WO1994006472A1 - Microparticules portant des antigenes et leur utilisation pour l'induction de reponses humorales ou cellulaires - Google Patents

Microparticules portant des antigenes et leur utilisation pour l'induction de reponses humorales ou cellulaires Download PDF

Info

Publication number
WO1994006472A1
WO1994006472A1 PCT/FR1993/000876 FR9300876W WO9406472A1 WO 1994006472 A1 WO1994006472 A1 WO 1994006472A1 FR 9300876 W FR9300876 W FR 9300876W WO 9406472 A1 WO9406472 A1 WO 9406472A1
Authority
WO
WIPO (PCT)
Prior art keywords
microparticles
cells
lysozyme
proteins
microparticle
Prior art date
Application number
PCT/FR1993/000876
Other languages
English (en)
Inventor
Christine Gengoux
Claude Leclerc
Original Assignee
Institut Pasteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Pasteur filed Critical Institut Pasteur
Priority to US08/397,286 priority Critical patent/US5871747A/en
Priority to DK93919446T priority patent/DK0662000T3/da
Priority to DE69329030T priority patent/DE69329030T2/de
Priority to CA002144425A priority patent/CA2144425C/fr
Priority to AU49666/93A priority patent/AU4966693A/en
Priority to AT93919446T priority patent/ATE194496T1/de
Priority to EP93919446A priority patent/EP0662000B1/fr
Publication of WO1994006472A1 publication Critical patent/WO1994006472A1/fr
Priority to GR20000402240T priority patent/GR3034550T3/el

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/08Peptides being immobilised on, or in, an organic carrier the carrier being a synthetic polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6093Synthetic polymers, e.g. polyethyleneglycol [PEG], Polymers or copolymers of (D) glutamate and (D) lysine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/81Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
    • Y10S530/811Peptides or proteins is immobilized on, or in, an inorganic carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/81Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
    • Y10S530/812Peptides or proteins is immobilized on, or in, an organic carrier
    • Y10S530/815Carrier is a synthetic polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/915Therapeutic or pharmaceutical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/918Immunological

