WO1995007548A1 - Current limiting device - Google Patents

Current limiting device Download PDF

Info

Publication number
WO1995007548A1
WO1995007548A1 PCT/DE1993/000823 DE9300823W WO9507548A1 WO 1995007548 A1 WO1995007548 A1 WO 1995007548A1 DE 9300823 W DE9300823 W DE 9300823W WO 9507548 A1 WO9507548 A1 WO 9507548A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
current
drain
semiconductor region
current limiter
Prior art date
Application number
PCT/DE1993/000823
Other languages
German (de)
French (fr)
Inventor
Reinhard Maier
Hermann Zierhut
Heinz Mitlehner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to AU49429/93A priority Critical patent/AU4942993A/en
Priority to PCT/DE1993/000823 priority patent/WO1995007548A1/en
Priority to EP93918960A priority patent/EP0717880A1/en
Publication of WO1995007548A1 publication Critical patent/WO1995007548A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/025Disconnection after limiting, e.g. when limiting is not sufficient or for facilitating disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/025Current limitation using field effect transistors

Definitions

  • the invention relates to a current limiter with at least one semiconductor region with electron donor (source), electron collector (drain) and electrodes controlling the electron flow (gate).
  • the disadvantage of mechanical protective switching devices is the wear of the contacts, frequent maintenance and a relatively slow switching time in the event of a short circuit, as well as a relatively low temporal accuracy of the switching time.
  • Semiconductor switches can work without wear and switch quickly; they have low switching losses and they can be controlled variably. Disadvantages of semiconductor switches are: high costs, high space requirements and relatively high transmission losses.
  • the object of the invention is to develop a current limiter using semiconductor technology, in which the disadvantages of the semiconductors which have been customary hitherto are reduced to a technically useful extent.
  • a current limiter according to claim 1.
  • the semiconductor region operates without its own control, and it has a characteristic curve such as that which field effect transistors (FETs) have.
  • FETs field effect transistors
  • a current interrupter device can be connected in series to the drain-source path be used in order to protect the semiconductor area as an overload relay or also to enable a shutdown during operation.
  • the gate electrodes are dimensioned with respect to their thickness L, their distance d from one another and the source-drain path D in such a way that there is a limit at a given current strength.
  • the gate electrodes are at floating potential, which is also known as "floating.” referred to as.
  • the semiconductor region can be embodied integrated in a microchip or as a discrete component.
  • a rapid short-circuit current limitation is achieved above an overload limit and thus equipment or electrical distributions can be protected quickly.
  • circuit breakers the advantage of a strong and rapid current limitation is achieved, and the usual burn-up problems are avoided.
  • a rapid high current limitation is achieved without affecting intact parallel circuits of a consumer network.
  • PTC thermistors In comparison to PTC thermistors, a more stable characteristic is achieved.
  • the semiconductor region may • be designed as a vertical "Junction” -Feld ⁇ effect transistor (J-FET). It is particularly advantageous to form the semiconductor region from a substrate material made of silicon carbide.
  • this can be designed as a switch contact with a tripping device.
  • the semiconductor region is designed with embedded gate electrodes.
  • the semiconductor region can also be developed in such a way that gate electrodes are arranged on the source electrode and others on the drain electrode with an electrically conductive connection to the source or drain electrode.
  • the drain-source path can then be compared to fully embedded gate electronics. which are roughly halved, with the operating conditions remaining the same.
  • coolants on the source electrode and on the drain electrode which can be dimensioned such that the limiting current can be reduced in the current-time diagram as a result of a positive temperature coefficient which is established.
  • Such a lowering is also advantageous for a semiconductor region which is operated as a unipolar component.
  • the pn junction between the gate and the drain-source path then does not come into play as a diode, since the threshold voltage, for example 2.8 volts at SiC, is used. In other words: the permissible load current density remains below the diode pass characteristic. You then work in the ohmic area.
  • FIG. 1 shows a first exemplary embodiment using a semiconductor region with embedded gate electrodes.
  • 2 shows a current limiter as shown in FIG. 1 with a semiconductor region, the gate
  • Has electrodes that are electrically connected to the source electrode and gate electrodes that are connected to the drain electrode. 3 shows a characteristic of the current limiter in a diagram, on the ordinate of which the drain-source current is plotted and on the abscissa of which the drain-source voltage is plotted.
  • This diagram illustrates, by way of example, the mode of operation of a current limiter according to FIG. 1.
  • FIG. 4 shows a diagram as shown in FIG. 3, which exemplifies the mode of operation of a current limiter according to FIG. 5 shows a characteristic curve in the current-time diagram for current limiters with additional developments.
  • the semiconductor region is operated as a unipolar component or, or and, and coolants are used.
  • FIG. 6 shows a current limiter according to FIG. 1 with coolants on drain and on source electrodes.
  • FIG. 7 shows coolant in a current limiter according to FIG. 2.
  • the current limiter according to FIG. 1 works with a semiconductor region 1, with source electrode, source electrode 2, drain electrode 3 and gate electrode 4.
  • the gate electrode does not have its own control and is completely embedded.
  • the gate electrode 4 can consist of individual doping islands or can also be produced from a disk-shaped doping region with hole-like interruptions.
  • the gate electrodes 4 are dimensioned with respect to their thickness L, their distance d, from one another and the source-drain path D in such a way that a current limitation is established at a given current strength.
  • the working range entered is obtained with a characteristic according to FIG. 3. Up to 230 volts one works in the linear range 8 and in the case of overvoltages up to about 700 V one remains in the horizontal limitation range, so that the current intensity I- Q is set independently of the voltage U D g.
  • the linear region 8 corresponds to an ON resistance RON
  • a current interrupter device 5 with a switch contact 6 can be connected in series with the drain-source path to the semiconductor region 1.
  • the circuit breaker device 5 usually has a switch contact 6 with a tripping device 7.
  • the current interrupter device 5 can act as an overload relay to protect the semiconductor area in the event of voltage 3, in which the characteristic curve for high drain-source voltages changes into a region parallel to the drain-source current.
  • the current interrupter device 5 can also be designed for operational shutdown in order to achieve a current limiter with the properties of a circuit breaker, for example in the manner of a circuit breaker.
  • the semiconductor region then works as a particularly good limiter, which makes it unnecessary to provide the current interrupter device with arc extinguishing devices.
  • the semiconductor region can be understood as a vertical "junction" field effect transistor, J-FET. It is particularly favorable if the semiconductor region is formed from a substrate material made of silicon carbide.
  • gate electrodes 4a are arranged on the source electrode 2 and other gate electrodes 4b on the drain electrode 3 and are connected in an electrically conductive manner to the source or drain electrode.
  • the drain-source path can be shortened by approximately half and a steeper linear region 8 of the characteristic curve is obtained, which results in a lower ON resistance RON- * corresponds.
  • the first and third quadrants are used, as illustrated in FIGS. 3 and 4.
  • a semiconductor region with a structure according to FIG. 2 can thus be halved in comparison to a semiconductor region in the structure according to FIG.

Abstract

The invention pertains to a current limiting device with at least one semiconductor region (1) with electron donor (source;2), electron acceptor (drain;3) and electron flow controlling electrode (gate;4) without its own drive. The semiconductor region has a characteristic curve like that old field effect transistors. As needed, a current breaker (5) can be connected in series to the drain-source path. The gate electrodes (4, 4a, 4b) are dimensioned with respect to their thickness (L), their spacing (d) and the source-drain distance (D) so that a limitation is activated at a predetermined intensity of current.

Description

StrombegrenzerCurrent limiter
Die Erfindung bezieht sich auf einen Strombegrenzer mit zu- mindest einem Halbleiterbereich mit Elektronenspender (Source) , Elektronensammler (Drain) und den Elektronenfluß steuernder Elektroden (Gate) .The invention relates to a current limiter with at least one semiconductor region with electron donor (source), electron collector (drain) and electrodes controlling the electron flow (gate).
Es ist häufig wünschenswert, Ströme, insbesondere Wechsel- ströme, rasch auf bestimmte Werte zu begrenzen, so daß Überströme verträglich werden oder damit Zeit zum Abschal¬ ten verbleibt.It is often desirable to quickly limit currents, in particular alternating currents, to certain values so that overcurrents become compatible or there is therefore time to switch off.
Nachteilig bei mechanischen Schutzschaltgeräten sind der Verschleiß der Kontakte, häufige Wartung und eine verhält¬ nismäßig langsame Schaltzeit im Kurzschlußfall sowie eine verhältnismäßig geringe zeitliche Genauigkeit des Schalt¬ zeitpunktes.The disadvantage of mechanical protective switching devices is the wear of the contacts, frequent maintenance and a relatively slow switching time in the event of a short circuit, as well as a relatively low temporal accuracy of the switching time.
Halbleiterschalter können dagegen verschleißfrei arbeiten und schnell schalten; sie haben geringe Schaltverluste und sie lassen sich variabel steuern. Nachteilig sind bei Halb¬ leiterschaltern: hohe Kosten, hoher Platzbedarf und ver¬ hältnismäßig hohe Durchlaßverluste.Semiconductor switches, on the other hand, can work without wear and switch quickly; they have low switching losses and they can be controlled variably. Disadvantages of semiconductor switches are: high costs, high space requirements and relatively high transmission losses.
Der Erfindung liegt die Aufgabe zugrunde, einen Strombe¬ grenzer unter Einsatz von Halbleitertechnik zu entwickeln, bei dem die bisher üblichen Nachteile der Halbleiter bis auf ein technisch brauchbares Ausmaß verringert werden.The object of the invention is to develop a current limiter using semiconductor technology, in which the disadvantages of the semiconductors which have been customary hitherto are reduced to a technically useful extent.
Die Lösung der geschilderten Aufgabe erfolgt nach der Er¬ findung durch einen Strombegrenzer nach Patentanspruch 1. Der Halbleiterbereich arbeitet ohne eigene Ansteuerung, und er weist eine Kennlinie auf, wie sie Feldeffekttransistoren (FETs) aufweisen. Gegebenenfalls kann eine Stromunterbre¬ chereinrichtung in Serie zur Drain-Source-Strecke geschal tet sein, um als Überlastrelais den Halbleiterbereich zu schützen oder auch um betriebsmäßig eine Abschaltung zu er¬ möglichen. Wesentlich ist, daß die Gate-Elektroden hin¬ sichtlich ihrer Dicke L, ihres Abstandes d voneinander und der Soure-Drain-Strecke D so dimensioniert sind, daß sich bei einer vorgegebenen Stromstärke eine Begrenzung ein¬ stellt. Die Gate-Elektroden liegen hierbei auf frei schwe¬ bendem Potential, was auch als "Floating." bezeichnet wird. Der Halbleiterbereich kann integriert in einem Mikrochip oder auch als diskretes Bauelement ausgeführt sein.According to the invention, the object described is achieved by a current limiter according to claim 1. The semiconductor region operates without its own control, and it has a characteristic curve such as that which field effect transistors (FETs) have. If necessary, a current interrupter device can be connected in series to the drain-source path be used in order to protect the semiconductor area as an overload relay or also to enable a shutdown during operation. It is essential that the gate electrodes are dimensioned with respect to their thickness L, their distance d from one another and the source-drain path D in such a way that there is a limit at a given current strength. The gate electrodes are at floating potential, which is also known as "floating." referred to as. The semiconductor region can be embodied integrated in a microchip or as a discrete component.
Man erzielt oberhalb einer Überlastgrenze eine rasche Kurz¬ schluß-Strombegrenzung und kann somit Betriebsmittel oder elektrische Verteilungen schnell schützen. Hinsichtlich Leitungsschutzschaltern erzielt man den Vorteil einer star¬ ken und schnellen Strombegrenzung, man vermeidet die sonst üblichen Abbrandprobleme. Im Vergleich zu mechanischen Li¬ mitern erzielt man eine rasche hohe Strombegrenzung, ohne intakte Parallelstromkreise eines Verbrauchernetzes zu be- einträchtigen. Im Vergleich zu Kaltleitern erzielt man eine stabilere Kennlinie.A rapid short-circuit current limitation is achieved above an overload limit and thus equipment or electrical distributions can be protected quickly. With regard to circuit breakers, the advantage of a strong and rapid current limitation is achieved, and the usual burn-up problems are avoided. Compared to mechanical Li¬ miters a rapid high current limitation is achieved without affecting intact parallel circuits of a consumer network. In comparison to PTC thermistors, a more stable characteristic is achieved.
Der Halbleiterbereich kann als vertikaler "Junction"-Feld¬ effekttransistor (J-FET) ausgeführt sein. Besonders vor- teilhaft ist es, den Halbleiterbereich aus einem Substrat¬ material aus Siliziumkarbid auszubilden.The semiconductor region may be designed as a vertical "Junction" -Feld¬ effect transistor (J-FET). It is particularly advantageous to form the semiconductor region from a substrate material made of silicon carbide.
Bei Einsatz einer Stromunterbrechereinrichtung kann diese als Schaltkontakt mit Auslöseeinrichtung ausgeführt sein.When using a current interrupter device, this can be designed as a switch contact with a tripping device.
Nach einer Weiterbildung ist der Halbleiterbereich mit ein¬ gebetteten Gate-Elektroden ausgeführt. Der Halbleiterbe¬ reich kann auch so weitergebildet sein, daß Gate-Elektroden an der Source-Elektrode und andere an der Drain-Elektrode angeordnet sind, bei elektrisch leitender Verbindung zur Source- bzw. zur Drain-Elektrode. Die Drain-Source-Strecke kann dann im Vergleich zu voll eingebetteten Gate-Elektro- den in etwa halbiert werden, bei im übrigen gleichen Be¬ triebsbedingungen.According to a further development, the semiconductor region is designed with embedded gate electrodes. The semiconductor region can also be developed in such a way that gate electrodes are arranged on the source electrode and others on the drain electrode with an electrically conductive connection to the source or drain electrode. The drain-source path can then be compared to fully embedded gate electronics. which are roughly halved, with the operating conditions remaining the same.
Es ist günstig, an der Source-Elektrode und an der Drain- Elektrode Kühlmittel anzuordnen, die so bemessen werden können, daß im Strom-Zeit-Diagramm der Begrenzungsstrom in¬ folge eines sich einstellenden positiven Temperaturkoeffi¬ zienten abgesenkt werden kann. Eine derartige Absenkung be¬ günstig auch ein Halbleiterbereich, der als unipolares Bau- element betrieben wird. Der pn-Übergang zwischen Gate und Drain-Source-Strecke kommt dann als Diode nicht zur Gel¬ tung, da man unterhalb der Schwellenspannung, bei SiC bei¬ spielsweise 2,8 Volt, arbeitet. Mit anderen Worten: Die zu¬ lässige Laststromdichte bleibt unterhalb der Diodendurch- laßkennlinie. Man arbeitet dann im ohmschen Bereich.It is expedient to arrange coolants on the source electrode and on the drain electrode which can be dimensioned such that the limiting current can be reduced in the current-time diagram as a result of a positive temperature coefficient which is established. Such a lowering is also advantageous for a semiconductor region which is operated as a unipolar component. The pn junction between the gate and the drain-source path then does not come into play as a diode, since the threshold voltage, for example 2.8 volts at SiC, is used. In other words: the permissible load current density remains below the diode pass characteristic. You then work in the ohmic area.
Die Erfindung soll nun anhand von in der Zeichnun grob schematisch wiedergegebenen Ausführungsbeispielen näher er¬ läutert werden:The invention will now be explained in greater detail on the basis of exemplary embodiments shown roughly schematically in the drawing:
FIG 1 zeigt ein erstes Ausführungsbeispiel unter Einsatz eines Halbleiterbereichs mit eingebetteten Gate-Elek¬ troden. FIG 2 zeigt einen Strombegrenzer in der Darstellungsweise nach FIG 1 mit einem Halbleiterbereich, der Gate-1 shows a first exemplary embodiment using a semiconductor region with embedded gate electrodes. 2 shows a current limiter as shown in FIG. 1 with a semiconductor region, the gate
Elektroden aufweist, die mit der Source-Elektrode elektrisch verbunden sind und Gate-Elektroden, die mit der Drain-Elektrode in Verbindung stehen. FIG 3 zeigt eine Kennlinie des Strombegrenzers in einem Diagramm, auf dessen Ordinate der Drain-Source-Strom und auf dessen Abszisse die Drain-Source-Spannung aufgetragen ist. Dieses Diagramm veranschlaulicht beispielhaft die Arbeitsweise eines Strombegrenzers nach FIG 1. FIG 4 zeigt ein Diagramm in der Darstellungsweise nach FIG 3, das die Arbeitsweise eines Strombegrenzers nach FIG 2 beispielhaft veranschaulicht. FIG 5 zeigt eine Kennlinie im Strom-Zeit-Diagramm für Strombegrenzer mit zusätzlichen Weiterbildungen. Der Halbleiterbereich wird hierfür als unipolares Bau¬ element betrieben oder, bzw. und, es sind Kühlmittel eingesetzt.Has electrodes that are electrically connected to the source electrode and gate electrodes that are connected to the drain electrode. 3 shows a characteristic of the current limiter in a diagram, on the ordinate of which the drain-source current is plotted and on the abscissa of which the drain-source voltage is plotted. This diagram illustrates, by way of example, the mode of operation of a current limiter according to FIG. 1. FIG. 4 shows a diagram as shown in FIG. 3, which exemplifies the mode of operation of a current limiter according to FIG. 5 shows a characteristic curve in the current-time diagram for current limiters with additional developments. For this purpose, the semiconductor region is operated as a unipolar component or, or and, and coolants are used.
FIG 6 zeigt einen Strombegrenzer nach FIG 1 mit Kühlmitteln an Drain- und an Source-Elektroden wiedergegeben.6 shows a current limiter according to FIG. 1 with coolants on drain and on source electrodes.
FIG 7 zeigt Kühlmittel bei einem Strombegrenzer nach FIG 2.7 shows coolant in a current limiter according to FIG. 2.
Der Strombegrenzer nach FIG 1 arbeitet mit einem Halblei¬ terbereich 1, mit Source-Elektrode, Source-Elektrode 2, Drain-Elektrode 3 und Gate-Elektrode 4. Die Gate-Elektrode weist keine eigene Ansteuerung auf und ist völlig einge¬ bettet. Die Gate-Elektrode 4 kann aus einzelnen Dotierungs- inseln bestehen oder auch aus einem scheibenförmigen Dotie- rungsbereich bei lochartigen Unterbrechungen hergestellt werden. Die Gate-Elektroden 4 sind hinsichtlich ihrer Dicke L, ihres Abstandes d, voneinander und der Source-Drain- Strecke D, so dimensioniert, daß sich bei einer vorgegebe- nen Stromstärke eine Strombegrenzung einstellt.The current limiter according to FIG. 1 works with a semiconductor region 1, with source electrode, source electrode 2, drain electrode 3 and gate electrode 4. The gate electrode does not have its own control and is completely embedded. The gate electrode 4 can consist of individual doping islands or can also be produced from a disk-shaped doping region with hole-like interruptions. The gate electrodes 4 are dimensioned with respect to their thickness L, their distance d, from one another and the source-drain path D in such a way that a current limitation is established at a given current strength.
Für die Werte L = 3μm, d = lμm und D = 21μm und bei Sili¬ ziumkarbid als Substratmaterial erhält man bei einer Kenn¬ linie nach FIG 3 den eingetragenen Arbeitsbereich. Bis 230 Volt arbeitet man im linearen Bereich 8 und bei Überspan¬ nungen bis etwa 700 V bleibt man im horizontalen Begren¬ zungsbereich, so daß sich die Stromstärke I-Q- unabhängig von der Spannung UDg einstellt. Der lineare Bereich 8 ent¬ spricht einem ON-Widertand RON-For the values L = 3 μm, d = 1 μm and D = 21 μm and with silicon carbide as the substrate material, the working range entered is obtained with a characteristic according to FIG. 3. Up to 230 volts one works in the linear range 8 and in the case of overvoltages up to about 700 V one remains in the horizontal limitation range, so that the current intensity I- Q is set independently of the voltage U D g. The linear region 8 corresponds to an ON resistance RON
Gegebenenfalls kann, wie in FIG 1 veranschaulicht, dem Halbleiterbereich 1 eine Stromunterbrechereinrichtung 5 mit einem Schaltkontakt 6 in Serie zur Drain-Source-Strecke ge¬ schaltet sein. Im Auführungsbeispiel meist die Stromunter- brechereinrichtung 5 einen Schaltkontakt 6 mit Auslöseein¬ richtung 7 auf. Die Stromunterbrechereinrichtung 5 kann als Überlastrelais zum Schutz des Halbleiterbereichs bei Span- nungen dienen, in denen nach FIG 3 die Kennlinie für hohe Drain-Source-Spannungen in einen zum Drain-Source-Strom pa¬ rallelen Bereich übergeht. Die Stromunterbrechereinrichtung 5 kann auch für betriebsmäßige Abschaltung ausgelegt sein, um einen Strombegrenzer mit Eigenschaften eines Schutzschalters, beispielsweise nach Art eines Leitungs¬ schutzschalters, zu erzielen. Der Halbleiterbereich arbei¬ tet dann als besonders guter Limiter, der es erübrigt, die Stromunterbrechereinrichtung mit Lichtbogenlöscheinrich- tungen zu versehen.Optionally, as illustrated in FIG. 1, a current interrupter device 5 with a switch contact 6 can be connected in series with the drain-source path to the semiconductor region 1. In the exemplary embodiment, the circuit breaker device 5 usually has a switch contact 6 with a tripping device 7. The current interrupter device 5 can act as an overload relay to protect the semiconductor area in the event of voltage 3, in which the characteristic curve for high drain-source voltages changes into a region parallel to the drain-source current. The current interrupter device 5 can also be designed for operational shutdown in order to achieve a current limiter with the properties of a circuit breaker, for example in the manner of a circuit breaker. The semiconductor region then works as a particularly good limiter, which makes it unnecessary to provide the current interrupter device with arc extinguishing devices.
Beim Ausführungsbeispiel nach FIG 1 kann der Halbleiterbe¬ reich als vertikaler "Junction"-Feldeffekttransistor, J- FET, verstanden werden. Es ist besonders günstig, wenn der Halbleiterbereich aus einem Substratmaterial aus Silizium¬ karbid gebildet ist.In the exemplary embodiment according to FIG. 1, the semiconductor region can be understood as a vertical "junction" field effect transistor, J-FET. It is particularly favorable if the semiconductor region is formed from a substrate material made of silicon carbide.
In der Weiterbildung nach FIG 2 sind Gate-Elektroden 4a an der Source-Elektrode 2 und andere Gate-Elektroden 4b an der Drain-Elektrode 3 angeordnet und mit der Source- bzw. der Drain-Elektrode elektrisch leitend verbunden. Unter sonst gleichen Bedingungen wie im Ausführungsbeispiel zu FIG 1 und 3 kann die Drain-Source-Strecke etwa auf den halben Wert verkürzt werden und man erzielt einen steileren line- aren Bereich 8 der Kennlinie, was einem niedrigeren ON-Wi- derstand RON-* entspricht. Bei Wechselspannung arbeitet man im ersten und dritten Quadranten, wie es in den Figuren 3 und 4 veranschaulicht ist. Ein Halbleiterbereich mit einem Aufbau nach FIG 2 kann also im Vergleich zu einem Halblei- terbereich im Aufbau nach FIG 1 bei gleicher Sperrspannung hinsichtlich seiner Drain-Source-Strecke halbiert werden und man erzielt einen niedrigeren Widerstand im Normalbe¬ trieb, so daß hier die ohnehin niedrigen Verluste noch niedriger werden. Entsprechend verläuft RO * bzw. der li- neare Bereich in FIG 4 steiler als in FIG 3. Wenn man den Halbleiterbereich 1 als unipolares Bauelement betreibt, erhält man einen positiven Temperaturkoeffizien¬ ten bezüglich RON» SO da abhängig vom äußeren Stromkreis sich eine lastabhängige progressive Strombegrenzung ergibt, wie sie im Strom-Zeit-Diagramm nach FIG 5 veranschaulicht ist. Das Absenken des BegrenzungsStroms mit der Zeit kann man auch durch Kühlmittel fördern, die in wärmeleitender Verbindung mit der Drain-Elektrode und mit der Source-Elek¬ trode stehen, wie es in den Figuren 6 und 7 veranschaulicht ist. Hier sind die Kühlmittel 9 als Kühlfahnen dargestellt.In the further development according to FIG. 2, gate electrodes 4a are arranged on the source electrode 2 and other gate electrodes 4b on the drain electrode 3 and are connected in an electrically conductive manner to the source or drain electrode. Under otherwise the same conditions as in the exemplary embodiment in FIGS. 1 and 3, the drain-source path can be shortened by approximately half and a steeper linear region 8 of the characteristic curve is obtained, which results in a lower ON resistance RON- * corresponds. With alternating voltage, the first and third quadrants are used, as illustrated in FIGS. 3 and 4. A semiconductor region with a structure according to FIG. 2 can thus be halved in comparison to a semiconductor region in the structure according to FIG. 1 with the same reverse voltage with regard to its drain-source path, and a lower resistance is achieved in normal operation, so that here the already low losses become even lower. Correspondingly, RO * or the linear region in FIG. 4 runs steeper than in FIG. 3. If the semiconductor region 1 is operated as a unipolar component, a positive temperature coefficient with respect to RON » SO is obtained since, depending on the external circuit, a load-dependent progressive current limitation results, as is illustrated in the current-time diagram according to FIG. 5. The lowering of the limiting current over time can also be promoted by coolants which are in thermally conductive connection with the drain electrode and with the source electrode, as is illustrated in FIGS. 6 and 7. Here, the coolants 9 are shown as cooling lugs.
Beim Halbleiterbereich erzielt man mit kleiner werdendem Abtand d zwischen den Gate-Elektroden bei sonst gleichen Bedinungen eine stärkere und frühere Abschnürung des Strom- flusses, so daß sich die Strombegrenzung im horizontalen Bereich nach den Figuren 3 und 4 bei niedrigeren Drain- Source-Strömen im Überlastbereich einstellt. In the semiconductor area, with decreasing distance d between the gate electrodes under otherwise identical conditions, a stronger and earlier restriction of the current flow is achieved, so that the current limitation in the horizontal area according to FIGS. 3 and 4 in the case of lower drain-source currents Overload range.

Claims

Patentansprüche claims
1. Strombegrenzer, bei dem zumindest einem Halbleiterbe- reich (1) mit Elektronenspender (Source;2) Elektronen¬ sammler (Drain;3) und den Elektronenfluß steuernder Elektrode (Gate;4) ohne eigene Ansteuerung und mit einer Kennlinie, wie sie Feldeffekttransistoren (FETs) aufweisen, gegebenenfalls eine Stromunterbrechereinrichtung (5) in Serie zur Drain-Source-Strecke geschaltet ist, wobei die1. Current limiter in which at least one semiconductor region (1) with an electron donor (source; 2) electron collector (drain; 3) and the electrode controlling the electron flow (gate; 4) without its own control and with a characteristic such as that of field-effect transistors (FETs), optionally a current interrupter (5) is connected in series with the drain-source path, the
Gate-Elektroden hinsichtlich ihrer Dicke (L) , ihres Abstan¬ des (d) voneinander und der Source-Drain-Strecke (D) so dimensioniert sind, daß sich bei einer vorgegebenen Strom¬ stärke eine Begrenzung einstellt.Gate electrodes are dimensioned with regard to their thickness (L), their distance (d) from one another and the source-drain path (D) in such a way that a limit is set at a given current strength.
3. Strombegrenzer nach Anspruch 1 oder 2, d a d u r c h- g e k e n n z e i c h n e t , daß der Halbleiberbereich (1) aus einem Substratmaterial aus Siliziumkarbit (SiC) ge¬ bildet ist.3. Current limiter according to claim 1 or 2, so that the semiconductor region (1) is formed from a substrate material made of silicon carbide (SiC).
4. Strombegrenzer nach einem der .Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die Stromunterbrechereinrichtung (5) als Schaltkontakt (6) mit Auslöseeinrichtung (7) ausgeführt ist.4. Current limiter according to one of the claims 1 to 3, so that the current interrupter device (5) is designed as a switching contact (6) with a tripping device (7).
5. Strombegrenzer nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß der Halbleiterbereich (1) mit eingebetteten Gate-Elektroden (4) ausgeführt ist.5. Current limiter according to one of claims 1 to 4, d a d u r c h g e k e n n z e i c h n e t that the semiconductor region (1) with embedded gate electrodes (4) is executed.
6. Strombegrenzer nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , daß Gate-Elektroden (4a) an der Source-Elektrode (2) und Gate-Elektroden (4b) an der Drain-Elektrode (2) angeordnet sind, bei elektrisch leiten- der Verbindung zur Source- bzw. zur Drain-Elektrode. 6. Current limiter according to claim 5, characterized in that gate electrodes (4a) on the source electrode (2) and gate electrodes (4b) on the drain electrode (2) are arranged with an electrically conductive connection to the source - or to the drain electrode.
7. Strombegrenzer nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß an der Source-Elektrode (2) und an der Drain-Elektrode (3) Kühl¬ mittel (9) angeordnet sind.7. Current limiter according to one of claims 1 to 6, d a d u r c h g e k e n n z e i c h n e t that coolant (9) are arranged on the source electrode (2) and on the drain electrode (3).
8. Strombegrenzer nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , daß der Halbleiterbereich (1) als unipolares Bauelement betrieben ist. 8. Current limiter according to one of claims 1 to 7, d a d u r c h g e k e n n z e i c h n e t that the semiconductor region (1) is operated as a unipolar component.
PCT/DE1993/000823 1993-09-08 1993-09-08 Current limiting device WO1995007548A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU49429/93A AU4942993A (en) 1993-09-08 1993-09-08 Current limiting device
PCT/DE1993/000823 WO1995007548A1 (en) 1993-09-08 1993-09-08 Current limiting device
EP93918960A EP0717880A1 (en) 1993-09-08 1993-09-08 Current limiting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE1993/000823 WO1995007548A1 (en) 1993-09-08 1993-09-08 Current limiting device

Publications (1)

Publication Number Publication Date
WO1995007548A1 true WO1995007548A1 (en) 1995-03-16

Family

ID=6888428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/000823 WO1995007548A1 (en) 1993-09-08 1993-09-08 Current limiting device

Country Status (3)

Country Link
EP (1) EP0717880A1 (en)
AU (1) AU4942993A (en)
WO (1) WO1995007548A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780952A1 (en) * 1995-12-20 1997-06-25 STMicroelectronics S.A. Monolithic and static current limiter and circuit breaker
WO1997023911A1 (en) * 1995-12-22 1997-07-03 Siemens Aktiengesellschaft Current-limiting semiconductor arrangement
WO1998049731A1 (en) * 1997-04-30 1998-11-05 Cree Research, Inc. Silicon carbide field conrolled bipolar switch
WO1998049733A1 (en) * 1997-04-25 1998-11-05 Siemens Aktiengesellschaft Semi-conductor device and use thereof
WO1998059377A1 (en) * 1997-06-24 1998-12-30 Siemens Aktiengesellschaft Semiconductor current limiter
WO2001011693A1 (en) * 1999-08-10 2001-02-15 Rockwell Science Center, Llc High power rectifier
WO2001097353A1 (en) * 2000-06-15 2001-12-20 Siemens Aktiengesellschaft Overcurrent protection circuit
FR2815173A1 (en) * 2000-10-11 2002-04-12 Ferraz Shawmut Current limiting component incorporating an electrode to control the adjustment of the current limiting value
DE10214176A1 (en) * 2002-03-28 2003-10-23 Infineon Technologies Ag Semiconductor component used as a diode comprises doped first semiconductor zone, second semiconductor zone, third semiconductor zone and stop zone arranged in the second semiconductor zone at distance from the third semiconductor zone
DE102006034589A1 (en) * 2006-07-26 2008-01-31 Siemens Ag Semiconductor arrangement for limiting over-current e.g. during start-up phase of motor, has limiter unit including dual structure with two lateral current flow channels, where arrangement is integrated in hybrid or monolithic manner
US7361970B2 (en) 2002-09-20 2008-04-22 Infineon Technologies Ag Method for production of a buried stop zone in a semiconductor component and semiconductor component comprising a buried stop zone
EP2849232A3 (en) * 2013-09-12 2015-05-06 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
EP4175091A1 (en) * 2021-10-28 2023-05-03 Rolls-Royce plc Electrical power system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2220789A1 (en) * 1971-04-28 1972-11-16 Handotai Kenkyu Shinkokai Field effect transistor
FR2410879A1 (en) * 1977-11-30 1979-06-29 Cutler Hammer World Trade Inc SEMICONDUCTOR CURRENT LIMITER

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2220789A1 (en) * 1971-04-28 1972-11-16 Handotai Kenkyu Shinkokai Field effect transistor
FR2410879A1 (en) * 1977-11-30 1979-06-29 Cutler Hammer World Trade Inc SEMICONDUCTOR CURRENT LIMITER

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373672B1 (en) 1995-12-20 2002-04-16 Sgs-Thomson Microelectronics S.A. Static and monolithic current limiter and circuit-breaker component
US5903028A (en) * 1995-12-20 1999-05-11 Sgs-Thomson Microelectronics S.A. Static and monolithic current limiter and circuit-breaker
EP0780952A1 (en) * 1995-12-20 1997-06-25 STMicroelectronics S.A. Monolithic and static current limiter and circuit breaker
FR2742933A1 (en) * 1995-12-20 1997-06-27 Sgs Thomson Microelectronics STATIC AND MONOLITHIC COMPONENT CURRENT LIMITER AND CIRCUIT BREAKER
WO1997023911A1 (en) * 1995-12-22 1997-07-03 Siemens Aktiengesellschaft Current-limiting semiconductor arrangement
US6459108B1 (en) 1997-04-25 2002-10-01 Siemens Aktiengesellschaft Semiconductor configuration and current limiting device
WO1998049733A1 (en) * 1997-04-25 1998-11-05 Siemens Aktiengesellschaft Semi-conductor device and use thereof
WO1998049731A1 (en) * 1997-04-30 1998-11-05 Cree Research, Inc. Silicon carbide field conrolled bipolar switch
US6011279A (en) * 1997-04-30 2000-01-04 Cree Research, Inc. Silicon carbide field controlled bipolar switch
WO1998059377A1 (en) * 1997-06-24 1998-12-30 Siemens Aktiengesellschaft Semiconductor current limiter
US6232625B1 (en) 1997-06-24 2001-05-15 Siced Electronics Development Gmbh & Co. Kg Semiconductor configuration and use thereof
WO2001011693A1 (en) * 1999-08-10 2001-02-15 Rockwell Science Center, Llc High power rectifier
US7061739B2 (en) 2000-06-15 2006-06-13 Siemens Aktiengesellschaft Overcurrent protection circuit
WO2001097353A1 (en) * 2000-06-15 2001-12-20 Siemens Aktiengesellschaft Overcurrent protection circuit
FR2815173A1 (en) * 2000-10-11 2002-04-12 Ferraz Shawmut Current limiting component incorporating an electrode to control the adjustment of the current limiting value
DE10214176A1 (en) * 2002-03-28 2003-10-23 Infineon Technologies Ag Semiconductor component used as a diode comprises doped first semiconductor zone, second semiconductor zone, third semiconductor zone and stop zone arranged in the second semiconductor zone at distance from the third semiconductor zone
DE10214176B4 (en) * 2002-03-28 2010-09-02 Infineon Technologies Ag Semiconductor device with a buried stop zone and method for producing a stop zone in a semiconductor device
US7361970B2 (en) 2002-09-20 2008-04-22 Infineon Technologies Ag Method for production of a buried stop zone in a semiconductor component and semiconductor component comprising a buried stop zone
US7749876B2 (en) 2002-09-20 2010-07-06 Infineon Technologies Ag Method for the production of a buried stop zone in a semiconductor component and semiconductor component comprising a buried stop zone
DE102006034589A1 (en) * 2006-07-26 2008-01-31 Siemens Ag Semiconductor arrangement for limiting over-current e.g. during start-up phase of motor, has limiter unit including dual structure with two lateral current flow channels, where arrangement is integrated in hybrid or monolithic manner
DE102006034589B4 (en) * 2006-07-26 2008-06-05 Siemens Ag Current limiting semiconductor device
EP2849232A3 (en) * 2013-09-12 2015-05-06 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US9484415B2 (en) 2013-09-12 2016-11-01 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
EP4175091A1 (en) * 2021-10-28 2023-05-03 Rolls-Royce plc Electrical power system
US11837894B2 (en) 2021-10-28 2023-12-05 Rolls-Royce Plc Electrical power system

Also Published As

Publication number Publication date
AU4942993A (en) 1995-03-27
EP0717880A1 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
EP0717887B1 (en) A.c. controller
EP1342318B1 (en) Electronic switching device
DE3011557C2 (en) Two pole overcurrent protection
DE102013106798B4 (en) BIDIRECTIONAL SOLID STATE SWITCH WITH A FIRST POWER FET AND A SECOND POWER FET
EP1352471B1 (en) Electronic switching device and an operating method therefor
DE69333367T2 (en) OVERCURRENT PROTECTION CIRCUIT AND SEMICONDUCTOR DEVICE
EP1410505A1 (en) Switching device for a switching operation at a high working voltage
EP0717880A1 (en) Current limiting device
EP3242399B1 (en) Monolithic integrated semiconductor, in particular isolating switch
EP0978159B1 (en) Device for limiting electrical alternating currents, especially during short-circuits
EP0992069B1 (en) Semiconductor current limiter
EP0978145B1 (en) Semi-conductor device and use thereof
DE102006045312B3 (en) Semiconductor device with coupled junction field effect transistors
DE2504648A1 (en) DEVICE TO PREVENT OVERCURRENT OR OVERVOLTAGE
EP3550582B1 (en) Low voltage circuit breaker
EP1304786A1 (en) Voltage limiter
EP3439044B1 (en) Monolithic integrated semiconductor, in particular isolating switch
WO2006133658A1 (en) Switching circuit and method for the operation of a circuit-breaker
DE1197986B (en) Semiconductor component with at least four zones of alternating conductivity type in the semiconductor body
DE10310578B3 (en) Reverse current guidance method for junction field effect transistor using raising of voltage applied to transistor gate electrode
DE10147696A1 (en) Semiconductor junction field effect transistor structure controlling and switching current flow
EP0763895A2 (en) Circuit arrangement and semiconductor body with a power switch
EP0788656B1 (en) Solid-state switching element with two source electrodes and solid-state switch with such an element
DE4002653C2 (en)
DE4438641A1 (en) Power solid state switch of semiconductor switch type

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CZ FI HU JP KR NO PL RU SK UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993918960

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993918960

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWR Wipo information: refused in national office

Ref document number: 1993918960

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993918960

Country of ref document: EP