WO1995013195A1 - Transfer printing medium - Google Patents

Transfer printing medium Download PDF

Info

Publication number
WO1995013195A1
WO1995013195A1 PCT/US1994/011345 US9411345W WO9513195A1 WO 1995013195 A1 WO1995013195 A1 WO 1995013195A1 US 9411345 W US9411345 W US 9411345W WO 9513195 A1 WO9513195 A1 WO 9513195A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
curable
prepolymer
transfer printing
printing medium
Prior art date
Application number
PCT/US1994/011345
Other languages
French (fr)
Inventor
Frank A. Meneghini
John S. Deeken
John J. Drake
Original Assignee
Markem Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Markem Corporation filed Critical Markem Corporation
Priority to EP94930625A priority Critical patent/EP0728073B1/en
Priority to KR1019960702442A priority patent/KR100322459B1/en
Priority to DE69418056T priority patent/DE69418056T2/en
Priority to CA002175588A priority patent/CA2175588A1/en
Publication of WO1995013195A1 publication Critical patent/WO1995013195A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/42Intermediate, backcoat, or covering layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/38207Contact thermal transfer or sublimation processes characterised by aspects not provided for in groups B41M5/385 - B41M5/395
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/392Additives, other than colour forming substances, dyes or pigments, e.g. sensitisers, transfer promoting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/009After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using thermal means, e.g. infrared radiation, heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/46Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography characterised by the light-to-heat converting means; characterised by the heat or radiation filtering or absorbing means or layers
    • B41M5/465Infra-red radiation-absorbing materials, e.g. dyes, metals, silicates, C black

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Laminated Bodies (AREA)
  • Paper (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A transfer printing medium that includes a carrier to which is applied a curable laser-transferrable ink having one or more layers. The transfer medium is capable of converting laser energy to heat. The ink includes: (a) at least one colorant; (b) at least one polymerization initiator; and (c) at least one curable prepolymer.

Description

TRANSFER PRINTING MEDIUM Background of the Invention This invention relates to laser-induced transfer printing.
In laser-induced transfer printing, irradiation of an ink-bearing carrier with laser light causes the ink to transfer from the carrier to a surface, e.g., the surface of a microelectronic device, audio cassette, computer diskette, or syringe body. By manipulating the scanning parameters of the laser beam, the ink can be deposited in a programmed pattern.
Summary of the Invention In a first aspect, the invention features a transfer printing medium that includes a carrier to which is applied a curable laser-transferrable ink having one or more layers. The transfer medium is capable of converting laser energy to heat. The ink includes (a) at least one colorant; (b) at least one polymerization initiator; and (c) at least one curable prepolymer. By "colorant" it is meant any additive that imparts color to the ink, including the colors white and black. Colorants include both dyes and pigments, as well as metallized coatings. By "prepolymer" it is meant any species capable of being polymerized following either thermal or photochemical initiation to form a polymer.
In preferred embodiments, the ink transfers to a surface of interest and cures in one step upon application of laser energy. In one preferred embodiment, at least one of the polymerization initiators is a thermal polymerization initiator and at least one of the prepolymers is thermally curable. In another preferred embodiment, at least one of the polymerization initiators is a photoinitiator and at least one of the prepolymers is photochemically curable. One example of a preferred prepolymer is an epoxy- functionalized prepolymer. A second example is an epoxy- functionalized prepolymer combined with a vinyl ether- functionalized prepolymer. A third example is an epoxy- functionalized prepolymer combined with an acrylate- functionalized prepolymer. A fourth example includes the acrylate-functionalized prepolymers themselves. A fifth example is a blocked isocyanate-functionalized prepolymer and a sixth example is a blend of a vinyl ether- functionalized prepolymer and a maleate- or maleimide- functionalized prepolymer.
At least one of the ink layers may be a curable size coat that includes a polymerization initiator and a curable prepolymer. The size coat is used in combination with a color coat layer. In one preferred embodiment, the color coat is non-curable and includes a colorant and a thermoplastic film-forming resin. In another preferred embodiment, the color coat is curable and includes a colorant, a polymerization initiator, and a curable prepolymer. In the case of curable color coats used with curable size coats, the polymerization initiators and prepolymers found in the respective layers may be the same as, or different from, each other.
In a second aspect, the invention features a laser-induced transfer printing method using the above- described transfer printing medium. The method includes the steps of irradiating the particular transfer printing medium with laser light of a predetermined wavelength to transfer the ink from the carrier to a surface of interest, and curing the ink to adhere the ink to the surface of interest. The transfer and cure of the ink may be effected in a single step through irradiation with said laser light. Cure may also be effected in a separate step subsequent to transfer. The invention provides transfer printing media featuring curable inks that adhere well to the surface on which they are deposited following laser irradiation. The inks transfer cleanly from the supporting carrier and cure rapidly; in some cases, transfer and cure are effected in a single step. It is not necessary to add a separate self-oxidizing material such as nitrocellulose in order to effect transfer. In addition, the ability to use non-curable layers (e.g., non-curable color coats) in combination with curable layers (e.g., curable size coats) expands the types of materials that can be used for the inks, enabling the properties of the inks to be adjusted as needed for a particular application.
Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims. Description of the Preferred Embodiments The invention features a transfer printing medium capable of converting laser energy to heat in which a curable laser-transferrable ink having one or more layers is deposited on a carrier. The carrier must have suf iciently low surface energy to permit transfer of the ink. It also must not melt or otherwise deform upon laser irradiation. Examples of suitable carriers include flexible plastic films such as polyethylene, polypropylene, and polyester.
The transfer medium is capable of converting laser energy to heat to promote transfer of the ink from the carrier to the surface of interest. To this end, one or more thermal convertors are incorporated into the carrier, the ink, or both. The thermal convertors may be separate additives or may be part of the prepolymer.
In the case of separately added convertors included in the ink, the amount of convertor ranges from about 0.25 to about 30% by weight (based upon the total solids content of the ink) . The particular convertor is selected based upon the particular laser energy used for irradiation. In the case of C02 lasers, the preferred convertors are carbon black, polyethylene glycol (e.g., PEG 3000 commercially available from Union Carbide) , talc (e.g., Nytal 400 commercially available from R.T. Vanderbilt) , and PPZ, a phosphotriazine commercially available from Idemitsu Petrochemicals Co. Ltd; PPZ may also function as a prepolymer. In the case of Nd:YAG lasers, the preferred convertors are IR99, IRA 980, and IR165, all of which are proprietary dyes commercially available from Glendale Protective Technologies, IR dye 14,617 (a proprietary dye commercially available from Eastman Kodak) , and Projet 900NP (a proprietary dye commercially available from ICI) . In the case of diode lasers, the preferred convertors are IR dye 14,617 and IRA 980.
The inks may have one or more layers, with particular ingredients (e.g., prepolymer, polymerization initiator, etc.) being present in any of the layers. One example of ink is a one layer ink (referred to here as a "one-pass" coating) having a curable color coat that includes, in a single layer, a curable prepolymer, a polymerization initiator, and a colorant. Another example is a two layer ink (referred to here as a "two- pass" coating) having a color coat (which may be curable or non-curable) in combination with an overlying curable size coat that includes a curable prepolymer and a polymerization initiator. Because the inks are curable, adhesion upon transfer to a surface of interest is improved. The advantage of the size coat (which is transferred with the color coat upon laser irradiation) is that adhesion is further enhanced, thereby making it possible to use even a non-curable color coat. The inks contain one or more curable prepolymers, with the total amount of curable prepolymer ranging from 25 to 95% by weight (based upon the total solids content of the ink) . Curable prepolymers useful in the invention have two or more functional groups available for crosslinking (which occurs either simultaneously with transfer upon application of laser radiation or following laser irradiation in a separate thermal or photochemical cure step) . One class of suitable curable prepolymers includes epoxy-functionalized prepolymers such as bisphenol A diglycidyl ether (commercially available from Shell Oil under the designation Epon 1001) and epoxy-functionalized novolac resins (e.g., Epon 164 commercially available from Shell Oil) . Lower molecular epoxides such as
UVR6110 (a liquid diepoxide commercially available from Union Carbide) may be added as well.
A second class of suitable curable prepolymers includes these epoxy-functionalized prepolymers in combination with one or more vinyl ether-functionalized prepolymers which co-cure with the epoxy-functionalized prepolymers. Examples of suitable vinyl ether- functionalized prepolymers include bisphenol A-divinyl ether adduct; 2,4-toluene diisocyanate/hydroxybutyl vinyl ether adduct; cyclohexyl divinyl ether commercially available from GAF or ISI Products; vinyl ethyl ether, vinyl isobutyl ether, vinyl octadecyl ether, polyethylene glycol divinyl ether, polytetrahydrofuran/350/divinyl ether, and trimethylol propane trivinyl ether, all of which are commercially available from BASF; Rapi/cure divinyl ether/3, Rapi/cure cyclohexyl vinyl ether, Rapi/cure PEPC, and Rapi/cure hydroxy butyl vinyl ether, all of which are commercially available from ISP; and Vectomers 2010, 2031, 2032, 4010, 4020, and 4030, all of which are commercially available from Allied-Signal. A third class of suitable curable prepolymers includes the above-described epoxy-functionalized prepolymers in combination with one or more acrylate- functionalized prepolymers. Examples of acrylate- functionalized prepolymers include RDX 29522 and Ebecryl 639 (both of which are commercially available from Radcure) ; Sartomer 351 (commercially available from Sartomer) ; and NR440 (commercially available from Zeneca Resins) . A fourth class of suitable curable prepolymers includes the acrylate-functionalized prepolymers themselves without the epoxy-functionalized prepolymers.
A fifth class of suitable curable prepolymers includes blocked isocyanate-functionalized prepolymers. Examples include B1299 (commercially available from Huls) and BL4165A (commercially available from Miles) .
A sixth class of suitable curable prepolymers includes the above-described vinyl ether-functionalized prepolymers in combination with maleate- or maleimide- functionalized prepolymers. Examples of maleate- functionalized prepolymers include 89-8902 (commercially available from Cargil Products) ; and Astrocure 78HV and Astrocure 78LV (both of which are commercially available from Zircon) . Examples of maleimide-functionalized prepolymers include BMI/S/M/20/TDA (commercially available from Mitsui Toatsu Chemical, Inc.
One or more non-curable layers may be used in combination with one or more curable layers. For example, a non-curable color coat may be combined with an overlying curable size coat. Suitable non-curable resins are thermoplastic film-forming resins. Examples include acrylic resins such as Rhoplex B85 (an acrylic dispersion commercially available from Rohm & Haas) and Amsco 3011 (an acrylic dispersion available from Rohm & Haas) ; urethane resins such as QW-16 (a urethane dispersion useful as a film-former that is commercially available from K.J. Quinn) ; phenoxy resins such as PKH 35 (commercially available from Union Carbide) ; and combinations thereof. The amount of non-curable prepolymer in the ink ranges from about 15 to about 35% by weight (based upon the total solids content of the ink) .
The inks also contain a polymerization initiator in an amount ranging from about 0.1 to 5% by weight (based upon the total solids content of the ink) . The initiator (which typically is a free radical or cationic initiator) may be a photochemical initiator or a thermal initiator; in some cases, the same initiator can act as both a thermal and a photochemical initiator. In the case of multi-layer inks containing multiple curable layers, layers containing photochemical initiators may be combined with layers containing thermal initiators. In addition, some initiators may be used in conjunction with accelerators such as benzpinacole, copper II salts (e.g., copper benzoate) , and hexaphenylethane.
In the case of thermal initiators, the initiator must exhibit good stability at ambient temperature to prevent premature curing of the prepolymer. In addition, the initiation temperature must be within the range achievable by laser irradiation. Examples of suitable thermal initiators for cationic initiation include aryl sulfonium salts (e.g., the salts described in O90/11303, hereby incorporated by reference) ; aryl iodonium salts (e.g., UVE 9310 and U 479, both of which are commercially available from General Electric) ; and ammonium salts
(e.g., FC520, commercially available from 3M) . Examples of suitable thermal initiators for free radical initiation include the class of compounds leading to peroxy radicals, e.g., hydroperoxides, peroxyesters, and peroxyketals; representative compounds are commercially available from Elf-Atochem. Also suitable for free radical initiation are azo polymerization initiators commercially available from Wako.
In the case of photochemical initiators, the initiator must also exhibit good stability at ambient temperature to prevent premature curing of the prepolymer. In addition, it must exhibit absorption maxima in regions of the electromagnetic spectrum different from the regions in which the colorant exhibits absorption maxima. Examples of suitable photochemical initiators for cationic initiation include aryl sulfonium salts (e.g., UNI 6974 commercially available from Union Carbide) and aryl iodonium salts (e.g., UNE 9310 and U 479, both of which are commercially available from General Electric) . Another example of a suitable initiator for cationic initiation is hydroxy naphthyl imide sulfonate ester. Examples of suitable photochemical initiators for free radical initiation include CPTX and ITX (both commercially available from Ciba-Geigy) , each of which is combined with methyl diethanolamine (commercially available from Aldrich Chemical Co.; lucerin TPO (commercially available from BASF) combined with methyl diethanolamine; Darcure 4265 (commercially available from Ciba Geigy) , and Irgacure 369 combined with ITX.
The ink contains one or more colorants, which may be dyes, pigments, or metallized coatings (e.g., an aluminized coating) . In the case of dyes and pigments, the colorant is present in an amount ranging from about 35 to 65% by weight (based upon the total solids content of the ink) . The particular colorant is chosen based upon the color desired on the final printed surface. Examples of suitable colorants include pigments such as talc, Ti02 (white) , phthalogreen (GT-674-D) , chrome green oxide (6099) , ultramarine blue (RS-9) , black oxide (BK- 5099D) , Kroma red (7097), and Novaperm yellow (HR-70) , and dyes such as dynonicidine (2915) and Dianell orange, as well as the aforementioned metallized coatings. In the case of inks containing photocurable prepolymers, a sensitizer may be added in an amount ranging from about 0.5 to 8% by weight (based upon the total solids content of the ink) to extend the irradiating wavelength for photoinitiation into the visible region. Such sensitizers are useful, for example, where the formulation contains large amounts of Ti02 pigment which absorbs light below 400 nm and thus competes with the initiator. Examples of suitable sensitizers, all of which are commercially available from Aldrich Chemical Co., include perylene, rubrene, phenothiazine, anthracene derivatives, and thioxanthones, as well as lucerin TPO (commercially available from BASF) .
Other ingredients which may be added to the inks to improve the coatability, printability, print performance, and durability of the inks include various surfactants, dispersing agents, and polymer dispersions. The amount of each ingredient is selected based upon the desired properties. Examples of suitable surfactants (which may be anionic, cationic, or nonionic) include Triton X-100 (an aryl ethoxylate commercially available from Rohm & Haas) and FC 430 (a fluoroaliphatic polymeric ester available from 3M) . Examples of suitable dispersing agents include polyacrylate salts such as Daxad 30, a 30% aqueous solution of polysodiumacrylate commercially available from W.R. Grace. Examples of suitable dispersions include Shamrock 375 and Aquacer 355, both of which are polyethylene wax dispersions commercially available from Diamond Shamrock.
The transfer medium according to the invention is prepared by combining the ink ingredients in an aqueous or organic solvent (with aqueous solvents being preferred) , and then applying the resulting composition to the carrier. If a size coat is used, it is applied on top of the color coat. To facilitate coating, the total solids content of the ink is adjusted to be between 10 and 50% by weight of the ink. The coated carrier is then irradiated with laser light (e.g., as described in the commonly assigned et al. application, U.S.
Serial No. 08/ , filed concurrently with this application and hereby incorporated by reference) to transfer the ink from the carrier to a desired surface, e.g., the surface of a semiconductor device. Suitable lasers include C02 lasers (irradiation wavelength equals 10.6μm), Nd:YAG lasers (irradiation wavelength equals 1.06μm), and diode lasers (irradiation wavelength equals, e.g., 0.9μm) . The particular irradiation wavelength, power, and time of application parameters are selected to ensure clean transfer.
In the case of some inks, laser irradiation both transfers and cures the ink simultaneously. With other inks, a separate thermal or photochemical cure is effected following transfer. The cure conditions are selected based upon the particular prepolymers and initiators used in the formulation. The invention will now be further described by way of the following examples.
Example 1
This example describes the preparation of a transfer medium having one-pass, thermally curable, cationically initiated, ink.
The following ingredients were combined to form a laser-transferrable ink (all amounts in weight percent) :
Ti02 55.0
Bisphenol A-DVE adduct 13.0 352011 24.8
PEG 30002 5.0
Aryl sulfonium salt3 2.0
Triton X-1004 0.2 1 Aqueous dispersion of bisphenol A-epichlorohydrin adduct formerly available from Rhone-Poulenc.
2 Polyethylene glycol (Mn = 3000) commercially available from Union Carbide.
3 Aryl sulfonium salt thermal initiator of the type described in WO90/11303.
4 Surfactant commercially available from Rohm & Haas.
Water was added to adjust the total solids content to 35% by weight, after which the resulting ink was coated onto a 1.2 mil thick polypropylene carrier film using a #15 mayer rod. The coated surface of the film was then placed in intimate contact with the surface of a molded semiconductor device. Next, a C02 laser was directed through the uncoated side of the carrier film to transfer the ink to the surface of the semiconductor device. The laser dwelled on each addressed pixel for 16 μsec. The power output of the laser at the point of contact with the coated film was 14.5 W. The device bearing the transferred image was then placed in a forced hot air oven for 30 min. at 175°C to cure the ink. After curing, the transferred image was found to be resistant to treatment with 1,1,1-trichloroethane (3 min. soak, 10 brush strokes, cycled 3 times) . Example 2
This example describes the preparation of a transfer medium having a two-pass, cationically initiated ink in which both the color coat and the size coat are photochemically curable.
The following ingredients were combined to form a photochemically curable color coat (all amounts in weight percent) : Ti02 55.0 2,4-toluene diisocyanate/HBVE adduct1 35.8
QW-16 (urethane dispersion)2 2.0
PPZ3 5.0 Triton X-1004 0.2
UVI 69745 2.0
1 Hydroxy butyl divinyl ether adduct.
2 pre- ade urethane dispersion commercially available from K.J. Quinn. 3 Commercially available from Idemitsu Petrochemicals Co. Ltd.
4 Surfactant commercially available from Rohm & Haas.
5 Triaryl sulfonium salt-based initiator commercially available from Union Carbide. Water was added to adjust the total solids content to 35% by weight, after which the resulting color coat was applied to a 1.2 mil thick polypropylene carrier film using a #13 mayer rod.
The following ingredients were combined to form a photochemically curable size coat (all amounts in weight percent) :
EPON 10011 89.1
UVI 61102 5.45
FC-4303 2.47 UVI 69744 1.68
Perylene5 0.3
PPZ6 1.0
1 Bisphenol A diglycidyl ether commercially available from Shell Oil Co. Liquid diepoxide commercially available from Union Carbide.
3 Fluoroaliphatic polymeric ester surfactant commercially available from 3M Co.
4 Triaryl sulfonium salt-based initiator commercially available from Union Carbide. 5 Photosensitizer commercially available from Aldrich Chemical Co.
6 Commercially available from Idemitsu Petrochemicals Co. Ltd. Methyl ethyl ketone was added to adjust the total solids content of the size coat to 25% by weight, after which the resulting size coat was applied on top of the color coat using a #5 mayer rod.
The coated surface of the film was then placed in intimate contact with the surface of a molded semiconductor device. Next, a C02 laser was directed through the uncoated side of the carrier film to transfer the ink (color coat plus size coat) to the surface of the semiconductor device. The laser dwelled on each addressed pixel for 20 μsec. The power output of the laser at the point of contact with the coated film was 14.5 W. The device bearing the transferred image was then cured (5 min. at a 150°C preheat, followed by a 3.6 sec exposure to UV radiation) . The resulting cured printed image was found to be resistant to treatment with 1,1,1-trichloroethane (3 min. soak, 10 brush strokes, cycled 3 times) . Example 3
This example describes the preparation of a transfer medium having a two-pass, cationically curable ink in which the color coat is non-curable and the size coat is thermally curable.
The following ingredients were combined to form a non-curable color coat (all amounts in weight percent) : Water 54.0
Daxad 301 0.5
Ti02 38.4
Triton X-1002 0.5
Shamrock 3753 6.2 Rhoplex B854 1.4 Amsco 30115 7.7
1 Polyacrylate dispersing agent commercially available from W.R. Grace.
2 Surfactant commercially available from Rohm & Haas. 3 Polyethylene wax dispersion commercially available from Diamond Shamrock.
4 Acrylic dispersion commercially available from Rohm & Haas.
5 Acrylic dispersion commercially available from Rohm & Haas.
Enough ammonium hydroxide was added to adjust the pH to 8.5, after which the resulting color coat was applied to a 1.2 mil thick polypropylene carrier film at a coat weight of 69 mg/m2. The following ingredients were combined to form a photochemically curable size coat (all amounts in weight percent) :
EPON 10011 88.2
UVR 61102 11.6 FC-4303 3.0
UV 4794 1.6
IR 995 0.5
Benzpinacole6 0.47
1 Bisphenol A diglycidyl ether commercially available from Shell Oil Co.
2 Liquid diepoxide commercially available from Union Carbide.
3 Fluoroaliphatic polymeric ester surfactant commercially available from 3M Co. 4 lodonium salt thermal initiator commercially available from General Electric.
5 Dye commercially available from Glendale Protective Technologies.
6 Accelerator commercially available from Aldrich Chemical Co. Methyl ethyl ketone was added to adjust the total solids content of the size coat to 25% by weight, after which the resulting size coat was applied on top of the color coat using a #5 mayer rod. The coated surface of the film was then placed in intimate contact with the surface of a molded semiconductor device. Next, a NdrYAG laser was directed through the uncoated side of the carrier film to transfer the ink (color coat plus size coat) to the surface of the semiconductor device. The laser dwelled on each addressed pixel for 18 μsec. The power output of the laser at the point of contact with the coated film was 4.5 W. The device bearing the transferred image was then cured (4 min. at 175°C) . The resulting cured printed image was found to be resistant to treatment with 1,1,1- trichloroethane (3 min. soak, 10 brush strokes, cycled 3 times) . Example 4
This example describes the preparation of a transfer medium having a one-pass, thermally curable, cationically initiated ink in which transfer and cure takes place in a single step upon laser irradiation.
The following ingredients were combined to form a laser-transferrable ink (all amounts in weight percent) : Talc1 30.0
UVE 93102 7.0
Copper benzoate3 0.14
Epon 1644 51.43
CHVE54 11.43 1 Nytal 400 commercially available from R.T. Vanderbilt.
2 Photo and thermal initiator commercially available from General Electric.
3 Accelerator commercially available from Aldrich Chemical Co. 4 Epoxy novolac resin having an epoxy equivalent of 200- 240 commercially available from Shell Oil. 5 Cyclohexyl divinyl ether commercially available from GAF or ISI Products.
Methyl ethyl ketone was added to adjust the total solids content to 50% by weight, after which the resulting ink was coated onto a 1.2 mil thick polypropylene carrier film using a #10 mayer rod. The coated surface of the film was then placed in intimate contact with a glass slide. Next, a C02 laser was directed through the uncoated side of the carrier film to transfer the ink to the surface of the glass slide. The laser dwelled on each addressed pixel for 80 μsec. After addressing, the transferred coating was removed form the glass slide and analyzed by differential scanning calorimetry. There was no evidence of residual heat of reaction, indicating that the transferred coating had cured during the transfer step. Example 5
This example describes the preparation of a transfer medium having a two-pass, free radical-initiated ink in which both the color coat and the size coat are photochemically curable.
The following ingredients were combined to form a photochemically curable color coat (all amounts in weight percent) : Ti02 65.0
Aquacer 3551 11.0
NR 4402 18.8
PPZ3 3.0
Triton X-1004 0.2 Daracure 42655 2.0
1 Polyethylene wax dispersion commercially available from Diamond Shamrock.
2 Acrylate-functionalized prepolymer commercially available from Zeneca Resins. 3 Commercially available from Idemitsu Petrochemicals Co. Ltd. 4 Surfactant commercially available from Rohm & Haas.
5 Photochemical free radical initiator commercially available from Ciba Geigy.
Water was added to adjust the total solids content to 40% by weight, after which the resulting color coat was applied to a 1.2 mil thick polypropylene carrier film using a #13 mayer rod.
The following ingredients were combined to form a photochemically curable size coat (all amounts in weight percent) :
NR 4401 78.0
Ebecryl 6392 20.0
Daracure 42653 2.0
1 Acrylate-functionalized prepolymer commercially available from Zeneca Resins. Acrylate-functionalized prepolymer commercially available from Radcure.
3 Photochemical free radical initiator commercially available from Ciba Geigy. Water was added to adjust the total solids content of the size coat to 40% by weight, after which the resulting size coat was applied on top of the color coat using a #5 mayer rod.
The coated surface of the film was then placed in intimate contact with the surface of a molded semiconductor device. Next, a C02 laser was directed through the uncoated side of the carrier film to transfer the ink (color coat plus size coat) to the surface of the semiconductor device. The laser dwelled on each addressed pixel for 20 μsec. The power output of the laser at the point of contact with the coated film was 14.5 W. The device bearing the transferred image was then cured (5 min. at a 100°C preheat, followed by passage through a UV fusion oven equipped with an H bulb at a speed of 100 in./min.). The resulting cured printed image was found to be resistant to treatment with 1,1,1- trichloroethane (3 min. soak, 10 brush strokes, cycled 3 times) .
Other embodiments are within the following claims. What is claimed is:

Claims

1. A transfer printing medium comprising a carrier to which is applied a curable laser-transferrable ink having one or more layers, said ink comprising
(a) at least one colorant; (b) at least one polymerization initiator; and (c) at least one curable prepolymer, said transfer medium being capable of converting laser energy to heat.
2. The transfer printing medium of claim 1 wherein said ink transfers to a surface of interest and cures in one step upon application of laser energy.
3. The transfer printing medium of claim 1 wherein at least one of said polymerization initiators comprises a thermal polymerization initiator and at least one of said prepolymers is thermally curable.
4. The transfer printing medium of claim 1 wherein at least one of said polymerization initiators comprises a photoinitiator and at least one of said prepolymers is photochemically curable.
5. The transfer printing medium of claim 1 wherein at least one of said prepolymers comprises an epoxy-functionalized prepolymer.
6. The transfer printing medium of claim 5 wherein said prepolymer further comprises a vinyl ether- functionalized prepolymer.
7. The transfer printing medium of claim 5 wherein said prepolymer further comprises an acrylate- functionalized prepolymer.
8. The transfer printing medium of claim 1 wherein at least one of said prepolymers comprises an acrylate-functionalized prepolymer.
9. The transfer printing medium of claim 1 wherein at least one of said prepolymers comprises a blocked isocyanate-functionalized prepolymer.
10. The transfer printing medium of claim 1 wherein at least one of said prepolymers comprises a blend of a vinyl ether-functionalized prepolymer and a maleate- or maleimide-functionalized prepolymer.
11. The transfer printing medium of claim 1 wherein at least one of the layers of said ink is a curable size coat comprising a polymerization initiator and a curable prepolymer.
12. The transfer printing medium of claim 1 wherein at least one of the layers of said ink is a curable size coat comprising a polymerization initiator and a curable prepolymer and at least one of the layers of said ink is a non-curable color coat comprising a colorant and a thermoplastic film-forming resin.
13. The transfer printing medium of claim 1 wherein at least one of the layers of said ink is a curable size coat comprising a polymerization initiator and a curable prepolymer and at least one of the layers of said ink is a curable color coat comprising a colorant, a polymerization initiator, and a curable prepolymer.
14. A laser-induced transfer printing method comprising the steps of (a) providing a transfer printing medium capable of converting laser energy to heat comprising a carrier to which is applied a curable laser-transferrable ink having one or more layers, said ink comprising (i) at least one colorant;
(ii) at least one polymerization initiator; and (iii) at least one curable prepolymer;
(b) irradiating said medium with laser light of a predetermined wavelength to transfer said ink to a surface of interest; and
(c) curing said ink to adhere said ink to the surface of interest.
15. The method of claim 14 wherein the transfer and cure of said ink are effected in a single step through irradiation with said laser light.
16. The method of claim 14 wherein at least one of said polymerization initiators comprises a thermal polymerization initiator and at least one of said prepolymers is thermally curable.
17. The method of claim 14 wherein at least one of said polymerization initiators comprises a photoinitiator and at least one of said prepolymers is photochemically curable.
18. The method of claim 14 wherein at least one of the layers of said ink is a curable size coat comprising a polymerization initiator and a curable prepolymer.
19. The method of claim 14 wherein at least one of the layers of said ink is a curable size coat comprising a polymerization initiator and a curable prepolymer and at least one of the layers of said ink is a non-curable color coat comprising a colorant and a thermoplastic film-forming resin.
20. The method of claim 14 wherein at least one of the layers of said ink is a curable size coat comprising a polymerization initiator and a curable prepolymer and at least one of the layers of said ink is a curable color coat comprising a colorant, a polymerization initiator, and a curable prepolymer.
21. The method of claim 14 wherein said the transfer and cure of said ink are effected in a single step through irradiation with said laser light.
22. The method of claim 14 wherein the transfer and cure of said ink are effected in separate steps.
23. A laser-induced transfer printing method comprising the steps of
(a) providing a transfer printing medium capable of converting laser energy to heat comprising a carrier to which is applied a curable laser-transferrable ink; and
(b) irradiating said medium with laser light of a predetermined wavelength, whereupon said laser light transfers said ink to a surface of interest and cures said ink to adhere said ink to the surface of interest.
PCT/US1994/011345 1993-11-09 1994-10-06 Transfer printing medium WO1995013195A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP94930625A EP0728073B1 (en) 1993-11-09 1994-10-06 Transfer printing medium
KR1019960702442A KR100322459B1 (en) 1993-11-09 1994-10-06 Transcription Printing Media
DE69418056T DE69418056T2 (en) 1993-11-09 1994-10-06 TRANSMISSION PRINT MATERIAL
CA002175588A CA2175588A1 (en) 1993-11-09 1994-10-06 Transfer printing medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14928593A 1993-11-09 1993-11-09
US08/149,285 1993-11-09

Publications (1)

Publication Number Publication Date
WO1995013195A1 true WO1995013195A1 (en) 1995-05-18

Family

ID=22529568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/011345 WO1995013195A1 (en) 1993-11-09 1994-10-06 Transfer printing medium

Country Status (7)

Country Link
EP (1) EP0728073B1 (en)
JP (1) JPH07232480A (en)
KR (1) KR100322459B1 (en)
AT (1) ATE179125T1 (en)
CA (1) CA2175588A1 (en)
DE (1) DE69418056T2 (en)
WO (1) WO1995013195A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024495A1 (en) * 1995-02-10 1996-08-15 Klaus Kall Method of coating a transparent carrier plate and coated carrier plate produced according to this method
EP0795421A2 (en) * 1996-03-14 1997-09-17 Minnesota Mining And Manufacturing Company Laser addressable thermal transfer imaging element and method of forming an image
EP0799713A1 (en) * 1996-04-03 1997-10-08 Minnesota Mining And Manufacturing Company Thermal transfer donor element comprising a colourless sublimable compound and image forming process
WO1997038865A1 (en) * 1996-04-15 1997-10-23 Minnesota Mining And Manufacturing Company Laser addressable thermal transfer imaging element with an interlayer
EP0871573A2 (en) * 1995-12-06 1998-10-21 Markem Corporation Transfer printing medium
US5843617A (en) * 1996-08-20 1998-12-01 Minnesota Mining & Manufacturing Company Thermal bleaching of infrared dyes
WO1999016625A1 (en) * 1997-09-08 1999-04-08 Thermark, Llc Laser marking method
EP0924096A1 (en) * 1997-12-18 1999-06-23 Matsushita Electric Industrial Co., Ltd Marking method using energy rays and marked molding
US5998085A (en) * 1996-07-23 1999-12-07 3M Innovative Properties Process for preparing high resolution emissive arrays and corresponding articles
WO2000044960A1 (en) * 1999-01-27 2000-08-03 The United States Of America, As Represented By The Secretary Of The Navy Matrix assisted pulsed laser evaporation direct write
EP1052104A2 (en) * 1995-12-06 2000-11-15 Markem Corporation Scanned marking of workpieces
US6177151B1 (en) * 1999-01-27 2001-01-23 The United States Of America As Represented By The Secretary Of The Navy Matrix assisted pulsed laser evaporation direct write
WO2001017793A1 (en) * 1999-09-09 2001-03-15 3M Innovative Properties Company Thermal transfer element with a plasticizer-containing transfer layer and thermal transfer process
US6238847B1 (en) 1997-10-16 2001-05-29 Dmc Degussa Metals Catalysts Cerdec Ag Laser marking method and apparatus
WO2002064377A1 (en) * 2001-02-09 2002-08-22 3M Innovative Properties Company Thermally transferable compositions and methods
US6503316B1 (en) 2000-09-22 2003-01-07 Dmc2 Degussa Metals Catalysts Cerdec Ag Bismuth-containing laser markable compositions and methods of making and using same
US6503310B1 (en) 1999-06-22 2003-01-07 Dmc2 Degussa Metals Catalysts Cerdec Ag Laser marking compositions and method
US6852948B1 (en) 1997-09-08 2005-02-08 Thermark, Llc High contrast surface marking using irradiation of electrostatically applied marking materials
WO2007059853A1 (en) 2005-11-22 2007-05-31 Merck Patent Gmbh Process for a thermal transfer of a liquid crystal film using a transfer element
US7238396B2 (en) 2002-08-02 2007-07-03 Rieck Albert S Methods for vitrescent marking
WO2007062785A3 (en) * 2005-11-30 2007-07-26 Merck Patent Gmbh Laser transfer of security features
US7396631B2 (en) 2005-10-07 2008-07-08 3M Innovative Properties Company Radiation curable thermal transfer elements
US7534543B2 (en) 1996-04-15 2009-05-19 3M Innovative Properties Company Texture control of thin film layers prepared via laser induced thermal imaging
US7678526B2 (en) 2005-10-07 2010-03-16 3M Innovative Properties Company Radiation curable thermal transfer elements
US9744559B2 (en) 2014-05-27 2017-08-29 Paul W Harrison High contrast surface marking using nanoparticle materials
US11613803B2 (en) 2018-05-09 2023-03-28 Lpkf Laser & Electronics Ag Use of a component in a composition, composition for laser transfer printing, and laser transfer printing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3715991A1 (en) * 1986-05-14 1987-11-19 Mitsubishi Paper Mills Ltd RECORDING MATERIAL AND RECORDING METHOD
JPH03244588A (en) * 1990-02-22 1991-10-31 Canon Inc Transfer recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3715991A1 (en) * 1986-05-14 1987-11-19 Mitsubishi Paper Mills Ltd RECORDING MATERIAL AND RECORDING METHOD
JPH03244588A (en) * 1990-02-22 1991-10-31 Canon Inc Transfer recording medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 16, no. 36 (M - 1205) 29 January 1992 (1992-01-29) *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024495A1 (en) * 1995-02-10 1996-08-15 Klaus Kall Method of coating a transparent carrier plate and coated carrier plate produced according to this method
EP1052104A2 (en) * 1995-12-06 2000-11-15 Markem Corporation Scanned marking of workpieces
EP0871573A2 (en) * 1995-12-06 1998-10-21 Markem Corporation Transfer printing medium
EP1052104A3 (en) * 1995-12-06 2001-08-22 Markem Corporation Scanned marking of workpieces
EP0871573A4 (en) * 1995-12-06 1998-12-09
EP0795421A2 (en) * 1996-03-14 1997-09-17 Minnesota Mining And Manufacturing Company Laser addressable thermal transfer imaging element and method of forming an image
EP0795421A3 (en) * 1996-03-14 1998-03-18 Minnesota Mining And Manufacturing Company Laser addressable thermal transfer imaging element and method of forming an image
EP0799713A1 (en) * 1996-04-03 1997-10-08 Minnesota Mining And Manufacturing Company Thermal transfer donor element comprising a colourless sublimable compound and image forming process
US5747217A (en) * 1996-04-03 1998-05-05 Minnesota Mining And Manufacturing Company Laser-induced mass transfer imaging materials and methods utilizing colorless sublimable compounds
WO1997038865A1 (en) * 1996-04-15 1997-10-23 Minnesota Mining And Manufacturing Company Laser addressable thermal transfer imaging element with an interlayer
US6866979B2 (en) 1996-04-15 2005-03-15 3M Innovative Properties Company Laser addressable thermal transfer imaging element with an interlayer
US7226716B2 (en) 1996-04-15 2007-06-05 3M Innovative Properties Company Laser addressable thermal transfer imaging element with an interlayer
US6582877B2 (en) 1996-04-15 2003-06-24 3M Innovative Properties Company Laser addressable thermal transfer imaging element with an interlayer
US7534543B2 (en) 1996-04-15 2009-05-19 3M Innovative Properties Company Texture control of thin film layers prepared via laser induced thermal imaging
US6190826B1 (en) 1996-04-15 2001-02-20 3M Innovative Properties Company Laser addressable thermal transfer imaging element with an interlayer
US5998085A (en) * 1996-07-23 1999-12-07 3M Innovative Properties Process for preparing high resolution emissive arrays and corresponding articles
US5843617A (en) * 1996-08-20 1998-12-01 Minnesota Mining & Manufacturing Company Thermal bleaching of infrared dyes
US6075223A (en) * 1997-09-08 2000-06-13 Thermark, Llc High contrast surface marking
WO1999016625A1 (en) * 1997-09-08 1999-04-08 Thermark, Llc Laser marking method
US6313436B1 (en) * 1997-09-08 2001-11-06 Thermark, Llc High contrast surface marking using metal oxides
AU741717B2 (en) * 1997-09-08 2001-12-06 Thermark, Llc Laser marking method
US6855910B2 (en) 1997-09-08 2005-02-15 Thermark, Llc High contrast surface marking using mixed organic pigments
US6852948B1 (en) 1997-09-08 2005-02-08 Thermark, Llc High contrast surface marking using irradiation of electrostatically applied marking materials
US6238847B1 (en) 1997-10-16 2001-05-29 Dmc Degussa Metals Catalysts Cerdec Ag Laser marking method and apparatus
US6245397B1 (en) 1997-12-18 2001-06-12 Matsushita Electric Industrial Co., Ltd. Marking method and marked molding
EP0924096A1 (en) * 1997-12-18 1999-06-23 Matsushita Electric Industrial Co., Ltd Marking method using energy rays and marked molding
US6766764B1 (en) 1999-01-27 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Matrix assisted pulsed laser evaporation direct write
US6177151B1 (en) * 1999-01-27 2001-01-23 The United States Of America As Represented By The Secretary Of The Navy Matrix assisted pulsed laser evaporation direct write
WO2000044960A1 (en) * 1999-01-27 2000-08-03 The United States Of America, As Represented By The Secretary Of The Navy Matrix assisted pulsed laser evaporation direct write
US6503310B1 (en) 1999-06-22 2003-01-07 Dmc2 Degussa Metals Catalysts Cerdec Ag Laser marking compositions and method
WO2001017793A1 (en) * 1999-09-09 2001-03-15 3M Innovative Properties Company Thermal transfer element with a plasticizer-containing transfer layer and thermal transfer process
US6228543B1 (en) 1999-09-09 2001-05-08 3M Innovative Properties Company Thermal transfer with a plasticizer-containing transfer layer
US6680121B2 (en) 2000-09-22 2004-01-20 Dmc2 Degussa Metals Catalysts Cerdec Ag Bismuth-containing laser markable compositions and methods of making and using same
US6503316B1 (en) 2000-09-22 2003-01-07 Dmc2 Degussa Metals Catalysts Cerdec Ag Bismuth-containing laser markable compositions and methods of making and using same
US6730376B2 (en) 2001-02-09 2004-05-04 3M Innovative Properties Company Thermally transferable compositions and methods
WO2002064377A1 (en) * 2001-02-09 2002-08-22 3M Innovative Properties Company Thermally transferable compositions and methods
AU2001271340B2 (en) * 2001-02-09 2005-09-22 3M Innovative Properties Company Thermally transferable compositions and methods
US7238396B2 (en) 2002-08-02 2007-07-03 Rieck Albert S Methods for vitrescent marking
US7396631B2 (en) 2005-10-07 2008-07-08 3M Innovative Properties Company Radiation curable thermal transfer elements
US7678526B2 (en) 2005-10-07 2010-03-16 3M Innovative Properties Company Radiation curable thermal transfer elements
WO2007059853A1 (en) 2005-11-22 2007-05-31 Merck Patent Gmbh Process for a thermal transfer of a liquid crystal film using a transfer element
WO2007062785A3 (en) * 2005-11-30 2007-07-26 Merck Patent Gmbh Laser transfer of security features
US9744559B2 (en) 2014-05-27 2017-08-29 Paul W Harrison High contrast surface marking using nanoparticle materials
US11613803B2 (en) 2018-05-09 2023-03-28 Lpkf Laser & Electronics Ag Use of a component in a composition, composition for laser transfer printing, and laser transfer printing method

Also Published As

Publication number Publication date
DE69418056D1 (en) 1999-05-27
JPH07232480A (en) 1995-09-05
EP0728073B1 (en) 1999-04-21
ATE179125T1 (en) 1999-05-15
KR960705689A (en) 1996-11-08
CA2175588A1 (en) 1995-05-18
DE69418056T2 (en) 1999-11-11
EP0728073A1 (en) 1996-08-28
KR100322459B1 (en) 2002-10-04

Similar Documents

Publication Publication Date Title
EP0728073B1 (en) Transfer printing medium
US5757313A (en) Lacer-induced transfer printing medium and method
JP3085542B2 (en) Laser induced thermal transfer method
EP2167592B1 (en) Uv curable ink with improved adhesion
US6736055B2 (en) Method of finishing golf balls employing direct digital-to-surface printing of indicia
US6025017A (en) Photopolymerizable coating formulation for thermal transfer media
JP5037770B2 (en) Energy curable gravure and inkjet inks containing grafted pigments
US8747969B2 (en) Coated films for inkjet printing
JP2004002668A (en) Liquid ink and printer
US6040040A (en) Multi-layer thermal transfer media from selectively curable formulations
JPH05214279A (en) Ink composition and method of printing
US20070219292A1 (en) Ink set for ink-jet recording, polymerization method and image forming method
US7163970B2 (en) Actinic ray curable ink and printed matter utilizing the same
JP2987534B2 (en) Thermal transfer recording sheet
JPH09290567A (en) Liquid composition, laser marking article and marking method
JP2935308B2 (en) Marking composition
JP2003335041A (en) Image-forming method, printed matter and recorder
JP2004018577A (en) Method for forming picture image, printed matter, and recording device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994930625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2175588

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1994930625

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994930625

Country of ref document: EP