Definitions

  • the present invention relates to microparticles carrying antigens on the surface and their use for the induction of humoral or cellular responses.
  • the invention also relates to microparticles comprising, on the surface, a high density of antigens.
  • B cells which express specific immunoglobulin receptors for a particular antigen are highly efficient for the presentation of this antigen.
  • specific B cells can present tetanus toxoid to T cells at antigen concentrations 10 times lower than those required for presentation by non-specific B cells or peripheral blood monocytes.
  • mice deficient in B cells indicate that these cells are required for the activation of T cells of the lymph nodes (Jane ay et al. J. Immunol. (1987) 138: 1051; Ron, and al. J., J. Immunol. (1987) 138: 2848; Kurt-Jones et al. AKJ Immunol. (1987) 140: 3773).
  • B cell-deficient mice also show reduced responses for tumor-specific CD4 + and CD8 + T cells after immunization with murine leukemia virus.
  • lymphokines such as Interleukin-2, Interleukin-4 or Interleukin-5.
  • the induction of the antibody response against an antigen therefore requires the presentation of the antigen by B cells.
  • Most of the studies on the presentation of the antigen have been carried out using soluble proteins such as the tetanus toxoid, lysozyme, hemocyanin (LH).
  • Most antigens to which the immune system is exposed are included in complex particulate structures such as bacteria or parasites.
  • macrophages and B cells to present the same antigen, in a soluble and particulate form.
  • protein antigens such as lysozyme and TNP-KLH have been used, coupled with microparticles of poly (acrolein) or polystyrene having a size comparable to that of a bacterium.
  • B cells which exhibit TNP-KLH or lysozyme in a very effective manner are incapable of presenting these antigens coupled to beads.
  • macrophages present both forms of T cell antigens.
  • T cells CD4 + , Thl and Th2 which have different capacities to produce various ly phokines.
  • Thl Th2
  • Thl protect against infection while Th2 aggravate the disease.
  • B lymphocytes optimally stimulate the proliferation of Th2 clones while a strong proliferation of Thl clones is observed with adherent cells
  • Orientation of the antigen to presentation by B cells or macrophages can induce Th1 or Th2 responses.
  • the oldest method is to activate the immune system with the help of adjuvants.
  • Freund's adjuvant makes it possible to increase the intensity of the humoral and cellular responses.
  • Iscomes are composed of an antigenic complex and an adjuvant, QuilA which is extracted from a tree. These particles have a diameter of about 35 n and are composed of subunits of about 12nm. They make it possible to induce an immunological response but most often the antigens are encapsulated and are therefore then released into the external environment. In addition, the technique does not allow precise control of the type of cells presenting these particles, and therefore these particles induce a double humoral and cellular response. Finally, from a practical point of view, it will be noted preparation difficulties, a lack of stability and a significant toxicity of these particles.
  • Liposomes the use of which has also been tested for the induction of an immune response, have the same disadvantages as iscoms.
  • Biodegradable microparticles such as, for example, polymers of lactic and glutamic acid have also been developed (Aguado and Lambert, I ⁇ ununo. Biol., 184, 113-125, (1992)). These microparticles release during their degradation, the antigen in soluble form. This release allows presentation of the antigen by various cells and the induction of a humoral response without the possibility of orientation towards a specifically cellular response.
  • Particles containing the polio toxin were also produced. These particles have drawbacks notable. Thus, it is very difficult to insert long sequences into these particles. In addition, they induce both a humoral and a cellular response and it is therefore not possible to specifically obtain one of the two.
  • the beads used have diameters of 20 to 35 nm (polyacrolein) or 40 to 120 ⁇ m (polystyrene).
  • Polyacrolein particles with a diameter of 2 ⁇ m have also been used to study in vitro the stimulation of T responses (Ziegler et al. Eur. J. Immunol. (1987), 17: 1287-1296). The activity of these beads is not tested in vivo.
  • particles of small size such as HBs particles could be presented by B lymphocytes.
  • particles of too large size greater than 5-10 microns cannot be presented by phagocytic cells.
  • the present invention particularly relates to microparticles of synthetic polymeric material carrying on the surface one or more proteins covalently linked to the material constituting the microparticles, the said protein (s) each carrying one or more epitopes and being present at a density between 10 and 5.10 5 molecules / ⁇ m 2 for each of the proteins.
  • the invention also relates to the following characteristics, considered in isolation or in all their technically possible combinations:
  • the coupling of antigenic proteins or microparticles must be covalent to avoid release in soluble form of the antigen.
  • the microparticles advantageously have an average diameter of between approximately 0.25 ⁇ m and 1.5 ⁇ m, and preferably approximately 1 ⁇ m so that they can be presented to T and CD4 lymphocytes by phagocytic cells but not by B lymphocytes.
  • Said microparticles are more particularly characterized in that the covalent bond is produced by reaction of the NH 2 and / or CO functions of the proteins and of the material constituting the microparticle.
  • such a bond will be made via a bridging agent, such as for example glutaraldehyde or carbodiimide.
  • a bridging agent such as glutaraldehyde or carbodiimide.
  • any other bifunctional agent allowing such a link can be used.
  • agents are known, see for example Synthetic polypeptides as antigens, MH Von Regenmortel, JP Briand, S. Muller and S. Plane 1988 (Elsevier). This connection can also be made without a bridging agent.
  • the material constituting the microparticle can advantageously be a biocompatible polymer, such as an acrylic polymer, for example polyacolein or polystyrene or poly (alpha hydroxy acids), copolymers of lactic and glycolic acids, or polymers of lactic acids.
  • a biocompatible polymer such as an acrylic polymer, for example polyacolein or polystyrene or poly (alpha hydroxy acids), copolymers of lactic and glycolic acids, or polymers of lactic acids.
  • polymer is understood to mean any homopolymer or hetero or copolymer. It must allow covalent coupling of proteins to the material and must not cause rejection or toxicity reactions on the part of the organism into which it could be injected.
  • a biodegradable polymer for example a polymer which can be degraded by cells having lysozomial enzymes, such as macrophages.
  • Such biodegradable materials can be polymers of lactic and glutamic acid from starch or polymers used for biomedical uses, and in particular those used in sutures.
  • Such a microparticle can carry on its surface, in addition to antigenic proteins, molecules capable of activating the immune system, such as interleukins, in particular interferon-gamma or interleukin 4.
  • microparticles can carry one or more proteins which can themselves include each one or more epitopes.
  • proteins can be glycoproteins, synthetic peptides containing one or more epitopes, or any other non-protein molecule or containing a protein part capable of inducing an immune response.
  • microparticles which are the subject of the present invention can also be encapsulated in order to protect the antigens attached to their surfaces from degradation and in order to bring them to their place of action.
  • They can thus comprise a nucleus consisting of a polysaccharide matrix, to which the antigens are linked, a first lipid layer covalently linked to the nucleus and a second layer of amphiphilic molecules.
  • medicaments or vaccines comprising the microparticles described above, as well as pharmaceutical compositions characterized in that they comprise them, in association with diluents or pharmaceutically compatible adjuvants.
  • the present invention relates generally to the use of microparticles of synthetic polymer material carrying on the surface one or more covalently linked proteins, the said protein or proteins each carrying one or more T or B epitopes, for the manufacture of a medicament or vaccine for the induction of an immune response, according to which the densities of the protein or proteins on the surface of the microparticles are adjusted in order to orient said immune response towards a predominantly humoral or predominantly cellular response.
  • the invention also has for subject a process for the manufacture of a medicament or a vaccine whose immune response is either predominantly humoral or predominantly cellular, of Thl or Th2 type, said process being characterized in that one fixes covalently on microparticles or plastic polymer beads at least one protein carrying one or more epitopes by varying the density of the protein attached to the surface according to the type of response desired.
  • a process for the manufacture of a medicament or a vaccine whose immune response is either predominantly humoral or predominantly cellular, of Thl or Th2 type, said process being characterized in that one fixes covalently on microparticles or plastic polymer beads at least one protein carrying one or more epitopes by varying the density of the protein attached to the surface according to the type of response desired.
  • microparticles having a density for each of the proteins carrying an epitope of at least 10 5 and preferably of approximately 5.10 molecules / ⁇ m 2 .
  • Such densities correspond approximately for a bead with a diameter of 1 ⁇ m to quantities
  • CD4 + for the induction of a predominantly cellular response, CD4 + , restricted class II, use will preferably be made of microparticles having a density for each of the proteins carrying an epitope of between approximately 10 4 and 5.10 4 protein molecules / ⁇ m 2 .
  • microparticles carrying proteins having molecular weights greater than 50 kD are preferably used.
  • microparticles are those mentioned above concerning high density microparticles.
  • the proteins and antigens covalently linked to the microparticles depend on the intended application of said microparticles. They also depend on the type of response immune system that we want to induce, but also of the disease or condition that we want to treat or whose subject we want to protect.
  • sequence of the V3 loop of the GP120 protein of the HIV1 virus is as follows:
  • the B epitopes will be used to induce a humoral response using high density microparticles and the T epitopes to induce a predominantly cellular response using low density microparticles. surface proteins.
  • microparticles will be injected into patients whom it is desired to treat therapeutically or prophylactically by means known to those skilled in the art, for example by subcutaneous, intraperitoneal, intravenous injection, or by any other means making it possible to induce an immune response.
  • One of the particular advantages of the present invention resides in the fact that it makes it possible to induce humoral or cellular immune responses without adding adjuvants to the beads or microparticles.
  • the addition of non-toxic adjuvants which do not cause a parasitic immune reaction can also be envisaged in the context of a use according to the present invention.
  • FIG. 1 are results of analyzes by fluorometry (FACS) of microparticles carrying antigens KLH or TNP-KLH.
  • the ordinates indicate the antibody used (PBS-control, anti-KLH, anti-TNP).
  • the abscissa indicates the types of microparticles tested: B (KLH), B (TNP-KLH), B (OVA) and B (OVA-TNP) which correspond to microparticles to which KLH, TNP- are respectively bound.
  • KLH, ovalbumin and ovalbumin-TNP are examples of the present invention is illustrated without however being limited by the examples which follow in which:
  • FIG. 1 are results of analyzes by fluorometry (FACS) of microparticles carrying antigens KLH or TNP-KLH.
  • the ordinates indicate the antibody used (PBS-control, anti-KLH, anti-TNP).
  • the abscissa indicates the types of microparticles tested: B
  • Figures 2A to 2D show the capacity of spleen, macrophage and specific B cells of TNP and activated by LPS to present respectively KLH, TNP-KLH, microparticles carrying KLH and microparticles carrying TNP-KLH.
  • FIG. 3 is a curve indicating the proliferative responses of ganglion cells of mice immunized with soluble lysozyme and stimulated in vitro by soluble lysozyme (FIG. 3A) or by microparticles carrying lysozyme with diameters 0.25, 0.75 and 1 , 5 ⁇ m (FIG. 3B).
  • Cell proliferation is measured by the incorporation of thymidine (CPM) on the ordinate, while the dilution of the microparticles is indicated on the abscissa.
  • FIG. 4 represents the production of IL2 / IL4 by a hybridoma specific for lysozyme after stimulation with soluble lysozyme (FIG. 4A) or by microparticles carrying lysozyme (FIG. 4B). The concentrations of the microparticles are indicated on the abscissa, while the proliferation is indicated on the ordinate.
  • FIGS. 5A and 5B represent the activation of the lysozyme-specific hybridoma T measured by the production of IL2 / IL4 after stimulation with the soluble lysozyme (FIG. 5A) or coupled to the microparticles (FIG. 5B) in the presence of splenocytes or B cells (A20) as cells presenting the antigen.
  • FIGS. 6A and 6B represent the proliferation in vitro after stimulation by soluble lysozyme of cells of inguinal ganglia of mice immunized respectively by soluble lysozyme in complete Freund's adjuvant (FIG. 6A) and by lysozyme coupled to microparticles (FIG. 6B) .
  • Figures 7A and 7B show the proliferation in vitro after stimulation by lysozyme of inguinal lymph node cells of mice immunized with various concentrations of lysozyme soluble (7A) or coupled to microparticles (7B).
  • KLH Keyhole Limpet Hemocyanin
  • FIG. 9 represents the proliferative response of ganglion cells of mice immunized by hemoglobin soluble in adjuvant (Hb + CFA) or coupled to beads (B-Hb).
  • Figure 10 shows the proliferative response of mouse cells stimulated by soluble ovalbu ine (OVA + CFA) or ovalbumin coupled to beads (B-OVA).
  • FIG. 11 illustrates the proliferation of mouse cells immunized with the peptide C3 in soluble form (C3: T + CFA) or in microparticulate form (B-C3: T).
  • the cells were restimulated in the presence of an amount of soluble C3 (on the abscissa) and the proliferation was measured (on the ordinate).
  • FIG. 12 represents the proliferation of mouse cells immunized with the pre-S peptide: soluble TB (Pre-S: TB + aluminum) or in microparticulate form (B-pre-S: TB) or the pre-S peptide : B in particulate form (B-Pré S: B) and restimulated by the peptide Pré-S.
  • FIG. 13A and 13B respectively represent the levels of anti-lysozyme antibody (FIG. 13A) and anti-KLH antibody (FIG. 13B) of mice immunized with lysozyme and the alum adjuvant, microparticles carrying lysozyme or microparticles carrying LH.
  • Figures 14 and 15 illustrate the antibody response of mice immunized with hemoglobin (Figure 14) or ovalbumin ( Figure 15) in soluble or particulate form.
  • the Log of the antibody titer is represented on the ordinate while the time is represented on the abscissa.
  • Figure 16 relates to the antibody response of mice immunized with the soluble pre-S: TB peptide or the pre-S: TB or pre-S: B peptides in particulate form.
  • the ordinate and the abscissa of this curve have the same meaning as for Figures 14 and 15.
  • FIG. 17A represents the proliferation of mouse cells immunized by injection of lysozyme in the presence of Freund's adjuvant, after stimulation in vitro by microparticles carrying lysozyme at different densities.
  • FIG. 17B represents the in vitro proliferation of mouse cells immunized in vivo with lysozyme or beads carrying lysozyme after stimulation with different concentrations of lysozyme.
  • FIG. 18 is a diagram illustrating the production of anti-lysozyme antibodies from mouse cells immunized by injection of lysozyme and of Freund's adjuvant or of microparticles carrying lysozyme.
  • EXAMPLE 1 Preparation of beads coupled to KLH or to 1 ovalbumin.
  • mice are BALB / c and DBA / 2 females aged 6 to 8 weeks.
  • the antigens are KLH and ovalbumin (OVA) sold by Sigma Chemical (St-Louis, USA).
  • TNP4-KLH Trinitrophenylated hemocyanin
  • Poly (acrolein) microparticles with a diameter of between 0.25 and 1.5 ⁇ m are coupled to ovalbumin or to KLH as described previously (Rembaum et al. Immunol (1982) 52: 341; Ziegler et al. Eur. J. Immunol. (1987) 17: 1287).
  • microparticles 1 ml of these microparticles is washed twice in PBS and resuspended in 1 ml of KLH or ovalbumin (5 mg / ml in PBS). After three hours of incubation at room temperature, the microparticles are washed twice in PBS and resuspended in 2 ml of PBS containing 1% bovine serum albumin (BSA) and antibiotics. The microparticles thus obtained are stored at 4 " C until use.
  • BSA bovine serum albumin
  • microparticles carrying the TNP-OVA or TNP-KLH antigens are prepared by incubation of microparticles carrying the OVA or KLH with TNBS (Trinitrobenzene sulfonate).
  • TNBS Trinitrobenzene sulfonate
  • microparticles 50 .mu.l of microparticles were washed twice in PBS containing 1% BSA and incubated for 40 minutes at 4 ° C with mouse serum anti-KLH or anti-TNP. After two washes, the microparticles are incubated with goat antibody coupled to FITC (fluoroisothiocyanate) directed against mouse immunoglobulin (Biosys, Compiegne, France) for 40 minutes at 4 ° C.
  • FITC fluoroisothiocyanate
  • microparticles are resuspended in 1 ml of PBS containing 1% BSA.
  • the fluorescence intensity is measured using the FACSCAN flow cytometer (Becton Dickinson, Mountain View.CA).
  • FACSCAN flow cytometer Becton Dickinson, Mountain View.CA.
  • the cultures are incubated in a humid atmosphere to 7.5% C0 2 at 37 ° C.
  • a cell line was established from this initial culture by serial passage of cells purified on Ficoll T (2.10 5 / ml) in the presence of spleen cells from irradiated DBA / 2 mice (3000 rad) for 6 to 8 days (rest period) or with spleen cells irradiated plus KLH (100 ⁇ g / ml) for 4 days (stimulation period) .
  • the T cells used in the experiments are harvested 8 to 10 days after their last contact with KLH. 1.5 Estimation of proliferation of Th cells.
  • results are expressed as the geometric mean of three cultures, after eliminating the background noise.
  • the standard deviation is less than 15% of the average .
  • the normal mouse TNP B cells are purified by binding and elution on gelatin-TNP8 and according to the technique described by Haas and Layton J. E., J. Exp. Med. (1975) 141: 1004.
