WO1995031297A1 - Aqueous metal coating composition and process with reduced staining and corrosion - Google Patents

Aqueous metal coating composition and process with reduced staining and corrosion Download PDF

Info

Publication number
WO1995031297A1
WO1995031297A1 PCT/US1995/005010 US9505010W WO9531297A1 WO 1995031297 A1 WO1995031297 A1 WO 1995031297A1 US 9505010 W US9505010 W US 9505010W WO 9531297 A1 WO9531297 A1 WO 9531297A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
aqueous liquid
total
maleic
concentration
Prior art date
Application number
PCT/US1995/005010
Other languages
French (fr)
Inventor
Richard J. Church
Original Assignee
Henkel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Corporation filed Critical Henkel Corporation
Priority to BR9507630A priority Critical patent/BR9507630A/en
Priority to EP95917132A priority patent/EP0759818A4/en
Priority to AU23946/95A priority patent/AU2394695A/en
Publication of WO1995031297A1 publication Critical patent/WO1995031297A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/10Metal oxides, hydroxides, carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/44Five-membered ring containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/32Heterocyclic sulfur, selenium or tellurium compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/32Heterocyclic sulfur, selenium or tellurium compounds
    • C10M135/36Heterocyclic sulfur, selenium or tellurium compounds the ring containing sulfur and carbon with nitrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/16Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • C10M145/26Polyoxyalkylenes
    • C10M145/36Polyoxyalkylenes etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M153/00Lubricating compositions characterised by the additive being a macromolecular compound containing phosphorus
    • C10M153/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0263Lubricating devices using solid lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/042Carbon; Graphite; Carbon black halogenated, i.e. graphite fluoride
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/05Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/105Silica
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/09Heterocyclic compounds containing no sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/102Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/02Macromolecular compounds from phosphorus-containg monomers, obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • C10M2225/041Hydrocarbon polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • This invention relates to aqueous liquid compositions suitable for forming a protective coating containing an organic binder material on metal surfaces that are contacted with the compositions, either by direct deposition of a protective film on the metal while the liquid composition is in contact with the metal, or, more commonly, by depositing a liquid film of the liquid composition on the metal and converting this liquid film to a protective solid film by removing water from the initially deposited liquid film and, optionally, heating or otherwise causing the solid constituents of the liquid film to coalesce and or react, so as to produce an adherent solid film on the metal surface.
  • the solid film thus deposited may be protective against corrosion, damage during cold working of the underlying metal, or the like.
  • the metal surfaces processed as described above may or may not have other surface layers, such as phos ⁇ phate or chromate conversion coatings, coatings formed by anodization, or the like, underlying the coating produced on the surface by using this invention.
  • percent, "parts o , and ratio values are by weight;
  • the term "polymer” includes oligo- mer;
  • the description of a group or class of materials as suitable or preferred for a giv ⁇ en purpose in connection with the invention implies that mixtures of any two or more of the members of the group or class are equally suitable or preferred;
  • description of constituents in chemical terms refers to the constituents at the time of addition to any combination specified in the description, and does not necessarily preclude chemical interactions among the constituents of a mixture once mixed;
  • specification of materials in ionic form implies the presence of sufficient counterions to produce electrical neu ⁇ trality for the composition as a whole (any counterions thus implicitly specified should preferably be selected from among other constituents explicitly specified in ionic form, to the extent possible; otherwise such counterions may be freely selected, except for avoiding counterions that act adversely to the objects of the invention); and the term "mole” and its variations may be applied to elemental, ionic, and any other chemical species defined by
  • aqueous liquid compositions intended to provide a pro ⁇ tective coating on metal surfaces are often capable of staining or otherwise corroding metal surfaces during the time of treatment.
  • relatively minor corrosion often referred to as "etching" is desirable because it promotes good adhesion of a protective coating to the surface treated.
  • one object of this invention is to provide aqueous liquid metal coating compositions that have a reduced tendency toward corroding, staining, and/or altering the color or texture of metal surfaces treated with the aqueous liquid metal coating compositions.
  • one embodiment of the invention is an aqueous liquid composi- tion comprising, preferably consisting essentially of, or more preferably consisting of, water and:
  • Embodiments of the invention include working aqueous liquid compositions suitable for contacting directly with metal surfaces to provide protective coatings thereon as described above; liquid or solid concentrates that will form such working aqueous liquid compositions upon dilution with water only; processes of using work ⁇ ing aqueous liquid compositions according to the invention as defined above to form protective coatings on metal surfaces; protective solid coatings on metal surfaces formed in such a process, and metal articles bearing such a protective coating; and concentrates comprising, preferably consisting essentially of, or more preferably con ⁇ sisting of components (B) and (C) as described above, and, optionally, also water.
  • component (A) in a working aqueous li ⁇ quid composition according to the invention depend on the purpose of the treatment and in general preferably are the same as or similar to the chemical nature and amount of materials used for similar protective purposes in the prior art.
  • the concentration of component (B) in a working aqueous liquid composition according to this invention preferably is, with increasing preference in the order given, not less than 10, 40, 100, 200, 400, 800, 1200, 1400, 1500, 1600, 1700, 1750, 1800, 1850, 1900, 1925, 1950, or 1975 parts per million (hereinafter often abbreviated "ppm") of the total composition and independently preferably is, with increasing preference in the order given, not more than 20,000, 10,000, 5000, 3500, 3300, 3100. 2800, 2500, 2400, 2300, 2250, 2200, 2175, 2150, 2125, 2100, 2075, 2050, or 2025 ppm.
  • ppm parts per million
  • component (B) is preferred for component (B) to be selected from benzotriazole and tolyltriazole, and in fact a mixture of these two is more preferred than either of them alone.
  • the amount of each of benzotriazole and tolyltriazole, expressed as a percentage of the total of component (B) preferably is, with increasing preference in the order given, independently for each of these two triazoles, not less than 5, 10, 15, 20, 25, 30, 35, 38, 41, 43, 45, 47, 48, or 49 % and independently preferably is, with increasing preference in the order given, not more than 95, 90, 85, 80, 75, 70, 65, 62, 59, 57, 55, 53, 52, or 51 %.
  • the concentration of component (C) in a working aqueous liquid composition according to this invention preferably is, with increasing preference in the order given, not less than 1 , 4, 10, 15, 20, 25, 30, 35, 38, 41 , 43, 45, 47, or 49 ppm of the total composition and independently preferably is, with increasing preference in the order given, not more than 2000, 1000, 500, 350, 300, 250, 200, 175, 165, 155, 145, 135, 125, 120, 115, 110, 107, 110, 108, 106, 105, 104, 103, 102, or 101 ppm.
  • the ratio of the concentration of component (C) to the concentration of component (B) preferably is, with increasing preference in the order given, not less than 0.001: 1, 0.002: 1, 0.004: 1, 0.007: 1 , 0.011: 1.0, 0.015: 1.0, 0.019: 1.0, 0.020: 1.0, 0.021:1.0, 0.022: 1.0, 0.023: 1.0, or 0.024: 1.0 and independently preferably is, with increasing preference in the order given, not more than 2:1, 1: 1, 0.5: 1, 0.3:1, 0.2:1, 0.1:1, 0.09:1.0, 0.08:1.0, 0.07:1.0, 0.06:1.0, 0.05:1.0, 0.04:1.0, 0.035:1.00, 0.033:1.00, 0.031 : 1.00, 0.029: 1.00, 0.028: 1.00, 0.027: 1.00, or 0.026: 1.00.
  • These ratios unlike the concentration preferences stated above, apply to concentrates as well as to working compositions.
  • compositions according to the invention be free from various materials often used in prior art coating compositions.
  • compositions according to this invention in most instances preferably contain, with increasing preference in the order given, and with independent preference for each component named, not more than 5, 2, 1, 0.5, 0.25, 0.12, 0.06, 0.03, 0.015, 0.007, 0.003, 0.001, 0.0005, 0.0002, or 0.0001 % of any of (i) hydrocarbons, (ii) fatty oils of natural origin, (iii) other ester oils and greases that are liquid at 25° C, (iv) metal salts of fatty acids, (v) hexavalent chromium, (vi) nickel cations, (vii) cobalt cations, (viii) copper cations, (ix) manganese in any ionic form, (x) graphite, and (xi) molybdenum sulfide.
  • a preferred component (A) according to a first preferred spe ⁇ cific embodiment of this invention comprises, more preferably consists essentially of, or still more preferably consists of, the following subcomponents: (A.
  • copolymers of styrene with i) maleic anhydride, (ii) maleic acid, (iii) salts of maleic acid with ammonia, alkali metal hydroxides, and amines, or (iv) mixtures of any two or more of these, said copolymers containing a sufficient number of salt groups to be soluble and/or dis- persible in water; and
  • (A. l.B) a component consisting of ethoxylated alcohol molecules; and, option ⁇ ally, one or more of: (A. l.C) an inorganic boron containing component;
  • A.1.E a component of dispersed and/or dissolved solid lubricant, exclusive of inorganic boron containing materials, as known per se in the art; and
  • A. l.F a component selected from solid and liquid hydrocarbons.
  • At least part of each of components (A.1.A) and (A. l.B) must be present in a chemi- cal form other than esters formed by reaction with each other.
  • maleic moiety is defined as a por ⁇ tion of a polymer chain that conforms to one of the following general chemical formu ⁇ las:
  • each of Q 1 and Q 2 which may be the same or different, is selected from the group consisting of hydrogen, alkali metal, ammonium, and substituted ammonium cations.
  • the copolymers of styrene and maleic moieties to be used in the first pre ⁇ ferred specific embodiment of the invention preferably have a molar ratio of styrene to the maleic moieties in the range from 1 : 1 to 3: 1 , more preferably in the range from 1.5: 1 to 2.6: 1 , still more preferably in the range from 1.8: 1 to 2.3: 1.
  • the copolymers of styrene and maleic moieties to be used in the first preferred specific embodiment of the invention preferably are selected from polymers that have an aver- age molecular weight in the range from 1100 to 2700, more preferably in the range from 1600 to 1950, still more preferably in the range from 1650 to 1750.
  • these copolymers of styrene and maleic moieties to be used in this first preferred spe ⁇ cific embodiment of the invention contain no more than 25, or with increasing prefer- ence no more than 12, 5, 3, or 0.5 % of units derived from other monomers.
  • compositions according to this first preferred specific embodiment of this invention provide a very pliable and ductile lubricating film, thereby leading to super ⁇ ior cold forming processes.
  • Inorganic boron containing materials optional component (A.l.C), and extreme pressure additives, optional component (A. l.D) above, are generally pre ⁇ ferred components in compositions according to this first preferred specific embodiment of the invention, while other solid lubricants and hydrocarbons, optional items (A.1.E) and (A.1.F) above, generally are preferably omitted, although they may be useful in some applications.
  • Concentrates according to the first preferred specific embodiment of the inven ⁇ tion preferably contain from 10 - 40 %, or more preferably from 20 - 40 %, of di ⁇ spersed or dissolved solids.
  • Lubricant compositions according to this first preferred specific embodiment of the invention suitable for direct application to metal surfaces to be lubricated, preferably contain from 3 - 20, more preferably from 6 - 17, still more preferably from 10 - 14, % of total dissolved solids.
  • compositions according to this first preferred specific embodiment of the invention are often used at fairly high temperatures such as 70° C or more. At such temperatures, if the compositions contain unsubstituted ammonium cations, or other ammonium cations derived from high volatility amines, there is a substantial concentration of ammonia or free amine in the vapor space over the liquid working composition at equilibrium. Such concentrations can be objectionable to workers using the process.
  • ammonia and/or amine concentrations are conven ⁇ tionally measured by a Drager test apparatus, which gives readings in NH 3 equivalents, with amines as well as with ammonia itself.
  • the cations other than hydrogen used in a composition according to this first preferred specific embodiment of the invention be chosen from ammonium ions of amines having sufficiently low volatility that the equilibrium overpressure of NH 3 equivalents as measured by a Drager test apparatus in the atmosphere over compositions according to this first preferred specific embodiment of the invention at a temperature of 70° C is, with increasing preference in the order given, not more than 50, 35, 25, 14, 9, 6, or 4 parts per million (hereinafter "ppm") of ammonia equivalent.
  • At least 50, 78, or 91 mole percent of the cations other than hydrogen present in component (A. LA) as described above be selected from the group consisting of sub ⁇ stituted ammonium cations derived by adding a proton to amines that will dissolve to form at least 0.01 ⁇ f solutions, with a pH value of at least 10, in water. More prefer ⁇ ably, the amines contain at least one hydroxyl group per molecule.
  • the substituted ammonium cations are selected from the cations formed by add ⁇ ing a proton to diethylethanol amine, dimethylethanol amine, diethanol amine, mono- ethanol amine, or wo-propanol amine.
  • the pH of the liquid compositions for direct application to metal surfaces also denoted as “working compositions” herein
  • alkaline materials preferably ammonium, sodium, potassium, or lithium hydroxide, in addition to the amines noted above, may be added to the compositions in order to achieve a pH within these ranges.
