WO1995031003A1 - Manufacture of electronic circuit device - Google Patents

Manufacture of electronic circuit device Download PDF

Info

Publication number
WO1995031003A1
WO1995031003A1 PCT/JP1995/000823 JP9500823W WO9531003A1 WO 1995031003 A1 WO1995031003 A1 WO 1995031003A1 JP 9500823 W JP9500823 W JP 9500823W WO 9531003 A1 WO9531003 A1 WO 9531003A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic circuit
circuit device
manufacturing
processing
manufacturing process
Prior art date
Application number
PCT/JP1995/000823
Other languages
French (fr)
Japanese (ja)
Inventor
Yuuichi Hamamura
Yasuo Nakagawa
Fumikazu Ito
Tateoki Miyauchi
Yasuhiko Hara
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1995031003A1 publication Critical patent/WO1995031003A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a method of manufacturing an electronic circuit device such as a semiconductor and an SI, a TFT, etc., and particularly measures a pattern shape and a physical property value on a wafer or a substrate in the middle of a manufacturing process, and obtains the measured information,
  • the present invention relates to a manufacturing method for stably manufacturing an electronic circuit device with a high yield by optimizing processes after the manufacturing process based on information monitored by a manufacturing device.
  • Japanese Patent Application Laid-Open No. 63-249328 discloses a method of simulating the optimum manufacturing conditions of a semiconductor currently manufactured in the next and subsequent processes by using processing history information and semiconductor inspection information for each process in a semiconductor manufacturing line. The method to be determined by the application is shown.
  • this known example is an invention in which the variation in the manufacturing conditions in the previous process is corrected only in the subsequent process steps without making any correction for the portion where the processing is completed.
  • Such miniaturization and multilayering In advanced semiconductors, as the design changes in the next process and subsequent steps are repeated, the burden on the subsequent manufacturing increases (for example, the difficulty of the subsequent processes increases and the yield decreases).
  • issues such as how to make defective parts non-defective, which cannot be addressed only by optimizing the manufacturing conditions after the next process, remain unsolved. Disclosure of the invention
  • An object of the present invention is to provide a method of manufacturing an electronic circuit device which solves this problem.
  • the measurement results of the shape and physical property values of the processed pattern and the monitor information of the manufacturing history up to the arbitrary manufacturing process are used.
  • Information on the actual pattern state of the layer is obtained, and the manufacturing process of the next layer and subsequent layers is simulated to predict whether the product will be good or defective, and if it is predicted to be defective,
  • the most appropriate processing is provided by a simulator and a database.
  • FIG. 1 is a flowchart of a manufacturing method according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a manufacturing system according to a first embodiment of the present invention.
  • FIG. 3 is a flowchart of a detailed processing procedure of the first embodiment of the present invention.
  • FIG. 4 is a flowchart of the manufacturing method according to the first embodiment of the present invention.
  • FIG. 5 is a sectional view of an LSI according to a first embodiment of the present invention.
  • FIG. 6 is a sectional view of an LSI according to a first embodiment of the present invention.
  • FIG. 7 is a plan perspective view from above of the LSI according to the first embodiment of the present invention.
  • FIG. 8 is an LSI cross-sectional view of the first embodiment of the present invention.
  • FIG. 9 is a sectional view of an LSI according to a first embodiment of the present invention.
  • Fig. 1 shows an example of applying this manufacturing method to an LSI manufacturing line.
  • the LSI manufacturing line 11 includes a first step 1 to a final step 10.
  • pattern inspection and measurement 3 are performed, and simulation is performed to determine whether the next step and subsequent steps will be non-defective or non-defective by processing under the preset process conditions. Predict.
  • n + 1 process In the case of a non-defective product, perform the n + 1 process as scheduled.
  • Fig. 2 shows the manufacturing system of this embodiment.
  • Various manufacturing apparatuses such as an oxidation furnace, a mask manufacturing apparatus, an exposure apparatus, a film forming apparatus, an etching apparatus, and an ion implantation apparatus.
  • An inspection device 22 that measures the shape of a pattern such as a cross-sectional observation device using an electron beam, and measures physical properties using an analyzer such as an Auger or ion microanalyzer.
  • Recipe information such as dimensions (eg mask CAD information), processing temperature, processing time, gas pressure, energy, raw materials, etc.
  • the manufacturing apparatus 20 monitors the film formation conditions such as the film formation temperature and time during film formation, the etching speed 'time during etching, the oxidation / diffusion temperature, The information monitored and measured during the manufacturing process, such as the energy and dose of ion implantation (hereinafter referred to as device monitor information), is sent back to the host computer 28.
  • the relationship between the device monitor information and the result measured by the inspection device 22 is stored in the database 29.
  • LSI design is performed using a process simulator incorporated in the simulator 32 and a device simulator, etc., and a physical model (hereinafter referred to as a work model) of the pattern shape and physical properties in each process is created in advance. And record it in database 31.
  • the completed SI threshold voltage and frequency characteristics (hereinafter, electrical characteristics) are stored in database 33, and recipes are stored in database 35.
  • the above-mentioned various simulators and various databases are all managed by the host computer 28.
  • a process 45 of converting the obtained device monitor information 42 into a shape / physical property value is performed in the database 29, and the n-process shape and physical property value information 46 after this process,
  • the work model of the n-th process which approximates the actual pattern as much as possible, is determined by the work model analysis computer 30, which is used as the n-process work model (determined version) 48 and stored in the database 31. . next,
  • the electrical characteristics are predicted 51 by the device simulator 27.
  • the database 33 If the predicted electrical characteristics satisfy the design values, the recipe (provisional version) 4 1 after the (n + 1) th process should be changed from (preliminary version) 5 3 to The work model (expected version) for the (n + 1) th and subsequent steps will be updated, and the (n + 1) th step 9 will be continued. If the predicted electrical characteristics do not satisfy the design values,
  • a failure cause analysis 57 was performed by comparing the n-process work model (predicted version) 44 with the n-process work model (final version) 48. Change the recipe after n + 1 process 5 8
  • the electrical characteristics are predicted again, and the quality of the electrical characteristics is determined.
  • FIG. 4 shows a flow chart of the whole manufacturing method of this embodiment.
  • the electrical characteristics of this electronic circuit device were actually evaluated using an electric circuit tester, electron beam tester, etc.
  • Do 1 3 In the case of a defective product, the cause of the defect is estimated by using a debugging tool or the work model obtained so far, and a failure analysis is performed using a visual inspection device, a cross-sectional observation device, an analysis device, etc., and thereafter.
  • Implement measures 15 to reflect in the manufacturing conditions of any process of the product to be manufactured.
  • FIG. 5 shows a cross-sectional structure of the LSI
  • FIG. 5a shows a cross-section at the time of design. It is assumed that the design value of the implantation depth of the impurity into the source 72a and the drain 73b is d, and that the actual inspection 3 results in d + ⁇ as shown in FIG. 5b. Therefore, as shown in Equations 1 and 2, the gate length may be changed from L g to L g + 2 ⁇ in order to keep the transfer conductance Gm as designed.
  • G m Z / L eff- ⁇ C (V g ⁇ V th) (Equation 1) G m; transfer conductance
  • Figure 8 shows examples of other optimizations. If the contact hole to be wired to the diffusion layer is not formed as designed as shown in Fig. 8a and there is an etching residue 78 as shown in Fig. 8b, contact between this diffusion layer 77 and wiring 75g The stakes become too large. Here, the amount of increase in the resistance is calculated based on the result of the inspection 3, and the thickness T or the width of the wiring is changed to reduce the resistance of the wiring itself by the increased amount.
  • FIG. 9 shows an example in which optimization 7 was performed when the impurity concentration of the diffusion layer was low.
  • SI uses a manufacturing method in which impurity ions are implanted using the gate 70 as a mask. After the impurity implantation, it is assumed that the impurity concentration is insufficient when actually measured.
  • Figure 8a In this case, utilizing the fact that the gate 70 serves as a mask, the wafer is returned to the implantation apparatus again, and correction is performed by additionally implanting the missing impurity ions. I do. It is also possible to carry out the correction 8 by performing additional etching in the same manner on the remaining etching 7 8 as shown in FIG. It is also possible to perform local correction using a focused ion beam device or laser CVD device.
  • the production line of the present embodiment can be applied to both a prototype line and a mass production line, and can be a production method that enables mass production without trial production. As production progresses, it is possible to achieve high yields, such as returning defective electronic circuit devices to non-defective products, and shorten the development period.

