plunger 34, vial assembly 120 will be moved to the right as viewed in Figure 24 causing the compression of elastomeric spacer 138 and simultaneously causing cannula 134 to pierce piercable member 32 of the medicament vial assembly in the manner best seen in Figure 25. As the cannula pierces the septum, or member 32, a fluid flow path will be opened between the medicament reservoir of the vial and the outlet port 128 of cap assembly 124 permitting the medicament to flow from the reservoir, through the flow control means of the invention and then outwardly of the apparatus through a conduit 163 which is connected to the outlet 128 of the cap assembly in the manner shown in Figure 25. As the medicament vial moves to the right, elastomeric spacer plug 138 will once again be compressed from the expanded configuration shown in Figure 24 to the compressed configuration shown in Figures 25 and 28.
After fluid flow path between reservoir 120c and outlet 128 is open, the stored energy source, or elastomeric member 123 is free to move from a more compressed to a less compressed configuration. This causes plunger 160 to move axially of reser¬ voir 120c from a first position shown in Figure 24 to a second position shown in Figures 25 and 28. As the plunger moves within the reservoir, the fluid contained therein will be urged into the fluid passageway 134a of cannula 134 and toward the flow control means of the apparatus (Figure 28). As can be observed in Figure 28, septum, or piercable member 32, is retained within the vial by a crimp cap 139. The fluid will then flow through rate control assembly 142, outwardly of outlet 128 and into conduit 163 for dispensing to a patient as appropriate.
Referring now particularly to Figures 16 and 23, it is to be noted that the body portion 110 of the operating member is provided with an aperture 166 proximate its inboard end, while body portion 108 is provided with a cooperating, spring-loaded detent assembly 168. Detent assembly 168 and aperture 166 comprise the locking means of this form of the invention for locking operating member 110 to body portion 108. More particularly, as member 110 moves into seating engagement with member 108, detent assembly 168 will move into aperture 166 in the manner shown in Figure 26 thereby effectively preventing removal of the operating member once it has been seated.
Turning next to Figures 14, 16, 19, 21, and 24, it can be seen that, as before, the present embodiment of the invention comprises a support means for removably supporting body 102. This support means is of identical construction to that previously described and operates in the same manner. Accordingly, the details of construction of the support means or base assembly 90 will not be here repeated.
Referring next to Figures 29 through 43 of the drawings, still another form of the dispensing apparatus of the present invention is there illustrated and generally designated by numeral 182. The apparatus of this alternate form of the invention is similar in several respects to the previously described embodiments of the invention and like numbers have been used in Figures 29 through 43 to identify like components.
As seen in Figures 31 and 35, the apparatus of this latest form of the invention comprises an elongated body 184, which is, once again, made up of three interconnected, generally tubular shaped portions 186, 188, and 190 respectively, portion 190 once again comprising a part of the operating means of the invention. As best seen by referring to Figure 39, when portions 186, 188, and 190 are interconnected to form elongated body 184, they define first, second and third communicating interior chambers 191, 193, and 195 respectively. Removably receivable within first chamber 191 is a pre-filled medicament vial
120 of the general character previously described having a first end 120a sealed by a piercable member 32 (Figure 41) and a second end 120b sealed by an elastomeric plunger 34 which is telescopically movable longitudinally of the internal fluid reservoir of chamber 120c of vial 120. As before, pierceable member 32 comprises a part of the outlet means of the reservoir for permitting fluid flow therefrom.
Unlike the previously described embodiments of the invention, in the present form of the invention, the plunger engaging means for moving plunger 34 of the vial assembly has been eliminated and movement of the plunger of the vial assembly is accomplished in a different manner presently to be described.
Disposed within second chamber 193 of the elongated body is yet another form of the important stored energy means of the invention, which means provides the energy to move plunger 34 within the vial assembly. This unique stored energy means here comprises a generally cylindrically shaped elastomeric plug 197 which is movable from a first configuration shown in Figure 39 to a second, deformed configuration wherein it has a tendency to uniformly return toward its first configuration.
As before, the apparatus of this latest form of the invention includes flow control means for controlling the outward flow of fluid flowing from the reservoir or internal chamber 120c of vial 120. The flow control means is essentially identical to that shown in Figure 43, but here comprises an end cap assembly 194 which is threadably interconnectable with body portion 186 rather than being bonded thereto. As best seen by referring to Figures 41 and 43, cap assembly 194 comprises a hollow cap 196 having a fluid outlet 128 (Figure 43) and defining an interior chamber 198. Disposed within chamber 198 and forming a part of the flow control means of the invention is a cannula assembly 132 which comprises a hollow cannula 134 and a cannula support plate 136. As before, cannula 134 can be either a conventional, sharp hollow needle or a blunt end cannula of a character well known in the art. Cannula assembly 132 is bonded in position within cap 196. A compressible, elastomeric spacer plug 138 which is receivable within the mouth of cap chamber 198 in the manner shown in Figure 39. As before, spacer plug 138 initially maintains spacing between the cannula and piercable member 32 until plunger 34 is forcefully acted upon by the stored energy means. Prior to the cap assembly being interconnected with body portion 186, interior chamber 198 of the cap assembly is closed and maintained in the sterile configuration by a tear-away cap 140 (Figures 31 and 32). Disposed between cannula support plate 136 and an end wall 194a (Figure 39) of cap 194 is flow control means for controlling fluid flowing outwardly through outlet 128 of cap 196. This fluid rate control means is similar to that described in connection with Figures 1 through 5, but includes a combination filter and rate control laminate 60a which functions to control the rate of flow of fluid outwardly of the device. Laminate 60a comprises wafers similar in construction to previously described wafers 142a and 142b.
Turning next to Figures 29, 30, 31, 35 and 40, it is to be noted that operating member 190 of this latest form of the invention includes a unit condition indicator means for indicating that the apparatus has been placed into an operational condition. This indicator means here comprises an indicator element 202 which is carried within finger-engaging portion 190a of operating member 190. Element 202 includes an elongated, cylindrical body 202a, an enlarged diameter portion 202b, a circumferentially extending groove 202c disposed proximate portion 202b (Figure 35) and a head portion 202d. Portion 202d is telescopically receivable within an opening 204 of member 190. Resiliently deformable locking tabs 204a are provided in opening
204 for locking engagement with groove 202c when the indicator is in the extended position shown in Figure 39.
In using the apparatus of the invention shown in Figures 29 through 43, the component parts of the apparatus are assembled in the manner previously described and as shown in Figure 35. As before, the body 190 of the operating member is provided with threads 206 (Figure 31) which engage internal threads 208 that are formed internally of second body portion 188 (see also Figure 39). Prior to use of the device, member 190 is connected to but not fully threaded into body portion 188. When initially connected, the operating member extends outwardly from body portion