  • TNP specific memory B cells were selected on gelatin carrying a hapten (gelatin-TNP2), by testing the affinity of receptors for TNP compared to virgin B cells, and the capacity to secrete large quantities of * anti-NPT immunoglobulin G in the presence of low concentrations of antigens.
  • This protocol leads to the final production, expressed as a percentage relative to the number of original spleen cells, of 0.3 to 0.6% of cells binding TNP from spleen of immunized mice.
  • the cells are cultured overnight before the addition of other cells and reagents in order to allow the re-expression of surface immunoglobulins modified by the treatment with collagenase.
  • the presence of free TNP receptors on these cells is evaluated by their capacity to bind erythrocytes carrying TNP on their surface.
  • mice 55 to 76% of the cells obtained from immunized mice form rosettes with SRBC modified by TNP. These cells do not proliferate in response to concanavalin A but are enriched 20 times, for cells which secrete anti-TNP immunoglobulins G after stimulation with TNP-LH, compared to unfractionated spleen cells.
  • Virgin B cells specific for TNP from mice and not immunized were purified by binding and then elution on gelatin-TNP8 as described above. These cells were cultured at a density of 2.10 6 per ml in a medium containing 50 ⁇ g / ml of LPS (Salmonella enteriditis, Difco Laboratories, Detroit, MI) for 3 days.
  • LPS Long Term Protein Proliferative protein
  • the nonadherent lymphoblasts were purified using Ficoll-Hypaque (Pharmacia, Piscataway, NJ), then washed and used as accessory cells.
  • Macrophages were obtained from non-immunized spleen cells by adherence for 4 hours at 37 ° C followed by washing the cells to remove non-adherent cells as previously described (Kakiochi et al. J. Immunol. (1983) 131: 109). 2. Results.
  • KLH was covalently coupled to polyacrolein microparticles with a diameter of 0.25 to 1.5 ⁇ m.
  • the coupling of KLH to the microparticles was checked by flow cytofluorometry analysis using an anti-KLH mouse serum.
  • the 1.5 ⁇ m microparticles were coupled to ovalbumin (B OVA) or to KLH (B-KLH).
  • B OVA ovalbumin
  • B-KLH KLH
  • the TNP-OVA or TNP-KLH microparticles (respectively designated B (TNP-OVA) and B (TNP-KLH)) were prepared by incubation of microparticles carrying the OVA or KLH with TNBS. Analysis by cytofluorometry was carried out on microparticles incubated in the presence of PBS or in the presence of anti-KLH or anti-TNP mouse serum. After washing, the microparticles were incubated with FITC-bound goat antibodies directed against mouse immunoglobulins and were analyzed by flow cytometry.
  • the capacity of unfractionated splenocytes, macrophages and virgin B cells specific for TNP was compared as regards their presentation of KLH and of soluble or particulate TNP-KLH to T cells specific for KLH.
  • populations of splenocytes were prepared from unimmunized mice. After purification, the TNP-specific B cells were activated for three days with LPS; it is known in fact that the lymphoblasts induced by LPS are cells which are very efficient as regards the presentation of an antigen (Kakiochi et al. J P immunol. (1983) 131: 109).
  • LPS-activated TNPs were cultured with 5.10 4 KLH-specific Th cells in the presence of various amounts of soluble KLH (A), soluble TNP-KLH (B) or fixed on microparticles (B KLH)
  • LPS-activated macrophages and B cells effectively stimulate T cells when incubated with soluble KLH or TNP-LH.
  • Lysozyme LYSO
  • Limulus hemocyanin LH
  • the soluble antigen is made particulate by coupling to microparticles (Polysciences) from 0.2 to l ⁇ m in diameter. Two coupling methods are used: 1.2 a) Covalent coupling directly without activating agent.
  • Polyacrolein beads or microparticles carry aldehyde groups capable of reacting spontaneously with the amino functions of proteins.
  • 1 ml of beads is washed 4 times in PBS, and taken up in 1 ml of 5 mg / ml antigen. After 3 hours of incubation at room temperature, the beads are washed 3 times in PBS and incubated for 30 minutes in 1 ml of PBS-1% human albumin in order to saturate the free reactive groups of the beads. Then after washing, the particles are taken up in 2 ml of PBS-1% human albumin 1% -antibiotique then stored at 4 * C.
  • covalent coupling with glutaraldehyde covalent coupling with glutaraldehyde.
  • the antigen is coupled to the polystyrene beads by glutaraldehyde, capable of forming a Schiff base with the amino groups of proteins.
  • 0.5 ml of beads is washed 3 times in PBS and taken up in 0.5 ml of 8% glutaraldehyde. After 6 hours of incubation at room temperature, the beads are washed 2 times and taken up in 1 ml of antigen at 400 ⁇ g / ml. After incubation overnight at room temperature, the beads are washed and incubated with 1 ml of 0.2 M ethanolamine for 30 minutes in order to block the free aldehyde functions of glutaraldehyde.
  • the particles are taken up in 1 ml of PBS-1% human albumin - 1% antibiotic and stored at 4 * C.
  • This coupling method is used to determine the amount of protein coupled to the microparticles by spectrophotometry.
  • the absorbances of the protein solution at 400 ⁇ g / ml and of the supernatant obtained after the incubation of the beads with this protein solution are measured at 280 nm. Knowing the number of beads used for the coupling, it is considered that the difference between the quantity of protein before coupling and the residual quantity after coupling makes it possible to estimate the quantity of lysozyme coupled per particle. 1.3 Immunization protocol.
  • the serum of each mouse is collected 7 or 14 days after each injection.
  • the antibody content of the sera is measured by ELISA test.
  • the cellular proliferative response is measured on the inguinal nodes and / or on the spleen, taken 7 and / or 14 days after each injection.
  • an anti-mouse Ig conjugate (anti-Ig supplied by Diagnostics Pasteur total and specific anti-Ig by Sigma), labeled with peroxidase, prepared in goats; which is incubated for 1 hour at 37 ° C.
  • we add the substrate solution prepared immediately: Orthophenylenediamine 0.5 mg / ml (Sigma) in 0.1 M citric acid buffer 0.2M disodium phosphate 0.2M-pH 5 to which H 2 0 2 is added at 1/2500. reveals the presence of specific antibodies; the enzymatic reaction is stopped 8 minutes later, with 50 ⁇ l of H 2 S0 4 (11.5%).
  • the absorbance of each well is measured at 492 nm, by an optical density reader (Dynatech).
  • the negative control is carried out with 1: 100 serum from unimmunized BALB / c mice.
  • the results are expressed: either in DOxlOOO from the absorbance measured, corrected for the absorbance in the absence of serum; either by the antibody titer calculated from linear regression based on the absorbance obtained with the serum of unimmunized BALB / c mice.
  • the ELISA test is carried out in tubes.
  • the dilutions of the test sera are incubated directly with the antigen coupled to the beads (8.10 8 particles / ml). Washings are carried out by centrifugation in PBS-Tween 20 buffer (0.01%). When the enzymatic reaction is complete, 200 ⁇ l of each tube are transferred to a microplate then the absorbance is measured.
  • the ELISA test measures the binding of specific antibodies present in the serum of BALB / c mice immunized with lysozyme. This fixation is reduced if the serum is preincubated (before the ELISA test) with the antigen: lysozyme soluble or coupled to the beads, which then behaves as an inhibitor.
  • the anti-lysozyme serum is preincubated with soluble lysozyme or coupled to the beads for 1 hour at 37 "C then overnight at 4 ° C; the reaction taking place in tubes
  • the attachment of non-related to the inhibitor antibody evaluated by ELISA test (triplicate) in microplates, the wells of which were covered with lysozyme at 5 ⁇ g / ml.
  • the absorbance of each well is measured at 492 nm, and corrected for the absorbance in the absence of serum. negative is carried out with 1: 100 serum from unimmunized BALB / c mice.
  • the absorbance without inhibitor during the preincubation of serum corresponds to the maximum binding of anti-lysozyme antibodies.
  • a T hybridoma was produced by immunization of BALB / c mice with lysozyme. It specifically recognizes lysozyme peptide 108-116, in association with the molecules of the Major Histocompatibility Complex class II I-E.
  • 10 5 T hybridoma cells are stimulated by increasing concentrations of antigen: lysozyme or coupled beads, in the presence of different antigen presenting cells: 5.10 5 irradiated splenocytes (3000 rad) from BALB / c mice or 10 5 cells A20 lymphoma B, restricted by MHC class II molecules.
  • the cells are cultured (triplicates) in a complete RPMI 1640 medium (SEROMED) supplemented with 10% of decomplemented fetal calf serum, 50 ⁇ M of / 3-mercaptoethanol, 2 mM of glutamine, 100 IU / ml of penicillin and 100 ⁇ g / Ml of streptomycin, in a flat-bottom microplate (Corning 25860).
  • SEROMED complete RPMI 1640 medium
  • the positive control is produced by stimulation of the hybridoma by the mitogen of T lymphocytes: concanavalin A at 5 ⁇ g / ml.
  • the supernatant is removed after 24 h of culture at 37 ° C. (7.5% C0 2 ), then frozen at -20 ° C. for 16 h minimum.
  • the stimulation of the hybridoma is measured by the IL2 content of the supernatant in a CTL-L cell proliferation test. Standard deviations are not mentioned because the error is less than 10% of the average of the triplicates.
  • the CTL-L line is dependent on Interleukin 2 and Interleukin 4; she is maintained in culture in complete medium enriched with 20% of supernatant of rat splenocytes, incubated for 36 h with 2.5 ⁇ g / ml of concanavalin A.
  • Cell proliferation is measured by adding tritiated thymidine of specific activity 1 Ci / mmol, at a rate of 2 ⁇ Ci / ml of culture, during the last 16 hours of culture.
  • the DNA of the cells is recovered after lysis of the cells and filtration using a "Skatron".
  • the incorporation of radioactivity is counted by scintillation using a beta counter.
  • the spleen and / or inguinal nodes are removed sterile 7 or 14 days after the immunization of the mice (see immunization protocol).
  • 8.10 5 cells are incubated in the presence of different concentrations of antigen, soluble or coupled to the beads.
  • the cells are cultured (triplicate) in RPMI 1640 medium (SEROMED) added with 1.5% of decomplemented fetal calf serum, 0.5% of normal mouse serum, 50 ⁇ M of 32-mercaptoethanol, 2 mM of glutamine, 100 IU / ml of penicillin and 100 ⁇ g / ml of streptomycin; in microplates (Corning 25860) for 4 days at 37 ° C (7.5% C0 2 ).
  • Cell proliferation is measured by incorporation of tritiated thymidine, of activity specific 25 Ci / mmol, at the rate of 2 ⁇ Ci / ml of culture, during the last 16 hours.
  • the DNA of the cells is recovered after lysis of the cells and filtration using a Skatron, the incorporation of radioactivity is counted by scintillation using a beta counter.
  • results are expressed in cpm from the average of the triplicates, corrected for incorporation in the absence of antigen. 2 - RESULTS.
  • mice were immunized by subcutaneous injection at the base of the tail with soluble lysozyme supplemented with Freund's adjuvant (CFA).
  • CFA Freund's adjuvant
  • the soluble lysozyme induces a significant proliferation of the cells of mice immunized by this antigen by adjuvant of Freund (3A).
  • the in vitro stimulation of these same cells by the microparticles-lysozyme reveals that these are capable of inducing a very strong cell proliferation (FIG. 3B).
  • the microparticles of larger diameter, 0.81 and 0.96 ⁇ m (spontaneous coupling), are very effective.
  • FIGS. 4A and 4B correspond to the results of stimulation of the T hybridoma, specific for lysozyme by soluble lysozyme (4A) or coupled to microparticles (4B).
  • the degree of stimulation of the hybridoma was measured by the level of IL-2 / IL-4 produced.
  • the T hybridoma In the presence of irradiated splenocytes, the T hybridoma is strongly stimulated by the soluble lysozyme (FIG. 4A). In the presence of these cells, the large lysozyme microparticles (0.81 and 0.96 ⁇ m) also cause a significant production of IL-2 / IL-4 (FIG. 4B), unlike the microparticles of 0.5 and 0.25 ⁇ m which are not capable of stimulating the specific T hybridoma. 2.3. Inability of B20 lymphoma A20 cells to present lysozyme coupled to beads at the T hybridoma specific for lysozyme.
  • B cell tumors carrying la receptors can be used as cells presenting antigens for antigens which do not have reactivity with the Ig receptor but which are fixed by B cell tumors by non-specific mechanisms (Walker et al. J. Immunol. (1982) 128: 2164; Glimcher et al. J. Exp. Med. (1982) 155: 445; Mac Kean et al. J. Exp. Med. (1981) 154: 1419; Mac Kean et al. J. Exp. Med. (1981) 154: 1419).
  • splenocytes can present to the T cells an antigen, whether soluble or in particulate form.
  • B lymphocytes are unable to present an antigen made particulate by coupling to beads of a size of the order of a micron.
  • the in vivo munogenicity of the antigen coupled to the microparticles was analyzed by immunizing BALB / c mice with lysozyme in complete Freund's adjuvant or with this antigen coupled to polyacrolein beads. After 14 days, the cells of the draining ganglia of these animals were stimulated in vitro by different concentrations of soluble lysozyme.
  • the proliferative response of cells sensitized by 10 microparticles-lysozyme is as high as that of animal cells immunized with 100 ⁇ g of lysozyme soluble in Freund's adjuvant (CFA) ( Figure 6A).
  • CFA Freund's adjuvant
  • mice were immunized by subcutaneous injection at the base of the tail with soluble lysozyme and complete Freund's adjuvant (CFA) (FIG. 7A) or beads coupled to the antigen without any adjuvant (Figure 7B).
  • CFA complete Freund's adjuvant
  • FIG. 8 represents the proliferative response of the cells of mice immunized with lysozyme in complete Freund's adjuvant (CFA) or in PBS with microparticles coupled to LH.
  • CFA complete Freund's adjuvant
  • PBS PBS with microparticles coupled to LH.
  • LH beads to lysozyme does not make it possible to induce high proliferative responses, which indicates that the lysozyme must be covalently coupled to the microparticles to induce proliferative T responses.
  • mice 2.5 - Induction of T-proliferative responses by injection of hemoglobin or Ovalbumin coupled to microparticles in mice
  • mice were immunized with hemoglobin or ovalbumin by complete Freund's adjuvant, or with these proteins coupled by covalent bond to the same type of particles as in the previous examples (polystyrene, diameter of 1 ⁇ m).
  • lymph node cells of these animals were restimulated in vitro by soluble proteins and cell proliferation was measured.
  • Hb hemoglobin
  • OVA ovalbumin
  • T peptide (120-132) of the HBS antigen was synthesized and covalently coupled by glutaraldehyde to beads having a diameter of 1 ⁇ m.
  • Figure 12 shows that the injection of 10 ⁇ beads into DBA / 1 mice induces a strong T-proliferative response greater than that obtained with the peptide in CFA.
  • the injection of beads containing only the B epitope does not induce a proliferative response, which demonstrates the specificity of the response.
  • EXAMPLE 3 shows that the injection of 10 ⁇ beads into DBA / 1 mice induces a strong T-proliferative response greater than that obtained with the peptide in CFA.
  • the injection of beads containing only the B epitope does not induce a proliferative response, which demonstrates the specificity of the response.
  • mice were immunized by intraperitoneal injection with 100 ⁇ g of soluble lysozyme as an adjuvant (alum) or with the beads coupled to the antigen: lysozyme or Limulus hemocyanin (LH), without any adjuvant.
  • alum soluble lysozyme
  • LH Limulus hemocyanin
  • the density of the LH molecules on the beads is therefore approximately 5 times lower. This could explain the absence of stimulation of the antibody responses if these are due to direct T-independent stimulation by the antigen present at high density on the microparticles.
  • mice were immunized with the soluble antigen by aluminum adjuvant or with the same antigen in particulate form, in the absence of an adjuvant.
  • Hb hemoglobin
  • the g mice were immunized with 100 ⁇ g of protein or 10 J beads coupled at different densities with the protein (2.10 and 2.10 molecule / ⁇ m).
  • the balls carrying ovalbumin (OVA) were tested at two densities 7.10 3 and 7.10 4 molecule / ⁇ m 2 ).
  • a first injection was given, then two other injections were made on the twenty-first day and forty-second day.
  • the sera were collected on the twentieth day, the thirty-first day, the forty-first day and the fifty second day, then were tested in ELISA for their IgG antibody levels.
  • the results are expressed in Log of the antibody titer.
  • proteins of low or medium molecular weight can induce the appearance of antibodies if they are coupled with high densities to the beads.
  • pre-S TB (120-145) and pre-S: B peptides corresponding to parts of the HBS antigen containing respectively a T epitope and a B epitope or only the B epitope were covalently coupled to 1 ⁇ m beads with glutaraldehyde (B-pre-S: TB and B-pre-S: B).
  • the antibody response induced by these beads was compared to that induced by 10 ⁇ g of pre-S: TB peptide soluble in adjuvant alum.
  • mice were immunized by subcutaneous injection at the base of the tail with soluble lysozyme with adjuvant (CFA) or 10 9 beads carrying different densities of lysozyme without any adjuvant.
  • CFA soluble lysozyme with adjuvant
  • microparticles coupled with high density lysozyme correspond to 23 ⁇ g (1-950,000-G) and 5 ⁇ g (1-210,000-G) of coupled lysozyme, however the proliferation of cells is as high as after injection 100 ⁇ g of lysozyme in CFA.
  • BALB / c mice were immunized by subcutaneous injection of lysozyme with adjuvant (CFA) or with 10 9 microparticles carrying different densities of lysozyme (950,000; 210,000, 45,000 and 1100 molecules respectively, reduced to a microparticle 1 ⁇ m in diameter).
  • mice immunized with these microparticles having different densities of lysozyme were studied.
  • the injection of 100 ⁇ g of lysozyme in CFA induces a high level of anti-lysozyme antibodies (FIG. 18).
  • the beads coupled to the highest density of lysozyme (950,000) induced significant antibody production, while the beads of lower density did not stimulate the induction of anti-lysozyme antibody response. significant.
  • the 210,000 density beads which induced an excellent specific proliferation of lysozyme did not stimulate the production of antibodies.
  • microparticles designates particles which can have various geometrical and spatial configurations. In practice, these are preferably microspheres or beads, such that they are obtained by the usual techniques for manufacturing polymers.

Abstract

Utilisation pour l'induction d'une réponse immunitaire de microparticules en matériau synthétique polymère portant en surface une ou plusieurs protéines liées de manière covalente pouvant porter un ou plusieurs épitopes, les densités de la ou des protéines à la surface des microparticules, ainsi que leurs poids moléculaires, étant ajustées afin d'orienter la réponse immunitaire vers l'induction d'une réponse humorale et cellulaire ou vers l'induction d'une réponse majoritairement cellulaire. Les microparticules ont un diamètre moyen compris entre environ 0,25 et environ 1,5 νm.

Description

"Microparticules portant des antigènes et leur utilisation pour l'induction de réponses humorales ou cellulaires"
La présente invention a pour objet des microparticules portant en surface des antigènes et leur utilisation pour l'induction de réponses humorales ou cellulaires.
Plus spécifiquement, l'invention concerne également des microparticules comportant, en surface, une densité importante d'antigènes.
Les cellules B qui expriment des récepteurs immunoglobulines spécifiques pour un antigène particulier sont hautement efficaces pour la présentation de cet antigène. (Rock et al. C, J. Exp. Med. (1984) 160; 1102; Hutchings et al. Eur. J. Immunol. (1987) 17:393). Par exemple, des cellules B spécifiques peuvent présenter la toxoïde tétanique à des cellules T à des concentrations en antigène 10 fois inférieures à celles requises pour la présentation par des cellules B non spécifiques ou des monocytes du sang périphérique. (Lanzavecchia, Nature, (1985) 314:537).
De plus, des études in vivo avec des souris déficientes en cellules B indiquent que ces cellules sont requises pour l'activation des cellules T des ganglions lymphatiques (Jane ay et al. J. Immunol. (1987) 138:1051; Ron, et al. J., J. Immunol. (1987) 138:2848; Kurt-Jones et al. A.K. J. Immunol. (1987) 140:3773) . Les souris déficientes en cellules B présentent aussi des réponses réduites en ce qui concerne les cellules T CD4 + et CD8+ spécifiques de tumeurs, après immunisation par le virus de la leucémie murine de
Freund (Schultz et al.. Science, (1990) 291). La capacité des cellules B à modifier et à, présenter l'antigène en vue de la reconnaissance par des cellules T Helper CD4+ restreintes au complexe majeur d'histocompatibilite de classe II (MHC) forme la base d'un modèle d'activation des cellules B par les cellules T. (Noëlle et al. The Faseb Journal. (1991) 5:2770).
La reconnaissance par des cellules T Helper CD4+ du complexe peptide-MHC de classe II à la surface des cellules B permet la formation de conjugués stables physiquement entre les cellules T et les cellules B (Kupfer et al. S. J.. Proc. National Acad. Sci. USA. (1986) 83:6080).
Cette reconnaissance directe a pour résultat la prolifération et la différenciation de cellules B en réponse à des lymphokines telles 1'Interleukine-2, 1'Interleukine-4 ou 1'Interleukine-5.
L'induction de la réponse anticorps contre un antigène nécessite donc la présentation de l'antigène par des cellules B. La plupart des études sur la présentation de l'antigène ont été effectuées en utilisant des protéines solubles telles que la toxoïde du tétanos, le lysozyme, 1'hémocyanine (LH) . Cependant, la plupart des antigènes auxquels le système immunitaire est exposé, sont inclus dans des structures particulaires complexes telles que des bactéries ou des parasites.
Il est bien établi que les cellules qui sont capables de phagocytose telles que les macrophages peuvent présenter des antigènes bactériens à des cellules T.
Par contre, on ne sait pas si des cellules qui ne phagocytent pas, telles que les cellules B, peuvent présenter des antigènes complexes et de tailles importantes. II a été montré récemment que, in vivo, des antigènes bactériens devaient être mis sous une forme soluble, pour induire une réponse anticorps dépendante des cellules T (Leclerc et al. J. Immunol. (1990) 144:3174; Leclerc et al. J. Immunol. (1991) 147:3545). II convenait cependant d'établir encore qu'in vivo, les antigènes protéiques bactériens sont exclusivement présentés aux cellules T par des cellules phagocytaires et que les cellules B ne peuvent modifier des antigènes sous forme de particules.
A cet effet, on a comparé, selon la présente invention, la capacité de macrophages et de cellules B à présenter le même antigène, sous une forme soluble et particulaire. On a notamment utilisé des antigènes protéiques, tels que le lysozyme et le TNP-KLH, couplés à des microparticules de poly(acroléine) ou de polystyrène ayant une taille comparable à celle d'une bactérie. Selon l'invention, on a montré de manière surprenante que les cellules B qui présentent le TNP- KLH ou le lysozyme de manière très efficace, sont incapables de présenter ces antigènes couplés à des billes. Par contre, les macrophages présentent les deux formes d'antigènes aux cellules T.
L'étude de la présentation des antigènes et de l'induction de la réponse T cellulaire et/ou humorale a une importance scientifique et médicale particulière. En effet, l'orientation vers une réponse purement cellulaire ou une réponse purement humorale peut permettre de vacciner contre certains pathogènes, de modifier certains dysfonctionnements biologiques et de guérir certaines pathologies. Par exemple, une telle orientation permettrait d'éliminer des infections persistantes ou d'opérer une régulation des réponses allergiques.
De plus, il existe deux sous-populations de cellules T, CD4+, les Thl et les Th2 qui ont des capacités différentes à produire diverses ly phokines
(Mosmann, Cherwinski, Bond, Giedlin et Coffman, J.
Immunol., 136, 2348-2357 (1986)). L'induction de Thl ou de Th2 joue un rôle majeur dans la résistance aux infections bactériennes, parasitaires ou virales. Ainsi, dans le cas de la leishmaniose cutanée murine, les Thl protègent de l'infection alors que les Th2 aggravent la maladie. In vitro, les lymphocytes B stimulent de façon optimale la prolifération des clones Th2 alors qu'une forte prolifération des clones Thl est observée avec les cellules adhérentes
(Gajewski, Pinnas, ong et Fitch. J. Immunol., 146,
1750-1758 (1991)).
L'orientation de l'antigène vers la présentation par des cellules B ou des macrophages peut permettre d'induire des réponses Thl ou Th2.
Différentes techniques ont été développées jusqu'à présent pour induire une meilleure réponse immunitaire.
La plus ancienne des méthodes consiste à activer le système immunitaire à l'aide d'adjuvants.
Ainsi, l'adjuvant de Freund permet d'augmenter l'intensité des réponses humorale et cellulaire.
Cependant, de tels adjuvants présentent des inconvénients majeurs dus à leur manque de spécificité, à leur toxicité et aux réactions immunologiques parasites qu'ils risquent d'induire, en raison de leur manque de pureté.
Les iscomes (abréviation de l'expression immuno-stimulating complexes) sont composés d'un complexe antigénique et d'un adjuvant, le QuilA qui est extrait d'un arbre. Ces particules ont un diamètre d'environ 35 n et sont composées de sous-unités d'environ 12nm. Elles permettent d'induire une réponse immunologique mais le plus souvent les antigènes sont encapsulés et sont donc ensuite relargués dans le milieu extérieur. En outre, la technique ne permet pas un contrôle précis du type de cellules présentant ces particules, et de ce fait ces particules induisent une double réponse humorale et cellulaire. Enfin, du point de vue pratique, on notera des difficultés de préparation, un manque de stabilité et une toxicité importante de ces particules.
Les liposomes dont l'utilisation a aussi été testée pour l'induction d'une réponse immunitaire présentent les mêmes inconvénients que les iscomes.
Des microparticules biodégradables comme par exemple des polymères d'acide lactique et glutamique ont aussi été développées (Aguado et Lambert, Iπununo. Biol., 184, 113-125, (1992)). Ces microparticules libèrent au cours de leur dégradation, l'antigène sous forme soluble. Cette libération permet une présentation de l'antigène par diverses cellules et l'induction d'une réponse humorale sans possibilité d'orientation vers une réponse spécifiquement cellulaire.
Des particules constituées exclusivement de protéines recombinantes ont aussi été synthétisées. Ainsi, la demande de brevet français FR 2.635.532 décrit des particules composées d'une protéine hybride entre l'antigène HBs et une séquence immunogène supposée induire des anticorps neutralisants dirigés contre des virus HIV.
Des particules contenant la toxine de la poliomyélite ont aussi été fabriquées. Ces particules présentent des inconvénients notables. Ainsi, il est très difficile d'insérer des séquences longues dans ces particules. De plus, elles induisent tant une réponse humorale que cellulaire et il n'est donc pas possible d'obtenir spécifiquement l'une des deux.
Des particules de polyacroléine ou de polystyrène auxquelles sont couplés des anticorps ont déjà été utilisées pour la mise au point de techniques de séparation (Rembaum et al., Immunol. (1982) 52:341- 351).
Aucune utilisation pour la préparation de vaccins et l'immunisation in vivo n'est néanmoins mentionnée. Les billes utilisées ont des diamètres de 20 à 35 nm (polyacroléine) ou de 40 à 120 μm (polystyrène) .
Des particules de polyacroléine d'un diamètre de 2 μm ont aussi été utilisées pour étudier in vitro la stimulation des réponses T (Ziegler et al. Eur. J. Immunol. (1987), 17: 1287-1296). L'activité de ces billes n'est pas testée in vivo.
Dans l'ensemble de ces travaux, le critère de la taille des particules n'a jamais été considéré comme critique. Cependant, des particules de petites tailles (nanoparticules) comme les particules HBs pourraient être présentées par les lymphocytes B. Au contraire, des particules de taille trop importantes (supérieures à 5-10 microns) ne peuvent pas être présentées par des cellules phagocytaires.
Les diverses solutions proposées dans l'état de la technique d'une part pour permettre une induction d'une réponse immunologique importante et d'autre part pour diriger cette réponse spécifiquement dans une des deux voies de réponse, humorale ou cellulaire, ne sont donc pas satisfaisantes. L'invention propose de mettre au point des produits permettant d'obtenir une bonne réponse immunologique tout en ayant une orientation cellulaire ou humorale.
Selon l'invention, on a trouvé de manière surprenante qu'une telle réponse pouvait être induite à l'aide de microparticules, de faibles tailles et présentant des densités antigéniques variées.
La présente invention a particulièrement pour objet des microparticules en matériau synthétique polymère portant en surface une ou plusieurs protéines liées de manière covalente au matériau constituant les microparticules, la ou lesdites protéines portant chacune un ou plusieurs epitopes et étant présentes à une densité comprise entre 10 et 5.105 molécules/μm2 pour chacune des protéines.
L'invention concerne aussi les caractéristiques ci-après, considérées isolément ou selon toutes leurs combinaisons techniquement possibles:
Le couplage des protéines antigéniques ou microparticules doit être covalent pour éviter la libération sous forme soluble de l'antigène.
Les microparticules ont avantageusement un diamètre moyen compris environ entre 0,25 μm et 1,5 μm, et préférentiellement d'environ 1 μm afin de pouvoir être présentées aux lymphocytes T, CD4 par des cellules phagocytaires mais pas par des lymphocytes B.
Lesdites microparticules sont plus particulièrement caractérisées en ce que la liaison covalente est réalisée par réaction des fonctions NH2 et/ou CO des protéines et du matériau constituant la microparticule.
Avantageusement une telle liaison se fera par l'intermédiaire d'un agent pontant, tel que par exemple le glutaraldéhyde ou le carbodiimide. Néanmoins, tout autre agent bifonctionnel permettant une telle liaison peut être utilisé. De tels agents sont connus, voir par exemple Synthetic polypeptides as antigens, M. H. Von Regenmortel, J. P. Briand, S. Muller and S. Plane 1988 (Elsevier). Cette liaison peut également être faite sans agent pontant.
Le matériau constituant la microparticule peut être avantageusement un polymère biocompatible, tel qu'un polymère acrylique, par exemple la polyacroléine ou le polystyrène ou des poly(alpha-acides hydroxyques) , des copolymères d'acides lactiques et glycoliques, ou des polymères d'acides lactiques.
On entend par polymère tout homopolymère ou hétéro- ou copolymère. II doit permettre un couplage covalent des protéines au matériau et ne doit pas entraîner de réaction de rejet ou de toxicité de la part de l'organisme auquel il pourrait être injecté. Avantageusement, il s'agit, pour l'application en thérapeutique humaine, d'un polymère biodégradable, par exemple un polymère pouvant être dégradé par les cellules possédant des enzymes lysozomiaux, telles que les macrophages.
De tels matériaux biodégradables peuvent être des polymères d'acide lactique et glutamique de l'amidon ou des polymères utilisés pour des usages biomédicaux, et en particulier ceux utilisés dans les sutures.
Une telle microparticule peut porter à sa surface outre des protéines antigéniques, des molécules susceptibles d'activer le système immunitaire, telles que des interleukines, en particulier 1'interféron-gamma ou 1'interleukine 4.
Ces microparticules peuvent porter une ou plusieurs protéines qui peuvent elles-mêmes comprendre chacune un ou plusieurs epitopes. De telles protéines peuvent être des glycoprotéines, des peptides synthétiques contenant un épitope ou plusieurs epitopes, ou toute autre molécule non protéique ou contenant une partie protéique pouvant induire une réponse immunitaire.
Les microparticules objets de la présente invention peuvent en outre être encapsulées afin de protéger les antigènes fixés à leurs surfaces d'une dégradation et afin de les amener jusqu'à leur lieu d'action.
Elles peuvent ainsi comprendre un noyau constituté d'une matrice polysaccharidique, à laquelle sont liés les antigènes, d'une première couche lipidique liée de manière covalente au noyau et d'une seconde couche de molécules amphiphiles.
L'invention a pour autre objet des médicaments ou vaccins comprenant les microparticules décrites ci- dessus, ainsi que des compositions pharmaceutiques caractérisées en ce qu'elles les comprennent, en association avec des diluants ou des adjuvants pharmaceutiquement compatibles.
La présente invention est de manière générale relative à l'utilisation de microparticules en matériau synthétique polymère portant en surface une ou plusieurs protéines liées de manière covalente, la ou lesdites protéines portant chacune un ou plusieurs epitopes T ou B, pour la fabrication d'un médicament ou d'un vaccin pour l'induction d'une réponse immunitaire, selon laquelle les densités de la ou des protéines à la surface des microparticules sont ajustées afin d'orienter ladite réponse immunitaire vers une réponse majoritairement humorale ou majoritairement cellulaire. Sous un autre aspect, l'invention a aussi pour objet un procédé pour la fabrication d'un médicament ou d'un vaccin dont la réponse immunitaire est soit majoritairement humorale soit majoritairement cellulaire, de type Thl ou Th2, ledit procédé étant caractérisé en ce qu'on fixe de manière covalente sur des microparticules ou billes en matériau synthétique polymère au moins une protéine portant un ou plusieurs epitopes en faisant varier la densité de la protéine fixée à la surface selon le type de réponse désirée. Afin d'induire une réponse cellulaire et humorale, on utilisera préférentiellement des microparticules présentant une densité pour chacune des protéines portant un épitope d'au minimum 105 et préférentiellement d'environ 5.10 molécules/μm2. De telles densités correspondent environ pour une bille d'un diamètre de lμm à des quantités de protéines à la surface de la microparticule respectivement de 105 et 4.105 molécules.
En vue de l'induction d'une réponse majoritairement cellulaire, CD4+, classe II restreinte, on utilisera, préférentiellement, des microparticules présentant une densité pour chacune des protéines portant un épitope comprise entre environ 104 et 5.104 molécules de protéines/μm2. Afin de favoriser l'induction de cette réponse cellulaire , on utilisera préférentiellement des microparticules portant en surface des protéines ayant des poids moléculaires supérieurs à 50 kD.
Les autres caractéristiques de ces microparticules sont celles mentionnées plus haut concernant les microparticules à haute densité.
Les protéines et antigènes liés de manière covalente aux microparticules dépendent de l'application prévue desdites microparticules. Elles dépendent également du type de réponse immunitaire que l'on souhaite induire, mais aussi de la maladie ou de l'affection que l'on souhaite traiter ou dont on souhaite prémunir le sujet.
A titre d'exemple, on pourra utiliser les epitopes de la région Pre S2 de l'antigène HBS du virus de l'hépatite virale dont les séquences sont les suivantes:
- épitope T: Pre S:T (120-132) MQWNSTTFHQTLQ
- épitope B : Pre S :B ( 132-145 ) QDPRVRGLYFPAGG
On peut aussi citer à titre d'exemples les epitopes de la protéine VPl du virus de la poliomyélite dont les séquences sont les suivantes:
- épitope T: C3:T (103-115)
KLFAVWKITYKDT
- épitope B : C3 :B ( 93-103 )
DNPASTTNKDK
Un autre exemple de séquence est l'épitope de la boucle V3 de la protéine GP120 du virus HIV1 dont la séquence est la suivante:
- épitope T + B : boucle V3
Figure imgf000013_0001
On utilisera préférentiellement les epitopes B pour induire une réponse humorale à l'aide de microparticules à forte densité et les epitopes T pour induire une réponse majoritairement cellulaire à l'aide de microparticules à faible densité en protéines de surface.
De telles microparticules seront injectées aux patients que l'on veut traiter de manière thérapeutique ou prophylactique par les moyens connus de l'homme du métier, par exemple par injection sous- cutanée, intrapéritonéale, intraveineuse, ou par tout autre moyen permettant d'induire une réponse immunitaire.
On se reportera à ce sujet à Current protocols in immunology, (Edited by J.F. Coligen, A. . Kruisbeek, D.H. Margulies, E.M. Shevach, W. Strober Wiley-Intersciences Editors) dans lequel sont répertoriées les techniques d'immunisation.
Un des avantages particuliers de la présente invention réside dans le fait qu'elle permet d'induire des réponses immunitaires humorale ou cellulaire sans adjonction d'adjuvants aux billes ou microparticules. Néanmoins, l'adjonction d'adjuvants non toxiques et n'entraînant pas de réaction immunitaire parasite est aussi envisageable dans le cadre d'une utilisation selon la présente invention.
La présente invention est illustrée sans pour autant être limitée par les exemples qui suivent dans lesquels: Les diagrammes de la Figure 1 sont des résultats d'analyses par fluorométrie (FACS) de microparticules portant des antigènes KLH ou TNP-KLH. Les ordonnées indiquent l'anticorps utilisé (PBS- témoin, anti-KLH, anti-TNP) . Les abscisses indiquent les types de microparticules testées: B (KLH), B (TNP- KLH), B (OVA) et B (OVA-TNP) qui correspondent à des microparticules sur lesquelles sont liés respecti¬ vement le KLH, le TNP-KLH, l'ovalbumine et 1'ovalbumine-TNP. Les figures 2A à 2D représentent la capacité de cellules de rate, de macrophages et de cellules spécifiques B du TNP et activées par le LPS à présenter respectivement le KLH, le TNP-KLH, des microparticules portant du KLH et des microparticules portant le TNP-KLH.
La Figure 3 est une courbe indiquant les réponses prolifératives de cellules ganglionnaires de souris immunisées par le lysozyme soluble et stimulées in vitro par le lysozyme soluble (figure 3A) ou par des microparticules portant le lysozyme de diamètres 0,25, 0,75 et 1,5 μm (figure 3B) . La prolifération cellulaire est mesurée par l'incorporation de thymidine (CPM) en ordonnées, tandis que la dilution des microparticules est indiquée en abscisses. La Figure 4 représente la production d'IL2/IL4 par un hybridome spécifique du lysozyme après stimulation par du lysozyme soluble (figure 4A) ou par des microparticules portant du lysozyme (figure 4B) . Les concentrations des microparticules sont indiquées en abscisses, tandis que la prolifération est indiquée en ordonnées.
Les Figures 5A et 5B représentent l'activation de l'hybridome T spécifique du lysozyme mesurée par la production d'IL2/IL4 après stimulation par le lysozyme soluble (figure 5A) ou couplé aux microparticules (figure 5B) en présence de splénocytes ou de cellules B(A20) comme cellules présentant l'antigène.
Les Figures 6A et 6B représentent la prolifération in vitro après stimulation par le lysozyme soluble de cellules de ganglions inguinaux de souris immunisées respectivement par du lysozyme soluble en adjuvant complet de Freund (Figure 6A) et par du lysozyme couplé à des microparticules (Figure 6B) . Les figures 7A et 7B représentent la prolifération in vitro après stimulation par le lysozyme de cellules de ganglions inguinaux de souris immunisées par diverses concentrations de lysozyme soluble (7A) ou couplé à des microparticules (7B) . La figure 8 représente la prolifération de cellules ganglionnaires de souris immunisées par le lysozyme en adjuvant complet de Freund ou en PBS ou en présence de microparticules couplées à de 1'hémocyanine de patelle, ou KLH (Keyhole Limpet Hemocyanin) .
La Figure 9 représente la réponse proliférative de cellules ganglionnaires de souris immunisées par de l'hémoglobine soluble en adjuvant (Hb + CFA) ou couplée à des billes (B-Hb) . La Figure 10 représente la réponse proliférative de cellules de souris stimulées par de 1'ovalbu ine soluble (OVA + CFA) ou de l'ovalbumine couplée à des billes (B-OVA) .
La réponse proliférative, respectivement à l'hémoglobine et à l'ovalbumine , a été mesurée en ordonnées par la radioactivité incorporée (CPM) , en fonction de la quantité d'hémoglobine ou d'ovalbumine
(en abscisses) utilisée pour restimuler les cellules.
La Figure 11 illustre la prolifération de cellules de souris immunisées par le peptide C3 sous forme soluble (C3:T + CFA) ou sous forme micropar- ticulaire (B-C3: T) . Les cellules ont été restimulées en présence de quantité de C3 soluble (en abscisses) et la prolifération a été mesurée (en ordonnées) . La Figure 12 représente la prolifération des cellules de souris immunisées par le peptide pré-S:TB soluble (Pré-S:TB + alu ) ou sous forme microparticu- laire (B-pré-S:TB) ou le peptide pré-S:B sous forme particulaire (B-Pré S:B) et restimulées par le peptide Pré-S. Les Figures 13A et 13B représentent respectivement les taux d'anticorps anti-lysozyme (Figure 13A) et d'anticorps anti-KLH (Figure 13B) de souris immunisées avec du lysozyme et de l'adjuvant alun, des microparticules portant du lysozyme ou des microparticules portant du LH.
Les Figures 14 et 15 illustrent la réponse anticorps de souris immunisées par l'hémoglobine (Figure 14) ou l'ovalbumine (Figure 15) sous forme soluble ou particulaire . Le Log du titre en anticorps est représenté en ordonnées tandis que le temps est représenté en abscisses.
La Figure 16 est relative à la réponse anticorps de souris immunisées par le peptide pré-S : TB soluble ou les peptides pré-S: TB ou pré-S: B sous forme particulaire. L'ordonnée et l'abscisse de cette courbe ont la même signification que pour les Figures 14 et 15.
La Figure 17A représente la prolifération de cellules de souris immunisées par injection de lysozyme en présence d'adjuvant de Freund, après stimulation in vitro par des microparticules portant du lysozyme à différentes densités.
La Figure 17B représente la prolifération in vitro de cellules de souris immunisées in vivo par du lysozyme ou des billes portant du lysozyme après stimulation par différentes concentrations de lysozyme.
La Figure 18 est un diagramme illustrant la production d'anticorps anti-lysozyme de cellules de souris immunisés par injection de lysozyme et d'adjuvant de Freund ou de microparticules portant du lysozyme. EXEMPLE 1; Préparation de billes couplées à KLH ou à 1 'ovalbumine.
1. Matériel et méthodes et présentation par des cellules B ou par des macrophages.
Les souris sont des femelles BALB/c et DBA/2 âgées de 6 à 8 semaines.
Les antigènes sont le KLH et l'ovalbumine (OVA) commercialisés par Sigma Chemical (St-Louis, USA).
L'hémocyanine trinitrophénylée (TNP4-KLH) a été préparée telle que décrit précédemment (Shutze et al., J. Immunol. (1989) 142:2635).
1.1 Couplage covalent des antigènes ou microparticules de poly(acroléine) .
Des microparticules de poly(acroléine) d'un diamètre compris entre 0,25 et 1,5 μm, commercialisées par Polysciences Inc. (Washington PA) , sont couplées à 1'ovalbumine ou au KLH comme décrit précédemment (Rembaum et al. Immunol. (1982) 52:341; Ziegler et al. Eur. J. Immunol. (1987) 17:1287).
1 ml de ces microparticules est lavé deux fois dans du PBS et resuspendu dans 1 ml de KLH ou d'ovalbumine (5 mg/ml dans du PBS). Après trois heures d'incubation à température ambiante, les microparticules sont lavés deux fois dans du PBS et resuspendus dans 2 ml de PBS contenant 1% de sérum albumine bovine (BSA) et des antibiotiques. Les microparticules ainsi obtenues sont stockées à 4"C jusqu'à utilisation.
Les microparticules portant les antigènes TNP- OVA ou TNP-KLH sont préparées par incubation de microparticules portant l'OVA ou le KLH avec du TNBS (Trinitrobenzène sulfonate) .
2 ml des microparticules qui ont été couplées au KLH ou à l'ovalbumine sont lavés deux fois dans du PBS et resuspendus dans 2 ml de tampon cacodylate contenant 10 mg/ml de TNBS. Les microparticules sont incubées 30 minutes dans l'obscurité à la température ambiante et lavées trois fois dans du PBS. Elles sont resuspendues dans 2 ml de PBS contenant 1% de BSA et des antibiotiques et stockées à 4*C. 1.2 Analyse par cytofluorométrie de flux.
50 μl de microparticules sont lavés deux fois dans du PBS contenant 1% de BSA et incubés durant 40 minutes à 4*C avec du sérum de souris anti-KLH ou anti-TNP. Après deux lavages, les microparticules sont incubées avec des anticorps de chèvre couplés au FITC (fluoroisothiocyanate) dirigés contre des immunoglobulines de souris (Biosys, Compiègne, France) durant 40 minutes à 4*C.
Après quatre lavages, les microparticules sont resuspendues dans 1 ml de PBS contenant 1% de BSA.
L'intensité de fluorescence est mesurée en utilisant le cytometre de flux FACSCAN (Becton Dickinson, Mountain View.CA) . 1.3 Milieu de culture. Les lymphocytes sont cultivés dans du RPMI 1640
(Seromed, Munich, FRG) complémentés avec de la L- glutamine 2mM, 10% de FCS (sérum de veau foetal) inactivé par la chaleur, du 2-ME 50μM et des antibiotiques. 1.4 Etablissement de la lignée cellulaire Th spécifigue du KLH.
Cette lignée cellulaire est établie et maintenue selon le protocole décrit par Taylor et al. (éd. IRL Press. New York) et Galelli et al. (J. Immunol. (1990) 145:2397).
Des cellules de ganglions inguinaux (4 106/ml) de souris DBA/2 ayant subi 8 jours avant le prélèvement des cellules, une injection de 100 μg de KLH en emulsion dans de l'adjuvant complet de Freund à la base de la queue ont été cultivées durant 4 jours dans du milieu de culture en présence de KLH (100 μg/ml) .
Les cultures sont incubées dans une atmosphère humide à 7,5% de C02 à 37*C. Une lignée cellulaire a été établie à partir de cette culture initiale par des passages en série de cellules T purifiées sur Ficoll (2.105/ml) en présence de cellules de rate de souris DBA/2 irradiées (3000 rad) durant 6 à 8 jours (période de repos) ou avec des cellules de rate irradiées plus du KLH (100 μg/ml) durant 4 jours (période de stimulation) .
Les cellules T utilisées dans les expériences sont récoltées 8 à 10 jours après leur dernière mise en présence du KLH. 1.5 Estimation de la prolifération des cellules Th.
Des cultures en triplicats contenant 5.104 cellules Th purifiées sur Ficoll, et 5.104 cellules B mémoire spécifiques du TNP purifiées et irradiées (900 rad), ou 5.10 cellules de rate totales irradiées (3000 rad), ou 10. cellules de rate adhérentes irradiées (3000 rad), ou 10 cellules B de lymphome A20 positives pour le MHC de classe II irradiées (3300 rad) (Kim et al. J. Immunol. (1979) 122:549), ou 105 cellules B vierges spécifiques du TNP et activées par le LPS comme source de cellules présentant les antigènes, et différentes concentrations d'antigène ont été incubées dans des plaques de microculture à fond plat (Corning, Cambridge, MA) sous un volume total de 0,2 ml/puits de milieu complet. La prolifération cellulaire T a été estimée par incorporation de la thymidine tritiée durant les huit dernières heures d'une culture de 3 jours.
Les résultats sont exprimés comme la moyenne géométrique de trois cultures, une fois éliminé le bruit de fond. L'écart type est inférieur à 15 % de la moyenne .
1.6 Cellules B spécifigues du TNP.
Les cellules B spécifiques du TNP de souris normales sont purifiées par liaison et élution sur une gélatine-TNP8 et selon la technique décrite par Haas et Layton J. E., J. Exp. Med. (1975) 141:1004.
Ce protocole a été modifié afin d'obtenir des populations enrichies en cellules B mémoires spécifiques du TNP à partir de la rate de souris précocement immunisées, comme précédemment décrit (Galelli et al. J. Immunol. (1990) 145:2397). Les cellules B mémoire spécifiques du TNP ont été sélectionnées sur de la gélatine portant un haptène (gélatine-TNP2) , en testant l'affinité des récepteurs pour le TNP par comparaison aux cellules B vierges, et la capacité à sécréter de larges quantités d*immunoglobulines G anti-TNP en présence de faibles concentrations d'antigènes.
10° cellules de rate ne contenant ni érythrocytes ni cellules mortes ont été suspendues dans 3 ml de HEPES (50 mM) tamponnées par du DMEM (Seromed, Munich, Allemagne) et incubées dans des boîtes de Pétri en plastique recouvertes de gélatine- TNP2. Les boîtes sont agitées de manière douce durant 15 minutes à 4*C, puis lavées 10 fois par du DMEM à la température de la glace. Les cellules adhérentes sont éluées en ajoutant 5 ml de DMEM réchauffé à 37'C et la gélatine-TNP liée est éliminée par digestion par la collagénase (Collagenase CLSIII de Worthington Biochemicals Freehold, New Jersey, 100 U/ml) durant 15 minutes à 37"C.
Ce protocole conduit à l'obtention finale, exprimée comme un pourcentage par rapport au nombre de cellules de rate d'origine, de 0,3 à 0,6 % de cellules liant le TNP à partir de rate de souris immunisées. Les cellules sont cultivées toute la nuit avant l'addition d'autres cellules et réactifs afin de permettre la réexpression d'immunoglobulines de surface modifiées par le traitement par la collagénase. La présence de récepteurs libres du TNP sur ces cellules est évaluée par leur capacité à lier des érythrocytes portant à leur surface du TNP.
55 à 76 % des cellules obtenues à partir de souris immunisées forment des rosettes avec des SRBC modifiées par le TNP. Ces cellules ne prolifèrent pas en réponse à la concanavaline A mais sont enrichies 20 fois, pour les cellules qui sécrètent les immunoglobulines G anti-TNP après stimulation par TNP- LH, par comparaison aux cellules de rate non fractionnées.
1.7 Cellules B vierges spécifigues du TNP et activées par le LPS
Des cellules B vierges spécifiques du TNP de souris et non immunisées ont été purifiées par liaison puis élution sur de la gélatine-TNP8 comme décrit précédemment. Ces cellules ont été cultivées à une densité de 2.106 par ml dans un milieu contenant 50 μg/ml de LPS (Salmonella enteriditis, Difco Laboratories, Détroit, MI) durant 3 jours. Les lymphoblastes non adhérents ont été purifiés en utilisant du Ficoll-Hypaque (Pharmacia, Piscataway, NJ) , puis lavés et utilisés comme cellules accessoires.
1.8 Macrophages. Les macrophages ont été obtenus à partir de cellules de rate non immunisées par adhésion durant 4 heures à 37*C suivie d'un lavage des cellules afin d'éliminer les cellules non adhérentes tel que décrit précédemment (Kakiochi et al. J. Immunol. (1983) 131:109). 2. Résultats.
2.1 Vérification du couplage de l'antigène aux microparticules.
Le KLH a été couplé de manière covalente à des microparticules de polyacroléine d'un diamètre de 0,25 à 1,5 μm. Le couplage du KLH aux microparticules a été contrôlé par analyse en cytofluorométrie de flux en utilisant un sérum de souris anti-KLH.
Les résultats obtenus avec des microparticules de 1,5 μm sont indiqués sur la Figure 1.
Les microparticules de 1,5 μm ont été couplées à l'ovalbumine (B OVA) ou à la KLH (B-KLH) . Les microparticules TNP-OVA ou TNP-KLH (respectivement désignées B(TNP-OVA) et B (TNP-KLH)) ont été préparées par incubation de microparticules portant l'OVA ou le KLH avec du TNBS. L'analyse par cytofluorométrie a été effectuée sur des microparticules incubées en présence de PBS ou en présence de sérum de souris anti-KLH ou anti-TNP. Après lavage, les microparticules ont été incubées avec des anticorps de chèvre liés au FITC dirigés à 1*encontre des immunoglobulines de souris et ont été analysées par cytométrie de flux.
Des résultats similaires ont été obtenus avec des microparticules de 0,25 et 0,75 μm. Les microparticules témoins couplées avec de l'ovalbumine n'ont pas été reconnues par le sérum anti-KLH.
2.2. Comparaison de la capacité de diverses populations de splénocytes à présenter des antigènes solubles ou particulaires.
La capacité de splénocytes non fractionnés, de macrophages et de cellules B vierges spécifiques pour le TNP a été comparée quant à leur présentation de KLH et de TNP-KLH soluble ou particulaire à des cellules T spécifiques du KLH. Dans ces expériences, des populations de splénocytes ont été préparées à partir de souris non immunisées. Après purification, les cellules B spécifiques du TNP ont été activées durant trois jours par du LPS; on sait en effet que les lymphoblastes induits par le LPS sont des cellules très efficaces quant à la présentation d'un antigène (Kakiochi et al. JP immunol. (1983) 131:109).
Les résultats sont illustrés sur la Figure 2 c c pour laquelle 5.10 splénocytes irradiés, 103 cellules adhérentes ou 105 cellules B vierges, spécifiques du
TNP activées par le LPS ont été cultivées avec 5.104 cellules Th spécifiques du KLH en présence de quantités variées de KLH soluble (A) , de TNP-KLH soluble (B) ou fixés sur des microparticules (B KLH)
(C) ou de B (TNP-KLH) (D)). La prolifération cellulaire Th a été estimée au jour 3.
Comme le montre la Figure 2 (2A et 2B) , les macrophages et les cellules B activées par le LPS stimulent de manière efficace les cellules T quand ils sont incubées avec du KLH ou du TNP-LH solubles.
Contrairement à ces résultats, seuls les macrophages, et non les cellules B spécifiques du TNP et activées par le LPS sont capables de stimuler les cellules T spécifiques du KLH (Figures 2 C et D) quand des microparticules portant du KLH ou du TNP-KLH sont utilisées.
Ces résultats montrent que les macrophages sont responsables de l'activité de présentation de l'antigène des cellules spléniques quand des antigènes particulaires sont utilisés.
Ainsi l'incapacité de cellules B spécifiques du
TNP à présenter l'antigène particulaire a été illustrée. EXEMPLE 2 .
Induction d'une réponse proliférative T, CD4+ spécifigues du lysozyme in vivo et in vitro par des microparticules couplées au lysozyme. 1. MATERIELS ET METHODES.
1.1 Antigènes
Le lysozyme (LYSO) et 1'hémocyanine de Limulus (LH) proviennent des Laboratoires Sigma.
1*2 Couplage de l'antigène aux microparti- cules
L'antigène soluble est rendu particulaire par couplage à des microparticules (Polysciences) de 0.2 à lμm de diamètre. Deux méthodes de couplage sont utilisées: 1.2 a) Couplage covalent directement sans agent activant.
Les billes ou microparticules de polyacroléine portent des groupements aldéhyde capables de réagir spontanément avec les fonctions aminés des protéines. 1 ml de billes est lavé 4 fois dans du PBS, et repris dans 1 ml d'antigène à 5 mg/ml. Après 3 heures d'incubation à température ambiante, les billes sont lavées 3 fois dans du PBS et incubées 30 minutes dans 1 ml de PBS-Albumine humaine 1% afin de saturer les groupements réactifs libres des billes. Puis après lavage, les particules sont reprises dans 2 ml de PBS- albumine humaine 1%-antibiotique 1% puis conservées à +4*C. b) Couplage covalent par le glutaraldehyde. L'antigène est couplé aux billes de polystyrène par le glutaraldehyde, capable de former une base de Schiff avec les groupements aminés des protéines.
0,5 ml de billes est lavé 3 fois dans du PBS et repris dans 0,5 ml de glutaraldehyde 8%. Après 6 heures d'incubation à température ambiante, les billes sont lavées 2 fois et reprises dans 1 ml d'antigène à 400μg/ml. Après incubation pendant la nuit à température ambiante, les billes sont lavées et incubées avec 1 ml d'éthanolamine 0,2 M pendant 30 minutes afin de bloquer les fonctions aldéhyde libres du glutaraldehyde.
Après un dernier lavage, les particules sont reprises dans 1 ml de PBS- albumine humaine 1%- antibiotique 1% puis conservées à +4*C. Cette méthode de couplage permet de déterminer la quantité de protéines couplées sur les microparticules par spectrophotométrie. Les absorbances de la solution de protéine à 400 μg/ml et du surnageant obtenu après l'incubation des billes avec cette solution de protéine sont mesurées à 280 nm. Connaissant le nombre de billes utilisées pour le couplage, on considère que la différence entre la quantité de protéine avant couplage et la quantité résiduelle après couplage, permet d'estimer la quantité de lysozyme couplée par particule. 1.3 Protocole d'immunisation.
On a utilisé des femelles BALB/c, d'haplotype H-2 , âgées de 6 à 8 semaines (élevage de l'Institut Pasteur) . - immunisation par voie intra-péritonéale: on injecte 100 μg de lysozyme avec 1 mg d'alum, ou, différentes quantités d'antigène couplé aux billes sans adjuvant,
- immunisation par voie sous-cutanée: à la base de la queue, on injecte 100 μg de lysozyme en emulsion dans l'adjuvant complet de Freund, ou, différentes quantités d'antigène couplé aux billes.
Le sérum de chaque souris est prélevé 7 ou 14 jours après chaque injection. La teneur en anticorps des sérums est mesurée par test ELISA. La réponse proliférative cellulaire est mesurée sur les ganglions inguinaux et/ou sur la rate, prélevés 7 et/ou 14 jours après chaque injection. 1.4 Détection des anticorps par ELISA. L'antigène (lysozyme) est incubé à la concentration de 5μg/ml en tampon carbonate 50 M- pH=9.6, dans des microplaques (Nunc) pendant une nuit à 4'C. Après lavage avec un tampon PBS-Tween 20 à 0,01%, les différentes dilutions des sérums à tester, réalisées en tampon BSA 1%, sont incubées pendant 1 heure à 37"C. Après lavage, on dépose 100 μl par puits d'un conjugué anti-Ig de souris (anti-Ig totales fournis par Diagnostics Pasteur et anti-Ig spécifiques par Sigma) , marqué à la peroxydase, préparé chez la chèvre; qui est incubé pendant 1 heure à 37*C. Après lavage, on ajoute la solution de substrat préparée extemporanément: Orthophénylènediamine à 0,5 mg/ml (Sigma) en tampon acide citrique 0.1 M-phosphate disodique 0.2M-pH=5 auquel on ajoute H202 au 1/2500. Une coloration jaune révèle la présence d'anticorps spécifiques; la réaction enzymatique est arrêtée 8 minutes plus tard, par 50 μl de H2S04 (11,5%).
L'absorbance de chaque puits est mesurée à 492 nm, par un lecteur de densité optique (Dynatech) . Le contrôle négatif est réalisé avec du sérum au 1:100 de souris BALB/c non immunisées. Les résultats sont exprimés: soit en DOxlOOO à partir de l'absorbance mesurée, corrigée de l'absorbance en absence de sérum; soit par le titre en anticorps calculé à partir de régression linéaire basée sur l'absorbance obtenue avec le sérum de souris BALB/c non immunisées.
Lorsque l'antigène est sous forme particulaire, le test ELISA est réalisé en tubes. Les dilutions des sérums à tester sont incubées directement avec l'antigène couplé aux billes (8.108 particules/ml). Les lavages se font par centrifugation dans le tampon PBS-Tween 20 (0.01%). Lorsque la réaction enzymatique est terminée, 200 μl de chaque tube sont transférés en microplaque puis l'absorbance est mesurée.
1.5 Inhibition de la fixation des anticorps anti-lysozyme par test ELISA.
Le test ELISA mesure la fixation des anticorps spécifiques présents dans le sérum de souris BALB/c immunisées par le lysozyme. Cette fixation est diminuée si le sérum est préincubé (avant le test ELISA) avec l'antigène: lysozyme soluble ou couplé aux billes, qui se comporte alors, comme un inhibiteur.
Le sérum anti-lysozyme est préincubé avec le lysozyme soluble ou couplé aux billes, pendant 1 heure à 37"C puis la nuit à 4*C; la réaction se faisant en tubes. La fixation des anticorps non-liés à l'inhibiteur est évaluée par test ELISA (triplicats) en microplaques, dont les puits ont été recouverts par du lysozyme à 5 μg/ml. L'absorbance de chaque puits est mesurée à 492 nm, et corrigée de l'absorbance en absence de sérum. Le contrôle négatif est réalisé avec du sérum au 1:100 de souris BALB/c non immunisées.
L'absorbance sans inhibiteur lors de la préincubation de sérum, correspond à la fixation maximale d'anticorps anti-lysozyme.
Les résultats sont exprimés en pourcentage d'inhibition de fixation des anticorps et calculé selon le rapport DO sans inhibiteur-DO avec inhibiteur
DO sans inhibiteur
La détermination graphique de la concentration de lysozyme soluble ainsi que du nombre de billes couplées au lysozyme, nécessaire pour 50% d'inhibition, permet d'estimer la quantité de lysozyme fixée par particule.
1.6 Stimulation d'un hvbridome T spécifigue du lysozyme
Un hybridome T a été produit par immunisation de souris BALB/c avec du lysozyme. Il reconnaît spécifiquement le peptide 108-116 du lysozyme, en association avec les molécules du Complexe Majeur d'Histocompatibilité de classe II I-E .
105 cellules d'hybridome T sont stimulées par des concentrations croissantes d'antigène: lysozyme ou billes couplées, en présence de différentes cellules présentatrices de l'antigène: 5.105 splénocytes irradiés (3000 rad) de souris BALB/c ou 105 cellules de lymphome B A20, restreintes par les molécules de CMH de classe II. Les cellules sont mises en culture (triplicats) dans un milieu complet RPMI 1640 (SEROMED) additionné de 10% de sérum de veau foetal décomplémenté, 50 μM de /3-mercaptoéthanol, 2mM de glutamine, 100 Ul/ml de pénicilline et lOOμg/Ml de streptomycine, en microplaque à fond plat (Corning 25860). Le témoin positif est réalisé par stimulation de l'hybridome par le mitogène de lymphocytes T: concanavaline A à 5 μg/ml.
Le surnageant est prélevé après 24h de culture à 37'C (7.5%C02), puis congelé à - 20'C pendant 16h minimum. La stimulation de l'hybridome est mesurée par la teneur en IL2 du surnageant dans un test de prolifération de cellules CTL-L. Les écarts types ne sont pas mentionnés, car l'erreur est inférieure à 10% de la moyenne des triplicats.
1.7 Dosage de 1'IL2 et de l'IL4
La lignée CTL-L est dépendante de 1'Interleukine 2 et de 1'Interleukine 4; elle est maintenue en culture en milieu complet enrichi de 20% de surnageant de splénocytes de rat, incubés 36h avec 2,5 μg/ml de concanavaline A.
Après décongélation, les surnageants de cultures (testés au 1/2) sont incubés en présence de
2,25.104 cellules CTL-L, préalablement lavées trois fois dans le milieu RPMI1640, pendant 3 jours à 37*C
(7,5% C02) .
La prolifération cellulaire est mesurée par addition de thymidine tritiée d'activité spécifique 1 Ci/mmole, à raison de 2 μCi/ml de culture, pendant les 16 dernières heures de culture.
L'ADN des cellules est récupéré après lyse des cellules et filtration à l'aide d'un "Skatron". L'incorporation de radioactivité est comptée par scintillation à l'aide d'un compteur-bêta.
Les résultats sont exprimés en cpm à partir de la moyenne des triplicats, corrigée de la radioactivité incorporée en l'absence d'antigène. 1.8 Test de prolifération
La rate et/ou les ganglions inguinaux sont prélevés stérilement 7 ou 14 jours après l'immunisation des souris (voir protocole d'immunisation). 8.105 cellules sont incubés en présence de différentes concentrations d'antigène, soluble ou couplé aux billes. Les cellules sont mises en culture (triplicats) dans du milieu RPMI 1640 (SEROMED) additionné de 1.5% de sérum de veau foetal décomplemente, 0,5% de sérum normal de souris, 50 μM de 32-mercaptoéthanol, 2mM de glutamine, 100 Ul/ml de pénicilline et 100 μg/ml de streptomycine; en microplaques (Corning 25860) pendant 4 jours à 37'C (7,5% C02) .
La prolifération des cellules est mesurée par incorporation de thymidine tritiée, d'activité spécifique 25 Ci/mmole, à raison de 2 μCi/ml de culture, pendant les 16 dernières heures. L'ADN des cellules est récupéré après lyse des cellules et filtration à l'aide d'un Skatron, l'incorporation de radioactivité est comptée par scintillation à l'aide d'un compteur-bêta.
Les résultats sont exprimés en cpm à partir de la moyenne des triplicats, corrigée de l'incorporation en absence d'antigène. 2 - RESULTATS.
2.1. Stimulation par le lysozyme couplé aux microparticules de cellules ganglionnaires de souris immunisées par le lysozyme.
Dans les essais illustrés aux Figures 3A et 3B, des souris BALB/c ont été immunisées par injection sous-cutanée à la base de la queue avec du lysozyme soluble complémenté avec de l'adjuvant de Freund (CFA) .
Après 14 jours, les ganglions inguinaux ont été prélevés, et la réponse proliférative de ces cellules a été testée in vitro contre différentes concentrations de lysozyme ou contre différentes concentrations de microparticules couplées au lysozyme. Les résultats sont exprimés en cpm corrigés de la valeur obtenue sans antigène.
Le lysozyme soluble induit une prolifération importante des cellules de souris immunisées par cet antigène en adjuvant de Freund (3A). La stimulation in vitro de ces mêmes cellules par les microparticules- lysozyme révèle que celles-ci sont capables d'induire une très forte prolifération cellulaire (figure 3B) . Les microparticules de plus grand diamètre, 0,81 et 0,96 μm (couplage spontané), sont très efficaces.
2.2. Stimulation par le lysozyme couplé aux billes de l'hybridome T. Les figures 4A et 4B correspondent aux résultats de stimulation de l'hybridome T, spécifique du lysozyme par le lysozyme soluble (4A) ou couplé aux microparticules (4B) . Le degré de stimulation de l'hybridome a été mesuré par le taux d'IL-2/IL-4 produites.
En présence de splénocytes irradiés, l'hybridome T est stimulé fortement par le lysozyme soluble (figure 4A) . En présence de ces cellules, les microparticules-lysozyme de grande taille (0,81 et 0,96 μm) entraînent également une production d'IL- 2/IL-4 importante (figure 4B) , contrairement aux microparticules de 0,5 et 0,25 μm qui ne sont pas capables de stimuler l'hybridome T spécifique. 2.3. Incapacité des cellules A20 de lymphome B à présenter le lysozyme couplé aux billes à l'hybridome T. spécifioue du lysozyme.
On sait que des tumeurs cellulaires B portant des récepteurs la peuvent être utilisés comme cellules présentant des antigènes pour des antigènes qui n'ont pas de réactivité avec le récepteur Ig mais qui sont fixés par les tumeurs de cellules B par des mécanismes non spécifiques (Walker et al. J. Immunol. (1982) 128:2164; Glimcher et al. J. Exp. Med. (1982) 155:445; Mac Kean et al. J. Exp. Med. (1981) 154:1419; Mac Kean et al. J. Exp. Med. (1981) 154:1419).
On a donc testé la capacité d'une de ces tumeurs cellulaires B, la lignée A20, à présenter le lysozyme sous forme soluble ou particulaire. La présentation du lysozyme soluble ou particulaire a été comparée en utilisant deux sources de CPA: soit une source hétérogène, les splénocytes totaux irradiés, soit des cellules B provenant du lymphome A20. Lorsque l'antigène est sous forme soluble (figure 5A) , il peut stimuler l'hybridome T aussi bien en présence de splénocytes que des cellules B A20. Au contraire, le lysozyme particulaire est présenté uniquement par les splénocytes et non par les cellules B A20 (figure 5 B) . Ces résultats confirment que les splénocytes peuvent présenter aux cellules T un antigène, qu'il soit soluble ou sous forme particulaire. Par contre, les lymphocytes B sont incapables de présenter un antigène rendu particulaire par couplage à des billes d'une taille de l'ordre du micron.
2.4 Induction de réponses T prolifératives par injection à des souris de lysozyme couplé aux microparticules.
L'i munogénicité in vivo de l'antigène couplé aux microparticules a été analysée en immunisant des souris BALB/c avec du lysozyme en adjuvant complet de Freund ou avec cet antigène couplé à des billes de polyacroléine. Après 14 jours, les cellules des ganglions drainants de ces animaux ont été stimulées in vitro par différentes concentrations de lysozyme soluble.
En présence de lysozyme soluble, les cellules ganglionnaires prdlifèrent fortement, qu'elles proviennent de souris immunisées avec le lysozyme soluble ou avec des microparticules-lysozyme (figure 6A) . Ceci démontre que dans les deux cas, des cellules T spécifiques du lysozyme ont été sensibilisées in vivo. Après injection à des souris de microparticules- LH représentant le contrôle de spécificité, les cellules ganglionnaires de ces animaux sont incapables de proliférer en réponse à une stimulation par le lysozyme soluble in vitro (figure 6B) . La réponse cellulaire in vitro est donc spécifique de l'antigène protéique couplé aux microparticules, utilisé lors de l'immunisation des souris. La réponse proliférative des cellules sensibilisées par 10 microparticules-lysozyme (correspondant à 1 μg de lysozyme) en absence d'adjuvant, est aussi élevée que celle des cellules d'animaux immunisés par 100 μg de lysozyme soluble en adjuvant de Freund (CFA) (figure 6A) . Pour vérifier et préciser ce résultat, les réponses prolifératives des cellules ganglionnaires d'animaux ayant reçu différentes doses de lysozyme en CFA ou différentes concentrations de microparticules couplées ont été comparées, après stimulation in vitro par le lysozyme soluble.
Dans le cas des Figures 7A et 7B, des souris ont été immunisées par injection sous-cutanée à la base de la queue avec du lysozyme soluble et de l'adjuvant complet de Freund (CFA) (Figure 7A) ou des billes couplées à l'antigène sans aucun adjuvant (Figure 7B) .
Après 14 jours, les ganglions inguinaux ont été prélevés, et la réponse proliférative de ces cellules a été testées in vitro contre différentes concentrations de lysozyme. Les résultats sont exprimés en cpm corrigés de la valeur obtenue sans antigène. Sur la Figure 7B, il est à noter que les dénominations 109, 108, 107 et 106 B-LYSO correspondant respectivement à des poids de 1; 0,1; 0,01 et 0,001 μg en lysozyme.
Ces résultats démontrent que les cellules ganglionnaires des animaux immunisés avec des microparticules portant du lysozyme prolifèrent in vitro après mise en contact avec le lysozyme, indiquant ainsi une sensibilisation des cellules T spécifiques de cet antigène. La comparaison des effets doses (Figure 7) indique que 1 μg de lysozyme couplé aux billes donne une réponse quasi-équivalente à celle de 1 μg d'antigène injecté en CFA.
La figure 8 représente la réponse proliférative des cellules de souris immunisées par le lysozyme en adjuvant complet de Freund (CFA) ou en PBS avec des microparticules couplées au LH. L'addition de billes LH au lysozyme ne permet pas d'induire des réponses prolifératives élevées ce qui indique que le lysozyme doit être couplé de façon covalente aux microparticules pour induire des réponses T prolifératives.
2.5 - Induction de réponses T-prolifératives par injection d'hémoglobine ou dOvalbumine couplée à des microparticules à des souris
Des souris ont été immunisées par l'hémoglobine ou l'ovalbumine en adjuvant complet de Freund, ou avec ces protéines couplées par liaison covalente au même type de particules que dans les exemples précédents (polystyrène, diamètre de 1 μm) .
Les cellules des ganglions de ces animaux ont été restimulées in vitro par les protéines solubles et la prolifération cellulaire a été mesurée.
Les résultats obtenus pour l'hémoglobine (Hb) sont représentés sur la Figure 9, tandis que la Figure 10 illustre les résultats obtenus avec l'ovalbumine (OVA) .
L'ensemble de ces résultats montre que ces protéines couplées à des microparticules sont capables de sensibiliser in vivo des lymphocytes T, CD4+ spécifiques de ces protéines, en l'absence d'adjuvant.
2.6 - Induction de réponses T-prolifératives par injection de peptides synthétigues
2.6.1 - Epitope T de la région C3 de la protéine VPl L'épitope T de la région C3 (C3: T, 103-115) de la protéine du polyovirus a été synthétisé et couplé de façon covalente à des billes de 1 μm. Ces billes ont été injectées à des souris BALB/C. Les résultats de la Figure 11 établissent de manière claire que l'épitope T couplé aux billes (B- C3:T) induit une forte réponse T-proliférative pour des quantités de l'ordre de 109 billes injectées par souris. 2.6.2 - Peptide pré-S:T de l'antigène HBS
Le peptide pré-S:T (120-132) de l'antigène HBS a été synthétisé et couplé de manière covalente par le glutaraldehyde à des billes ayant un diamètre de 1 μm. g
La Figure 12 montre que l'injection de 10^ billes à des souris DBA/1 induit une forte réponse T- proliférative supérieure à celle obtenue avec le peptide en CFA. L'injection de billes ne contenant que l'épitope B n'induit pas de réponse proliférative, ce qui démontre la spécificité de la réponse. EXEMPLE 3.
Induction de réponse anticorps par des microparticules portant un antigène.
Les matériels et méthodes sont similaires à ceux de l'Exemple 2. 1. Lysozyme et hémocyanine de Limulus
Pour les Figures 13A et 13B, des souris BALB/c ont été immunisées par injection intra-péritonéale avec 100 μg de lysozyme soluble en adjuvant (alum) ou avec les billes couplées à l'antigène: lysozyme ou Hémocyanine de Limulus (LH), sans aucun adjuvant.
Les injections ont été faites à JO, J21, J42, les sérums ont été prélevés à J20, J31, J40 et J52 ; et testés en ELISA pour leur teneur en anticorps. Les résultats sont exprimés en loglO du titre en anticorps anti-lysozyme (Figure 13A) et anti-KLH (Figure 13B) . Trois injections d'antigène ont été faites i.p. aux jours 0, 21 et 42. Les microparticules-lysozyme donnent de très bonnes réponses anticorps alors qu'aucune réponse anticorps n'est induite par les microparticules LH. Ces microparticules, par ailleurs, stimulent de façon très efficace les réponses T.
Une des différences entre le LH et le lysozyme réside dans leurs poids moléculaire (14500 pour lysozyme et 71000 pour LH) .
A concentrations d'antigène couplé égales, la densité des molécules de LH sur les billes est donc environ 5 fois plus faible. Ceci pourrait expliquer l'absence de stimulation des réponses anticorps si celles-ci sont dues à la stimulation directe T- indépendante par l'antigène présent à forte densité sur les microparticules.
2. Hémoglobine et ovalbumine
Des souris ont été immunisées avec l'antigène soluble en adjuvant alu ou avec le même antigène sous forme particulaire, en l'absence d'adjuvant.
L'apparition des anticorps a été alors suivie sur plusieurs semaines.
Dans le cas de l'hémoglobine (Hb) , les souris g ont été immunisées avec 100 μg de protéine ou 10J billes couplées à différentes densités avec la protéine (2.10 et 2.10 molécule/μm ) . Les billes portant l'ovalbumine (OVA) ont été testées à deux densités 7.103 et 7.104 molécule/μm2). Une première injection a été réalisée, puis deux autres injections ont été faites au vingt et unième jour et quarante deuxième jour. Les sérums ont été prélevés au vingtième jour, au trente et unième jour, au -quarante et unième jour et au cinquante deuxième jour, puis ont été testés en ELISA pour leurs teneurs en anticorps IgG. Les résultats sont exprimés en Log du titre en anticorps.
Les résultats de la Figure 14 montrent que l'hémoglobine couplé aux billes n'induit pas de réponse anticorps. Pour l'ovalbumine (Figure 15) des anticorps sont détectables après plusieurs injection si l'antigène est couplé à forte densité, mais ces réponses restent faibles. Ces résultats indiquent que des protéines de poids moléculaire élevé comme l'hémoglobine sont incapables d'induire des réponses anticorps, même si ces protéines sont couplées à une densité élevée sur des billes.
Ces résultats similaires à ceux obtenus avec le lysozyme et 1'hémocyanine limulus confirment que des billes portant des protéines de haut poids moléculaire induisent des réponses T-prolifératives en l'absence de toute production d'anticorps.
De même, les protéines de poids moléculaire faible ou moyen, (inférieur à 50.000) peuvent induire l'apparition d'anticorps si elles sont couplées à de fortes densités aux billes.
3. Peptides synthétigues
Les peptides pré-S:TB (120-145) et pré-S:B correspondant à des parties de l'antigène HBS contenant respectivement un épitope T et un épitope B ou seulement l'épitope B ont été couplés de façon covalente à des billes de 1 μm par le glutaraldehyde (B-pré-S:TB et B-pré-S:B).
La réponse anticorps induite par ces billes a été comparée à celle induite par 10 μg de peptide pré- S:TB soluble en adjuvant alum.
Les résultats de la Figure 16 montrent que les billes couplées au peptide TB, comprenant un épitope T et un épitope B induisent de fortes réponses anticorps, ce qui confirme que des antigènes de faibles poids moléculaires couplés à des billes permettent l'induction de réponse anticorps en l'absence de tout adjuvant. On notera que ces réponses sont aussi bonnes que celles obtenues avec le peptide libre en présence d'adjuvant alum. EXEMPLE 4
Effet de la densité en lysozyme à la surface de microparticules sur leur immunogénéicité
Les matériels et méthodes utilisés sont similaires à ceux de l'Exemple 2.
L'immunogénicité des billes couplées avec du lysozyme et présentant un nombre de molécules variables à leur surface a été testée dans les expériences présentées Figures 17 et 18. Pour la Figure 17A, des souris BALB/c ont été immunisées par injection sous-cutanée avec 100 μg de lysozyme en CFA. Après 14 jours les ganglions inguinaux ont été prélevés et les cellules testées in vitro contre les billes portant différentes densités de lysozyme (de 1100 à 950.000 molécules de lysozyme ramenées à des billes de 1 μm de diamètre) . Les résultats sont exprimés en cpm corrigés de la valeur obtenue sans antigène.
Pour la Figure 17B, des souris BALB/c ont été immunisées par injection sous-cutanée à la base de la queue avec du lysozyme soluble avec adjuvant (CFA) ou 109 billes portant différentes densités de lysozyme sans aucun adjuvant.
Après 14 jours, les ganglions inguinaux ont été prélevés, et la réponse proliférative de ces cellules a été testée in vitro contre différentes concentrations de lysozyme ou billes. Les résultats sont exprimés en cpm corrigés de la valeur obtenue sans antigène. La prolifération des cellules ganglionnaires provenant d'animaux immunisés par le lysozyme soluble en CFA a été testée après stimulation in vitro par les différentes microparticules-lysozyme. La réponse proliférative de ces cellules étant d'autant plus forte que la densité du lysozyme en surface des microparticules est élevée. Aucune prolifération des cellules ganglionnaires n'est obtenue après stimulation par les microparticules présentant une densité de 1.100 molécules de lysozyme par microparticule (figure 17A) .
Dans l'expérience de la figure 17B, l'immunogénicité de ces microparticules a été testée in vivo. Des souris BALB/c ont été immunisées par les différentes microparticules, sans adjuvant, et les cellules ganglionnaires de ces animaux ont été stimulées in vitro par différentes concentrations de lysozyme soluble.
La prolifération des cellules ganglionnaires provenant d'animaux immunisés par les microparticules couplées au lysozyme à forte densité (950.000 et 210.000) est élevée, et comparable à la réponse des cellules sensibilisées par 100 μg de lysozyme en CFA. Après immunisation par les microparticules portant une densité moyenne de lysozyme (45.000), les cellules prolifèrent en réponse au lysozyme in vitro à partir de 10-1 μg/ml. Les microparticules de plus faible densité n'ont pas sensibilisé les cellules T in vivo, car aucune prolifération n'a été observée en présence de lysozyme même à concentration élevée (figure 17B) . II est à noter que 10 microparticules couplées avec le lysozyme à haute densité correspondent à 23μg (1-950.000-G) et 5 μg (1-210.000-G) de lysozyme couplé, cependant la prolifération des cellules est aussi élevée qu'après injection de 100 μg de lysozyme en CFA. Pour la Figure 18, des souris BALB/c ont été immunisées par injection sous-cutanée de lysozyme avec adjuvant (CFA) ou avec 109 microparticules portant différentes densités de lysozyme (950.000; 210.000, 45.000 et 1100 molécules respectivement, ramenées à une microparticule de 1 μm de diamètre) .
Après 14 jours, les sérums ont été prélevés et testés en ELISA pour leur teneur en anticorps anti- lysozyme. Les résultats sont exprimés en loglO du titre en anticorps.
La réponse humorale des souris immunisées par ces microparticules présentant différentes densités de lysozyme a été étudiée. L'injection de 100 μg de lysozyme en CFA induit un taux élevé d'anticorps anti- lysozyme (figure 18). Quatorze jours après l'immunisation, les billes couplées à la plus forte densité de lysozyme (950.000) ont induit une production d'anticorps significative, alors que les billes de densité inférieure n'ont pas stimulé l'induction de réponse anticorps anti-lysozyme significative. Il faut noter, en particulier, que les billes de densité 210.000 qui ont induit une excellente prolifération spécifique du lysozyme n'ont pas stimulé la production d'anticorps. Ces résultats révèlent que la prolifération de cellules T est induite avec des densités de lysozyme allant de 45.000 à 950.000 molécules de lysozyme par microparticule, alors que la production d'anticorps nécessite une densité importante de protéine couplée aux microparticules.
Au sens de la présente description, l'expression "microparticules " désigne des particules pouvant avoir diverses configurations géométriques et spatiales. Dans la pratique, il s'agit préférentiellement de microsphères ou billes, telles qu'elles sont obtenues par les techniques usuelles de fabrication des polymères.