Abstract

An electronic circuit device manufacturing method and system by which an electronic circuit device having desired electronic circuit characteristics can be manufactured. After an arbitrary step of forming a layer of the electronic device, the shape of the pattern or the physical values of the layer are measured, or the monitoring information during the step about the manufacturing system are collected. The manufacturing process after the step is predicted by a simulator using the monitoring information to optimize the manufacturing conditions after the step or to correct the patterns. Since the manufacture process of the electronic circuit device is progressed by making necessary correction on patterns or manufacturing conditions, defective electronic circuit devices which have been discarded are recovered as nondefective products, resulting in an improvement in yield and a reduction in developing time.

Description

明 細 書  Specification
電子回路装置の製造方法 技術分野 Manufacturing method of electronic circuit device
本発明は、 半導体し S I、 T F T等の電子回路装置の製造方法に関わ り、 特に製造工程の途中において、 ウェハ上や基板上のパターン形状や 物性値を計測して、 この計測した情報や、 製造装置でモニタした情報な どに基づいて、 その製造工程以降の工程を最適化することにより高い歩 留まりで安定して電子回路装置を製造する製造方法に関わる。 背景技術  The present invention relates to a method of manufacturing an electronic circuit device such as a semiconductor and an SI, a TFT, etc., and particularly measures a pattern shape and a physical property value on a wafer or a substrate in the middle of a manufacturing process, and obtains the measured information, The present invention relates to a manufacturing method for stably manufacturing an electronic circuit device with a high yield by optimizing processes after the manufacturing process based on information monitored by a manufacturing device. Background art
近年、 電子回路装置は微細化、 基板垂直方向の多層化が進み製造の難 度が増しすとともに、 開発 ·製造が長期間にわたるようになってきてい る。 従来のような製造完了後、 検査し、 良品を選ぶという方法では、 充 分な歩留まりが得られないだけでなく、 不良対策が製造完了後になって しまうために、 開発,製造期間がさらに長くなつてしまう。  In recent years, the miniaturization of electronic circuit devices and the increase in the number of layers in the vertical direction of the substrate have increased the difficulty of manufacturing, and the development and manufacturing have been extended for a long time. The conventional method of inspecting and selecting non-defective products after the completion of manufacturing not only does not provide a sufficient yield, but also leads to a longer period of development and manufacturing due to failure measures being taken after the completion of manufacturing. Would.
そこで最近では、 設計時に製造プロセスを予測する各種シミ ュレ一夕 が開発され、 高歩留まり · 開発期間短縮に貢献しつつある。  Therefore, recently, various simulators that predict the manufacturing process at the time of design have been developed, and are contributing to high yield and shortening the development period.
特開昭 63-249328では、 半導体の製造ラインにおいて処理履歴情報と 各工程ごとの半導体の検査情報とを用いて、 現在製造中の半導体に対す る、 次工程以降の最適な製造条件をシミ ュレーショ ンにより決定する方 式が示されている。  Japanese Patent Application Laid-Open No. 63-249328 discloses a method of simulating the optimum manufacturing conditions of a semiconductor currently manufactured in the next and subsequent processes by using processing history information and semiconductor inspection information for each process in a semiconductor manufacturing line. The method to be determined by the application is shown.
しかし、 この公知例は前工程での製造条件のばらつきの補正を、 処理 がすんでいる部分についての修正を何ら行うことなく、 次工程以降の部 分のみで行っていく という発明であり、 現在のような微細化、 多層化が 進んだ半導体においては、 次工程以降の設計変更を重ねていく うちに逆 に以降の製造に負担がかかってしまう (例えば以降の工程の難度が増し たり、 歩留まりが低下したり) といった問題点や、 次工程以降の製造条 件の最適化だけでは対応できないような不良箇所をいかにして良品にし ていくかといつた課題が未解決のままである。 発明の開示 However, this known example is an invention in which the variation in the manufacturing conditions in the previous process is corrected only in the subsequent process steps without making any correction for the portion where the processing is completed. Such miniaturization and multilayering In advanced semiconductors, as the design changes in the next process and subsequent steps are repeated, the burden on the subsequent manufacturing increases (for example, the difficulty of the subsequent processes increases and the yield decreases). However, issues such as how to make defective parts non-defective, which cannot be addressed only by optimizing the manufacturing conditions after the next process, remain unsolved. Disclosure of the invention
本発明の目的はこの問題を解決する電子回路装置の製造方法を提供す ることにある。  An object of the present invention is to provide a method of manufacturing an electronic circuit device which solves this problem.
本発明では、 電子回路装置のある任意の製造工程後において、 処理が 済んでいるパターンの形状や物性値等の測定結果と、 該任意の製造工程 までの製造履歴ののモニタ情報とにより、 その層の実際のパターン状態 の情報を得て、 その次の層以降の製造プロセスをシミュレ一夕により良 品となるか不良品となるかを予測し、 不良品となると予想された場合に、 According to the present invention, after an arbitrary manufacturing process of the electronic circuit device, the measurement results of the shape and physical property values of the processed pattern and the monitor information of the manufacturing history up to the arbitrary manufacturing process are used. Information on the actual pattern state of the layer is obtained, and the manufacturing process of the next layer and subsequent layers is simulated to predict whether the product will be good or defective, and if it is predicted to be defective,
( 1 )処理が終了している部分について修正を行う (1) Modify the part where processing is completed
(2)以後に受けるべき処理条件を最適化する  (2) Optimize processing conditions to be received thereafter
といった選択枝から最も適切な処理を、 シミ ュレータとデータベースに より歩留まりと製造コス トを予測して判断するといつた製造方法を提供 する。  Based on the options, the most appropriate processing is provided by a simulator and a database.
本発明によると、 難度の高い製造や製造装置のばらつき、 長期的変動 等によって生じる不良を、 処理が終了している部分の修正とそれ以降の 処理条件の修正とのうち、 どちらが時間的、 経済的に効率が良く技術的 に確実性があるかを考慮して判断し良品化するので、 高歩留まりはいう までもなく開発期間の短縮、 製造コス 卜の削減を可能にする。 図面の簡単な説明 第 1図は、 本発明の第 1の実施例の製造方法の流れ図である。 第 2図 は、 本発明の第 1の実施例の製造システムを示す図である。 第 3図は、 本発明の第 1の実施例の詳細な処理手順の流れ図である。 第 4図は、 本 発明の第 1の実施例の製造方法の流れ図である。 第 5図は、 本発明の第 1の実施例の L S I断面図を示す。 第 6図は、 本発明の第 1の実施例の L S I断面図を示す。 第 7図は、 本発明の第 1の実施例の L S I上方か らの平面透視図である。 第 8図は、 本発明の第 1の実施例の L S I断面 図である。 第 9図は、 本発明の第 1の実施例の L S I断面図である。 発明を実施するための最良の形態 According to the present invention, defects caused by difficult manufacturing, variations in manufacturing equipment, long-term fluctuations, etc., are either time-consuming or economical. It is possible to shorten the development period and reduce manufacturing costs, not to mention high yield, because it is possible to judge products by considering whether they are efficient and technically reliable or not. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a flowchart of a manufacturing method according to a first embodiment of the present invention. FIG. 2 is a diagram showing a manufacturing system according to a first embodiment of the present invention. FIG. 3 is a flowchart of a detailed processing procedure of the first embodiment of the present invention. FIG. 4 is a flowchart of the manufacturing method according to the first embodiment of the present invention. FIG. 5 is a sectional view of an LSI according to a first embodiment of the present invention. FIG. 6 is a sectional view of an LSI according to a first embodiment of the present invention. FIG. 7 is a plan perspective view from above of the LSI according to the first embodiment of the present invention. FIG. 8 is an LSI cross-sectional view of the first embodiment of the present invention. FIG. 9 is a sectional view of an LSI according to a first embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面に従い本発明の実施例を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施例 1 )  (Example 1)
