WO1995031148A1 - Computer-simulated radioscopy and assistance method for surgery - Google Patents

Computer-simulated radioscopy and assistance method for surgery Download PDF

Info

Publication number
WO1995031148A1
WO1995031148A1 PCT/FR1995/000620 FR9500620W WO9531148A1 WO 1995031148 A1 WO1995031148 A1 WO 1995031148A1 FR 9500620 W FR9500620 W FR 9500620W WO 9531148 A1 WO9531148 A1 WO 9531148A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
instrument
sensors
during
sensor
Prior art date
Application number
PCT/FR1995/000620
Other languages
French (fr)
Inventor
François Allouche
Original Assignee
Allouche Francois
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allouche Francois filed Critical Allouche Francois
Priority to EP95920139A priority Critical patent/EP0758868A1/en
Publication of WO1995031148A1 publication Critical patent/WO1995031148A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00119Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00203Electrical control of surgical instruments with speech control or speech recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00902Material properties transparent or translucent
    • A61B2017/00911Material properties transparent or translucent for fields applied by a magnetic resonance imaging system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations

Definitions

  • the present invention relates to a method of computer simulated radioscopy and aid to surgery, in particular to microsurgery.
  • microscope vision In general, in endocavitary microsurgery, a microscope is used as the operative visualization means for the areas to be operated that are substantially superficial, and an endoscope for areas inaccessible to direct vision.
  • microscope vision has its limits since it is a direct vision which sometimes requires the collapse of the surface structures before accessing the deeper structures.
  • Endoscope vision then has the advantage of respecting the anatomical structures explored.
  • it can be hindered by bleeding or anatomical changes.
  • the neighboring organs remain invisible to the surgeon, who then risks damaging a noble organ without being able to discern it. It is thus obvious that the reliability of the operation depends on the only experience of the surgeon, since there exists in each operation a certain degree of uncontrollable uncertainty.
  • Radioscopy gives, on the other hand, images in real time, but it has many disadvantages linked in particular to its cost, to its gravity which slows the operation and especially the irradiation of the patient and the practitioner.
  • the intraoperative scanner has been considered in exceptional situations, but cannot reasonably become routine.
  • the object of the invention is to overcome these drawbacks and to allow the surgeon to easily locate in real time any micro-instrument which he uses on a previously recorded digital image and this, without intraoperative irradiation.
  • document EP-A-0 326 768 describes the use of an electro-goniometer, one end of which is fixed to the surgical instrument and the other to a reference block in the form of an arm. Speak clearly. The latter is maintained in a constant position relative to the patient by means of a screw introduced into the patient's tibia.
  • This document essentially describes how to help the surgeon to position an instrument, essentially a saw blade or a drill, by identifying the precise position of this instrument.
  • Document WO-A-90/09 141 describes a system using a surgical video microscope making it possible to obtain surgical imaging on a monitor.
  • This imagery consists of a set of views in cross section and in plane obtained by moiré interferometry, and more generally intended for microsurgery of the eye.
  • the invention therefore relates to a new concept of computer simulated radioscopy ("RSO") which is entirely desirable to suppress all irradiation during the operation, while retaining the same possibilities of visualization in real time.
  • RSO computer simulated radioscopy
  • the present invention therefore relates to a new and concrete method of computer-simulated radioscopy and aid to surgery. It finds its preferred applications in micro- endo-nasal or intra-spinal surgery, in intra-cerebral neurosurgery, in particular as a replacement for stereotaxic surgery, and also in orthopedics.
  • the method comprises the following stages: one proceeds to the exhaustive volumetric acquisition of digital images by scanography, imaging means by nuclear magnetic resonance or equivalent, of the region to be operated; a set of static sensors fixed to a bone tissue fixed to the region to be operated is placed on the patient and determining a reference frame of coordinates at least three-dimensional; a correlation is ensured between the digital images acquired and the above-mentioned reference frame; all the useful characteristics of the micro-instruments that the surgeon has to use during the operation are digitally entered; a dynamic topological sensor is fixed on the micro-instrument used by the surgeon, in a lockable manner and at a determined point; the position of the dynamic sensor is determined at all times with respect to the above-mentioned reference frame and the precise position of the distal end of the micro-instrument used is calculated; and the precise position at least of the distal end of the micro ⁇ instrument is displayed in real time on a screen during operation on the digital image corresponding to this position.
  • the dynamic topological sensor is fixed to the proximal part of the micro-instrument outside the operating field.
  • the sensors can use all known physical principles (electromagnetic field, optical field or infrared, ultrasound, microwave, metal detectors, etc.), and combinations thereof. However, electromagnetic type sensors are preferred because they determine a six-dimensional signal including the spatial coordinates and the angular coordinates of the dynamic topological sensor.
  • the hazardous areas close to the operated region are determined on the digital image, the coordinates of these areas are recorded, and during the operation, a warning signal is determined as a function of the distance between the micro ⁇ instrument and, in particular, its distal end, and closest to the danger zones.
  • Figure 1 schematically represents the installation required for the implementation of the method according to the invention.
  • Figure 2 shows schematically a micro-instrument provided with sensors according to the invention.
  • the installation required for the implementation of the method for assisting the surgeon in microsurgery essentially comprises a computer 2 provided with a large computing capacity for managing images in real time.
  • This computer is connected to a screen 4 forming a monitor for displaying the images processed and stored in an appropriate memory 6.
  • This memory is favorably connected by modulator-demodulator and telephone line of a switched network 8 to a scanning processing center. 10.
  • the CT processing center 10 is generally far from the operating room where the surgeon will practice, and it is necessary for him to receive digitized images.
  • the monitor can also receive images from the microscope and the endoscope 12 via the computer 2.
  • the control of the computer by the surgeon is done, for example, by voice or by foot, by means of an input device 14 comprising a validation key and means for moving a cursor accessible to the foot.
  • a set 16 of static sensors is previously fixed on the patient, for example on a bone tissue secured to the region where the surgeon must operate.
  • sensor is meant a device making it possible to identify at least one position.
  • This set 16 of static sensors will make it possible to determine a reference frame necessary for monitoring the micro ⁇ instrument during the operation.
  • At least one of these static sensors can favorably be secured to a bone area, for example to the skull, before the actual operation, while another will, for example, be secured to the palatal vault by means of a Inflatable balloon intended to fill the intra-oral volume and to limit mechanical stresses.
  • a single judiciously placed static sensor is sufficient, but the addition of a second sensor makes it possible to validate the information at any time.
  • one of the static sensors detaches from the bone tissue, its movement will be automatically detected by the other sensor before it can result in the slightest error.
  • a dynamic topological sensor 18 is locked on the micro-instrument used by the surgeon. Usually, ten instruments are more than enough for the intervention with, at most, two instruments used simultaneously.
  • the preferred system then comprises four sensors, two static 16 and two dynamic 18 temporarily locked to the instrument used.
  • micro-instrument When the micro-instrument has a mobile part (micro-scissors or pliers, for example), it is necessary to know its degree of opening. An analog potentiometer 20 of potentiometer type is then added to the micro-instrument.
  • these sensors 16 and 18 each separately analyze the ambient electromagnetic field emitted by the interface 22.
  • the micro-instruments are made of a non-ferromagnetic material, for example plastic or titanium.
  • these sensors 16, 18 will use other aforementioned physical signals.
  • the static 16 and dynamic sensors 18 are connected to an interface 22 whose output signal is applied to an input of the computer 2.
  • This output signal gives, in real time, the measurement of the precise position of the dynamic sensor 18 in six dimensions including the Cartesian spatial coordinates of the sensor and the angular coordinates of its orientation of the pitch, yaw and roll type.
  • FIG. 2 shows, by way of example, a micro-clamp 24 usually used in microsurgery.
  • the opening angle ⁇ of the distal end forming a clamp 26 is measured by means of the analog sensor 20, while the dynamic topological sensor 18 is fixed to the proximal part of the micro-instrument at a determined point. It is necessary to relocate the sensor 18, so that the physical signal, for example electromagnetic signal, does not have to pass through the patient's tissues.
  • a sensor fixed to the distal part of the micro-instrument would be troublesome both for the surgeon's vision and for his manipulation.
  • the system is initialized by the surgeon by touching, with his microphone -instrument, a precise point of the patient, for example the inter-incisor gap or an external canthus, point easily deter inable both on the digital image and on the patient.
  • the surgeon can control the computer 2 by means of the input device 14 or by voice to select a function, make an image enlargement, etc.
  • the screen 4 On the screen 4, the precise position of the distal end of the micro-instrument and, simultaneously, the two-dimensional digital image corresponding to this position.
  • the screen 4 comprises several zones making it possible to display a plurality of two-dimensional images in different planes so as to make neighboring zones visible to the surgeon. that he cannot physically see directly, and / or three-dimensional images.
  • the surgeon determines on the digital image the dangerous zones close to the place where he is going to operate.
  • the coordinates of these danger zones are then stored in memory 6.
  • the computer emits a warning signal when the distal end of the micro-instrument approaches one of these danger zones.
  • this warning signal is an audible signal whose frequency is a function of the exact distance between any part of the micro ⁇ instrument used and the closest to these danger zones.
  • This warning signal can also be a voice signal indicating the precise distance. This ensures security, especially when a dangerous area is absolutely not visible directly to the surgeon.
  • all of the images displayed during the operation are recorded in memory 6.
  • This recording can then constitute a post-operative magnetic report.
  • the recording can be favorably used for educational or post-operative analysis purposes.
  • the recording must be locked automatically to avoid any subsequent manipulation of the images (by analogy to what is commonly called “black box” in aviation). Such locking is necessary in forensic applications of the invention.

