WO1995002860A1 - Variable effort joystick - Google Patents

Variable effort joystick Download PDF

Info

Publication number
WO1995002860A1
WO1995002860A1 PCT/US1993/006889 US9306889W WO9502860A1 WO 1995002860 A1 WO1995002860 A1 WO 1995002860A1 US 9306889 W US9306889 W US 9306889W WO 9502860 A1 WO9502860 A1 WO 9502860A1
Authority
WO
WIPO (PCT)
Prior art keywords
joystick
stepper motor
exerting
lever
disposed
Prior art date
Application number
PCT/US1993/006889
Other languages
French (fr)
Inventor
Keh-Shih Chuang
Original Assignee
Chuang Keh Shih
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US07/797,383 priority Critical patent/US5228356A/en
Priority claimed from US07/797,383 external-priority patent/US5228356A/en
Application filed by Chuang Keh Shih filed Critical Chuang Keh Shih
Priority to AU47804/93A priority patent/AU4780493A/en
Priority to PCT/US1993/006889 priority patent/WO1995002860A1/en
Publication of WO1995002860A1 publication Critical patent/WO1995002860A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/04703Mounting of controlling member
    • G05G2009/04707Mounting of controlling member with ball joint
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/04766Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks providing feel, e.g. indexing means, means to create counterforce
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/04774Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks with additional switches or sensors on the handle