188 in the manner shown in Figures 39 and 40. As before, to protect threads 206, a frangible covering 76 is placed around body portion 190 in the manner shown in Figures 29 and 35.
After the apparatus has been assembled in the manner shown in Figures 30 and 35, and prior to its being used, covering 76 is removed from body portion 190 in the manner depicted in Figure 29. This done, cap portion 190 is threadably advanced inwardly of body portion 188 in the manner illustrated in Figures 33 and 39. Turning to Figure 40, it is to be noted that elongated body portion 202a of the indicator element is in engagement with one face of the central wall 210a of a generally cylindrically shaped guide member 210. The other face of wall 210a is maintained in engagement with elastomeric member 197 so that as member 190 is threaded into body portion 188 elastomeric member 197 will be controllably deformed. As operating member 190 moves toward a seated position, head portion 202d of indicator element 202 will move from the retracted position shown in Figure 35 to the extended position shown in Figure 39, As the indicator element moves to its fully extended position, resiliently deformable tabs 204a will move into groove 202c so as to lock the indicator element in the fully extended position (see Figures 39 and 40). Additionally, because of the resistance offered by the fluid within the vial reservoir to axial movement of plunger 34, vial assembly 120 will be moved to the right as viewed in Figure 40 causing the compression of elastomeric spacer 138 and simultaneously causing cannula 134 to pierce piercable member 32 of the medicament vial assembly in the manner best illustrated in Figure 43. As the cannula pierces the septum, or member 32, a fluid flow path will be opened between the medicament reservoir of the vial and the outlet port 128 of cap assembly 194 permitting the medicament to flow from the reservoir, through the flow control means of the invention and then outwardly of the apparatus through a conduit 163 which is connected to the outlet 128 of the cap assembly in the manner shown in Figure 43. As before, upon movement of the medicament vial to the right, elastomeric spacer plug 138 will be compressed. After the fluid flow path between reservoir 120c and outlet 128 is open, the stored energy source, or elastomeric member 197 is free to move toward its initial starting configuration. Engagement of plunger 34 by the inboard end of elastomeric member 197 will cause plunger 34 to move axially of reservoir 120c from a first position shown in Figure 36 to a second position shown in Figures 40 and 41. As the plunger moves within the reservoir, the fluid contained therein will be uniformly urged into the fluid passageway 134a of cannula 134 and toward the flow control means of the apparatus (Figure 43). The fluid will then flow through rate control assembly 60a, outwardly of outlet 128 and into conduit 163.
Referring now particularly to Figures 31 and 36, it is to be noted that member 190 is provided with an aperture 209 proximate its inboard end, while body portion
188 is provided with a spring-loaded detent assembly 168. Detent assembly 168 is of the character previously described and comprises the locking means of this latest form of the invention for locking member 190 to body portion 188. As member 190 moves into seating engagement, detent assembly 168 will move into locking engagement within aperture 209 in the manner shown in Figure 41 thereby effectively preventing removal of the operating member once it has been seated.
This latest embodiment of the invention also includes a support means for removably supporting body 182. This support means is of identical construction to that previously described and operates in the same manner. Accordingly, the details of construction of the support means or base assembly will not be here repeated.
Turning to Figures 44 through 55 of the drawings, yet another form of the dispensing apparatus of the present invention is there illustrated and generally designated by numeral 222. The apparatus of this alternate form of the invention is similar in some respects to the previously described embodiments of the invention and like numbers have been used in Figures 44 through 55 to identify like components.
The apparatus of this latest form of the invention comprises an elongated body 224, which is made up of four interconnected, generally tubular shaped portions 226, 228, 230, and 232 respectively, the operating means of the invention being generally designated as 242 (Figure 48). Portions 226, 228, 230, and 232 are interconnected to form elongated body 224 and, when interconnected, define first, second, third and fourth communicating interior chambers 233, 234, 235 and 236 respectively.
Removably receivable within first chamber 233 is a pre-filled medicament vial 120 of the character previously described having a first end 120a sealed by a piercable member 32 (Figure 48) and a second end 120b sealed by an elastomeric plunger 34 which is telescopically movable longitudinally of the internal fluid reservoir of chamber 120c of vial 120. As before, pierceable member 32 comprises a part of the outlet means of the reservoir for permitting fluid flow therefrom. Receivable within second chamber 234 of elongated body 224 is plunger engaging means, or displacement piston 240 for moving plunger 34 of the vial assembly axially of chamber 120c. The details of construction and operation of displacement piston 240 will presently be described. Disposed within third chamber 235 of the elongated body is a slightly different form of stored energy means of the invention, which functions to operate displacement piston 240. This unique stored energy means here comprises an elongated, substan¬ tially flat member 242 which is provided with a plurality of longitudinally spaced, oval shaped apertures 244. Member 242 is movable from a substantially undeformed condition shown in Figure 48 to a second, more compressively deformed configuration wherein it has a tendency to return toward its first configuration. It should be understood that in some circumstances, it may be desirable to partially load, deform, or compress the stored energy means depending upon the materials used and the flow curve desired. As best seen in Figure 46, member 242 also has a plurality of longitudinally spaced apart grooves and ridges 242a and 242b respectively. Member 242 can be constructed from materials of the character previously described herein and may be constructed from a polymer foam.
The apparatus of this latest form of the invention also includes flow control means for controlling the outward flow of fluid following from the reservoir or internal chamber 120c of vial 120. The flow control means of this embodiment is similar in construction and operation to the flow control means of the previously described embodiment and the details of its construction will not be repeated here.
Turning particularly to Figures 44, 46, 48 and 55, it is to be noted that the operating means of this latest form of the invention is of a substantially different construction than that previously described herein. More particularly, portion 232 here rotatably supports a finger-engaging housing, which is controllably rotated to place the apparatus into a flow discharge condition. In this latest form of the invention the operating means comprises an internally threaded, rotatable, finger-engaging housing 247 and a cooperating, externally threaded control rod 248, a portion of which is receivable within third body portion 230 as the apparatus is placed in the flow discharge mode (see Figure 55). Disposed within member 232 is a retaining ring 247a to which the forwardly extending finger-engaging housing 247 is connected. Also supported by cap portion 232 is a transparent, tubular cover 253, which, as best seen in Figure 48, encapsulates housing member 247.
After the apparatus has been assembled in the manner shown in Figures 46 and 48, a cup-shaped head portion 240a of member 240 will engage elastomeric member
242. Simultaneously end 240b of member 240 will engage plunger 34 of the vial assembly in the manner shown in Figure 48. In operating the apparatus of this latest embodiment, cover 253 is initially removed and finger-engaging housing 247 is rotated using the fingers of the operator. Rotation of housing 247 relative to member 232 will cause control rod 248 to move from the starting position shown in Figure 48 to the extended position shown in Figure 55. As control rod 248 moves toward its extended position, it will tend to controllably compress elastomeric member 242. Member 242 will, in turn, exert a longitudinal force on displacement piston 240. However, because of the resistance offered by the fluid within the vial reservoir to axial movement of plunger 34, the displacement piston will cause vial assembly 120 to move to the right as viewed in Figure 55 resulting in the compression of elastomeric spacer 138 and simultaneously causing cannula 134 to pierce piercable member 32 of the medicament vial assembly in the manner best illustrated in Figure 55. As the cannula pierces the septum, or member 32, a fluid flow path will be opened between the medicament reservoir of the vial and the outlet port 128 of cap assembly 124 accommodating fluid flow from the reservoir, through the flow control means of the invention and then outwardly of the apparatus through a conduit 163 which is connected to the outlet 128 of cap assembly by a standard connector, such as a luer connector 163a in the manner shown in Figures 48 and 55. As before, when the medicament vial moves to the right, elastomeric spacer plug 138 will be compressed from its expanded configuration to its compressed configuration allowing the cannula to pierce septum 32.
After the fluid flow path between reservoir 120c and outlet 128 is open, the stored energy source, or elastomeric member 242, is free to return toward its initial starting configuration. This causes plunger 34 to move axially of reservoir 120c from a first position shown in Figure 48 to a second position shown in Figure 55. As the plunger moves within the reservoir, the fluid contained therein will be uniformly urged into the fluid passageway 134a of cannula 134 and toward the flow control means of the apparatus (Figure 48). the fluid will then flow through rate control assembly 142, outwardly of outlet 128 and into conduit 163.
Referring now particularly to Figures 48 and 55, it is to be noted that member 247 is provided with a vent aperture 256 and includes proximate its inboard end a plurality of circumferentially spaced locking tabs 258 which lockably engage circumferentially spaced teeth 260 provided internally of portion 232 (see also Figures 50 and 51). Tabs 258 and teeth 260 comprise the locking means of this latest form of the invention for preventing counter rotation of housing 247. With this construction, once control rod 248 has been fully advanced counterclockwise or loosening rotation of the finger-engaging housing is positively prevented.
Turning next to Figures 56 through 67 of the drawings, still another form of the dispensing apparatus of the present invention is there illustrated and generally designated by numeral 272. The apparatus of this alternate form of the invention is also similar in certain respects to the previously described embodiments of the invention and like numbers have been used in Figures 56 through 67 to identify like components.
The apparatus of this latest form of the invention, like the embodiment just described, comprises an elongated body 274, which is made up of four interconnected, generally tubular shaped portions 276, 278, 280, and 282 respectively, a portion of the operating means of this form of the invention being designated as 282 (Figure 56). These portions are interconnected to form elongated body 274 and, when interconnected, define first, second, third and fourth communicating interior chambers 284, 286, 288 and 290 respectively (Figure 60).
Removably receivable within first chamber 284 is a pre-filled medicament vial 120 of the character previously described having a first end 120a sealed by a pierceable member 291 which is retained in position by a crimp cap 139 (Figure 60). Vial 120 also has a second end 120b which is sealed by an elastomeric plunger 34 which is telescopically movable longitudinally of the internal fluid reservoir of chamber 120c of vial 120.
Receivable within second chamber 286 of elongated body 274 is plunger engaging means, or push rod 292 for moving plunger 34 of the vial assembly axially of chamber 120c. The details of construction and operation of push rod 292 will presently be described.
Disposed within second chamber 286 of the elongated body is yet another form of stored energy means of the invention, which functions to operate push rod 292. This unique stored energy means here comprises an elongated, generally cylindrically shaped member 294 which includes reduced diameter end portions 294a and 294b. As before, member 294 is movable from a first configuration to a second, more deformed configuration wherein it has a tendency to controllably return toward its initial configuration. While member 294 can be constructed from any of the materials previously described in connection with the embodiment of the invention shown in Figures 1 through 5, it is here constructed from a polymer foam material having special uniaxial compression characteristics.
The apparatus of this latest form of the invention also includes flow control means for controlling the outward flow of fluid following from the reservoir or internal chamber 120c of vial 120. The flow control means of this embodiment is very similar in construction and operation to the flow control means of the embodiment shown in Figures 30 through 43, save that the end cap, here designated as 194b, is provided with circumferentially spaced locking teeth 194c which lockably engage yieldably deformable tabs 276a provided on body portion 276. Additionally, the distribution plates have here been eliminated and filter means, here shown as a microporous filter 295 for filtering particulate matter from the fluid flowing under pressure through cannula 134, is disposed adjacent the rate control member 142 (Figure 60). Filter 295 is of a character well known to those skilled in the art and can be constructed from various readily available materials such as polysulfone, and polypropylene wafers having a porosity of between 0.8 and 1.2 microns. When the locking tabs 276a engage teeth 194c in the manner shown in Figure 60 removal of cap 194b is prevented. It is also to be noted that, if desired, the septum of the medicament vial can be penetrated by the cannula of the flow control means during connection of the end cap 194b to body portion 276 rather than using the operating means to cause penetration of the septum by the cannula.
Turning particularly to Figures 56, 58, 60 and 67, it is to be observed that this latest form of the invention is of a substantially different construction than that previously described herein and includes a number of special features not found in the previously described embodiments. For example, this latest form of the invention includes different and quite novel operating means for placing the apparatus into an armed, operational condition, that is a condition wherein the stored energy means is placed under load deformation. More particularly, the operating means here includes tactile sensing means that permits the user to tactilely sense the advance of the control rod portion of the operating means during the loading step. Additionally, the device includes novel indicator means for indicating the extent of advancement of the control rod during the loading step.
The novel operating means here comprises, in addition to the externally threaded control rod 298, an internally threaded finger-engaging means here comprising the previously identified body portion 282. As indicated in Figure 67, as member 282 is rotated, it cooperates with threaded control rod 298 to strategically advance the control rod into third body portion 280. Disposed intermediate finger-engaging housing 282 and body portion 278 is the previously identified indicator means which here comprises tubular body portion 280. Body portion 280 is provided with a viewing window 301 that permits the user to view a colored strip 302 of various selected colors (Figure 58) that extends longitudinally of control rod 298. The operation of the indicator means as well as the operation of the novel locking means of this latest form of the invention will presently be described in greater detail. After the apparatus has been assembled in the manner shown in Figure 60, a cup-shaped head portion 292a of push rod 292 will engage portion 294a of elastomeric member 294. Simultaneously, end 292b of the push rod will engage plunger 34 of the vial assembly in the manner shown in Figure 60. At the start of the operation of the apparatus of this latest embodiment, locking means, shown here as a push button assembly 306, is in the unlocked configuration shown in Figure 60. With the locking means in this unlocked position, rotation of member 282 relative to member 280 and relative to control rod 298 will cause control rod 298 to advance from the starting position shown in Figure 60 to the extended position shown in Figure 67. As best seen in Figures 58, 60, and 61, control rod 298 includes a plurality of longitudinally spaced splines 310 which, during operation, are sequentially engaged by an interiorly extending tab 312 (Figures 58 and 60) provided on a forwardly extending portion 280a of member 280. Splines 310 and tab 312 comprise the tactile sensing means of the invention. It is also to be noted that portion 280a includes spaced apart bearing surfaces 283a and 283b upon which the finger-engaging member 282 rotates
(Figures 58 and 60). With this construction, as tab 312 engages splines 310, a tactile sensation will be imparted to the user as the user rotates finger-engaging member 282.
As before, as the control rod 298 moves toward its advanced or extended position, it will controllably compressively deform elastomeric member 294. Member 294 will, in turn, exert a longitudinal force on push rod 292. However, when the outlet port of cap 194b communicates with a va ing means, such as a valve 195 in the manner shown in Figure 60, the valve means can be used to control fluid flow outwardly of the outlet port. Accordingly, when the valve is closed, the resistance offered by the fluid within the vial reservoir to axial movement of plunger 34 will cause the controlled compression of elastomeric member 294. With this construction, upon opening valve 195, only then will a fluid flow path be formed between the medicament reservoir of the vial and a dispensing conduit 197, which is connected to the outlet of the valve in the manner shown in Figure 67, thereby permitting fluid to be dispensed from the device. As before, expansion of the stored energy means provides the force necessary to cause the controlled movement of the vial plunger and the resulting discharge of the fluid contained within the vial.
As the control rod advances within body portion 280 the colored indicator strip 302 which is visible through viewing window 301 of the indicator means will indicate to the user the stage of loading of the stored energy means. It should be understood that, this indicator strip can be provided with indicia indicating the extent of linear displacement of the control rod. Under certain circumstances, it may be desirable to provide differential loading of the stored energy means so that alternate flow rates can be selectively achieved. To lock the control rod in the extended position, push button 314 of the locking means or locking assembly 306 is pushed inwardly into the open end
282a of body portion 282. End surface 314a is colored to easily show the condition of the device. As best seen by referring to Figure 60, push button 314 includes an internal chamber 318 into which a generally cylindrically shaped extension 280c of portion 280a of member 280 extends. As best seen in Figure 58, portion 280a comprises a pair of spaced apart connector arms 319 which connect portions 283a and
283b. In the present form of the invention, extension 280c not only rotatably supports finger-engaging member 282, but also uniquely forms a part of the locking means of the invention.
Formed on extension 280c are circumferentially spaced, arcuate shaped retaining segments 320 which are lockably engageable with a first annular collar 322 formed within chamber 318. Also formed within chamber 318 is a second annular collar 324 which is engagable by arcuate retaining segments 320 when push button 314 is pushed inwardly of body portion 282. To guide travel of push button 314 inwardly of body portion 282 and to lock the finger-engaging means against rotation with respect to member 280, the push button is provided with a keyway 314a (Figures 60 and 61) which slidably receives a key 326 formed within interior chamber 290 of body portion 282. Also forming a part of the locking means of this form of the invention, is a non-rotatable locking ring 327 which is affixed to extension 280c as by sonic bonding. As indicated in Figure 58, ring 327 is provided with circumferentially extending teeth 327a which lockably engage serrations 329 provided within push button 314 when the push button is fully inserted as shown in Figure 67. Because key 326 is locked within keyway 314a, rotation of the push button relative to the finger-engaging member is prevented. Therefore, when the push button is locked against rotation with respect to fixed ring 327, rotation of member 282 is also positively prevented.
As previously discussed, after the fluid flow path between reservoir 120c and conduit 197 is opened by opening valve 195, the stored energy source, or polymer foam member 292, is free to move toward its initial starting configuration. This causes plunger 34 to move axially of reservoir 120c from a first position shown in Figure 60 to a second position shown in Figure 67. As the plunger moves within the reservoir, the fluid contained therein will be urged into the fluid passageway 134a of cannula 134 and toward the flow control means of the apparatus (Figure 67). The fluid will then flow under pressure through filter 295, through rate control assembly 142, and then outwardly of outlet 128 and into conduit 197 via valve 195. Turning to Figure 67 A, an alternate form of the flow control means is shown. The alternate form is similar in many respects to that shown in Figure 67, but further includes a fine bore cannula 199 disposed within the outlet passageway of the flow control cap. Cannula 199 functions to further control the rate of flow of fluid flowing outwardly of outlet 128. By varying the length and bore diameter of cannula 199, fluid flow rate can be precisely controlled. The fine bore cannula can be constructed of glass, plastic or metal and is preferably bonded in position within the flow control cap.
As before this latest embodiment of the invention also includes support means for removably supporting body 278. This support means is of identical construction to that previously described and operates in the same manner. This being the case, the details of construction of the support means will not be here repeated.
Referring now Figures 68 through 70 of the drawings, still another form of the dispensing apparatus of the present invention is there illustrated and generally designated by numeral 350. The apparatus of this alternate form of the invention is quite similar to the embodiment shown in Figures 55 through 67 and like numbers have been used in Figures 68 through 70 to identify like components.
The apparatus of this latest form of the invention, comprises an elongated body 352, which is made up of three interconnected, generally tubular shaped portions which house the medicament vial 120, the push rod 292, and the stored energy means, all of which are identical to those just described. However, the operating means of this form of the invention is of a different construction and the indicator means provided in the previous embodiment has been eliminated.
As before, the apparatus of this latest form of the invention includes flow control means for controlling the outward flow of fluid flowing from the reservoir or internal chamber 120c of vial 120. This flow control means is identical to that shown in Figures 55 through 67 and, therefore, will not here be described.
As indicated in Figure 69, the operating means of this latest embodiment comprises an internally threaded finger-engaging means, shown here as body portion 354. Body portion 354 cooperates with a threaded control rod 356 to strategically advance the control rod into adjacent body portion 358. The locking means of this last form of the invention is also identical to that previously described. Accordingly, to lock control rod 356 in the fully advanced position, push button 314 of the locking means or locking assembly 316 is pushed inwardly into the open end 354a of body portion 354. As best seen by referring to Figure 69, push button 314 includes an internal chamber 318 into which a generally cylindrically shaped extension 358a of body portion 358 extends. Extension 358a is similar to extension 280c of the previous embodiment and forms a part of the locking means of this latest form of the invention.
Formed on extension 358a of body portion 358 are arcuate retaining segments 360 which are engagable with a first collar 320 formed within chamber 318. Also formed within chamber 318 is a second set retention collar 324 which is engagable by retaining segments 360 when push button 314 is pushed inwardly of body portion 354. To guide travel of push button 314 inwardly of body portion 354 and to lock the finger-engaging means, or member 354, against rotation with respect to member 358, the push button is provided with a keyway 314a (Figure 69) which slidably receives a key 364 formed within body portion 354. Also forming a part of the locking means of this form of the invention, is a non-rotatable locking ring 327 which is identical in construction and operation to that previously described. As before, ring 327 is provided with circumferentially extending teeth 327a which lockably engage serrations 329 provided within push button 314 when the push button is fully inserted into the locked position.
.After the fluid flow path between the fluid reservoir and the dispensing conduit is opened by opening the control valve 195 (not shown here), the stored energy source, or elastomeric member 292 is, as before, free to move toward its initial starting configuration. This causes plunger 34 of the vial to move axially of fluid reservoir so that the fluid contained therein will be uniformly urged into the fluid passageway 134a of cannula 134 and toward the flow control means of the apparatus. The fluid will then flow through the filter and rate control assembly into the dispensing conduit. The primary difference between this latest embodiment of the invention and that shown in Figures 55 through 67 resides in the novel and important configuration of the threads of the finger-engaging member 354 and of control rod 356. Turning particularly to Figure 70, it is to be observed that the cooperating threads vary in pitch as the threads progress along the length of the cooperating threaded members 354 and 356. For example, as shown in Figures 69 and 70, proximate the forward end of the device, the pitch "A" of threads designated as 361 is relatively course, while the pitch "B" of threads designated as 363 is much finer. The result of this unique threaded configuration is that, as finger-engaging member 354 is rotated, control rod 356 will initially advance faster for a given rotation of the finger-engaging member than it will after a portion of the control rod has advanced into body portion 358. This, of course, causes a more rapid initial compression of elastomeric member 294 followed by a slower compression thereof as the control rod advances progressively further into body portion 358.
This ability to variably, or non-linearly, compress and displace the elastomeric stored energy source is important when certain special materials are used to form the stored energy means. For example, when certain elastomeric materials are used in the construction of the stored energy means, it is advantageous to initially deform the stored energy means at a rapid rate with minimal rotation of the operating member in order to achieve an optimum initial position on the stress-strain curve of the particular material. Continual rotation will provide further, more gradual displacement of the stored energy means due to the finer thread configuration. This enables the precise, reproducible displacement loading of the stored energy means so that alternative fluid flow rates can be achieved. It is apparent that by varying the pitch of the threads of the operating means, the stored energy source can be deformed in a variety of ways thereby enabling the device to be customized for a number of fluid dispensing regimens.
It is to be understood that the use of variable pitch threads is not limited to the construction shown in Figures 55 through 69, but can be employed in the design and construction of the operating means of any of the forms of the invention shown in the drawings and previously described herein.
Referring lastly to Figures 71 through 74, alternate forms of the invention are there shown. For example, the support means shown in Figure 71 includes a supporting base assembly 370, which is designed to be lockably interconnected with and securely support elongated body 352. As in the earlier described embodiments, base assembly 370 has a curved base plate 372 and includes a longitudinally extending channel 374 which slidably receives the flange portion 352a of body 352. As flange 352a slides into groove 374, locking protuberance 352b formed on flange 352a will releasably lock the base assembly to body 352. So that supporting base assembly 370 can be affixed to the body of the patient, such as the patient's arm, a layer of adhesive 376 is affixed to the undersurface of curved base plate 372. Adhesive layer 376 is covered by pealable, protectable covering 378 which be peeled away at time of use by gripping corner portion 378a. In Figure 72 there is shown a support means which includes a plastic assembly
380, which is also designed to be lockably interconnected with elongated body 352. Assembly 380 includes a flat base plate 382 which is provided with longitudinally extending channel 384 that slidably receives the flange portion 352a of body 352. As before, base plate 382 is adapted to be removably locked to body 352 by means of locking protuberance 352b provided on flange 352a. However, unlike assembly 370, base assembly 380 is designed to be interconnected with a section of the belt "B" of the user and includes a forward path-like member 386 which is connected to base plate 382 by a living hinge 388 that bias the outer end 386a of member 388 toward base plate 382. Referring to Figure 73, the support means there shown includes a supporting base assembly 390, which is designed to be lockably interconnected with elongated body 352. Base assembly 390 includes a base plate 392 provided with a longitudinally extending channel 394 which slidably receives the flange portion 352a of body 352. As flange 352a slides into groove 394, locking protuberances 352b formed on flange 352a will releasably lock the base assembly to body 352.
So that supporting base assembly 390 can be clipped to the clothing of the patient, such as the patient's pajamas, a clip plate is pivotally connected to base plate 392 by biasing means shown where as a metal spring 397 which continuously urges edge portion 396a of clip plate 396 toward base plate 392 in the manner shown. Edge portion 396a can be moved away from plate 392 against the urging of spring 397 by pressing on edge portion 396b. With this construction, the apparatus of the invention can be conveniently clipped to and removed from the patient's clothing.
Turning now to Figures 74 the support means there shown is similar in construction to that shown in Figure 56 and includes a supporting base assembly 398.
Assembly 398 does not include the release arm 94a shown in Figure 56, but rather includes longitudinally extending slots 400 on either side of the base plate which receive the ends of a connector strap 402 that can be secured in place around a patient's arm or leg and held in position by suitable means such as a hook and loop type connector material 404 and 406 of a character well known in the art.
With the construction shown in Figure 74, supporting base assembly 398 can be quickly strapped to the patient's arm or leg and can travel with the patient beneath the patient's clothing if desired.
Having now described the invention in detail in accordance with the requirements of the patent statutes, those skilled in this are will have no difficulty in making changes and modifications in the individual parts or their relative assembly in order to meet specific requirements or conditions. Such changes and modifications may be made without departing from the scope and spirit of the invention, as set forth in the following claims.

Claims

What is claimed is:
1. A dispensing apparatus for dispensing fluids comprising: (a) a housing; (b) a fluid reservoir disposed within said housing, said reservoir having outlet means for permitting fluid flow from said fluid reservoir; and
(c) stored energy means for acting upon the fluid contained within said reservoir to cause the fluid to controllably flow through said outlet means, said stored energy means comprising a compressively deformable, elastomeric polymeric member carried by said housing, said compressively deformable, elastomeric polymeric member being expandable to cause fluid flow from said reservoir.
2. An apparatus as defined in Claim 1 further including operating means carried by said housing for controllably deforming said elastomeric polymeric member.
3. An apparatus as defined in Claim 1 in which said elastomeric polymeric member is constructed from a flexible foam.
4. An apparatus as defined in Claim 1 further including flow control means carried by said housing for controlling fluid flowing from said outlet means of said reservoir.
5. An apparatus as defined in Claim 4 in which said fluid reservoir is formed by a pre-filled vial receivable within said housing, said vial having first and second ends and a chamber within which a plunger is telescopically movable.
6. An apparatus as defined in Claim 5 in which said reservoir outlet means comprises a penetrable sealing means for sealably closing said first end of said chamber.
7. An apparatus as defined in Claim 6 in which said flow control means comprises a cannula connected to said housing for penetrating said penetrable sealing means.
8. An apparatus as defined in Claim 7 in which said flow control means is provided with a fluid outlet port and further includes filter means for filtering particulates from fluid flowing from said reservoir outlet means and flow rate control means disposed between said cannula and said fluid outlet port for controlling the rate of fluid flow from said fluid outlet port.
9. An apparatus as defined in Claim 8 in which said flow rate control means comprises a porous membrane.
10. A dispensing device for dispensing fluid comprising:
(a) an elongated body having a plurality of interconnected chambers;
(b) a fluid container receivable within one of said chambers, said fluid container having fluid outlet means and plunger means telescopically movable within said fluid container for urging fluid contained therein to flow out of said fluid outlet means;
(c) fluid flow control means carried by said elongated body, said fluid flow control means having an outlet port in communication with said fluid outlet means of said container for controlling fluid flow from said outlet port; and
(d) stored energy means disposed within one of said chambers for controllably moving said plunger means telescopically of said fluid container, said stored energy means comprising a polymeric elastomeric expandable member.
11. A device as defined in Claim 10 further including operating means for controllably compressively deforming said expandable member.
12. A device as defined in Claim 11 in which said operating means comprises an operating member rotatably carried by said elongated body.
13. A device as defined in Claim 11 in which said elastomeric member comprises a flexible polymer foam.
14. a device as defined in Claim 11 in which said fluid flow control means further comprises flow rate control means disposed between said fluid outlet means of said fluid container and said outlet portion of said flow control means for controlling the rate of fluid flow through said outlet port.
15. A device as defined in Claim 11 in which said fluid flow control means further includes filter means for capturing particulates contained with the fluid flowing through said outlet of said fluid container.
16. A device as defined in Claim 11 in which said first body portion of said elongated body is threaded and in which said fluid flow control means comprises a threaded cap threadably connected to said body portion.
17. A device as defined in Claim 11 in which said fluid container comprises a pre-filled vial containing insulin, said vial having a first end sealed by a penetrable septum and a second end sealable by said plunger means.
18. A device as defined in Claim 11 in which said expandable member comprises a generally cylindrically shaped polymeric latex plug.
19. A device as defined in Claim 11 in which said expandable member comprises an elastomeric polymeric spring.
20. A device as defined in Claim 11 in which said expandable member comprises an elongated member having a plurality of spaced-apart centrally disposed apertures.
21. A dispensing device for dispensing fluids at a controlled rate, comprising: (a) an elongated body having first, second and third communicating chambers;
(b) a pre-filled vial removably receivable within said first chamber of said elongated body, said vial having a first end sealed by a piercable member and a second end sealed by a plunger, said plunger being telescopically movable longitudinally of said vial;
(c) a plunger engaging means disposed within said second chamber of said elongated body for moving said plunger within said vial;
(d) stored energy means for operating said plunger engaging means, said stored energy means comprising a cellular polymeric mass disposed within said third chamber of said elongated body, said cellular polymeric mass being compressively deformable and having tendency to return toward a less deformed configuration; and
(e) operating means carried by said elongated body for controllably compressively deforming said cellular polymeric mass.
22. A device as defined in Claim 21 further including support means for supporting said elongated body.
23. A device as defined in Claim 21 further comprising flow control means connected to said elongated body for controlling fluid flow from said pre-filled vial, said flow control means comprising a cannula for piercing said piercable member of said vial.
24. A device as defined in Claim 23 in which said cellular polymeric mass has first and second ends, said first end being in engagement with said plunger engaging means and said second end being in engagement with said operating means.
25. A device as defined in Claim 24 in which said operating means comprises an operating member rotatably carried by said elongated body.
26. A device as defined in Claim 25 in which said elongated body includes a central portion defining said second chamber and in which said operating member defines said third chamber, said operating member being threadably connected to said central portion.
27. A device as defined in Claim 26 further including locking means for lockably connecting said operating member to said central portion of said elongated body.
28. A device as defined in Claim 26 in which said elongated body is threaded and in which said flow control means comprises a threaded flow control cap threadably interconnected with said elongated body.
29. A device as defined in Claim 28 in which said flow control cap includes a fluid outlet port and in which said flow control means further includes a flow rate control membrane disposed within said flow control cap for controlling the rate of flow of fluid through said outlet port.
30. A device as defined in Claim 29 in which said flow control means further includes distribution means disposed within said flow control cap for distributing fluid flowing from said cannula radially outwardly toward said flow rate control mem¬ brane.
31. A device as defined in Claim 29 in which said flow control means further includes an infusion channel connected to said outlet port of said cap.
32. A device as defined in Claim 29 in which said flow control means further includes a fine bore cannula disposed within said flow control cap for controlling the rate of fluid flow through said outlet port.
33. A dispensing apparatus for dispensing fluids comprising:
(a) an elongated housing;
(b) a fluid reservoir disposed within said housing, said reservoir having outlet means for permitting fluid flow from said fluid reservoir and including a plunger means movable within said reservoir for expelling fluid through said outlet means;
(c) stored energy means for moving said plunger means within said reservoir, said stored energy means comprising an expandable, elastomeric polymer disposed within said housing; (d) flow control means connected to said housing for controlling fluid flow from said outlet means of said reservoir; and
(e) operating means for controllably compressively deforming said elastomeric polymer.
34. An apparatus as defined in Claim 33 further including support means for supporting said housing, said support means comprises a base having means for releasably connecting said housing thereto.
35. An apparatus as defined in Claim 34 further including a strap means connected to said base for connecting said base to the user's body.
36. An apparatus as defined in Claim 34 in which said means for releasably connecting said housing to said base comprises a multiplicity of upstanding locking ridges provided on said housing.
37. An apparatus as defined in Claim 33 further including support means for supporting said housing, said support means including connector means for connecting said housing to the clothing of the user.
38. An apparatus as defined in Claim 36 in which said connector means comprises a belt clip.
39. An apparatus as defined in Claim 36 in which said connector means comprises a pajama clip.
40. An apparatus as defined in Claim 33 in which said stored energy means comprises an elongated shaped article receivable within said elongated housing.
41. An apparatus as defined in Claim 40 in which said shaped article includes spaced apart grooves and ridges.
42. An apparatus as defined in Claim 33 in which said flow control means is provided with a fluid outlet port and further includes flow rate control means disposed between said reservoir and said fluid outlet port.
43. An apparatus as defined in Claim 42 in which said flow rate control means comprises a porous membrane.
44. An apparatus as defined in Claim 42 in which said rate control means comprises a fine bore cannula.
45. A dispensing apparatus for dispensing injectable fluids, including antibiotics, oncolytics, analgesics and human growth hormones, said apparatus comprising:
(a) a housing;
(b) a fluid reservoir disposed within said housing, said reservoir having outlet means for permitting fluid flow from said fluid reservoir; (c) stored energy means for expelling fluid through said outlet means of said reservoir, said stored energy means comprising compressively deformable, expandable polymer disposed within said housing; and
(d) operating means for controllably compressing said stored energy means.
46. An apparatus as defined in Claim 45 in which said stored energy means comprises a compressively, flexible polymeric foam.
47. An apparatus as defined in Claim 45 in which said stored energy means, upon being compressively deformed expands axially in a linear fashion.
48. An apparatus as defined in Claim 45 in which said stored energy means, upon being compressively deformable, expands axially in a non-linear fashion.
49. An apparatus as defined in Claim 45 in which said operating means compressively deforms said stored energy means at a substantially uniform rate.
50. An apparatus as defined in Claim 45 in which said operating means compressively deforms said stored energy means at a non-uniform rate.
51. An apparatus as defined in Claim 45 in which said operating means comprises an operating member operably associated with said stored energy means, said operating member being movable toward said stored energy means at a controlled rate.
52. An apparatus as defined in Claim 45 in which said operating means comprises an operating member, at least a portion of which is telescopically receivable within said housing.
53. An apparatus as defined in Claim 45 in which said operating means comprises an elongated member having a threaded portion that is threadably receivable within said housing.
54. An apparatus as defined in Claim 53 in which said threaded portion of said operating member includes variable pitch threads.
55. An apparatus as defined in Claim 53 further locking means for locking said operating means to said housing.
56. An apparatus as defined in Claim 53 including indicator means for indicating the position of said threaded portion within said housing.
57. An apparatus as defined in Claim 53 further including tactile sensing means for tactile sensing of the advance of said threaded portion within said housing.
PCT/US1995/015715 1994-12-02 1995-12-01 Medicament dispenser WO1996016691A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU44146/96A AU704888B2 (en) 1994-12-02 1995-12-01 Medicament dispenser
EP95942976A EP0796121A4 (en) 1994-12-02 1995-12-01 Medicament dispenser
JP8519127A JPH10510450A (en) 1994-12-02 1995-12-01 Drug dispensing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34949694A 1994-12-02 1994-12-02
US08/349,496 1994-12-02

Publications (1)

Publication Number Publication Date
WO1996016691A1 true WO1996016691A1 (en) 1996-06-06

Family

ID=23372647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/015715 WO1996016691A1 (en) 1994-12-02 1995-12-01 Medicament dispenser

Country Status (5)

Country Link
EP (1) EP0796121A4 (en)
JP (1) JPH10510450A (en)
AU (1) AU704888B2 (en)
CA (1) CA2206734A1 (en)
WO (1) WO1996016691A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0836505A1 (en) * 1995-06-06 1998-04-22 Science Incorporated Medicament dispenser
EP1039947A1 (en) * 1997-12-16 2000-10-04 Science Incorporated Medicament dispenser and cooperating reservoir fill assembly
DE20113761U1 (en) * 2001-08-20 2001-12-20 Lohmann & Rauscher Gmbh & Co Wound Care Product
WO2003105943A1 (en) * 2002-06-17 2003-12-24 Scimed Life Systems, Inc. Catheter device and method for delivering a dose internally during minimally-invasive surgery
US9415142B2 (en) 2006-04-26 2016-08-16 Micell Technologies, Inc. Coatings containing multiple drugs
US9433516B2 (en) 2007-04-17 2016-09-06 Micell Technologies, Inc. Stents having controlled elution
US9486431B2 (en) 2008-07-17 2016-11-08 Micell Technologies, Inc. Drug delivery medical device
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US9789233B2 (en) 2008-04-17 2017-10-17 Micell Technologies, Inc. Stents having bioabsorbable layers
US9827117B2 (en) 2005-07-15 2017-11-28 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US9981072B2 (en) 2009-04-01 2018-05-29 Micell Technologies, Inc. Coated stents
US10117972B2 (en) 2011-07-15 2018-11-06 Micell Technologies, Inc. Drug delivery medical device
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
US10232092B2 (en) 2010-04-22 2019-03-19 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
US10272606B2 (en) 2013-05-15 2019-04-30 Micell Technologies, Inc. Bioabsorbable biomedical implants
US10835396B2 (en) 2005-07-15 2020-11-17 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
US11039943B2 (en) 2013-03-12 2021-06-22 Micell Technologies, Inc. Bioabsorbable biomedical implants
US11369498B2 (en) 2010-02-02 2022-06-28 MT Acquisition Holdings LLC Stent and stent delivery system with improved deliverability
US11426494B2 (en) 2007-01-08 2022-08-30 MT Acquisition Holdings LLC Stents having biodegradable layers
WO2024006163A3 (en) * 2022-06-27 2024-02-01 Contraline, Inc. Systems and methods for delivering a composition
US11904118B2 (en) 2010-07-16 2024-02-20 Micell Medtech Inc. Drug delivery medical device
US11951032B2 (en) 2022-04-26 2024-04-09 Contraline, Inc. Systems and methods for delivering biomaterials

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1242132T3 (en) * 1999-12-23 2004-02-23 Arnold Neracher Injection device and propulsion system therefore
US9220851B2 (en) * 2008-12-09 2015-12-29 Becton, Dickinson And Company Open and closed valve medication delivery system for high pressure injections
HUE031031T2 (en) * 2009-09-23 2017-06-28 Sanofi Aventis Deutschland Assembly and indicator for a drug delivery device
WO2013040032A1 (en) * 2011-09-13 2013-03-21 Unitract Syringe Pty Ltd Sterile fluid pathway connection to drug containers for drug delivery pumps
US20180311439A1 (en) * 2015-11-27 2018-11-01 Sanofi-Aventis Deutschland Gmbh An injection device with an expandable cavity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209014A (en) * 1977-12-12 1980-06-24 Canadian Patents And Development Limited Dispensing device for medicaments
EP0037696A1 (en) 1980-04-08 1981-10-14 Greater Glasgow Health Board Dispensing device
US4592745A (en) 1984-02-29 1986-06-03 Novo Industri A/S Dispenser
US4636197A (en) * 1985-02-15 1987-01-13 Ping Chu Intravenous fluid infusion device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1078911A (en) * 1949-08-17 1954-11-24 Automatic hypodermic syringe and its ampoule
SE9301494D0 (en) * 1993-04-30 1993-04-30 Kabi Pharmacia Ab A DEVICE FOR DOSING LIQUID PREPARATION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209014A (en) * 1977-12-12 1980-06-24 Canadian Patents And Development Limited Dispensing device for medicaments
EP0037696A1 (en) 1980-04-08 1981-10-14 Greater Glasgow Health Board Dispensing device
US4592745A (en) 1984-02-29 1986-06-03 Novo Industri A/S Dispenser
US4636197A (en) * 1985-02-15 1987-01-13 Ping Chu Intravenous fluid infusion device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0796121A4 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0836505A4 (en) * 1995-06-06 2000-01-12 Science Inc Medicament dispenser
EP0836505A1 (en) * 1995-06-06 1998-04-22 Science Incorporated Medicament dispenser
EP1039947A1 (en) * 1997-12-16 2000-10-04 Science Incorporated Medicament dispenser and cooperating reservoir fill assembly
EP1039947A4 (en) * 1997-12-16 2001-06-20 Science Inc Medicament dispenser and cooperating reservoir fill assembly
DE20113761U1 (en) * 2001-08-20 2001-12-20 Lohmann & Rauscher Gmbh & Co Wound Care Product
WO2003105943A1 (en) * 2002-06-17 2003-12-24 Scimed Life Systems, Inc. Catheter device and method for delivering a dose internally during minimally-invasive surgery
US6802824B2 (en) 2002-06-17 2004-10-12 Scimed Life Systems, Inc. Catheter device and method for delivering a dose internally during minimally-invasive surgery
US7488305B2 (en) 2002-06-17 2009-02-10 Boston Scientific Scimed, Inc. Catheter device and method for delivering a dose internally during minimally-invasive surgery
US10898353B2 (en) 2005-07-15 2021-01-26 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US10835396B2 (en) 2005-07-15 2020-11-17 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
US11911301B2 (en) 2005-07-15 2024-02-27 Micell Medtech Inc. Polymer coatings containing drug powder of controlled morphology
US9827117B2 (en) 2005-07-15 2017-11-28 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US9415142B2 (en) 2006-04-26 2016-08-16 Micell Technologies, Inc. Coatings containing multiple drugs
US9737645B2 (en) 2006-04-26 2017-08-22 Micell Technologies, Inc. Coatings containing multiple drugs
US11007307B2 (en) 2006-04-26 2021-05-18 Micell Technologies, Inc. Coatings containing multiple drugs
US11850333B2 (en) 2006-04-26 2023-12-26 Micell Medtech Inc. Coatings containing multiple drugs
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US11426494B2 (en) 2007-01-08 2022-08-30 MT Acquisition Holdings LLC Stents having biodegradable layers
US10617795B2 (en) 2007-01-08 2020-04-14 Micell Technologies, Inc. Stents having biodegradable layers
US9486338B2 (en) 2007-04-17 2016-11-08 Micell Technologies, Inc. Stents having controlled elution
US9433516B2 (en) 2007-04-17 2016-09-06 Micell Technologies, Inc. Stents having controlled elution
US9775729B2 (en) 2007-04-17 2017-10-03 Micell Technologies, Inc. Stents having controlled elution
US10350333B2 (en) 2008-04-17 2019-07-16 Micell Technologies, Inc. Stents having bioabsorable layers
US9789233B2 (en) 2008-04-17 2017-10-17 Micell Technologies, Inc. Stents having bioabsorbable layers
US10350391B2 (en) 2008-07-17 2019-07-16 Micell Technologies, Inc. Drug delivery medical device
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
US9486431B2 (en) 2008-07-17 2016-11-08 Micell Technologies, Inc. Drug delivery medical device
US9981071B2 (en) 2008-07-17 2018-05-29 Micell Technologies, Inc. Drug delivery medical device
US9981072B2 (en) 2009-04-01 2018-05-29 Micell Technologies, Inc. Coated stents
US10653820B2 (en) 2009-04-01 2020-05-19 Micell Technologies, Inc. Coated stents
US11369498B2 (en) 2010-02-02 2022-06-28 MT Acquisition Holdings LLC Stent and stent delivery system with improved deliverability
US10232092B2 (en) 2010-04-22 2019-03-19 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
US11904118B2 (en) 2010-07-16 2024-02-20 Micell Medtech Inc. Drug delivery medical device
US10117972B2 (en) 2011-07-15 2018-11-06 Micell Technologies, Inc. Drug delivery medical device
US10729819B2 (en) 2011-07-15 2020-08-04 Micell Technologies, Inc. Drug delivery medical device
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
US11039943B2 (en) 2013-03-12 2021-06-22 Micell Technologies, Inc. Bioabsorbable biomedical implants
US10272606B2 (en) 2013-05-15 2019-04-30 Micell Technologies, Inc. Bioabsorbable biomedical implants
US11951032B2 (en) 2022-04-26 2024-04-09 Contraline, Inc. Systems and methods for delivering biomaterials
WO2024006163A3 (en) * 2022-06-27 2024-02-01 Contraline, Inc. Systems and methods for delivering a composition
US11957616B2 (en) 2022-10-26 2024-04-16 Contraline, Inc. Systems and methods for delivering biomaterials

Also Published As

Publication number Publication date
AU704888B2 (en) 1999-05-06
EP0796121A4 (en) 1998-08-26
EP0796121A1 (en) 1997-09-24
JPH10510450A (en) 1998-10-13
CA2206734A1 (en) 1996-06-06
AU4414696A (en) 1996-06-19

Similar Documents

Publication Publication Date Title
US6030363A (en) Medicament dispenser
AU704888B2 (en) Medicament dispenser
US5876377A (en) Medicament dispenser
US5993421A (en) Medicament dispenser
US6200293B1 (en) Fluid delivery device with temperature controlled energy source
US8231575B2 (en) Fluid delivery device
US7018360B2 (en) Flow restriction system and method for patient infusion device
EP1987855B1 (en) Dispenser for patient infusion device
CA2481102C (en) Dispenser for patient infusion device
US7789853B2 (en) Infusion apparatus with constant force spring energy source
US8377043B2 (en) Fluid delivery apparatus with bellows reservoir
WO2005016408A2 (en) Multichannel fluid delivery device
EP1513580A1 (en) Plunger assembly for patient infusion device
EP1023103A1 (en) Fluid delivery device with temperature controlled energy source
EP2451504A2 (en) Reservoir filling systems and methods
WO2000047267A1 (en) Fluid delivery device with fill adapter
WO2001052917A2 (en) Medicament dispenser and cooperating reservoir fill assembly

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TT UA UG UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2206734

Country of ref document: CA

Ref country code: CA

Ref document number: 2206734

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1995942976

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1995942976

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1995942976

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995942976

Country of ref document: EP