Abstract

A computer-simulated radioscopy method for use in surgery, and particularly in microsurgery, wherein an exhaustive volumetric acquisition of digital images of the operating region is performed; a set of static sensors (16) is placed on the patient to determine a referential of at least three-dimensional co-ordinates; the acquired digital images and the referential are correlated; all of the operative features of the microinstruments (24) to be used by the surgeon during the operation are digitally input; a dynamic topological sensor (18) is lockably attached to the microinstrument used (24) in a predetermined position; the position of the dynamic sensor in relation to the referential is constantly monitored and the exact position of the distal end of the microinstrument (24) is calculated; and the exact position of at least the distal end of the microinstrument (24) on the corresponding digital image is displayed in real time on a screen (4) during the operation.

Description

PROCEDE DE RADIOSCOPIE SIMULEE PAR ORDINATEUR ET D'AIDE A LA CHIRURGIE COMPUTER SIMULATED RADIOSCOPY AND SURGERY ASSISTANCE PROCESS
La présente invention concerne un procédé de radioscopie simulée par ordinateur et d'aide à la chirurgie, notamment à la micro-chirurgie.The present invention relates to a method of computer simulated radioscopy and aid to surgery, in particular to microsurgery.
De façon générale, en micro-chirurgie endo-cavitaire, on utilise comme moyen de visualisation opératoire un microscope pour les zones à opérer sensiblement superficielles, et un endoscope pour les zones inaccessibles à une vision directe. Toutefois, la vision par microscope présente des limites puisque c'est une vision directe qui nécessite parfois l'effondrement des structures superficielles avant d'accéder aux structures plus profondes. La vision par endoscope présente alors l'avantage de respecter les structures anatomiques explorées. Cependant, elle peut être gênée par des saignements ou des remaniements anatomiques. Dans les deux cas, les organes de voisinage restent invisibles pour le chirurgien qui risque alors d'endommager un organe noble sans pouvoir le discerner. II est ainsi évident que la fiabilité de l'opération dépend de la seule expérience du chirurgien, puisqu'il existe dans chaque opération un certain degré d'incertitude non maîtrisable.In general, in endocavitary microsurgery, a microscope is used as the operative visualization means for the areas to be operated that are substantially superficial, and an endoscope for areas inaccessible to direct vision. However, microscope vision has its limits since it is a direct vision which sometimes requires the collapse of the surface structures before accessing the deeper structures. Endoscope vision then has the advantage of respecting the anatomical structures explored. However, it can be hindered by bleeding or anatomical changes. In both cases, the neighboring organs remain invisible to the surgeon, who then risks damaging a noble organ without being able to discern it. It is thus obvious that the reliability of the operation depends on the only experience of the surgeon, since there exists in each operation a certain degree of uncontrollable uncertainty.
Pour aider le chirurgien, il est devenu courant de procéder avant l'opération à un repérage radiologique par scanographie ou par un moyen d'imagerie par résonance magnétique nucléaire (IRM). Tous ces moyens de visualisation, aussi précis soient-ils, restent différés dans le temps par rapport à l'intervention. La radioscopie donne, par contre, des images en temps réel, mais elle présente de nombreux inconvénients liés notamment à son coût, à sa pesanteur qui ralentit l'opération et surtout à l'irradiation du patient et du praticien. Le scanner per-opératoire a pu s'envisager dans des situations exceptionnelles, mais ne peut pas raisonnablement devenir une routine. L'invention a pour but de pallier ces inconvénients et de permettre au chirurgien un repérage aisé en temps réel de tout micro-instrument qu'il utilise sur une image numérique préalablement enregistrée et ceci, sans irradiation per- opératoire. Dans le Panorama du Médecin nB 3905 du 19 novembre 1993, un article intitulé "La médecine touchée par la réalité virtuelle" expose ce que sera la chirurgie dans un proche avenir avec l'utilisation d'images obtenues par scanographie. Dans cet article prospectif, il est précisé que l'image virtuelle en trois dimensions et l'image endoscopique devront être connectées pour atteindre les buts recherchés. Il s'agit donc d'un simple recalage d'images.To help the surgeon, it has become common to carry out radiological tracking by scanography or by means of nuclear magnetic resonance imaging (MRI) before the operation. All these visualization means, however precise they may be, are deferred over time in relation to the intervention. Radioscopy gives, on the other hand, images in real time, but it has many disadvantages linked in particular to its cost, to its gravity which slows the operation and especially the irradiation of the patient and the practitioner. The intraoperative scanner has been considered in exceptional situations, but cannot reasonably become routine. The object of the invention is to overcome these drawbacks and to allow the surgeon to easily locate in real time any micro-instrument which he uses on a previously recorded digital image and this, without intraoperative irradiation. In the Panorama du Médecin n B 3905 of 19 November 1993, an article entitled "Medicine affected by virtual reality" describes what surgery will be in the near future with the use of images obtained by CT. In this prospective article, it is specified that the virtual three-dimensional image and the endoscopic image must be connected to achieve the desired goals. It is therefore a simple registration of images.
De façon plus pragmatique et moins prospective, le document EP-A-0 326 768 décrit l'utilisation d'un électro- goniomètre dont une extrémité est fixée à l'instrument chirurgical et l'autre à un bloc de référence en forme de bras articulé. Ce dernier est maintenu dans une position constante par rapport au patient au moyen d'une vis introduite dans le tibia du patient. Ce document décrit essentiellement la façon d'aider le chirurgien à positionner un instrument, essentiellement une lame de scie ou un foret, au moyen d'un repérage de la position précise de cet instrument.More pragmatically and less prospectively, document EP-A-0 326 768 describes the use of an electro-goniometer, one end of which is fixed to the surgical instrument and the other to a reference block in the form of an arm. Speak clearly. The latter is maintained in a constant position relative to the patient by means of a screw introduced into the patient's tibia. This document essentially describes how to help the surgeon to position an instrument, essentially a saw blade or a drill, by identifying the precise position of this instrument.