  • Component (A. l.B) of the compositions according to this first preferred specif ⁇ ic embodiment of the invention is preferably selected from alcohols having a chemical structure that can be produced by condensing ethylene oxide with primary, preferably straight chain, aliphatic alcohols having only one hydroxyl group and from 28 to 65, more preferably from 40 to 60, still more preferably from 48 to 52 carbon atoms per molecule.
  • the molecules of component (A. l.B) contain from 20 to 80, more preferably from 40 to 62, still more preferably from 48 -
  • the ratio by weight of component (A.1.A) to component (A.1.B) in composi ⁇ tions according to this first preferred specific embodiment of the invention is preferab ⁇ ly between 6:1 and 1:6, or, in order of increasing preference, between 4:1 to 1:4, 2.5:1 to 1:2.5, 1: 1.6 to 1:2.5, or 1:1.9 to 1:2.1.
  • Component (A. l.C) of compositions according to this first preferred specific embodiment of the invention is preferably selected from the group consisting of boric acid and condensed boric acids, alkali metal and ammonium salts of boric acid and condensed boric acids; more preferably, component (A. l.C) is selected from boric acid, borax, and mixtures thereof; most preferably a mixture of boric acid and borax in a ratio of 2.0: 1.0 is used.
  • component (A.1.C) the ratio of the total of the stoichiometric equivalent as H 3 BO 3 of the boron in component (A. l.C) to the total of the solids content in components (A. LA) and (A.
  • l.B preferably is, with in- creasing preference in the order given, not less than 0.02: 1.0, 0.04: 1.0, 0.06: 1.0, 0.08:1.0, 0.10:1.0, 0.12:1.0, 0.14:1.0, 0.16: 1.0, 0.18:1.0, 0.19:1.0, 0.20:1.0, 0.21: 1.0, 0.22: 1.0, or 0.23: 1.0 and independently preferably is, with increasing preference in the order given, not more than 2.5: 1.0, 1.2: 1.0, 0.8: 1.0, 0.6:1.0, 0.40: 1.0, 0.37: 1.0, 0.34: 1.0, 0.31:1.0, 0.29: 1.0, 0.28:1.0, 0.27:1.0, 0.26: 1.0, or 0.25:1.0.
  • Component (A. l.D) of the compositions according to this first preferred spe ⁇ cific embodiment of the invention is preferably selected from partial esters, or salts of partial esters, of phosphoric acid with alcohols having a molecular structure that contains both (i) a part having the structure -(CH ⁇ -, where m is an integer between 12 and 22 inclusive, more preferably between 16 and 22 inclusive, and (ii) a part having the structure (CH 2 -CH 2 -O) p , where p is an integer having a sufficiently large value that the total alcohol is soluble in water to the extent of, with increasing preference in the order given, at least 0.1, 0.4, 0.9, 1.3, 1.8, and 3 %.
  • component (A.l.D) When component (A.l.D) is used, it is preferably present in a ratio by weight to the total of components (A. LA) and (A. l.B) within the range from 1: 10 to 1:200, or more preferably from 1:25 to 1:70, still more preferably from 1 :40 to 1:55.
  • component (A.1.E) is used, it preferably is selected from the group consist ⁇ ing of graphite, molybdenum disulfide, mica, talc, and zinc oxide.
  • component (A. l.F) is used, it preferably is selected from substantially unsat- urated aliphatic hydrocarbon compounds, including oligomers of ethylene, propylene, or mixtures of ethylene and propylene, with a molecular weight in the range from 750 - 3000, more preferably in the range from 1000 - 2000.
  • the specific areal density (also often called "add-on weight [or mass]”) of a composition according to this first preferred specific embodiment of this invention present in place on metal to be cold worked, after application from a liquid composi ⁇ tion to the metal surface and air drying of liquid thus applied, is, in order of increas- ing preference, from 0. 1 to 15, 1 to 10, or 2 to 6 grams per square meter of surface Cg/ ⁇ r M ).
  • a lubricant composition according to this first pre ⁇ ferred specific embodiment of this invention preferably is used on clean bare steel without any intermediate coating.
  • a lubricant composition according to this first preferred specific embodiment of this invention can also be used over an underly ⁇ ing zinc phosphate conversion coating layer formed on the steel.
  • the zinc phosphate conversion coating may be formed by methods known per se in the art.
  • Any phos ⁇ phate conversion coating used before application of a lubricant composition according to this first preferred specific embodiment of this invention preferably has an areal density (also often denoted as "add-on weight [or mass]”) of from 1 to 50, or with in ⁇ creasing preference, from 1 to 30, 1 to 20, or 2 to 15, g/m 2 .
  • component (A) as described above comprises, more preferably consists essentially of, or still more preferably consists of, the following subcomponents: (A.2. A) an at least partially neutralized film forming copolymer of an alkylene and an acrylic acid, such at least partially neutralized polymers of or ⁇ ganic acids often being denoted in the art generally and hereinbelow as "ionomers"; (A.2.B) an alkoxylated alcohol film forming component; and, optionally, (A.2.C) a boron containing inorganic acid or salt.
  • a polymer is defined as "film forming" for the purposes of this description if, when a solution or suspension of the polymer in water is dried at a temperature of at least 25° C from a liquid film thickness not greater than 1 millimeter, a continuous and co ⁇ herent film that is solid at 25° C is produced.
  • Compositions according to this second preferred embodiment of the invention also provide a very pliable and ductile lubricating film, as does the first specific embodiment described above.
  • the pH value of working compositions according to this second preferred embodiment of the invention preferably is, with increasing preference in the order given, not less than 3, 4, 5, 6, 7, 7.3, 7.5, 7.7, 7.8, 7.9, or 8.0 and independently preferably is, with increasing preference in the order given, not more than 11, 10, 9.7, 9.4, 9.1, 9.0, 8.9, 8.8, 8.7, 8.6, or 8.5.
  • the alkylene polymerized to make component (A.2. A) preferably is selected from the group consisting of ethene, propene, 2-methyl propene, and 1- and 2- butenes; most preferably it is ethene (more commonly called "ethylene").
  • acrylic acid is most preferred, but methacrylic acid and other substituted acrylic acids with not more than six, preferably not more than four, carbon atoms may also be used.
  • the fraction of the mass of the polymer made up of alkylene residues preferably is, with increasing preference in the order given, not less than 1, 2, 4, 8, 16, 32, 50, 60, 65, 70, 73, 76, 79, 81, 82, 83, or 84 %; independently, the fraction of the mass of the polymer made up of alkylene residues preferably is, with increasing preference in the order given, not more than 99, 96, 94, 92, 91, 90, 89, 88, 87, or 86 %.
  • the fraction of the mass of the polymer made up of (optionally substituted) acrylic acid and acrylate residues preferably is, with increasing preference in the order given, not less than 1, 2, 4, 6, 8, 9, 10, 11, 12, 13 or 14 %; independently, the fraction of the mass of the polymer made up of these acrylic acid and acrylate residues preferably is, with increasing preference in the order given, not more than 99, 75, 50, 40, 30, 25, 21, 18, 17, or 16 %.
  • the fraction of the total of the (optionally substituted) acrylic acid and acrylate residues that are (optionally substituted) acrylate residues preferably is, with increasing preference in the order given, not less than 10, 20, 40, 50, 60, 70, 75, 80, 85, 90, 92, 94, 96, or 98 % .
  • component (A.2.A) Normally, commercially available polymers in latex form are preferred for component (A.2.A); a variety of such commercial products are available. Such products normally contain small amounts of surfactants for stabilizing the polymers in suspension; these surfactants normally have no adverse effect on compositions according to this invention.
  • the counterions for the neutralized acrylic acid units in the polymers are pref ⁇ erably selected from the group consisting of magnesium, calcium, zinc, and alkali metal ions. If alkali metal ions are used, the compositions preferably contain optional component (A.2.C) as described above. Even if other counterions are used, the com- positions may contain component (A.2.C), but the favorable effect of this component is normally less than when the counterions are alkali metal ions.
  • the oxyalkylene units in component (A.2.B) of a composition according to this second preferred embodiment of this invention preferably have not more than 4, more preferably not more than 3, most preferably 2, carbon atoms per unit.
  • Component (A.2.B) of the compositions according to the invention is preferably selected from molecules having a chemical structure that can be produced by condensing an alkylene oxide with primary, preferably straight chain, aliphatic alcohols having only one hy ⁇ droxyl group and from 30 to 65, more preferably from 40 to 60, still more preferably from 48 to 52 carbon atoms per molecule.
  • the mol- ecules of component (A.2.B) contain, with increasing preference in the order given, at least 20, 30, 35, 40, 43, 47, or 49 %, and independently preferably contain, with increasing preference in the order given, not more than 80, 70, 62, 57, 54, or 51 % of their total mass in the oxyalkylene units.
  • the ratio by weight of component (A.2.A) to component (A.2.B) in composi- tions according to this second preferred embodiment of the invention preferably is, with increasing preference in the order given, at least 1:10, 1:8, 1.0:6.5, 1.0:5.0, 1.0:3.5, 1.0:2.5, 1.0:2.0, 1.0:1.7, 1.0:1.5, 1.0:1.3, 1.0:1.20, 1.0:1.17, 1.0:1.12, 1.0:1.10, 1.0:1.07, 1.0:1.04, 1.0:1.03, 1.0:1.02, or 1.0:1.01, and independently preferably is, with increasing preference in the order given, not more than 10:1, 5:1.0, 3:1.0, 2.5:1.0, 2.0:1.0, 1.8:1.0, 1.6:1.0, 1.50:1.0, 1.40:1.0, 1.35:1.0, 1.30:1.0, 1.25:1.0, 1.20:1.0, 1.15:1.0, 1.12:1.0, 1.09:1.0, 1.07:1.0, 1.05:1.0, 1.03:1.0, or 1.
  • Component (A.2.C) of compositions according to this second preferred specific embodiment of the invention is preferably selected from the group consisting of boric acid and condensed boric acids, alkali metal and ammonium salts of boric acid and condensed boric acids; more preferably, component (A. l.C) is selected from boric acid, borax, and mixtures thereof; most preferably a mixture of boric acid and borax in a ratio of 2.0:1.0 is used.
  • the ratio of the total of the stoichiometric equivalent as H 3 BO 3 of the boron in component (A.2.C) to the total of the solids content in components (A.2.A) and (A.2.B) preferably is, with in ⁇ creasing preference in the order given, not less than 0.01: 1.0, 0.02: 1.0, 0.04:1.0, s 0.06: 1.0, 0.08: 1.0, 0.10: 1.0, 0.11: 1.0, 0.12: 1.0, 0.13: 1.0, 0.14: 1.0, 0.15:1.0, 0.16: 1.0, or 0.17: 1.0 and independently preferably is, with increasing preference in the order given, not more than 2.0: 1.0, 1.2: 1.0, 0.8: 1.0, 0.6: 1.0, 0.4: 1.0, 0.28:1.0, 0.25: 1.0, 0.22: 1.0, 0.21: 1.0, 0.22: 1.0, 0.21: 1.0, 0.20: 1.0, 0.19:1.0
  • the total solids content of a working composition according to this second pre- o ferred specific embodiment of the invention preferably is, with increasing preference in the order given, not less than 1, 2, 3, 4, 5, 5.5, 6.0, 6.5, 7.0, 7.4, 7.7, 8.0, 8.3, 8.5, 8.7, 8.8, or 8.9 % and independently preferably is, with increasing preference in the order given, not more than 50, 35, 25, 20, 18, 17, 16, 15.5, or 15.1 %.
  • the areal density (also often called “add-on weight [or mass]”) of a composit- 5 ion according to this second preferred specific embodiment of this invention present in place on the surface of metal to be cold worked preferably is, with increasing pref ⁇ erence in the order given, not less than 0.1, 0.2, 0.4, 0.7, 1.0, 2.0, 2.5, 2.9, 3.2, 3.5, 3.7, 3.8, 3.9, 4.0, 4.1, or 4.2 grams of solids per square meter of surface (hereinafter often abbreviated "g/m 2 ”) and independently preferably is, with increasing 0 preference in the order given, not more than 60, 40, 30, 20, 17, 15, 13, 12, 11, 10, 9.0, 8.5, 8.0, 7.7, 7.4, 7.1, 6.9, 6.7, or 6.6 g/m 2 .
  • the substrates were cylindrical steel tubes about 2.5 centimeters (hereinafter often abbreviated "cm") in diameter and 12.7 cm long.
  • Three such tubes were oriented with their cylindrical axes mutually parallel and the cylindrical surface of each of the three tubes tangent to the cylindrical surfaces of the other two tubes, 0 then tied together while maintaining this orientation, in order to form a bundle that deliberately created contact lines and narrow inter-contact spaces with relatively poor liquid circulation, as such areas are known to be more prone to staining, discoloration, and/or corrosion during treatment than surfaces with facile liquid access during the treatment process.
  • the tube bundles were then subjected to the process sequence shown in Table I below.
  • the coating composition used had a pH value of about 8.5 and contained the following amounts and types of ingredients (the amounts are specified as solids for in ⁇ gredients identified by trademarked names or identified as polymers and are specified as amounts of the chemical formula shown for ingredients identified by chemical formula; the balance of the composition not specified below was water):
  • ANTARATM LB-400 phosphate ester commercially available from GAF, New York, NY (an extreme pressure lubricant); and, where specified in Table 1 , also contained the types and amounts of inhibitor compon ⁇ ents shown in that Table.
  • UNTTHOXTM 750 is described by its supplier as a product made by ethoxylating primary straight chain alcohols with an average carbon number of about 50 to produce a surfactant with an average of 16 ethylene oxide residues per molecule.
  • the tubes used as substrates had the same diameter as those used for Group 1, but they were 3.66 meters long and were processed individually rather than in bundles of three.
  • Various types of steel were used, as shown in Table 2.
  • One of the coating solutions used in this group had the same composition as is given above for Group 1 ; this was briefly denoted "SMA”.
  • SMA base coating so ⁇ lution briefly denoted as "Al” was also used.
  • This "Al” coating solution contained the following amounts and types of ingredients (the amounts are specified as solids for ingredients identified by trademarked names or identified as polymers and are specified as amounts of the chemical formula shown for ingredients identified by chemical formula; the balance of the composition not specified below was water): 3.75 % of UNITHOXTM 750, ethoxylated alcohol, commercially supplied by Petrolite Corp., Tulsa, Oklahoma, USA;
  • ACQUATM 250 aqueous dispersion of ethylene-acrylic acid copolymer, neutralized with calcium hydroxide, commercially available from Allied Signal Corp., A-CTM Performance
  • Additives Group 1.0 % of H 3 BO 3 ; 0.5 % of Na 2 B 4 O 7 • 10 2 O; where specified in Table 2, also contained the types and amounts of inhibitor com- ponents shown in that Table, where they are indicated as follows: "Thiazole” means the only inhibitor component was 50 ppm of 2-mercaptobenzothiazole; “triazoles” means that the only inhibitor components were a mixture of 1000 ppm of each of tol ⁇ yltriazole and benzotriazole; “combination” means that all three of these materials in the same concentrations as noted above were included in the coating composition.