Definitions

  • the present invention pertains to computer joysticks and, more particularly, to computer controlled variable effort joysticks.
  • Input devices allow a user to place information into a computer.
  • the most common input devices are probably keyboards, mice, graphics tablets and joysticks.
  • the joystick is particularly useful in activities requiring hand-eye coordination such as game playing and computer training programs.
  • Computer training programs are used to teach people to handle a variety of tasks such as flying airplanes, controlling satellites, operating ship loading equipment and performing surgical operations.
  • control stick may require more force to move when the stick is moved to extreme positions. Or in performing an operation it may require more force to cut through some tissues than it does for others.
  • the joystick has a variable resistance to movement with that resistance under computer control.
  • the computer can then cause the joystick to have a resistance to movement for each program activity that matches the resistance to be found in the real life activity.
  • the present invention is directed to apparatus enabling computer control of the resistance required to move a joystick or parts thereof.
  • Apparatus in accordance with the invention are characterized by the use of a computer controlled stepper motor to alter the lever arm available to springs for urging of the joystick and a button in the joystick handle. A user of the joystick and the button must overcome the applied spring force.
  • FIG. 1 is an isometric view of a joystick disposed with a preferred apparatus embodiment, in accordance with the present invention, for converting it to a variable effort joystick;
  • FIG. 2 is an enlarged sectional view of the area enclosed by the line 2 in FIG. 1;
  • FIG. 3 is an enlarged view along the plane 3 - 3 of FIG. 1;
  • FIG. 4 is a plan view of a gear train for another preferred apparatus embodiment
  • FIG. 5 is a view similar to FIG. 1 illustrating another preferred embodiment of the present invention disposed with a joystick;
  • FIG. 6 is a view along the plane 6 - 6 of FIG. 5;
  • FIG. 7 is an enlarged sectional view of the area enclosed by the line 7 of FIG. 1;
  • FIG. 8 is a sectional view along the line 8 - 8 of FIG. 7;
  • FIG. 9 is an enlarged sectional view of the area enclosed by the line 9 of FIG. 7.
  • FIG. 1 is an isometric view of a preferred apparatus embodiment 20 for converting a joystick 22 to a variable effort joystick.
  • the joystick 22 rotates about a ball joint 24 (indicated schematically by a sphere).
  • Springs 26 are movably attached at one end thereof to a portion 22a of the joystick 22 and, at another end thereof, to threaded nuts 28 engaged by threaded screws 30 which rotate within bearings 31.
  • the screws 30 are disposed substantially parallel to the neutral position of the joystick 22 and are rotated by the use of belts 32 driven by a stepper motor 34 which is responsive to computer commands 35 in manners well known in the art.
  • the springs 26 may be moved axially along the joystick portion 22a in response to computer commands 35. Since a user of the joystick 22 normally applies force to the handle 42 it is seen that the user has the advantage of a lever arm of distance 44 (to the ball joint 24) while the springs 26 urge the joystick 22 with a lever arm of distance 46 and the effort, therefore, required of the user to move the joystick is proportional to the ratio expressed by distance 46/distance 44.
  • the movement of the nuts 28 parallel to the joystick axis (which changes the distance 46) is a linear function of the rotation of the stepper motor 34 and the effort required of the joystick user is, therefore, a linear function of the stepper motor 34 rotation.
  • the force of the springs 26a, 26b and the distances 44, 46 determine the user effort at the handle 42 along the direction 50 while the force of the springs 26c, 26d and the distances 44, 46 determine the effort along the direction 52.
  • Efforts to move the handle 42 along directions which are a vectorial combination of the directions 50, 52 are determined by a corresponding vectorial combination of the force of the springs 26a, 26b and 26c, 26d.
  • the springs 26 have been shown to engage a portion 22a of the joystick 22 separated by the ball joint 24 from the handle 42 but the apparatus may also be configured to have the springs engage the joystick 22 on the same side of the ball joint 24 as the handle 42.
  • FIG. 2 is an enlarged sectional view of the area enclosed by the line 2 in FIG. 1 and illustrates that the springs 26 are attached to a sleeve 54 whose movements along the portion 22a are facilitated by a set of roller bearings 56, 57 which roll thereon.
