WO1995017993A1 - Method and apparatus for continuously producing a multiplicity of types - Google Patents

Method and apparatus for continuously producing a multiplicity of types Download PDF

Info

Publication number
WO1995017993A1
WO1995017993A1 PCT/JP1994/002210 JP9402210W WO9517993A1 WO 1995017993 A1 WO1995017993 A1 WO 1995017993A1 JP 9402210 W JP9402210 W JP 9402210W WO 9517993 A1 WO9517993 A1 WO 9517993A1
Authority
WO
WIPO (PCT)
Prior art keywords
work area
work
transfer system
processing
product
Prior art date
Application number
PCT/JP1994/002210
Other languages
French (fr)
Japanese (ja)
Inventor
Yoichiro Tamoto
Sadao Shimoyashiro
Hiroyasu Sasaki
Takemasa Iwasaki
Masao Sakata
Tomoyuki Masui
Hiroyoshi Matsumura
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1995017993A1 publication Critical patent/WO1995017993A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the transport system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q41/00Combinations or associations of metal-working machines not directed to a particular result according to classes B21, B23, or B24
    • B23Q41/02Features relating to transfer of work between machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67727Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations using a general scheme of a conveying path within a factory
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput

Definitions

  • the present invention relates to a production and manufacturing system, and more particularly to a multi-product continuous production method and a multi-product continuous production method for realizing a suitable production system for a multi-product variable quantity production line having a long working process and a repetitive process. .
  • production lines for semiconductors and thin-film process products have, for example, processes for processing, transporting and storing workpieces (e-ha) as disclosed in Japanese Patent Application Laid-Open No. 56-196355.
  • the equipment was separated into a work area that requires a clean atmosphere, where equipment is installed, and a maintenance area that does not require a high degree of cleanliness, where ancillary equipment utilities are installed. Therefore, in order to arrange them efficiently, a structure called a pay system was adopted, in which a work area (pay) and a maintenance area were alternately provided on both sides of the central passage.
  • the processing equipment was arranged in a so-called job shop system in which equipment for performing the same kind of processing was arranged in one bay.
  • the wafer that has completed the process in this process is transported to the processing equipment in the next process by Bay transport and inter-pay transport, and is connected to the entrance and exit of the bay, which is the connection point.
  • the cassettes are transported between the processing devices, and the transport between the bays transports the cassettes from the stocking force of each bay to the stocking force of another bay.
  • the transfer of wafers from the processing apparatus to the processing apparatus was performed by a route such as a transport vehicle in a bay, a stocker, a transport vehicle between bays, a stocking force, and a transport vehicle in a bay.
  • the transport route between bays becomes complicated as shown in Fig. 19, and You will spend time on In FIG. 19, the zigzag solid line indicates the transport route of the wafer.
  • the state of the device in the preceding process and the device in the subsequent process cannot be known, it is difficult to synchronize the processing between the devices. As a result, the amount of work in progress for each bay increases, and as a result, there is a problem that the completion (time until the product is completed) becomes longer.
  • the time required for processing varies greatly depending on the processing step. For example, heat treatment for making the ion concentration distribution in the wafer uniform takes several hours, but the step of implanting ions in the wafer takes only several minutes. In order to make the tact the same in the flow line, If the processing time differs greatly, the idle time of the processing apparatus having a short processing time increases, and the operation rate decreases significantly. Furthermore, even if a single device can process multiple processes, since the devices are arranged in the order of processes, the number of devices required for each process is required, and there is a problem that the number of devices in the entire line increases. . ⁇
  • the present invention provides a method and apparatus for efficiently producing products of each type. Disclosure of the invention
  • the present invention has considered a method of producing a semiconductor like a flow line.
  • six means of 1) flow rectification, 2) module creation, 3) module grouping, 4) equipment arrangement method, 5) transport method and 6) control will be described.
  • Flow rectification We focused on the uniqueness of the flow of the process of repeating the same type of process in the same device as typified by semiconductor manufacturing (see Fig. 11).
  • Semiconductors are manufactured by laminating multiple layers of thin films. Each layer is formed in the order of film formation (diffusion process, deposition process) ⁇ circuit creation (photolithography process) ⁇ removal process (etching process). (This is called one cycle.) By repeating this cycle, thin layers are successively stacked. The flow of this process is rectified by the following procedure.
  • each process (diffusion process, photolithography process, etching process, etc.) always exists in each cycle unit, assuming the same flow, the classification shown in Fig. 12 is performed. In this case, the process that does not exist is the passing process.
  • Each layer shall consist of 11 steps of cleaning, diffusion, low pressure C VD, C VD, photolithography (coating, exposure, development), inbra, cleaning, etching, and removal. By the way, if cleaning, diffusion, CVD, and etching are not in the process flow (Fig. 11) as in layer 8, it is assumed that the process without them is passed.
  • Module creation A cycle unit of each layer is defined as a module.
  • Module grouping Here, the same process flow and the same equipment used in the process are grouped together. In this case, there are 4 groups of 15 modules.
  • Equipment arrangement Similar to the conventional job shop method, the same type of equipment is put together (Figs. 1 and 2), and the equipment is classified and arranged by module group (Fig. 5 Example) A combination arrangement method in which a certain module uses a job shop method and a certain module uses a module-by-module method (the example in FIG. 7) may be used.
  • Transport means Provide a dedicated transport system for each module group (Fig. 1, Fig. 2 Figure, example of Figure 5). However, if the module groups are similar, the transfer system may be shared (shared) (examples in FIGS. 4, 6, and 7). When the transport system is shared and used, control is performed so that a dedicated transport system for each module group exists. The following example is given as the similarity of the module group.
  • Control means Consists of the following three main means. 1) Means for determining between modules, 2) Means for transferring tact within a module, 3) Means for selecting a processing device. Means for determining between modules: Based on the unique processing (flow) of the product (semiconductor), determine which module to use and in which module order.
  • In-module tact transfer means A means for transferring each module within the product tact.
  • Processing device selection means Selects a device to use the conveyed product.
  • Figure 14 shows a simple flow of the product.
  • the manufacturing process is cut by a single flow to create a cycle.
  • a similar cycle is put together to create a module. This will rectify the flow of the traditionally complicated line and make it easier to control the flow.
  • the transport system since a buffer is provided for each module and the flow flows to the tact, the transport system does not control the overall process order but simply transports to the next process. Control becomes easy.
  • the product is transported from the processing area where the process was performed to an area where the next process is performed by a dedicated transport system that transports the product in the order of processes, and the next process is performed.
  • the dedicated transport path supplies products that have been processed at a fixed time interval (tact) to successive processes, so that products are supplied without interruption to each area, and products are processed at the same production speed in each processing area. Can be processed.
  • Fig. 15 shows a comparison between the conventional method (job shop method) and the example of the present invention (module device classification method 'partial module method'). According to the method of the present invention, the length can be shortened and the production variation is small as compared with the conventional method. This is due to module flow.
  • FIG. 1 is an overall configuration diagram of a first embodiment of the present invention
  • FIG. 2 is a second embodiment of the present invention, and shows a line configuration in which work areas are arranged in a processing order
  • FIG. 3 is a diagram of the present invention.
  • FIG. 3 is a diagram showing a line configuration using an arbitrary combination of transport paths according to a third embodiment.
  • FIG. 4 is a fourth embodiment of the present invention, which is a line using one transport path.
  • FIG. 5 is a view showing a configuration
  • FIG. 5 is a view showing a fifth embodiment of the present invention, and is a view showing a line configuration for performing continuous processing in an area.
  • FIG. 6 is a sixth embodiment of the present invention, showing a part of an area.
  • FIG. 1 is an overall configuration diagram of a first embodiment of the present invention
  • FIG. 2 is a second embodiment of the present invention, and shows a line configuration in which work areas are arranged in a processing order
  • FIG. 3 is a diagram of the
  • FIG. 7 is a diagram showing a line configuration as a single process
  • FIG. 7 is a diagram showing a seventh embodiment of the present invention, showing a line configuration by one transport path
  • FIG. 8 is a diagram showing a relationship between a process and the number of equipment.
  • FIG. 9 is a diagram showing a working procedure
  • FIG. 10 is a diagram of a communication form
  • FIG. 11 is a schematic diagram of a semiconductor manufacturing procedure (flow) diagram
  • FIG. 12 is a diagram of the flow of FIG. Classification division diagram
  • Fig. 13 is process rectification diagram
  • Fig. 14 is product flow diagram
  • Fig. 15 is comparison diagram of conventional technology and the present invention
  • Fig. 16 and Fig. 17 are the present invention
  • Fig. 18 is a Gantt chart of module production status
  • Fig. 19 is an explanatory diagram of the prior art.
  • FIG. 1 shows a layout of a semiconductor manufacturing apparatus, for example.
  • Each work area 6 includes a plurality of processing units 3 of the same type, and each processing apparatus 3 is connected by the transfer system 2 in the work area.
  • the transport system 2 in the work area is connected to a controller 7a in the work area via a communication cable 8.
  • An ID reader 11 is provided in the work area 6 to read a code attached to a product (a semiconductor wafer or a cassette for transporting a wafer) to be carried into the work area 6, and to read the code. Notify the controller 7a.
  • Each work area 6 is provided with an inter-transport system maintenance device 4 for carrying in and out the products to and from the work area, and the inter-transport system connecting device 4 is connected by an inter-work area transport system 5.
  • the transport system 5 between the rice II II areas is not fixed, and a dedicated transport system with the highest efficiency is constructed according to the processing form of the product.
  • FIG. 1 it is shown that six types of transport systems from transport system A to transport system F are prepared as the transport system 5 between work areas.
  • the host computer 1 controls each transport system via the inter-work area transport system controller 7d.
  • This device has two main functions. One is the process of cutting a flow into partial flows at the time of line design, combining the cut partial flows, and creating a flow line called a module in this unit. The other is a process that controls the progress of products for each module and controls transport during actual production so that production can be performed in tact. First, the procedure for line design will be described.
  • Figure 11 shows the schematic semiconductor manufacturing procedure (flow).
  • a semiconductor consisting of 15 layers is shown.
  • “Layer 1” cleaning, diffusion, low-pressure CVD (chemical vapor deposition), photolithography (exposure), etching, removal (resist) Removal).
  • the formation of such a layer is repeated 15 times to complete one semiconductor.
  • the results are shown in FIG.
  • the order of the steps is as follows: cleaning (for diffusion), diffusion, low-pressure CVD, photolithography, inbra (ion implantation), cleaning (for etching), etching, and removal.
  • the first cycle consists of the first and second layers (because there is no photolithography process).
  • the flow is cut like this, “Layer 2 cleaning” comes after “Layer 1 removal”, and the cleaning process (for diffusion) is duplicated. With such duplication of processes, this first cycle does not become a flow line. Therefore, the second layer is divided into the second cycle using the division rule (2).
  • the first layer consists of six steps: cleaning, diffusion, low-pressure CVD, photolithography, etching, and removal
  • the second layer consists of three steps: cleaning, diffusion, and impeller.
  • the process flow is cut and divided into first to fifteenth cycles.
  • the result of this division is stored in the module definition file.
  • cycles 1, 3, 6, and 11 can be categorized as module C, which consists of cleaning, diffusion, low pressure CVD, photolithography, etching, and removal.
  • module C which consists of cleaning, diffusion, low pressure CVD, photolithography, etching, and removal.
  • module name for each cycle is shown in the upper part of FIG.
  • This section describes the number of modules C and the buffer capacity.
  • the target production quantity is given. This is to determine the production volume produced by this production line in advance and set it as the target production volume.
  • module C handles four cycles. Number of cycles>
  • Fig. 18 shows the production status of this module in the form of a Gantt chart based on the obtained number of facilities.
  • the horizontal axis represents time (in the case of the figure, 36 minutes, which is one tick per tact)
  • the vertical axis represents the arrangement of processes, and the equipment for each process.
  • the first lot is processed for 77 minutes in the washing 1 facility and then stored in a buffer.
  • the cleaning process is performed in units of one unit
  • the diffusion process is performed in units of six lots. Therefore, a buffer is provided between the cleaning process and the diffusion process to temporarily store the lot.
  • the diffusion process and the low pressure CVD process are batch processes, 'Lots are not sent on time. However, if you think about 6 tacts (2 16 minutes), 6 lots will be sent to the next process during 6 tacts, so it looks like a flow line.
  • the six lots that came out of the low-pressure CVD process are divided and timed, so that lots can be created as if for each tact time.
  • Low-pressure C VD process Produced as if it were paid off.
  • the size of the buffer obtained as described above is stored in the module definition file.
  • the procedure is as follows.
  • a series of processing operations are performed several times in the entire manufacturing process.
  • the following series of processing operations can be mentioned (washing ⁇ diffusion ⁇ resist coating ⁇ exposure-development).
  • a series of processing consists of the processing equipment (process (e), process (f), process (a), process (mouth), and process (c)) shown in Fig. 1, a special work area connecting these The transport system 5 is provided (here, the transport system 5a).
  • the product moves to the next process through the inter-work area transfer system 5a in a predetermined order in a series of processes.
  • the transport system 5a between the work areas transports the product with the specified tact.
  • the transfer of the product to the transfer system 5a between the work areas in each processing device 3 can be performed with a predetermined tact via the transfer system connection device 4.
  • Each product has a code attached to the wafer or cassette that carries the wafer so that it can be distinguished from other products.
  • the processing apparatus notifies the controller 7a in the work area of the completion (Step 1).
  • the controller 7a in the work area asks whether the product can be transferred to the transfer system 2 in the work area (Step 2). If the answer is “No” from the transport system 2 in the work area, the product is waiting in the processing equipment 3.
  • the controller 7a in the work area instructs the processing device 3 and the transport system 2 in the work area to transfer the product to the transport system 2 in the work area. (Step 4).
  • Step 7 Made When the controller 7a in the work area confirms that the product has been transferred to the transfer system 2 in the work area (Ste P 5), a command is issued to the transfer system 2 in the work area to carry the product to the transfer system intermediary device 4. Yes (Step 6). Execute it in Step 7.
  • the controller 7a in the work area and the host computer 1 receive a transfer completion signal from the transfer device 4 (Step 8).
  • the host computer 1 determines the next work area 6 and the transport system 5 between the work areas to be transported there, and in Step 10 the controller 7a in the work area and the transport system controller between the work areas are transported there. 7 Instruct d.
  • the inter-transfer system controller 7c asks the inter-work carrier controller 7d whether the inter-work carrier system 5 can transfer the product (Step 1). If the answer from the inter-work area transfer system controller 7d is "No", the product is put on standby in the transfer system interlocking device 4, and if "Yes", the product is transferred to the inter-work area transfer system 5 (St mark 12) (Step 13) . When the transfer is completed, it is transported to the next area (Step 14 to Step 20).
  • Step 21 When the product is transferred to the transfer system connecting device 4 in the next work area, the wafer is checked again (the identification code is checked) (Step 21). If it is wrong, the transfer system controller 7c puts the product on standby in the transfer system 4 and notifies the host computer 1 via the controller 7a in the work area, Computer 1 informs the outside (worker) (Step 22). If the product is correct, indicate the arrival of the product to the next controller 7a in the work area, indicate the ID and tact, and request processing (Step 23). .
  • the controller 7a in the work area listens to the processing device 3 for the acceptance of the product (Step 24). If any of the processing devices 3 is not accepted, the product is delivered. Controller 7a in the work area instructs the transfer system 2 in the work area to send the product to the processing device 3 if it is ⁇ waited '' by the transmission intermediary device 4-(Step 25 to Step 34) . When the transfer is completed, the controller 7a in the work area instructs the processing device 3 to process (Step 35).
  • a dedicated transport system 5 between the work areas is provided (in Fig. 1, transport systems 5a to 5f).
  • Each inter-work area transfer system 5 a to 5 ⁇ ⁇ is controlled to operate at each tact.
  • the next series of processing is started (for example, the transport system 5a ⁇ the transport system 5b).
  • the host computer 1 completes a series of processes from the transport system controller 7 in the ⁇ ⁇ area of the transport system 5a, checks the status of the transport system 5 from the transport system controller 7 in the work area of the transport system 5b, and moves. If it can be loaded, transfer the product. If not, wait until the transport system B becomes empty.
  • the product is changed one after another by changing the transfer system 5 between the work areas, that is, a series of processing is performed from one to the next, and the product is completed.
  • the above-mentioned series of operations is, for example, 5a ⁇ 5b ⁇ 5c ⁇ 5d ⁇ 5b ⁇ 5c ⁇ 5a.
  • the production volume to be manufactured per day is determined by the production plan, and here, it is assumed that 900 wafers are Z days.
  • Semiconductors are usually assembled into 25 units of wafers in one unit (lot) and transported in a transport cassette. That is, the production number is 36 lots a day. Assuming 24 hours a day operation, production must be carried out at a production rate of 1.5 lots Zh from the time the product is put into the line to the time it is paid out.
  • the transfer tact of each transfer system is 0.75 lots / h for transfer system 5a, 0.75 lots for transfer system 5b / h, 0.5 lot / h for transfer system 5c and 1.5 lot / h for transfer system 5d.
  • the transport system 5c includes work areas for process (a), process (mouth), process (c), process (h), process (g), and process (f).
  • the number of processing devices is also set so that this series of operations is performed with the specified tact, and in accordance with the tact in hardware.
  • the processing speed of the processing device 3 is faster than the tact, the product waits in the transfer system connecting device 4, and the transfer system connecting device 4 is transferred to the interworking transfer system 5a to match the tact. At this time, whether to wait in the transfer system connection device 4 for processing or to wait after finishing the processing differs depending on each product. Conversely, if the processing speed of the processing unit 3 is slower than the tact time, the processing unit 3 in the work area 6 is added to shorten the apparent processing time (for example, if a certain processing unit takes twice the tact time) Use two processing units instead of one). When one work area is used by a number of transport systems, the number of processing devices 3 is set so that the products in each transport system can be handled at once.
  • FIG. 6 Another embodiment is shown in FIG.
  • the work areas 6 are arranged in the order of a series of processes, and the work areas are connected.
  • the transport system between the cells is linear, and the product is moved by reciprocating movement instead of circulation. I do.
  • the product enters the next series of processing in the transfer system connection device 4.
  • the process (e) ⁇ the process (f) ⁇ the process (a) — the process (mouth) ⁇ the process (c) are arranged in order, and the work area Intermediate transfer system 5 Subtract a.
  • the product is conveyed in a reciprocating motion, and the product that has completed a series of processing is transferred to the next series of processing (for example, the conveying system 5a to the conveying system 5b) on the conveying system connecting device 4.
  • FIG. 5 Another embodiment is shown in FIG.
  • the transfer system 5 between work areas is provided with a transfer system 5 between work areas that arbitrarily connects the work area 6 with another work area 6.
  • the transport system is selected and turned around in order by selecting the transport system.
  • the process (e) and the process (h), the process (h) and the process (a), the process (a) and the process (mouth), the process Products are flowed in the order of the process by selecting the transfer system that connects the (mouth) and the process (c).
  • FIG. A transfer system between work areas is provided virtually, not physically, and only one transfer system 5 between work areas is provided.
  • This transport system enables transport between any areas.
  • the host computer 1 controls the transport system 5 between the dedicated work areas as if it were.
  • the transport system 5 between work areas is composed of several transport vehicles, and one transport vehicle cannot carry one unit of power.
  • This one unit ⁇ eha may be either a single unit or a lot unit.
  • the processed product is placed on the transport trolley of the interworking transfer system 5 via the interworking transfer device 4 for the work area and transferred to the next work area.
  • the transfer system connecting device 4 reads the identification of the product and sends the data to the host computer 1.
  • the host computer 1 is a product of this series of processing.
  • the host computer 1 When the signal of "received" returns, the host computer 1 allows the transport inter-connection device 4 to flow the processed product Xi to the inter-work area transport system 5, and transports the "unreceived" signal.
  • the intermediary device 4 is put on standby. At this time, even if the product Y (j) of another series of processing is completed after the product X (i) in the same area, the processing was completed immediately before in the next work error in that series of processing work If the product Y (j-1) has been received, it shall flow to the inter-work area transport system 5 first.
  • the inter-work area transfer systems 5a to 5f shown in the first embodiment virtually exist in the present embodiment.
  • the transport system 5a and the transport system 5b use the same work area process (e).
  • the product for the transport system 5a has been processed and should be transported to the next process (F), but there is no signal from the controller 7a in the work area of the process (F) that received the preprocessing and product. In this case, the product waits in the transfer system connecting device 4. If the processing of the product for the transport system 5b is completed after the product for the transport system 5a, and there is already a signal that the pre-processed product has been received from the next work area process (a), the transport system The splicer 4 first feeds the products of the transfer system 5 b to the transfer system 5 between work areas. In this way, the product flows as if several transport systems exist.
  • FIG. 6 of the previous embodiment is optional continuous
  • the equipment will consist of equipment that sequentially and sequentially processes multiple series of processes (A, B, C).
  • an apparatus of the same kind of repetition process cleaning-diffusion ⁇ resist coating-exposure-development
  • a transport system will be provided to directly splice these five types of equipment. This transport system is only instructed to transfer the product from cleaning to diffusion ⁇ resist coating ⁇ exposure ⁇ development. This washing ⁇ diffusion ⁇ resist coating ⁇ exposure ⁇ development is apparently performed as one continuous apparatus.
  • FIG. Another embodiment is shown in FIG.
  • the processing apparatuses required for a series of processing are collected instead of being arranged consistently as shown in the previous embodiment.
  • These processing devices 3 and one shared transfer system connection device 4, and the transfer system connection device 4 work and a transfer system in a work area that connects several processing devices 3 to each other.
  • the transfer system 2 in the work area is installed radially with respect to the transfer system connecting device 4, and the processing device 3 is connected to each transfer system connecting device 4.
  • Products undergoing a series of processing are transferred to the next processing apparatus 3 via the shared transfer system connecting apparatus 4.
  • the products that have completed a series of processing are transferred to another work area 6 via the shared transfer system connection device 4.
  • FIG. 7 shows still another embodiment of the present invention.
  • work areas 6 having different processes are grouped to form a work area 9 in which one continuous process is apparently executed.
  • six ⁇ areas 9 a to 9 ⁇ are formed. These work areas are connected by a single work area transfer system similar to that shown in the embodiment of FIG.
  • the control method of the transfer system is the same as that of the embodiment of FIG.
  • a line with a small amount of work in process and a short time can be realized with a simple transfer system without providing a dedicated production line for each product type and without changing the line layout.
  • FIG. 8 shows one effect of the present invention.
  • FIG. 8 shows the results and the number of devices when a semiconductor production line producing 680 wafers per day is realized by a job shop, a flow shop, and the present invention.
  • job completion in the case of a job shop, there is no special consideration on how to flow products, so waiting occurs for each process, and the job completion is greatly lengthened.
  • the present invention since the product flows at the tact time, there is an effect that the completion is greatly reduced.

Abstract

A semiconductor production method for moving products between respective processing devices as if there were some flow shops to thereby reduce labor hours between respective processes, improve reliability through stable supply and promptly deal with production of a multiplicity of types which comprises a work area comprising the processing devices, transfer systems for connecting work areas with each other and devices for connecting the work areas with the transfer systems, whereby the entire processing is prevented from totally getting down only due to the failure of a part of the processing devices through control by a computer to thereby fullfil a production schedule (tact) in a predetermined fashion, eventually resulting in reduction of time required for completion of the process. In addition, a series of processes for respective products can be solved through software, and since there is needed no rearrangement of devices and change to the transfer paths, it is possible to promptly deal with production of a multiplicity of types.

Description

明 細 書 多品種連続生産方法及び装置  Description Multi-product continuous production method and equipment
技術分野 ' ' Technical field ' '
本発明は生産、 製造システムに係り、 特に、 作業工程が長工程で、 繰り 返し工程のある多品種変量生産ラインの好適な生産システムを実現するた めの、 多品種連続生産方法及ぴ装置に関する。  The present invention relates to a production and manufacturing system, and more particularly to a multi-product continuous production method and a multi-product continuous production method for realizing a suitable production system for a multi-product variable quantity production line having a long working process and a repetitive process. .
背景技術 Background art
従来、 半導体や薄膜プロセス製品の製造ラインは、 例えば、 特開昭 5 6 - 1 9 6 3 5号公報にみられるように、 被加工物 (ゥエーハ) を処理、 搬 送及び保管するための処理装置等を設置している清浄な雰囲気を必要とす る作業ェリァと付帯設備ゃュ一ティリティを設置している高い清浄度を必 要としない保全エリアに分離されていた。 そのため、 これらを効率的に配 置するため、 中央通路を挟んだ両側に作業エリア (ペイ) と保全エリアを 交互に設けたペイ方式と呼ばれる構造をとつていた。 処理装置の配置は、 1つのべィ内に同種の処理を行う装置を配置した、 いわゆるジョブショッ プ方式であった。  Conventionally, production lines for semiconductors and thin-film process products have, for example, processes for processing, transporting and storing workpieces (e-ha) as disclosed in Japanese Patent Application Laid-Open No. 56-196355. The equipment was separated into a work area that requires a clean atmosphere, where equipment is installed, and a maintenance area that does not require a high degree of cleanliness, where ancillary equipment utilities are installed. Therefore, in order to arrange them efficiently, a structure called a pay system was adopted, in which a work area (pay) and a maintenance area were alternately provided on both sides of the central passage. The processing equipment was arranged in a so-called job shop system in which equipment for performing the same kind of processing was arranged in one bay.
また、 べィ方式では、 当該工程の処理を終了したゥヱーハの、 次工程の 処理装置への搬送は、 べィ內搬送とペイ間搬送とにより行い、 その接続点 であるべィの出入口にゥヱーハを収納したカセットを収容するストッカを 設けていた。 即ち、 べィ内搬送は、 ペイの入口に設けられたストツ力と処 理装置の間をカセットを搬送するものであり、 べィ間搬送は各べィのスト ッ力から他のベィのストツ力へカセットを搬送するものである。 一般に処 理装置から処理装置へのウェハの搬送はべィ内の搬送車→ストッカ→べィ 間の搬送車→ストツ力→べィ内の搬送車というような経路で行われていた。 In the Bay system, the wafer that has completed the process in this process is transported to the processing equipment in the next process by Bay transport and inter-pay transport, and is connected to the entrance and exit of the bay, which is the connection point. There was a stocker for accommodating the cassette containing the. That is, the intra-bay transfer is performed in accordance with the stock force provided at the entrance of the pay. The cassettes are transported between the processing devices, and the transport between the bays transports the cassettes from the stocking force of each bay to the stocking force of another bay. In general, the transfer of wafers from the processing apparatus to the processing apparatus was performed by a route such as a transport vehicle in a bay, a stocker, a transport vehicle between bays, a stocking force, and a transport vehicle in a bay.
しかるに、 これらの従来の生産方式では次に示す課題があった。  However, these conventional production methods have the following problems.
まず、 半導体の製造プロセスは処理工程数が多く、 さらに、 同じ工程の 繰り返しが多いため、 従来のようなべィ方式では第 1 9図に示すようにべ ィ間の搬送経路が複雑になり、 搬送に時間を費やすことになる。 第 1 9図 においてジグザグの実線はゥヱーハの搬送経路を示す。 また、 前の工程の 装置や後の工程の装置が状態が分からないため、 装置間の処理の同期がと りにくくなる。 そのため、 各べィで仕掛かり量が増え、 その結果、 ェ完 (製品が完成するまでの時間) が長くなる問題がある。  First, in the semiconductor manufacturing process, the number of processing steps is large, and the same steps are often repeated. Therefore, in the conventional bay method, the transport route between bays becomes complicated as shown in Fig. 19, and You will spend time on In FIG. 19, the zigzag solid line indicates the transport route of the wafer. In addition, since the state of the device in the preceding process and the device in the subsequent process cannot be known, it is difficult to synchronize the processing between the devices. As a result, the amount of work in progress for each bay increases, and as a result, there is a problem that the completion (time until the product is completed) becomes longer.
これを解決するために、 文献 (電気学会編:電気工学ハンドブック新版 (昭和 6 3年) 、 1 6 6 6ページ) に記載のような、 製造ラインを、 工程 順に処理装置を並べて配置し、 一定の時間間隔 (タクト) で製品を供給、 加工し、 一連の流れ作業で生産を行ういわゆるフローショップ方式とする ことも考えられる。 フローショップ方式の場合には製品の品種ごとに工程 フ口一が異なるため、 それぞれの工程フローに対応して処理装置を並べた ラインを各々設ける必要があり、 多品種生産には対応が困難である。  In order to solve this problem, as described in the literature (IEEJ: Electrical Engineering Handbook, New Edition (Showa 63, 1988), p. 166, p. 6), a production line is arranged with processing equipment arranged in process order. It may be possible to adopt a so-called flow shop system in which products are supplied and processed at time intervals (tacts) of, and production is performed in a series of continuous operations. In the case of the flow shop method, since the process is different for each product type, it is necessary to provide lines in which processing equipment is arranged for each process flow. is there.
また、 半導体製品などの加工では、 処理工程により処理に要する時間が 大幅に異なる。 例えば、 ゥエーハ内のイオン濃度分布を均一にするための 熱処理等は数時間を要するが、 ゥエーハ内にイオンを打ち込む工程は数分 程度である。 フローラインではタクトを同一にするため、 このように各ェ 程での処理時間が大幅に異なる場合には、 処理時間の短い処理装置の遊び 時間が増大し、 稼働率が大幅に低減してしまう。 さらに、 1つの装置で複 数の工程の処理が可能な場合においても、 工程順に装置を並べるため、 ェ 程数分の台数の装置が必要で、 ライン全体の装置台数が増大する問題もあ る。 · In the processing of semiconductor products, etc., the time required for processing varies greatly depending on the processing step. For example, heat treatment for making the ion concentration distribution in the wafer uniform takes several hours, but the step of implanting ions in the wafer takes only several minutes. In order to make the tact the same in the flow line, If the processing time differs greatly, the idle time of the processing apparatus having a short processing time increases, and the operation rate decreases significantly. Furthermore, even if a single device can process multiple processes, since the devices are arranged in the order of processes, the number of devices required for each process is required, and there is a problem that the number of devices in the entire line increases. . ·
さらに、 多品種生産に対応して、 文献 (日刊工業新聞社:多品種少量生 産システム (昭和 4 5年) 、 7 1〜8 6ページ) に記載のように、 類似の 品種を集約加工するために、 類似の加工順序をもつ品種を集約し、 これに 対応した処理装置をグループィ匕してラインを構成する、 グループテクノ口 ジ一の手法による生産方式がある。 これにより、 グループ化を行うと半導 体の場合工程数が多く、 品種ごとに工程順序も異なるため、 グループ数が 膨大となる。  In addition, as described in the literature (Nikkan Kogyo Shimbun: Multi-product small-quantity production system (Showa 45), pp. 71-86), similar varieties are intensively processed in response to multi-product production. For this purpose, there is a production method based on a group techno-technique, in which varieties having similar processing orders are aggregated, and processing apparatuses corresponding to the processing orders are grouped to form a line. As a result, when grouping is performed, the number of processes is large in the case of semiconductors, and the process order is different for each product type, so that the number of groups becomes enormous.
本発明は、 各品種の製品を効率よく生産する方法及び装置を提供する。 発明の開示  The present invention provides a method and apparatus for efficiently producing products of each type. Disclosure of the invention
以上の課題を解決するために、 本発明では、 半導体をフローラインの如 く生産する方法を考えた。 ここで、 1 ) 流れの整流化、 2 ) モジュール作 成、 3 ) モジュールグループ化、 4 ) 設備の配置方法、 5 ) 搬送方式及び 6 ) 制御の六つの手段について説明する。  In order to solve the above problems, the present invention has considered a method of producing a semiconductor like a flow line. Here, six means of 1) flow rectification, 2) module creation, 3) module grouping, 4) equipment arrangement method, 5) transport method and 6) control will be described.
流れの整流ィヒ:半導体の製造に代表されるように同じ種類の処理を同装 置にて繰り返す処理の流れの特殊性に注目した (第 1 1図参照) 。 半導体 は、 薄膜を何層も作り重ねて製造されており、 各層は成膜 (拡散工程、 デ ポ工程) →回路作成 (ホトリソ工程) →除去工程 (エッチング工程) の順 (これを 1サイクルと呼ぶ) に作られ、 このサイクルを繰り返すことで次 々と薄膜の層を重ねてゆく。 この工程の流れを以下の手順で整流化する。 Flow rectification: We focused on the uniqueness of the flow of the process of repeating the same type of process in the same device as typified by semiconductor manufacturing (see Fig. 11). Semiconductors are manufactured by laminating multiple layers of thin films. Each layer is formed in the order of film formation (diffusion process, deposition process) → circuit creation (photolithography process) → removal process (etching process). (This is called one cycle.) By repeating this cycle, thin layers are successively stacked. The flow of this process is rectified by the following procedure.
( 1 ) サイクル単位に必ず各工程 (拡散工程、 ホトリソ工程、 エツチン グ工程等) があると想定し、 同じ流れを流れると仮定し、 第 1 2図に示す 分類を行う。 この場合、 無い工程は通過工程とする。 各層は洗浄 ·拡散' 低圧 C VD · C VD 'ホトリソ (塗布 '感光'現像) 'インブラ '洗浄' エッチング '除去の 1 1の工程からなる'とする。 ところで、 層 8のように 洗浄'拡散 · C VD ·エッチングが工程フロー (第 1 1図) に無い場合は、 それらの無い工程は通過するとする。  (1) Assuming that each process (diffusion process, photolithography process, etching process, etc.) always exists in each cycle unit, assuming the same flow, the classification shown in Fig. 12 is performed. In this case, the process that does not exist is the passing process. Each layer shall consist of 11 steps of cleaning, diffusion, low pressure C VD, C VD, photolithography (coating, exposure, development), inbra, cleaning, etching, and removal. By the way, if cleaning, diffusion, CVD, and etching are not in the process flow (Fig. 11) as in layer 8, it is assumed that the process without them is passed.
( 2 ) さらに、 各層単位毎に設備があると仮定し、 ロットが錯綜しない 流れをつくり出す。  (2) Furthermore, assuming that there is equipment for each layer unit, create a flow in which lots are not complicated.
この (1 ) 、 ( 2 ) の手順により第 1 3図に示すように一つの後戻りの 無 、流れで工程の整流化を行う。  According to the procedures (1) and (2), as shown in FIG. 13, the process is rectified by the flow without one return.
モジュール作成:各層のサイクル単位をモジュールと定義する。  Module creation: A cycle unit of each layer is defined as a module.
モジュールのグループィヒ:ここで工程の流れが同じでかつ工程内で使用 の装置が同じのものを一つのグループにする。 この場合、 1 5モジュール は 4グループできる。  Module grouping: Here, the same process flow and the same equipment used in the process are grouped together. In this case, there are 4 groups of 15 modules.
設備の配置:従来のジョブショップ方式の様に、 同種類の装置をまとめ て置く方法 (第 1図、 第 2図の例) と、 モジュールグループ毎に分類して 配置する方法 (第 5図の例) がある。 また、 あるモジュールはジョブショ ップ方式を採用し、 あるモジュールはモジュール毎方式を使用するという 組合せの配置方法 (第 7図の例) でもよい。  Equipment arrangement: Similar to the conventional job shop method, the same type of equipment is put together (Figs. 1 and 2), and the equipment is classified and arranged by module group (Fig. 5 Example) A combination arrangement method in which a certain module uses a job shop method and a certain module uses a module-by-module method (the example in FIG. 7) may be used.
搬送手段:モジュールグループ毎に専用搬送系を設ける (第 1図、 第 2 図、 第 5図の例) 。 但し、 モジュールグループが類似している場合は搬送 系を兼用 (共有) してもよい (第 4図、 第 6図、 第 7図の例) 。 搬送系を 共有して利用した場合、 各モジュールグループの専用搬送系が存在する如 く制御を行う。 モジュールグループの類似とは以下の様な例が挙げられる。 Transport means: Provide a dedicated transport system for each module group (Fig. 1, Fig. 2 Figure, example of Figure 5). However, if the module groups are similar, the transfer system may be shared (shared) (examples in FIGS. 4, 6, and 7). When the transport system is shared and used, control is performed so that a dedicated transport system for each module group exists. The following example is given as the similarity of the module group.
·モジュールグループを構成する工程が同じであるが使用設備が違うと さ。  · The process of configuring the module group is the same, but the equipment used is different.
'一つのモジュールグループを構成する工程が他のモジュールグループ を構成する工程が含まれているとき。  'When the process of configuring one module group includes the process of configuring another module group.
制御手段:次の主な 3つの手段により構成されている。 1 ) モジュール 間決定手段、 2 ) モジュール内タクト搬送手段、 3 ) 処理装置選択手段。 モジュール間決定手段:製品 (半導体) がもつ特有の処理 (フロー) を もとに、 どのモジュールを使用するか、 またどのモジュールの順番で行う かを決定する。  Control means: Consists of the following three main means. 1) Means for determining between modules, 2) Means for transferring tact within a module, 3) Means for selecting a processing device. Means for determining between modules: Based on the unique processing (flow) of the product (semiconductor), determine which module to use and in which module order.
モジュール内タクト搬送手段:各モジュール毎に製品タクト内で搬送す る手段。  In-module tact transfer means: A means for transferring each module within the product tact.
処理装置選択手段:搬送された製品をどの装置を利用する力選択する。 製品の簡単な流れを第 1 4図に示す。  Processing device selection means: Selects a device to use the conveyed product. Figure 14 shows a simple flow of the product.
以下、 本発明の作用を説明する。  Hereinafter, the operation of the present invention will be described.
製造工程をフ口一の流れによつて切断を行いサイクルを作成する。 ここ で類似のサイクルを一つにまとめてモジュールを作成する。 これにより従 来の錯綜していたラインの流れを整流化し、 流れを制御的に把握しすくす る。 また、 各モジュールにバッファを設けてタクトにてものが流れるため、 搬送系は全体のプロセスの順序を管理することなく、 ただ次工程へ搬送す ればよいので制御も容易になる。 The manufacturing process is cut by a single flow to create a cycle. Here, a similar cycle is put together to create a module. This will rectify the flow of the traditionally complicated line and make it easier to control the flow. In addition, since a buffer is provided for each module and the flow flows to the tact, the transport system does not control the overall process order but simply transports to the next process. Control becomes easy.
ある工程の製品の処理が完了すると、 その処理を行った処理エリアから、 次の処理を行うエリァへ、 工程順に製品を搬送する専用搬送系により搬送 されて次の処理が行われる。 専用搬送路は、 一定の時間間隔 (タクト) で 処理を完了した製品を、 順次続く工程へ供給するので、 各エリアには製品 が滞ることなく供給され、 各処理エリアでは、 同じ生産速度で製品を処理 する事ができる。  When the processing of a product in a certain process is completed, the product is transported from the processing area where the process was performed to an area where the next process is performed by a dedicated transport system that transports the product in the order of processes, and the next process is performed. The dedicated transport path supplies products that have been processed at a fixed time interval (tact) to successive processes, so that products are supplied without interruption to each area, and products are processed at the same production speed in each processing area. Can be processed.
第 1 5図に従来 (ジョブショップ方式) と本発明の例 (モジュール装置 分類方式'パーチャルモジュール方式) の比較を示す。 本発明の方式では 従来と比べて短くできかつ生産のバラツキが少ない。 これはモジュールの フロー化によるものである。  Fig. 15 shows a comparison between the conventional method (job shop method) and the example of the present invention (module device classification method 'partial module method'). According to the method of the present invention, the length can be shortened and the production variation is small as compared with the conventional method. This is due to module flow.
モジユーノレ装置分類する方式では、 第 1 7図の例で見るように 3工程を 一台ずつ直列に行うので、 ラインが故障により止まらない確立は 3 4 . 3 %である。 これに対してバーチャルモジュール方式では、 装置を並列に使 用できるため、 装置故障によるライン停止を回避することができる。 この 場合 3工程を三台ずつで行えば信頼度は 9 2 . 1 %と伸びる。 この根拠を 第 1 6図に示す。 図面の簡単な説明  As shown in the example of Fig. 17, in the method of classifying the modules, three processes are performed one by one in series, so the probability that the line will not stop due to a failure is 34.3%. On the other hand, in the virtual module system, devices can be used in parallel, and line stoppage due to device failure can be avoided. In this case, if three processes are performed by three units, the reliability increases to 92.1%. The basis for this is shown in Figure 16. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の第 1の実施例の全体構成図、 第 2図は本発明の第 2の 実施例であり作業ェリァが処理順に並ぶライン構成を示す図、 第 3図は本 発明の第 3の実施例であり任意の組み合わせの搬送路によるライン構成を 示す図、 第 4図は本発明の第 4の実施例であり一つの搬送路によるライン 構成を示す図、 第 5図は本発明の第 5の実施例でありエリァ内で連続処理 するライン構成を示す図、 第 6図は本発明の第 6の実施例でありエリアの 一部を単一処理とするライン構成を示す図、 第 7図は本発明の第 7の実施 例であり一つの搬送路によるライン構成を示す図、 第 8図は工程と設備台 数の関係を示す図、 第 9図は作業手順を示す図、 第 1 0図は通信形態図、 第 1 1図は模式ィ匕した半導体の製造手順 (フロー) 図、 第 1 2図は第 1 1 図のフローの分類分割図、 第 1 3図は工程の整流化図、 第 1 4図は製品の 流れ図 第 1 5図は従来技術と本発明の比較図、 第 1 6図及び第 1 7図は 本発明の設備群説明図、 第 1 8図はモジュール生産状況のガントチャート 図、 第 1 9図は従来技術の説明図である。 発明を実施するための最良の形態 FIG. 1 is an overall configuration diagram of a first embodiment of the present invention, FIG. 2 is a second embodiment of the present invention, and shows a line configuration in which work areas are arranged in a processing order, and FIG. 3 is a diagram of the present invention. FIG. 3 is a diagram showing a line configuration using an arbitrary combination of transport paths according to a third embodiment. FIG. 4 is a fourth embodiment of the present invention, which is a line using one transport path. FIG. 5 is a view showing a configuration, FIG. 5 is a view showing a fifth embodiment of the present invention, and is a view showing a line configuration for performing continuous processing in an area. FIG. 6 is a sixth embodiment of the present invention, showing a part of an area. FIG. 7 is a diagram showing a line configuration as a single process, FIG. 7 is a diagram showing a seventh embodiment of the present invention, showing a line configuration by one transport path, and FIG. 8 is a diagram showing a relationship between a process and the number of equipment. , FIG. 9 is a diagram showing a working procedure, FIG. 10 is a diagram of a communication form, FIG. 11 is a schematic diagram of a semiconductor manufacturing procedure (flow) diagram, and FIG. 12 is a diagram of the flow of FIG. Classification division diagram, Fig. 13 is process rectification diagram, Fig. 14 is product flow diagram, Fig. 15 is comparison diagram of conventional technology and the present invention, Fig. 16 and Fig. 17 are the present invention Fig. 18 is a Gantt chart of module production status, and Fig. 19 is an explanatory diagram of the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
以下図面を用いて本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the drawings.
〔実施例 1〕  (Example 1)
第 1図は例えば半導体の製造装置のレイアウトを示す。 各作業ェリア 6 は、 同種類の処理装置 3を複数台備え、 各処理装置 3は作業ェリァ内搬送 系 2で結ばれる。 作業ェリァ内搬送系 2は、 通信ケーブル 8を介して作業 エリア内コントローラ 7 aに連続される。  FIG. 1 shows a layout of a semiconductor manufacturing apparatus, for example. Each work area 6 includes a plurality of processing units 3 of the same type, and each processing apparatus 3 is connected by the transfer system 2 in the work area. The transport system 2 in the work area is connected to a controller 7a in the work area via a communication cable 8.
作業エリア 6内には、 I D読み取り機 1 1が備えられ、 作業エリア 6内 に搬入される製品 (半導体ゥェ一ハ、 又はゥエーハを搬送するカセット) に付けられているコードを読み取り、 作業エリア内コントローラ 7 aに通 知する。  An ID reader 11 is provided in the work area 6 to read a code attached to a product (a semiconductor wafer or a cassette for transporting a wafer) to be carried into the work area 6, and to read the code. Notify the controller 7a.
第 1図の実施例にあっては、 作業ェリア 6が 7力所用意されている例を 示している。 In the embodiment shown in Fig. 1, an example in which seven work areas 6 are provided Is shown.
各作業ェリア 6は、 製品の作業ェリァへの搬入、 搬出を行う搬送系間維 ぎ装置 4を備え、 搬送系間継ぎ装置 4は、 作業ェリァ間搬送系 5で結ばれ る。  Each work area 6 is provided with an inter-transport system maintenance device 4 for carrying in and out the products to and from the work area, and the inter-transport system connecting device 4 is connected by an inter-work area transport system 5.
本発明にあっては、 こめ^ IIエリア間搬送系 5は、 固定されたものでは なく、 製品の処理形態に応じて、 最も効率の高い専用の搬送系が構築され る。 第 1図の実施例にあっては、 この作業エリア間搬送系 5として、 搬送 系 Aから搬送系 Fに示す 6種類の搬送系が用意されていることを示す。 ホストコンピュータ 1は、 作業エリア間搬送系コントローラ 7 dを介し て、 各搬送系を制御する。  According to the present invention, the transport system 5 between the rice II II areas is not fixed, and a dedicated transport system with the highest efficiency is constructed according to the processing form of the product. In the embodiment shown in FIG. 1, it is shown that six types of transport systems from transport system A to transport system F are prepared as the transport system 5 between work areas. The host computer 1 controls each transport system via the inter-work area transport system controller 7d.
次に、 本装置の作用を説明する。  Next, the operation of the present device will be described.
本装置は、 大きく 2つの機能からなる。 1つは、 ライン設計時にフロー を部分フローに切断し、 切断された部分フローをまとめて、 このまとめた 単位にモジュールと呼ばれるフローラインを作成する処理である。 もう 1 つは、 実際の生産の際に、 モジュール毎の製品の進度を管理し、 搬送をコ ントロールすることで、 タクトで生産を行えるようにする処理である。 まず、 ライン設計時の手順について説明する。  This device has two main functions. One is the process of cutting a flow into partial flows at the time of line design, combining the cut partial flows, and creating a flow line called a module in this unit. The other is a process that controls the progress of products for each module and controls transport during actual production so that production can be performed in tact. First, the procedure for line design will be described.
模式化した半導体の製造手順 (フロー) を第 1 1図に示す。 ここでは、 1 5層からなる半導体を示しており、 第 1層にあたる 「層 1」 では、 洗浄、 拡散、 低圧 C VD (化学気層成膜) 、 ホトリソ (露光) 、 ヱツチング、 除 去 (レジスト除去) の 6工程からなっている。 このような層の形成が 1 5 回繰り返されて、 1つの半導体が完成する。  Figure 11 shows the schematic semiconductor manufacturing procedure (flow). Here, a semiconductor consisting of 15 layers is shown. In the first layer, “Layer 1”, cleaning, diffusion, low-pressure CVD (chemical vapor deposition), photolithography (exposure), etching, removal (resist) Removal). The formation of such a layer is repeated 15 times to complete one semiconductor.
次に、 このフロー (第 1 1図) をホトリソ工程に着目してサイクノレ ( 1 つの層を形成する単位) に分割する。 分割のためのルールを以下に示す。Next, focusing on this flow (Fig. 11) focusing on the photolithography process, Unit that forms one layer). The rules for division are shown below.
( 1 ) ホトリソ工程を基準に分割する。 (1) Divide based on the photolithography process.
( 2 ) 洗浄、 拡散等の工程の順番が逆転しないようにフローを部分フロー に分割する。  (2) Divide the flow into partial flows so that the order of steps such as washing and diffusion is not reversed.
その結果を第 1 2図に示す。 工程の順序は 1番上に記載されている う に、 洗浄 (拡散用) 、 拡散、 低圧 C VD、 ホトリソ、 インブラ (イオン注 入) 、 洗浄 (エッチング用) 、 エッチング、 除去の順になる。  The results are shown in FIG. The order of the steps is as follows: cleaning (for diffusion), diffusion, low-pressure CVD, photolithography, inbra (ion implantation), cleaning (for etching), etching, and removal.
そこで、 ホトリソ工程だけに着目すると、 第 1のサイクルは、 第 1層目 と第 2層目 (ホトリソ工程がないため) が 1つのサイクルになる。 ところ 力 このようなフローの切断をすると 「層 1除去」 のあとに 「層 2洗浄」 がきてしまい、 洗浄工程 (拡散用) が重複してしまう。 このような、 工程 の重複があると、 この第 1サイクルは、 フローラインにならない。 そこで、 先の分割ルール (2 ) を用いて、 第 2層目を第 2サイクルに分割する。 そ の結果が第 1 2図に示すようになる。 つまり、 第 1層目は先にも述べたよ うに洗浄、 拡散、 低圧 CVD、 ホトリソ、 エッチング、 除去の 6工程にな り、 第 2層目は洗浄、 拡散、 インブラの 3工程になる。 同様に工程フロー を切断し、 第 1〜1 5のサイクルに分割する。  Therefore, focusing only on the photolithography process, the first cycle consists of the first and second layers (because there is no photolithography process). However, if the flow is cut like this, “Layer 2 cleaning” comes after “Layer 1 removal”, and the cleaning process (for diffusion) is duplicated. With such duplication of processes, this first cycle does not become a flow line. Therefore, the second layer is divided into the second cycle using the division rule (2). The result is as shown in Fig. 12. In other words, the first layer consists of six steps: cleaning, diffusion, low-pressure CVD, photolithography, etching, and removal, and the second layer consists of three steps: cleaning, diffusion, and impeller. Similarly, the process flow is cut and divided into first to fifteenth cycles.
この分割された結果は、 モジュール定義ファイルに格納される。  The result of this division is stored in the module definition file.
次に、 各層に出てくる工程 (洗浄、 拡散、 ホトリソ等) に着目し、 類似 のサイクルをまとめて、 モジュールにする。 例えば、 今回は以下のルール でモジュールにまとめる。 このモジュールまとめの方法については、 計算 機を利用し、 膨大な組合せの中から設備台数が最少になるような組合せを 探索しても良い。 ( 1 ) インブラ工程に着目し、 インブラ工程のあるモジュールと、 ないモ ジュールに分割する。 Next, we focus on the processes (cleaning, diffusion, photolithography, etc.) that appear in each layer, and combine similar cycles into modules. For example, this time, it is compiled into a module according to the following rules. As for the method of summarizing the modules, a computer may be used to search for a combination that minimizes the number of facilities from a large number of combinations. (1) Focus on the imbra process and divide it into modules with and without the inbra process.
( 2 ) 拡散、 低圧 C VD工程に着目し、 拡散工程のみあるモジュール、 低 圧 C VD工程のみあるモジュール、 拡散工程と低圧 C VD工程の両方 のあるモジュールに分割する。  (2) Focus on diffusion and low-voltage CVD processes, and divide them into modules with only diffusion processes, modules with only low-voltage CVD processes, and modules with both diffusion and low-pressure CVD processes.
この 2つのルールでサイクルを分類すると、 第 1 2図の下に示す 4つの モジュール (A、 B、 C、 D) に分類できる。 例えば、 サイクル 1、 3、 6、 1 1は、 洗浄、 拡散、 低圧 C VD、 ホトリソ、 エッチング、 除去から なるモジュール Cに分類できる。 同様に各サイクル毎のモジュール名を第 1 2図の上段に示す。  When the cycles are classified by these two rules, they can be classified into four modules (A, B, C, D) shown in the lower part of Fig. 12. For example, cycles 1, 3, 6, and 11 can be categorized as module C, which consists of cleaning, diffusion, low pressure CVD, photolithography, etching, and removal. Similarly, the module name for each cycle is shown in the upper part of FIG.
このサイクルの分類の結果についても、 モジュール定義ファイルに格納 する。  The results of this cycle classification are also stored in the module definition file.
次に ジュール内の各工程の設備台数とバッファ容量の求め方について 述べる。  Next, how to determine the number of equipment and the buffer capacity for each process in the module will be described.
ここでは、 モジュール Cの設備台数とバッファ容量について説明する。 まず目標生産数量を与える。 これは、 この生産ラインで生産した生産量 を事前に決めて、 目標生産量とする。  This section describes the number of modules C and the buffer capacity. First, the target production quantity is given. This is to determine the production volume produced by this production line in advance and set it as the target production volume.
ぐ目標生産量〉  Target production volume>
2 5 0枚 日 (2 5枚 Zロット) = 1 0ロット Z日  250 sheets day (25 sheets Z lot) = 10 lots Z day
先に述べたようにモジュール Cでは、 4つのサイクルを処理する。 くサイクル数 >  As mentioned earlier, module C handles four cycles. Number of cycles>
4サイクル (サイクル 1、 3、 6、 1 1 ) <目標タクト〉 4 cycles (cycles 1, 3, 6, 1 1) <Target tact>
2 4 H r X 6 0分 Z l 0ロット Z 4サイクル = 3 6分 •また各工程の処理時間、 処理口ット数は以下の通りとする ( く洗浄 > 2 4 Hr X 60 min Z l 0 lot Z 4 cycles = 36 min • The processing time and number of processing ports for each process are as follows ( wash
処理時間 : · 7 7分  Processing time: · 7 minutes
処理 πッ卜数: 1 πッ卜  Number of processing π-units: 1 π-unit
ぐ拡散 > Diffusion>
処理時間 : 3 6 0分  Processing time: 360 minutes
処理口ッ卜数: 6 πッ卜  Number of processing units: 6 π units
<低圧 C VD > <Low pressure C VD>
処理時間 : 3 6 0分  Processing time: 360 minutes
処理ロット数: 6ロット  Number of processed lots: 6 lots
<ホトリソ> <Photoriso>
処理時間 : 5 5分  Processing time: 55 minutes
処理口ッ卜数: 1ロッ卜  Number of processing slots: 1 lot
ぐエッチング〉 Etching>
処理時間 : 7 0分  Processing time: 70 minutes
処理ロット数: 1ロット  Number of processed lots: 1 lot
<除去〉 <Remove>
処理時間 : 7 7分  Processing time: 77 minutes
処理口ット数: 1ロット  Number of processing mouths: 1 lot
そこで、 各工程の設備台数は、 以下の式で求められる。 <各工程の設備台数 > 設備台数 = [処理時間] ÷ [目標タクト] ÷ [処理ロット数] 例えば、 洗浄工程では、 Therefore, the number of equipment in each process can be obtained by the following formula. <Number of equipment in each process> Number of equipment = [processing time] ÷ [target tact] ÷ [processing lot number] For example, in the cleaning process,
7 7 ÷ 3 6 + 1 = 2 . 1 4台  7 7 ÷ 3 6 + 1 = 2.1.4
ということで、 3台必要となる。  So you need three units.
同様に拡散工程では、  Similarly, in the diffusion process,
3 6 0 ÷ 3 6 ÷ 6 = 1 . 6 7台  3 6 0 ÷ 36 ÷ 6 = 1.6 .7
ということで、 2台必要となる。  So you need two.
以上の手順で求めた設備台数をモジュール定義ファイルに格納する。 次に、 求めた設備の台数をもとに、 このモジュールの生産状況をガント チャートという図表で表現したものが第 1 8図である。 この図は、 横軸に 時間 (図の場合は 1目盛り 1タクトである 3 6分を表している) 、 縦軸に 工程の並びと、 各工程の設備を表している。 例えば、 最初のロットは、 洗 浄 1の設備で 7 7分間処理され、 次にバッファに貯められる。 ここでは、 洗浄工程が 1口ット単位の処理であるのに対し、 拡散工程が 6ロット単位 の処理あるので、 洗浄工程と拡散工程の間にバッファを設けてロットを一 時保管する。  The number of equipment obtained by the above procedure is stored in the module definition file. Next, Fig. 18 shows the production status of this module in the form of a Gantt chart based on the obtained number of facilities. In this figure, the horizontal axis represents time (in the case of the figure, 36 minutes, which is one tick per tact), the vertical axis represents the arrangement of processes, and the equipment for each process. For example, the first lot is processed for 77 minutes in the washing 1 facility and then stored in a buffer. In this case, the cleaning process is performed in units of one unit, whereas the diffusion process is performed in units of six lots. Therefore, a buffer is provided between the cleaning process and the diffusion process to temporarily store the lot.
このバッファに 6ロットたまつた時点で拡散工程に 6ロットが送られる。 しカ し、 見方を変えると、 バッファは拡散工程にあって、 洗浄工程から 3 6分おきにロットが次の工程に送られていると考えられる。 それは、 洗浄 工程と拡散工程がフローラインとして動作していることになる。 このよう に、 各工程間でタクトの時間通りにロットが払い出されて行けば、 工程間 に仕掛りが発生せず、 フローラインのように生産できる。.  When six lots are stored in this buffer, six lots are sent to the diffusion process. From a different perspective, it is considered that the buffer is in the diffusion process, and the lot is sent to the next process every 36 minutes from the washing process. That is, the cleaning process and the diffusion process operate as flow lines. In this way, if a lot is paid out between each process at the tact time, there is no in-process between the processes and production can be performed like a flow line. .
しかし、 拡散工程と低圧 C VD工程は、 バッチ処理工程であるため、 タ ' クト時間通りにロットが送られて行かない。 し力 しながら、 6タクト (2 1 6分間) でならして考えれば、 6タクトの間に 6ロットが次の工程に送 られるので、 見かけ上はフローラインになっている。 However, the diffusion process and the low pressure CVD process are batch processes, 'Lots are not sent on time. However, if you think about 6 tacts (2 16 minutes), 6 lots will be sent to the next process during 6 tacts, so it looks like a flow line.
また、 低圧 C VD工程とホトリソ工程の間にバッファを設けることで、 低圧 C VD工程からまとめて出てきた 6ロットを分割して、 なおかつタイ ミングを図ることで、 あたかもタクト時間毎にロットが低圧 C VDの工程 力 ら払い出されているかのように生産される。  Also, by providing a buffer between the low-pressure CVD process and the photolithography process, the six lots that came out of the low-pressure CVD process are divided and timed, so that lots can be created as if for each tact time. Low-pressure C VD process Produced as if it were paid off.
このようにモジュール内の生産を行うことで、 1つのモジュールをフロ 一ラインとして運用できる。  By performing production in a module in this way, one module can be operated as a flow line.
以上のように求めたバッファの大きさをモジュール定義ファィルに格納 する。  The size of the buffer obtained as described above is stored in the module definition file.
本装置の 2つの大きな機能のうち、 2つの機能は、 生産ラインを運用す るときの手順を決めた運用である。 この手順は以下の通りである。  Of the two major functions of this equipment, two are operations that determine the procedure for operating the production line. The procedure is as follows.
( 1 ) 作業実績更新:各工程の設備でロットの処理が完成した際に、 完成 報告を作業エリア内コントローラ経由でホストコンピュータ内の進度 管理システムに伝える。 進度管理システムでは、 当該ロットのロット 状態を処理中から搬送中に変える。  (1) Update of work results: When the lot processing is completed in the equipment of each process, a completion report is transmitted to the progress management system in the host computer via the controller in the work area. In the progress management system, the lot status of the lot is changed from being processed to being transported.
( 2 ) 搬送先算出:次に進度管理システムで、 モジュール定義ファイルか ら搬送先の工程を求め、 次に当該工程に対応する設備を洗い出す。 ( 3 ) 搬送指示:搬送先算出で決められた設備へ当該口ットを搬送するよ うに、 進度管理システムから搬送制御システムに指示を出す。 この指 示に従って、 搬送系で搬送する。  (2) Destination calculation: Next, the progress management system determines the destination process from the module definition file, and then identifies the equipment corresponding to the destination process. (3) Transfer instruction: The progress management system issues an instruction to the transfer control system to transfer the port to the equipment determined by the transfer destination calculation. In accordance with this instruction, it is transported by the transport system.
( 4 ) 着工指示:当該口ットが搬送先の装置に到着したら、 当該口ットの 着工指示をホストコンピュータから作業エリア内コントローラに指示 を出す。 (4) Start of construction instruction: When the mouth reaches the destination device, The start instruction is issued from the host computer to the controller in the work area.
以上のような手順で、 モジュール内の生産おょぴ物流の制御ができる。 以下第 1図乃至第 1 0図によつて本発明を詳細に説明する。  With the above procedure, the production and distribution in the module can be controlled. Hereinafter, the present invention will be described in detail with reference to FIGS. 1 to 10.
半導体製造に於いては、' 前述したように一連の処理作業が全体の製造ェ 程で何回か行われる。 例として次の一連の処理作業があげられる (洗浄→ 拡散→レジスト塗布→露光—現像) 。 ある一連の処理を第 1図にある処理 装置 (工程 (ホ) 、 工程 (へ) 、 工程 (ィ) 、 工程 (口) 、 工程 (ハ) ) からなるとしたとき、 これらを結ぶ専用作業ェリァ間搬送系 5を設ける (ここでは搬送系 5 a ) 。 製品は一連の処理を定められた順序にて作業ェ リア間搬送系 5 aを介して次の処理へと移る。  In semiconductor manufacturing, as described above, a series of processing operations are performed several times in the entire manufacturing process. As an example, the following series of processing operations can be mentioned (washing → diffusion → resist coating → exposure-development). Assuming that a series of processing consists of the processing equipment (process (e), process (f), process (a), process (mouth), and process (c)) shown in Fig. 1, a special work area connecting these The transport system 5 is provided (here, the transport system 5a). The product moves to the next process through the inter-work area transfer system 5a in a predetermined order in a series of processes.
作業エリア間搬送系 5 aは定められたタクトで製品を搬送する。 この時、 各処理装置 3にての製品の作業ェリァ間搬送系 5 aへの受け渡しが搬送系 間継ぎ装置 4を介して、 定められたタクトで行えるようになつている。 具 体的な流れを第 9図にそって説明する。  The transport system 5a between the work areas transports the product with the specified tact. At this time, the transfer of the product to the transfer system 5a between the work areas in each processing device 3 can be performed with a predetermined tact via the transfer system connection device 4. The specific flow will be described with reference to FIG.
各製品は他の製品と識別できるようにコードがゥヱーハ又はゥヱーハを 搬送するカセットにつけられている。 製品処理が完了すると、 処理装置は 作業エリア内コントローラ 7 aへその旨を知らせる (Step l ) 。 作業エリ ァ内コントローラ 7 aは作業ェリ了内搬送系 2へ製品を移载可能か聞く (Step 2 ) 。 作業エリア内搬送系 2より 「否」 の回答の場合、 製品は処理 装置 3内に待機している。 作業エリア内搬送系 2より 「可」 の信号を得た 時、 作業ェリア内コントローラ 7 aは処理装置 3と作業ェリァ内搬送系 2 に製品を作業エリア内搬送系 2へ移載するように命令する (Step 4 ) 。 製 品が作業ェリァ内搬送系 2に移载された事を作業ェリア内コントローラ 7 aが確認すると (SteP5) 、 製品を搬送系間継ぎ装置 4へ運ぶように作業 エリア内搬送系 2へ命令する (Step 6) 。 Step 7でそれを実行する。 Each product has a code attached to the wafer or cassette that carries the wafer so that it can be distinguished from other products. When the product processing is completed, the processing apparatus notifies the controller 7a in the work area of the completion (Step 1). The controller 7a in the work area asks whether the product can be transferred to the transfer system 2 in the work area (Step 2). If the answer is “No” from the transport system 2 in the work area, the product is waiting in the processing equipment 3. When the signal of “OK” is obtained from the transport system 2 in the work area, the controller 7a in the work area instructs the processing device 3 and the transport system 2 in the work area to transfer the product to the transport system 2 in the work area. (Step 4). Made When the controller 7a in the work area confirms that the product has been transferred to the transfer system 2 in the work area (Ste P 5), a command is issued to the transfer system 2 in the work area to carry the product to the transfer system intermediary device 4. Yes (Step 6). Execute it in Step 7.
作業エリア内コントローラ 7 aとホストコンピュータ 1は搬送系間維ぎ 装置 4より移載完了の信号を受け取る (Step8) 。 Step9でホストコンビ ュ一タ 1は次作業ェリア 6とそこへ運ぶ作業ェリァ間搬送系 5を決定し、 Stepl 0でそこへ搬送するように作業エリア内コントローラ 7 aと作業ェ リア間搬送系コントローラ 7 dに指示する。 搬送系間継ぎ装置コントロー ラ 7 cは作業ェリァ間搬送系 5が製品を移载可能か作業ェリァ間搬送系コ ントローラ 7 dに聞く (Stepl 1) 。 作業エリア間搬送系コントローラ 7 dの返事が 「否」 なら製品を搬送系間継ぎ装置 4に待機させ 「可」 なら作 業エリア間搬送系 5へ移載する (St印 12) (Step 13) 。 移載が完了し たら次のエリアまで搬送する (Step 14〜Step 20 ) 。  The controller 7a in the work area and the host computer 1 receive a transfer completion signal from the transfer device 4 (Step 8). In Step 9, the host computer 1 determines the next work area 6 and the transport system 5 between the work areas to be transported there, and in Step 10 the controller 7a in the work area and the transport system controller between the work areas are transported there. 7 Instruct d. The inter-transfer system controller 7c asks the inter-work carrier controller 7d whether the inter-work carrier system 5 can transfer the product (Step 1). If the answer from the inter-work area transfer system controller 7d is "No", the product is put on standby in the transfer system interlocking device 4, and if "Yes", the product is transferred to the inter-work area transfer system 5 (St mark 12) (Step 13) . When the transfer is completed, it is transported to the next area (Step 14 to Step 20).
次の作業エリアの搬送系間継ぎ装置 4へ製品が移載されたら、 再度ゥェ ーハの確認 (識別コードのチェック) をする (Step21) 。 もし間違った ものであれば搬送系間継ぎ装置コントローラ 7 cは製品を搬送系間継ぎ装 置 4に待機させ、..その旨を作業エリア内コントローラ 7 aを介してホスト コンピュータ 1に知らせ、 ホストコンピュータ 1は外部 (作業員) に知ら せる (Step22) 。 製品が正しいものであれば、 次の作業エリア内コント ローラ 7 aに製品の到着おょぴ I Dとタクトを示し、 処理の依頼をする (Step 23) 。 .  When the product is transferred to the transfer system connecting device 4 in the next work area, the wafer is checked again (the identification code is checked) (Step 21). If it is wrong, the transfer system controller 7c puts the product on standby in the transfer system 4 and notifies the host computer 1 via the controller 7a in the work area, Computer 1 informs the outside (worker) (Step 22). If the product is correct, indicate the arrival of the product to the next controller 7a in the work area, indicate the ID and tact, and request processing (Step 23). .
作業エリア内コントローラ 7 aは処理装置 3へ製品の受け入れが 「可」 力聞く (Step24) 。 どの処理装置 3も受け入れが 「否」 の場合製品を搬 送系間継ぎ装置 4に待機され、 「可」 ならその処理装置 3へ製品を送るよ うに作業ェリア内コントローラ 7 aは作業ェリァ内搬送系 2に命令する - (Step 2 5〜Step 3 4 ) 。 移載を完了したら作業エリア内コントローラ 7 aは処理装置 3に処理するように指示する (Step 3 5 ) 。 The controller 7a in the work area listens to the processing device 3 for the acceptance of the product (Step 24). If any of the processing devices 3 is not accepted, the product is delivered. Controller 7a in the work area instructs the transfer system 2 in the work area to send the product to the processing device 3 if it is `` waited '' by the transmission intermediary device 4-(Step 25 to Step 34) . When the transfer is completed, the controller 7a in the work area instructs the processing device 3 to process (Step 35).
この一連の処理作業をいくつか設け、 それぞれ専用の作業エリア間搬送 系 5を設ける (第 1図では搬送系 5 a〜5 f ) 。 各作業エリア間搬送系 5 a〜5 ίはそれぞれのタクトで運用するように制御されている。 一連の処 理が終了したら次の一連の処理に入る (例えば搬送系 5 a→搬送系 5 b ) 。 ホストコンピュータ 1は搬送系 5 aの^ ϋエリア内搬送系コントローラ 7 から一連の処理を終了したことをうけ、 搬送系 5 の状態を搬送系 5 bの 作業ェリァ内搬送系コントローラ 7より確かめ、 移載可能であれば製品を 移載させ、 不可なら搬送系 Bの空くまで待機させる。 製品は次々と作業ェ リァ間搬送系 5を変え、 すなわち次から次へと一連の処理を行い完成とな 。  Some of this series of processing operations are provided, and a dedicated transport system 5 between the work areas is provided (in Fig. 1, transport systems 5a to 5f). Each inter-work area transfer system 5 a to 5 制 御 is controlled to operate at each tact. When a series of processing is completed, the next series of processing is started (for example, the transport system 5a → the transport system 5b). The host computer 1 completes a series of processes from the transport system controller 7 in the ^ ϋ area of the transport system 5a, checks the status of the transport system 5 from the transport system controller 7 in the work area of the transport system 5b, and moves. If it can be loaded, transfer the product. If not, wait until the transport system B becomes empty. The product is changed one after another by changing the transfer system 5 between the work areas, that is, a series of processing is performed from one to the next, and the product is completed.
ここで具体的なタクトの設定方法を示す。 ある製品の製造において前述 の一連の作業は例えば 5 a→5 b→5 c→5 d→5 b→5 c→5 a力 らな るとする。 一日に製造する生産量は生産計画で定められ、 ここではゥヱー ノヽ 9 0 0枚 Z日とする。 半導体は通常ゥエーハ 2 5枚を一単位 (ロット) としてまとめ、 搬送用のカセットに収納されて搬送される。 即ち、 生産数 は 3 6ロットノ日となる。 一日 2 4時間稼働とすると、 ラインに投入して から払出まで 1 . 5ロット Zhの生産速度で生産を行わなければならない。 該一連作業 5 a→5 b→5 c→5 d→5 b -→5 c→5 aでは各搬送系の搬 送タクトは搬送系 5 aでは 0.75ロット /h、 搬送系 5 bでは 0.75ロット /h、 搬送系 5 cでは 0.5ロット /h、 搬送系 5 dでは 1.5ロット /hとなる。 Here, a specific tact setting method will be described. In the manufacture of a product, the above-mentioned series of operations is, for example, 5a → 5b → 5c → 5d → 5b → 5c → 5a. The production volume to be manufactured per day is determined by the production plan, and here, it is assumed that 900 wafers are Z days. Semiconductors are usually assembled into 25 units of wafers in one unit (lot) and transported in a transport cassette. That is, the production number is 36 lots a day. Assuming 24 hours a day operation, production must be carried out at a production rate of 1.5 lots Zh from the time the product is put into the line to the time it is paid out. 5a → 5b → 5c → 5d → 5b- → 5c → 5a, the transfer tact of each transfer system is 0.75 lots / h for transfer system 5a, 0.75 lots for transfer system 5b / h, 0.5 lot / h for transfer system 5c and 1.5 lot / h for transfer system 5d.
次にエリアの処理機能について説明する。 例として搬送系 5 cを取り上 げる。 搬送系 5 cは工程 (ィ) 、 工程 (口) 、 工程 (ハ) 、 工程 (チ) 、 工程 (ト) 、 工程 (へ) の作業エリアからなる。 この一連の動作が定めら れたタクトで行われるよ'うにハード面でタクトに合わせるように処理装置 の数をも設定する。  Next, the processing function of the area will be described. Take the transport system 5c as an example. The transport system 5c includes work areas for process (a), process (mouth), process (c), process (h), process (g), and process (f). The number of processing devices is also set so that this series of operations is performed with the specified tact, and in accordance with the tact in hardware.
処理装置 3の処理速度がタクトより早い場合、 製品は搬送系間継ぎ装置 4で待機し、 タクトに合うように搬送系間継ぎ装置 4は作業ェリァ間搬送 系 5 aへ移載する。 この時搬送系間継ぎ装置 4にて待機してから処理する か、 処理を終わらせてから待機するかは各製品によって異なる。 また、 逆 に処理装置 3の処理速度がタクトより遅い場合、 作業ェリア 6内の処理装 置 3を増設し、 見かけの処理時間を短縮し (例えばある処理装置はタクト の 2倍かかるとすれば、 処理装置を 1台でなく 2台にする) タクトに合う ようにする。 尚、 一つの作業エリアをいくつもの搬送系が使用する場合、 各搬送系の製品が一度に到着したどきにも対応できるように処理装置 3の 数を設定する。  If the processing speed of the processing device 3 is faster than the tact, the product waits in the transfer system connecting device 4, and the transfer system connecting device 4 is transferred to the interworking transfer system 5a to match the tact. At this time, whether to wait in the transfer system connection device 4 for processing or to wait after finishing the processing differs depending on each product. Conversely, if the processing speed of the processing unit 3 is slower than the tact time, the processing unit 3 in the work area 6 is added to shorten the apparent processing time (for example, if a certain processing unit takes twice the tact time) Use two processing units instead of one). When one work area is used by a number of transport systems, the number of processing devices 3 is set so that the products in each transport system can be handled at once.
〔実施例 2〕  (Example 2)
別の実施例を第 2図に示す。 作業エリア 6の配置方法において、 ある一 連の処理の順に作業ェリア 6を配置し、 該作業ェリァを接続する^ ¾ェリ ァ間搬送系を直線にし、 製品を循環でなく往復運動させて移動する。 搬送 系間継ぎ装置 4で製品は次の一連の処理に入る。 例えば実施例 1に示した 搬送系 5 aにより実現される搬送では、 工程 (ホ) →工程 (へ) →工程 (ィ) —工程 (口) →工程 (ハ) を順番に並ばせ、 作業エリア間搬送系 5 aを引く。 製品は往復運動で搬送され、 一連処理が完了した製品は搬送系 間継ぎ装置 4上で次の一連の処理 (例えば搬送系 5 a→搬送系 5 b ) へ移 載される。 Another embodiment is shown in FIG. In the method of arranging the work area 6, the work areas 6 are arranged in the order of a series of processes, and the work areas are connected.The transport system between the cells is linear, and the product is moved by reciprocating movement instead of circulation. I do. The product enters the next series of processing in the transfer system connection device 4. For example, in the transport realized by the transport system 5a shown in the first embodiment, the process (e) → the process (f) → the process (a) — the process (mouth) → the process (c) are arranged in order, and the work area Intermediate transfer system 5 Subtract a. The product is conveyed in a reciprocating motion, and the product that has completed a series of processing is transferred to the next series of processing (for example, the conveying system 5a to the conveying system 5b) on the conveying system connecting device 4.
〔実施例 3〕  (Example 3)
別の実施例を第 3図に示す。 作業ェリァ間搬送系 5は作業ェリア 6間を 他の作業ェリア 6間と任意に継ぐ作業ェリァ間搬送系 5を設ける。  Another embodiment is shown in FIG. The transfer system 5 between work areas is provided with a transfer system 5 between work areas that arbitrarily connects the work area 6 with another work area 6.
ある一連の処理は必要な工程へ該搬送系を選択して順番にまわる。 例え ば実施例 1に示した搬送系 5 aにより実現される搬送では、 工程 (ホ) と 工程 (へ) 、 工程 (へ) と工程 (ィ) 、 工程 (ィ) と工程 (口) 、 工程 (口) と工程 (ハ) を繋ぐ搬送系を選択することで工程順に製品を流す。 〔実施例 4〕  In a certain series of processes, the transport system is selected and turned around in order by selecting the transport system. For example, in the transfer realized by the transfer system 5a described in the first embodiment, the process (e) and the process (h), the process (h) and the process (a), the process (a) and the process (mouth), the process Products are flowed in the order of the process by selecting the transfer system that connects the (mouth) and the process (c). (Example 4)
別の実施例を第 4図に示す。 作業エリア間搬送系を、 物理的でなく仮想 的に設け、 作業エリア間搬送系 5を一本のみ設ける。 この搬送系で任意の エリア間の搬送が行える。 ホストコンピュータ 1は専用作業エリア間搬送 系 5があたかもあるように制御する。  Another embodiment is shown in FIG. A transfer system between work areas is provided virtually, not physically, and only one transfer system 5 between work areas is provided. This transport system enables transport between any areas. The host computer 1 controls the transport system 5 between the dedicated work areas as if it were.
制御方法の一例として以下に示す。 作業ェリァ間搬送系 5はいくつかの 搬送台車によつて構成されており、 一つの搬送台車は一単位のゥエーハし 力乗せることができない。 この一単位ゥエーハとは一枚単位でもロット単 位のケースのいずれでもかまわない。 処理を完了した製品は、 その作業ェ リァの搬送系間継ぎ装置 4を介して作業ェリァ間搬送系 5の搬送台車に乗 せられ次の作業エリアに搬送される。 このとき、 搬送系間継ぎ装置 4はこ の製品の識別を読みとり、 そのデータをホストコンピュータ 1へ送る。 ホ ストコンピュータ 1はこの製品はどの一連の処理の製品か (寒施例 1でい う、 どのィ樓エリア間搬送系 5の製品か) 認識し、 次へ送る作業エリア 6 にこの製品の直前に処理終了した製品 X ( i ) をすでに搬送系 5から次に 送る作業ェリア 6の搬送系間継ぎ装置 4へ受け取つたかを次の作業ェリァ 内コントローラ 7 a及び搬送系間維ぎ装置コントローラ 7 cに聞く。 An example of the control method will be described below. The transport system 5 between work areas is composed of several transport vehicles, and one transport vehicle cannot carry one unit of power. This one unit ゥ eha may be either a single unit or a lot unit. The processed product is placed on the transport trolley of the interworking transfer system 5 via the interworking transfer device 4 for the work area and transferred to the next work area. At this time, the transfer system connecting device 4 reads the identification of the product and sends the data to the host computer 1. The host computer 1 is a product of this series of processing. Which is the product of the transport system 5 between the storage areas?) Recognize and send the product X (i) that has been processed just before this product to the next work area 6 from the transport area 5 Ask the controller 7a in the next work area and the controller 7c for the inter-transportation system to determine whether or not it has been received by the inter-transportation system 4.
「受け取った」 という信号が帰ってきたら、 ホストコンピュータ 1は搬 送系間継ぎ装置 4に作業ェリァ間搬送系 5へ処理済み製品 X iを流すこと を許可し、 「未受け取り」 の信号なら搬送系間継ぎ装置 4に待機させる。 このとき同じエリア内で、 他の一連の処理の製品 Y ( j ) が製品 X ( i ) の後から処理完了しても、.その一連の処理作業において次の作業ェリァで 直前に処理終了した製品 Y ( j - 1 ) を受け取っているならば、 先に作業 エリア間搬送系 5に流すものとする。 例えば、 実施例 1に示した作業エリ ァ間搬送系 5 a〜5 f を本実施例に仮想的に存在するとする。 搬送系 5 a と搬送系 5 bは同じ作業エリア工程 (ホ) を使用する。  When the signal of "received" returns, the host computer 1 allows the transport inter-connection device 4 to flow the processed product Xi to the inter-work area transport system 5, and transports the "unreceived" signal. The intermediary device 4 is put on standby. At this time, even if the product Y (j) of another series of processing is completed after the product X (i) in the same area, the processing was completed immediately before in the next work error in that series of processing work If the product Y (j-1) has been received, it shall flow to the inter-work area transport system 5 first. For example, it is assumed that the inter-work area transfer systems 5a to 5f shown in the first embodiment virtually exist in the present embodiment. The transport system 5a and the transport system 5b use the same work area process (e).
搬送系 5 a用の製品は処理済みになり次の工程 (へ) へ搬送すべきもの であるが、 工程 (へ) の作業エリア内コントローラ 7 aから前処 ,品を 受け取った信号がな.ければ製品は搬送系間継ぎ装置 4に待機する。 この搬 送系 5 a用の製品の後に搬送系 5 b用の製品の処理が終了し、 次の作業ェ リア工程 (ィ) からは前処理製品を受け取つたという信号がすでにあれば、 搬送系間継ぎ装置 4は先に搬送系 5 bの製品を作業ェリァ間搬送系 5に流 す。 このようにしていくつかの搬送系があたかも存在する如く、 製品を流 す。  The product for the transport system 5a has been processed and should be transported to the next process (F), but there is no signal from the controller 7a in the work area of the process (F) that received the preprocessing and product. In this case, the product waits in the transfer system connecting device 4. If the processing of the product for the transport system 5b is completed after the product for the transport system 5a, and there is already a signal that the pre-processed product has been received from the next work area process (a), the transport system The splicer 4 first feeds the products of the transfer system 5 b to the transfer system 5 between work areas. In this way, the product flows as if several transport systems exist.
〔実施例 5〕  (Example 5)
別の実施例を第 5図に示す。 前実施例の作業ェリア 6は任意の連続する 複数の一連の工程 (A, B , C) を順次連続して処理する設備を集めて構 成する。 例えば、 半導体製造において同種の繰り替えし工程 (洗浄—拡散 →レジスト塗布—露光—現像) の装置を一つの作業ェリア 6で配置する。 この 5種類の装置を直接継ぎフロー化する搬送系を設ける。 この搬送系は 製品を、 洗浄—拡散→レジスト塗布→露光→現像へ移載することだけを命 令されている。 この洗浄→拡散→レジスト塗布→露光→現像を見かけ上一 つの連続した装置として処理が行われる。 Another embodiment is shown in FIG. Working area 6 of the previous embodiment is optional continuous The equipment will consist of equipment that sequentially and sequentially processes multiple series of processes (A, B, C). For example, in the semiconductor manufacturing, an apparatus of the same kind of repetition process (cleaning-diffusion → resist coating-exposure-development) is arranged in one work area 6. A transport system will be provided to directly splice these five types of equipment. This transport system is only instructed to transfer the product from cleaning to diffusion → resist coating → exposure → development. This washing → diffusion → resist coating → exposure → development is apparently performed as one continuous apparatus.
〔実施例 6〕  (Example 6)
別の実施例を第 6図に示す。 前実施例の該見かけ上一つの連続した装置 (すなわち作業エリア内) の装置配置方法において、 前実施例に示す一貫 化して配置するのではなく、 一連の処理に必要とする処理装置を集め、 こ れらの処理装置 3と一つの共有する搬送系間継ぎ装置 4と、 該搬送系間継 ぎ装置 4作業といくつかの処理装置 3を繋ぐ作業ェリァ内搬送系 2力 らな る。 作業ェリァ内搬送系 2を搬送系間継ぎ装置 4に対して放射状に設置し、 各搬送系間継ぎ装置 4に処理装置 3を継ぐ。 一連の処理最中の製品はこの 共有搬送系間継ぎ装置 4を介して次の処理装置 3へ移載される。 また、 一 連の処理を完了した製品はこの共有搬送系間継ぎ装置 4を介して他の作業 エリア 6へ移載される。  Another embodiment is shown in FIG. In the apparatus arrangement method of the apparently continuous apparatus (that is, in the work area) of the previous embodiment, the processing apparatuses required for a series of processing are collected instead of being arranged consistently as shown in the previous embodiment. These processing devices 3 and one shared transfer system connection device 4, and the transfer system connection device 4 work and a transfer system in a work area that connects several processing devices 3 to each other. The transfer system 2 in the work area is installed radially with respect to the transfer system connecting device 4, and the processing device 3 is connected to each transfer system connecting device 4. Products undergoing a series of processing are transferred to the next processing apparatus 3 via the shared transfer system connecting apparatus 4. Further, the products that have completed a series of processing are transferred to another work area 6 via the shared transfer system connection device 4.
逆に、 本作業ェリア 6での一連の処理を必要とする製品は作業ェリァ間 搬送系 5から搬送系間継ぎ装置 4を得て、 本作業エリアに入る。 この放射 状に装置を配置することにより、 配置使用スペースの効率を上げることが できる。 また、 前実施例では処理装置 3の故障時では製品は該作業エリア 6内で停止するが、 本方式では共有搬送系間継ぎ装置 4は使用可の処理装 置 3へ移載する事ができ作業エリア内で停止することはない。 また、 処理 装置の故障時に備えてバッファ等を設ける方法もあるが、 前実施例では各 装置毎にバッファを必要とするが、 本実施例ではバッファは搬送系間継ぎ 装置 4が行い、 バッファのコストとスペースを節約できる。 Conversely, products that require a series of processing in the work area 6 obtain the transfer system connecting device 4 from the work area transfer system 5 and enter the work area. By arranging the devices radially, the efficiency of the space used can be increased. Further, in the previous embodiment, when the processing device 3 fails, the product stops in the work area 6, but in this method, the shared transfer system connection device 4 is used. It can be transferred to the place 3 and does not stop in the work area. There is also a method of providing a buffer or the like in preparation for a failure of the processing device, but in the previous embodiment, a buffer is required for each device, but in the present embodiment, the buffer is performed by the transfer system connection device 4 and the buffer is provided. Saves cost and space.
第 7図は本発明のさら 別の実施例を示す。  FIG. 7 shows still another embodiment of the present invention.
本装置にあっては、 処理の異なる作業ェリア 6をグループィ匕して見かけ 上一つの連続した処理が実行される作業エリ了 9を形成する。 本実施例で は、 9 a 〜 9 ίの 6個の^^エリアが形成される。 そして、 これらの作業 ェリァを第 4図の実施例で示したのと同様の一本の作業ェリァ間搬送系で 連結するものである。 搬送系の制御方法は第 4図の実施例と同様である。 本発明においては、 品種によって専用の生産ライン設けることなく、 ラ インレイアウトを変更せずに、 仕掛り量が少なく、 ェ完の短いラインを簡 素な搬送系で実現できる。 本発明の 1つの効; ¾を第 8図に示す。 第 8図は 生産規模がゥヱーハ枚数 6 8 0枚 Ζ日の生産を行う半導体生産ラインを、 ジョブショップ、 フローショップ、 本発明で実現した場合のェ完と装置台 数を示したものである。 ェ完に関しては、 ジョブショップの場合には、 製 品の流し方について特に考慮していないため工程毎に待ちが発生し、 大幅 にェ完が長期化する。 これに対し、 本発明では、 タクトで製品が流れるた め、 ェ完は大幅に短縮される効果がある。 またフローショップの場合には、 1つの装置で複数の工程の処理が可能であっても、 工程数分の装置台数が 必要であるのに対し、 本発明では、 1つのエリア内で処理が可能なため、 1つの装置で該複数工程を処理できるため、 装置台数の増加がない効果が ある。 本発明の別な効果としては、 エリア内においてひとつの処理装置が故障 しても、 他の処理装置が代用できるため、 全体の処理は停止する事はない。 また、 各製品に対応する一連の処理はソフト上で解決でき、 装置の並べ替 え、 搬送路の変更する必要が無いため多品種製造に即対応できる効果もあ る。 In the present apparatus, work areas 6 having different processes are grouped to form a work area 9 in which one continuous process is apparently executed. In the present embodiment, six ^^ areas 9 a to 9 形成 are formed. These work areas are connected by a single work area transfer system similar to that shown in the embodiment of FIG. The control method of the transfer system is the same as that of the embodiment of FIG. In the present invention, a line with a small amount of work in process and a short time can be realized with a simple transfer system without providing a dedicated production line for each product type and without changing the line layout. FIG. 8 shows one effect of the present invention. Fig. 8 shows the results and the number of devices when a semiconductor production line producing 680 wafers per day is realized by a job shop, a flow shop, and the present invention. As for job completion, in the case of a job shop, there is no special consideration on how to flow products, so waiting occurs for each process, and the job completion is greatly lengthened. On the other hand, according to the present invention, since the product flows at the tact time, there is an effect that the completion is greatly reduced. In the case of a flow shop, even if a single device can process a plurality of processes, the number of devices required for the number of processes is required, whereas in the present invention, the process can be performed within one area Therefore, since one apparatus can process the plurality of processes, there is an effect that the number of apparatuses does not increase. Another advantage of the present invention is that even if one processing device fails in the area, another processing device can be substituted, so that the entire processing is not stopped. In addition, a series of processes corresponding to each product can be solved on software, and there is no need to rearrange the equipment and change the transport path.

Claims

請 求 の 範 囲 The scope of the claims
1 . 連続して作業を施す生産工程に於いて、 同じ処理機能を持つ設備を集 めて、 作業エリアをいくつか作り、 該エリア間をいくつかの搬送系で結 ぴ、 該搬送系に結ばれナこ作業ェリァ間を同じ生産速度で製品を供給 ·生 産することを特徴とする多品種連続生産方法。 1. In a production process in which continuous work is performed, equipment with the same processing function is gathered, several work areas are created, and the areas are connected by several transport systems and connected to the transport system. A multi-product continuous production method characterized in that products are supplied and produced at the same production rate between different working areas.
2 . 作業エリア間と他のィ樓エリア間とを任意に継ぐ搬送系を設け、 作業 を施す製品の種類により、 生産速度を同じとする作業ェリァの組み合わ せを行い、 あたかも専用搬送系があるよう製品の搬送を制御し、 組み合 わせたエリアを同じ生産速度で製品を供給 ·生産することを特徴とする 多品種連続生産方法。  2. Provide a transfer system that arbitrarily connects between the work area and the other storage areas. Depending on the type of the product to be worked on, a combination of work carriers with the same production speed is used. A multi-product continuous production method characterized by controlling the transport of products and supplying and producing products at the same production speed in the combined area.
3 . 請求の範囲 2の搬送系が一つの搬送系であり、 任意の一連作業をあた かも専用搬送系があるように、 搬送系の制御を同時に行うことを特徴と する多品種連続生産方法。  3. A multi-product continuous production method characterized in that the transfer system in claim 2 is a single transfer system, and the control of the transfer system is performed simultaneously so that an arbitrary series of operations is performed as if a dedicated transfer system is provided. .
4 . 請求の範囲 1の作業ェリァにおいて、 作業ェリァ内は、 任意の連続す る複数の一連の工程を順次連続して処理する設備を集めて構成したこと を特徴とする多品種連続生産方法。 4. The multi-product continuous production method as set forth in claim 1, wherein the work area includes a collection of equipment for sequentially and continuously processing a plurality of continuous processes.
5 . 請求の範囲 4の作業エリアは同種の繰り返し工程の設備群で構成され ることを特徴とする多品種連続生産方法。 5. The multi-product continuous production method according to claim 4, wherein the work area comprises a group of equipment of the same kind of repetitive process.
6 . 同種類の処理を行う装置を複数台まとめて構成される複数の作業エリ ァと、 作業ェリァ内で各処理装置に対する製品の搬送を行う作業ェリァ 内搬送系と、 作業ェリア内の制御を行う作業ェリア内コントローラと、 作業ェリァ間で製品を搬送する作業ェリァ間搬送系と、 作業ェリァ間搬 送系と作業ェリァ内搬送系の間を継ぐ搬送間継ぎ装置と、 搬送系間継ぎ 装置のコントローラと、 作業エリア間搬送系のコントローラと、 生産装 置の全体を制御するホストコンピュータとを備えてなる多品種連続生産 . 作業エリア間搬送系は、 各作業エリアを継ぐ専用の搬送系であって、 製品は一連の処理工程に応じて専用の搬送系により順次各作業ェリァに 搬送されることを特徴とする請求の範囲 6記載の多品種連続生産装置。 . 作業ェリァ間搬送系は、 各作業ェリァ間を直線で継ぐ搬送系であって、 製品は一連の処理工程に応じて搬送系を往復運動で搬送されることを特 徴とする請求の範囲 6記載の多品種連続生産装置。 6. A plurality of work areas composed of a plurality of devices that perform the same type of processing, a transport system in the work area that transports products to each processing device in the work area, and control in the work area. The controller in the work area to be performed, the transfer system between work areas for transferring products between work areas, and the transfer between work areas It is equipped with a transfer splicing device that connects the transfer system and the transfer system in the work area, a controller of the transfer system splicer, a controller of the transfer system between work areas, and a host computer that controls the entire production device. Multi-product continuous production. The transport system between work areas is a dedicated transport system that connects each work area. Products are transported to each work area sequentially by the dedicated transport system according to a series of processing steps. 7. The multi-product continuous production apparatus according to claim 6, characterized in that: The transfer system between work areas is a transfer system that connects the work areas in a straight line, and the product is transferred in a reciprocating manner through the transfer system according to a series of processing steps. A multi-product continuous production apparatus as described.
. 作業ェリァ間搬送系は、 各作業ェリァ間を任意に継ぐ搬送系であって、 製品は一連の処理工程に応じて任意の経路によって搬送されることを特 徴とする請求の範囲 6記載の多品種連続生産装置。7. The transfer system according to claim 6, wherein the transfer system between the work areas is a transfer system for arbitrarily connecting between the work areas, and the product is transferred by an arbitrary route according to a series of processing steps. Multi-product continuous production equipment.
0 . 作業エリア間搬送系は、 各作業エリアを仮想的に継ぐ搬送系であつ て、 製品は一連の処理工程に応じてホストコンピュータにより構築され る仮想の搬送系路によつて搬送されることを特徴とする請求の範囲 6記 0. The transport system between work areas is a transport system that virtually connects each work area, and products are transported by a virtual transport system constructed by the host computer according to a series of processing steps. Claim 6 characterized by
1 . 作業エリアは任意の連続する複数の一連の処理工程を順次連続して 処理する複数の装置を集めて構成され、 作業エリア内搬送系は各装置を 直接に継ぐ搬送装置であることを特徴とする請求の範囲 6記載の多品種 1. The work area is made up of a plurality of devices that sequentially and continuously process a series of arbitrary continuous processing steps, and the transport system in the work area is a transport device that directly connects each device. Claims 6
2 . 作業エリァは一連の処理に必要とする処理装置を集めて形成され、 作業ェリァに設けられる 1つの搬送間継ぎ装置に対して作業ェリァ内搬 送系が放射状に連結されることを特徴とする請求の範囲 6記載の多品種 2. The work area is formed by collecting the processing equipment required for a series of processing, and is carried in the work area to one transfer splicer installed in the work area. 7. The multi-variety according to claim 6, wherein the transmission systems are radially connected.
3 . 作業エリアは、 処理の異なる作業エリアをグループィ匕して見かけ上 一つの連続した処理が実行される作業エリアであって、 作業エリア間搬 送系は見かけ上の作業土リァを仮想的に継ぐ搬送系であることを特徴と する請求の範囲 6記載の多品種連続生産装置。 3. The work area is a work area in which one continuous process is executed by apparently grouping work areas with different processes, and the transport system between the work areas is a virtual work soil layer. 7. The multi-product continuous production apparatus according to claim 6, wherein the multi-product continuous production apparatus is a transfer system connected to a continuous feeder.
PCT/JP1994/002210 1993-12-27 1994-12-26 Method and apparatus for continuously producing a multiplicity of types WO1995017993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33062693 1993-12-27
JP5/330626 1993-12-27

Publications (1)

Publication Number Publication Date
WO1995017993A1 true WO1995017993A1 (en) 1995-07-06

Family

ID=18234772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002210 WO1995017993A1 (en) 1993-12-27 1994-12-26 Method and apparatus for continuously producing a multiplicity of types

Country Status (1)

Country Link
WO (1) WO1995017993A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810632A2 (en) * 1996-05-28 1997-12-03 Applied Materials, Inc. Method and apparatus for transferring wafers in a wafer processing facility
US6131052A (en) * 1996-10-08 2000-10-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor manufacturing non-processing apparatuses with storage equipment
CN108529191A (en) * 2017-03-01 2018-09-14 东洋自动机株式会社 Relay

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889355A (en) * 1973-02-05 1975-06-17 Ibm Continuous processing system
JPS60176547U (en) * 1984-04-27 1985-11-22 富士通株式会社 Wafer processing equipment
JPS63232921A (en) * 1987-03-19 1988-09-28 Toshiba Corp Manufacturing method and device
JPH01274956A (en) * 1988-04-28 1989-11-02 Hitachi Ltd Production control method
JPH0278243A (en) * 1988-09-14 1990-03-19 Fujitsu Ltd Continuous processing system for semiconductor substrate
JPH0550369A (en) * 1991-08-23 1993-03-02 Sony Corp Production equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889355A (en) * 1973-02-05 1975-06-17 Ibm Continuous processing system
JPS60176547U (en) * 1984-04-27 1985-11-22 富士通株式会社 Wafer processing equipment
JPS63232921A (en) * 1987-03-19 1988-09-28 Toshiba Corp Manufacturing method and device
JPH01274956A (en) * 1988-04-28 1989-11-02 Hitachi Ltd Production control method
JPH0278243A (en) * 1988-09-14 1990-03-19 Fujitsu Ltd Continuous processing system for semiconductor substrate
JPH0550369A (en) * 1991-08-23 1993-03-02 Sony Corp Production equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810632A2 (en) * 1996-05-28 1997-12-03 Applied Materials, Inc. Method and apparatus for transferring wafers in a wafer processing facility
EP0810632A3 (en) * 1996-05-28 1998-06-10 Applied Materials, Inc. Method and apparatus for transferring wafers in a wafer processing facility
US5975740A (en) * 1996-05-28 1999-11-02 Applied Materials, Inc. Apparatus, method and medium for enhancing the throughput of a wafer processing facility using a multi-slot cool down chamber and a priority transfer scheme
US6201998B1 (en) 1996-05-28 2001-03-13 Applied Materials, Inc. Apparatus, method and medium for enhancing the throughput of a wafer processing facility using a multi-slot cool down chamber and a priority transfer scheme
US6360132B2 (en) 1996-05-28 2002-03-19 Applied Materials, Inc. Apparatus, method and medium for enhancing the throughput of a wafer processing facility using a multi-slot cool down chamber and a priority transfer scheme
US6449520B1 (en) 1996-05-28 2002-09-10 Applied Materials, Inc. Apparatus, method and medium for enhancing the throughput of a wafer processing facility using a multi-slot cool down chamber and a priority transfer scheme
US6580955B2 (en) 1996-05-28 2003-06-17 Applied Materials, Inc. Apparatus, method and medium for enhancing the throughput of a wafer processing facility using a multi-slot cool down chamber and a priority transfer scheme
US6131052A (en) * 1996-10-08 2000-10-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor manufacturing non-processing apparatuses with storage equipment
DE19706990C2 (en) * 1996-10-08 2000-10-26 Mitsubishi Electric Corp A semiconductor manufacturing system and method for processing semiconductor wafers on a lot-by-lot basis
CN108529191A (en) * 2017-03-01 2018-09-14 东洋自动机株式会社 Relay

Similar Documents

Publication Publication Date Title
US5024570A (en) Continuous semiconductor substrate processing system
US6308107B1 (en) Realtime decision making system for reduction of time delays in an automated material handling system
US6854583B1 (en) Conveyorized storage and transportation system
US20070244594A1 (en) Automated manufacturing systems and methods
JPH07122622A (en) Production system and production method
JPH07237095A (en) Continuous production method for various kinds and device therefor
WO2009009069A1 (en) System and method of improving throughput and vehicle utilization of monorail factory transport systems
JP4977644B2 (en) Automatic conveyance system and method for setting standby position of conveyance vehicle in automatic conveyance system
KR20050072692A (en) Semiconductor manufacturing system, work manufacturing system, and conveyance system
JPH0278243A (en) Continuous processing system for semiconductor substrate
WO1995017993A1 (en) Method and apparatus for continuously producing a multiplicity of types
US7076326B2 (en) Proactive staging for distributed material handling
Jahed et al. Mathematical modeling for a flexible manufacturing scheduling problem in an intelligent transportation system
JPH11334810A (en) Carrying device and manufacture of the same
JP2001143979A (en) Processing system of semiconductor substrate
Kaempf Automated wafer transport in the wafer Fab
JPH04115513A (en) Method for constituting semiconductor manufacturing line
Chung et al. The integrated room layout for a semiconductor facility plan
US6928333B1 (en) Scheduling method for automated work-cell transfer system
Arzt et al. A New Low Cost Approach in 200 mm and 300 mm AMHS
JPH0744614A (en) Device for controlling production and method therefor
JP2000195919A (en) Carrier, carrying method and carrying system
JP2850018B2 (en) Semiconductor substrate continuous processing system
US20130226325A1 (en) Methods and systems for fabricating integrated circuits with local processing management
JPH11227931A (en) Conveying order deciding method and its device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)