Abstract

A combination of sulfur-free azoles, preferably benzotriazole and tolyltriazole, with sulfur-containing azoles, preferably 2-mercaptobenzothiazole or mercaptobenzimidazole, prevents discoloration, staining, or corrosion of metal surfaces being coated with an organic protective coating from aqueous dispersion or solution.

Description

AQUEOUS METAL COATING COMPOSITION AND PROCESS WITH REDUCED STAINING AND CORROSION
BACKGROUND OF THE INVENTION Field of the Invention
This invention relates to aqueous liquid compositions suitable for forming a protective coating containing an organic binder material on metal surfaces that are contacted with the compositions, either by direct deposition of a protective film on the metal while the liquid composition is in contact with the metal, or, more commonly, by depositing a liquid film of the liquid composition on the metal and converting this liquid film to a protective solid film by removing water from the initially deposited liquid film and, optionally, heating or otherwise causing the solid constituents of the liquid film to coalesce and or react, so as to produce an adherent solid film on the metal surface. The solid film thus deposited may be protective against corrosion, damage during cold working of the underlying metal, or the like. The metal surfaces processed as described above may or may not have other surface layers, such as phos¬ phate or chromate conversion coatings, coatings formed by anodization, or the like, underlying the coating produced on the surface by using this invention. Statement of Related Art
Many aqueous liquid compositions that deposit protective coatings on metal surfaces are known. Little prior attention appears to have been paid, however, to the potential of such aqueous liquid compositions for damaging, during treatment, the sur¬ faces that they are intended to protect. DESCRIPTION OF THE INVENTION
Except in the claims and the operating examples, or where otherwise expressly indicated, all numerical quantities in this description indicating amounts of material or conditions of reaction and/or use are to be understood as modified by the word "about" in describing the broadest scope of the invention. Practice within the numeri¬ cal limits stated is generally preferred. Also, unless expressly stated to the contrary: percent, "parts o , and ratio values are by weight; the term "polymer" includes oligo- mer; the description of a group or class of materials as suitable or preferred for a giv¬ en purpose in connection with the invention implies that mixtures of any two or more of the members of the group or class are equally suitable or preferred; description of constituents in chemical terms refers to the constituents at the time of addition to any combination specified in the description, and does not necessarily preclude chemical interactions among the constituents of a mixture once mixed; specification of materials in ionic form implies the presence of sufficient counterions to produce electrical neu¬ trality for the composition as a whole (any counterions thus implicitly specified should preferably be selected from among other constituents explicitly specified in ionic form, to the extent possible; otherwise such counterions may be freely selected, except for avoiding counterions that act adversely to the objects of the invention); and the term "mole" and its variations may be applied to elemental, ionic, and any other chemical species defined by number and type of atoms present, as well as to compounds with well defined molecules.
Summary of the Invention It has been found that aqueous liquid compositions intended to provide a pro¬ tective coating on metal surfaces are often capable of staining or otherwise corroding metal surfaces during the time of treatment. In some case, relatively minor corrosion, often referred to as "etching", is desirable because it promotes good adhesion of a protective coating to the surface treated. However, gross corrosion of the metal surface during treatment is almost always undesirable, and in many cases, any change in color or texture of the metal surface that is readily detectable visually is undesirable, particularly when the protective coating applied is totally or substantially transparent and or is applied only for temporary protection and removed before ultimate consumer use of the metal article treated (as would normally be true, for example, of a drawing lubricant), and the aesthetic qualities of the treated metal surface are a substantial desideratum of the final use of the metal supplied with a protective coating according to this invention. Therefore, one object of this invention is to provide aqueous liquid metal coating compositions that have a reduced tendency toward corroding, staining, and/or altering the color or texture of metal surfaces treated with the aqueous liquid metal coating compositions.
Accordingly, one embodiment of the invention is an aqueous liquid composi- tion comprising, preferably consisting essentially of, or more preferably consisting of, water and:
(A) dissolved or dispersed constituents, exclusive of organic azoles but including at least some organic constituents, that are capable of reacting with one an¬ other, with a metal surface being treated, or both, or of spontaneously coales- cing, or of both reacting and spontaneously coalescing, during or after at least one of (i) contact of the aqueous liquid composition with a metal surface, (ii) separation of a metal surface from such contact, and (iii) removal of water from any liquid film remaining on a metal surface after such contact and sub¬ sequent removal from contact of the metal with the aqueous liquid composi- tion, so as to form on the surface of the metal being treated an adherent pro¬ tective film; said contact of the aqueous liquid composition with the metal sur¬ face and said removal of water from any liquid film remaining on the metal after such contact and subsequent removal from contact of the metal with the aqueous liquid composition both occurring at a temperature not less than 20° C;
(B) a primary inhibitor component selected from the group consisting of non- sulfur-containing organic azole compounds, preferably organic triazoles, more preferably benzotriazole or tolyltriazole; and
(C) a secondary inhibitor component selected from the group consisting of organic azoles that also contain mercapto moieties, preferably mercaptobenzothiazole or mercaptobenzimidazole.
Embodiments of the invention include working aqueous liquid compositions suitable for contacting directly with metal surfaces to provide protective coatings thereon as described above; liquid or solid concentrates that will form such working aqueous liquid compositions upon dilution with water only; processes of using work¬ ing aqueous liquid compositions according to the invention as defined above to form protective coatings on metal surfaces; protective solid coatings on metal surfaces formed in such a process, and metal articles bearing such a protective coating; and concentrates comprising, preferably consisting essentially of, or more preferably con¬ sisting of components (B) and (C) as described above, and, optionally, also water. Description of Preferred Embodiments The chemical nature and amount of component (A) in a working aqueous li¬ quid composition according to the invention depend on the purpose of the treatment and in general preferably are the same as or similar to the chemical nature and amount of materials used for similar protective purposes in the prior art. Some specific ex¬ amples particularly suited to the present invention are given below, and any explicit specification herein is to be understood as superseding any contrary teachings from the prior art.
The concentration of component (B) in a working aqueous liquid composition according to this invention preferably is, with increasing preference in the order given, not less than 10, 40, 100, 200, 400, 800, 1200, 1400, 1500, 1600, 1700, 1750, 1800, 1850, 1900, 1925, 1950, or 1975 parts per million (hereinafter often abbreviated "ppm") of the total composition and independently preferably is, with increasing preference in the order given, not more than 20,000, 10,000, 5000, 3500, 3300, 3100. 2800, 2500, 2400, 2300, 2250, 2200, 2175, 2150, 2125, 2100, 2075, 2050, or 2025 ppm. Chemically, as already noted above, it is preferred for component (B) to be selected from benzotriazole and tolyltriazole, and in fact a mixture of these two is more preferred than either of them alone. The amount of each of benzotriazole and tolyltriazole, expressed as a percentage of the total of component (B) preferably is, with increasing preference in the order given, independently for each of these two triazoles, not less than 5, 10, 15, 20, 25, 30, 35, 38, 41, 43, 45, 47, 48, or 49 % and independently preferably is, with increasing preference in the order given, not more than 95, 90, 85, 80, 75, 70, 65, 62, 59, 57, 55, 53, 52, or 51 %. The concentration of component (C) in a working aqueous liquid composition according to this invention preferably is, with increasing preference in the order given, not less than 1 , 4, 10, 15, 20, 25, 30, 35, 38, 41 , 43, 45, 47, or 49 ppm of the total composition and independently preferably is, with increasing preference in the order given, not more than 2000, 1000, 500, 350, 300, 250, 200, 175, 165, 155, 145, 135, 125, 120, 115, 110, 107, 110, 108, 106, 105, 104, 103, 102, or 101 ppm. The ratio of the concentration of component (C) to the concentration of component (B) preferably is, with increasing preference in the order given, not less than 0.001: 1, 0.002: 1, 0.004: 1, 0.007: 1 , 0.011: 1.0, 0.015: 1.0, 0.019: 1.0, 0.020: 1.0, 0.021:1.0, 0.022: 1.0, 0.023: 1.0, or 0.024: 1.0 and independently preferably is, with increasing preference in the order given, not more than 2:1, 1: 1, 0.5: 1, 0.3:1, 0.2:1, 0.1:1, 0.09:1.0, 0.08:1.0, 0.07:1.0, 0.06:1.0, 0.05:1.0, 0.04:1.0, 0.035:1.00, 0.033:1.00, 0.031 : 1.00, 0.029: 1.00, 0.028: 1.00, 0.027: 1.00, or 0.026: 1.00. These ratios, unlike the concentration preferences stated above, apply to concentrates as well as to working compositions.
For various reasons it is often preferred that the compositions according to the invention be free from various materials often used in prior art coating compositions. In particular, compositions according to this invention in most instances preferably contain, with increasing preference in the order given, and with independent preference for each component named, not more than 5, 2, 1, 0.5, 0.25, 0.12, 0.06, 0.03, 0.015, 0.007, 0.003, 0.001, 0.0005, 0.0002, or 0.0001 % of any of (i) hydrocarbons, (ii) fatty oils of natural origin, (iii) other ester oils and greases that are liquid at 25° C, (iv) metal salts of fatty acids, (v) hexavalent chromium, (vi) nickel cations, (vii) cobalt cations, (viii) copper cations, (ix) manganese in any ionic form, (x) graphite, and (xi) molybdenum sulfide.
One class of component (A) to which this invention is especially well adapted is materials that will form on treated metal a coating that is protective for cold work¬ ing. More particularly, a preferred component (A) according to a first preferred spe¬ cific embodiment of this invention comprises, more preferably consists essentially of, or still more preferably consists of, the following subcomponents: (A. l.A) copolymers of styrene with (i) maleic anhydride, (ii) maleic acid, (iii) salts of maleic acid with ammonia, alkali metal hydroxides, and amines, or (iv) mixtures of any two or more of these, said copolymers containing a sufficient number of salt groups to be soluble and/or dis- persible in water; and
(A. l.B) a component consisting of ethoxylated alcohol molecules; and, option¬ ally, one or more of: (A. l.C) an inorganic boron containing component;
(A. l.D) an extreme pressure and corrosion resistant additive component as known per se in the art;
(A.1.E) a component of dispersed and/or dissolved solid lubricant, exclusive of inorganic boron containing materials, as known per se in the art; and (A. l.F) a component selected from solid and liquid hydrocarbons.
At least part of each of components (A.1.A) and (A. l.B) must be present in a chemi- cal form other than esters formed by reaction with each other.
For purposes of this description, the term "maleic moiety" is defined as a por¬ tion of a polymer chain that conforms to one of the following general chemical formu¬ las:
H H 0-Q1 I | |
-C— C=0 -C— OO
\ 0
/ -C— C=0 -C— C=0
H 1 H I 0 I -Q _2 wherein each of Q1 and Q2, which may be the same or different, is selected from the group consisting of hydrogen, alkali metal, ammonium, and substituted ammonium cations. The copolymers of styrene and maleic moieties to be used in the first pre¬ ferred specific embodiment of the invention preferably have a molar ratio of styrene to the maleic moieties in the range from 1 : 1 to 3: 1 , more preferably in the range from 1.5: 1 to 2.6: 1 , still more preferably in the range from 1.8: 1 to 2.3: 1. Independently, the copolymers of styrene and maleic moieties to be used in the first preferred specific embodiment of the invention preferably are selected from polymers that have an aver- age molecular weight in the range from 1100 to 2700, more preferably in the range from 1600 to 1950, still more preferably in the range from 1650 to 1750. Preferably these copolymers of styrene and maleic moieties to be used in this first preferred spe¬ cific embodiment of the invention contain no more than 25, or with increasing prefer- ence no more than 12, 5, 3, or 0.5 % of units derived from other monomers.
The compositions according to this first preferred specific embodiment of this invention provide a very pliable and ductile lubricating film, thereby leading to super¬ ior cold forming processes.
Inorganic boron containing materials, optional component (A.l.C), and extreme pressure additives, optional component (A. l.D) above, are generally pre¬ ferred components in compositions according to this first preferred specific embodiment of the invention, while other solid lubricants and hydrocarbons, optional items (A.1.E) and (A.1.F) above, generally are preferably omitted, although they may be useful in some applications. Concentrates according to the first preferred specific embodiment of the inven¬ tion preferably contain from 10 - 40 %, or more preferably from 20 - 40 %, of di¬ spersed or dissolved solids. Lubricant compositions according to this first preferred specific embodiment of the invention, suitable for direct application to metal surfaces to be lubricated, preferably contain from 3 - 20, more preferably from 6 - 17, still more preferably from 10 - 14, % of total dissolved solids.
The working compositions according to this first preferred specific embodiment of the invention are often used at fairly high temperatures such as 70° C or more. At such temperatures, if the compositions contain unsubstituted ammonium cations, or other ammonium cations derived from high volatility amines, there is a substantial concentration of ammonia or free amine in the vapor space over the liquid working composition at equilibrium. Such concentrations can be objectionable to workers using the process.
In an industrial application, ammonia and/or amine concentrations are conven¬ tionally measured by a Drager test apparatus, which gives readings in NH3 equivalents, with amines as well as with ammonia itself. It is preferred that the cations other than hydrogen used in a composition according to this first preferred specific embodiment of the invention be chosen from ammonium ions of amines having sufficiently low volatility that the equilibrium overpressure of NH3 equivalents as measured by a Drager test apparatus in the atmosphere over compositions according to this first preferred specific embodiment of the invention at a temperature of 70° C is, with increasing preference in the order given, not more than 50, 35, 25, 14, 9, 6, or 4 parts per million (hereinafter "ppm") of ammonia equivalent.
Independently, it is preferred, with increasing preference in the order given, that at least 50, 78, or 91 mole percent of the cations other than hydrogen present in component (A. LA) as described above be selected from the group consisting of sub¬ stituted ammonium cations derived by adding a proton to amines that will dissolve to form at least 0.01 Λf solutions, with a pH value of at least 10, in water. More prefer¬ ably, the amines contain at least one hydroxyl group per molecule. Still more prefer¬ ably, the substituted ammonium cations are selected from the cations formed by add¬ ing a proton to diethylethanol amine, dimethylethanol amine, diethanol amine, mono- ethanol amine, or wo-propanol amine. It is also preferred that the pH of the liquid compositions for direct application to metal surfaces (also denoted as "working compositions" herein) fall within the range from 6 to 11, more preferably in the range from 7.5 to 9.0, or still more preferably from 8.2 to 8.8. If needed, alkaline materials, preferably ammonium, sodium, potassium, or lithium hydroxide, in addition to the amines noted above, may be added to the compositions in order to achieve a pH within these ranges.
Component (A. l.B) of the compositions according to this first preferred specif¬ ic embodiment of the invention is preferably selected from alcohols having a chemical structure that can be produced by condensing ethylene oxide with primary, preferably straight chain, aliphatic alcohols having only one hydroxyl group and from 28 to 65, more preferably from 40 to 60, still more preferably from 48 to 52 carbon atoms per molecule. Independently, it is preferred that the molecules of component (A. l.B) contain from 20 to 80, more preferably from 40 to 62, still more preferably from 48 -
51 percent of their total weight in the portion of each molecule having the chemical structure (CH2-CH2-O)0, where n is a positive integer. The ratio by weight of component (A.1.A) to component (A.1.B) in composi¬ tions according to this first preferred specific embodiment of the invention is preferab¬ ly between 6:1 and 1:6, or, in order of increasing preference, between 4:1 to 1:4, 2.5:1 to 1:2.5, 1: 1.6 to 1:2.5, or 1:1.9 to 1:2.1.
Component (A. l.C) of compositions according to this first preferred specific embodiment of the invention is preferably selected from the group consisting of boric acid and condensed boric acids, alkali metal and ammonium salts of boric acid and condensed boric acids; more preferably, component (A. l.C) is selected from boric acid, borax, and mixtures thereof; most preferably a mixture of boric acid and borax in a ratio of 2.0: 1.0 is used. When component (A.1.C) is used, the ratio of the total of the stoichiometric equivalent as H3BO3 of the boron in component (A. l.C) to the total of the solids content in components (A. LA) and (A. l.B) preferably is, with in- creasing preference in the order given, not less than 0.02: 1.0, 0.04: 1.0, 0.06: 1.0, 0.08:1.0, 0.10:1.0, 0.12:1.0, 0.14:1.0, 0.16: 1.0, 0.18:1.0, 0.19:1.0, 0.20:1.0, 0.21: 1.0, 0.22: 1.0, or 0.23: 1.0 and independently preferably is, with increasing preference in the order given, not more than 2.5: 1.0, 1.2: 1.0, 0.8: 1.0, 0.6:1.0, 0.40: 1.0, 0.37: 1.0, 0.34: 1.0, 0.31:1.0, 0.29: 1.0, 0.28:1.0, 0.27:1.0, 0.26: 1.0, or 0.25:1.0.
Component (A. l.D) of the compositions according to this first preferred spe¬ cific embodiment of the invention is preferably selected from partial esters, or salts of partial esters, of phosphoric acid with alcohols having a molecular structure that contains both (i) a part having the structure -(CH^-, where m is an integer between 12 and 22 inclusive, more preferably between 16 and 22 inclusive, and (ii) a part having the structure (CH2-CH2-O)p, where p is an integer having a sufficiently large value that the total alcohol is soluble in water to the extent of, with increasing preference in the order given, at least 0.1, 0.4, 0.9, 1.3, 1.8, and 3 %. When component (A.l.D) is used, it is preferably present in a ratio by weight to the total of components (A. LA) and (A. l.B) within the range from 1: 10 to 1:200, or more preferably from 1:25 to 1:70, still more preferably from 1 :40 to 1:55.
If component (A.1.E) is used, it preferably is selected from the group consist¬ ing of graphite, molybdenum disulfide, mica, talc, and zinc oxide.
If component (A. l.F) is used, it preferably is selected from substantially unsat- urated aliphatic hydrocarbon compounds, including oligomers of ethylene, propylene, or mixtures of ethylene and propylene, with a molecular weight in the range from 750 - 3000, more preferably in the range from 1000 - 2000. The specific areal density (also often called "add-on weight [or mass]") of a composition according to this first preferred specific embodiment of this invention present in place on metal to be cold worked, after application from a liquid composi¬ tion to the metal surface and air drying of liquid thus applied, is, in order of increas- ing preference, from 0. 1 to 15, 1 to 10, or 2 to 6 grams per square meter of surface Cg/πrM).
For cold drawing of steel, a lubricant composition according to this first pre¬ ferred specific embodiment of this invention preferably is used on clean bare steel without any intermediate coating. However, a lubricant composition according to this first preferred specific embodiment of this invention can also be used over an underly¬ ing zinc phosphate conversion coating layer formed on the steel. The zinc phosphate conversion coating may be formed by methods known per se in the art. Any phos¬ phate conversion coating used before application of a lubricant composition according to this first preferred specific embodiment of this invention preferably has an areal density (also often denoted as "add-on weight [or mass]") of from 1 to 50, or with in¬ creasing preference, from 1 to 30, 1 to 20, or 2 to 15, g/m2.
In a second preferred specific embodiment of this invention, component (A) as described above comprises, more preferably consists essentially of, or still more preferably consists of, the following subcomponents: (A.2. A) an at least partially neutralized film forming copolymer of an alkylene and an acrylic acid, such at least partially neutralized polymers of or¬ ganic acids often being denoted in the art generally and hereinbelow as "ionomers"; (A.2.B) an alkoxylated alcohol film forming component; and, optionally, (A.2.C) a boron containing inorganic acid or salt.
A polymer is defined as "film forming" for the purposes of this description if, when a solution or suspension of the polymer in water is dried at a temperature of at least 25° C from a liquid film thickness not greater than 1 millimeter, a continuous and co¬ herent film that is solid at 25° C is produced. Compositions according to this second preferred embodiment of the invention also provide a very pliable and ductile lubricating film, as does the first specific embodiment described above. The pH value of working compositions according to this second preferred embodiment of the invention preferably is, with increasing preference in the order given, not less than 3, 4, 5, 6, 7, 7.3, 7.5, 7.7, 7.8, 7.9, or 8.0 and independently preferably is, with increasing preference in the order given, not more than 11, 10, 9.7, 9.4, 9.1, 9.0, 8.9, 8.8, 8.7, 8.6, or 8.5.
The alkylene polymerized to make component (A.2. A) preferably is selected from the group consisting of ethene, propene, 2-methyl propene, and 1- and 2- butenes; most preferably it is ethene (more commonly called "ethylene"). For the other required monomer to make component (A.2. A), acrylic acid is most preferred, but methacrylic acid and other substituted acrylic acids with not more than six, preferably not more than four, carbon atoms may also be used. The fraction of the mass of the polymer made up of alkylene residues preferably is, with increasing preference in the order given, not less than 1, 2, 4, 8, 16, 32, 50, 60, 65, 70, 73, 76, 79, 81, 82, 83, or 84 %; independently, the fraction of the mass of the polymer made up of alkylene residues preferably is, with increasing preference in the order given, not more than 99, 96, 94, 92, 91, 90, 89, 88, 87, or 86 %. Independently, the fraction of the mass of the polymer made up of (optionally substituted) acrylic acid and acrylate residues preferably is, with increasing preference in the order given, not less than 1, 2, 4, 6, 8, 9, 10, 11, 12, 13 or 14 %; independently, the fraction of the mass of the polymer made up of these acrylic acid and acrylate residues preferably is, with increasing preference in the order given, not more than 99, 75, 50, 40, 30, 25, 21, 18, 17, or 16 %. The fraction of the total of the (optionally substituted) acrylic acid and acrylate residues that are (optionally substituted) acrylate residues, in other words, the fraction of the total (optionally substituted) acrylic moieties in the polymer that are neutralized rather than acidic, preferably is, with increasing preference in the order given, not less than 10, 20, 40, 50, 60, 70, 75, 80, 85, 90, 92, 94, 96, or 98 % .
Normally, commercially available polymers in latex form are preferred for component (A.2.A); a variety of such commercial products are available. Such products normally contain small amounts of surfactants for stabilizing the polymers in suspension; these surfactants normally have no adverse effect on compositions according to this invention. The counterions for the neutralized acrylic acid units in the polymers are pref¬ erably selected from the group consisting of magnesium, calcium, zinc, and alkali metal ions. If alkali metal ions are used, the compositions preferably contain optional component (A.2.C) as described above. Even if other counterions are used, the com- positions may contain component (A.2.C), but the favorable effect of this component is normally less than when the counterions are alkali metal ions.
The oxyalkylene units in component (A.2.B) of a composition according to this second preferred embodiment of this invention preferably have not more than 4, more preferably not more than 3, most preferably 2, carbon atoms per unit. Component (A.2.B) of the compositions according to the invention is preferably selected from molecules having a chemical structure that can be produced by condensing an alkylene oxide with primary, preferably straight chain, aliphatic alcohols having only one hy¬ droxyl group and from 30 to 65, more preferably from 40 to 60, still more preferably from 48 to 52 carbon atoms per molecule. Ii, ependently, it is preferred that the mol- ecules of component (A.2.B) contain, with increasing preference in the order given, at least 20, 30, 35, 40, 43, 47, or 49 %, and independently preferably contain, with increasing preference in the order given, not more than 80, 70, 62, 57, 54, or 51 % of their total mass in the oxyalkylene units.
The ratio by weight of component (A.2.A) to component (A.2.B) in composi- tions according to this second preferred embodiment of the invention preferably is, with increasing preference in the order given, at least 1:10, 1:8, 1.0:6.5, 1.0:5.0, 1.0:3.5, 1.0:2.5, 1.0:2.0, 1.0:1.7, 1.0:1.5, 1.0:1.3, 1.0:1.20, 1.0:1.17, 1.0:1.12, 1.0:1.10, 1.0:1.07, 1.0:1.04, 1.0:1.03, 1.0:1.02, or 1.0:1.01, and independently preferably is, with increasing preference in the order given, not more than 10:1, 5:1.0, 3:1.0, 2.5:1.0, 2.0:1.0, 1.8:1.0, 1.6:1.0, 1.50:1.0, 1.40:1.0, 1.35:1.0, 1.30:1.0, 1.25:1.0, 1.20:1.0, 1.15:1.0, 1.12:1.0, 1.09:1.0, 1.07:1.0, 1.05:1.0, 1.03:1.0, or 1.01:1.0.
Component (A.2.C) of compositions according to this second preferred specific embodiment of the invention is preferably selected from the group consisting of boric acid and condensed boric acids, alkali metal and ammonium salts of boric acid and condensed boric acids; more preferably, component (A. l.C) is selected from boric acid, borax, and mixtures thereof; most preferably a mixture of boric acid and borax in a ratio of 2.0:1.0 is used. When component (A.2.C) is used, the ratio of the total of the stoichiometric equivalent as H3BO3 of the boron in component (A.2.C) to the total of the solids content in components (A.2.A) and (A.2.B) preferably is, with in¬ creasing preference in the order given, not less than 0.01: 1.0, 0.02: 1.0, 0.04:1.0, s 0.06: 1.0, 0.08: 1.0, 0.10: 1.0, 0.11: 1.0, 0.12: 1.0, 0.13: 1.0, 0.14: 1.0, 0.15:1.0, 0.16: 1.0, or 0.17: 1.0 and independently preferably is, with increasing preference in the order given, not more than 2.0: 1.0, 1.2: 1.0, 0.8: 1.0, 0.6: 1.0, 0.4: 1.0, 0.28:1.0, 0.25: 1.0, 0.22: 1.0, 0.21: 1.0, 0.22: 1.0, 0.21: 1.0, 0.20: 1.0, 0.19:1.0, or 0.18:1.0. The total solids content of a working composition according to this second pre- o ferred specific embodiment of the invention preferably is, with increasing preference in the order given, not less than 1, 2, 3, 4, 5, 5.5, 6.0, 6.5, 7.0, 7.4, 7.7, 8.0, 8.3, 8.5, 8.7, 8.8, or 8.9 % and independently preferably is, with increasing preference in the order given, not more than 50, 35, 25, 20, 18, 17, 16, 15.5, or 15.1 %.
The areal density (also often called "add-on weight [or mass]") of a composit- 5 ion according to this second preferred specific embodiment of this invention present in place on the surface of metal to be cold worked preferably is, with increasing pref¬ erence in the order given, not less than 0.1, 0.2, 0.4, 0.7, 1.0, 2.0, 2.5, 2.9, 3.2, 3.5, 3.7, 3.8, 3.9, 4.0, 4.1, or 4.2 grams of solids per square meter of surface (hereinafter often abbreviated "g/m2") and independently preferably is, with increasing 0 preference in the order given, not more than 60, 40, 30, 20, 17, 15, 13, 12, 11, 10, 9.0, 8.5, 8.0, 7.7, 7.4, 7.1, 6.9, 6.7, or 6.6 g/m2.
The practice of this invention may be further appreciated by consideration of the following, non-limiting, working examples, and the benefits of the invention may be further appreciated by reference to the comparison examples. Example and Comparison Example Group 1
In this group the substrates were cylindrical steel tubes about 2.5 centimeters (hereinafter often abbreviated "cm") in diameter and 12.7 cm long. Three such tubes were oriented with their cylindrical axes mutually parallel and the cylindrical surface of each of the three tubes tangent to the cylindrical surfaces of the other two tubes, 0 then tied together while maintaining this orientation, in order to form a bundle that deliberately created contact lines and narrow inter-contact spaces with relatively poor liquid circulation, as such areas are known to be more prone to staining, discoloration, and/or corrosion during treatment than surfaces with facile liquid access during the treatment process. The tube bundles were then subjected to the process sequence shown in Table I below.
Table I: PROCESS SEQUENCE
Step Step Name Treatment Composition Contact Conditions No.
° C Mm
1 Cleaning PARCO™ Cleaner 2077X 88 ± 2 15
2 Rinsing Tap Water 54 ± 2 1
3 Pickling 10 % H2SO4 in water 71 ± 2 5
4 Rinsing Tap water 20 ± 5 1
5 Coating As described elsewhere herein 71 ± 2 2
6 Baking Air 77 ± 5 30
Notes for Table I "° C" indicates the temperature in Centigrade degrees of the fluid during contact with the substrate being treated. "Min" indicates the time of contact in minutes. PARCO™ Cleaner 2077X is a conventional strong alkaline cleaner, commercially available from the Parker Amchem Division of Henkel Corporation, Madison Heights, Michigan, USA; the solution used for cleaning in Step 1 above contained 30 grams of the commercially supplied powder per liter of solution. Contact was by immersion in the fluid in all steps listed.
After completing the process shown in Table I, the bundles were separated and the contact lines and area between the contact lines was examined for any evidence of discoloration, staining, or corrosion that could be detected with unaided normal human vision. The percentage of the total area that exhibited any evidence of such blemishing was reported using the following rating scale:
No detectable blemishing
Blemishing, but on no more than 10 % of the area examined Blemishing on from > 10 % to 20 % of the area examined Blemishing on from > 20 % to 30 % of the area examined Blemishing on from > 30 % to 40 % of the area examined 5: Blemishing on >40 % of the area examined. The coating composition used had a pH value of about 8.5 and contained the following amounts and types of ingredients (the amounts are specified as solids for in¬ gredients identified by trademarked names or identified as polymers and are specified as amounts of the chemical formula shown for ingredients identified by chemical formula; the balance of the composition not specified below was water):
7.0 % of UNITHOX™ 750, ethoxylated alcohol, commercially supplied by Petrolite Corp., Tulsa, Oklahoma, USA; 3.7 % of "SMA 2000" styrene-maleic anhydride copolymer, neutralized with diethylethanolamine; commercially available from
ATOCHEM, INC., Malvern, PA. 2.0 % of H3BO3; 1.0 % of Na^O, • 10 H2O;
0.2 % of ANTARA™ LB-400 phosphate ester, commercially available from GAF, New York, NY (an extreme pressure lubricant); and, where specified in Table 1 , also contained the types and amounts of inhibitor compon¬ ents shown in that Table. UNTTHOX™ 750 is described by its supplier as a product made by ethoxylating primary straight chain alcohols with an average carbon number of about 50 to produce a surfactant with an average of 16 ethylene oxide residues per molecule. Example and Comparison Example Group 2
In this group, the tubes used as substrates had the same diameter as those used for Group 1, but they were 3.66 meters long and were processed individually rather than in bundles of three. Various types of steel were used, as shown in Table 2. One of the coating solutions used in this group had the same composition as is given above for Group 1 ; this was briefly denoted "SMA". In this group, another base coating so¬ lution briefly denoted as "Al" was also used. This "Al" coating solution contained the following amounts and types of ingredients (the amounts are specified as solids for ingredients identified by trademarked names or identified as polymers and are specified as amounts of the chemical formula shown for ingredients identified by chemical formula; the balance of the composition not specified below was water): 3.75 % of UNITHOX™ 750, ethoxylated alcohol, commercially supplied by Petrolite Corp., Tulsa, Oklahoma, USA;
Table 1
Concentration in ppm in the Coating Composition of: Blemishing Rating
Benzotriazole Tolyltriazole MBTA MBIA
0 0 0 0 5
2000 0 0 0 3
0 2000 0 0 4
0 0 50 0 4
0 0 0 100 4
1000 1000 0 0 3
1000 1000 50 0 2
1000 1000 0 100 2
2000 0 0 100 3
0 2000 0 100 5
2000 0 50 0 4
0 2000 50 0 2
1000 1000 0 50 3
Notes for Table 1 "MBTA" = mercaptobenzothiazole; "MBIA" = mercaptobenzimidazole
3.75 % of ACQUA™ 250 aqueous dispersion of ethylene-acrylic acid copolymer, neutralized with calcium hydroxide, commercially available from Allied Signal Corp., A-C™ Performance
Additives Group; 1.0 % of H3BO3; 0.5 % of Na2B4O7 • 10 2O; where specified in Table 2, also contained the types and amounts of inhibitor com- ponents shown in that Table, where they are indicated as follows: "Thiazole" means the only inhibitor component was 50 ppm of 2-mercaptobenzothiazole; "triazoles" means that the only inhibitor components were a mixture of 1000 ppm of each of tol¬ yltriazole and benzotriazole; "combination" means that all three of these materials in the same concentrations as noted above were included in the coating composition.
After processing in the process sequence shown in Table I, the tubes were cross-sectioned so that the interior of the tubes could be examined for evidence of cor¬ rosion, staining, and/or discoloration. Ratings from this examination, as shown in Table 2, were reported on the following scale:
No visible discoloration or corrosion Light yellow to light brown discoloration Dark brown discoloration Very dark discoloration and corrosion.
Table 2
Tube Steel Type Base Coating Inhibitor(s) Rating
SAE 1018 Al Thiazole 1
SAE 1018 Al Combination 0
SAE 4130 Al Thiazole 1 - 2
SAE 4130 Al Combination 0
SAE 1026 Al Thiazole 1 - 2
SAE 1026 Al Combination 0
SAE 1018 SMA Triazoles 1
SAE 1018 SMA Combination 0
SAE 1010 SMA Combination 0
SAE 1010 Al Combination 0