  • the springs 26 are attached to cups 60 which rotate on circular bosses 62 of the sleeve 54.
  • the cups 60 and bosses 62 accommodate movements of the portion 22a that are transverse to the plane that a spring is in prior to movement of the joystick 22.
  • the attachment of the springs 26 to the cups -60 and to the nuts (28 in FIG. 1) may be accomplished in various manners well known in the art.
  • the belts 32 are operatively connected between the stepper motor 36 and the screws 30 by sheaves 66, 67 (although they are not shown in the figures, such sheaves commonly have flanges for containment of a belt therewithin). As shown in FIG. 3, which is a view along the plane 3 - 3 of FIG. 1, the belts 32 may have teeth 68 that mesh with corresponding teeth in the sheaves 66. Thus a rotational relationship may be maintained between the stepper motor 34 and the screws 30.
  • FIG. 4 is a plan view of a gear train 70 that may be substituted for the sheaves 66 and belts 32 of FIGS. 1 and 3 to operatively connect the stepper motor 34 (through its axle 71) and the screws 28 in another preferred embodiment of the invention.
  • FIG. 5 is a view similar to FIG. 1 illustrating another preferred apparatus embodiment 80 which enables independent computer control of the variable effort along directions 50 and 52.
  • a second stepper motor 82 through a sheave 81 and belts 32 a, 32b controls the movement of springs 26a, 26b while the first stepper motor 34 controls, through a sheave 66 and belts 32 c, 32d, movement of springs 26c, 26d.
  • FIG. 6 is a sectional view along the plane 6 - 6 of FIG. 5, by tracks 84 disposed axially on the section 22a and wheels 86 which rotatably bear on the tracks 84.
  • the wheels 86 rotate within yokes 88 which terminate in discs 90 which, in turn, rotate within cups 92.
  • a computer may independently control the effort required of a user of the joystick 22 along the directions 50, 52, by commanding stepper motors 34, 82 to adjust the axial movement along the joystick section 22a of, respectively, springs 26c, 26d and springs 26a, 26b.
  • FIG. 7 is an enlarged sectional view of the area enclosed by the line 7 of FIG. 1 illustrating another preferred apparatus embodiment for converting the joystick 22 to one requiring variable effort from a user thereof.
  • a lever 102 is disposed about a pivot 104 mounted in a boss 106 and a button 108, disposed in an aperture 110 of the handle 42, abuts the lever 102 through a pointed boss 111.
  • a stepper motor 112 controls, through a flexible cable 114 the movement of a nut 116 along a threaded screw 118 which is substantially parallel to the lever 102.
  • FIG. 8 is an enlarged sectional view along the plane 8 - 8 of FIG.
  • FIGS. 7, 8 showing a plunger 120 that moves within the nut 116 under urging of a spring 122.
  • the plunger 120 carries a pin 124 that is slidingly received within a slot 126 of the lever 102.
  • the nut 116 slides within a track 128 mounted within the handle 42.
  • the stepper motor 112 can, in response to computer commands 113, alter the lever arm distance 130 available to the plunger 116 while the button 108 always uses a lever arm distance 132.
  • the effort required by a user of the joystick to depress the button 108 may be varied by computer control.
  • FIG. 9 is an enlarged sectional view of the area enclosed by the line 9 of FIG. 7 illustrating that the cable 114 has an outer sleeve 134 and a coaxial inner core 136 that rotatably engages the screw 118 which rotates in bearings 119 disposed in the track 128.
  • the cable is of a type well known in mechanical arts (e. g. automobile speedometer cables).
  • the button 108 is shown in FIG. 7 to slide by means of slots 138 received over bosses 140 of the handle 42. Small springs 142 urge the button against the lever 102 to secure the button 108 when not in use.
  • the stepper motor 112 shown in FIG. 5 may be operatively connected to the core 136 through structure 144 well known in the mechanical arts (e. g. gear train or belt).
  • the ball joint 24 schematically illustrated in FIG. 1 by a sphere has an orifice 146 configured so that the ball joint 24 does not abut the cable 114 as the joystick 22 is moved. Since the ball joint 24 is shown schematically it should be understood that the orifice 146 is also a schematic representation indicating that an actual ball joint must be configured to allow flexing of the cable 114 without impinging upon it. Thus it should be apparent that apparatus embodiments have been disclosed herein enabling computer control of the effort required to operate a joystick by a user thereof.

Abstract

A variable resistance joystick (20) configured for computer control is provided. A stepper motor (34) turns threaded screws (30) to move a system of springs (26) up and down on the joystick thus varying the lever arm on which the springs impart force. Thus computer commands (113) to the stepper motor may change the force required by a user to move the joystick. A similar system controls the resistance to movement of a button (108) in the joystick handle (42).

Description

TITLE
Variable Effort Joystick
TECHNICAL FIELD
The present invention pertains to computer joysticks and, more particularly, to computer controlled variable effort joysticks.
BACKGROUND ART
Input devices allow a user to place information into a computer. The most common input devices are probably keyboards, mice, graphics tablets and joysticks. The joystick is particularly useful in activities requiring hand-eye coordination such as game playing and computer training programs. Computer training programs are used to teach people to handle a variety of tasks such as flying airplanes, controlling satellites, operating ship loading equipment and performing surgical operations.
When many of these activities are performed in the actual situation there is a resistive feedback to the performer. For instance, in flying an airplane the control stick may require more force to move when the stick is moved to extreme positions. Or in performing an operation it may require more force to cut through some tissues than it does for others.
Therefore, it may be useful to have a system in which the joystick has a variable resistance to movement with that resistance under computer control. The computer can then cause the joystick to have a resistance to movement for each program activity that matches the resistance to be found in the real life activity.
The following U.S. Patents are of interest in the joystick art; 4,127,841, 4,156,130, 4,200,780, 4,216,467, 4,414,438, 4,491,325, 4,509,383, 4,533,899, 4,590,339, 4,685,678, 4,748,441, 4,766,423, 4,769,517, 4,800,721, 4,814,682, 4,820,162, 4,870,389 and 4,879,556. DISCLOSURE OF INVENTION
The present invention is directed to apparatus enabling computer control of the resistance required to move a joystick or parts thereof. Apparatus in accordance with the invention are characterized by the use of a computer controlled stepper motor to alter the lever arm available to springs for urging of the joystick and a button in the joystick handle. A user of the joystick and the button must overcome the applied spring force.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is an isometric view of a joystick disposed with a preferred apparatus embodiment, in accordance with the present invention, for converting it to a variable effort joystick;
FIG. 2 is an enlarged sectional view of the area enclosed by the line 2 in FIG. 1;
FIG. 3 is an enlarged view along the plane 3 - 3 of FIG. 1;
FIG. 4 is a plan view of a gear train for another preferred apparatus embodiment;
FIG. 5 is a view similar to FIG. 1 illustrating another preferred embodiment of the present invention disposed with a joystick;
FIG. 6 is a view along the plane 6 - 6 of FIG. 5;
FIG. 7 is an enlarged sectional view of the area enclosed by the line 7 of FIG. 1;
FIG. 8 is a sectional view along the line 8 - 8 of FIG. 7; and
FIG. 9 is an enlarged sectional view of the area enclosed by the line 9 of FIG. 7.
MODES FOR CARRYING OUT THE INVENTION
FIG. 1 is an isometric view of a preferred apparatus embodiment 20 for converting a joystick 22 to a variable effort joystick. The joystick 22 rotates about a ball joint 24 (indicated schematically by a sphere). Springs 26 are movably attached at one end thereof to a portion 22a of the joystick 22 and, at another end thereof, to threaded nuts 28 engaged by threaded screws 30 which rotate within bearings 31. The screws 30 are disposed substantially parallel to the neutral position of the joystick 22 and are rotated by the use of belts 32 driven by a stepper motor 34 which is responsive to computer commands 35 in manners well known in the art.
Thus the springs 26 may be moved axially along the joystick portion 22a in response to computer commands 35. Since a user of the joystick 22 normally applies force to the handle 42 it is seen that the user has the advantage of a lever arm of distance 44 (to the ball joint 24) while the springs 26 urge the joystick 22 with a lever arm of distance 46 and the effort, therefore, required of the user to move the joystick is proportional to the ratio expressed by distance 46/distance 44. The movement of the nuts 28 parallel to the joystick axis (which changes the distance 46) is a linear function of the rotation of the stepper motor 34 and the effort required of the joystick user is, therefore, a linear function of the stepper motor 34 rotation.
It may be appreciated from FIG. 1 that the force of the springs 26a, 26b and the distances 44, 46 determine the user effort at the handle 42 along the direction 50 while the force of the springs 26c, 26d and the distances 44, 46 determine the effort along the direction 52. Efforts to move the handle 42 along directions which are a vectorial combination of the directions 50, 52 are determined by a corresponding vectorial combination of the force of the springs 26a, 26b and 26c, 26d. The springs 26 have been shown to engage a portion 22a of the joystick 22 separated by the ball joint 24 from the handle 42 but the apparatus may also be configured to have the springs engage the joystick 22 on the same side of the ball joint 24 as the handle 42.
FIG. 2 is an enlarged sectional view of the area enclosed by the line 2 in FIG. 1 and illustrates that the springs 26 are attached to a sleeve 54 whose movements along the portion 22a are facilitated by a set of roller bearings 56, 57 which roll thereon. The springs 26 are attached to cups 60 which rotate on circular bosses 62 of the sleeve 54. The cups 60 and bosses 62 accommodate movements of the portion 22a that are transverse to the plane that a spring is in prior to movement of the joystick 22. The attachment of the springs 26 to the cups -60 and to the nuts (28 in FIG. 1) may be accomplished in various manners well known in the art.
The belts 32 are operatively connected between the stepper motor 36 and the screws 30 by sheaves 66, 67 (although they are not shown in the figures, such sheaves commonly have flanges for containment of a belt therewithin). As shown in FIG. 3, which is a view along the plane 3 - 3 of FIG. 1, the belts 32 may have teeth 68 that mesh with corresponding teeth in the sheaves 66. Thus a rotational relationship may be maintained between the stepper motor 34 and the screws 30.
FIG. 4 is a plan view of a gear train 70 that may be substituted for the sheaves 66 and belts 32 of FIGS. 1 and 3 to operatively connect the stepper motor 34 (through its axle 71) and the screws 28 in another preferred embodiment of the invention.
FIG. 5 is a view similar to FIG. 1 illustrating another preferred apparatus embodiment 80 which enables independent computer control of the variable effort along directions 50 and 52. A second stepper motor 82, through a sheave 81 and belts 32 a, 32b controls the movement of springs 26a, 26b while the first stepper motor 34 controls, through a sheave 66 and belts 32 c, 32d, movement of springs 26c, 26d.
This independent movement is enabled, as shown in FIG. 6 which is a sectional view along the plane 6 - 6 of FIG. 5, by tracks 84 disposed axially on the section 22a and wheels 86 which rotatably bear on the tracks 84. The wheels 86 rotate within yokes 88 which terminate in discs 90 which, in turn, rotate within cups 92. Thus, as seen in FIGS. 5, 6, a computer may independently control the effort required of a user of the joystick 22 along the directions 50, 52, by commanding stepper motors 34, 82 to adjust the axial movement along the joystick section 22a of, respectively, springs 26c, 26d and springs 26a, 26b.
FIG. 7 is an enlarged sectional view of the area enclosed by the line 7 of FIG. 1 illustrating another preferred apparatus embodiment for converting the joystick 22 to one requiring variable effort from a user thereof. A lever 102 is disposed about a pivot 104 mounted in a boss 106 and a button 108, disposed in an aperture 110 of the handle 42, abuts the lever 102 through a pointed boss 111. As seen in FIGS. 1 and 7, a stepper motor 112 controls, through a flexible cable 114 the movement of a nut 116 along a threaded screw 118 which is substantially parallel to the lever 102. FIG. 8 is an enlarged sectional view along the plane 8 - 8 of FIG. 7 showing a plunger 120 that moves within the nut 116 under urging of a spring 122. As seen in FIGS. 7, 8 the plunger 120 carries a pin 124 that is slidingly received within a slot 126 of the lever 102. The nut 116 slides within a track 128 mounted within the handle 42.
Therefore, in a manner similar to that described above relative to
FIG. 1, the stepper motor 112 can, in response to computer commands 113, alter the lever arm distance 130 available to the plunger 116 while the button 108 always uses a lever arm distance 132. Thus the effort required by a user of the joystick to depress the button 108 may be varied by computer control.
FIG. 9 is an enlarged sectional view of the area enclosed by the line 9 of FIG. 7 illustrating that the cable 114 has an outer sleeve 134 and a coaxial inner core 136 that rotatably engages the screw 118 which rotates in bearings 119 disposed in the track 128. The cable is of a type well known in mechanical arts (e. g. automobile speedometer cables).
The button 108 is shown in FIG. 7 to slide by means of slots 138 received over bosses 140 of the handle 42. Small springs 142 urge the button against the lever 102 to secure the button 108 when not in use.
The stepper motor 112 shown in FIG. 5 may be operatively connected to the core 136 through structure 144 well known in the mechanical arts (e. g. gear train or belt). The ball joint 24 schematically illustrated in FIG. 1 by a sphere has an orifice 146 configured so that the ball joint 24 does not abut the cable 114 as the joystick 22 is moved. Since the ball joint 24 is shown schematically it should be understood that the orifice 146 is also a schematic representation indicating that an actual ball joint must be configured to allow flexing of the cable 114 without impinging upon it. Thus it should be apparent that apparatus embodiments have been disclosed herein enabling computer control of the effort required to operate a joystick by a user thereof.
The embodiments depicted herein are exemplary and numerous modifications and rearrangements can be made with the equivalent result still embraced within the scope of the invention.

Claims

What is claimed is:
1. Apparatus, comprising: a first stepper motor responsive to computer commands; first exerting means, movably attached to a joystick which is operative about a ball joint, for exerting force transversely on said joystick; and first moving means, responsive to said stepper motor, for moving said first exerting means axially along said joystick; whereby the effort required to move said joystick by a user thereof may be varied by said computer commands.
2. Apparatus as defined in claim 1 wherein said first exerting means comprises a spring for generating said force.
3. Apparatus as defined in claim 1 wherein said first exerting means comprises a roller bearing disposed on said joystick to facilitate axial movement of said first exerting means thereon.
4. Apparatus as defined in claim 1 wherein said first exerting means comprises: a track disposed axially on said joystick; and a wheel disposed on said track to facilitate movement of said first exerting means relative thereto.
5. Apparatus as defined in claim 1 wherein said first moving means comprises: a belt operatively engaged by said stepper motor; a threaded screw disposed substantially parallel to said joystick and operatively engaged by said belt for axial rotation of said screw; and a threaded nut attached to said first exerting means and rotatably engaged by said screw.
6. Apparatus as defined in claim 5 wherein said belt defines a plurality of teeth facilitating maintenance of a rotational relationship between said first stepper motor and said screw.
7. Apparatus as defined in claim 1 wherein said first moving means comprises: a threaded screw disposed substantially parallel to said joystick; a gear train operatively disposed between said stepper motor and said threaded screw for axial rotation of said threaded screw; and a threaded nut attached to said first exerting means and rotatably disposed on said threaded screw.
8. Apparatus as defined in claim 1 wherein said first exerting means is disposed to exert said force on a portion of said joystick separated by said ball joint from the portion of said joystick upon which a user thereof exerts a force.
9. Apparatus as defined in claim 1 wherein said first exerting means is disposed to exert said force on a portion of said joystick on the same side of said ball joint as the portion of said joystick upon which a user thereof exerts a force.
10. Apparatus as defined in claim 1, further comprising: a second stepper motor responsive to computer commands; a lever disposed within said joystick to be abutted by a button movably mounted in said joystick; second exerting means, movably attached to said lever, for exerting a force transversely thereon; and second moving means, responsive to said stepper motor, for moving said second exerting means axially along said lever; whereby the effort required to move said button by a user thereof may be varied by said computer commands.
11. Apparatus, comprising: a stepper motor responsive to computer commands; a lever disposed within a joystick to be abutted by a button movably mounted in said joystick; exerting means, movably attached to said lever, for exerting a force transversely thereon; and moving means, responsive to said stepper motor, for moving said exerting means axially along said lever; whereby the effort required to move said button by a user thereof may be varied by said computer commands.
12. Apparatus as defined in claim 11 wherein said exerting means comprises a spring for generating said force.
5
13. Apparatus as defined in claim 11 wherein said lever defines a slot therein and said exerting means comprises a pin disposed in said slot to facilitate movement therein.
10 14. Apparatus as defined in claim 11 wherein said moving means comprises: a cable coaxial inner core operatively engaged by said stepper motor for axial rotation thereof; a threaded screw disposed substantially parallel to said lever and 15 operatively engaged by said cable coaxial inner core for axial rotation thereof; and a nut attached to said exerting means and rotatably engaged by said threaded screw.
20 15. A method of exerting computer controlled variable forces upon a joystick, comprising the steps of: providing a first stepper motor responsive to computer commands; engaging said joystick at an engagement point thereon with a first spring to exert a force transversely on said joystick; and 25 moving, in response to said first stepper motor, said first spring and said engagement point on said joystick; whereby the effort required to move said joystick by a user thereof may be varied by said computer commands.
30 16. A method as defined in claim 15 wherein said moving step comprises the steps of: attaching said first spring to a threaded nut; disposing a threaded rod responsive to said stepper motor substantially parallel to said joystick; and 35 engaging said threaded nut with said threaded rod.
17. A method as defined in claim 15 further comprising the steps of: providing a second stepper motor responsive to computer commands; abutting a button movably mounted in said joystick with a lever; engaging said lever with a second spring to exert a force transversely thereon; and moving, in response to said second stepper motor, said second spring axially along said lever; whereby the effort required to move said button by a user thereof may be varied by said computer commands.
PCT/US1993/006889 1991-11-25 1993-07-12 Variable effort joystick WO1995002860A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/797,383 US5228356A (en) 1991-11-25 1991-11-25 Variable effort joystick
AU47804/93A AU4780493A (en) 1991-11-25 1993-07-12 Variable effort joystick
PCT/US1993/006889 WO1995002860A1 (en) 1991-11-25 1993-07-12 Variable effort joystick

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/797,383 US5228356A (en) 1991-11-25 1991-11-25 Variable effort joystick
PCT/US1993/006889 WO1995002860A1 (en) 1991-11-25 1993-07-12 Variable effort joystick

Publications (1)

Publication Number Publication Date
WO1995002860A1 true WO1995002860A1 (en) 1995-01-26

Family

ID=26786895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/006889 WO1995002860A1 (en) 1991-11-25 1993-07-12 Variable effort joystick

Country Status (1)

Country Link
WO (1) WO1995002860A1 (en)