Le document WO-A-90/09 141 décrit un système mettant en oeuvre un microscope vidéo chirurgical permettant d'obtenir une imagerie chirurgicale sur un moniteur. Cette imagerie est constituée d'un ensemble de vues en coupe transversale et en plan obtenues par interférométrie de moirage, et plus généralement destinée à la micro-chirurgie de l'oeil.Document WO-A-90/09 141 describes a system using a surgical video microscope making it possible to obtain surgical imaging on a monitor. This imagery consists of a set of views in cross section and in plane obtained by moiré interferometry, and more generally intended for microsurgery of the eye.
Par ailleurs, divers documents, tels que l'article "Virtual Reality Surgical Simulator : The First Steps", publié dans Surg. Endosc, mai-juin 1993, 7(3): pages 203-205, qui décrit diverses perspectives en matière de micro-chirurgie faisant suite à l'utilisation intensive de simulateurs de vol dans l'aviation, ou "Micromachining Technology and Biomédical Engineering", publié dans Appl. Biochem. Biotechnol. en mars 1993, 38(3): pages 233-242, qui précise les progrès apportés dans les micro-technologies notamment par la stéréo-télévision et les images virtuelles, montrent qu'il n'y a rien de vraiment concret à ce jour dans le domaine de la micro-chirurgie.In addition, various documents, such as the article "Virtual Reality Surgical Simulator: The First Steps", published in Surg. Endosc, May-June 1993, 7 (3): pages 203-205, which describes various perspectives in microsurgery following the intensive use of flight simulators in aviation, or "Micromachining Technology and Biomedical Engineering ", published in Appl. Biochem. Biotechnol. in March 1993, 38 (3): pages 233-242, which specifies the progress made in micro-technologies notably by stereo-television and virtual images, show that there is nothing really concrete to date in the field of microsurgery.
L'ensemble de ces documents montre bien que Ton sait acquérir une image numérique par scanographie ou IRM et que les ordinateurs personnels actuellement disponibles ont une puissance de calcul suffisante pour le traitement des images. Par contre, il apparaît clairement que les technologies décrites dans ces documents ne maîtrisent pas les moyens de localisation des instruments et le déplacement de ces derniers dans un champ opératoire autrement que par irradiation per- opératoire. En outre, aucun de ces documents ne montre comment un chirurgien peut être efficacement aidé lorsqu'il doit opérer dans une zone sensible et en aveugle. L'invention a donc pour objet un nouveau concept de radioscopie simulée par ordinateur ("RSO") qui est tout à fait souhaitable pour supprimer toute irradiation pendant l'opération, tout en gardant les mêmes possibilités de visualisation en temps réel. La présente invention concerne donc un procédé nouveau et concret de radioscopie simulée par l'ordinateur et d'aide à la chirurgie. Elle trouve ses applications privilégiées en micro- chirurgie endo-nasale ou intra-rachidienne, en neuro-chirurgie intra-cérébrale, notamment en remplacement de la chirurgie stéréotaxique, et également en orthopédie.All of these documents clearly show that you can acquire a digital image by CT or MRI and that the personal computers currently available have sufficient computing power for image processing. On the other hand, it clearly appears that the technologies described in these documents do not control the means of locating the instruments and moving them in an operating field other than by intraoperative irradiation. Furthermore, none of these documents shows how a surgeon can be effectively helped when he has to operate in a sensitive and blind area. The invention therefore relates to a new concept of computer simulated radioscopy ("RSO") which is entirely desirable to suppress all irradiation during the operation, while retaining the same possibilities of visualization in real time. The present invention therefore relates to a new and concrete method of computer-simulated radioscopy and aid to surgery. It finds its preferred applications in micro- endo-nasal or intra-spinal surgery, in intra-cerebral neurosurgery, in particular as a replacement for stereotaxic surgery, and also in orthopedics.
Selon l'invention, le procédé comporte les étapes suivantes : on procède à l'acquisition volumétrique exhaustif d'images numériques par scanographie, moyen d'imagerie par résonance magnétique nucléaire ou équivalent, de la région à opérer; on place sur le patient un jeu de capteurs statiques solidaires d'un tissu osseux solidaire de la région à opérer et déterminant un référentiel de coordonnées au moins tridimensionnelles; on assure une corrélation entre les images numériques acquises et le référentiel précité; on saisit numériquement toutes les caractéristiques utiles des micro-instruments que le chirurgien est amené à utiliser pendant l'opération; on fixe sur le micro-instrument utilisé par le chirurgien, de façon verrouillable et en un point déterminé, un capteur topologique dynamique; on détermine à tout instant la position du capteur dynamique par rapport au référentiel précité et Ton calcule la position précise de l'extrémité distale du micro-instrument utilisé; et on affiche en temps réel sur un écran pendant l'opération la position précise au moins de l'extrémité distale du micro¬ instrument sur l'image numérique correspondant à cette position.According to the invention, the method comprises the following stages: one proceeds to the exhaustive volumetric acquisition of digital images by scanography, imaging means by nuclear magnetic resonance or equivalent, of the region to be operated; a set of static sensors fixed to a bone tissue fixed to the region to be operated is placed on the patient and determining a reference frame of coordinates at least three-dimensional; a correlation is ensured between the digital images acquired and the above-mentioned reference frame; all the useful characteristics of the micro-instruments that the surgeon has to use during the operation are digitally entered; a dynamic topological sensor is fixed on the micro-instrument used by the surgeon, in a lockable manner and at a determined point; the position of the dynamic sensor is determined at all times with respect to the above-mentioned reference frame and the precise position of the distal end of the micro-instrument used is calculated; and the precise position at least of the distal end of the micro¬ instrument is displayed in real time on a screen during operation on the digital image corresponding to this position.
De préférence, le capteur topologique dynamique est fixé à la partie proximale du micro-instrument hors du champ opératoire.Preferably, the dynamic topological sensor is fixed to the proximal part of the micro-instrument outside the operating field.
Les capteurs peuvent faire appel à tous les principes physiques connus (champ électromagnétique, champ optique ou infrarouge, ultrasons, micro-ondes, détecteurs de métaux, etc.), et aux combinaisons de ceux-ci. Toutefois, les capteurs de type électromagnétique sont préférés, car ils déterminent un signal en six dimensions comprenant les coordonnées spatiales et les coordonnées angulaires du capteur topologique dynamique.The sensors can use all known physical principles (electromagnetic field, optical field or infrared, ultrasound, microwave, metal detectors, etc.), and combinations thereof. However, electromagnetic type sensors are preferred because they determine a six-dimensional signal including the spatial coordinates and the angular coordinates of the dynamic topological sensor.
De préférence encore, préalablement à l'opération, on détermine sur l'image numérique les zones dangereuses proches de la région opérée, on enregistre les coordonnées de ces zones, et pendant l'opération, on détermine un signal d'avertissement fonction de la distance entre le micro¬ instrument et, notamment, son extrémité distale, et la plus proche des zones dangereuses.Preferably also, prior to the operation, the hazardous areas close to the operated region are determined on the digital image, the coordinates of these areas are recorded, and during the operation, a warning signal is determined as a function of the distance between the micro¬ instrument and, in particular, its distal end, and closest to the danger zones.
L'invention sera mieux comprise, et d'autres buts, avantages et caractéristiques de celle-ci apparaîtront plus clairement à la lecture de la description qui suit des modes préférés de réalisation donnés à titre non limitatif et à laquelle une planche de dessins est annexée sur laquelle: La Figure 1 représente schématiquement l'installation requise pour la mise en oeuvre du procédé selon l'invention; etThe invention will be better understood, and other objects, advantages and characteristics thereof will appear more clearly on reading the following description of the preferred embodiments given without limitation and to which a sheet of drawings is attached. in which: Figure 1 schematically represents the installation required for the implementation of the method according to the invention; and
La Figure 2 représente schématiquement un micro-instrument pourvu de capteurs conformément à l'invention.Figure 2 shows schematically a micro-instrument provided with sensors according to the invention.
En référence maintenant aux dessins et, plus particulièrement à la Figure 1, l'installation requise pour la mise en oeuvre du procédé d'aide au chirurgien en micro¬ chirurgie comprend essentiellement un ordinateur 2 pourvu d'une capacité de calcul importante pour gérer des images en temps réel. Cet ordinateur est relié à un écran 4 formant moniteur pour l'affichage des images traitées et stockées dans une mémoire appropriée 6. Cette mémoire est favorablement reliée par modulateur-démodulateur et ligne téléphonique d'un réseau commuté 8 à un centre de traitement de scanographie 10. En effet, le centre de traitement de scanographie 10 est généralement éloigné de la salle d'opération où va pratiquer le chirurgien, et il est nécessaire qu'il reçoive des images numérisées. Le moniteur peut également recevoir des images issues du microscope et de l'endoscope 12 par l'intermédiaire de l'ordinateur 2.Referring now to the drawings and, more particularly to FIG. 1, the installation required for the implementation of the method for assisting the surgeon in microsurgery essentially comprises a computer 2 provided with a large computing capacity for managing images in real time. This computer is connected to a screen 4 forming a monitor for displaying the images processed and stored in an appropriate memory 6. This memory is favorably connected by modulator-demodulator and telephone line of a switched network 8 to a scanning processing center. 10. In Indeed, the CT processing center 10 is generally far from the operating room where the surgeon will practice, and it is necessary for him to receive digitized images. The monitor can also receive images from the microscope and the endoscope 12 via the computer 2.
La commande de l'ordinateur par le chirurgien est faite, par exemple, vocalement ou par voie podale, au moyen d'un périphérique d'entrée 14 comportant une touche de validation et de moyens de déplacement d'un curseur accessibles au pied.The control of the computer by the surgeon is done, for example, by voice or by foot, by means of an input device 14 comprising a validation key and means for moving a cursor accessible to the foot.
Un jeu 16 de capteurs statiques est au préalable fixé sur le patient, par exemple sur un tissu osseux solidaire de la région où le chirurgien doit opérer. Par le mot "capteur", on entend un dispositif permettant de repérer au moins une position.A set 16 of static sensors is previously fixed on the patient, for example on a bone tissue secured to the region where the surgeon must operate. By the word "sensor" is meant a device making it possible to identify at least one position.
Ce jeu 16 de capteurs statiques va permettre de déterminer un référentiel nécessaire pour le suivi du micro¬ instrument pendant l'opération. Au moins un de ces capteurs statiques pourra favorablement être solidarisé à une zone osseuse, par exemple à la boîte crânienne, avant l'opération proprement dite, tandis qu'un autre sera, par exemple, solidarisé à la voûte palatine au moyen d'un ballonnet gonflable destiné à combler le volume intra-buccal et à limiter les sollicitations mécaniques. Dans la pratique, un seul capteur statique judicieusement disposé suffit, mais l'adjonction d'un deuxième capteur permet de valider l'information à tout moment. En effet, si l'un des capteurs statiques se désolidarise du tissu osseux, son mouvement sera automatiquement détecté par l'autre capteur avant qu'il puisse en résulter la moindre erreur. Un capteur topologique dynamique 18 est verrouillé sur le micro-instrument qu'utilise le chirurgien. Habituellement, une dizaine d'instruments suffisent largement pour l'intervention avec, au maximum, deux instruments utilisés simultanément. Le système préféré comprend alors quatre capteurs, deux statiques 16 et deux dynamiques 18 temporairement verrouillés aux instrument utilisés.This set 16 of static sensors will make it possible to determine a reference frame necessary for monitoring the micro¬ instrument during the operation. At least one of these static sensors can favorably be secured to a bone area, for example to the skull, before the actual operation, while another will, for example, be secured to the palatal vault by means of a Inflatable balloon intended to fill the intra-oral volume and to limit mechanical stresses. In practice, a single judiciously placed static sensor is sufficient, but the addition of a second sensor makes it possible to validate the information at any time. In fact, if one of the static sensors detaches from the bone tissue, its movement will be automatically detected by the other sensor before it can result in the slightest error. A dynamic topological sensor 18 is locked on the micro-instrument used by the surgeon. Usually, ten instruments are more than enough for the intervention with, at most, two instruments used simultaneously. The preferred system then comprises four sensors, two static 16 and two dynamic 18 temporarily locked to the instrument used.
Lorsque le micro-instrument comporte une partie mobile (micro-ciseaux ou pinces, par exemple), il est nécessaire de connaître son degré d'ouverture. Un capteur analogique 20 de type potentiomètre est alors ajouté au micro-instrument.When the micro-instrument has a mobile part (micro-scissors or pliers, for example), it is necessary to know its degree of opening. An analog potentiometer 20 of potentiometer type is then added to the micro-instrument.
De préférence, ces capteurs 16 et 18 analysent chacun séparément le champ électromagnétique ambiant émis par l'interface 22. Toutefois, dans ce cas, les micro-instruments sont réalisés dans un matériau non ferromagnétique, par exemple en plastique ou en titane.Preferably, these sensors 16 and 18 each separately analyze the ambient electromagnetic field emitted by the interface 22. However, in this case, the micro-instruments are made of a non-ferromagnetic material, for example plastic or titanium.
Alternativement, ces capteurs 16, 18 feront appel à d'autres signaux physiques précités.Alternatively, these sensors 16, 18 will use other aforementioned physical signals.
Les capteurs statiques 16 et dynamiques 18 sont reliés à une interface 22 dont le signal de sortie est appliqué à une entrée de l'ordinateur 2. Ce signal de sortie donne, en temps réel, la mesure de la position précise du capteur dynamique 18 en six dimensions comprenant les coordonnées cartésiennes spatiales du capteur et les coordonnées angulaires de son orientation du type tangage, lacet et roulis.The static 16 and dynamic sensors 18 are connected to an interface 22 whose output signal is applied to an input of the computer 2. This output signal gives, in real time, the measurement of the precise position of the dynamic sensor 18 in six dimensions including the Cartesian spatial coordinates of the sensor and the angular coordinates of its orientation of the pitch, yaw and roll type.
Bien évidemment, avant toute opération, le système est étalonné.Obviously, before any operation, the system is calibrated.
On a représenté Figure 2, à titre d'exemple, une micro¬ pince 24 habituellement utilisée en micro-chirurgie. L'angle d'ouverture β de l'extrémité distale formant pince 26 est mesuré au moyen du capteur analogique 20, tandis que le capteur topologique dynamique 18 est fixé à la partie proxi ale du micro-instrument en un point déterminé. Il convient de délocaliser le capteur 18, afin que le signal physique, par exemple électromagnétique, n'ait pas à traverser les tissus du patient. En outre, un capteur fixé à la partie distale du micro-instrument serait gênant tant pour la vision du chirurgien que pour sa manipulation.FIG. 2 shows, by way of example, a micro-clamp 24 usually used in microsurgery. The opening angle β of the distal end forming a clamp 26 is measured by means of the analog sensor 20, while the dynamic topological sensor 18 is fixed to the proximal part of the micro-instrument at a determined point. It is necessary to relocate the sensor 18, so that the physical signal, for example electromagnetic signal, does not have to pass through the patient's tissues. In addition, a sensor fixed to the distal part of the micro-instrument would be troublesome both for the surgeon's vision and for his manipulation.
Du fait de la délocalisation du capteur dynamique 18, il est nécessaire de calculer la position précise de l'extrémité distale du micro-instrument en fonction du signal de localisation du capteur et du point précis où il est verrouillé. A cet effet, toutes les caractéristiques utiles des micro-instruments que le chirurgien utilisera au cours de l'opération doivent avoir été préalablement saisies en bibliothèque de l'ordinateur. Avant l'opération, il est également nécessaire d'assurer une corrélation entre l'image numérique stockée en mémoire 6 et le référentiel déterminé par les capteurs statiques 16. A cet effet, le système est initialisé par le chirurgien en touchant, avec son micro-instrument, un point précis du patient, par exemple l'écart inter-incisif ou un canthus externe, point facilement déter inable et sur l'image numérique et sur le patient.Due to the relocation of the dynamic sensor 18, it is necessary to calculate the precise position of the distal end of the micro-instrument as a function of the location signal of the sensor and of the precise point where it is locked. For this purpose, all the useful characteristics of the micro-instruments that the surgeon will use during the operation must have been previously entered in the computer library. Before the operation, it is also necessary to ensure a correlation between the digital image stored in memory 6 and the frame of reference determined by the static sensors 16. To this end, the system is initialized by the surgeon by touching, with his microphone -instrument, a precise point of the patient, for example the inter-incisor gap or an external canthus, point easily deter inable both on the digital image and on the patient.
Pendant l'opération, le chirurgien peut commander l'ordinateur 2 au moyen du périphérique d'entrée 14 ou vocalement pour sélectionner une fonction, faire un agrandissement d'image, etc.. Sur l'écran 4, sont affichées la position précise de l'extrémité distale du micro-instrument et, simultanément, l'image numérique en deux dimensions correspondant à cette position. De préférence, l'écran 4 comporte plusieurs zones permettant d'afficher une pluralité d'images bi-dimensionnelles dans des plans différents de manière à rendre visibles pour le chirurgien des zones voisines qu'il ne peut pas matériellement voir directement, et/ou des images en trois dimensions.During the operation, the surgeon can control the computer 2 by means of the input device 14 or by voice to select a function, make an image enlargement, etc. On the screen 4, the precise position of the distal end of the micro-instrument and, simultaneously, the two-dimensional digital image corresponding to this position. Preferably, the screen 4 comprises several zones making it possible to display a plurality of two-dimensional images in different planes so as to make neighboring zones visible to the surgeon. that he cannot physically see directly, and / or three-dimensional images.
Selon un mode préféré de l'invention, avant l'opération, le chirurgien détermine sur l'image numérique les zones dangereuses proches de l'endroit où il va opérer. Les coordonnées de ces zones dangereuses sont alors mises en mémoire 6. Pendant l'opération, l'ordinateur émet un signal d'avertissement lorsque l'extrémité distale du micro-instrument approche d'une de ces zones dangereuses. De préférence, ce signal d'avertissement est un signal sonore dont la fréquence est fonction de la distance exacte entre toute partie du micro¬ instrument utilisé et la plus proche de ces zones dangereuses. Ce signal d'avertissement peut également être un signal vocal indiquant la distance précise. Ceci permet d'assurer une sécurité notamment lorsqu'une zone dangereuse n'est absolument pas visible directement pour le chirurgien.According to a preferred embodiment of the invention, before the operation, the surgeon determines on the digital image the dangerous zones close to the place where he is going to operate. The coordinates of these danger zones are then stored in memory 6. During the operation, the computer emits a warning signal when the distal end of the micro-instrument approaches one of these danger zones. Preferably, this warning signal is an audible signal whose frequency is a function of the exact distance between any part of the micro¬ instrument used and the closest to these danger zones. This warning signal can also be a voice signal indicating the precise distance. This ensures security, especially when a dangerous area is absolutely not visible directly to the surgeon.
Selon un mode également préféré de l'invention, l'intégralité des images affichées pendant l'opération est enregistrée en mémoire 6. Cet enregistrement peut alors constituer un compte-rendu magnétique post-opératoire. En outre, l'enregistrement peut favorablement être utilisé dans un but pédagogique ou d'analyse post-opératoire. A cet effet, l'enregistrement doit être verrouillé automatiquement pour éviter toute manipulation postérieure des images (par analogie à ce que Ton appelle couramment "boîte noire" en aviation). Un tel verrouillage est nécessaire dans des applications médico- légales de l'invention.According to an equally preferred embodiment of the invention, all of the images displayed during the operation are recorded in memory 6. This recording can then constitute a post-operative magnetic report. In addition, the recording can be favorably used for educational or post-operative analysis purposes. For this purpose, the recording must be locked automatically to avoid any subsequent manipulation of the images (by analogy to what is commonly called "black box" in aviation). Such locking is necessary in forensic applications of the invention.
Bien que Ton ait représenté et décrit ce que Ton considère actuellement être les modes de réalisation préférés de la présente invention, il est évident que l'Homme de TArt pourra y apporter différents changements et modifications sans sortir du cadre de la présente invention tel que défini ci- après. Although it has been shown and described what is currently considered to be the preferred embodiments of the present invention, it is obvious that those skilled in the art can make various changes and modifications thereto without depart from the scope of the present invention as defined below.
R E V E N D I C A T I O N SR E V E N D I C A T I O N S
1 - Procédé de radioscopie simulée par l'ordinateur et d'aide à la chirurgie, selon lequel : on procède à l'acquisition volumétrique exhaustive d'images numériques par scanographie, moyen d'imagerie par résonance magnétique nucléaire ou équivalent, de la région à opérer ; on place sur le patient un jeu de capteurs statiques (16) solidaires d'un tissu osseux solidaire de la dite région et déterminant un référentiel de coordonnées au moins tridimensionnelles ; on assure une corrélation entre les images numériques acquises et le dit référentiel ; on saisit numériquement toutes les caractéristiques utiles des micro-instruments (24) que le chirurgien est amené à utiliser pendant l'opération ; on fixe sur le micro-instrument (24) utilisé par le chirurgien, de façon verrouillable et en un point déterminé, un capteur topologique dynamique (18) ; on détermine à tout instant la position du capteur dynamique par rapport au dit référentiel et Ton calcule la position précise de l'extrémité distale du dit micro-instrument (24) ; et on affiche en temps réel sur un écran (4) pendant l'opération la dite position précise au moins de l'extrémité distale du dit micro-instrument (24) sur l'image numérique correspondant à cette position.1 - Process of computer-simulated radioscopy and surgical aid, according to which: one proceeds to the exhaustive volumetric acquisition of digital images by scanography, imaging means by nuclear magnetic resonance or equivalent, of the region to operate; a set of static sensors (16) fixed to a bone tissue fixed to said region is placed on the patient and determining a reference frame of coordinates at least three-dimensional; a correlation is ensured between the digital images acquired and said reference frame; all the useful characteristics of the micro-instruments (24) that the surgeon is led to use during the operation are digitally entered; a dynamic topological sensor (18) is fixed on the micro-instrument (24) used by the surgeon, in a lockable manner and at a determined point; the position of the dynamic sensor is determined at any time relative to said reference frame and the precise position of the distal end of said micro-instrument (24) is calculated; and displaying in real time on a screen (4) during the operation said precise position at least of the distal end of said micro-instrument (24) on the digital image corresponding to this position.
2 - Procédé selon la revendication 1 caractérisé en ce que le dit capteur topologique dynamique (18) est fixé à la partie proximale du dit micro-instrument (24) et hors du champ 2 - Method according to claim 1 characterized in that said dynamic topological sensor (18) is fixed to the proximal part of said micro-instrument (24) and outside the field

Claims

opératoire de façon à éliminer tout signal physique traversant un tissu du patient.so as to eliminate any physical signal passing through a patient's tissue.
3 - Procédé selon la revendication 1 ou 2 caractérisé en ce que les dits capteurs (16, 18) sont du type électromagnétique.3 - Method according to claim 1 or 2 characterized in that said sensors (16, 18) are of the electromagnetic type.
4 - Procédé selon la revendication 3 caractérisé en ce que le dit micro-instrument (24) est réalisé dans un matériau non-ferromagnétique.4 - Method according to claim 3 characterized in that said micro-instrument (24) is made of a non-ferromagnetic material.
5 - Procédé selon la revendication 1 ou 2 caractérisé en ce que les dits capteurs (16, 18) font appel à au moins l'un des principes physiques choisis dans le groupe comprenant un champ optique ou infrarouge, les ultrasons, les micro-ondes, les détecteurs de métaux, et les combinaisons de ceux-ci.5 - Method according to claim 1 or 2 characterized in that said sensors (16, 18) use at least one of the physical principles chosen from the group comprising an optical or infrared field, ultrasound, microwaves , metal detectors, and combinations thereof.
6 - Procédé selon Tune quelconque des revendications 3 ou 4 caractérisé en ce que les dits capteurs (16, 18) déterminent un signal en six dimensions comprenant les coordonnées spatiales et les coordonnées angulaires du dit capteur topologique dynamique (18).6 - Method according to any one of claims 3 or 4 characterized in that said sensors (16, 18) determine a signal in six dimensions comprising the spatial coordinates and the angular coordinates of said dynamic topological sensor (18).
7 - Procédé selon Tune quelconque des revendications précédentes caractérisé en ce que le système (2, 22, 16, 18) est étalonné préalablement à l'opération.7 - Method according to any of the preceding claims characterized in that the system (2, 22, 16, 18) is calibrated prior to the operation.
8 - Procédé selon Tune quelconque des revendications précédentes caractérisé en ce que Ton détermine, en outre, le degré d'ouverture (β) du micro-instrument (24), si celui-ci comporte une partie mobile (26). 9 - Procédé selon Tune quelconque des revendications précédentes caractérisé en ce que Ton affiche sur le dit écran (4), pendant l'opération, une pluralité d'images numériques en deux dimensions selon des plans différents ou des images numériques en trois dimensions.8 - Method according to any one of the preceding claims characterized in that Ton determines, in addition, the degree of opening (β) of the micro-instrument (24), if the latter comprises a movable part (26). 9 - Method according to any one of the preceding claims characterized in that Ton displays on said screen (4), during the operation, a plurality of digital images in two dimensions according to different planes or digital images in three dimensions.
10 - Procédé selon Tune quelconque des revendications précédentes caractérisé en ce qu'il comprend, en outre, les étapes suivantes : préalablement à l'opération, on détermine sur l'image numérique les zones dangereuses proches de la dite région ; on enregistre les coordonnées des dites zones ; et pendant l'opération, on détermine un signal d'avertissement fonction de la distance entre toute partie du dit micro¬ instrument (24) et la plus proche des dites zones dangereuses.10 - Method according to any one of the preceding claims characterized in that it further comprises the following steps: prior to the operation, the hazardous areas close to said region are determined on the digital image; the coordinates of said zones are recorded; and during the operation, a warning signal is determined as a function of the distance between any part of said micro¬ instrument (24) and the closest to said dangerous zones.
11 - Procédé selon Tune quelconque des revendications précédentes caractérisé en ce que, en outre, on enregistre pendant l'opération l'intégralité des images affichées sur le dit écran (4). 11 - Method according to any one of the preceding claims characterized in that, in addition, during the operation, all of the images displayed on said screen are recorded (4).
PCT/FR1995/000620 1994-05-13 1995-05-11 Computer-simulated radioscopy and assistance method for surgery WO1995031148A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95920139A EP0758868A1 (en) 1994-05-13 1995-05-11 Computer-simulated radioscopy and assistance method for surgery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9405905A FR2719760B1 (en) 1994-05-13 1994-05-13 Process of computer simulated radioscopy and aid to surgery.
FR94/05905 1994-05-13

Publications (1)

Publication Number Publication Date
WO1995031148A1 true WO1995031148A1 (en) 1995-11-23

Family

ID=9463193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000620 WO1995031148A1 (en) 1994-05-13 1995-05-11 Computer-simulated radioscopy and assistance method for surgery

Country Status (3)

Country Link
EP (1) EP0758868A1 (en)
FR (1) FR2719760B1 (en)
WO (1) WO1995031148A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013078449A1 (en) * 2011-11-23 2013-05-30 Sassani Joseph Universal microsurgical simulator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119033A (en) * 1997-03-04 2000-09-12 Biotrack, Inc. Method of monitoring a location of an area of interest within a patient during a medical procedure
US6731966B1 (en) 1997-03-04 2004-05-04 Zachary S. Spigelman Systems and methods for targeting a lesion
FR2801185A1 (en) 1999-11-18 2001-05-25 Francois Fassi Allouche SECURE VIDEO ENDOSCOPE WITH INTEGRATED LASER PROFILOMETER FOR COMPUTER-ASSISTED SURGERY
EP1711119A1 (en) 2004-01-23 2006-10-18 Traxyz Medical, Inc. Methods and apparatus for performing procedures on target locations in the body
US20070275359A1 (en) * 2004-06-22 2007-11-29 Rotnes Jan S Kit, operating element and haptic device for use in surgical simulation systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987004080A2 (en) * 1986-01-13 1987-07-16 Donald Bernard Longmore Surgical catheters
WO1988009151A1 (en) * 1987-05-27 1988-12-01 Schloendorff Georg Process and device for optical representation of surgical operations
WO1991004711A1 (en) * 1989-10-05 1991-04-18 Diadix S.A. Local intervention interactive system inside a region of a non homogeneous structure
US5049069A (en) * 1990-02-16 1991-09-17 Leonard Salesky Digital apical foramen locating apparatus with linear graphic display
EP0469966A1 (en) * 1990-07-31 1992-02-05 Faro Medical Technologies (Us) Inc. Computer-aided surgery apparatus
US5230623A (en) * 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
US5279309A (en) * 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987004080A2 (en) * 1986-01-13 1987-07-16 Donald Bernard Longmore Surgical catheters
WO1988009151A1 (en) * 1987-05-27 1988-12-01 Schloendorff Georg Process and device for optical representation of surgical operations
WO1991004711A1 (en) * 1989-10-05 1991-04-18 Diadix S.A. Local intervention interactive system inside a region of a non homogeneous structure
US5049069A (en) * 1990-02-16 1991-09-17 Leonard Salesky Digital apical foramen locating apparatus with linear graphic display
EP0469966A1 (en) * 1990-07-31 1992-02-05 Faro Medical Technologies (Us) Inc. Computer-aided surgery apparatus
US5279309A (en) * 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5230623A (en) * 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAJURA ET AL.: "merging virtual objects with the real world", COMPUTER GRAPHICS, vol. 26, no. 2, 1 July 1992 (1992-07-01), pages 203 - 210 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013078449A1 (en) * 2011-11-23 2013-05-30 Sassani Joseph Universal microsurgical simulator
CN104244859A (en) * 2011-11-23 2014-12-24 J·萨萨尼 Universal microsurgical simulator

Also Published As

Publication number Publication date
FR2719760A1 (en) 1995-11-17
FR2719760B1 (en) 1996-10-31
EP0758868A1 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
Gavaghan et al. A portable image overlay projection device for computer-aided open liver surgery
TW572749B (en) A guide system
US7559895B2 (en) Combining tomographic images in situ with direct vision using a holographic optical element
EP0722299B1 (en) Computer-assisted microsurgery equipment and methods for use with said equipment
EP3076875B1 (en) An ultrasound system with stereo image guidance or tracking
JP5114620B2 (en) Digital media enhanced image guidance technique system and method
US9615772B2 (en) Global endoscopic viewing indicator
JP4630564B2 (en) Surgery support apparatus, method and program
JP4553551B2 (en) Diagnostic imaging method
WO1999063899A1 (en) Mapping method and device for robotic surgery
CN111212609A (en) System and method for using augmented reality with shape alignment for placement of medical devices in bone
FR3095331A1 (en) Computer-assisted orthopedic surgery procedure
JPH08509393A (en) How to develop and control surgical procedures
US11344180B2 (en) System, apparatus, and method for calibrating oblique-viewing rigid endoscope
CN114727845A (en) Method and system for reconstructing a puncture point of a medical instrument
WO1995031148A1 (en) Computer-simulated radioscopy and assistance method for surgery
FR3030222A1 (en) SURGICAL ORIENTATION SYSTEM
Aschke et al. Augmented reality in operating microscopes for neurosurgical interventions
JP4794631B2 (en) System and method for detecting and presenting tissue information from medical images
Sauer et al. Augmented-reality visualization in iMRI operating room: system description and preclinical testing
EP3911238A1 (en) Interventional radiology medical device for real-time guidance of a medical operating needle in a volume
KR101855461B1 (en) Automatic needling system and method for minimally invasive surgery
Wesarg et al. Accuracy of needle implantation in brachytherapy using a medical AR system: a phantom study
WO2006087445A2 (en) Method and system to assist the guiding of a medical tool
Zhou et al. Towards AR‐assisted visualisation and guidance for imaging of dental decay

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WR Later publication of a revised version of an international search report
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995920139

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 765128

Date of ref document: 19961205

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1995920139

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1995920139

Country of ref document: EP