Claims

The invention claimed is:
1. An aqueous liquid composition suitable for protectively coating a metal substrate, said aqueous liquid composition comprising water and:
(A) dissolved or dispersed constituents, exclusive of organic azoles but including at least some organic constituents, that are capable of reacting with one anoth¬ er, with a metal surface being treated, or both, or of spontaneously coalescing, or of both reacting and spontaneously coalescing, during or after at least one of (i) contact of the aqueous liquid composition with a metal surface, (ii) sepa¬ ration of a metal surface from such contact, and (iii) removal of water from any liquid film remaining on the metal after such contact and subsequent re¬ moval from contact of the metal with the aqueous liquid composition; said contact of the aqueous liquid composition with the metal surface and said re¬ moval of water from any liquid film remaining on the metal after such contact and subsequent removal from contact of the metal with the aqueous liquid composition both occurring at a temperature not less than 20° C, so as to form on the surface of the metal being treated an adherent protective film;
(B) a primary inhibitor component selected from the group consisting of non- sulfur-containing organic azole compounds; and
(C) a secondary inhibitor component selected from the group consisting of organic azoles that also contain mercapto moieties.
2. An aqueous liquid composition according to claim 1 , wherein the concentration of component (B) is from about 100 to about 10,000 ppm, the concentration of com¬ ponent (C) is from about 10 to about 500 ppm, and the ratio of the concentration of component (C) to the concentration of component (B) is from about 0.002:1.0 to about 0.2:1.0.
3. An aqueous liquid composition according to claim 2 , wherein the concentration of component (B) is from about 400 to about 5000 ppm, the concentration of each of benzotriazole and tolyltriazole is from about 20 to about 80 % of the total concentra¬ tion of component (B), the concentration of component (C) is from about 30 to about 300 ppm, component (C) is selected from the group consisting of mercaptobenzothia- zole and mercaptobenzimidazole, and the ratio of the concentration of component (C) to the concentration of component (B) is from about 0.007: 1.0 to about 0.1: 1.0.
4. An aqueous liquid composition according to claim 3 , wherein the concentration of component (B) is from about 800 to about 2500 ppm, the concentration of each of benzotriazole and tolyltriazole is from about 35 to about 65 % of the total concentra¬ tion of component (B), the concentration of component (C) is from about 35 to about 155 ppm, and the ratio of the concentration of component (C) to the concentration of component (B) is from about 0.019: 1.0 to about 0.035: 1.0.
5. An aqueous liquid composition according to claim 4, wherein the concentration of component (B) is from about 1200 to about 2250 ppm, the concentration of each of benzotriazole and tolyltriazole is from about 45 to about 55 % of the total concen¬ tration of component (B), the concentration of component ( is from about 41 to about 115 ppm, and the ratio of the concentration of component (C) to the concentra¬ tion of component (B) is from about 0.021: 1.0 to about 0.031: 1.0. 6. An aqueous liquid composition according to claim 5, wherein the total solids concentration is from about 6 to about 17 %, the pH value is from about 7.5 to about 9.0, and component (A) consists essentially of:
(A. LA) copolymers of styrene with (i) maleic anhydride, (ii) maleic acid, (iii) salts of maleic acid with ammonia, alkali metal hydroxides, and amines, or (iv) mixtures of any two or more of these, said copolymers having a molar ratio of styrene to maleic moieties in the range from 1.5:1 to 2.6: 1, an average molecular weight from about 1600 to about 1950, a sufficient number of salt groups to be soluble or dispersible in water, no more than about 5 % of units derived from any monomers other than styrene and maleic moieties, and at least 78 mole % of the cations other than hydrogen in the maleic moieties being substituted ammonium cations derived by adding a proton to amines that will dis¬ solve in water to form at least 0.01 M solutions having a pH value of at least about 10; and (A. l.B) a component consisting of ethoxylated alcohol molecules that can be product by condensing ethylene oxide with primary straight chain alcohol,, .aving from about 40 to about 60 carbon atoms per molecule and from about 40 to about 62 % of their total weight in the portion of each molecule that has the chemical structure (CH2-CH2-O)n, where n is a positive integer, the ratio of the amount of component (A. LA) to the amount of component (A. l.B) being from about 1.0: 1.
6 to about
1.0:2.5; and
(A. l.C) an inorganic boron containing component selected from the group consisting of boric acid and condensed boric acids and their alkali metal and ammonium salts, in an amount such that the ratio of the total stoichiometric equivalent as H3BO3 of the boron in this component to the total of the solids content in components (A. LA) and (A. l.B) is from about 0.14: 1.0 to about 0.34: 1.0; and, optionally, one or more of:
(A.l.D) an extreme pressure and corrosion resistant additive component selected from the group consisting of partial esters and salts of partial esters of phosphoric acid with alcohols having a molecular structure that con¬ tains both (i) a part having the structure -(CH^,,,-, where m is an inte¬ ger between 12 and 22 inclusive, and (ii) a part having the structure (CH2-CH2-O)p, where p is an integer having a sufficiently large value that the total alcohol is soluble in water to the extent of at least 1.3 %;
(A. l.E) a component of dispersed and/or dissolved solid lubricant selected from the group consisting of graphite, molybdenum disulfide, mica, talc, and zinc oxide; and (A.l.F) a component selected from oligomers of ethylene, propylene, or mix- hires of ethylene and propylene having an average molecular weight in the range from about 750 to about 3000, wherein at least part of each of components (A. LA) and (A. l .B) is present in a chemical form other than esters formed by reaction with each other.
7. An aqueous liquid composition according to claim 6, wherein the total solids concentration is from about 10 to about 14 % , the pH value is from about 8.2 to about 8.8, and component (A) consists essentially of: (A. LA) copolymers of styrene with (i) maleic anhydride, (ii) maleic acid, (iii) salts of maleic acid with ammonia, alkali metal hydroxides, and amines, or (iv) mixtures of any two or more of these, said copolymers having a molar ratio of styrene to maleic moieties in the range from 1.8: 1 to 2.3: 1, an average molecular weight from about 1650 to about 1750, a sufficient number of salt groups to be soluble or dispersible in water, no more than about 3 % of units derived from any monomers other than styrene and maleic moieties, and at least 91 mole % of the cations other than hydrogen in the maleic moieties being substituted ammonium cations derived by adding a proton to amines selected from the group consisting of diethylethanol amine, dimethylethanol amine, diethanol amine, monoethanol amine, or isopropanol amine; (A. l.B) a component consisting of ethoxylated alcohol molecules that can be produced by condensing ethylene oxide with primary straight chain alcohols having from about 48 to about 52 carbon atoms per molecule and from about 48 to about 51 % of their total weight in the portion of each molecule that has the chemical structure (CH2-CH2-O)n, where n is a positive integer, the ratio of the amount of component (A. LA) to the amount of component (A. l.B) being from about 1.0: 1.9 to about 1.0:2.1; and (A.1.C) boric acid and borax in a ratio of about 2.0: 1.0 in an amount such that the ratio of the total stoichiometric equivalent as H3BO3 of the boron in this component to the total of the solids content in components (A. LA) and (A. l.B) is from about 0.19:1.0 to about 0.27:1.0; and (A. l.D) an extreme pressure and corrosion resistant additive component selected from the group consisting of partial esters and salts of partial esters of phosphoric acid with alcohols having a molecular structure that con¬ tains both (i) a part having the structure -(CH^)m-, where m is an integer between 16 and 22 inclusive, (ii) a part having the structure (CH2-CH2-O)p, where p is an integer having a sufficiently large value that the total alcohol is soluble in water to the extent of at least 1.8 % , the ratio of the amount of component (A. l.D) to the total solids
5 content of components (A. LA) and (A. l.B) being from about 1 :25 to about 1 :70; and, optionally, one or more of: (A.1.E) a component of dispersed and/or dissolved solid lubricant selected from the group consisting of graphite, molybdenum disulfide, mica, talc, and zinc oxide; and o (A.1.F) a component selected from oligomers of ethylene, propylene, or mix¬ tures of ethylene and propylene having an average molecular weight in the range from about 750 to about 3000.
8. An aqueous liquid composition according to claim 4, wherein the total solids concentration is from about 6 to about 17 %, the pH value is from about 7.5 to about s 9.0, and component (A) consists essentially of:
(A. LA) copolymers of styrene with (i) maleic anhydride, (ii) maleic acid, (iii) salts of maleic acid with ammonia, alkali metal hydroxides, and amines, or (iv) mixtures of any two or more of these, said copolymers having a molar ratio of styrene to maleic moieties in the range from 0 1.5: 1 to 2.6: 1 , an average molecular weight from about 1600 to about
1950, a sufficient number of salt groups to be soluble or dispersible in water, no more than about 5 % of units derived from any monomers other than styrene and maleic moieties, and at least 78 mole % of the cations other than hydrogen in the maleic moieties being substituted 5 ammonium cations derived by adding a proton to amines that will dis¬ solve in water to form at least 0.01 M solutions having a pH value of at least about 10; and (A. l.B) a component consisting of ethoxylated alcohol molecules that can be produced by condensing ethylene oxide with primary straight chain 0 alcohols having from about 40 to about 60 carbon atoms per molecule and from about 40 to about 62 % of their total weight in the portion of each molecule that has the chemical structure (CH2-CH2-O)n, where n is a positive integer, the ratio of the amount of component (A. LA) to the amount of component (A. l.B) being from about 2.5: 1.0 to about 1.0:2.5; and
(A. l.C) an inorganic boron containing component selected from the group con- sisting of boric acid and condensed boric acids and their alkali metal and ammonium salts, in an amount such that the ratio of the total stoi- chiometric equivalent as H3BO3 of the boron in this component to the total of the solids content in components (A. LA) and (A. l.B) is from about 0.10: 1.0 to about 0.40:1.0; and, optionally, one or more of: (A. l.D) an extreme pressure and corrosion resistant additive component;
(A. l.E) a component of dispersed and/or dissolved solid lubricant, exclusive of inorganic boron containing materials; and
(A. l.F) a component selected from solid and liquid hydrocarbons, wherein at least part of each of components (A. LA) and (A. l.B) is present in a chemical form other than esters formed by reaction with each other.
9. An aqueous liquid composition according to claim 3, wherein the total solids concentration is from about 3 to about 40 %, the pH value is from about 7.5 to about 11, and component (A) consists essentially of:
(A. LA) copolymers of styrene with (i) maleic anhydride, (ii) maleic acid, (iii) salts of maleic acid with ammonia, alkali metal hydroxides, and amines, or (iv) mixtures of any two or more of these, said copolymers having a molar ratio of styrene to maleic moieties in the range from 4:1 to 1:4, an average molecular weight from about 1600 to about 1950, a sufficient number of salt groups to be soluble or dispersible in water, no more than about 12 % of units derived from any monomers other than styrene and maleic moieties, and at least 50 mole % of the cations other than hydrogen in the maleic moieties being substituted ammonium cations derived by adding a proton to amines that will dis¬ solve in water to form at least 0.01 M solutions having a pH value of at least about 10; and
(A. l.B) a component consisting of ethoxylated alcohol molecules that can be produced by condensing ethylene oxide with primary straight chain alcohols having from about 28 to about 65 carbon atoms per molecule and from about 20 to about 80 % of their total weight in the portion of each molecule that has the chemical structure (CH;-CH2-O)n, where n is a positive integer, the ratio of the amount of component (A.1.A) to the amount of component (A. l.B) being from about 4: 1 to about
1:4; and, optionally, one or more of: (A. l.C) an inorganic boron containing component;
(A. l.D) an extreme pressure and corrosion resistant additive component;
(A.1.E) a component of dispersed and/or dissolved solid lubricant, exclusive of inorganic boron containing materials; and
(A.l.F) a component selected from solid and liquid hydrocarbons, wherein at least part of each of components (A. LA) and (A. l.B) is present in a chemical form other than esters formed by reaction with each other.
10. An aqueous liquid composition according to claim 2, wherein the total solids concentration is from about 3 to about 40 % , the pH value is from about 7.5 to about
11, and component (A) comprises:
(A.1.A) copolymers of styrene with (i) maleic anhydride, (ii) maleic acid, (iii) salts of maleic acid with ammonia, alkali metal hydroxides, and amines, or (iv) mixtures of any two or more of these, said copolymers having a molar ratio of styrene to maleic moieties in the range from
4:1 to 1:4, an average molecular weight from about 1600 to about 1950, a sufficient number of salt groups to be soluble or dispersible in water, no more than about 12 % of units derived from any monomers other than styrene and maleic moieties, and at least 50 mole % of the cations other than hydrogen in the maleic moieties being substituted ammonium cations derived by adding a proton to amines that will dis¬ solve in water to form at least 0.01 M solutions having a pH value of at least about 10; and (A. l.B) a component consisting of ethoxylated alcohol molecules that can be produced by condensing ethylene oxide with primary straight chain alcohols having from about 28 to about 65 carbon atoms per molecule and from about 20 to about 80 % of their total weight in the portion of each molecule that has the chemical structure (CH^-CH^O),,, where n is a positive integer, the ratio of the amount of component (A. LA) to the amount of component (A. l.B) being from about 4: 1 to about 1:4; and, optionally, one or more of: (A. l.C) an inorganic boron containing component;
(A.l.D) an extreme pressure and corrosion resistant additive component;
(A.1.E) a component of dispersed and/or dissolved solid lubricant, exclusive of inorganic boron containing materials; and
(A.l.F) a component selected from solid and liquid hydrocarbons, wherein at least part of each of components (A. LA) and (A. l.B) is present in a chemical form other than esters formed by reaction with each other.
11. An aqueous liquid composition according to claim 1, wherein component (A) comprises:
(A. LA) copolymers of styrene with (i) maleic anhydride, (ii) maleic acid, (iii) salts of maleic acid with ammonia, alkali metal hydroxides, and amines, or (iv) mixtures of any two or more of these, said copolymers containing a sufficient number of salt groups to be soluble and/or dis- persible in water; and (A. l.B) a component consisting of ethoxylated alcohol molecules; and, option- ally, one or more of:
(A.l.C) an inorganic boron containing component;
(A.l.D) an extreme pressure and corrosion resistant additive component;
(A.1.E) a component of dispersed and/or dissolved solid lubricant, exclusive of inorganic boron containing materials; and (A.l.F) a component selected from solid and liquid hydrocarbons, wherein at least part of each of components (A. LA) and (A. l.B) is present in a chemical form other than esters formed by reaction with each other.
12. A process of cold working a metal object, comprising steps of (i) applying an aqueous liquid lubricant composition to the surfaces of the metal object that are to be contacted with another hard surface during cold working so as to form a liquid coating on said surfaces of the metal object, (ii) drying the liquid coating formed in step (i) to form a solid coating on said surfaces of the metal object, and (iii) cold working the metal object, wherein the improvement comprises using as the aqueous liquid lubricant composition a composition according to claim 1 1.
13. An aqueous liquid composition according to claim 5, wherein the total solids content is from about 6.0 to about 20 % , the pH value is from about 8.0 to about 8.5, and component (A) consists essentially of:
(A.2. A) an at least partially neutralized film forming copolymer of ethylene and acrylic acid, wherein the fraction of the mass of the copolymer made up of ethylene residues is from about 65 to 94 %, the fraction of the mass of the copolymer made up of acrylic acid residues is from about
6 to about 40 %, and the fraction of acrylic acid residues that are neutralized is at least about 85 %;
(A.2.B) a component consisting of ethoxylated alcohol molecules that can be produced by condensing ethylene oxide with primary straight chain alcohols having from about 40 to about 60 carbon atoms per molecule and from about 40 to about 62 % of their total weight in the portion of each molecule that has the chemical structure (CH2-CH2-O)B, where n is a positive integer, the ratio of the amount of component (A.2.A) to the amount of component (A.2.B) being from about 1.0: 1.5 to about 1.50: 1.0; and, optionally,
(A.2.C) an inorganic boron containing component selected from the group consisting of boric acid and condensed boric acids and their alkali metal and ammonium salts.
14. An aqueous liquid composition according to claim 13, wherein the total solids concentration is from about 8.9 to about 15.5 % , the pH value is from about 8.0 to about 8.5, and component (A) consists essentially of:
(A.2. A) an at least partially neutralized film forming copolymer of ethylene and acrylic acid, wherein the fraction of the mass of the copolymer made up of ethylene residues is from about 79 to about 92 %, the fraction of the mass of the copolymer made up of acrylic acid residues is from about 8 to about 21 % , and the fraction of acrylic acid residues that ar~ neutralized is at least about 92 %, with the counterions being selected from the group consisting of magnesium, zinc, calcium, and alkali metal ions; (A.2.B) a component consisting of ethoxylated alcohol molecules that can be
5 produced by condensing ethylene oxide with primary straight chain alcohols having from about 48 to about 52 carbon atoms per molecule and from about 48 to about 51 % of their total weight in the portion of each molecule that has the chemical structure (CH2-CH2-O)a, where n is a positive integer, the ratio of the amount of component (A.2.A) o to the amount of component (A.2.B) being from about 1.0:1.20 to about 1.20: 1.0; and (A.2.C) boric acid and borax in an amount such that the ratio of the total stoi- chiometric equivalent as H3BO3 of the boron in this component to the total of the solids content in components (A.2. A) and (A.2.B) is from s about 0.14: 1.0 to about 0.20: 1.0.
15. An aqueous liquid composition according to claim 4, wherein the total solids content is from about 6.0 to about 20 % , the pH value is from about 7.5 to about 9.0, and component (A) consists essentially of:
(A.2. A) an at least partially neutralized film forming copolymer of ethylene and 0 acrylic acid, wherein the fraction of the mass of the copolymer made up of ethylene residues is from about 60 to 96 %, the fraction of the mass of the copolymer made up of acrylic acid residues is from about 4 to about 40 %, and the fraction of acrylic acid residues that are neutralized is at least about 85 96; 5 (A.2.B) a component consisting of ethoxylated alcohol molecules that can be produced by condensing ethylene oxide with primary straight chain alcohols having from about 40 to about 60 carbon atoms per molecule and from about 35 to about 70 % of their total weight in the portion of each molecule that has the chemical structure (CH2-CH2-O)n, where 0 n is a positive integer, the ratio of the amount of component (A.2.A) to the amount of component (A.2.B) being from about 1.0:2.0 to about 2.0:1.0; and, optionally, (A.2.C) a boron containing inorganic acid or salt.
16. An aqueous liquid composition according to claim 3, wherein the total solids content is from about 6.0 to about 25 % , the pH value is from about 7 to about 10, and component (A) comprises: (A.2. A) an at least partially neutralized film forming copolymer of an alkylene having not more than 4 carbon atoms per molecule and an acrylic or substituted acrylic acid having not more than 4 carbon atoms per molecule, wherein the fraction of the mass of the copolymer made up of alkylene residues is from about 60 to 96 %, the fraction of the mass of the copolymer made up of acrylic or substituted acrylic acid residues is from about 4 to about 40 %, and the fraction of acrylic or substituted acrylic acid residues that are neutralized is at least about 85 ;
(A.2.B) an alkoxylated alcohol film forming component of molecules selected from the group consisting of molecules having a chemical structure that can be produced by condensing an alkylene oxide with primary straight chain aliphatic alcohols having only one hydroxyl group and from about 40 to about 60 carbon atoms per molecule and from about 35 to about 70 % of their total mass in the oxyalkylene units; and, optional- ly,
(A.2.C) a boron containing inorganic acid or salt.
17. An aqueous liquid composition according to claim 2, wherein the total solids content is from about 6.0 to about 25 %, the pH value is from about 7 to about 10, and component (A) comprises: (A.2. A) an at least partially neutralized film forming copolymer of an alkylene having not more than 4 carbon atoms per molecule and an acrylic or substituted acrylic acid having not more than 4 carbon atoms per molecule, wherein the fraction of the mass of the copolymer made up of alkylene residues is from about 60 to 96 % , the fraction of the mass of the copolymer made up of acrylic or substituted acrylic acid residues is from about 4 to about 40 %, and the fraction of acrylic or substituted acrylic acid residues that are neutralized is at least about 85
%;
(A.2.B) an alkoxylated alcohol film forming component of molecules selected from the group consisting of molecules having a chemical structure that
5 can be produced by condensing an alkylene oxide with primary straight chain aliphatic alcohols having only one hydroxyl group and from about 40 to about 60 carbon atoms per molecule and from about 35 to about 70 % of their total mass in the oxyalkylene units; and, optional¬ ly. o (A.2.C) a boron containing inorganic acid or salt.
18. An aqueous liquid composition according to claim 1, wherein component (A) comprises:
(A.2. A) an at least partially neutralized film forming copolymer of an alkylene and an acrylic acid ("ionomer"); s (A.2.B) an alkoxylated alcohol film forming component; and, optionally,
(A.2.C) a boron containing inorganic acid or salt.
19. A process of cold working a metal object, comprising steps of (i) applying an aqueous liquid lubricant composition to the surfaces of the metal object that are to be contacted with another hard surface during cold working so as to form a liquid coating 0 on said surfaces of the metal object, (ii) drying the liquid coating formed in step (i) to form a solid coating on said surfaces of the metal object, and (iii) cold working the metal object, wherein the improvement comprises using as the aqueous liquid lubricant composition a composition according to claim 18.
20. A concentrate inhibitor composition consisting essentially of: 5 (A') a primary inhibitor component selected from the group consisting of non- sulfur-containing organic azole compounds; and (B') a secondary inhibitor component selected from the group consisting of organic azoles that also contain mercapto moieties; and, optionally, (C) water, 0 the primary and secondary inhibitor components being present in said concentrate in¬ hibitor composition in a ratio of secondary to primary inhibitor components in the range from 0.011:1.0 to 0.1:1.
PCT/US1995/005010 1994-05-13 1995-04-26 Aqueous metal coating composition and process with reduced staining and corrosion WO1995031297A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR9507630A BR9507630A (en) 1994-05-13 1995-04-26 Aqueous liquid composition suitable to protectively coat a metallic substrate cold working process of a metallic object and concentrated inhibitory composition
EP95917132A EP0759818A4 (en) 1994-05-13 1995-04-26 Aqueous metal coating composition and process with reduced staining and corrosion
AU23946/95A AU2394695A (en) 1994-05-13 1995-04-26 Aqueous metal coating composition and process with reduced staining and corrosion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24253094A 1994-05-13 1994-05-13
US08/242,530 1994-05-13

Publications (1)

Publication Number Publication Date
WO1995031297A1 true WO1995031297A1 (en) 1995-11-23

Family

ID=22915142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/005010 WO1995031297A1 (en) 1994-05-13 1995-04-26 Aqueous metal coating composition and process with reduced staining and corrosion

Country Status (6)

Country Link
US (1) US6248701B1 (en)
EP (1) EP0759818A4 (en)
AU (1) AU2394695A (en)
BR (1) BR9507630A (en)
WO (1) WO1995031297A1 (en)
ZA (1) ZA953653B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778877A1 (en) * 1994-09-02 1997-06-18 Henkel Corporation Composition and process for lubricating metal before cold forming
WO1997024418A1 (en) * 1995-12-27 1997-07-10 Exxon Chemicals Patents Inc. Method for solubilizing a benzotriazole with a thiadiazole
EP0808353A1 (en) * 1995-02-07 1997-11-26 Henkel Corporation Aqueous lubricant and process for cold forming metal, particularly pointing thick-walled metal tubes
US6068710A (en) * 1996-11-27 2000-05-30 Henkel Corporation Aqueous composition and process for preparing metal substrate for cold forming
WO2010040859A2 (en) * 2008-10-10 2010-04-15 Magna Steyr Fahrzeugtechnik Ag & Co Kg Anticorrosive agent

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001094663A1 (en) * 2000-06-06 2001-12-13 Henkel Kommanditgesellschaft Auf Aktien Coating for cold working metals
US20060225605A1 (en) * 2005-04-11 2006-10-12 Kloeckener James R Aqueous coating compositions and process for treating metal plated substrates
US20060246302A1 (en) * 2005-04-29 2006-11-02 Brady Michael D Methods for protecting glass
US20060246299A1 (en) * 2005-04-29 2006-11-02 Brady Michael D Methods for protecting glass
US7816458B2 (en) * 2005-11-22 2010-10-19 E. I. Du Pont De Nemours And Company Aqueous dispersions containing ionomer resins and rust-preventive ionomeric coatings made therefrom
US7883738B2 (en) * 2007-04-18 2011-02-08 Enthone Inc. Metallic surface enhancement
US10017863B2 (en) * 2007-06-21 2018-07-10 Joseph A. Abys Corrosion protection of bronzes
TWI453301B (en) * 2007-11-08 2014-09-21 Enthone Self assembled molecules on immersion silver coatings
US7972655B2 (en) * 2007-11-21 2011-07-05 Enthone Inc. Anti-tarnish coatings
US20140134398A1 (en) * 2011-08-16 2014-05-15 Applied Thin Films, Inc. Coatings For Metal Surfaces

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2469473A (en) * 1943-08-02 1949-05-10 Gilron Products Company Method of lubricating metal surfaces during cold working
US2977334A (en) * 1956-10-04 1961-03-28 Monsanto Chemicals Derivatives of ethylene/maleic anhydride copolymers
US3313728A (en) * 1966-05-02 1967-04-11 Hooker Chemical Corp Lubricating composition
US3455132A (en) * 1967-05-31 1969-07-15 Monsanto Res Corp Exothermic extrusion lubricants
US3568486A (en) * 1969-01-31 1971-03-09 Montgomery H A Co Preparation of metal for deforming operations
US3637498A (en) * 1968-04-29 1972-01-25 Aluminum Co Of America Extrusion lubricant
US3741897A (en) * 1970-01-02 1973-06-26 Dow Corning Extreme pressure lubrication through additives
US3873458A (en) * 1973-05-18 1975-03-25 United States Steel Corp Resin-containing lubricant coatings
US3873374A (en) * 1973-06-20 1975-03-25 Armco Steel Corp Method and compositions for the prevention or reduction of speck rusting of cold rolled, annealed steel prior to temper rolling
US3923673A (en) * 1973-03-09 1975-12-02 Shell Oil Co Metal deforming process
US4098720A (en) * 1973-10-25 1978-07-04 Chemed Corporation Corrosion inhibition
US4116872A (en) * 1977-02-08 1978-09-26 The Lubrizol Corporation Hot melt metal working lubricants
US4138346A (en) * 1976-12-06 1979-02-06 Basf Wyandotte Corporation Water-based hydraulic fluid
US4146488A (en) * 1978-01-24 1979-03-27 Union Carbide Corporation Metal lubricants
US4301019A (en) * 1980-10-29 1981-11-17 Mobil Oil Corporation Mercaptothiadiazole adducts of unsaturated esters and lubricants containing same
US4324671A (en) * 1979-12-04 1982-04-13 The United States Of America As Represented By The Secretary Of The Air Force Grease compositions based on fluorinated polysiloxanes
US4403490A (en) * 1981-06-24 1983-09-13 E/M Lubricants, Inc. Metal forming lubricant and method of use thereof
US4410436A (en) * 1981-11-09 1983-10-18 Union Oil Company Of California Lubricating oil containing a boron compound and corrosion inhibitors
US4412928A (en) * 1981-11-09 1983-11-01 Union Oil Company Of California Corrosion inhibitors for boron-containing lubricants
US4416132A (en) * 1981-06-24 1983-11-22 E/M Lubricants, Inc. Metal forming lubricant and method of use thereof
US4545925A (en) * 1984-05-07 1985-10-08 Norchem, Inc. Corrosion inhibited freeze protected heat transfer fluid
US4548787A (en) * 1981-10-26 1985-10-22 Basf Wyandotte Corporation Aqueous liquids containing metal cavitation-erosion corrosion inhibitors
US4623474A (en) * 1981-12-10 1986-11-18 Union Oil Company Of California Oxidation and corrosion inhibitors for boron-containing lubricants
US4659492A (en) * 1984-06-11 1987-04-21 The Lubrizol Corporation Alkenyl-substituted carboxylic acylating agent/hydroxy terminated polyoxyalkylene reaction products and aqueous systems containing same
US4675158A (en) * 1985-07-30 1987-06-23 Calgon Corporation Mercaptobenzothiazole and tolyltriazole corrosion inhibiting compositions
US4800033A (en) * 1985-05-28 1989-01-24 Karl Stetter Process for the non-cutting reshaping of metals, and lubricant compositions for this process
US4853139A (en) * 1987-05-14 1989-08-01 Idemitsu Kosan Co., Ltd. Lubricating oil composition having improved temperature characteristics
US5108629A (en) * 1989-12-29 1992-04-28 Nippon Oil & Fats Co., Ltd. Organic lubricating coating composition for use in plastic deformation of metal sheet
US5116521A (en) * 1988-07-07 1992-05-26 Nippondenso Co., Ltd. Aqueous lubrication treatment liquid and method of cold plastic working metallic materials
US5128065A (en) * 1990-10-03 1992-07-07 Betz Laboratories, Inc. Method for the inhibition of corrosion of copper-bearing metallurgies
US5156769A (en) * 1990-06-20 1992-10-20 Calgon Corporation Phenyl mercaptotetrazole/tolyltriazole corrosion inhibiting compositions
US5217686A (en) * 1990-09-24 1993-06-08 Calgon Corporation Alkoxybenzotriazole compositions and the use thereof as copper and copper alloy corrosion inhibitors
US5236626A (en) * 1990-09-24 1993-08-17 Calgon Corporation Alkoxybenzotriazole compositions and the use thereof as copper and copper alloy corrosion inhibitors
US5334319A (en) * 1990-06-18 1994-08-02 Tonen Corporation Composition for hydraulic lubrication and coupling
US5368757A (en) * 1991-03-22 1994-11-29 Henkel Corporation Lubrication for cold forming of metals
US5399274A (en) * 1992-01-10 1995-03-21 Marcus; R. Steven Metal working lubricant

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2595140A (en) * 1950-12-01 1952-04-29 Standard Oil Dev Co Oxidation resistant lubricating oil composition
US2864676A (en) * 1955-09-29 1958-12-16 Universal Oil Prod Co Stabilization of organic compounds
US2890170A (en) * 1956-09-06 1959-06-09 Dow Corning Organosiloxane greases
US3245915A (en) * 1962-12-17 1966-04-12 Union Oil Co Composition and method of inhibiting corrosion of metal surfaces in contact with aqueous surface active solutions
US3265620A (en) * 1963-08-29 1966-08-09 Donald K Heiman Cutting fluid
DE1644891B1 (en) * 1967-05-13 1971-07-08 Hoechst Ag Corrosion inhibitor for lubricants
GB1226099A (en) * 1967-07-21 1971-03-24
US3527726A (en) * 1968-07-17 1970-09-08 Atlantic Richfield Co Water-soluble ammonium or amine salts of phosphate esters of styrene-maleic anhydride copolymer - polyalkylene glycol esters
US3629112A (en) * 1968-11-25 1971-12-21 Atlantic Richfield Co Aqueous lubricating compositions containing salts of styrene-maleic anhydride copolymers and an inorganic boron compound
DE1948794A1 (en) * 1969-09-26 1971-04-01 Rhein Chemie Rheinau Gmbh 4,5,6,7-Tetrahydrobenzotriazoles, process for their preparation and their use as corrosion inhibitors
US3657123A (en) * 1970-03-23 1972-04-18 Atlantic Richfield Co Lubricant compositions
US3697427A (en) * 1971-04-30 1972-10-10 British Petroleum Co Lubricants having improved anti-wear and anti-corrosion properties
US3775321A (en) * 1971-07-09 1973-11-27 Atlantic Richfield Co Lubricating oil composition
US4149969A (en) 1977-03-23 1979-04-17 Amax Inc. Process and composition for inhibiting corrosion of metal parts in water systems
US4197210A (en) * 1977-04-22 1980-04-08 Mobil Oil Corporation Oil-soluble adducts of benzotriazole and dialkylamines and lubricant compositions containing the same
JPS5456040A (en) 1977-09-20 1979-05-04 Otsuka Chem Co Ltd Metal corrosion preventing composition
US4144180A (en) * 1977-10-03 1979-03-13 Mobil Oil Corporation Derivatives of triazole as load-carrying additives for gear oils
US4171272A (en) * 1977-12-02 1979-10-16 Fmc Corporation Turbine lubricant
US4162225A (en) * 1978-04-17 1979-07-24 Mobil Oil Corporation Lubricant compositions of enhanced antioxidant properties
US4283296A (en) * 1978-08-21 1981-08-11 Texaco Inc. Amine salt of N-triazolyl-hydrocarbyl succinamic acid and lubricating oil composition containing same
US4278553A (en) * 1980-01-04 1981-07-14 Texaco Inc. Diesel lubricant containing benzotriazole derivatives
US4285823A (en) * 1980-01-04 1981-08-25 Texaco Inc. Diesel lubricant containing 5-amino tetrazoles
US4519928A (en) * 1980-01-25 1985-05-28 Mobil Oil Corporation Lubricant compositions containing N-tertiary alkyl benzotriazoles
US4392968A (en) * 1980-08-13 1983-07-12 Nippon Oil Company, Limited Metal deactivator and composition containing same
US4466894A (en) * 1983-04-20 1984-08-21 The Lubrizol Corporation Phosphorus-containing metal salts/sulfurized phenate compositions/aromatic substituted triazoles, concentrates, and functional fluids containing same
US4464276A (en) * 1983-05-06 1984-08-07 Texaco Inc. Polyoxyalkylene polyamine triazole complexes
GB2142931B (en) * 1983-06-14 1986-07-30 Kao Corp Metal-working compositions
US4622158A (en) * 1983-11-09 1986-11-11 The Lubrizol Corporation Aqueous systems containing organo-borate compounds
GB8330693D0 (en) * 1983-11-17 1983-12-29 Castrol Ltd Benzothiazolines
JPS61141793A (en) * 1984-12-14 1986-06-28 Idemitsu Kosan Co Ltd Lubricant composition for sliding and metal working and lubrication of machine tool using same
US4818777A (en) * 1986-08-27 1989-04-04 Ciba-Geigy Corporation Phenolic corrosion inhibitors for coating materials
US4871465A (en) * 1987-09-30 1989-10-03 Amoco Corporation Chlorine-free silver protective lubricant composition (II)
JP2501217B2 (en) * 1987-11-07 1996-05-29 出光興産株式会社 Lubricating oil composition for metalworking
US4863623A (en) * 1988-03-24 1989-09-05 Texaco Inc. Novel VI improver, dispersant, and anti-oxidant additive and lubricating oil composition containing same
US4992212A (en) * 1988-10-18 1991-02-12 Lever Brothers Company, Division Of Conopco, Inc. Alkaline light duty liquid detergents that are non-staining to aluminum
US5271856A (en) * 1990-03-08 1993-12-21 Exxon Chemical Patents Inc. Heterocyclic nitrogen compound Mannich base derivatives of amino-substituted polymers for oleaginous compositions
US5232615A (en) * 1990-03-08 1993-08-03 Exxon Chemical Patents Inc. Heterocyclic nitrogen compound Mannich base derivatives of polyolefin-substituted amines for oleaginous compositions
US5075383A (en) * 1990-04-11 1991-12-24 Texaco Inc. Dispersant and antioxidant additive and lubricating oil composition containing same
US5085696A (en) * 1991-04-03 1992-02-04 Atochem North America, Inc. Methods and compositions for treating metals by means of water-borne polymeric films
US5141675A (en) 1990-10-15 1992-08-25 Calgon Corporation Novel polyphosphate/azole compositions and the use thereof as copper and copper alloy corrosion inhibitors
US5143634A (en) * 1991-01-17 1992-09-01 Amoco Corporation Anti-wear engine and lubricating oil
US5531912A (en) * 1994-09-02 1996-07-02 Henkel Corporation Composition and process for lubricating metal before cold forming
US5547595A (en) * 1995-02-07 1996-08-20 Henkel Corporation Aqueous lubricant and process for cold forming metal, particularly pointing thick-walled metal tubes

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2469473A (en) * 1943-08-02 1949-05-10 Gilron Products Company Method of lubricating metal surfaces during cold working
US2977334A (en) * 1956-10-04 1961-03-28 Monsanto Chemicals Derivatives of ethylene/maleic anhydride copolymers
US3313728A (en) * 1966-05-02 1967-04-11 Hooker Chemical Corp Lubricating composition
US3455132A (en) * 1967-05-31 1969-07-15 Monsanto Res Corp Exothermic extrusion lubricants
US3637498A (en) * 1968-04-29 1972-01-25 Aluminum Co Of America Extrusion lubricant
US3568486A (en) * 1969-01-31 1971-03-09 Montgomery H A Co Preparation of metal for deforming operations
US3741897A (en) * 1970-01-02 1973-06-26 Dow Corning Extreme pressure lubrication through additives
US3923673A (en) * 1973-03-09 1975-12-02 Shell Oil Co Metal deforming process
US3873458A (en) * 1973-05-18 1975-03-25 United States Steel Corp Resin-containing lubricant coatings
US3873374A (en) * 1973-06-20 1975-03-25 Armco Steel Corp Method and compositions for the prevention or reduction of speck rusting of cold rolled, annealed steel prior to temper rolling
US4098720A (en) * 1973-10-25 1978-07-04 Chemed Corporation Corrosion inhibition
US4138346A (en) * 1976-12-06 1979-02-06 Basf Wyandotte Corporation Water-based hydraulic fluid
US4116872A (en) * 1977-02-08 1978-09-26 The Lubrizol Corporation Hot melt metal working lubricants
US4146488A (en) * 1978-01-24 1979-03-27 Union Carbide Corporation Metal lubricants
US4324671A (en) * 1979-12-04 1982-04-13 The United States Of America As Represented By The Secretary Of The Air Force Grease compositions based on fluorinated polysiloxanes
US4301019A (en) * 1980-10-29 1981-11-17 Mobil Oil Corporation Mercaptothiadiazole adducts of unsaturated esters and lubricants containing same
US4403490A (en) * 1981-06-24 1983-09-13 E/M Lubricants, Inc. Metal forming lubricant and method of use thereof
US4416132A (en) * 1981-06-24 1983-11-22 E/M Lubricants, Inc. Metal forming lubricant and method of use thereof
US4548787A (en) * 1981-10-26 1985-10-22 Basf Wyandotte Corporation Aqueous liquids containing metal cavitation-erosion corrosion inhibitors
US4412928A (en) * 1981-11-09 1983-11-01 Union Oil Company Of California Corrosion inhibitors for boron-containing lubricants
US4410436A (en) * 1981-11-09 1983-10-18 Union Oil Company Of California Lubricating oil containing a boron compound and corrosion inhibitors
US4623474A (en) * 1981-12-10 1986-11-18 Union Oil Company Of California Oxidation and corrosion inhibitors for boron-containing lubricants
US4545925A (en) * 1984-05-07 1985-10-08 Norchem, Inc. Corrosion inhibited freeze protected heat transfer fluid
US4659492A (en) * 1984-06-11 1987-04-21 The Lubrizol Corporation Alkenyl-substituted carboxylic acylating agent/hydroxy terminated polyoxyalkylene reaction products and aqueous systems containing same
US4800033A (en) * 1985-05-28 1989-01-24 Karl Stetter Process for the non-cutting reshaping of metals, and lubricant compositions for this process
US4675158A (en) * 1985-07-30 1987-06-23 Calgon Corporation Mercaptobenzothiazole and tolyltriazole corrosion inhibiting compositions
US4853139A (en) * 1987-05-14 1989-08-01 Idemitsu Kosan Co., Ltd. Lubricating oil composition having improved temperature characteristics
US5116521A (en) * 1988-07-07 1992-05-26 Nippondenso Co., Ltd. Aqueous lubrication treatment liquid and method of cold plastic working metallic materials
US5108629A (en) * 1989-12-29 1992-04-28 Nippon Oil & Fats Co., Ltd. Organic lubricating coating composition for use in plastic deformation of metal sheet
US5334319A (en) * 1990-06-18 1994-08-02 Tonen Corporation Composition for hydraulic lubrication and coupling
US5156769A (en) * 1990-06-20 1992-10-20 Calgon Corporation Phenyl mercaptotetrazole/tolyltriazole corrosion inhibiting compositions
US5217686A (en) * 1990-09-24 1993-06-08 Calgon Corporation Alkoxybenzotriazole compositions and the use thereof as copper and copper alloy corrosion inhibitors
US5236626A (en) * 1990-09-24 1993-08-17 Calgon Corporation Alkoxybenzotriazole compositions and the use thereof as copper and copper alloy corrosion inhibitors
US5128065A (en) * 1990-10-03 1992-07-07 Betz Laboratories, Inc. Method for the inhibition of corrosion of copper-bearing metallurgies
US5368757A (en) * 1991-03-22 1994-11-29 Henkel Corporation Lubrication for cold forming of metals
US5399274A (en) * 1992-01-10 1995-03-21 Marcus; R. Steven Metal working lubricant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0759818A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778877A1 (en) * 1994-09-02 1997-06-18 Henkel Corporation Composition and process for lubricating metal before cold forming
EP0778877A4 (en) * 1994-09-02 1999-07-21 Henkel Corp Composition and process for lubricating metal before cold forming
EP0808353A1 (en) * 1995-02-07 1997-11-26 Henkel Corporation Aqueous lubricant and process for cold forming metal, particularly pointing thick-walled metal tubes
EP0808353A4 (en) * 1995-02-07 1998-07-08 Henkel Corp Aqueous lubricant and process for cold forming metal, particularly pointing thick-walled metal tubes
WO1997024418A1 (en) * 1995-12-27 1997-07-10 Exxon Chemicals Patents Inc. Method for solubilizing a benzotriazole with a thiadiazole
US6068710A (en) * 1996-11-27 2000-05-30 Henkel Corporation Aqueous composition and process for preparing metal substrate for cold forming
WO2010040859A2 (en) * 2008-10-10 2010-04-15 Magna Steyr Fahrzeugtechnik Ag & Co Kg Anticorrosive agent
WO2010040859A3 (en) * 2008-10-10 2010-07-15 Magna Steyr Fahrzeugtechnik Ag & Co Kg Anticorrosive agent for metal components

Also Published As

Publication number Publication date
US6248701B1 (en) 2001-06-19
EP0759818A4 (en) 1997-08-20
AU2394695A (en) 1995-12-05
EP0759818A1 (en) 1997-03-05
ZA953653B (en) 1996-01-02
BR9507630A (en) 1997-09-23

Similar Documents

Publication Publication Date Title
EP0759818A1 (en) Aqueous metal coating composition and process with reduced staining and corrosion
AU696761B2 (en) Composition and process for lubricating metal before cold forming
AU699076B2 (en) Aqueous lubricant and process for cold forming metal, particularly pointing thick-walled metal tubes
BRPI0819753B1 (en) COMPOSITION OF WATER LIQUID LUBRICANT, METHOD OF FORMING A PASSIVE AND LUBRICANT COATING COMBINED IN A METAL SUBSTRATE, METAL SUBSTRATE, AND PROCESS FOR MANUFACTURING A METAL PART.
EP0244570A1 (en) Process for determining the concentration of a grain refiner in a phosphate conversion coating bath
US3133787A (en) Corrosion inhibition
GB2049650A (en) Corrosion inhibitor
WO1996011247A1 (en) Aqueous metal coating composition and process with improved wetting of oily or similarly soiled surfaces
US20060172064A1 (en) Process of coating metals prior to cold forming
US6068710A (en) Aqueous composition and process for preparing metal substrate for cold forming
CA2305261A1 (en) Composition and process for multi-purpose treatment of metal surfaces
US7479177B2 (en) Coating for cold working metals
US2371853A (en) Mineral oil composition
US4770798A (en) Lubricating and anti-corrosion compositions
JPS61124537A (en) Composition for inhibiting rust in gaseous or liquid phase, concentrate and production of composition and rust inhibiting method
US6478885B1 (en) Phosphating processes and products therefrom with improved mechanical formability
JPS6055560B2 (en) Anti-rust lubrication treated steel plate
US3281369A (en) Corrosion inhibiting compositions
CA2342359A1 (en) Aqueous lubricant and process for cold forming metal, with improved formed surface quality
MXPA01002140A (en) Aqueous lubricant and process for cold forming metal, with improved formed surface quality

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP KR MX NZ

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995917132

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995917132

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1995917132

Country of ref document: EP