本製造方法を L S I の製造ラインに適用した例を第 1図に示す。 この L S I の製造ライン 1 1は第 1工程 1から最終工程 1 0により構成され ている。 この任意の第 n工程 2の終了後に、 パターンの検査 ·計測 3を 行い、 シミュレーショ ンにより、 次工程以降を予め設定されたプロセス 条件で処理することにより良品となるか不良品となるかを予測する。 良 品の場合は第 n + 1工程を予定通り行なう。 不良品の場合は、 この不良 原因をパターンを修正 8することによって取り除く力、、 または n + 1ェ 程以降の製造条件 (以後、 レシピ) を最適化 7することによって補正し ていくかを判断し、 実行することに本発明の特徴がある。 第 2図に本実 施例の製造システムを示す。  Fig. 1 shows an example of applying this manufacturing method to an LSI manufacturing line. The LSI manufacturing line 11 includes a first step 1 to a final step 10. After completion of this optional n-th step 2, pattern inspection and measurement 3 are performed, and simulation is performed to determine whether the next step and subsequent steps will be non-defective or non-defective by processing under the preset process conditions. Predict. In the case of a non-defective product, perform the n + 1 process as scheduled. In the case of defective products, determine whether the cause of this defect can be eliminated by correcting the pattern 8 or whether the correction will be made by optimizing the manufacturing conditions (hereinafter, recipe) 7 after the n + 1 step In addition, there is a feature of the present invention in executing. Fig. 2 shows the manufacturing system of this embodiment.
第 2図に示すように製造ライン 1 1は、  As shown in FIG. 2, the production line 11
(い) 酸化炉、 マスク製造装置、 露光装置、 成膜装置、 エッチング装置、 イオン打ち込み装置など各種の製造装置 2 0 と、  (I) Various manufacturing apparatuses such as an oxidation furnace, a mask manufacturing apparatus, an exposure apparatus, a film forming apparatus, an etching apparatus, and an ion implantation apparatus.
(ろ) 光学検査装置、 S T M、 A F M、 T E M、 測長 S E M、 集束ィォ ンビームを用いた断面観察装置などのパターンの形状測定や、 ォージェ、 イオンマイクロアナライザなどの分析装置による物性値計測などを行な う検査装置 2 2 と、 (B) Optical inspection equipment, STM, AFM, TEM, measuring SEM, focusing An inspection device 22 that measures the shape of a pattern such as a cross-sectional observation device using an electron beam, and measures physical properties using an analyzer such as an Auger or ion microanalyzer.
(は) これらの装置間のウェハ搬送を行なう搬送装置 2 6 と、  (C) a transfer device 26 for transferring a wafer between these devices;
(に) 検査後にウェハを修正する場合に備えて、 集束イオンビーム加工 装置やレーザ C V D装置等の修正装置 2 3により構成する。 その個々の 装置を制御するコンピュー夕 2 7 とこれらを統括制御するホス トコンピ ユータ 2 8を設ける。 コンピュータ 2 7は、  (Ii) In case of repairing the wafer after inspection, it is composed of a correction device 23 such as a focused ion beam processing device or a laser CVD device. A computer 27 that controls the individual devices and a host computer 28 that controls these devices are provided. Computer 2 7
( a ) 製造装置間の搬送順序の制御信号や、  (a) Control signals for the transfer order between manufacturing equipment,
( β ) 寸法 (例えばマスクの C A D情報) 、 処理温度、 処理時間、 ガス 圧力、 エネルギ、 原料等のレシピ情報や、  (β) Recipe information such as dimensions (eg mask CAD information), processing temperature, processing time, gas pressure, energy, raw materials, etc.
( 7 ) 検査箇所、 検査条件などの情報を送り、 搬送装置 2 6、 製造装置 2 0、 検査装置 2 2をコン トロールする。  (7) Send information such as inspection locations and inspection conditions, and control the transport device 26, manufacturing device 20, and inspection device 22.
一方、 製造装置 2 0は、 この内部に組み込まれた装置モニタにより、 例えば成膜中の成膜温度 · 時間等の成膜条件やエッチング中のエツチン グ速度 '時間、 酸化 '拡散の温度、 あるいはイオン打ち込みのエネルギ、 ドーズ量などの製造プロセス中に監視、 測定した情報 (以後、 装置モニ 夕情報とする。 ) をホス トコンピュータ 2 8に送り返す。 この装置モニ タ情報と、 検査装置 2 2により測定された結果との関係をデータベース 2 9に保存しておく。  On the other hand, the manufacturing apparatus 20 monitors the film formation conditions such as the film formation temperature and time during film formation, the etching speed 'time during etching, the oxidation / diffusion temperature, The information monitored and measured during the manufacturing process, such as the energy and dose of ion implantation (hereinafter referred to as device monitor information), is sent back to the host computer 28. The relationship between the device monitor information and the result measured by the inspection device 22 is stored in the database 29.
ところで、 L S Iの設計は、 シミュレータ 3 2に駔み込まれたプロセ スシミュレータと、 デバイスシミュレータなどを用いて行い、 各工程で のパターン形状や物性値の物理モデル (以後、 ワークモデル) を予め作 成し、 データベース 3 1の中に記録する。 完成し S Iのしきい電圧や周 波数特性など (以後、 電気特性) はデータべ一ス 3 3に、 レシピはデ一 夕べ一ス 3 5に記憶しておく。 以上の各種シミ ュレ一タと各種データベースは全てホス トコンピュー タ 2 8により統括管理する。 By the way, LSI design is performed using a process simulator incorporated in the simulator 32 and a device simulator, etc., and a physical model (hereinafter referred to as a work model) of the pattern shape and physical properties in each process is created in advance. And record it in database 31. The completed SI threshold voltage and frequency characteristics (hereinafter, electrical characteristics) are stored in database 33, and recipes are stored in database 35. The above-mentioned various simulators and various databases are all managed by the host computer 28.
この製造システムよる詳細な処理手順を第 3図を用いて述べる。  The detailed processing procedure by this manufacturing system will be described with reference to FIG.
まず、 第 n工程において、  First, in the nth step,
( 1 ) 得られた装置モニタ情報 4 2を形状 ·物性値に変換する処理 4 5 をデータベース 2 9にて行い、 この処理後の n工程形状、 物性値情報 4 6 と、  (1) A process 45 of converting the obtained device monitor information 42 into a shape / physical property value is performed in the database 29, and the n-process shape and physical property value information 46 after this process,
第 n工程終了後に、 After the end of the nth process,
( 2 ) 検査装置 2 2により収集した n工程完ウェハ形状、 物性値情報 4 3 と、  (2) n-process completed wafer shape and physical property value information 4 3 collected by the inspection device 2 2
( 3 ) 実際に検査しないパターンの形状、 物性値については既にデータ ベース 3 1に記憶しておいた第 n工程のワークモデル (予想版) 4 4 と を用いて、  (3) For the shapes and physical properties of the patterns that are not actually inspected, using the work model (predicted version) 44 of the n-th process already stored in the database 31,
実際のパターンをできるかぎり近似した第 n工程のワークモデルの確定 処理 4 7をワークモデル解析コンピュータ 3 0により行い、 これを nェ 程ワークモデル (確定版) 4 8 とし、 データベース 3 1に記憶させる。 次に、 The work model of the n-th process, which approximates the actual pattern as much as possible, is determined by the work model analysis computer 30, which is used as the n-process work model (determined version) 48 and stored in the database 31. . next,
( a ) この第 n工程のワークモデル (確定版) 4 8 と、  (a) Work model of this n-th process (final version) 48
( b ) 既にデータベース 3 1に記憶しておいた第 1工程から第 n - 1ェ 程のワークモデル (確定版) 4 0 と、  (b) Work model (final version) 40 from the 1st process to the n-1st process already stored in database 31;
( c ) データベース 3 5に保存してある第 n + 1工程以降のレシピ (暫 定版) 4 1 とを用いて、 プロセスシミ ュレータにより最終工程完了後ま でのワークモデル (予想版) の作成処理 4 9を行う。  (c) Using the recipe (provisional version) 41 from the (n + 1) th process onwards stored in the database 35, a work model (predicted version) is created by the process simulator until the final process is completed. Perform processing 49.
この最終工程完了後までのワークモデル (予想版) 5 0を用いて、 デ バイスシミ ュレータ 2 7により電気特性の予測 5 1を行う。  Using the work model (predicted version) 50 up to the completion of this final process, the electrical characteristics are predicted 51 by the device simulator 27.
この予測結果を用いて、 データベース 3 3において電気特性の良否判 別 5 2を行い、 予測した電気特性が設計値を満足する場合には、 第 n + 1工程以降のレシピ (暫定版) 4 1を (確定版) 5 3にする、 すなわち 予定通りの製造を行なうことにし、第 n + 1工程以降のワークモデル(予 想版) を更新して、 第 n + 1工程 9を引き続き実行する。 予測した電気 特性が設計値を満足しない場合には、 Using these prediction results, the database 33 If the predicted electrical characteristics satisfy the design values, the recipe (provisional version) 4 1 after the (n + 1) th process should be changed from (preliminary version) 5 3 to The work model (expected version) for the (n + 1) th and subsequent steps will be updated, and the (n + 1) th step 9 will be continued. If the predicted electrical characteristics do not satisfy the design values,
(ァ) 満足な電気特性が得られるかどうか、  (A) Whether satisfactory electrical characteristics can be obtained,
(ィ) 安定な歩留まりが予想されるか、  (B) Is a stable yield expected?
(ゥ) 低コス トを維持できるかなどといった観点からレシピの変更が有 利か、 n工程完ウェハの修正が有利かをデータベースに基づいて判断 5 4 し、 レシピの変更だけで目標の電気特性が得られ、 高歩留まり、 低コ ス 卜が予想できる場合は、 {ステップ A始め }  (ゥ) Based on the database, it is determined whether it is advantageous to change the recipe from the viewpoint of maintaining low cost, etc., or it is advantageous to modify the n-process completed wafer. If high yield and low cost can be expected, {Start Step A}
ワークモデル解析コンピュー夕 3 0において n工程ワークモデル (予想 版) 4 4 と、 n工程ワークモデル (確定版) 4 8 とを比較することによ り不良原因解析 5 7を行い、 その対策として第 n + 1工程以降のレシピ の変更 5 8を行い、 In the work model analysis computer 30, a failure cause analysis 57 was performed by comparing the n-process work model (predicted version) 44 with the n-process work model (final version) 48. Change the recipe after n + 1 process 5 8
( i ) この変更した第 n + 1工程以降のプロセスレシピ (変更版) 6 0 と、  (i) The modified process recipe for the (n + 1) th and subsequent steps (modified version) 60,
( i i ) 第 1から第 n — 1工程までのワークモデル (確定版) 4 0 と、 (i i) Work model (final version) 40 from 1st to nth — 1 process,
( iii ) 第 n工程のワークモデル (確定版) 4 8 とを用いて、 (iii) Using the work model of the nth process (final version) 48
再度電気的特性を予測し、 電気特性の良否を判定 5 2する。 The electrical characteristics are predicted again, and the quality of the electrical characteristics is determined.
{ステップ A終わり }  {End of step A}
そして、 電気特性が設計値を満足するまで {ステップ A } を繰り返し、 設計値を満足した場合、第 n + 1工程以降のレシピ(変更版) 5 9を(確 定版) 5 3に登録し、 これに基づいて第 n + 1工程以降の製造を実行す る。 判断 5 4でレシピの変更が不適切と判断された場合は、 n工程完ゥ ェハの修正条件を求め修正 8を実行する。 この場合、 この修正情報 5 5 を用いてヮ一クモデル解析コンピュータ 3 0にて、 n工程ヮークモデル (確定版) 4 8を更新し、 データベース 3 1に保存しなおす必要がある。 以上の判断 5 4はデータベースに基づいてレシピの最適化 7 と修正 8 の選択を行なっているが、 この判断 5 4を行なう前に {ステップ A } を 行ないレシピの最適化 7が可能かどうかを判断し、 可能ならば実行する 方法もある。 Then, repeat {Step A} until the electrical characteristics satisfy the design values. If the design values are satisfied, register the recipe (modified version) 5 9 for the (n + 1) th process and later in the (confirmed version) 53 Based on this, the manufacturing of the (n + 1) th and subsequent steps is performed. When it is determined that the change of the recipe is inappropriate in the determination 54, the correction conditions for the n-step completion wafer are obtained and the correction 8 is executed. In this case, this fix 5 5 It is necessary to update the n-process peak model (final version) 48 on the peak model analysis computer 30 using, and save it back to the database 31. In decision 5 4 above, recipe optimization 7 and correction 8 were selected based on the database. Before making this decision 5 4, perform {Step A} to determine whether recipe optimization 7 is possible. There are ways to judge and, if possible, take action.
また、 この修正情報 5 5のみを保存し、 これに基づいて最終工程 1 0 終了後に修正を行う方法もある。 このような修正 8 と、 レシピの最適化 7 とを組み合わせて行うことも可能である。 すなわち、 ある部分をレシ ピの最適化 7で対応し、 残りの部分を修正 8する方法や、 修正 8を行つ た後でこの修正情報 5 5を考慮したレシピの最適化 7を行う方法などが 考んりれる。  There is also a method of storing only the correction information 55 and performing correction after the end of the final process 10 based on this. It is also possible to combine such modification 8 with recipe optimization 7. In other words, a method for optimizing the recipe 7 for a certain part and correcting the remaining part 8 and a method for optimizing the recipe 7 taking the correction information 5 5 into account after performing the correction 8 Can be considered.
ここで、 本実施例の製造方法全体の流れ図を第 4図に示す。 上記のよ うなレシピの最適化 7や修正 8を繰り返しながら製造ラインの最終工程 1 0を終了した後、 この電子回路装置の電気特性について電気回路テス 夕、 電子ビームテスタ等により実際にデバイス性能評価 1 3を行う。 不 良品の場合はデバッグツールやこれまでに求めたワークモデルによる不 良原因の推定を行なったり、 外観検査装置、 断面観察装置、 分析装置な どによる不良解析 1 4を行なったり して、 それ以降に製造する製品の任 意の工程の製造条件に反映させるように対策の実施 1 5を行なう。 また、 最終工程完了後の L S I を集束イオンビーム加工装置やレーザ C V D装 置などにより局所修正を行うことにより、 良品としたり 1 7、 一時的に 機能を回復させて上記の推定原因の実証を行い設計データやそれ以降に 製造する製品の任意の工程の製造条件に反映させたりすることも可能で め 。  Here, FIG. 4 shows a flow chart of the whole manufacturing method of this embodiment. After completing the final process 10 of the production line while optimizing and modifying the recipes 7 and 8 as described above, the electrical characteristics of this electronic circuit device were actually evaluated using an electric circuit tester, electron beam tester, etc. Do 1 3 In the case of a defective product, the cause of the defect is estimated by using a debugging tool or the work model obtained so far, and a failure analysis is performed using a visual inspection device, a cross-sectional observation device, an analysis device, etc., and thereafter. Implement measures 15 to reflect in the manufacturing conditions of any process of the product to be manufactured. In addition, by performing local correction of the LSI after the completion of the final process using a focused ion beam processing device or laser CVD device, etc. It can be reflected in the design data and in the manufacturing conditions of any process of the products manufactured thereafter.
また、 一度この方法で製造したものと、 類似のパターンを有する製品 を再度製造する場合に、 過去に検査 ' 計測 3を行ったパターンの形状や 物性値などの情報を活用して対策の実施 1 2を行なうことで、 より設計 値に近いものを製造することができる。 Also, products that have a similar pattern to those once manufactured by this method In the case of remanufacturing products, measures such as the shape and physical properties of patterns that have been inspected and measured 3 in the past are used to implement countermeasures. it can.
このレシピ最適化 7の方法を用いた具体的な例を、 一般的な L S Iを 用いて、 第 5、 6、 7図に示す。  Specific examples using the recipe optimization method 7 are shown in Figs. 5, 6, and 7 using general LSI.
まず、 第 5図は、 L S Iの断面構造を示しており、 第 5図 aは、 設計 時の断面を表している。 ソース 7 2 a、 ドレイン 7 3 bへの不純物の打 ち込み深さの設計値を dとし、 実際に検査 3 したところ第 5図 bに示す ように d + αであったとする。 そこで、 数 1、 数 2に示すように伝達コ ンダクタンス : G mを設計値どおりにするためには、 ゲー ト長を L gか ら L g + 2 σ αに変更すればよい。  First, FIG. 5 shows a cross-sectional structure of the LSI, and FIG. 5a shows a cross-section at the time of design. It is assumed that the design value of the implantation depth of the impurity into the source 72a and the drain 73b is d, and that the actual inspection 3 results in d + α as shown in FIG. 5b. Therefore, as shown in Equations 1 and 2, the gate length may be changed from L g to L g + 2σα in order to keep the transfer conductance Gm as designed.
G m = Z / L eff - μ C ( V g · V th) (数 1 ) G m ; 伝達コンダクタンス G m = Z / L eff-μ C (V g · V th) (Equation 1) G m; transfer conductance
Z ; ゲー ト幅  Z: Gate width
L eff ; 実効ゲ— ト長  L eff; effective gate length
β ; キヤ リァ移動度  β; carrier mobility
V g ; ゲー ト電圧  V g; Gate voltage
V th ; しきい値電圧  V th; threshold voltage
C ; 単位面積当りの静電容量  C: capacitance per unit area
L eff = L g - 2 σ d (数 2 )L eff = L g-2 σ d (Equation 2)
L g ゲー 卜長 L g Gate length
d 接合深さ  d Junction depth
び 縦方向に対する横方向の拡散定数比 また、 ゲー ト絶縁膜 7 1の厚さの設計値が tであり、 実際の検査 3の 値が第 5図 cのように k X tであつた場合には、 数 3 と数 1より、 ゲー ト長を And the ratio of the diffusion constant in the horizontal direction to the vertical direction Also, if the design value of the thickness of the gate insulating film 71 is t and the value of the actual inspection 3 is kXt as shown in FIG. Gate length
k L g - 2 σ d ( k - 1 ) に変更すればよい。 k L g-2 σ d (k-1).
C X t = c o n s t . (数 3 )C X t = con st t. (Equation 3)
C ; 単位面積当りの静電容量 C: capacitance per unit area
t ; ゲー ト絶縁膜の厚さ このゲー ト長の変更などフォ トマスク情報に影響を及ぼす場合には、 このフォ トマスクの設計変更、 製造といった手続きを経て始めて最適化 が実現するわけで、 ゲ一 トを形成する製造装置のみのレシピの変更だけ では実現不可能である。  t: Thickness of gate insulating film If the photomask information is affected by a change in the gate length, the optimization is realized only after procedures such as design change and manufacturing of the photomask. This cannot be achieved only by changing the recipe of the manufacturing apparatus that forms the target.
また、 以上のように次の工程の変更に関して最適化ができたとしても、 この設計変更がそれ以降の部分に影響を与える場合が考えられる。 例え ば、 第 6図 aに示すように始めの設計においてゲー ト長が L gであった ものを、 第 6図 bに示すように L g + αにする場合に、 両わきの配線 7 5 a、 7 5 bが障害となるので、 この配線 7 5およびソース 7 2、 ドレ イン 7 3に配線を接続するためのコンタク トホール 7 6の位置を変更し なければならない。 さらに第 7図 (本図は L S Iの上方からの平面透視 図である。 ) に示すように、 コンタク トホールの平行移動だけでは、 充 分な接触面積が取れない場合は、 第 7図 bに示すように ドレイ ン 7 3の 余っているスペースを活用し接触面積をかせぐ必要がある。 以上のよう にひとつの工程のプロセスレシピを変更することは、 以後の工程に連鎖 的に影響を及ぼすために、 プロセスシミ ュレーショ ン 4 9により最終ェ 程までのワークモデル 5 0を予測し、 かつそのモデル 5 0で電気的に機 能するかどうかをデバイスシミ ユレ一シヨ ン 5 1により確認する必要が あるわけである。 Also, even if the next process change can be optimized as described above, it is possible that this design change will affect the subsequent parts. For example, if the gate length was L g in the initial design as shown in Fig. 6a, but L g + α as shown in Fig. 6b, the wiring on both sides was used. Since a and 75b are obstacles, the position of the contact hole 76 for connecting the wiring to the wiring 75 and the source 72 and the drain 73 must be changed. Furthermore, as shown in Fig. 7 (this figure is a perspective plan view from above the LSI), if the contact hole cannot be sufficiently moved by parallel movement of the contact hole alone, it is shown in Fig. 7b. Therefore, it is necessary to make use of the extra space of drain 73 to increase the contact area. As described above, changing the process recipe of one process has a chain effect on the subsequent processes, so that the process simulation 49 predicts the work model 50 up to the final process, and Electrically powered by its model 50 That is, it is necessary to confirm whether or not it works by using the device simulation 51.
その他の最適化の例を、 第 8図に示す。 拡散層に配線するコンタク 卜 ホールが第 8図 aのような設計どおりに形成されず、 第 8図 bのように エッチング残り 7 8がある場合この拡散層 7 7 と配線 7 5 gとの接触抵 杭が大きくなつてしまう。 ここで、 この抵抗の増加量を検査 3 した結果 により算出し、 配線の膜厚 Tあるいは幅を変更して配線自身の抵抗をそ の増加量だけ減少させればよい。  Figure 8 shows examples of other optimizations. If the contact hole to be wired to the diffusion layer is not formed as designed as shown in Fig. 8a and there is an etching residue 78 as shown in Fig. 8b, contact between this diffusion layer 77 and wiring 75g The stakes become too large. Here, the amount of increase in the resistance is calculated based on the result of the inspection 3, and the thickness T or the width of the wiring is changed to reduce the resistance of the wiring itself by the increased amount.
次に修正 8の例を示す。 第 9図には、 拡散層の不純物濃度が低かった 場合に最適化 7を行った例を示す。 このし S I はゲー 卜 7 0をマスクと して不純物イオンを打ち込む製法を用いている。 この不純物打ち込み後、 実際に測定したところ不純物濃度が不足していたとする。 (第 8図 a ) この場合、 ゲ一 ト 7 0がマスクとなることを利用して、 もう一度打ち込 み装置にウェハを戻し、 不足している分の不純物イオンを追加打ち込み することにより修正 8を行う。 第 8図のようなエッチング残り 7 8 も同 様に追加エッチングしたり、 成膜に関しても同様に追加成膜したり して 修正 8を実行することも可能である。 集束イオンビーム装置、 レーザ C V D装置により局所的に修正を行うことも可能である。  Next, an example of Modification 8 is shown. FIG. 9 shows an example in which optimization 7 was performed when the impurity concentration of the diffusion layer was low. However, SI uses a manufacturing method in which impurity ions are implanted using the gate 70 as a mask. After the impurity implantation, it is assumed that the impurity concentration is insufficient when actually measured. (Figure 8a) In this case, utilizing the fact that the gate 70 serves as a mask, the wafer is returned to the implantation apparatus again, and correction is performed by additionally implanting the missing impurity ions. I do. It is also possible to carry out the correction 8 by performing additional etching in the same manner on the remaining etching 7 8 as shown in FIG. It is also possible to perform local correction using a focused ion beam device or laser CVD device.
本実施例では L S Iの製造についてのみ述べたが、 そのほかの半導体 や、 T F Tなど薄膜デバイスなど、 そのほかすべての電子回路装置の製 造方法に適用できる。  In this embodiment, only the manufacture of the LSI has been described, but the present invention can be applied to the manufacture of all other electronic circuit devices such as semiconductors and thin film devices such as TFT.
なお、 本実施例の製造ラインは、 試作ライン ·量産ラインのどちらに も適用でき、 試作せずそのまま量産を可能にする製造方法にもなりうる 製造の途中で修正や製造条件の補正をしながら製造を進めていくため 不良となり廃棄していた電子回路装置を良品に戻すといった高歩留まり の実現や、 開発期間の短縮が可能となる。  The production line of the present embodiment can be applied to both a prototype line and a mass production line, and can be a production method that enables mass production without trial production. As production progresses, it is possible to achieve high yields, such as returning defective electronic circuit devices to non-defective products, and shorten the development period.

Claims

請求の範囲 The scope of the claims
1 . 電子回路装置の製造方法であって、 該電子回路装置の基板を処理し て該基板上に電子回路を形成する前記電子回路装置の製造工程の途中に おいて、 前記基板を処理する処理装置の前記基板を処理している最中の 状態をモニタし、 前記処理装置で前記基板を処理した後に該処理された 基板の表面形状や物性値を計測し、 前記モニタして得た情報や前記計測 して得た情報、 及び前記途中の製造工程以降の製造工程のプロセス設計 の情報に基づいて、 前記電子回路装置の完成状態をシミ ュレーシヨ ンに より予測し、 該予測した結果に基づいて、 前記途中の製造工程以降のェ 程のプロセス条件を最適化して前記電子回路装置を製造することを特徴 とする電子回路装置の製造方法。 1. A method of manufacturing an electronic circuit device, comprising: processing a substrate of the electronic circuit device to form an electronic circuit on the substrate; The state of the apparatus during the processing of the substrate is monitored, and after the substrate is processed by the processing apparatus, the surface shape and physical property values of the processed substrate are measured. Based on the information obtained by the measurement and the information of the process design of the manufacturing process after the manufacturing process in the middle, the completion state of the electronic circuit device is predicted by simulation, and based on the result of the prediction. A method for manufacturing an electronic circuit device, characterized in that the electronic circuit device is manufactured by optimizing process conditions in steps after the intermediate manufacturing process.
2 . 前記電子回路装置の完成状態をシミ ユレーショ ンにより予測した結 果に基づいて、 前記途中の製造工程までの各工程のプロセス条件を最適 化して次の電子回路装置を製造することを特徴とする特許請求の範囲第 1項記載の電子回路装置の製造方法。  2. Based on the result of predicting the completed state of the electronic circuit device by simulation, the process condition of each process up to the intermediate manufacturing process is optimized to manufacture the next electronic circuit device. The method for manufacturing an electronic circuit device according to claim 1, wherein
3 . 前記途中の製造工程以降の工程のプロセス条件を最適化して製造し た前記電子回路装置を検査して、 該検査した結果を前記電子回路装置の 製造工程にフィ一ドバックすることを特徴とする特許請求の範囲第 1項 記載の電子回路装置の製造方法。  3. Inspecting the electronic circuit device manufactured by optimizing the process conditions of the processes after the intermediate manufacturing process, and feeding back the inspection result to the manufacturing process of the electronic circuit device. The method for manufacturing an electronic circuit device according to claim 1, wherein
4 . 電子回路装置の製造方法であって、 該電子回路装置の基板を処理し て該基板上に電子回路を形成する前記電子回路装置の製造工程の途中に おいて、 前記基板を処理する処理装置の前記基板を処理している最中の 状態をモニタし、 前記処理装置で前記基板を処理した後に該処理された 基板の表面形状や物性値を計測し、 前記モニタして得た情報や前記計測 して得た情報、 及び前記途中の製造工程以降の製造工程のプロセス設計 の情報に基づいて、 前記電子回路装置の完成状態をシミ ュレーショ ンに より予測し、 該予測した結果、 前記途中の製造工程以降の工程のプロセ ス条件を最適化しても前記電子回路装置が所望の特性が得られないと判 断した場合に、 前記所望の特性が得られな原因を解析して前記処理装置 で処理した前記電子回路装置を修正して前記原因を除去した後、 前記途 中の製造工程以降の工程を施して前記電子回路装置を製造することを特 徴とする電子回路装置の製造方法。 4. A method of manufacturing an electronic circuit device, comprising: processing a substrate of the electronic circuit device to form an electronic circuit on the substrate; The state of the apparatus during the processing of the substrate is monitored, and after the substrate is processed by the processing apparatus, the surface shape and physical property values of the processed substrate are measured. The information obtained by the measurement, and the process design of the manufacturing process after the manufacturing process in the middle Based on this information, the completion state of the electronic circuit device is predicted by simulation, and as a result of the prediction, even if the process conditions of the processes after the manufacturing process in the middle are optimized, the electronic circuit device is desired. If it is determined that the characteristics of the electronic circuit device cannot be obtained, the cause of the failure to obtain the desired characteristics is analyzed, the electronic circuit device processed by the processing device is corrected, and the cause is removed. A method for manufacturing an electronic circuit device, comprising: performing the steps after the manufacturing process described above to manufacture the electronic circuit device.
5 . 前記電子回路装置の完成状態をシミ ュレーシヨ ンにより予測した結 果に基づいて、 前記途中の製造工程までの各工程のプロセス条件を最適 化して次の電子回路装置を製造することを特徴とする特許請求の範囲第 4項記載の電子回路装置の製造方法。  5. Based on the result of predicting the completed state of the electronic circuit device by simulation, the process condition of each process up to the intermediate manufacturing process is optimized to manufacture the next electronic circuit device. 5. The method for manufacturing an electronic circuit device according to claim 4, wherein:
6 . 電子回路装置の製造方法であって、 該電子回路装置の基板を処理し て該基板上に電子回路を形成する前記電子回路装置の製造工程の途中に おいて、 前記基板を処理する処理装置の前記基板を処理している最中の 状態をモニタし、 前記処理装置で前記基板を処理した後に該処理された 基板の表面形状や物性値を計測し、 前記モニタして得た情報や前記計測 して得た情報に基づいて前記途中の製造工程までの物理モデルを作成し- 前記物理モデルと予め決められた前記途中の製造工程以降の製造工程の 設計情報とに基づいてプロセスシミュレーションにより完成後の電子回 路の物理モデルを予測し、 該予測した電子回路の物理モデルに基づいて 完成後の電子回路の電気的特性をデバイスシミユレーショ ンにより分析 して良品の電子回路が完成するか不良品の電子回路が完成するかを確認 し、 良品が完成すると確認された場合は、 予め決められた前記途中の製 造工程以降の製造工程の設計情報に基づいて前記処理装置で処理された 基板に前記途中の製造工程以降の工程を施して前記電子回路装置を製造 し、 不良品が完成すると確認された場合は、 その不良原因を解析して不 良原因が取り除かれるように前記処理装置で処理された基板を修正する 力、、 または前記途中の製造工程以降の製造工程の設計情報を変更して、 前記途中の製造工程以降の処理を行い、 前記電子回路装置を製造するこ とを特徴とする電子回路装置の製造方法。 6. A method of manufacturing an electronic circuit device, the method comprising: processing a substrate of the electronic circuit device to form an electronic circuit on the substrate; The state of the apparatus during the processing of the substrate is monitored, and after the substrate is processed by the processing apparatus, the surface shape and physical property values of the processed substrate are measured. A physical model up to the intermediate manufacturing process is created based on the information obtained by the measurement.- A process simulation is performed based on the physical model and predetermined design information of the manufacturing process after the intermediate manufacturing process. A physical model of the completed electronic circuit is predicted, and the electrical characteristics of the completed electronic circuit are analyzed by device simulation based on the predicted physical model of the electronic circuit, and a non-defective electronic circuit is analyzed. Is completed or a defective electronic circuit is completed. If it is confirmed that a non-defective product is completed, the processing device is determined based on the predetermined design information of the manufacturing process after the intermediate manufacturing process. When the electronic circuit device is manufactured by performing the steps after the above-mentioned manufacturing process on the substrate processed in the above, and it is confirmed that a defective product is completed, the cause of the defect is analyzed and the failure is analyzed. Force to correct the substrate processed by the processing apparatus so that the good cause is removed, or change the design information of the manufacturing process after the intermediate manufacturing process, and perform the process after the intermediate manufacturing process, A method of manufacturing an electronic circuit device, comprising manufacturing the electronic circuit device.
7 . 請求の範囲第 1項ないし第 6項の何れかに記載の製造方法において、 該製造工程の完了後に局所修正を行うことを特徴とする電子回路装置の 製造方法。 7. The method for manufacturing an electronic circuit device according to claim 1, wherein a local correction is performed after the completion of the manufacturing process.
8 . 複数の処理工程を経て電子回路装置を製造する前記電子回路装置の 製造方法であって、 前記複数の処理工程の途中の処理工程において、 該 途中の処理工程の処理を行なう処理装置の前記処理の状態をモニタした モニタ情報と前記処理装置で処理された前記複数の処理工程の途中の前 記電子回路装置の表面形状や物性値を計測した計測情報とを用いて前記 複数の処理工程の途中の前記電子回路装置の物理モデルを作成し、 該作 成した物理モデルと前記電子回路装置の設計情報に基づいて予め予測し た前記途中の処理工程までの物理モデルとを比較することにより、 前記 途中の処理工程まで処理した前記電子回路装置を修正するか、 または前 記途中の処理工程以降の処理工程の設計情報を変更するかを判断し、 該 判断した結果に基づいて前記電子回路装置を処理することを特徴とする 電子回路装置の製造方法。  8. The method of manufacturing an electronic circuit device, wherein the electronic circuit device is manufactured through a plurality of processing steps, wherein the processing apparatus performs the processing in the middle of the plurality of processing steps. Using the monitor information that monitors the state of processing and the measurement information obtained by measuring the surface shape and physical property values of the electronic circuit device in the middle of the plurality of processing steps processed by the processing device, By creating a physical model of the electronic circuit device halfway, and comparing the created physical model with a physical model up to the halfway processing step predicted in advance based on design information of the electronic circuit device, It is determined whether to correct the electronic circuit device that has been processed up to the intermediate processing step or to change the design information of the processing steps subsequent to the intermediate processing step, based on the determined result. Method of manufacturing an electronic circuit device, which comprises processing the electronic circuit device are.
9 . 電子回路装置を製造するための複数の製造工程に対応する複数の製 造手段と、 前記複数の製造工程のうちの途中の少なく とも一つの製造ェ 程における製造手段において前記電子回路装置を処理中の物理的情報を 監視するモニタ手段と、 前記製造手段により処理されて表面にパターン が形成された前記電子回路装置の該パターンの形状及び物性値を計測す る検査手段と、 前記製造手段、 前記検査手段の各々に接続されて前記製 造手段の処理条件や前記検査手段の検査条件を記憶して前記製造手段や 前記検査手段を制御するコンピュータ手段と、 前記モニタ手段でモニタ した前記物理的情報と前記検査手段で計測した前記電子回路装置のバタ —ンの形状及び物性値の情報と前記途中の少なく とも一つの製造工程以 降の製造工程における前記製造手段の処理条件とに基づいて前記電子回 路装置に最終的に形成される回路パターンの形状を予測するプロセスシ ミ ュレ一夕と、 該予測した回路パターンの形状に基づいて電子回路装置 の電気的特性を予測するデバイスシミュレ一夕と、 前記コンピュ一夕手 段と前記プロセスシミ ュレータと前記デバイスシミュレ一夕とを制御す ると共に前記予測した電気的特性に基づいて前記途中の少なく とも一つ の製造工程以降の製造工程の前記製造手段の処理条件を修正して前記電 子回路装置を製造するホス トコンピュータ手段とを備えたことを特徴と する電子回路装置の製造システム。 9. A plurality of manufacturing means corresponding to a plurality of manufacturing steps for manufacturing the electronic circuit device, and the electronic circuit device is manufactured by at least one manufacturing step in the middle of the plurality of manufacturing steps. Monitoring means for monitoring physical information during processing; inspection means for measuring the shape and physical property values of the pattern of the electronic circuit device processed by the manufacturing means and having a pattern formed on a surface; and the manufacturing means The processing means connected to each of the inspection means and storing the processing conditions of the manufacturing means and the inspection conditions of the inspection means; Computer means for controlling the inspection means; physical information monitored by the monitoring means; information on the shape and physical properties of the pattern of the electronic circuit device measured by the inspection means; A process simulation for predicting a shape of a circuit pattern finally formed in the electronic circuit device based on processing conditions of the manufacturing means in a manufacturing process after a manufacturing process; and the predicted circuit. A device simulator for predicting the electrical characteristics of the electronic circuit device based on the shape of the pattern; controlling the computer means, the process simulator and the device simulator, and controlling the predicted electrical characteristics. The electronic circuit device is manufactured by modifying processing conditions of the manufacturing means in at least one manufacturing process after the manufacturing process based on characteristics. Manufacturing system of the electronic circuit apparatus characterized by comprising a host computer means for.
1 0 . 電子回路装置を製造するための複数の製造工程に対応する複数の 製造手段と、 該電子回路装置の製造途中に該電子回路装置のパターンの 形状及び物性値を計測する検査手段と、 該電子回路の修正手段と、 該製 造手段に内蔵した処理中の物理的情報を監視するモニタ手段と、 前記製 造手段、 前記検査手段、 前記修正手段の各々に接続されたコンピュータ 手段と、 該製造手段の処理条件を用いて前記電子回路装置に形成される 回路パターンの形状を予測するプロセスシミュレ一夕と、 該パターンの 形状及び物性値により該電子回路装置の電気的特性を予測するデバイス シミ ュレー夕とを備え、 前記モニタ手段でモニタした情報と前記検査手 段で検査した情報と前記製造途中の工程以降の製造工程における前記製 造手段の処理条件とに基づいて前記プロセスシミュレ一タにより前記電 子回路装置に最終的に形成される回路パターンの形状を予測し、 該予測 した前記電子回路装置に最終的に形成される回路パターンの形状に基づ いて前記デバイスシミ ュレータにより電子回路装置の電気的特性を予測 し、 該予測した電気的特性の結果に基づいて前記コンピュータ手段によ り前記途中の製造工程まで製造した前記電子回路装置を修正するか、 ま たは前記途中の製造工程以降の製造工程の設計情報を変更するかを判断 し、 該判断した結果に基づいて前記電子回路装置を処理することを特徴 とする電子回路装置の製造システム。 10. A plurality of manufacturing means corresponding to a plurality of manufacturing steps for manufacturing the electronic circuit device, an inspection means for measuring the shape and physical property values of the pattern of the electronic circuit device during the manufacturing of the electronic circuit device, Correcting means for the electronic circuit; monitoring means built in the manufacturing means for monitoring physical information during processing; computer means connected to each of the manufacturing means, the inspection means, and the correcting means; A process simulation for predicting the shape of a circuit pattern formed on the electronic circuit device using the processing conditions of the manufacturing means, and a device for predicting the electrical characteristics of the electronic circuit device based on the shape and physical properties of the pattern A simulation, wherein the information monitored by the monitoring means, the information inspected by the inspection means, and the processing conditions of the manufacturing means in a manufacturing process after the manufacturing process. The shape of a circuit pattern finally formed in the electronic circuit device is predicted by the process simulator based on the process simulator, and based on the predicted shape of the circuit pattern finally formed in the electronic circuit device. Then, the device simulator predicts the electrical characteristics of the electronic circuit device. And correcting the electronic circuit device manufactured up to the intermediate manufacturing process by the computer means based on the result of the predicted electrical characteristic, or designing the manufacturing process after the intermediate manufacturing process. A system for manufacturing an electronic circuit device, comprising: determining whether to change information; and processing the electronic circuit device based on a result of the determination.
1 1 . 検査手段によって測定される電子回路の所望の工程までの形状及 び物性値と製造手段から測定される該所望の工程までのモニタ情報とに より該所望の工程までの物理モデルを作成し、 前記物理モデルと予め決 められた前記所望の工程の次以降の製造工程の設計情報とに基づいてプ ロセスシミ ュレーショ ンにより完成後の電子回路の物理モデルを予測し、 該予測した電子回路の物理モデルに基づいて完成後の電子回路の電気的 特性をデバイスシミ ユレーショ ンにより分析して良品の電子回路が完成 するか不良品の電子回路が完成するかを確認し、 良品が完成すると確認 された場合は、 予め決められた前記所望の製造工程の次以降の製造工程 の設計情報に基づいて良品の電子回路を製造し、 不良品が完成すると確 認された場合は、 その不良原因を解析して不良原因が取り除かれるよう に前記所望の工程までの電子回路装置を修正するか、 前記所望の製造ェ 程の次以降の製造工程の設計情報を変更するかを判断し実行して、 前記 所望の製造工程の次以降の製造を行ったことを特徴とする該電子回路装 置。  11. Create a physical model up to the desired process from the shape and physical property values of the electronic circuit up to the desired process measured by the inspection means and monitor information up to the desired process measured by the manufacturing means. Then, a physical model of the completed electronic circuit is predicted by a process simulation based on the physical model and predetermined design information of a manufacturing process subsequent to the desired process, and the predicted electronic circuit The electrical characteristics of the completed electronic circuit are analyzed by device simulation based on the physical model, and it is checked whether a good electronic circuit is completed or a defective electronic circuit is completed. If it is confirmed that a good electronic circuit is manufactured based on the design information of the manufacturing process subsequent to the desired manufacturing process determined in advance and a defective product is completed, The cause of the failure is analyzed to determine whether to correct the electronic circuit device up to the desired process so as to remove the cause of the failure, or to change design information of a manufacturing process subsequent to the desired manufacturing process. The electronic circuit device, wherein the electronic circuit device is manufactured by performing the following and subsequent manufacturing of the desired manufacturing process.
PCT/JP1995/000823 1994-05-06 1995-04-26 Manufacture of electronic circuit device WO1995031003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/94134 1994-05-06
JP09413494A JP3367201B2 (en) 1994-05-06 1994-05-06 Manufacturing method of electronic circuit device

Publications (1)

Publication Number Publication Date
WO1995031003A1 true WO1995031003A1 (en) 1995-11-16

Family

ID=14101936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000823 WO1995031003A1 (en) 1994-05-06 1995-04-26 Manufacture of electronic circuit device

Country Status (2)

Country Link
JP (1) JP3367201B2 (en)
WO (1) WO1995031003A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021244A1 (en) * 1995-12-04 1997-06-12 Advanced Micro Devices, Inc. A system for monitoring and analyzing manufacturing processes using statistical simulation with single step feedback
WO1997037380A1 (en) * 1996-03-29 1997-10-09 Advanced Micro Devices, Inc. Method of processing a semiconductor wafer for controlling drive current
US8090875B2 (en) 2005-10-28 2012-01-03 Nikon Corporation Device and method for connecting device manufacturing processing apparatuses, program, device manufacturing processing system, exposure apparatus and method, and measurement and inspection apparatus and method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426885B2 (en) * 1996-12-20 2003-07-14 株式会社日立製作所 Thin film head production management method and apparatus therefor
JPH10242231A (en) * 1997-02-26 1998-09-11 Hitachi Ltd Manufacture of semiconductor device
US6594598B1 (en) 1997-10-08 2003-07-15 Matsushita Electronics Corporation Method for controlling production line
JP2000193424A (en) * 1998-12-24 2000-07-14 Sharp Corp Method and device for measuring thickness of thin-film
TW428079B (en) 1998-12-24 2001-04-01 Sharp Kk Thickness measurement apparatus of thin film using light interference method
KR100335492B1 (en) * 1999-10-26 2002-05-04 윤종용 Simplified method for extraction of model parameter set and statistical integrated circuit simulation method using the same
JP3980948B2 (en) 2002-06-25 2007-09-26 株式会社日立ハイテクノロジーズ Failure analysis method and failure analysis system
JP5061904B2 (en) * 2005-10-28 2012-10-31 株式会社ニコン Connection apparatus and connection method between device manufacturing processing apparatuses, program, device manufacturing processing system, exposure apparatus and exposure method, measurement inspection apparatus and measurement inspection method
JP4256408B2 (en) 2006-07-20 2009-04-22 株式会社東芝 Defect probability calculation method, pattern creation method, and semiconductor device manufacturing method
US8294907B2 (en) * 2006-10-13 2012-10-23 Asml Netherlands B.V. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
JP4276271B2 (en) 2007-03-20 2009-06-10 Okiセミコンダクタ株式会社 Semiconductor integrated circuit manufacturing method and apparatus
US8136068B2 (en) * 2008-09-30 2012-03-13 Cadence Design Systems, Inc. Methods, systems, and computer program products for implementing compact manufacturing models in electronic design automation
JP6477423B2 (en) * 2015-11-02 2019-03-06 オムロン株式会社 Manufacturing process prediction system and predictive control system
JP6908479B2 (en) * 2017-09-15 2021-07-28 株式会社日立製作所 MEMS manufacturing system and MEMS manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243537A (en) * 1988-03-25 1989-09-28 Hitachi Ltd Design support of lsi manufacturing process specification
JPH04369760A (en) * 1991-06-19 1992-12-22 Hitachi Ltd Method for preparing three-dimensional element structure
JPH05291102A (en) * 1992-04-16 1993-11-05 Mitsubishi Electric Corp Method and equipment for setting manufacturing parameter of semiconductor device
JPH06260380A (en) * 1993-03-04 1994-09-16 Toshiba Corp Semiconductor production system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243537A (en) * 1988-03-25 1989-09-28 Hitachi Ltd Design support of lsi manufacturing process specification
JPH04369760A (en) * 1991-06-19 1992-12-22 Hitachi Ltd Method for preparing three-dimensional element structure
JPH05291102A (en) * 1992-04-16 1993-11-05 Mitsubishi Electric Corp Method and equipment for setting manufacturing parameter of semiconductor device
JPH06260380A (en) * 1993-03-04 1994-09-16 Toshiba Corp Semiconductor production system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021244A1 (en) * 1995-12-04 1997-06-12 Advanced Micro Devices, Inc. A system for monitoring and analyzing manufacturing processes using statistical simulation with single step feedback
US5719796A (en) * 1995-12-04 1998-02-17 Advanced Micro Devices, Inc. System for monitoring and analyzing manufacturing processes using statistical simulation with single step feedback
US5966312A (en) * 1995-12-04 1999-10-12 Advanced Micro Devices, Inc. Method for monitoring and analyzing manufacturing processes using statistical simulation with single step feedback
WO1997037380A1 (en) * 1996-03-29 1997-10-09 Advanced Micro Devices, Inc. Method of processing a semiconductor wafer for controlling drive current
US5943550A (en) * 1996-03-29 1999-08-24 Advanced Micro Devices, Inc. Method of processing a semiconductor wafer for controlling drive current
US8090875B2 (en) 2005-10-28 2012-01-03 Nikon Corporation Device and method for connecting device manufacturing processing apparatuses, program, device manufacturing processing system, exposure apparatus and method, and measurement and inspection apparatus and method

Also Published As

Publication number Publication date
JPH07302826A (en) 1995-11-14
JP3367201B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
WO1995031003A1 (en) Manufacture of electronic circuit device
JP4771696B2 (en) Method and system for predicting electrical characteristics of semiconductor devices during manufacture
US8229588B2 (en) Method and system for tuning advanced process control parameters
US6610550B1 (en) Method and apparatus for correlating error model with defect data
US6810296B2 (en) Correlating an inline parameter to a device operation parameter
KR100734534B1 (en) Automated process monitoring and analysis system for semiconductor processing
US7383521B2 (en) Characterization and reduction of variation for integrated circuits
JP4191484B2 (en) Method for controlling etch selectivity
US6031246A (en) Method of producing semiconductor devices and method of evaluating the same
CN110770886A (en) System and method for predicting defects and critical dimensions using deep learning in a semiconductor manufacturing process
CN1799054A (en) System and method for using first-principles simulation to facilitate a semiconductor manufacturing process
US20050113951A1 (en) Method for designing a manufacturing process, method for providing manufacturing process design and technology computer-aided design system
KR101275838B1 (en) Data representation relating to a non-sampled workpiece
US6961636B1 (en) Method and apparatus for dynamically monitoring controller tuning parameters
JP2009521800A (en) Improved state estimation based on information credibility
TW202227838A (en) Prediction of electrical properties of a semiconductor specimen
US7907770B2 (en) Method for inspecting photomask and real-time online method for inspecting photomask
JP2000114521A (en) Method and device for extracting profile
JP2007294814A (en) Inspection method, inspection device, and semiconductor device manufacturing method
JP2005512221A (en) Method and apparatus for production lot scheduling based on lot and equipment health metrics
US20040088068A1 (en) Method and apparatus for providing first-principles feed-forward manufacturing control
TW201712773A (en) Method and apparatus for analysis of processing of a semiconductor wafer
US6191036B1 (en) Use of photoresist focus exposure matrix array as via etch monitor
US6868353B1 (en) Method and apparatus for determining wafer quality profiles
KR101001347B1 (en) Process control at an interconnect level

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase