WO1996013525A1 - Verfahren zur kationischen modifizierung von stärke und verwendung der kationisch modifizierten stärke - Google Patents

Verfahren zur kationischen modifizierung von stärke und verwendung der kationisch modifizierten stärke Download PDF

Info

Publication number
WO1996013525A1
WO1996013525A1 PCT/EP1995/004075 EP9504075W WO9613525A1 WO 1996013525 A1 WO1996013525 A1 WO 1996013525A1 EP 9504075 W EP9504075 W EP 9504075W WO 9613525 A1 WO9613525 A1 WO 9613525A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
weight
native
vinyl
polymers
Prior art date
Application number
PCT/EP1995/004075
Other languages
English (en)
French (fr)
Inventor
Friedrich Linhart
Andreas Stange
Rudolf Schuhmacher
Heinrich Hartmann
Walter Denzinger
Manfred Niessner
Claudia Nilz
Wolfgang Reuther
Hubert Meixner
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6532022&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1996013525(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DK95935455T priority Critical patent/DK0788516T4/da
Priority to EP95935455A priority patent/EP0788516B2/de
Priority to JP8514283A priority patent/JPH10507790A/ja
Priority to AU37464/95A priority patent/AU690752B2/en
Priority to US08/817,644 priority patent/US5851300A/en
Priority to CA002203931A priority patent/CA2203931C/en
Priority to NZ294616A priority patent/NZ294616A/xx
Priority to DE59503014T priority patent/DE59503014D1/de
Publication of WO1996013525A1 publication Critical patent/WO1996013525A1/de
Priority to FI971832A priority patent/FI115634B/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • D21H17/29Starch cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents

Definitions

  • the invention relates to a process for the cationic modification of starch by reacting starch with polymers which contain amino and / or ammonium groups in an aqueous medium at temperatures above the gelatinization temperature of the starch in the absence of oxidizing agents, polymerization initiators and alkali.
  • graft copolymers which are obtained by grafting dextran, a naturally occurring polymer with a molecular weight of 20,000 to 50 million, with cationic monomers, e.g. Diallyldimethylammonium chloride, mixtures of diallyldimethylammonium chloride and acrylamide or mixtures of acrylamide and basic methacrylates, such as dimethylaminoethyl methacrylate.
  • cationic monomers e.g. Diallyldimethylammonium chloride, mixtures of diallyldimethylammonium chloride and acrylamide or mixtures of acrylamide and basic methacrylates, such as dimethylaminoethyl methacrylate.
  • the graft polymerization is preferably carried out in the presence of a redox catalyst.
  • a process for the ionization of starch is known from US Pat. No. 4,097,427, in which the starch is boiled in an alkaline medium in the presence of water-soluble quaternary ammonium polymers and an oxidizing agent.
  • Quaternary ammonium polymers include quaternized diallyldialkylamino polymers or quaternized polyethyleneimines.
  • the oxidizing agent used is, for example, ammonium persulfate, hydrogen peroxide, sodium hypochlorite, ozone or tert-butyl hydroperoxide.
  • the modified cationic starches which can be prepared in this way are added to the paper stock as dry strength agents in the production of paper.
  • a process for the production of cationic starch is known, which is used for surface sizing and coating of paper and paper products.
  • an aqueous slurry of oxidized starch is digested together with a cationic polymer in a continuous cooker.
  • Suitable cationic polymers are condensates of epichlorohydrin and dimethylamine, polymers of diallyldimethylammonium chloride, quaternized reaction products of ethylene chloride and ammonia, quaternized polyethyleneimine and quaternized polyepichlorohydrin.
  • a process for producing a cationic starch in which a slurry of starch in water together with a polyalkyleneimine or polyalkylene polyamine with a molecular weight of at least 50,000 is used for about 0.5 to 5 hours heated to a temperature of about 70 to 110 ° C.
  • the mixture contains 0.5 to 40 wt .-% polyalkylene imine or polyalkylene polyamine and 99.5 to 60 wt .-% starch.
  • Potato starch solution heated to 90 ° C for 2 hours.
  • the modified potato starch can be precipitated in a mixture of methanol and diethyl ether.
  • the reaction products of starch and polyethyleneimine or polyalkylene polyamines described in US Pat. No. 3,467,608 are used as flocculants.
  • DE-A-4 127 733 discloses hydrolyzed graft polymers of natural substances containing N-vinylformamide and saccharide structures, which are used as dry and wet strength agents.
  • the hydrolysis of the graft polymers under acidic conditions results in a strong reduction in the molecular weight of the saccharides.
  • the object of the invention is to achieve a further cationic modification of starch compared to the known methods.
  • Another object of the invention is to provide improved dry and wet strength agents for paper compared to the prior art.
  • the object is achieved according to the invention with a process for the cationic modification of starch by reacting starch with polymers which contain amino and / or ammonium groups in an aqueous medium at temperatures above the gelatinization temperature of the starch in the absence of oxidizing agents, polymerization initiators and alkali , if the reaction is carried out in the temperature range from 115 to 180 ° C. under increased pressure in such a way that a molecular weight reduction occurs at a maximum of 10% by weight of the starch used.
  • starches can be used, for example native starches from the group of corn starch, potato starch, wheat starch, rice starch, tapioca starch, sago starch, sorghum starch, cassava starch, pea starch or mixtures of the named starches.
  • Starches which have an amylopectin content of at least 95% by weight are particularly preferably used.
  • Starches with an amylopectin content of at least 99% by weight are preferred.
  • Such starches can be obtained, for example, by starch fractionation of conventional native starches or by breeding measures from plants which produce practically pure amylopectin starches, cf.
  • Starches with an amylopectin content of at least 95, preferably at least 99% by weight are available on the market. They are offered as waxy corn starch, wax potato starch or wax wheat starch.
  • the native wax strengths mentioned can be used either alone or as a mixture in the process according to the invention.
  • Suitable cationic polymers are, for example, homopolymers and copolymers containing vinylamine units. Polymers of this type are obtained by known processes by polymerizing N-vinylcarboxamides of the formula
  • R, R - H or C * .- to C ⁇ -alkyl, alone or in the presence of other monomers copolymerizable therewith and hydrolysis of the resulting polymers with acids or bases with elimination of the grouping
  • Suitable monomers of the formula (I) are, for example, N-vinylformamide, N-vinyl-N-methylformamide, N-vinyl-N-ethylformamide, N-vinyl-N-propylformamide, N-vinyl-N-isopropylformamide, N-vinyl -N- butylformamide, N-vinyl-N-sec.butylformamide, N-vinyl-N-tert.butylformamide, N-vinyl-N-pentylformamide, N-vinyl acetamide, N-vinyl-N-ethylacetamide and N-vinyl-N- methylpropionamide.
  • N-vinylformamide is preferably used in the preparation of polymers which contain units of the formula (III) in copolymerized form.
  • the hydrolyzed polymers which contain units of the formula (III) have K values of 15 to 300, preferably 30 to 200, determined according to H. Fikentscher in 5% strength by weight aqueous sodium chloride solution at pH 7, a temperature of 25 ° C and a polymer concentration of 0.5 wt .-%.
  • Hydrolyzed copolymers of the monomers (I) contain, for example
  • Suitable Glycol or polyglycol esters of ethylenically unsaturated carboxylic acids in each case only one OH group of the glycols and polyglycols being esterified, for example hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxypropy
  • esters of ethylenically unsaturated carboxylic acids with amino alcohols such as, for example, dimethylaminoethyl acrylate, diethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropylacrylate, dimethylaminopropylmethacrylate, diethylaminopropylacrylate, diethyllaaminobethylamethyloblylethylamethylamethylamethylbutyl acrylate,
  • the basic acrylates are used in the form of the free bases, the salts with mineral acids such as hydrochloric acid, sulfuric acid and nitric acid, the salts with organic acids such as formic acid or benzenesulfonic acid, or in quaternized form.
  • Suitable quaternizing agents are, for example, dimethyl sulfate, diethyl sulfate
  • Suitable as comonomers 2 are unsaturated amides such as, for example, acrylamide, methacrylamide and N-alkyl mono- and diamides with alkyl radicals of 1 to 6 carbon atoms, such as, for example, N-methyl acrylamide, N, N-dimethylacrylamide, N-methyl methacrylamide, N-ethyl-acrylamide, N-propylacrylamide and tert-butyl acrylamide as well as basic (meth) acrylamides, such as dimethylaminoethylacrylamide, dimethylaminoethyl methacrylamide, diethylaminoethylacrylamide, diethylaminoethyl methacrylamide, dimethyl Diethylaminopropyl methacrylamide.
  • unsaturated amides such as, for example, acrylamide, methacrylamide and N-alkyl mono- and diamides with alkyl radicals of 1 to 6 carbon atoms, such as, for
  • N-vinylpyrrolidone N-vinylcaprolactam
  • acrylonitrile methacrylonitrile
  • N-vinylimidazole substituted N-vinylimidazoles
  • N-vinyl-2-methylimidazole N-vinyl-4-methylimidazole
  • N-vinyl-5-methylimidazole N-vinyl-2-ethylimidazole
  • N-vinylimidazolines such as e.g. Vinyl imidazoline, N-vinyl-2-methylimidazoline, and N-vinyl-2-ethyl imidazoline.
  • N-vinylimidazoles and N-vinylimidazolines are also neutralized in mineral acids or organic acids or used in quaternized form, the quaternization being preferably carried out using dimethyl sulfate, diethyl sulfate, methyl chloride or benzyl chloride.
  • comonomers 2 are monomers containing sulfo groups, such as, for example, vinylsulfonic acid, allylsulfonic acid, methallylsulfonic acid, styrene sulfonic acid or 3-sulfopropyl acrylate.
  • the copolymers comprise terpolymers and those polymers which additionally contain at least one further monomer in copolymerized form.
  • copolymers which contain vinyl esters in copolymerized form
  • hydrolysis of the ester groups takes place with the formation of vinyl alcohol units.
  • Polymerized acrylonitrile is also chemically changed during the hydrolysis, whereby, for example, amide and / or carboxyl groups are formed.
  • Compounds containing copolymerized ethyleneimine units are also suitable as cationic polymers.
  • polyethyleneimines which can be obtained by polymerizing ethyleneimine in the presence of acidic catalysts such as ammonium hydrogen sulfate, hydrochloric acid or chlorinated hydrocarbons such as methyl chloride, ethylene chloride, carbon tetrachloride or chloroform.
  • acidic catalysts such as ammonium hydrogen sulfate, hydrochloric acid or chlorinated hydrocarbons such as methyl chloride, ethylene chloride, carbon tetrachloride or chloroform.
  • Such polyethyleneimines for example in 50% by weight aqueous solution, have a viscosity of 500 to 33,000, preferably 1,000 to 31,000 mPa-s (measured according to Brookfield at 20 ° C. and 20 rpm).
  • the polymers in this group also include polyamidoamines grafted with ethyleneimine, which may optionally also be crosslinked by reaction with a at least bifunctional crosslinker.
  • Products of this type are produced, for example, by condensing a dicarboxylic acid such as adipic acid with a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine, grafting with ethyleneimine and reacting with an at least bifunctional crosslinking agent, for example bischlorohydrin ether of polyalkylene glycols, cf. US-A-4 144 123 and US-A-3 642 572.
  • a dicarboxylic acid such as adipic acid
  • a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine
  • an at least bifunctional crosslinking agent for example bischlorohydrin ether of polyalkylene glycols
  • Polymers which contain diallyldimethylammonium chloride as the characteristic monomer unit are also suitable for starch modification. Polymers of this type are known. Polymers of diallyldimethylammonium chloride are to be understood primarily as homopolymers and copolymers with acrylamide and / or methacrylamide. The copolymerization can be carried out in any desired monomer ratio.
  • the K value of the homopolymers and copolymers of diallyldimethylammonium chloride is at least 30, preferably 95 to 180.
  • Homopolymers and copolymers of optionally substituted N-vinylimidazolines are also suitable as cationic polymers. These are also known substances. They can be prepared, for example, by the process of DE-B-1 182 826 by using compounds of the formula
  • L-Vinyl-2-imidazoline salts of the formula (V) are preferably used in the polymerization
  • R 2 H, CH 3 , C 2 Hs, n- and iC 3 H 7 , C ⁇ Hs and X "is an acid residue.
  • the substituent X "in the formulas (IV) and (V) can in principle be any acid residue of an inorganic and an organic acid.
  • the monomers of the formula (IV) are obtained by free bases, ie 1-vinyl 2-imidazolines, neutralized with the equivalent amount of an acid.
  • the vinyl imidazolines can also be neutralized, for example, with trichloroacetic acid, benzenesulfonic acid or toluenesulfonic acid.
  • quaternized l-vinyl-2-imidazolines are prepared by reacting l-vinyl-2-imidazolines, which may optionally be substituted in the 2-, 4- and 5-positions, with known quaternizing agents, for example Ci- to Ci ⁇ Alkyl chlorides or bromides, benzyl chloride or bromide, epichlorohydrin, dimethyl sulfate and diethyl sulfate are preferred, preferably epichlorohydrin, benzyl chloride, dimethyl sulfate and methylch lorid.
  • known quaternizing agents for example Ci- to Ci ⁇ Alkyl chlorides or bromides, benzyl chloride or bromide, epichlorohydrin, dimethyl sulfate and diethyl sulfate are preferred, preferably epichlorohydrin, benzyl chloride, dimethyl sulfate and methylch lorid.
  • the compounds of the formulas (IV) or (V) are preferably polymerized in an aqueous medium.
  • copolymers of compounds of the formula (IV) with acrylamide and / or methacrylamide are preferably used as cationic polymers for economic reasons. These copolymers then contain the compounds of the formula (IV) only in effective amounts, ie in an amount of 1 to 50% by weight, preferably 10 to 40% by weight. Particularly suitable for modifying native strengths gnet copolymers of 60 to 85 wt .-% acrylamide and / or methacrylamide and 15 to 40 wt .-% N-vinylimidazoline or N-vinyl-2-methylimidazoline.
  • the copolymers can also by copolymerizing other monomers such as styrene, N-vinylforma- 5 mid, vinyl formate, vinyl acetate, vinyl propionate, Ci- to C 4 -alkyl vinyl ether, N-vinyl pyridine, N-vinyl pyrrolidone, N-vinyl imidazole, ethylenically unsaturated C. 3 - to C5-Ca acids and their esters, amides and nitriles, sodium vinyl sulfonate, vinyl chloride and vinylidene chloride are modified in amounts up to 25 wt .-%. 10 Copolymers which are particularly suitable for modifying native starches are
  • copolymers included. These copolymers are prepared by radical copolymerization of the monomers 1), 2) and 3) using 20 known polymerization processes. They have K values in the range from 80 to 150 (determined according to H. Fikentscher in 5% aqueous sodium chloride solution at 25 ° C. and a polymer concentration of 0.5% by weight).
  • cationic polymers are copolymers of 1 to 99 mol%, preferably 30 to 70 mol% of acrylamide and / or methacrylamide and 99 to 1 mol%, preferably 70 to 30 mol% of dialkylaminoalkyl acrylates and / or methacrylates Question, e.g. Copolymers of acrylamide and N, N-dimethylamino
  • ethyl acrylate or N, N-diethylaminoethyl acrylate are preferably in a form neutralized with acids or in quaternized form. The quaternization can take place, for example, with methyl chloride or with dimethyl sulfate.
  • the cationic polymers have K values of 30 to 300, preferably
  • Copolymers of 1 to 99 mol%, preferably 30 to 70 mol% of acrylamide and / or methacrylamide and 99 to 1 mol%, preferably 70 to 30 mol% of dialkylaminoalkyl acrylamide and / or methacrylamide are also suitable.
  • the basic acrylamides and methacrylamides are also preferably neutralized with acids
  • N-trimethylammoniumethyl acrylamide chloride N-trimethylammonium ethyl methacrylamide chloride, trimethylammonium ethyl acrylamyl metho- sulfate, trimethylammoniumethyl methacrylamide methosulfate, N-ethyldimethylammoniumethylacrylamidethosulfat, N-ethyldimethylammoniumethylmethacrylamidethosulfat, trimethylammoniumpropylacrylamidid chloride, trimethylammoniumpropylmethacrylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamylamy
  • Polyallylamines are also suitable as cationic polymers. Polymers of this type are obtained by homopolymerizing allylamine, preferably in acid-neutralized or quaternized form, or by copolymerizing allylamine with other monoethylenically unsaturated monomers, corresponding to the copolymers with N-vinylcarboxamides described above. Homo- and copolymers of diallyldimethylammonium chloride are preferred.
  • an aqueous suspension of at least one type of starch with one or more of the cationic polymers is reacted to temperatures of 115 to 180 ° C., preferably 120 to 145 ° C., under increased pressure, the reaction being carried out in is carried out in such a way that a molecular weight reduction occurs at a maximum of 10% by weight of the starch.
  • Starch contains, for example, 0.1 to 10, preferably 2 to 6 parts by weight of starch per 100 parts by weight of water. For example, 100 parts by weight of starch is used. 0.1 to 100, preferably 1 to 10 parts by weight of at least one cationic polymer. Partially or completely hydrolyzed homo- or copolymers of N-vinylformamide, polyethyleneimines and / or polyallylamine are preferred as cationic polymers.
  • the starch is first broken down.
  • Starch disruption is understood to mean the conversion of the solid starch granules into a water-soluble form, whereby superstructures (helix formation, intramolecular hydrogen bonds, etc.) are removed without the starch-building amylose and / or amylopectin units breaking down into oligosaccharides or glucose is coming.
  • the aqueous starch suspensions which contain a cationic polymer in solution, are heated during the reaction to temperatures above the gelatinization temperature of the starches.
  • at least 90, preferably> 95% by weight of the starch used is digested and modified with the cationic polymer. The strength is clearly resolved.
  • the reaction takes place under increased pressure. This is usually the pressure that the reaction medium develops in the temperature range from 115 to 180 ° C. It is, for example, 1 to 10, preferably 1.2 to 7.9 bar.
  • the reaction mixture is subjected to shear. If the reaction is carried out in a stirred autoclave, the reaction mixture is stirred, for example, at 100 to 2,000, preferably 200 to 1,000, revolutions / minute.
  • the reaction can be carried out in practically any apparatus in which starch is digested in the art, e.g. in a jet cooker.
  • the residence times of the reaction mixture at the temperatures of 115 to 180 ° C. to be used according to the invention are, for example, 0.1 seconds to 1 hour and are preferably in the range from 0.5 seconds to 30 minutes.
  • the degree of degradation of the starches is significantly lower than in the prior art. It is at most 10% by weight of the starch used. Preferably less than 5% by weight of the starch is broken down in the implementation according to the invention.
  • Gel permeation chromatography analyzes of the starch digestions allow quantitative monitoring of the degree of degradation of the starch. The degree of starch disruption from the swollen starch grain to the completely dissolved starch can be determined with the help of microscopic and electron microscopic examinations.
  • the native starch types can also be subjected to pretreatment, e.g. oxidatively, hydrolytically or enzymatically degraded or chemically modified.
  • Wax starches such as wax potato starch and waxy maize starch are also of particular interest here.
  • the reaction products obtainable by the process according to the invention have, for example at a solids concentration of 3.5% by weight, a viscosity of 50 to 10,000, preferably 80 to 4,000 mPa-s, measured in a Brookfield viscometer at 20 revolutions / minute and a temperature of 20 ° C.
  • the pH of the reaction mixtures is, for example, in the range from 2.0 to 9.0, preferably 2.5 to 8.
  • the modified starches obtainable by the process according to the invention are used as dry strength agents for paper.
  • the starches ionized according to the invention are preferably added to the paper stock in an amount of 0.5 to 3.5, in particular 1.2 to 2.5% by weight, based on dry paper stock, or already to the surface of one formed sheet applied.
  • the modified starches produced according to the invention are preferably added to the paper stock. They have good retention on the paper stock and have the advantage over known modified starches of the prior art that the COD (chemical oxygen requirement) of the waste water is lower when they are used.
  • the reaction products of starches and cationic polymers to be used as dry strength agents according to the invention can be used in the production of all known paper, cardboard and cardboard qualities, e.g. Writing, printing and packaging papers.
  • the papers can be produced from a large number of different types of fiber materials, for example from sulfite or sulfate pulp in the bleached or unbleached state, wood pulp, waste paper, thermomechanical material (TMP) and chemothermomechanical material (CTMP).
  • TMP thermomechanical material
  • CTMP chemothermomechanical material
  • the pH of the stock suspension is e.g. between 4 and 10, preferably between 6 and 8.5.
  • the dry strength agent can be used both in the production of base paper for papers with low
  • Basis weight (LWC papers) and for cardboard are between 30 and 200, preferably 35 and 150 g / m 2 , while in the case of cardboard it can be up to 600 g / m 2 .
  • the paper products produced according to the invention have a noticeably improved strength compared to such papers which were produced in the presence of an equal amount of native starch, which strength can be quantitatively determined, for example, on the basis of the tear length, the burst pressure, the CMT value and the tear resistance.
  • the parts given in the examples are parts by weight, the percentages relate to the weight.
  • the viscosities of the solidifiers were determined in an aqueous solution at a solids concentration of 3.5% by weight and a temperature of 20 ° C. in a Brookfield viscometer at 20 rpm.
  • the leaves were produced in a Rapid-Koethen laboratory sheet former.
  • the dry tear length was determined according to DIN 53 112, sheet 1 and the dry burst pressure according to Müllen, DIN 53 141.
  • the leaves were tested after 24-hour air conditioning at a temperature of 23 ° C and a relative humidity of 50%.
  • Homopolymer of N-vinylformamide with a K value of 85 from which 95% of the formyl groups were split off by hydrolysis with hydrochloric acid, in a 12% aqueous solution with pH 5.
  • a 3% slurry of native potato starch in water is mixed with a 50% aqueous solution of polymer 1, so that the resulting mixture contains 10% by weight of polymer 1, based on the native starch used.
  • the mixture is stirred for 20 minutes at 500 rpm at a temperature of
  • a dry hardening agent is produced by reacting polymer 1 with native corn starch.
  • the molecular weight degradation of the starch was below 4%.
  • the starch was practically completely open.
  • a dry strength agent is produced by reacting polymer 1 with native corn starch, 97% of the starch having been digested and 3% of the starch having undergone a molecular weight reduction.
  • a dry hardening agent is produced by reacting polymer 1 with native waxy maize starch, 2% of the starch having been broken down and 98% of the starch being digested.
  • a dry hardening agent is produced by reacting polymer 1 with native wax potato starch, 4% of the starch being broken down and 96% of the starch being digested.
  • a dry strength agent is prepared by reacting polymer 2 with native wax potato starch instead of the polymer 1 described there, 3% of the starch being broken down and 97% of the starch being digested.
  • a dry hardening agent is produced by reacting polymer 2 with native corn starch, 2% of the starch having been broken down and 98% of the starch being digested.
  • a dry hardening agent is produced by reacting polymer 2 with native wheat starch, 1% of the starch being broken down and 99% of the starch being digested.
  • Example 9 Solidifier 9)
  • a dry hardening agent is produced by reacting polymer 2 with native waxy maize starch, 2% of the starch having been broken down and 98% of the starch being digested.
  • a dry hardening agent is produced by reacting polymer 2 with native wax potato starch, 4% of the starch being broken down and 96% of the starch being digested.
  • a dry strengthening agent is produced by reacting polymer 1 with native potato starch according to the process described there.
  • the degree of degradation of the starch was below 5%, only 65% of the starch was unlocked.
  • a dry strength agent is produced by reacting polymer 2 with native potato starch according to the process described there.
  • the degree of degradation of the starch was below 4%, only 68% of the starch was unlocked.
  • Leaves with a basis weight of 120 g / m 3 are produced in a Rapid Köthen sheet former.
  • the paper stock consists of 80% mixed waste paper and 20% bleached beech sulfite pulp, which is ground to 50 ° Schopper-Riegler and to which the above-described solidifier 1 is added in an amount such that the solids content of solidifier 1, based on dry paper stock is 2.2%.
  • the pH of the stock suspension is adjusted to 7.5.
  • the sheets made from this fabric model are air-conditioned and then the dry tear length and the dry pressure are measured according to the methods given above. The results are shown in Table 1. Examples 12 to 20
  • Example 11 is repeated with the exception that the solidifying agent described in Table 1 is used instead of the solidifying agent described therein. The results thus obtained are shown in Table 1.
  • Example 11 is repeated with the exception that, instead of the solidifying agent described therein, 3% digested native corn starch and 0.3% polymer 1 are used successively. The results thus obtained are shown in Table 1.
  • Example 11 is repeated with the exception that, instead of the solidifying agent described therein, 3% digested native waxy maize starch and 0.3% polymer 1 are used successively. The results obtained in this way are given in Table 1.
  • Example 11 is repeated with the exception that, instead of the strengthening agent described therein, 3% digested native potato starch and 0.3% polymer 2 are used successively. The results obtained in this way are given in Table 1.
  • Example 11 is repeated with the exception that, instead of the solidifying agent described therein, 3% digested native wheat starch and 0.3% polymer 2 are used successively. The results thus obtained are shown in Table 1.
  • Example 11 is repeated with the exception that the solidifying agent 11 is used instead of the solidifying agent described therein. The results thus obtained are shown in Table 1. Comparative Example 2
  • Example 11 is repeated with the exception that instead of the solidifying agent described therein, the solidifying agent 12 is used. The results thus obtained are shown in Table 1.
  • Example 11 is repeated with the exception that 3% of commercially available cationized starch HI-CAT (Roquette) is used instead of the solidifying agent described therein. The results thus obtained are shown in Table 1.
  • Example 11 is repeated with the exception that, instead of the strengthening agent described therein, only 3% native potato starch, based on dry fiber material, is used. The results thus obtained are shown in Table 1.
  • Example 11 is repeated with the exception that, instead of the strengthening agent described therein, only 3% native corn starch, based on dry fiber material, is used. The results thus obtained are shown in Table 1.
  • Example 11 is repeated with the exception that 3% native waxy corn starch is used instead of the solidifying agent described therein. The results thus obtained are shown in Table 1.
  • Example 11 is repeated with the exception that 3% native wheat starch is used instead of the consolidating agent described therein. The results thus obtained are shown in Table 1. Comparative Example 8
  • Example 11 is repeated with the exception that 3% polymer 1 alone is used instead of the solidifying agent described therein. The results obtained in this way are given in Table 1.
  • Example 11 is repeated with the exception that 3% polymer 2 alone is used instead of the solidifying agent described therein. The results obtained in this way are given in Table 1.
  • Example 11 is repeated with the exception that no solidifying agent is added. The results thus obtained are shown in Table 1.

Abstract

Verfahren zur kationischen Modifizierung von Stärke durch Umsetzung von Stärke mit Polymeren, die Amino- und/oder Ammoniumgruppen enthalten, in wäßrigem Medium bei Temperaturen von 115 bis 180 °C unter erhöhtem Druck in Abwesenheit von Oxidationsmitteln, Polymerisationsinitiatoren und Alkali, wobei man die Umsetzung in der Weise durchführt, daß bei höchstens 10 Gew.-% der Stärke ein Molgewichtsabbau eintritt, und Verwendung der so erhältlichen Umsetzungsprodukte als Trockenverfestigungsmittel für Papier.

Description

Verfahren zur kationischen Modifizierung von Starke und Verwen¬ dung der kationisch modifizierten Starke
Beschreibung
Die Erfindung betrifft ein Verfahren zur kationischen Modifizie¬ rung von Starke durch Umsetzung von Starke mit Polymeren, die Amino- und/oder Ammoniumgruppen enthalten in wäßrigem Medium bei Temperaturen oberhalb der Verkleisterungstemperatur der Starke in Abwesenheit von Oxidationsmitteln, Polymerisationsinitiatoren und Alkali.
Zur Erhöhung der Trockenfestigkeit von Papier, ist z.B. aus Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Verlag Chemie, Weinheim - New York, 1979, Band 17, Seite 581, bekannt, wäßrige Anschlämmungen von nativen Stärken, die durch Erhitzen in eine wasserlösliche Form überführt werden, als Massezusatz bei der Herstellung von Papier zu verwenden. Die Retention der in Wasser gelösten Stärken an die Papierfasern im Papierstoff ist jedoch gering. Eine Verbesserung der Retention von Naturprodukten an Cellulosefasern bei der Herstellung von Papier ist beispiels¬ weise aus der US-A-3 734 820 bekannt. Darin werden Pfropfcopoly- merisate beschrieben, die durch Pfropfen von Dextran, einem in der Natur vorkommenden Polymerisat mit einem Molekulargewicht von 20.000 bis 50 Millionen, mit kationischen Monomeren, z.B. Diallyldimethylammoniumchlorid, Mischungen aus Diallyldimethyl- ammoniumchlorid und Acrylamid oder Mischungen aus Acrylamid und basischen Methacrylaten, wie Dimethylaminoethylmethacrylat, her- gestellt werden. Die Pfropfpolymerisation wird vorzugsweise in Gegenwart eines Redoxkatalysators durchgeführ .
Aus der US-A-4 097 427 ist ein Verfahren zur Ka ionisierung von Stärke bekannt, bei dem man die Stärkekochung in einem alkali- sehen Medium in Gegenwart von wasserlöslichen quaternären Ammo- niumpolymerisäten und eines Oxidationsmittels durchführt. Als quaternäre Ammoniumpolymerisate kommen u.a. auch quaternisierte Diallyldialkylaminopolymerisate oder quaternisierte Polyethylen- imine in Betracht. Als Oxidationsmittel verwendet man beispiels- weise Ammoniumpersulfat, Wasserstoffperoxid, Natriumhypochlorit, Ozon oder tert.-Butylhydroperoxid. Die auf diese Weise herstell¬ baren modifizierten kationischen Stärken werden als Trockenver¬ festigungsmittel bei der Herstellung von Papier dem Papierstoff zugegeben. Jedoch wird das Abwasser durch einen sehr hohen CSB- Wert (chemischer Sauerstoff-Bedarf) belastet. Aus der US-A-4 146 515 ist ein Verfahren zur Herstellung von kat¬ ionischer Starke bekannt, die für Oberflächenleimung und Be¬ schichtung von Papier- und Papierprodukten verwendet wird. Gemäß diesem Verfahren wird eine wäßrige Anschlämmung von oxidierter Stärke zusammen mit einem kationischen Polymeren in einem konti¬ nuierlichen Kocher aufgeschlossen. Als kationische Polymere kom¬ men Kondensate aus Epichlorhydrin und Dimethylamin, Polymerisate von Diallyldimethylammoniumchlorid, quaternisierte Reaktionspro¬ dukte von Ethylenchlorid und Ammoniak, quaternisiertes Poly- ethylenimin sowie quaternisiertes Polyepichlorhydrin in Betracht.
Aus der US-A-3 467 608 ist ein Verfahren zur Herstellung einer kationischen Stärke bekannt, bei dem man eine Aufschlämmung von Stärke in Wasser zusammen mit einem Polyalkylenimin oder Poly- alkylenpolyamin mit einem Molekulargewicht von mindestens 50.000 etwa 0,5 bis 5 Stunden lang auf eine Temperatur von etwa 70 bis 110°C erhitzt. Die Mischung enthält 0,5 bis 40 Gew.-% Polyalkylen¬ imin oder Polyalkylenpolyamin und 99,5 bis 60 Gew.-% Stärke. Ge¬ mäß Beispiel 1 wird ein Polyethylenimin mit einem durchschnittli- chen Molekulargewicht von etwa 200.000 in verdünnter wäßriger
Lösung mit Kartoffelstärke 2 Stunden lang auf eine Temperatur von 90°C erhitzt. Die modifizierte Kartoffelstärke kann in einer Mischung aus Methanol und Diethylether ausgefällt werden. Die in der US-A-3 467 608 beschriebenen Reaktionsprodukte aus Stärke und Polyethylenimin bzw. Polyalkylenpolyaminen werden als Flockungs¬ mittel verwendet.
Aus der EP-A-0 282 761 und der DE-A-3 719 480 sind Herstellungs¬ verfahren für Papier, Pappe und Karton mit hoher Trockenfestig- keit bekannt. Bei diesem Verfahren werden als Trockenverfestiger Umsetzungsprodukte eingesetzt, die durch Erhitzen von nativer Kartoffelstärke mit kationischen Polymeren wie Vinylamin-, N-Vi- nylimidazolin- oder Diallyldimethylammonium-Einheiten enthalten¬ den Polymeren bzw. Polyethylenimine in wäßrigem Medium auf Tempe- raturen oberhalb der Verkleisterungstemperatur der Stärke in Ab¬ wesenheit von Oxidationsmitteln, Polymerisationsinitiatoren und Alkali erhältlich sind.
Aus der EP-B-0 301 372 ist ein ebensolcher Prozeß bekannt, bei dem entsprechend modifizierte, enzymatisch abgebaute Stärken zum Einsatz kommen. Unter den dort abgegebenen AufSchlußbedingungen für native Stärke wird neben einem unvollständigen Aufschluß (spektroskopische Untersuchungen zeigen ungelöste, teilweise nur angequollene Stärkekörner) auch eine größere Menge an Abbaupro- dukten (Abbauraten > 10 %) gefunden. Aus der US-A-4 880 497 und der US-A-4 978 427 ist ein Verfahren zur Herstellung von Papier mit hoher Trocken- und Naßfestigkeit bekannt, bei dem man entweder auf die Oberfläche des Papiers oder zum Papierstoff vor der Blattbildung ein hydrolysiertes Copoly- merisat als Verfestigungsmittel zusetzt, das durch Copoly- merisieren von N-Vinylformamid und ethylenisch ungesättigten Mo¬ nomeren, wie beispielsweise Vinylacetat, Vinylpropionat oder Alkylvinylether und Hydrolysieren von 30 bis 100 mol-% der Foπttylgruppen des Copolymerisats unter Bildung von Aminogruppen erhältlich ist. Die hydrolysierten Copolymeren werden in Mengen von 0,1 bis 5 Gew.-%, bezogen auf trockene Fasern, eingesetzt.
Aus der DE-A-4 127 733 sind hydrolysierte Pfropfpolymerisate von N-Vinylformamid und Saccharidstrukturen enthaltenden Naturstoffen bekannt, die als Trocken- und Naßverfestigungsmittel Anwendung finden. Die Hydrolyse der Pfropfpolymeren unter sauren Bedingun¬ gen hat jedoch einen starken Molekulargewichtsabbau der Saccharide zur Folge.
Der Erfindung liegt die Aufgabe zugrunde, gegenüber den bekannten Verfahren eine weitergehende kationische Modifizierung von Stärke zu erreichen. Eine weitere Aufgabe der Erfindung liegt darin, ge¬ genüber dem Stand der Technik verbesserte Trocken- und Naßfestig¬ keitsmittel für Papier zur Verfügung zu stellen.
Die Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur kationischen Modifizierung von Stärke durch Umsetzung von Stärke mit Polymeren, die Amino- und/oder Ammoniumgruppen enthalten in wäßrigem Medium bei Temperaturen oberhalb der Verkleisterungstem- peratur der Stärke in Abwesenheit von Oxidationsmitteln, Polyme¬ risationsinitiatoren und Alkali, wenn man die Umsetzung in dem Temperaturbereich von 115 bis 180°C unter erhöhtem Druck in der Weise durchführt, daß bei höchstens 10 Gew.-% der eingesetzten Stärke ein Molgewichtsabbau eintritt.
Bei dem erfindungsgemäßen Verfahren können sämtliche Stärken ein¬ gesetzt werden, z.B. native Stärken aus der Gruppe Maisstärke, Kartoffelstärke, Weizenstärke, Reisstärke, Tapiokastärke, Sago- stärke, Sorghunstärke, Maniokstarke, Erbsenstarke oder Mischungen der genannten nativen Stärken. Besonders bevorzugt werden solche Starken eingesetzt, die einen Amylopektingehalt von mindestens 95 Gew.-% haben. Bevorzugt sind Stärken mit einem Gehalt an Amylopektin von mindestens 99 Gew.-%. Solche Stärken können bei¬ spielsweise durch Stärkefraktionierung üblicher nativer Stärken oder durch Züchtungsmaßnahmen aus solchen Pflanzen gewonnen wer¬ den, die praktisch reine Amylopektinstarke produzieren, vgl. Günther Tegge, Stärke und Starkederivate, Hamburg, Bers-Verlag 1984, Seiten 157-160. Stärken mit einem Amylopektingehalt von mindestens 95, vorzugsweise mindestens 99 Gew.-% sind auf dem Markt erhältlich. Sie werden als Wachsmaisstärke, Wachskartoffel- stärke oder Wachsweizenstärke angeboten. Die genannten nativen Wachsstärken können entweder allein oder auch in Mischung bei dem erfindungsgemäßen Verfahren eingesetzt werden.
Für das erfindungsgemäße Verfahren eignen sich alle Polymeren, die Amino- und/oder Ammoniumgruppen enthalten. Diese Verbindungen werden im folgenden als kationische Polymere bezeichnet. Sie sind zum Teil aus den zum Stand der Technik genannten Literaturstellen bekannt, z.B. EP-B-0 282 761, EP-B-0 301 372 und EP-B-0 418 343.
Als kationische Polymerisate eignen sich beispielsweise Vinyl- amineinheiten enthaltende Homo- und Copolymerisate. Polymerisate dieser Art werden nach bekannten Verfahren durch Polymerisieren von N-Vinylcarbonsäureamiden der Formel
X CH2= CH N^ (I).
C R1
in der R, R--=H oder C*.- bis Cε-Alkyl bedeutet, allein oder in Ge¬ genwart von anderen damit copolymerisierbaren Monomeren und Hy¬ drolyse der entstehenden Polymerisate mit Säuren oder Basen unter Abspaltung der Gruppierung
C R1 (II)
und unter Bildung von Einheiten der Formel
—CH2 —CH
(III), N
H R
in der R die in Formel (I) angegebene Bedeutung hat, hergestellt.
Geeignete Monomere der Formel (I) sind beispielsweise N-Vinyl¬ formamid, N-Vinyl-N-methylformamid, N-Vinyl-N-ethylformamid, N-Vinyl-N-propylformamid, N-Vinyl-N-isopropylformamid, N-Vinyl-N- butylformamid, N-Vinyl-N-sek.butylformamid, N-Vinyl-N-tert.butyl- formamid, N-Vinyl-N-pentylformamid, N-Vinylacetamid, N-Vinyl-N- ethylacetamid und N-Vinyl-N-methylpropionamid. Vorzugsweise setzt man bei der Herstellung von Polymeren, die Einheiten der Formel (III) einpolymerisiert enthalten, N-Vinylformamid ein.
Die hydrolysierten Polymerisate, die Einheiten der Formel (III) enthalten, haben K-Werte von 15 bis 300, vorzugsweise 30 bis 200, bestimmt nach H. Fikentscher in 5 gew.-%iger wäßriger Kochsalzlö- sung bei pH 7, einer Temperatur von 25°C und einer Polymerkonzen¬ tration von 0,5 Gew.-%. Hydrolysierte Copolymerisate der Monome¬ ren (I) enthalten beispielsweise
1) 99 bis 1 Mol-% N-Vinylcarbonsäureamide der Formel (I) und 2) 1 bis 99 Mol-% andere, damit copoly erisierbare mono- ethylenisch ungesättigte Monomere,
wie beispielsweise Vinylester von gesättigten Carbonsäuren mit 1 bis 6 Kohlenstoffatomen, z.B. Vinylforraiat, Vinylacetat, Vinyl- propionat und Vinylbutyrat. Geeignet sind auch ungesättigte C3- bis Cε-Carbonsäuren, wie z.B. Acrylsäure, Methacrylsäure, Malein¬ säure, Crotonsäure, Itaconsäure und Vinylessigsäure sowie deren Alkalimetall- und Erdalkalimetallsalze, Ester, Amide und Nitrile, beispielsweise Methylacrylat, Methylmethaciylat, Ethylacrylat und Ethylmethacrylat oder mit Glykol- bzw. Polyglykolestern ethyle- nisch ungesättigter Carbonsäuren, wobei jeweils nur eine OH- Gruppe der Glykole und Polyglykole verestert ist, z.B. Hydroxy- ethylacrylat, Hydroxyethylmethacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, Hydroxypropylmethacrylat, Hydroxybutylmeth- acrylat sowie die Acrylsäuremonoester von Polyalkylenglykolen eines Molgewichts von 1.500 bis 10.000. Weiterhin sind geeignet die Ester von ethylenisch ungesättigten Carbonsäuren mit A ino- alkoholen, wie z.B. Dimethylaminoethylacrylat, Di ethyl mino- ethylmethacrylat, Diethyla inoethylacrylat, Diethylaminoethyl- methacrylat, Dimethylaminopropylacrylat, Dimethylaminopropylmeth- acrylat, Diethylaminopropylacryla , Diethylaminopropylmeth- acrylat, Dimethylaminobutylacrylat und Diethylaminobutylacrylat. Die basischen Acrylate werden in Form der freien Basen, der Salze mit Mineralsäuren wie z.B. Salzsäure, Schwefelsäure und Salpeter- säure, der Salze mit organischen Säuren wie Ameisensäure oder Benzolsulfonsäure, oder in quaternisierter Form eingesetzt. Geei¬ gnete Quaternisierungsmittel sind beispielsweise Dimethylsulfat, Diethylsulfat, Methylchlorid, Ethylchlorid oder Benzylchlorid.
Außerdem eignen sich als Comonomere 2) ungesättigte Amide wie beispielsweise Acrylamid, Methacrylamid sowie N-Alkylmono- und -diamide mit Alkylresten von 1 bis 6 C-Atomen wie z.B. N-Methyl- acrylamid, N,N-Dimethylacrylamid, N-Methylmethacrylamid, N-Ethyl- acrylamid, N-Propylacrylamid und tert.Butylacrylamid sowie basi¬ sche (Meth)acrylamide, wie z.B. Dimethylaminoethylacrylamid, Dimethylaminoethylmethacrylamid, Diethylaminoethylacrylamid, Diethylaminoethylmethacrylamid, Dimethylaminopropylacrylamid, Diethylaminopropylacrylamid, Dimethylaminopropylmethacrylamid und Diethylaminopropylmethacrylamid.
Weiterhin sind als Comonomere geeignet N-Vinylpyrrolidon, N-Vi- nylcaprolactam, Acrylnitril, Methacrylnitril, N-Vinylimidazol so¬ wie substituierte N-Vinylimidazole wie z.B. N-Vinyl-2-methyl- imidazol, N-Vinyl-4-methylimidazol, N-Vinyl-5-methylimidazol, N- Vinyl-2-ethylimidazol, und N-Vinylimidazoline wie z.B. Vinyl- imidazolin, N-Vinyl-2-methylimidazolin, und N-Vinyl-2-ethyl- imidazolin. N-Vinylimidazole und N-Vinylimidazoline werden außer Form der freien Basen auch in mit Mineralsäuren oder organischen Säuren neutralisiert oder in quaternisierter Form eingesetzt, wo¬ bei die Quaternisierung vorzugsweise mit Dimethylsulfat, Diethyl- sulfat, Methylchlorid oder Benzylchlorid vorgenommen wird.
Außerdem kommen als Comonomere 2) Sulfogruppen enthaltende Monomere wie beispielsweise Vinylsulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Styrolsulfonsäure oder Acrylsäure-3-sulfo- propylester in Frage.
Bei der Verwendung von basischen Comonomeren 2) wie z.B. basische Acrylester und -amide kann oftmals auf eine Hydrolyse der N-Vi- nylcarbonsäureamide verzichtet werden. Die Copolymerisate umfas¬ sen Terpolymerisate und solche Polymerisate, die zusätzlich min- destens ein weiteres Monomer einpolymerisiert enthalten.
Bevorzugt sind hydrolysierte Copolymerisate aus
1) N-Vinylformamid und
2) Vinylformia , Vinylacetat, Vinylpropiona . Acrylnitril und N- Vinylpyrrolidon sowie hydrolysierte Homopolymerisate von N- Vinylformamid mit einem Hydrolysegrad von 2 bis 100, vorzugs¬ weise 30 bis 95 Mol-%.
Bei Copolymerisäten, die Vinylester einpolymerisiert enthalten, tritt neben der Hydrolyse der N-Vinylformamideinheiten eine Hy¬ drolyse der Estergruppen unter Bildung von Vinylalkoholeinheiten ein. Einpolymerisiertes Acrylnitril wird ebenfalls bei der Hydro- lyse chemisch verändert, wobei z.B. Amid- und/oder Carboxyl- gruppen entstehen. Als kationische Polymere kommen weiterhin Ethylenimin-Einheiten einpolymerisiert enthaltende Verbindungen in Betracht. Vorzugs¬ weise handelt es sich hierbei um Polyethylenimine, die durch Po- lymerisieren von Ethylenimin in Gegenwart von sauren Katalysa- toren wie Ammoniumhydrogensulfat, Salzsäure oder chlorierten Koh¬ lenwasserstoffen wie Methylchlorid, Ethylenchlorid, Tetrachlor¬ kohlenstoff oder Chloroform, erhältlich sind. Solche Polyethylen¬ imine haben beispielsweise in 50 gew.-%iger wäßriger Lösung eine Viskosität von 500 bis 33.000, vorzugsweise 1.000 bis 31.000 mPa-s (gemessen nach Brookfield bei 20°C und 20 UPM) . Zu den Polymeren dieser Gruppe gehören auch mit Ethylenimin gepfropfte Polyamido- amine, die gegebenenfalls noch durch Umsetzung mit einem minde¬ stens bifunktionellen Vernetzer vernetzt sein können. Produkte dieser Art werden beispielsweise durch Kondensieren einer Dicar- bonsäure wie Adipinsäure mit einem Polyalkylenpolyamin wie Di- ethylentriamin oder Triethylentetramin, Pfropfen mit Ethylenimin und Reaktion mit einem mindestens bifunktionellen Vernetzer, z.B. Bischlorhydrinäther von Polyalkylenglykolen hergestellt, vgl. US-A-4 144 123 und US-A-3 642 572.
Weiterhin kommen zur Starkemodifizierung Polymerisate in Be¬ tracht, die als charakteristische Monomereinheit Diallyldimethyl- ammoniumchlorid enthalten. Polymerisate dieser Art sind bekannt. Unter Polymerisaten des Diallyldimethylammoniumchlorids sollen in erster Linie Homopolymerisate sowie Copolymerisate mit Acrylamid und/oder Methacrylamid verstanden werden. Die Copolymerisation kann dabei in jedem beliebigen Monomerverhältnis vorgenommen wer¬ den. Der K-Wert der Homo- und Copolymerisate des Diallyldimethyl- ammoniumchlorids beträgt mindestens 30, vorzugsweise 95 bis 180.
Als kationische Polymerisate eignen sich auch Homo- und Copoly¬ merisate von gegebenenfalls substituierten N-Vinylimidazolinen. Es handelt sich hierbei ebenfalls um bekannte Stoffe. Sie können beispielsweise nach dem Verfahren der DE-B-1 182 826 dadurch her- gestellt werden, daß man Verbindungen der Formel
Figure imgf000009_0001
CH=CH2
in der i, R2=H, C-.- bis Ciβ-Alkyl, Benzyl, Aryl, R3, R4=H, C*.- bis C -Alkyl und X- ein Säurerest bedeutet, gegebenenfalls zusammen mit Acrylamid und/oder Methacrylamid in wäßrigem Medium bei pH- Werten von 0 bis 8, vorzugsweise von 1,0 bis 6,8 in Gegenwart von Polymerisationsinitiatoren, die in Radikale zerfallen, polymeri- siert.
Vorzugsweise setzt man bei der Polymerisation l-Vinyl-2-imidazo- lin-Salze der Formel (V) ein,
Figure imgf000010_0001
CH=CH2
in der Ri, R2=H, CH3, C2Hs, n- und i-C3H7, CβHs und X" ein Säurerest ist. X- steht vorzugsweise für Cl~, Br-, So4 2_, CH3-O-SO3", R-COO" und R2=H, Ci- bis C4-Alkyl und Aryl.
Der Substituent X" in den Formeln (IV) und (V) kann prinzipiell jeder beliebige Säurerest einer anorganischen sowie einer organi¬ schen Säure sein. Die Monomeren der Formel (IV) werden erhalten, indem man die freien Basen, d.h. l-Vinyl-2-imidazoline, mit der äquivalenten Menge einer Säure neutralisiert. Die Vinyl- imidazoline können auch beispielsweise mit Trichloressigsäure, Benzolsulfonsäure oder Toluolsulfonsäure neutralisiert werden. Außer Salzen von l-Vinyl-2-imidazolinen kommen auch quaterni¬ sierte l-Vinyl-2-imidazoline in Betracht. Sie werden hergestellt, indem man l-Vinyl-2-imidazoline, die gegebenenfalls in 2-, 4- und 5-Stellung substituiert sein können, mit bekannten Quaternisie- rungsmitteln umsetzt. Als Quaternisierungsmittel kommen bei¬ spielsweise Ci- bis Ciβ-Alkylchloride oder -bromide, Benzylchlorid oder -bromid, Epichlorhydrin, Dimethylsulfat und Diethylsulfat in Frage. Vorzugsweise verwendet man Epichlorhydrin, Benzylchlorid, Dimethylsulfat und Methylchlorid.
Zur Herstellung der wasserlöslichen Homopolymerisate werden die Verbindungen der Formeln (IV) oder (V) vorzugsweise in wäßrigem Medium polymerisier .
Da die Verbindungen der Formel (IV) relativ teuer sind, verwendet man aus ökonomischen Gründen vorzugsweise als kationische Polyme¬ risate Copolymerisate von Verbindungen der Formel (IV) mit Acryl¬ amid und/oder Methacrylamid. Diese Copolymerisate enthalten die Verbindungen der Formel (IV) dann lediglich in wirksamen Mengen, d.h. in einer Menge von 1 bis 50 Gew.-%, vorzugsweise 10 bis 40 Gew.-%. Für die Modifizierung nativer Stärken besonders geei- gnet sind Copolymerisate aus 60 bis 85 Gew.-% Acrylamid und/oder Methacrylamid und 15 bis 40 Gew.-% N-Vinylimidazolin oder N-Vi- nyl-2-methylimidazolin. Die Copolymerisate können weiterhin durch Einpolymerisieren von anderen Monomeren wie Styrol, N-Vinylforma- 5 mid, Vinylformiat, Vinylacetat, Vinylpropionat, Ci- bis C4-Alkyl- vinylether, N-Vinylpyridin, N-Vinylpyrrolidon, N-Vinylimidazol, ethylenisch ungesättigten C3- bis C5-Ca bonsäuren sowie deren Ester, Amide und Nitrile, Natriumvinylsulfonat, Vinylchlorid und Vinylidenchlorid in Mengen bis zu 25 Gew.-% modifiziert werden. 10 Besonders geeignet für die Modifizierung nativer Stärken sind Copolymerisate, die
1) 70 bis 97 Gew.-% Acrylamid und/oder Methacrylamid,
2) 2 bis 20 Gew.-% N-Vinylimidazolin oder N-Vinyl-2-methylimida- 15 zolin und
3) 1 bis 10 Gew.-% N-Vinylimidazol
einpolymerisiert enthalten. Diese Copolymerisate werden durch radikalische Copolymerisation der Monomeren 1), 2) und 3) nach 20 bekannten Polymerisationsverfahren hergestellt. Sie haben K-Werte im Bereich von 80 bis 150 (bestimmt nach H. Fikentscher in 5 %iger wäßriger Kochsalzlösung bei 25°C und einer Polymerkonzen¬ tration von 0,5 Gew.-%) .
25 Als kationische Polymerisate kommen des weiteren Copolymerisate aus 1 bis 99 Mol-%, vorzugsweise 30 bis 70 Mol-% Acrylamid und/ oder Methacrylamid und 99 bis 1 Mol-%, vorzugsweise 70 bis 30 Mol-% Dialkylaminoalkylacrylaten und/oder -methacrylaten in Frage, z.B. Copolymerisate aus Acrylamid und N,N-Dimethylamino-
30 ethylacrylat oder N,N-Diethylaminoethylacryla . Basische Acrylate liegen vorzugsweise in mit Säuren neutralisierter oder in qua- ternisierter Form vor. Die Quaternisierung kann beispielsweise mit Methylchlorid oder mit Dimethylsulfat erfolgen. Die katio¬ nischen Polymerisate haben K-Werte von 30 bis 300, vorzugsweise
35 100 bis 180 (bestimmt nach H. Fikentscher in 5 %iger wäßriger Kochsalzlösung bei 25°C und einer Polymerkonzentration von 0,5 Gew.-%). Bei einem pH-Wert von 4,5 haben sie eine Ladungs¬ dichte von mindestens 4 mVal/g Polyelektrolyt.
40 Geeignet sind auch Copolymerisate aus 1 bis 99 mol-%, vorzugs¬ weise 30 bis 70 Mol-% Acrylamid und/oder Methacrylamid und 99 bis 1 Mol-%, vorzugsweise 70 bis 30 Mol-% Dialkylaminoalkylacrylamid und/oder -methacrylamid. Die basischen Acrylamide und Methacryl- amide liegen ebenfalls vorzugsweise in mit Säuren neutralisierter
45 oder in quaternisierter Form vor. Als Beispiele seien genannt N-Trimethylammoniumethylacrylamidchlorid, N-Trimethylammonium- ethylmethacrylamidchlorid, Trimethylammoniumethylacrylamiό-metho- sulfat, Trimethylammoniumethylmethacrylamidmethosulfat, N-Ethyl- dimethylammoniumethylacrylamidethosulfat, N-Ethyldimethylammo- niumethylmethacrylamidethosulfat, Trimethylammoniumpropylacryl- amidchlorid, Trimethylammoniumpropylmethacrylamidchlorid, Trime- thylammoniumpropylacrylamidmethosulfat, Trimethylammoniumpropyl- methacrylamidmethosulfat und N-Ethyldimethylammoniumpropylacryl- amidethosulfat. Bevorzugt ist Trimethylammoniumpropylmethacryl- amidchlorid.
Als kationische Polymere kommen auch Polyallylamine in Betracht. Polymerisate dieser Art werden erhalten durch Homopolymerisation von Allylamin, vorzugsweise in mit Säuren neutralisierter oder in quaternisierter Form oder durch Copolymerisieren von Allylamin mit anderen monoethylenisch -ungesättigten Monomeren, entsprechend der zuvor beschriebenen Copolymeren mit N-Vinylcarbonsäureamiden. Bevorzugt sind Homo- und Copolymere des Diallyldimethylammonium- chlorids.
Zur erfindungsgemäßen kationischen Modifizierung von Stärke wird beispielsweise eine wäßrige Suspension mindestens einer Stärke- sorte mit einem oder mit mehreren der kationischen Polymeren auf Temperaturen von 115 bis 180°C, vorzugsweise 120 bis 145°C unter erhöhtem Druck zur Umsetzung gebracht, wobei die Reaktion in der Weise geführt wird, daß bei höchstens 10 Gew.-% der Stärke ein Molgewichtsabbau eintritt. Die wäßrigen Aufschlä mungen von
Stärke enthalten beispielsweise auf 100 Gew.-Teile Wasser 0,1 bis 10, vorzugsweise 2 bis 6 Gew.-Teile Stärke. Auf 100 Gew.-Teile Stärke setzt man z.B. 0,1 bis 100, vorzugsweise 1 bis 10 Gew.- Teile mindestens eines kationischen Polymerisats ein. Als kat- ionische Polymere kommen dabei vorzugsweise partiell oder voll¬ ständig hydrolysierte Homo- oder Copolymerisate von N-Vinylform¬ amid, Polyethylenimine und/oder Polyallylamin in Betracht.
Beim Erhitzen der wäßrigen Stärkesuspensionen in Gegenwart von kationischen Polymeren wird zunächst die Stärke aufgeschlossen. Unter Starkeaufschluß versteht man die Überführung der festen Stärkekörner in eine wasserlösliche Form, wobei Oberstrukturen (Helixbildung, intramolekulare Wasserstoffbrücken usw. ) aufgeho¬ ben werden, ohne daß es zum Abbau von den, die Starke aufbauenden Amylose- und/oder Amylopektineinheiten zu Oligosacchariden oder Glukose kommt. Die wäßrigen Starkesuspensionen, die ein kationi¬ sches Polymer gelöst enthalten, werden bei der Umsetzung auf Tem¬ peraturen oberhalb der Verkleisterungstemperatur der Stärken er¬ hitzt. Bei dem erfindungsgemäßen Verfahren wird die eingesetzte Stärke zu mindestens 90, vorzugsweise zu >95 Gew.-% aufgeschlos¬ sen und mit dem kationischen Polymerisat modifiziert. Die Stärke ist dabei klar gelöst. Vorzugsweise kann man nach der Umsetzung der Starke aus der Reaktionslösung bei Verwendung einer Cellulo- seacetatmembran mit einem Porendurchmesser von 1,2 μ keine unum- gesetzte Starke mehr abfiltrieren.
Die Umsetzung erfolgt bei erhöhtem Druck. Hierbei handelt es sich üblicherweise um den Druck, den das Reaktionsmedium in dem Tempe¬ raturbereich von 115 bis 180°C entwickelt. Er liegt beispielsweise bei 1 bis 10, vorzugsweise 1,2 bis 7,9 bar. Während der Umsetzung wird das Reaktionsgemisch einer Scherung unterworfen. Falls man die Umsetzung in einem Rührautoklaven durchführt, rührt man das Reaktionsgemisch beispielsweise mit 100 bis 2.000, vorzugsweise 200 bis 1.000 Umdrehungen/Minute. Die Reaktion kann praktisch in allen Apparaturen durchgeführt werden, in denen Stärke in der Technik aufgeschlossen wird, z.B. in einem Jetkocher. Die Ver- weilzeiten des Reak ionsgemisches bei den erfindungsgemäß anzu¬ wendenden Temperaturen von 115 bis 180°C betragen beispielsweise 0,1 Sekunden bis 1 Stunde und liegen vorzugsweise in dem Bereich von 0,5 Sekunden bis 30 Minuten.
Unter diesen Bedingungen werden zwar mindestens 90 % der einge¬ setzten Starke aufgeschlossen und modifiziert, jedoch ist der Abbaugrad der Stärken (Molgewichtsabbau) gegenüber dem Stand der Technik wesentlich niedriger. Er beträgt höchstens 10 Gew.-% der eingesetzten Stärke. Vorzugsweise werden bei der erfindungs- gemäßen Umsetzung weniger als 5 Gew.-% der Stärke abgebaut. Gel- permeationschromatographie-Analysen der StärkenaufSchlüsse erlau¬ ben eine quantitative Verfolgung des Abbaugrads der Stärke. Der Grad des Starkeaufschlusses vom angequollenen Starkekorn bis zur vollständig gelösten Stärke kann mit Hilfe mikroskopischer und elektronenmikroskopischer Untersuchungen bestimmt werden.
Die nativen Starketypen können auch einer Vorbehandlung unterwor¬ fen werden, z.B. oxidativ, hydrolytisch oder enzymatisch abgebaut oder auch chemisch modifiziert werden. Auch hier sind die Wachs- stärken, wie Wachskartoffelstärke und Wachsmaisstärke von beson¬ derem Interesse.
Die nach dem erfindungsgemäßen Verfahren erhältlichen Umsetzungs¬ produkte haben beispielsweise bei einer FestStoff onzentration von 3,5 Gew.-% eine Viskosität von 50 bis 10.000, vorzugsweise 80 bis 4.000 mPa-s, gemessen in einem Brookfield-Viskosimeter bei 20 Umdrehungen/Minute und einer Temperatur von 20°C. Der pH-Wert der Reaktionsmischungen liegt beispielsweise in dem Bereich von 2,0 bis 9,0, vorzugsweise 2,5 bis 8. Die nach dem erfindungsgemäßen Verfahren erhältlichen modifi¬ zierten Starken werden als Trockenverfestigungsmittel für Papier verwendet. Die erfindungsgemäß ka ionisierten Stärken werden vor¬ zugsweise dem Papierstoff in einer Menge von 0,5 bis 3,5, ins- besondere 1,2 bis 2,5 Gew.-%, bezogen auf trockenen Papierstoff, zugesetzt oder auf die Oberfläche eines bereits gebildeten Blat¬ tes aufgetragen. Vorzugsweise werden die erfindungsgemäß herge¬ stellten modifizierten Stärken dem Papierstoff zugesetzt. Sie weisen eine gute Retention am Papierstoff auf und haben gegenüber bekannten modifizierten Stärken des Standes der Technik den Vor¬ teil, daß bei ihrem Einsatz der CSB-Wert (chemischer Sauerstoff¬ bedarf) des Abwassers geringer ist.
Die erfindungsgemäß als Trockenverfestigungsmittel zu verwenden- den Umsetzungsprodukte aus Stärken und kationischen Polymeren können bei der Herstellung von allen bekannten Papier-, Pappen- und Kartonqualitäten verwendet werden, z.B. Schreib-, Druck- und Verpackungspapieren. Die Papiere können aus einer Vielzahl ver¬ schiedenartiger Fasermaterialien hergestellt werden, beispiels- weise aus Sulfit- oder Sulfatzellstoff in gebleichtem oder unge¬ bleichtem Zustand, Holzschliff, Altpapier, thermomechanischem Stoff (TMP) und chemothermomechanischem Stoff (CTMP). Der pH-Wert der StoffSuspension liegt z.B. zwischen 4 und 10, vorzugsweise zwischen 6 und 8,5. Die Trockenverfestigungsmittel können sowohl bei der Herstellung von Rohpapier für Papiere mit geringem
Flächengewicht (LWC-Papieren) sowie für Karton verwendet werden. Das Flächengewicht der Papiere beträgt zwischen 30 und 200, vor¬ zugsweise 35 und 150 g/m2, während es bei Karton bis zu 600 g/m2 betragen kann. Die erfindungsgemäß hergestellten Papierprodukte haben gegenüber solchen Papieren, die in Gegenwart einer gleichen Menge nativer Stärke hergestellt wurden, eine merklich verbes¬ serte Festigkeit, die beispielsweise anhand der Reißlänge, des Berstdrucks, des CMT-Werts und des Weiterreißwiderstands quanti¬ tativ erfaßt werden kann.
Die in den Beispielen angegebenen Teile sind Gewichtsteile, die Prozentangaben beziehen sich auf das Gewicht. Die Viskositäten der Verfestiger wurden in wäßriger Lösung bei einer Feststoffkon¬ zentration von 3,5 Gew.-% und einer Temperatur von 20°C in einem Brookfield-Viskosi eter bei 20 Upm bestimmt.
Die Blatter wurden in einem Rapid-Köthen-Laborblattbildner herge¬ stellt. Die Trockenreißlänge wurde gemäß DIN 53 112, Blatt 1 und der Trockenberstdruck nach Müllen, DIN 53 141 bestimmt. Die Prüfung der Blatter erfolgte jeweils nach einer 24-stündigen Klimatisierung bei einer Temperatur von 23°C und einer relativen Luftfeuchtigkeit von 50 %.
5 Der K-Wert der Polymerisate wurde nach H. Fikentscher, Cellulose- Chemie, Band 13, Seiten 58-64 und 71-74, (1932), bei einer Temperatur von 25°C in 5 %iger Kochsalzlösung und einer Polymer¬ konzentration von 0,5 Gew.-% bestimmt. Dabei bedeutet K=kxl03.
10 Beispiele
Polymer 1
Homopolymerisat aus N-Vinylformamid mit einem K-Wert von 85, aus 15 dem 95 % der Formylgruppen durch Hydrolyse mit Salzsäure abge¬ spalten wurden, in 12 %iger wäßriger Lösung mit pH-Wert 5.
Polymer 2
20 Hochmolekulares Polyethylenimin in 50 %iger wäßriger Lösung mit einer Viskosität von 28.000 mPa-s.
Beispiel 1 (Verfestiger 1)
25 Eine 3 %ige Aufschlämmung von nativer Kartoffelstärke in Wasser wird mit einer 50 %igen wäßrigen Lösung von Polymer 1 versetzt, so daß die resultierende Mischung 10 Gew.-% Polymer 1, bezogen auf die eingesetzte native Stärke, enthält. Die Mischung wird 20 min lang unter Rühren mit 500 Upm bei einer Temperatur von
30 130°C und einem Druck von 2,7 bar erhitzt und nach dem Abkühlen auf eine Temperatur von 25°C erfindungsgemäß als Trockenver¬ festigungsmittel für Papier verwendet. Der Molekulargewichtsabbau der Stärke liegt bei <5 %. Mikroskopische bzw. elektronenmikros¬ kopische Untersuchungen zeigen, daß keine grobkörnigen bzw. ange-
35 quollenen Stärkekörner mehr vorhanden sind, d.h. die Stärke war vollständig aufgeschlossen.
Beispiel 2 (Verfestiger 2)
40 Wie bei Verfestiger 1 beschrieben wird ein Trockenverfestigungs¬ mittel hergestellt, indem man Polymer 1 mit nativer Maisstärke -umsetzt. Der Molekulargewichtsabbau der Stärke lag unterhalb von 4 %. Die Stärke war praktisch vollständig aufgeschlossen.
45 Beispiel 3 (Verfestiger 3)
Wie bei Verfestiger 1 beschrieben wird ein Trockenverfestigungs¬ mittel hergestellt, indem man Polymer 1 mit nativer Maisstärke umsetzt, wobei 97 % der Stärke aufgeschlossen waren und 3 % der Starke einen Molekulargewichtsabbau erfahren haben.
Beispiel 4 (Verfestiger 4)
Wie bei Verfestiger 1 beschrieben wird ein Trockenverfestigungs¬ mittel hergestellt, indem man Polymer 1 mit nativer Wachsmais¬ stärke umsetzt, wobei 2 % der Stärke abgebaut und 98 % der Stärke aufgeschlossen waren.
Beispiel 5 {Verfestiger 5)
Wie bei Verfestiger 1 beschrieben wird ein Trockenverfestigungs¬ mittel hergestellt, indem man Polymer 1 mit nativer Wachskartof¬ felstärke umsetzt, wobei 4 % der Stärke abgebaut und 96 % der Stärke aufgeschlossen waren.
Beispiel 6 (Verfestiger 6)
Wie bei Verfestiger 1 beschrieben wird ein Trockenverfestigungs- mittel hergestellt, indem man anstelle des dort beschriebenen Po¬ lymeren 1 nun Polymer 2 mit nativer Wachskartoffelstarke umsetzt, wobei 3 % der Stärke abgebaut und 97 % der Stärke aufgeschlossen waren.
Beispiel 7 (Verfestiger 7)
Wie bei Verfestiger 1 beschrieben wird ein Trockenverfestigungs¬ mittel hergestellt, indem man Polymer 2 mit nativer Maisstärke umsetzt, wobei 2 % der Stärke abgebaut und 98 % der Stärke aufge- schlössen waren.
Beispiel 8 (Verfestiger 8)
Wie bei Verfestiger 1 beschrieben wird ein Trockenverfestigungs- mittel hergestellt, indem man Polymer 2 mit nativer Weizenstarke umsetzt, wobei 1 % der Stärke abgebaut und 99 % der Stärke aufge¬ schlossen waren. Beispiel 9 (Verfestiger 9)
Wie bei Verfestiger 1 beschrieben wird ein Trockenverfestigungs¬ mittel hergestellt, indem man Polymer 2 mit nativer Wachsmais- stärke umsetzt, wobei 2 % der Stärke abgebaut und 98 % der Stärke aufgeschlossen waren.
Beispiel 10 (Verfestiger 10)
Wie bei Verfestiger 1 beschrieben wird ein Trockenverfestigungs¬ mittel hergestellt, indem man Polymer 2 mit nativer Wachskartof- felstärke umsetzt, wobei 4 % der Stärke abgebaut und 96 % der Stärke aufgeschlossen waren.
Verfestiger 11 (Vergleich)
Gemäß EP-B-0 282 761, Beispiel 7, wird ein Trockenverfestigungs¬ mittel hergestellt, indem man Polymer 1 nach dem dort beschriebe¬ nen Verfahren mit nativer Kartoffelstärke umsetzt. Der Abbaugrad der Stärke lag unterhalb von 5 %, nur 65 % der Stärke waren auf¬ geschlossen.
Verfestiger 12 (Vergleich)
Gemäß DE-A-3 719 480, Beispiel 1, wird ein Trockenverfestigungs¬ mittel hergestellt, indem man Polymer 2 nach dem dort beschriebe¬ nen Verfahren mit nativer Kartoffelstärke umsetzt. Der Abbaugrad der Stärke lag unterhalb von 4 %, nur 68 % der Stärke waren auf¬ geschlossen.
Beispiel 11
In einem Rapid-Köthen-Blattbildner werden Blatter vom Flächen¬ gewicht 120 g/m3 hergestellt. Der Papierstoff besteht aus 80 % ge- mischtem Altpapier und 20 % gebleichtem Buchensulfitzellstoff, der auf 50° Schopper-Riegler gemahlen ist und zu dem der oben be¬ schriebene Verfestiger 1 in einer Menge zugesetzt wird, daß der Feststoffgehalt an Verfestiger 1, bezogen auf trockenen Papier¬ stoff 2,2 % beträgt. Der pH-Wert der StoffSuspension wird auf 7,5 eingestellt. Die aus diesem Stoffmodell hergestellten Blätter werden klimatisiert und danach die Trockenreißlänge und der Trok- kenbers druck nach den oben angegebenen Methoden gemessen. Die Ergebnisse sind in Tabelle 1 angegeben. Beispiele 12 bis 20
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels die in Ta- belle 1 angegebenen Verfestigungsmittel einsetzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angegeben.
Beispiel 21
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels sukzessive 3 % aufgeschlossene native Maisstärke und 0,3 % Polymer 1 ein¬ setzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angegeben.
Beispiel 22
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels sukzessive 3 % aufgeschlossene native Wachsmaisstarke und 0,3 % Polymer 1 einsetzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angege¬ ben.
Beispiel 23
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels sukzessive 3 % aufgeschlossene native Kartoffelstärke und 0,3 % Polymer 2 einsetzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angege¬ ben.
Beispiel 24
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels sukzessive 3 % aufgeschlossene native Weizenstärke und 0,3 % Polymer 2 ein¬ setzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angegeben.
Vergleichsbeispiel 1
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels den Verfesti¬ ger 11 einsetzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angegeben. Vergleichsbeispiel 2
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels den Verfesti- ger 12 einsetzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angegeben.
Vergleichsbeispiel 3
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels 3 % handels¬ übliche kationisierte Stärke HI-CAT (Roquette) einsetzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angegeben.
Vergleichsbeispiel 4
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels allein 3 % native Kartoffelstärke, bezogen auf trockenen Faserstoff, ein- setzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angegeben.
Vergleichsbeispiel 5
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an- stelle des darin beschriebenen Verfestigungsmittels allein 3 % native Maisstärke, bezogen auf trockenen Faserstoff, einsetzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angegeben.
Vergleichsbeispiel 6
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels allein 3 % native Wachsmaisstärke einsetzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angegeben.
Vergleichsbeispiel 7
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels allein 3 % native Weizenstärke einsetzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angegeben. Vergleichsbeispiel 8
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels allein 3 % Polymer 1 einsetzt. Die so erhaltenen Ergebnisse sind in Ta¬ belle 1 angegeben.
Vergleichsbeispiel 9
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man an¬ stelle des darin beschriebenen Verfestigungsmittels allein 3 % Polymer 2 einsetzt. Die so erhaltenen Ergebnisse sind in Ta¬ belle 1 angegeben.
Vergleichsbeispiel 10
Das Beispiel 11 wird mit der Ausnahme wiederholt, daß man kein Verfestigungsmittel zusetzt. Die so erhaltenen Ergebnisse sind in Tabelle 1 angegeben.
Tabelle 1
Beispiel zum Papierstoff Trockenreißlänge Trockenberstdruck zugesetzter Verfestiger Im] [kPa]
11 1 3556 248
12 2 3642 248
13 3 3704 260
14 4 3748 255
15 5 3796 257
16 6 3549 239
17 7 3283 225
18 8 3344 223
19 9 3425 233
20 10 3602 244
21 Polymer 1/Maisstarke 3057 200
22 Polymer 1/Wachsmaisstarke 3069 206
23 Polymer 1/Kartoffelstarke 3162 211
24 Polymer 2/Weizenstarke 2225 202
Vergl.bsp. 1 9 3037 173
Vergl.bsp. 2 10 3186 167
Vergl.bsp. 3 HI-CAT (Roquette) 2954 215
Vergl.bsp. 4 Kartoffelstarke 3055 193
Vergl.bsp. 5 Maisstärke 3111 205
Vergl.bsp. 6 WachsπtaisstArke 3147 195
Vergl.bsp. 7 Weizenstarke 3047 192
Vergl.bsp. 8 Polymer 1 3015 191
Vergl.bsp. 9 Polymer 2 2835 178
Vergl.bsp.10 ohne 2607 173

Claims

Patentansprüche
1. Verfahren zur kationischen Modifizierung von Stärke durch Um- setzung von Stärke mit Polymeren, die Amino- und/oder
Ammoniumgruppen enthalten, in wäßrigem Medium bei Temperatu¬ ren oberhalb der Verkleisterungstemperatur der Stärke in Ab¬ wesenheit von Oxidationsmitteln, Polymerisationsinitiatoren und Alkali, dadurch gekennzeichnet, daß man die Umsetzung in dem Temperaturbereich von 115 bis 180°C unter erhöhtem Druck in der Weise durchführt, daß bei höchstens 10 Gew.-% der Stärke ein Molgewichtsabbau eintritt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man mindestens 90 Gew.-% der eingesetzten Stärke aufschließt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man als Stärke eine native Stärke aus der Gruppe Maisstärke, Kartoffelstärke, Weizenstärke, Reisstärke, Tapiokastärke, Sa- gostärke, Sorghunstärke, Maniokstärke, Erbsenstärke oder Mischungen der genannten nativen Stärken einsetzt.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man eine Stärke einsetzt, die einen Amylope ingehalt von mindestens 95 Gew.-% hat.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekenn¬ zeichnet, daß man als Stärke eine native Stärke aus der Gruppe Wachsmaisstärke, Wachskartoffelstärke, Wachsweizen- stärke oder Mischungen der genannten Stärken einsetzt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekenn¬ zeichnet, daß man auf 100 Gew.-Teile Stärke 0,1 bis 100 Gew.- Teile mindestens eines kationischen Polymerisats einsetzt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß man auf 100 Gew.-Teile Stärke 1 bis 10 Gew.-Teile mindestens eines kationischen Polymerisats einsetzt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekenn¬ zeichnet, daß man als kationische Polymere partiell oder vollständig hydrolysierte Homo- oder Copolymerisate von N-Vi¬ nylformamid, Polyethylenimin und/oder Polyalkylenamine ein¬ setzt.
9. Verwendung der nach dem Verfahren der Ansprüchen 1 bis 8 er¬ hältlichen modifizierten Stärken als Trockenverfestigungs¬ mittel für Papier.
PCT/EP1995/004075 1994-10-29 1995-10-17 Verfahren zur kationischen modifizierung von stärke und verwendung der kationisch modifizierten stärke WO1996013525A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DK95935455T DK0788516T4 (da) 1994-10-29 1995-10-17 Fremgangsmåde til kationisk modifikation af stivelse og anvendelse af kationisk modificeret stivelse
EP95935455A EP0788516B2 (de) 1994-10-29 1995-10-17 Verfahren zur kationischen modifizierung von stärke und verwendung der kationisch modifizierten stärke
JP8514283A JPH10507790A (ja) 1994-10-29 1995-10-17 デンプンをカチオン性に変性する方法及びカチオン性に変性されたデンプンの使用
AU37464/95A AU690752B2 (en) 1994-10-29 1995-10-17 Cationic modification process for starch and use of cationically modified starch
US08/817,644 US5851300A (en) 1994-10-29 1995-10-17 Cationic modification of starch and use of the cationically modified starch
CA002203931A CA2203931C (en) 1994-10-29 1995-10-17 Cationic modification process for starch and use of cationically modified starch
NZ294616A NZ294616A (en) 1994-10-29 1995-10-17 Cationic modification process for starch and use as dry strength agents for paper
DE59503014T DE59503014D1 (de) 1994-10-29 1995-10-17 Verfahren zur kationischen modifizierung von stärke und verwendung der kationisch modifizierten stärke
FI971832A FI115634B (fi) 1994-10-29 1997-04-29 Menetelmä tärkkelyksen muuntamiseksi kationiseksi ja kationisesti modifioidun tärkkelyksen käyttö

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4438708A DE4438708A1 (de) 1994-10-29 1994-10-29 Verfahren zur kationischen Modifizierung von Stärke und Verwendung der kationisch modifizierten Stärke
DEP4438708.3 1994-10-29

Publications (1)

Publication Number Publication Date
WO1996013525A1 true WO1996013525A1 (de) 1996-05-09

Family

ID=6532022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/004075 WO1996013525A1 (de) 1994-10-29 1995-10-17 Verfahren zur kationischen modifizierung von stärke und verwendung der kationisch modifizierten stärke

Country Status (11)

Country Link
US (1) US5851300A (de)
EP (1) EP0788516B2 (de)
JP (1) JPH10507790A (de)
AT (1) ATE169032T1 (de)
AU (1) AU690752B2 (de)
DE (2) DE4438708A1 (de)
DK (1) DK0788516T4 (de)
ES (1) ES2119491T5 (de)
FI (1) FI115634B (de)
NZ (1) NZ294616A (de)
WO (1) WO1996013525A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031711A1 (de) * 1997-01-17 1998-07-23 Basf Aktiengesellschaft Polymermodifizierte anionische stärke, verfahren zu ihrer herstellung und ihre verwendung
WO2000004229A1 (de) * 1998-07-17 2000-01-27 Stockhausen Gmbh & Co. Kg Verwendung von modifizierten stärkeprodukten als retentionsmittel bei der papierherstellung
WO2000060167A1 (de) * 1999-04-01 2000-10-12 Basf Aktiengesellschaft Modifizierung von stärke mit kationischen polymeren und verwendung der modifizierten stärken als trockenverfestigungsmittel für papier
US6160050A (en) * 1997-01-17 2000-12-12 Basf Aktiengesellschaft Polymer-modified starch, method for its production, and its use

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19713755A1 (de) * 1997-04-04 1998-10-08 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
DE19729305C2 (de) * 1997-07-09 2000-07-06 Aventis Res & Tech Gmbh & Co Thermoplastische Mischung auf Basis von Stärke enthaltend mindestens eine kationische und mindestens eine anionische Stärke, Verfahren zu ihrer Herstellung sowie Verwendung
US6593469B1 (en) 1999-10-20 2003-07-15 Grain Processing Corporation Compositions including reduced malto-oligosaccharide preserving agents
US6375798B1 (en) * 2000-06-05 2002-04-23 Grain Processing Corporation Derivatized malto-oligosaccharides, methods for trash scavenging, and process for preparing a paper web
PL205556B1 (pl) * 2002-04-09 2010-05-31 Fpinnovations Kompozycja do stosowania w produkcji papieru, zawiesina wypełniacza do stosowania w produkcji papieru, pulpa wsadowa do produkcji papieru, sposób wytwarzania zawiesiny wypełniacza do stosowania w produkcji papieru, sposób wytwarzania papieru oraz papier
US7090745B2 (en) * 2002-09-13 2006-08-15 University Of Pittsburgh Method for increasing the strength of a cellulosic product
US7494566B2 (en) * 2002-09-13 2009-02-24 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Composition for increasing cellulosic product strength and method of increasing cellulosic product strength
US20050109476A1 (en) * 2003-07-21 2005-05-26 Muhle Runingen Gmbh & Co. Kg Medium for increasing the absorption capacity of paper pulp for starch
WO2005085361A2 (en) * 2004-02-27 2005-09-15 University Of Pittsburgh Networked polymeric gels and use of such polymeric gels in hydrocarbon recovery
PL1907499T3 (pl) * 2005-07-01 2017-11-30 Akzo Nobel Coatings International Bv Kompozycja klejąca na bazie skrobi, sposób wytwarzania i sposób klejenia materiałów na bazie drewna z jej wykorzystaniem
EP1918306A3 (de) * 2006-10-31 2008-05-14 The University of New Brunswick Antimikrobiell- und bakteriostatisch-modifizierte Polysaccharide
ES2393909T3 (es) * 2009-02-05 2012-12-28 Basf Se Método para producir papel, cartón piedra y cartón con alta resistencia en seco
US8258250B2 (en) 2009-10-07 2012-09-04 Johnson & Johnson Consumer Companies, Inc. Compositions comprising superhydrophilic amphiphilic copolymers and methods of use thereof
US8399590B2 (en) * 2009-10-07 2013-03-19 Akzo Nobel Chemicals International B.V. Superhydrophilic amphiphilic copolymers and processes for making the same
US11173106B2 (en) * 2009-10-07 2021-11-16 Johnson & Johnson Consumer Inc. Compositions comprising a superhydrophilic amphiphilic copolymer and a micellar thickener
KR101467907B1 (ko) * 2013-05-24 2014-12-02 경희대학교 산학협력단 초고압을 이용한 양성 전분의 제조 방법
JP6525896B2 (ja) * 2016-01-20 2019-06-05 三晶株式会社 紙力増強剤および紙の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2054739A5 (de) * 1969-07-15 1971-05-07 Nalco Chemical Co
GB1268118A (en) * 1969-06-24 1972-03-22 Dow Chemical Co Method of preparing cationic starch compositions
US3674725A (en) * 1970-12-18 1972-07-04 Nalco Chemical Co Cationization of starch for filler retention utilizing a cationic polyepihalohydrin-tertiary amine polymer
US4097427A (en) * 1977-02-14 1978-06-27 Nalco Chemical Company Cationization of starch utilizing alkali metal hydroxide, cationic water-soluble polymer and oxidant for improved wet end strength
WO1990011404A1 (de) * 1989-03-18 1990-10-04 Basf Aktiengesellschaft Verfahren zur herstellung von papier, pappe und karton in gegenwart von n-vinylformamid-einheiten enthaltenden copolymerisaten

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3467608A (en) * 1966-06-27 1969-09-16 Dow Chemical Co Cationic starch compositions and a method of preparation
US3734820A (en) * 1971-09-22 1973-05-22 Calgon Corp Cationic dextran graft copolymers as dry strength additives for paper
US4146515A (en) * 1977-09-12 1979-03-27 Nalco Chemical Company Making a lightly oxidized starch additive by adding a cationic polymer to starch slurry prior to heating the slurry
DE3534273A1 (de) * 1985-09-26 1987-04-02 Basf Ag Verfahren zur herstellung von vinylamin-einheiten enthaltenden wasserloeslichen copolymerisaten und deren verwendung als nass- und trockenverfestigungsmittel fuer papier
DE3719480A1 (de) * 1986-08-05 1988-02-18 Basf Ag Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
DE3706525A1 (de) 1987-02-28 1988-09-08 Basf Ag Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
DE3724646A1 (de) 1987-07-25 1989-02-02 Basf Ag Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
DE4127733A1 (de) * 1991-08-22 1993-02-25 Basf Ag Pfropfpolymerisate aus saccharidstrukturen enthaltenden naturstoffen oder deren derivaten und ethylenisch ungesaettigten verbindungen und ihre verwendung
US5382324A (en) * 1993-05-27 1995-01-17 Henkel Corporation Method for enhancing paper strength

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1268118A (en) * 1969-06-24 1972-03-22 Dow Chemical Co Method of preparing cationic starch compositions
FR2054739A5 (de) * 1969-07-15 1971-05-07 Nalco Chemical Co
US3674725A (en) * 1970-12-18 1972-07-04 Nalco Chemical Co Cationization of starch for filler retention utilizing a cationic polyepihalohydrin-tertiary amine polymer
US4097427A (en) * 1977-02-14 1978-06-27 Nalco Chemical Company Cationization of starch utilizing alkali metal hydroxide, cationic water-soluble polymer and oxidant for improved wet end strength
WO1990011404A1 (de) * 1989-03-18 1990-10-04 Basf Aktiengesellschaft Verfahren zur herstellung von papier, pappe und karton in gegenwart von n-vinylformamid-einheiten enthaltenden copolymerisaten

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031711A1 (de) * 1997-01-17 1998-07-23 Basf Aktiengesellschaft Polymermodifizierte anionische stärke, verfahren zu ihrer herstellung und ihre verwendung
US6160050A (en) * 1997-01-17 2000-12-12 Basf Aktiengesellschaft Polymer-modified starch, method for its production, and its use
WO2000004229A1 (de) * 1998-07-17 2000-01-27 Stockhausen Gmbh & Co. Kg Verwendung von modifizierten stärkeprodukten als retentionsmittel bei der papierherstellung
WO2000060167A1 (de) * 1999-04-01 2000-10-12 Basf Aktiengesellschaft Modifizierung von stärke mit kationischen polymeren und verwendung der modifizierten stärken als trockenverfestigungsmittel für papier
US6746542B1 (en) 1999-04-01 2004-06-08 Basf Aktiengesellschaft Modifying starch with cationic polymers and use of the modified starches as dry-strength agent

Also Published As

Publication number Publication date
DE4438708A1 (de) 1996-05-02
ATE169032T1 (de) 1998-08-15
EP0788516B2 (de) 2002-10-30
DK0788516T4 (da) 2002-11-25
AU3746495A (en) 1996-05-23
NZ294616A (en) 1999-02-25
FI971832A0 (fi) 1997-04-29
DK0788516T3 (da) 1999-02-01
FI971832A (fi) 1997-06-24
DE59503014D1 (de) 1998-09-03
EP0788516B1 (de) 1998-07-29
AU690752B2 (en) 1998-04-30
EP0788516A1 (de) 1997-08-13
FI115634B (fi) 2005-06-15
ES2119491T3 (es) 1998-10-01
ES2119491T5 (es) 2003-05-01
JPH10507790A (ja) 1998-07-28
US5851300A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
EP0972110B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP0788516B2 (de) Verfahren zur kationischen modifizierung von stärke und verwendung der kationisch modifizierten stärke
EP1183422B1 (de) Modifizierung von stärke mit kationischen polymeren und verwendung der modifizierten stärken als trockenverfestigungsmittel für papier
EP0952988B1 (de) Polymermodifizierte anionische stärke, verfahren zu ihrer herstellung und ihre verwendung
EP0301372B1 (de) Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
EP0282761B1 (de) Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
EP2443284B1 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
DE60016186T2 (de) Polymerdispersion und verfahren zu deren herstellung
EP0193111B1 (de) Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit
EP0418343B1 (de) Verfahren zur herstellung von papier, pappe und karton in gegenwart von n-vinylformamid-einheiten enthaltenden copolymerisaten
DE3026356A1 (de) Wasserloesliche kationische copolymere mit polyvinylalkoholeinheiten, verfahren zu deren herstellung und verwendung derselben
EP2258735B1 (de) Kationische Stärke-Pfropfcopolymere
DE4229142A1 (de) Papierleimungsmittelmischungen
EP0951505B1 (de) Polymermodifizierte stärke, verfahren zu ihrer herstellung und ihre verwendung
WO1996031650A1 (de) Papierleimungsmittelmischungen
EP1102894B1 (de) Verwendung von modifizierten stärkeprodukten als retentionsmittel bei der papierherstellung
DE1595276C2 (de) Verfahren zur Herstellung eines glyoxalmodifizierten Copolymerisats
DE19719062A1 (de) Verfahren zur Herstellung von Aggregaten aus Stärke und kationischen Polymeren und ihre Verwendung
EP0966498B1 (de) Wässrige dispersionen von reaktivleimungsmitteln, verfahren zu ihrer herstellung und ihre verwendung
DE1595056A1 (de) Verfahren zur Herstellung von wasserloeslichen substituierten Saeuresalzen polymerer primaerer Aminoalkylester

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA FI JP NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 294616

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1995935455

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2203931

Country of ref document: CA

Ref country code: CA

Ref document number: 2203931

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 971832

Country of ref document: FI

Ref document number: 08817644

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995935455

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995935455

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 971832

Country of ref document: FI