Claims

REVENDICATIONS
1. Utilisation de microparticules en matériau synthétique polymère, portant en surface une ou plusieurs protéines liées de manière covalente, la ou lesdites protéines portant chacune un ou plusieurs epitopes, pour la fabrication d'un médicament ou d'un vaccin pour l'induction d'une réponse immunitaire, les densités de la ou des protéines à la surface des microparticules étant ajustées afin d'orienter ladite réponse immunitaire, vers l'induction d'une réponse humorale et cellulaire ou vers l'induction d'une réponse majoritairement cellulaire.
2. Utilisation selon la revendication 1, pour l'induction de réponses cellulaire et/ou humorale, caractérisée en ce que les microparticules présentent une densité pour chacune des protéines portant un épitope d'au minimum 10 molécules/μm2 et préférentiellement 5.103 protéines/μm .
3. Utilisation selon la revendication 1, pour l'induction d'une réponse majoritairement cellulaire, caractérisée en ce que les microparticules présentent une densité pour chacune des protéines portant un épitope, comprise environ entre 10 et 5.104 molécules/μm2.
4. Utilisation selon la revendication 1 pour l'induction d'une réponse majoritairement cellulaire , caractérisée en ce que les microparticules portent en surface des protéines ayant des poids moléculaires supérieurs à 50 kD. 5. Utilisation selon l'une des revendications 1 à 4, caractérisée en ce que les microparticules ont un diamètre moyen compris entre environ 0,25 et environ 1,
5 μm, et préférentiellement de lμm.
6. Utilisation selon l'une des revendications 1 à 5, caractérisée en ce que la liaison est effectuée par réaction des fonctions NH2 et/ou CO des protéines et du matériau constituant la microparticule.
7. Utilisation selon l'une des revendications 1 à 5, caractérisée en ce que la liaison des protéines et du matériau constituant la microparticule est covalente et est effectuée avec ou sans agent pontant.
8. Utilisation selon la revendication 7, caractérisée en ce que l'agent pontant est le glutaraldehyde ou le carbodiimide.
9. Utilisation selon l'une des revendications 1 à 8, caractérisée en ce que ledit matériau est un polymère biocompatible.
10. Utilisation selon la revendication 9, caractérisée en ce que ledit polymère est le polyacroléine ou le polystyrène ou des polymères d'acide lactique ou des copolymères d'acides lactique et glycolique.
11. Utilisation selon l'une des revendications 1 à 10, pour la fabrication d'un médicament pour la thérapeutique humaine, caractérisée en ce que ledit polymère est biodégradable.
12. Utilisation selon l'une des revendications 1 à 11, caractérisée en ce que les microparticules portent en surface des molécules susceptibles d'activer le système immunitaire.
13. Procédé pour la fabrication d'un médicament ou d'un vaccin dont la réponse immunitaire est soit majoritairement humorale soit majoritairement cellulaire, ledit procédé étant caractérisé en ce qu'on fixe de manière covalente sur des microparticules en matériau synthétique polymère au moins une protéine portant un ou plusieurs epitopes ou des peptides contenant uniquement des epitopes T ou B ou une composition des deux en faisant varier la densité de la protéine fixée à la surface selon le type de réponse désirée.
14. Procédé selon la revendication 13, caractérisé en ce qu'on utilise des microparticules comme indiqué à l'une quelconque des revendications 1 à 12.
15. Microparticule en un matériau synthétique polymère portant en surface une ou plusieurs protéines liées de manière covalente au matériau constituant la microparticule, la ou lesdites protéines portant chacune un ou plusieurs epitopes, et étant présentes à des densités comprises entre 10 et 5.10. protéines/μmΛ pour chacune des protéines.
16. Microparticule selon la revendication 15, caractérisée en ce qu'elle a un diamètre moyen compris entre environ 0,25 μm et 1,5 μm, et préférentiellement de lμm.
17. Microparticule selon l'une des revendications 15 et 16, caractérisée en ce que la liaison est effectuée par réaction des fonctions NH et/ou CO des protéines et du matériau constituant la microparticule.
18. Microparticule selon l'une des revendications 15 et 16, caractérisée en ce que la liaison des protéines et du matériau constituant la microparticule est effectuée par l'intermédiaire d'un agent pontant.
19. Microparticule selon la revendication 18, caractérisée en ce que l'agent pontant est le glutaraldehyde, ou le carbodiimide.
20. Microparticule selon l'une des revendications 13 à 19, caractérisée en ce qu'elle est composée d'un polymère biocompatible.
21. Microparticule selon la revendication 20, caractérisée en ce que ledit polymère est la poly(acroléine) ou le polystyrène, un polymère d'acide lactique ou un copolymère d'acide lactique et glycolique.
22. Microparticule selon la revendication 20, pour l'application en thérapeutique humaine, caractérisée en ce que ledit polymère est biodégradable.
23. Microparticule selon l'une des revendications 15 à 22, caractérisée en ce qu'elle porte en surface des molécules susceptibles d'activer le système immunitaire.
24. Microparticule selon l'une des revendications 15 à 23, caractérisée en ce que ladite protéine comprend l'épitope B de la région pré-s2 de l'antigène HBs du virus de l'hépatite virale.
25. Microparticule selon l'une des revendications 15 à 23, caractérisée en ce que ladite protéine comprend l'épitope B de la protéine VPl du virus de la poliomyélite.
26. Microparticule selon l'une des revendications 15 à 23, caractérisée en ce que ladite protéine comprend l'épitope B de la protéine gp 120 du virus HIV-1.
27. Médicament ou vaccin, caractérisé en ce qu'il comprend des microparticules selon l'une des revendications 15 à 26.
28. Composition pharmaceutique caractérisée en ce qu'elle comprend des microparticules selon l'une des revendications 15 à 26 en association avec des diluants et adjuvants pharmaceutiquement compatibles.
PCT/FR1993/000876 1992-09-11 1993-09-13 Microparticules portant des antigenes et leur utilisation pour l'induction de reponses humorales ou cellulaires WO1994006472A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US08/397,286 US5871747A (en) 1992-09-11 1993-09-13 Antigen-carrying microparticles and their use in the indication of humoral or cellular responses
DK93919446T DK0662000T3 (da) 1992-09-11 1993-09-13 Antigen-bærende mikropartikler og deres anvendelse til at inducere humorale eller cellulære responser
DE69329030T DE69329030T2 (de) 1992-09-11 1993-09-13 Antigen enthaltende mikropartikel und ihre verwendung für die induzierung von humoralen oder zellulären antworten
CA002144425A CA2144425C (fr) 1992-09-11 1993-09-13 Microparticules portant des antigenes et leur utilisation pour l'introduction de reponses humorales ou cellulaires
AU49666/93A AU4966693A (en) 1992-09-11 1993-09-13 Antigen-carrying microparticles and their use in the induction of humoral or cellular responses
AT93919446T ATE194496T1 (de) 1992-09-11 1993-09-13 Antigen enthaltende mikropartikel und ihre verwendung für die induzierung von humoralen oder zellulären antworten
EP93919446A EP0662000B1 (fr) 1992-09-11 1993-09-13 Microparticules portant des antigenes et leur utilisation pour l'induction de reponses humorales ou cellulaires
GR20000402240T GR3034550T3 (en) 1992-09-11 2000-10-04 Antigen-carrying microparticles and their use in the induction of humoral or cellular responses.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9210879A FR2695563B1 (fr) 1992-09-11 1992-09-11 Microparticules portant des antigènes et leur utilisation pour l'induction de réponses humorales ou cellulaires.
FR92/10879 1992-09-11

Publications (1)

Publication Number Publication Date
WO1994006472A1 true WO1994006472A1 (fr) 1994-03-31

Family

ID=9433435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000876 WO1994006472A1 (fr) 1992-09-11 1993-09-13 Microparticules portant des antigenes et leur utilisation pour l'induction de reponses humorales ou cellulaires

Country Status (12)

Country Link
US (1) US5871747A (fr)
EP (1) EP0662000B1 (fr)
AT (1) ATE194496T1 (fr)
AU (1) AU4966693A (fr)
CA (1) CA2144425C (fr)
DE (1) DE69329030T2 (fr)
DK (1) DK0662000T3 (fr)
ES (1) ES2149210T3 (fr)
FR (1) FR2695563B1 (fr)
GR (1) GR3034550T3 (fr)
PT (1) PT662000E (fr)
WO (1) WO1994006472A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025065A1 (fr) * 1993-04-28 1994-11-10 Cytech Biomedical, Inc. Agent immunisant et support pour chromatographie par affinite
WO1997002838A1 (fr) * 1995-07-12 1997-01-30 Francisco Javier Martin Oncina Vaccins polymerises
WO2002087623A1 (fr) * 2001-04-27 2002-11-07 Scimed Life Systems, Inc. Protection d'agents therapeutiques par des microparticules
US6932971B2 (en) 2002-07-18 2005-08-23 Cytos Biotechnology Ag Hapten-carrier conjugates and uses thereof
US6964769B2 (en) 2000-05-05 2005-11-15 Cytos Biotechnology Ag Molecular antigen array
US7087236B1 (en) 1998-09-01 2006-08-08 Merrion Research I Limited Method for inducing a cell-mediated immune response and improved parenteral vaccine formulations thereof
US7094409B2 (en) 2001-01-19 2006-08-22 Cytos Biotechnology Ag Antigen arrays for treatment of allergic eosinophilic diseases
US7115266B2 (en) 2001-10-05 2006-10-03 Cytos Biotechnology Ag Angiotensin peptide-carrier conjugates and uses thereof
US7128911B2 (en) 2001-01-19 2006-10-31 Cytos Biotechnology Ag Antigen arrays for treatment of bone disease
US7138252B2 (en) 2002-07-17 2006-11-21 Cytos Biotechnology Ag Molecular antigen arrays
US7229624B2 (en) 1998-11-30 2007-06-12 Cytos Biotechnology Ag Ordered molecular presentation of antigens, method of preparation and use
US7264810B2 (en) 2001-01-19 2007-09-04 Cytos Biotechnology Ag Molecular antigen array
US7279165B2 (en) 2002-07-19 2007-10-09 Cytos Biotechnology Ag Amyloid β1-6 antigen arrays
US7731972B1 (en) 2000-02-04 2010-06-08 Vlaams Interuniversitair Instituut Voor Biotechnologie Immunoprotective influenza antigen and its use in vaccination
US7732130B2 (en) 1997-08-05 2010-06-08 Vlaams Interuniversitair Instituut Voor Biotechnolgoie Immunoprotective influenza antigen and its use in vaccination

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0686030T3 (da) * 1993-12-23 2001-06-25 Rmf Dictagene Sa Med antigen ladede mikropartikler og farmaceutiske sammensætninger, som indeholder disse mikropartikler
US20040202680A1 (en) * 1997-01-30 2004-10-14 O'hagan Derek Microparticles with adsorbent surfaces, methods of making same, and uses thereof
NZ337054A (en) * 1997-01-30 2001-03-30 Chiron Corp Microparticles PLA and PLG with adsorbed viral antigen to stimulate immune responses particularly for intracellular viruses such as HSV-1 or HSV-2, varicella zoster virus. epstein-barr virus or cytomegalovirus (CMV)
US6884435B1 (en) 1997-01-30 2005-04-26 Chiron Corporation Microparticles with adsorbent surfaces, methods of making same, and uses thereof
ATE329012T1 (de) * 1997-04-08 2006-06-15 Pall Corp Verfahren zur gewinnung von seltenen zellen aus blutprodukten
US8293277B2 (en) * 1998-10-01 2012-10-23 Alkermes Pharma Ireland Limited Controlled-release nanoparticulate compositions
US8236352B2 (en) * 1998-10-01 2012-08-07 Alkermes Pharma Ireland Limited Glipizide compositions
US20040013613A1 (en) * 2001-05-18 2004-01-22 Jain Rajeev A Rapidly disintegrating solid oral dosage form
US7521068B2 (en) * 1998-11-12 2009-04-21 Elan Pharma International Ltd. Dry powder aerosols of nanoparticulate drugs
DE69938062T2 (de) * 1998-12-31 2009-01-15 Novartis Vaccines and Diagnostics, Inc., Emeryville Modifizierte hiv env polypeptide
AU2487300A (en) * 1998-12-31 2000-07-31 Chiron Corporation Polynucleotides encoding antigenic hiv type c polypeptides, polypeptides and uses thereof
US20030194800A1 (en) * 2001-08-31 2003-10-16 Megede Jan Zur Polynucleotides encoding antigenic HIV type B polypeptides, polypeptides and uses thereof
US7935805B1 (en) * 1998-12-31 2011-05-03 Novartis Vaccines & Diagnostics, Inc Polynucleotides encoding antigenic HIV Type C polypeptides, polypeptides and uses thereof
US6602705B1 (en) * 1998-12-31 2003-08-05 Chiron Corporation Expression of HIV polypeptides and production of virus-like particles
US20040115134A1 (en) * 1999-06-22 2004-06-17 Elan Pharma International Ltd. Novel nifedipine compositions
US20090104273A1 (en) * 1999-06-22 2009-04-23 Elan Pharma International Ltd. Novel nifedipine compositions
US20020009466A1 (en) * 1999-08-31 2002-01-24 David J. Brayden Oral vaccine compositions
US6929907B2 (en) 1999-12-31 2005-08-16 North Carolina State University Methods and compositions for determining the purity of chemically synthesized nucleic acids
US20030086932A1 (en) * 2000-04-12 2003-05-08 Jeffrey A. Bluestone Surface-bound antigen binding portions of antibodies that bind to CTLA-4 and CD28 and uses therefor
US20040022814A1 (en) * 2000-06-15 2004-02-05 O'hagan Derek Microparticles with adsorbent surfaces, methods of making same, and uses thereof
AUPR011700A0 (en) * 2000-09-14 2000-10-05 Austin Research Institute, The Composition comprising immunogenic virus sized particles (VSP)
US7198795B2 (en) * 2000-09-21 2007-04-03 Elan Pharma International Ltd. In vitro methods for evaluating the in vivo effectiveness of dosage forms of microparticulate of nanoparticulate active agent compositions
RU2257198C2 (ru) 2000-09-28 2005-07-27 Чирон Корпорейшн Композиции микрочастиц и способы их получения
ATE320792T1 (de) * 2000-09-28 2006-04-15 Chiron Corp Mikropartikel zur verabreichung von heterologen nukleinsäure
US20040126900A1 (en) * 2001-04-13 2004-07-01 Barry Stephen E High affinity peptide- containing nanoparticles
JP4500540B2 (ja) * 2001-06-29 2010-07-14 ヴェリ‐キュー,インコーポレイテッド 化学的に合成された核酸の純度を決定し、かつ化学的に合成された核酸を精製するための方法および組成物
US20030198621A1 (en) * 2001-07-05 2003-10-23 Megede Jan Zur Polynucleotides encoding antigenic HIV type B and/or type C polypeptides, polypeptides and uses thereof
CA2452015C (fr) * 2001-07-05 2012-07-03 Chiron Corporation Polynucleotides codant des polypeptides de type c du vih antigeniques, polypeptides et leurs utilisations
FR2828648A1 (fr) * 2001-08-16 2003-02-21 Adam Bouaziz Constitution d'un vaccin extractible a partir d'un insert immunogene.
US20030170614A1 (en) * 2001-08-31 2003-09-11 Megede Jan Zur Polynucleotides encoding antigenic HIV type B polypeptides, polypeptides and uses thereof
JP4360906B2 (ja) * 2001-09-14 2009-11-11 サイトス バイオテクノロジー アーゲー ウィルス様粒子によって誘導される免疫応答を高めるための、抗原提示細胞のインビボでの活性化
EP2196217A1 (fr) 2001-09-14 2010-06-16 Cytos Biotechnology AG Emballage de substances immunostimulantes dans des particules similaires aux virus: procédés de production et utilisations
US20030219459A1 (en) * 2002-01-18 2003-11-27 Cytos Biotechnology Ag Prion protein carrier-conjugates
ATE464880T1 (de) * 2002-02-04 2010-05-15 Elan Pharma Int Ltd Arzneistoffnanopartikel mit lysozym- oberflächenstabilisator
US20040101566A1 (en) * 2002-02-04 2004-05-27 Elan Pharma International Limited Novel benzoyl peroxide compositions
CA2479665C (fr) * 2002-03-20 2011-08-30 Elan Pharma International Ltd. Compositions nanoparticulaires d'inhibiteurs d'angiogenese
US20080220075A1 (en) * 2002-03-20 2008-09-11 Elan Pharma International Ltd. Nanoparticulate compositions of angiogenesis inhibitors
DE60335186D1 (de) * 2002-06-20 2011-01-13 Cytos Biotechnology Ag Verpackte virusartige partikel in kombination mit cpg zur verwendung als adjuvantien mit allergenen. herstellungsverfahren und verwendung
US20040258757A1 (en) * 2002-07-16 2004-12-23 Elan Pharma International, Ltd. Liquid dosage compositions of stable nanoparticulate active agents
CA2517839A1 (fr) * 2003-03-26 2004-10-07 Martin F. Bachmann Conjugues de particules d'aspect viral d'analogues du peptide melan-a
US20060210588A1 (en) * 2003-03-26 2006-09-21 Cytos Biotechnology Ag Hiv-peptide-carrier-conjugates
WO2005020964A1 (fr) * 2003-06-02 2005-03-10 Chiron Corporation Compositions immunogenes basees sur des microparticules comprenant des antigenes contenant de l'anatoxine adsorbee et des polysaccharides
AU2005205181A1 (en) * 2004-01-20 2005-07-28 Cytos Biotechnology Ag Particle-induced ghrelin immune response
US9492400B2 (en) * 2004-11-04 2016-11-15 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
AU2006206647C1 (en) 2005-01-19 2011-01-20 Vaxinnate Corporation Compositions comprising pathogen-associated molecular patterns and antigens and their use to stimulate an immune response
US20070081972A1 (en) * 2005-09-30 2007-04-12 The University Of Iowa Research Foundation Polymer-based delivery system for immunotherapy of cancer
WO2007067417A1 (fr) 2005-12-05 2007-06-14 Nitto Denko Corporation Conjugues acides amino-polyglutamate et procedes
AU2006325225B2 (en) * 2005-12-14 2013-07-04 Cytos Biotechnology Ag Immunostimulatory nucleic acid packaged particles for the treatment of hypersensitivity
WO2007070682A2 (fr) 2005-12-15 2007-06-21 Massachusetts Institute Of Technology Systeme de criblage de particules
CA2638760A1 (fr) * 2006-03-07 2007-09-13 Vaxinnate Corporation Compositions comprenant de l'hemagglutinine, leurs procedes de fabrication et leurs procedes d'utilisation
CA2648099C (fr) * 2006-03-31 2012-05-29 The Brigham And Women's Hospital, Inc Systeme pour l'administration ciblee d'agents therapeutiques
WO2007133807A2 (fr) 2006-05-15 2007-11-22 Massachusetts Institute Of Technology Polymères pour particules fonctionnelles
CA2655108C (fr) 2006-06-12 2019-05-07 Cytos Biotechnology Ag Procede pour le conditionnement d'oligonucleotides dans des particules analogues a des virus de bacteriophages a arn
WO2007150030A2 (fr) * 2006-06-23 2007-12-27 Massachusetts Institute Of Technology Synthèse microfluidique de nanoparticules organiques
US20100144845A1 (en) * 2006-08-04 2010-06-10 Massachusetts Institute Of Technology Oligonucleotide systems for targeted intracellular delivery
WO2008147456A2 (fr) * 2006-11-20 2008-12-04 Massachusetts Institute Of Technology Systèmes d'administration de médicaments en utilisant des fragments fc
US20080181852A1 (en) * 2007-01-29 2008-07-31 Nitto Denko Corporation Multi-functional Drug Carriers
WO2008098165A2 (fr) 2007-02-09 2008-08-14 Massachusetts Institute Of Technology Bioréacteur oscillant pour la culture de cellules
WO2008124632A1 (fr) * 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Nanoparticules assistées par des composés amphiphiles pour délivrance ciblée
JP2010526159A (ja) * 2007-04-10 2010-07-29 日東電工株式会社 多機能性ポリグルタミン酸塩薬物担体
PT2155255E (pt) * 2007-05-09 2013-10-15 Nitto Denko Corp Composições que incluem um composto hidrofóbico e um conjugado de poliaminoácido
US20080279778A1 (en) * 2007-05-09 2008-11-13 Nitto Denko Corporation Polyglutamate conjugates and polyglutamate-amino acid conjugates having a plurality of drugs
DK2155254T3 (da) * 2007-05-09 2013-03-04 Nitto Denko Corp Med platinlægemidler konjugerede polymere
EP3424525A1 (fr) 2007-10-12 2019-01-09 Massachusetts Institute Of Technology Nanotechnologie de vaccin
KR20100122510A (ko) * 2008-03-06 2010-11-22 닛토덴코 가부시키가이샤 중합체 파클리탁셀 접합체 및 암 치료 방법
JP2011519828A (ja) 2008-04-18 2011-07-14 バクシネート コーポレーション フラジェリンの欠失変異体と使用方法
US20110280930A1 (en) * 2008-05-02 2011-11-17 Facundo Batista Products and methods for stimulating an immune response
US8343497B2 (en) 2008-10-12 2013-01-01 The Brigham And Women's Hospital, Inc. Targeting of antigen presenting cells with immunonanotherapeutics
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
US8343498B2 (en) 2008-10-12 2013-01-01 Massachusetts Institute Of Technology Adjuvant incorporation in immunonanotherapeutics
US8591905B2 (en) * 2008-10-12 2013-11-26 The Brigham And Women's Hospital, Inc. Nicotine immunonanotherapeutics
KR20120022984A (ko) * 2009-04-21 2012-03-12 셀렉타 바이오사이언시즈, 인크. Th1 편향 반응을 제공하는 면역나노치료법
AU2010254549B2 (en) * 2009-05-27 2016-10-20 Selecta Biosciences, Inc. Nanocarriers possessing components with different rates of release
EP2550362B1 (fr) 2010-03-25 2017-01-04 Oregon Health&Science University Glycoprotéines du cmv et vecteurs recombinés
MX2012013713A (es) 2010-05-26 2013-01-28 Selecta Biosciences Inc Composiciones de nanovehiculos con adyuvante no acoplado.
US9994443B2 (en) 2010-11-05 2018-06-12 Selecta Biosciences, Inc. Modified nicotinic compounds and related methods
CA3118108C (fr) 2010-11-12 2024-02-20 Oncour Pharma, Inc. Particules modifiees a modulation immunologique comprenant un acide polylactique
EP2691530B1 (fr) 2011-06-10 2018-03-07 Oregon Health & Science University Glycoprotéines de cmv et vecteurs recombinants cmv
EA201490381A1 (ru) 2011-07-29 2014-06-30 Селекта Байосайенсиз, Инк. Синтетические наноносители, которые стимулируют формирование гуморального иммунного ответа и иммунного ответа, опосредованного цитотоксическими т-лимфоцитами (ctl)
EP2568289A3 (fr) 2011-09-12 2013-04-03 International AIDS Vaccine Initiative Immunosélection du virus de la stomatite vésiculaire recombinant exprimant les protéines du VIH-1 par des anticorps largement neutralisants
US9402894B2 (en) 2011-10-27 2016-08-02 International Aids Vaccine Initiative Viral particles derived from an enveloped virus
KR20220166879A (ko) 2012-06-21 2022-12-19 노쓰웨스턴유니버시티 펩티드 접합된 입자
EP2679596B1 (fr) 2012-06-27 2017-04-12 International Aids Vaccine Initiative Variante de la protéine env du VIH-1
CN105263476A (zh) 2013-03-13 2016-01-20 库尔制药开发公司 用于治疗炎症的免疫修饰性颗粒
HUE047329T2 (hu) 2013-08-13 2020-04-28 Univ Northwestern Peptiddel konjugált részecskék
US20150065381A1 (en) 2013-09-05 2015-03-05 International Aids Vaccine Initiative Methods of identifying novel hiv-1 immunogens
US10058604B2 (en) 2013-10-07 2018-08-28 International Aids Vaccine Initiative Soluble HIV-1 envelope glycoprotein trimers
EP3069730A3 (fr) 2015-03-20 2017-03-15 International Aids Vaccine Initiative Trimères de glycoprotéines de l'enveloppe du vih-1 soluble
US9931394B2 (en) 2015-03-23 2018-04-03 International Aids Vaccine Initiative Soluble HIV-1 envelope glycoprotein trimers
EP3303585A4 (fr) 2015-06-03 2018-10-31 Board of Regents of the University of Nebraska Traitement des données d'une séquence d'adn utilisant un adn monocaténaire
WO2018031771A1 (fr) 2016-08-11 2018-02-15 University Of Iowa Research Foundation Nanoparticules inhibitrice de camkii cationique pour le traitement de l'asthme allergique.
WO2021076794A1 (fr) 2019-10-15 2021-04-22 Cornell University Procédés de modulation du niveau d'expression à partir d'une cassette d'expression de thérapie génique
KR20220082050A (ko) 2019-10-16 2022-06-16 코넬 유니버시티 알츠하이머병에 대한 유전자 요법
US20230001017A1 (en) 2019-10-28 2023-01-05 University Of Lowa Research Foundation Formulation for delivery of lubricin gene
US20230044351A1 (en) 2019-11-25 2023-02-09 Cornell University Apoe gene therapy
JP2023523931A (ja) 2020-04-23 2023-06-08 ユニヴァーシティ オブ アイオワ リサーチ ファウンデーション Gperタンパク質分解ターゲティングキメラ
US20230293678A1 (en) 2020-08-21 2023-09-21 Aliasger K. Salem Cationic nanoparticle adjuvants
US20230414787A1 (en) 2020-08-27 2023-12-28 University Of Iowa Research Foundation Gene knock-out for treatment of glaucoma
WO2022125963A1 (fr) 2020-12-11 2022-06-16 University Of Iowa Research Foundation Compositions comprenant des molécules pour le traitement de la mucoviscidose
EP4340894A1 (fr) 2021-05-21 2024-03-27 University Of Iowa Research Foundation Particules contenant un antioxydant et procédés d'utilisation
WO2022271951A1 (fr) 2021-06-23 2022-12-29 University Of Iowa Research Foundation Formulations à libération prolongée comprenant un modulateur sélectif du récepteur des androgènes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2304326A1 (fr) * 1975-03-20 1976-10-15 Kreuter Jorg Particules submicroscopiques comportant une substance biologiquement active, leur preparation et leur application therapeutique
EP0465081A1 (fr) * 1990-06-22 1992-01-08 The Regents Of The University Of California Vaccin comportant un leurre viral

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861588A (en) * 1985-02-05 1989-08-29 New York Blood Center, Inc. Pre-S gene coded peptide hepatitis B immunogens, vaccines, diagnostics, and synthetic lipid vesicle carriers
US5008116A (en) * 1988-11-14 1991-04-16 Frederick Cahn Immunostimulatory microsphere

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2304326A1 (fr) * 1975-03-20 1976-10-15 Kreuter Jorg Particules submicroscopiques comportant une substance biologiquement active, leur preparation et leur application therapeutique
EP0465081A1 (fr) * 1990-06-22 1992-01-08 The Regents Of The University Of California Vaccin comportant un leurre viral

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. REMBAUM ET AL.: "CELL LABELING AND MAGNETIC SEPARATION BY MEANS OF IMMUNOREAGENTS BASED ON POLYACROLEIN MICROSPHERES", JOURNAL OF IMMUNOLOGICAL METHODS, vol. 52, no. 3, 1982, pages 341 - 351, XP023675251, DOI: doi:10.1016/0022-1759(82)90006-0 *
H. KIRK ZIEGLER ET AL.: "DIFFERENTIAL REQUIREMENTS FOR THE PROCESSING AND PRESENTATION OF SOLUBLE AND PARTICULATE BACTERIAL ANTIGENS BY MACROPHAGES.", EUROPEAN JOURNAL OF IMMUNOLOGY, vol. 17, September 1987 (1987-09-01), pages 1287 - 1296 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025065A1 (fr) * 1993-04-28 1994-11-10 Cytech Biomedical, Inc. Agent immunisant et support pour chromatographie par affinite
WO1997002838A1 (fr) * 1995-07-12 1997-01-30 Francisco Javier Martin Oncina Vaccins polymerises
ES2108614A1 (es) * 1995-07-12 1997-12-16 Oncina Fco Javier Martin Vacunas polimerizadas.
US7993652B2 (en) 1997-08-05 2011-08-09 FVlaams Interuniversitair Instituut Voors Biotechnologie Immunoprotective influenza antigen and its use in vaccination
US7732130B2 (en) 1997-08-05 2010-06-08 Vlaams Interuniversitair Instituut Voor Biotechnolgoie Immunoprotective influenza antigen and its use in vaccination
US7087236B1 (en) 1998-09-01 2006-08-08 Merrion Research I Limited Method for inducing a cell-mediated immune response and improved parenteral vaccine formulations thereof
US7229624B2 (en) 1998-11-30 2007-06-12 Cytos Biotechnology Ag Ordered molecular presentation of antigens, method of preparation and use
US7731972B1 (en) 2000-02-04 2010-06-08 Vlaams Interuniversitair Instituut Voor Biotechnologie Immunoprotective influenza antigen and its use in vaccination
US6964769B2 (en) 2000-05-05 2005-11-15 Cytos Biotechnology Ag Molecular antigen array
US7320793B2 (en) 2001-01-19 2008-01-22 Cytos Biotechnology Ag Molecular antigen array
US7094409B2 (en) 2001-01-19 2006-08-22 Cytos Biotechnology Ag Antigen arrays for treatment of allergic eosinophilic diseases
US7264810B2 (en) 2001-01-19 2007-09-04 Cytos Biotechnology Ag Molecular antigen array
US7785873B2 (en) 2001-01-19 2010-08-31 Cytos Biotechnology Ag Antigen arrays for treatment of bone disease
US7128911B2 (en) 2001-01-19 2006-10-31 Cytos Biotechnology Ag Antigen arrays for treatment of bone disease
WO2002087623A1 (fr) * 2001-04-27 2002-11-07 Scimed Life Systems, Inc. Protection d'agents therapeutiques par des microparticules
US6887857B2 (en) 2001-04-27 2005-05-03 Scimed Life Systems, Inc. Microparticle protection of therapeutic agents
US7666408B2 (en) 2001-10-05 2010-02-23 Cytos Biotechnology Ag Angiotensin peptide-carrier conjugates and uses thereof
US7115266B2 (en) 2001-10-05 2006-10-03 Cytos Biotechnology Ag Angiotensin peptide-carrier conjugates and uses thereof
US7494656B2 (en) 2002-07-17 2009-02-24 Cytos Biotechnology Ag Molecular antigen arrays
US7138252B2 (en) 2002-07-17 2006-11-21 Cytos Biotechnology Ag Molecular antigen arrays
US6932971B2 (en) 2002-07-18 2005-08-23 Cytos Biotechnology Ag Hapten-carrier conjugates and uses thereof
US7452541B2 (en) 2002-07-18 2008-11-18 Cytos Biotechnology Ag Hapten-carrier conjugates and uses thereof
US8187607B2 (en) 2002-07-18 2012-05-29 Cytos Biotechnology Ag Hapten-carrier conjugates and uses thereof
US7279165B2 (en) 2002-07-19 2007-10-09 Cytos Biotechnology Ag Amyloid β1-6 antigen arrays

Also Published As

Publication number Publication date
AU4966693A (en) 1994-04-12
ES2149210T3 (es) 2000-11-01
EP0662000A1 (fr) 1995-07-12
DE69329030D1 (de) 2000-08-17
FR2695563A1 (fr) 1994-03-18
GR3034550T3 (en) 2001-01-31
US5871747A (en) 1999-02-16
EP0662000B1 (fr) 2000-07-12
DK0662000T3 (da) 2000-11-13
ATE194496T1 (de) 2000-07-15
FR2695563B1 (fr) 1994-12-02
CA2144425A1 (fr) 1994-03-31
DE69329030T2 (de) 2001-03-22
CA2144425C (fr) 2008-12-30
PT662000E (pt) 2000-12-29

Similar Documents

Publication Publication Date Title
EP0662000B1 (fr) Microparticules portant des antigenes et leur utilisation pour l'induction de reponses humorales ou cellulaires
US6004763A (en) Antigen-carrying microparticles and their use in the induction of humoral or cellular responses
US20210000932A1 (en) Peptide Conjugated Particles
JP7210306B2 (ja) ペプチドコンジュゲート粒子
JP2022043071A (ja) 望ましくない液性免疫応答を低減するための投薬の組み合わせ
CA2111580C (fr) Composes immunogenes a effet notamment anti-cytokine, procede de preparation, compositions pharmaceutiques et kits les renfermant
KR920002165B1 (ko) 개선된 백신 및 제조방법
EP1542729B1 (fr) Produit immunogene stable comprenant des heterocomplexes antigeniques
WO2012099805A2 (fr) Stimulation immunologique à base de nanoparticules
CN117205331A (zh) 用于降低抗体应答的致耐受性合成纳米载体
CN112933234A (zh) 非免疫抑制性抗原特异性免疫治疗剂的重复施用
Asea Hsp70: a chaperokine
JP2000504019A (ja) オリゴ糖を用いた免疫調節の方法
EP1851321B1 (fr) Epitopes de vih et composition pharmaceutique les contenant
EP0656010B1 (fr) Utilisation de peptide reconnu par une réponse immunitaire pour l'obtention de médicaments déstinés à l'induction de la supression immunitaire.
EP1276468A1 (fr) Utilisation de vecteurs particulaires dans l' immunomodulation
EP0149581A2 (fr) Nouvelles compositions contenant des oligo-muramylpeptides et leur application, notamment pour l'activation des macrophages
JP2003524612A (ja) 炭水化物抗原を用いる免疫モジュレーション方法
EP0201413A1 (fr) Composés suscitant la formation d'anticorps, compositions immunogéniques et compositions immunoprotectrices les contenant et procédé d'obtention d'anticorps les mettant en oeuvre
Kwidzinski et al. Self-tolerance in the immune privileged CNS: lessons from the entorhinal cortex lesion model* E. Kwidzinski1, LK Mutlu1, AD Kovac1, J. Bunse1, J. Goldmann1, J. Mahlo1, O. Aktas2, F. Zipp2, T. Kamradt3, R. Nitsch1, and I. Bechmann1 Departments of 1Cell and Neurobiology and
FR2694560A1 (fr) Nouveaux peptides viraux, anticorps dirigés contre ces peptides, procédé de préparation, application à titre de médicaments, compositions pharmaceutiques et kits de diagnostic les renfermant.
FR2808194A1 (fr) Utilisation de particules hydrophiles portant ou non des ligands ioniques pour ameliorer les proprietes immunomodulatrices d'une substance autre qu'un antigene, et les compositions pharmaceutiques ainsi obtenues
AU3106300A (en) Immunomodulatory methods using carbohydrate antigens
FR2789590A1 (fr) Compositions immunogenes utilisables comme vaccins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993919446

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2144425

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08397286

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993919446

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993919446

Country of ref document: EP