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2424773A (en) * 1944-02-26 1947-07-29 Interval Instr Inc Locating device
US2984720A (en) * 1959-06-10 1961-05-16 Warner Swasey Co Control unit
US3091130A (en) * 1960-06-27 1963-05-28 Morse Instr Co Single lever control for multiple actions
US3550466A (en) * 1968-11-26 1970-12-29 Byron Jackson Inc Multidirectional control
US3707093A (en) * 1970-09-10 1972-12-26 Marotta Scientific Controls Multi-power control system with single control stick
US3940674A (en) * 1972-04-14 1976-02-24 The United States Of America As Represented By The Secretary Of The Navy Submarine or vehicle steering system
US4127841A (en) * 1976-07-30 1978-11-28 Toshiba Kikai Kabushiki Kaisha Multi-direction controlling mechanism
US4200780A (en) * 1978-01-18 1980-04-29 Atari, Inc. Control assembly with rotating disc cover for sliding control
US4216467A (en) * 1977-12-22 1980-08-05 Westinghouse Electric Corp. Hand controller
US4414438A (en) * 1982-06-04 1983-11-08 International Jensen Incorporated Video game controller
US4419325A (en) * 1982-07-21 1983-12-06 Jeneric Industries, Inc. Dental alloys for porcelain-fused-to-metal restorations
US4509383A (en) * 1982-12-01 1985-04-09 Championship Electronics (Usa) Inc. Joystick controller
US4532817A (en) * 1981-11-06 1985-08-06 Clarion Co., Ltd. Tuning shaft of pushbutton tuner
US4533899A (en) * 1982-12-23 1985-08-06 Akermans Verkstad Ab Joystick controller with improved motion control with plate having bevelled flat edges that correspond to planes of maneuverability
US4584443A (en) * 1984-05-14 1986-04-22 Honeywell Inc. Captive digit input device
US4590339A (en) * 1985-02-19 1986-05-20 Gravis Computer Peripherals Inc. Joystick
US4660828A (en) * 1983-06-15 1987-04-28 Allen Schwab Reactive control apparatus
US4685678A (en) * 1982-08-13 1987-08-11 Bally Manufacturing Corporation Position transducer system for a joystick
US4748441A (en) * 1986-09-17 1988-05-31 Brzezinski Stephen R M Multiple function control member
US4766423A (en) * 1986-01-07 1988-08-23 Hitachi, Ltd. Three-dimensional display apparatus
US4769517A (en) * 1987-04-13 1988-09-06 Swinney Carl M Joystick switch assembly
US4800721A (en) * 1987-02-13 1989-01-31 Caterpillar Inc. Force feedback lever
US4814682A (en) * 1986-10-08 1989-03-21 Hitachi, Ltd. Drive apparatus for specimen stage of microscope
US4820162A (en) * 1987-11-23 1989-04-11 Robert Ross Joystick control accessory for computerized aircraft flight simulation program
US4870389A (en) * 1987-02-23 1989-09-26 Ascii Corporation Joystick
US4879556A (en) * 1986-10-27 1989-11-07 Huka Developments B.V. Joystick control unit using multiple substrates
US4962448A (en) * 1988-09-30 1990-10-09 Demaio Joseph Virtual pivot handcontroller
US5087904A (en) * 1990-02-09 1992-02-11 Devolpi Dean Joy stick
US5228356A (en) * 1991-11-25 1993-07-20 Chuang Keh Shih K Variable effort joystick

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2424773A (en) * 1944-02-26 1947-07-29 Interval Instr Inc Locating device
US2984720A (en) * 1959-06-10 1961-05-16 Warner Swasey Co Control unit
US3091130A (en) * 1960-06-27 1963-05-28 Morse Instr Co Single lever control for multiple actions
US3550466A (en) * 1968-11-26 1970-12-29 Byron Jackson Inc Multidirectional control
US3707093A (en) * 1970-09-10 1972-12-26 Marotta Scientific Controls Multi-power control system with single control stick
US3940674A (en) * 1972-04-14 1976-02-24 The United States Of America As Represented By The Secretary Of The Navy Submarine or vehicle steering system
US4127841A (en) * 1976-07-30 1978-11-28 Toshiba Kikai Kabushiki Kaisha Multi-direction controlling mechanism
US4216467A (en) * 1977-12-22 1980-08-05 Westinghouse Electric Corp. Hand controller
US4200780A (en) * 1978-01-18 1980-04-29 Atari, Inc. Control assembly with rotating disc cover for sliding control
US4532817A (en) * 1981-11-06 1985-08-06 Clarion Co., Ltd. Tuning shaft of pushbutton tuner
US4414438A (en) * 1982-06-04 1983-11-08 International Jensen Incorporated Video game controller
US4419325A (en) * 1982-07-21 1983-12-06 Jeneric Industries, Inc. Dental alloys for porcelain-fused-to-metal restorations
US4685678A (en) * 1982-08-13 1987-08-11 Bally Manufacturing Corporation Position transducer system for a joystick
US4509383A (en) * 1982-12-01 1985-04-09 Championship Electronics (Usa) Inc. Joystick controller
US4533899A (en) * 1982-12-23 1985-08-06 Akermans Verkstad Ab Joystick controller with improved motion control with plate having bevelled flat edges that correspond to planes of maneuverability
US4660828A (en) * 1983-06-15 1987-04-28 Allen Schwab Reactive control apparatus
US4584443A (en) * 1984-05-14 1986-04-22 Honeywell Inc. Captive digit input device
US4590339A (en) * 1985-02-19 1986-05-20 Gravis Computer Peripherals Inc. Joystick
US4766423A (en) * 1986-01-07 1988-08-23 Hitachi, Ltd. Three-dimensional display apparatus
US4748441A (en) * 1986-09-17 1988-05-31 Brzezinski Stephen R M Multiple function control member
US4814682A (en) * 1986-10-08 1989-03-21 Hitachi, Ltd. Drive apparatus for specimen stage of microscope
US4879556A (en) * 1986-10-27 1989-11-07 Huka Developments B.V. Joystick control unit using multiple substrates
US4800721A (en) * 1987-02-13 1989-01-31 Caterpillar Inc. Force feedback lever
US4870389B1 (en) * 1987-02-23 1997-06-17 Ascii Corp Joystick
US4870389A (en) * 1987-02-23 1989-09-26 Ascii Corporation Joystick
US4769517A (en) * 1987-04-13 1988-09-06 Swinney Carl M Joystick switch assembly
US4820162A (en) * 1987-11-23 1989-04-11 Robert Ross Joystick control accessory for computerized aircraft flight simulation program
US4962448A (en) * 1988-09-30 1990-10-09 Demaio Joseph Virtual pivot handcontroller
US5087904A (en) * 1990-02-09 1992-02-11 Devolpi Dean Joy stick
US5228356A (en) * 1991-11-25 1993-07-20 Chuang Keh Shih K Variable effort joystick

Similar Documents

Publication Publication Date Title
US5228356A (en) Variable effort joystick
US5790101A (en) Ergonomic control apparatus
US4710128A (en) Spatial disorientation trainer-flight simulator
US5431569A (en) Computer interactive motion simulator
DE60200332T2 (en) Remote controlled game skateboard
US8264458B2 (en) Variable compliance joystick with compensation algorithms
US6668678B1 (en) Manipulator
US4711447A (en) Exercise apparatus for use with video game
US4914976A (en) Five and six degree of freedom hand controllers
US4763100A (en) Joystick with additional degree of control
US20040077464A1 (en) Motion platform system and method of rotating a motion platform about plural axes
US4820162A (en) Joystick control accessory for computerized aircraft flight simulation program
US6113459A (en) Remote toy steering mechanism
US5727188A (en) Flight-control simulator for computer games
WO2002014970A2 (en) Foot-operated positional control for a computer
US4947701A (en) Roll and pitch palm pivot hand controller
US8235723B2 (en) Flight simulator yoke
US4386914A (en) Transmitter extension apparatus for manipulating model vehicles
US5190243A (en) Device for the adjustment of the maneuver forces of movable members of an aircraft
US9245453B1 (en) Flight simulator yoke
EP4309200A1 (en) Five-position switch
WO1995002860A1 (en) Variable effort joystick
JPS6322799A (en) Controller
US5370536A (en) Variable resistance computer input wheel
US5513543A (en) Adjustable control lever with variable pressure detent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR CA FI HU JP KP KR KZ LK MG MN MW NO PL RO RU SD UA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA