WO1994003225A1 - Low flow rate nebulizer, method and apparatus - Google Patents

Low flow rate nebulizer, method and apparatus Download PDF

Info

Publication number
WO1994003225A1
WO1994003225A1 PCT/US1993/007515 US9307515W WO9403225A1 WO 1994003225 A1 WO1994003225 A1 WO 1994003225A1 US 9307515 W US9307515 W US 9307515W WO 9403225 A1 WO9403225 A1 WO 9403225A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier gas
nebulizer
inch
housing
medicant
Prior art date
Application number
PCT/US1993/007515
Other languages
French (fr)
Inventor
John H. Riggs
Barry O. Nangum
Original Assignee
Riggs John H
Nangum Barry O
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riggs John H, Nangum Barry O filed Critical Riggs John H
Priority to AT93919951T priority Critical patent/ATE198160T1/en
Priority to JP6505621A priority patent/JPH08502904A/en
Priority to DE69329775T priority patent/DE69329775T2/en
Priority to AU50040/93A priority patent/AU674023B2/en
Priority to EP93919951A priority patent/EP0653946B1/en
Publication of WO1994003225A1 publication Critical patent/WO1994003225A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0833T- or Y-type connectors, e.g. Y-piece
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • B05B1/262Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0483Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with gas and liquid jets intersecting in the mixing chamber
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/06Sprayers or atomisers specially adapted for therapeutic purposes of the injector type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • A61M16/162Water-reservoir filling system, e.g. automatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/06Solids
    • A61M2202/064Powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/08Supports for equipment

Definitions

  • the present invention relates to a low flow rate nebulization method and a low flow rate nebulizer apparatus used in respiratory care and, in particular, to a continuously connected, continuous low gas flow rate liquid nebulizer useful in respiratory care to deliver liquid medications.
  • Critically ill patients requiring mechanical ventilation are often victims of respiratory distress syndrome, status asthamaticus and pulmonary infections. Treatment of these and other sever respiratory conditions includes medications delivered directly to the lungs of the patient.
  • Respiratory delivery of medication for these conditions is preferable to oral, intravenous and subcutaneous delivery because it is non-invasive, permits rapid action of medicament, requires a relatively small dosage, is not filtered through the liver of the patient, and produces a low incidence of systemic side effects.
  • Nebulized or aerosolized solutions are the preferred method of respiratory delivery of medication; when fragmented into small particles, medicants are more efficiently deposited near sites of medicant activity in the lung.
  • Respiratory medications may be delivered to the lungs of the patient as an aerosol of a liquid or a powder.
  • Clinical aerosols are currently generated by jet or ultrasonic nebulizers, metered dose inhalers (MDI) and dry powdered inhalers.
  • MDI metered dose inhalers
  • Liquid nebulizers are well known in the art. Aerosolization of liquid medications is performed by putting a liquid product in a chamber (nebulizer vial) that has a pressurized flow of gas through it. Utilizing the Bernoulli principle, liquid is drawn through an aspirator tube into the path of a high velocity gas and is fractured into a mist. The mist flows out of the nebulizer by inertial forces.
  • jet nebulizers for the delivery of liquid medication to the lungs
  • ultrasonic nebulizers In conventional jet nebulizers, compressed gas from a compressor or hospital air line is passed through a narrow constriction known as a jet. This creates an area of low pressure, and liquid medication from a reservoir is drawn up through a feed tube and fragmented into droplets by the airstream. Only the smallest drops leave the nebulizer directly, while the majority impact on baffles and walls and are returned to the reservoir. Consequently, jet nebulization takes several minutes to complete, depending upon the initial volume.
  • nebulizers include low lung deposition related to the use of tidal breathing. A substantial portion of the dose used in a jet nebulizer is retained permanently as a dead or residual volume on baffles and internal walls of the nebulizer chamber and cannot be released. Generally only 2- 10% of the dose placed in the nebulizer ever reaches the lung. The consequences are a higher drug dosage and longer administrative time, along with the associated cost and risk of contamination.
  • Such intermittent drug administration has the inherent results of (1) subjecting the patient to "peaks and "valleys" of drug dosage effects, (2) requiring respiratory therapy personnel to periodically service the needs of the patient and nebulizer by measuring doses, disconnecting, filling and reconnecting the nebulizer and periodically monitoring the administration, and (3) disconnecting the patient from an attached ventilator during nebulizer service. Further, medication which is administered as a large volume, such as a surfactant, now requires large medicant flow volume through the nebulizer requiring frequent servicing and refilling of the nebulizer vial which interferes with ventilator function.
  • nebulizer such as in the operational use of the VISAN nebulizer of Burroughs Wellcome Company.
  • the medicant EXOSURF® surfactant up to half of the tidal volume flows through the nebulizing ports of the nebulizer to unite with the balance of the respiratory gas delivered directly from the ventilator in a Y-shaped junction in the flow path to the patient downstream from the nebulizer.
  • the nebulizing gas is synchronized with the nebulizer such that nebulizing gas is delivered to the nebulizer only during the ventilatory inhalation cycle.
  • a nebulizer comprising a vial-like nebulizing chamber which comprises a two-position flow control valve assembly for accessibly draining and refilling the nebulizing chamber is disclosed in U.S. Patent 4,805,609. While the valve assembly provides access for resupplying a medication close while the nebulizing chamber remains in sealed relation with the nebulizer, such resupply is service intensive and limited to volumes containable by the nebulizing chamber.
  • Recent developments in respiration therapy involve aerosolization and delivery of nebulized mist on a continuous basis over several hours. For example, an entire day's medication dosage is delivered at a constant rate over twenty-four hours, as opposed to conventionally delivering the same dosage as four separate aliquots at six hour intervals. Such deliver eliminates the "peak” and “valleys” effects of the drug, reduces respiratory personnel support time, and also reduces the number of time critical medication/nebulizer interconnections are interrupted, thereby diminishing the potentially dangerous exposures of the patient to the effects of respiratory circuit contamination.
  • the second type of aerosol generator is a metered dose inhalator (MDI), which delivers a bolus of more concentrated drug aerosols than the solution commonly available for nebulizers.
  • MDI delivery systems require proper administration technique, which includes coordinated actuation of aerosol delivery with inhalation, a slow inhalation of 0.5-0.75 liters per second, a deep breath approaching inspiratory capacity inhalation, and at least 4 seconds of breath holding.
  • MDI's can be equipped with devices that automatically couple actuation to inspiratory effort, thus eliminating the need for coordinating hand action with inhalation.
  • Devices such as spacers and holding chambers also decrease partial velocity and reduce the number of large particles. Both of these features reduce oral pharyngeal and large airway deposition with a consequent reduction in systemic absorption. Deposition of aerosols from an MDI with a spacer or holding chamber is similar and perhaps better than the deposition of a property used MDI alone.
  • MDI deposition of 10-15% of the metered dose with consequent short treatment time, low cost and increased convenience.
  • MDI's cannot be used by patients requiring mechanical ventilation.
  • Other advantages include the need for patient cooperation, the practical limitations and inconveniences associated with increased dosing requirements due to the typically small dosages administered with an MDI, the limited number of currently available drugs, and the dependence on fluorocarbons of aerosol generation.
  • the third type of aerosol generator is a dry powder inhaler. Dry powdered inhalation devices currently in use are the Spinhaler, the Rotahaler, the Turbuhaler and the disc inhaler. Dry powdered inhalers are breath actuated and usually require a higher inspiratory flow rate than that required for an MDI or a nebulizer. Flow rates of 1-2 liters per second are usually considered optimal, although flow rates as low as 0.5 liters per second may be effective for some dry powdered inhalers.
  • dry powdered inhalers include relative ease of administration and the fact that they do not require fluorocarbon propellants. When a dry powdered inhaler is used properly, deposition appears to be similar to that of a properly used MDI.
  • powdered inhalers are limited by the dose they can provide and by the number of drugs currently available. Only terbutaline, salbutamol, dexamethasone and chromolyn sodium are available in powder form.
  • dry powdered inhalers include the following: a) they are usually not particle size-selective and thus heavy oral pharyngeal deposition may occur; b) high humidity environments may cause clumping of the particles; and c) dry powdered inhalers cannot be used in ventilatory circuits.
  • Currently available devices for delivery of powdered medications to respiratory therapy do not employ nebulization technology.
  • U.S. Patent 4,232,002 discloses procedures for administering antihistamines. Methods disclosed include inhalation by a patient of mist, nebulized spray, or a cloud of fine solid particles. Products for delivery of medication include pressurized canister inhalers, portable dry powder insuffilators using capsules, and nebulizer. The only dry powder delivery system described is a dry powder inhaler using capsules of dry powder in single dose units. The delivery method described involves puncturing a capsule of dry powder medication which is disbursed by means of a turbomixer to be inhaled through a mouth piece. This patent does not address continuous flow or continuous delivery of inhalable medication. It does not enablingly teach or address jet nebulization of powdered solid medications, and does not teach a nebulizer vial which connects to a nebulizer to provide a device for introducing continuous flow.
  • U.S. Patent 3,669,113 discloses a method and device for dispensing powdered medication from a perforated container by rotating the container by pneumatic means and causing the axis of rotation to the container to precess and describe a path of precession which is contained within a generally conical surface of a precession.
  • the mechanisms described are based on varying shaft and bearing configurations.
  • the method of this patent is said to be especially well suited to delivery of particles less than 80 microns in diameter.
  • the patent does not address jet nebulization, continuous flow or continuous nebulization.
  • Recent developments in respiration therapy involve aerosolization and delivery of nebulized liquids on a continuous basis over several hours. Such delivery stabilizes the effects of the medication over time, reduces respiratory personnel support time, and reduces the changes of respiratory circuit contamination.
  • a liquid nebulizer system comprising a nebulizer attachable nebulizer vial, a large supply vessel, and a fluid delivery system, to be used with a conventional liquid nebulizer.
  • the liquid nebulizer system provides for continuous delivery of liquid medication from a large supply vessel into the nebulizer vial which is attached to a conventional nebulizing apparatus, permitting continuous delivery of nebulized liquid medication.
  • a carrier gas flow rate in the range of from about 6 to about 8 liters per minute is used.
  • Such flow rate range is necessary for conventional nebulizer devices to operate with suitable efficiency, but such relatively large flow rates also lead to substantial loss and wastage of the nebulized drug, due primarily to the fact that the flow rates in such range exceed the patient uptake rate on a continuous basis.
  • the tidal volume respiratory gas is substantially larger than lung capacity for neonatal patients and others with reduced lung capacity such as patients who possess only one lung.
  • the nebulization efficiency becomes unsuitable since the gas flow rate is not adequate to produce a usefully fine particle size distribution of the medicant. Accordingly, where low flow deliver of medicant materials is required, the only practical device is an ultrasonic nozzle.
  • ultrasonic nozzles suffer the deficiencies that they are costly, tend to denature a variety of otherwise useful drugs which in denatured form are non-efficacious, and ultrasonic nozzles tend to have a short operating life, due to nozzle wear and degradation.
  • liquid nebulizer device which is usefully employed to delivery medicant materials in a carrier gas flow stream at a flow rate substantially below the range of 4-5 liters per minute, which is the practical lower limit with conventional nebulizer apparatus.
  • the present invention relates to a nebulizer device, comprising:
  • a housing defining an interior volume therewithin, including a reservoir portion for holding medicament therein for entrainment into a carrier gas to form a delivery gas mixture comprising nebulized medicament and carrier gas;
  • a jet passage member having (i) an inlet portion for introduction of carrier gas thereinto and (ii) a nozzle portion positioned in the interior volume of the housing for discharging carrier gas in jet form in the interior volume, for entrainment of medicament from the reservoir portion of the housing in the carrier gas jet, said nozzle portion comprising a nozzle orifice accommodating carrier gas flow therethrough, wherein the nozzle orifice has an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch.
  • the nozzle orifice preferably is in the range of from about 0.007 inch to about 0.018 inch, more preferably from about 0.008 inch to about 0.015 inch, and most preferably from about 0.010 inch to about 0.012 inch.
  • the nebulizer device in one embodiment particularly suited for nebulization of liquid medicants may further comprising means disposed in the interior volume of the housing for delivering liquid from the reservoir portion of the housing to a discharge locus of the nozzle orifice of the jet passage member, whereby delivered liquid is entrained in carrier gas flowed through the jet passage member when the reservoir portion contains liquid.
  • such means may comprise a nebulization structure mounted in the interior volume of the housing, including: an expansion chamber in flow-receiving communication with the nozzle portion of the jet passage member, such expansion chamber having an orifice therein, in alignment with the orifice of the jet passage member; an impingement baffle presenting an impingement surface in alignment with the orifices of the jet passage member and the expansion chamber; and means for aspiratingly delivering liquid from the reservoir portion of the housing when liquid is contained in the reservoir and carrier gas is flowed in sequence through the orifices of the jet passage member and the expansion chamber at sufficient volumetric flow rate.
  • the orifice in the expansion chamber has an equivalent orifice diameter in the range of from about 0.025 inch to about 0.060 inch, and preferably from about 0.030 inch to about 0.050 inch.
  • the nebulizer devise of the invention may further comprise pressurized carrier gas supply means coupled in gas-supplying relationship with the inlet portion of the jet passage member, and/or a breathing circuit coupled with the discharge port for receiving delivery gas mixture and conveying same to a patient interconnected with the breathing circuit.
  • the present invention relates to a method of delivering a nebulized medicant to a patient, comprising:
  • a nebulizer apparatus including a breathing circuit coupled to the patient and including a nebulizer device (i) containing the medicant, and (ii) constructed and arranged for producing a pulmonarily effective nebulized medicant in a carrier gas passed through the nebulizer device at a carrier gas flow rate in the range of from about 0.5 to about 3.25 liters per minute;
  • the present invention relates to a method of delivering a nebulized medicant to a patient, comprising:
  • nebulizer apparatus including a breathing circuit coupled to the patient and including a nebulizer device
  • the nebulizer device comprises: (a) a housing defining an interior volume therewithin, including a reservoir portion for holding medicament therein for entrainment into a carrier gas to form a delivery gas mixture comprising nebulized medicament and carrier gas;
  • a jet passage member having (i) an inlet portion for introduction of carrier gas thereinto and (ii) a nozzle portion positioned in the interior volume of the housing for discharging carrier gas in jet form in the interior volume, for entrainment of medicament from the reservoir portion of the housing in the carrier gas jet, such nozzle portion comprising a nozzle orifice accommodating carrier gas flow therethrough, wherein the nozzle orifice has an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch;
  • the carrier gas flow rate preferably is in the range of from about 1.0 to about 3.0 liters per minute, and most preferably is in the range of from about 2.2 to about 2.8 liters per minute.
  • the medicant which is administered to the patient in the practice of the nebulization technology of the present invention may for example comprise a material selected from the group consisting of lung surfactants or precursors thereof, terbutaline, salbutamol, dexamethasone, chromolyn sodium, pentamidine, and bioactive substances encapsulated in a pulmonarily degradeable encapsulant medium.
  • the term "equivalent orifice diameter' refers to the diameter of an orifice having a circular opening which is equivalent in cross-sectional open area (i.e., the open area of the orifice opening perpendicular to the direction of the flow of carrier gas therethrough) to the cross-sectional open area of the actual orifice in the nebulization system of the present invention.
  • This terminology defines the dimensional character of the orifice regardless of the actual shape of the orifice opening, and thus the invention contemplates the employment of orifice openings which are of circular or generally circular opening shape, as well as orifice openings which are of non-circular or irregular opening shape.
  • the orifice opening is of circular shape
  • the equivalent orifice diameter of such opening is identical to its actual diameter.
  • the orifice opening is of circular shape, or at least generally circular shape, although as mentioned, other non-circular shapes, e.g., square, ovoid, rectangular, star-shape, cruciform, etc. shapes, may advantageously be employed within the broad practice of the present invention.
  • the terms “medicant” and “medicament” are intended to be broadly construed to include any substances, formulations, compositions, compounds, materials, etc. which are physiologically beneficial.
  • the term "pulmonarily effective” means physiologically beneficial in application to a patient at a pulmonary situs, viz., the lungs and associated inspiratory and expiratory passages and body structures.
  • Figure 1 is a schematic representation of a patient receiving respiratory support and medication via a continuous flow liquid nebulizing device interposed between an endotracheal tube and a ventilator.
  • Figure 2 is an exploded perspective view of a nebulizer and a continuous flow supporting system comprising a large medication storage vessel, a rate controllable pump, an influent port accessible nebulizer vial separated from the nebulizer device upper portion, and influent flow regulating and supply devices.
  • Figure 3 is an elevational cross-section of the nebulizer device of Figure 2.
  • Figure 4 is an elevational cross-section of a low flow rate jet structure of a type such as may be alternatively employed in the nebulizer device of Figure 2.
  • Figure 5 is a schematic representation of a patient receiving respiratory support and medication via a powder nebulizing device interposed between an endotracheal tube and a ventilator.
  • Figure 6 is an elevational cross-section of the powder nebulizer device of Figure 5.
  • proximal is used to indicate the segment of the device normally closest to the patient when it is being used.
  • distal refers to the other end.
  • nebulizing device is defined to be a nebulizing unit or instrument used to aerosolize fluid or disperse particulate solid material, e.g., powder, for delivery to a patient.
  • nebulizer vial is sometimes used herein to denote the portion of a nebulizing device which comprises a container providing a reservoir for fluid or particulate solid material to be nebulized.
  • nebulizer is sometimes used herein to denote the non- nebulizer-vial portion of the nebulizing device which comprises at least a portion of the nebulizing mechanism.
  • a patient 30, undergoing respiratory therapy is fitted with an endotracheal tube 24.
  • the proximal trunk end 18 of a "Y"-shaped connector 32 is insertably connected to a distal end 25 of endotracheal tube 24.
  • One bifurcated distal end 34 of "Y"-shaped connector 32 is insertably connected to a proximal port 22 of a nebulizer 20 which is part of a nebulizing device 48.
  • Nebulizer 20 is disposed between distal end 34 of "Y"-shaped connector 32 and a proximal end 14 of a respiratory gas delivery tube 12. Thereat a distal part 38 of nebulizer 20 is insertably connected to gas delivery tube 12.
  • Gas delivery tube 12 provides the distal portion of inhalation respiratory pathway 26 and connects to the output inhalation gas of a ventilator 10.
  • Ventilator 10 therapy supplies periodic, breath-sustaining pulses of pressurized gas through tube 12, nebulizer device 48, and "Y"-shaped connector 32 into endotracheal tube 24 and to patient 30.
  • the other distal end 36 of "Y"-shaped connector 32 comprises a proximal portion of an exhalation respiratory pathway 28 which further comprises tube 16 which returns exhalation flow to ventilator 10.
  • ventilators are known and available in the art. Generally, ventilators which are conventionally used with nebulizers may be used with the invention.
  • Nebulizer 20 receives a supply of nebulizing gas from a flow meter 40 along a fluid pathway 26' which passes through a tube 42 interposed and connected between flow meter 40 and a top nebulizer inflow connecting tube 44'.
  • Flow meter 40 receives a pressurized gas from a gas source 44 through a connecting tube 42'. Gas pressure from gas source 44 is sufficient to provide the volumetric flow for which flow meter 40 is preset.
  • Gas source 44 may comprise pressurized oxygen or other breathable gas from a hospital pressurized 02 delivery system, from a tank of compressed oxygen, a blender, directly from ventilator 10, or from other sources of pressurized gases conventionally used in respiratory therapy.
  • Flow meters are well known and widely used in the art. Such flow meters may comprise macro and vernier adjustable controls for very accurate and precise gas flow settings. Although O2 is preferred for some selected medicants, source 44 may supply oxygen blended with other gases.
  • Nebulizing device 48 comprises nebulizer 20 which functions in combination with an attached nebulizer vial 50. Nebulizing device 48 nebulizes or aerosolizes fluids contained in reservoir 72 in nebulizer vial 50, thereby producing a mist which is carried to patient 30 by influent flow of gas from ventilator 10 through pathway 26 and by nebulizing gas received from gas source 44. Delivery of nebulized fluid to patient 30 is therefore dependent upon the availability of fluid resident in the reservoir 72 at any given moment.
  • a continuous flow system 106 provides substantially continuous delivery of fluid to nebulizer vial 50 to maintain the volume of liquid at an adequate and essentially unchanging level in reservoir 72.
  • Continuous flow system 106 comprises (i) nebulizer vial 50, (ii) at least one influent access port 50 to nebulizer vial 50, (iii) connecting tubing 54 interposed between a pump 60 and connected at influent access port 52, (iv) the pump 60, (v) additional tubing 58 providing a medicant pathway 56' interposed between and connected to pump 60 and a large medicant supply vessel 70, and (vi) the large medicant supply vessel 70.
  • continuous flow system 106 maintains a constant volume of liquid in nebulizer vial 50, continuation upon the initial contents of reservoir 72 at the time nebulizer vial 50 is joined to nebulizer 20, but upon the larger volume available in large medicant supply vessel 70.
  • supply vessels may be IV bags, bottles or other nebulizing medication and reagent containing vessels from which therapeutic liquids are drawn.
  • nebulizing device 48 comprises nebulizer vial 50 which releasibly and sealably attaches to nebulizer 20. Such attachment may be by a male threaded member 62 of nebulizer vial 50 insertably joined into a female threaded member 64 of nebulizer 20.
  • an end 68 of an aspirator tube 66 is disposed below the surface of a reservoir 72 in the bottom of nebulizer vial 50 as best seen in Figure 3.
  • Nebulizer 20 may be a general construction similar to commercially available nebulizer devices generally used for administration of aerosolized fluids but featuring a jet passage member having (i) an inlet portion for introduction of carrier gas thereinto and (ii) a nozzle portion positioned in the interior volume of the nebulizer housing for discharging carrier gas in jet form in the interior volume, for entrainment of medicament from the reservoir portion of the housing in the carrier gas jet, with the nozzle portion comprising a nozzle orifice accommodating carrier gas flow therethrough, wherein the nozzle orifice has an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch, preferably from about 0.007 inch to about 0.018 inch, more preferably from about 0.008 inch to about 0.015 inch, and most preferably from about 0.010 inch to about 0.012 inch.
  • Nebulizer vial 50 may suitably comprise a container made to releasibly but sealably attach to commercially available nebulizer 20 and, in combination with a gravitational or mechanical pump and a large supply vessel provide a continuously filled reservoir 72 from which medicants are aspirated via aspirator tube 66 into nebulizer 20 and aerosolized.
  • the nebulizer vial may be of a conventional type, unconnected to any external liquid supply vessel, for delivery of a unitary does of medicant from the reservoir portion 72 of the nebulizer housing.
  • Figure 3 provides a sectional view of nebulizing device 48, comprising nebulizer 20 threadably interconnected to nebulizer vial 50.
  • nebulizer 20 threadably interconnected to nebulizer vial 50.
  • the following description of nebulizer 20 is provided for a general understanding of the interaction between nebulizer 20 and nebulizer vial 50.
  • Nebulizer 20 as seen in Figure 3, comprises a housing 262 which comprises a top nebulizer inflow connecting tube 44', a jet passage member 260, with nozzle orifice 203 in the lower nozzle portion thereof, a baffle assembly 268, and aspirator tube 66.
  • Baffle assembly 268 further comprises an aspirator tube connecting orifice 274, a liquid effluent orifice 276, and an impingement baffle 272 in the form of a baffle plate presenting an impingement surface to gas exiting nozzle orifice 203 and liquid entrained in the gas from liquid effluent orifice 276.
  • Pressurized gas which provides the nebulizing high velocity stream for nebulization is provided through top nebulizer inflow connecting tube 44'.
  • the high velocity stream is produced by jet passage member 260 in the direction of impingement baffle 272.
  • Housing 262 further comprises a pair of baffles 264 and 266 which lie in inhalation pathway 26 and shield the space where nebulization occurs.
  • a hollow frustoconical baffle 278 is disposed in the medial space between inhalation pathway 26 and the extension of baffles 264 and 266 to limit air flow into nebulizer vial 50 and aid in entraining mist into inhalation pathway 26. While this description of an illustrative nebulizer embodiment is for a single connecting tube 44', nozzle 260 and associated parts, the number of inflow connecting tubes, nozzles, and associated nebulizer parts may vary in the nebulizer as is well known in the art.
  • Nebulizer vial 50 is suitably made from synthetic resinous material and preferably is transparent for easy monitoring by a respiratory technician or other patient attendant.
  • the materials of construction of nebulizer vials are well known in the art. They are usually of chemically-inert thermoplastic such as polyolefins or polyvinyl chlorides. Their selection and fabrication are well within the skill of the art.
  • nebulizer vial 50 comprises a port 52 and a therethrough inserted feedthrough 74.
  • port 52 may be located at different sites in nebulizer vial 50 as required to meet tubing placement and other physical fluid delivery restrictions.
  • tube 54 is engaged about feedthrough 74 to be relasibly but snugly affixed thereat in pressure-sealed relation.
  • Feedthrough 74 comprises a through hole 280, as seen in Figure 3, through which fluid received under pressure from pump 60 flows into nebulizer vial 50.
  • the bottom of nebulizer vial 50 comprises an inverted conically shaped part 76.
  • Apex 78 of inverted conically shaped part 76 provides a low point for fluid contained in reservoir 72 where aspirating tube 66 end 68 is normally disposed when nebulizer 20 is affixed to nebulizer vial 50.
  • a plurality of legs 80 provide a level support when nebulizer vial 50 is disposed on a horizontal surface to maintain fluid at the bottom of inverted conically shaped part 76.
  • large supply vessel 70 seen to be in the form of a plastic container bag, is disposed on a hook 72', such as an IV bag is hung.
  • Tube 58 provides the fluid pathway to pump 60.
  • Pump 60 comprises rate control dial 282 and flow rate display 284 which provide for manual flow rate adjustment.
  • the flow rate of pump 60 is set to provide a rate flow of liquid into nebulizer vial 50 which is substantially equal to the rate of loss of liquid from the reservoir 72 through aerosolization.
  • Such a flow rate for pump 60 is derived from a nomogram which comprises the variables of gas flow through flow meter 40 and through ventilator 10. A different nomogram is generated for each combination of nebulizer 20, flow meter 40, and ventilator 10.
  • pump 60 is a variable flow controlling pump which provides and maintains an accurate and precise flow rate.
  • Pump 60 may be a syringe infusion pump, model number 2001 , available from Medfusion, a Medox, Inc. Company, 3450 River Green Court, Duluth, GA 30136.
  • Figure 4 is a cross-sectional elevation view of a nebulization structure 300 which is mountable in the interior volume of a nebulizer housing, as for example a nebulizer housing of the type illustratively shown and described with respect to Figures 1-3 hereof.
  • Nebulization structure 300 includes a jet passage member 302 having an inlet portion 304 for introduction of carrier gas thereinto, such carrier gas being introduced from suitable conduit or flow circuit means (not shown) to effect flow of carrier gas into the inlet portion 304 of jet passage member 302 in the direction indicated by arrow A in Figure 4.
  • Jet passage member 302 further includes a nozzle portion 306, which is positioned in the interior volume of the nebulizer housing, for discharging carrier gas in jet form in the interior volume, through nozzle orifice 308.
  • the nozzle orifice has an equivalent orifice diameter in the range of from about 0.05 inch to about 0.020 inch, and preferably is at least generally circular in cross-sectional shape, transverse to the flow direction indicated by arrow A.
  • carrier gas passing through the jet passage member 302 flows through the nozzle orifice 308 in the direction indicated by arrow B, with the carrier gas flow rate suitably being on the order of from about 1.75 to about 3.25 liters per minute.
  • the nebulization structure 300 further comprises an expansion chamber 310 in flow-receiving communication with the nozzle portion 306 of the jet passage member.
  • the expansion 310 defines an expansion volume 312 therewithin, and the expansion chamber includes an orifice 314 through which the carrier gas is flowed in the direction indicated by arrow C subsequent to entrainment in such carrier gas of liquid to be nebulized, which enters the expansion volume 312 in the direction indicated by arrow D, from extension tube 316 of the expansion chamber.
  • Expansion tube 316 has a lower open end 318 as shown, and the tube is journaled or otherwise secured in closed flow relationship to aspiration tube 320 having an interior flow passage 322 and a lower open end 324 into which liquid is aspiratingly drawn in the direction indicated by arrow E.
  • an impingement member 328 Secured to the aspiration tube 320, as shown, by means of arm 326 is an impingement member 328 presenting an impingement surface on its upper portion onto which the delivery mixture comprising carrier gas and entrained liquid is impinged, for dispersion in the directions indicated by arrows F in Figure 4.
  • the impingement member 328 may, as shown, feature a convex impingement surface, whereby dispersion in a wide variety of directions in the interior volume, is achieved.
  • the nebulization structure 300 is disposed so that the lower open end 324 of aspiration tube 320 is disposed in a pool or body of liquid medicant in the lower reservoir portion of the nebulizer housing.
  • the flow of carrier gas in the direction indicated by sequential arrows A, B, and C causes a reduced gas pressure in the expansion chamber 312 which effects aspiration of liquid through aspiration tube 320 and extension tube 316 to the locus of the expansion chamber 310 interior volume 312 in proximity to nozzle orifice 308.
  • Nozzle orifice 308 may suitably have an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch, preferably in the range of from about 0.007 to about 0.018 inch, more preferably from about 0.008 inch to about 0.015 inch, and most preferably from about 0.010 inch to about 0.012 inch.
  • expansion chamber orifice 314 which suitably has an equivalent orifice diameter in the range of from about 0.025 inch to about 0.060 inch, and more preferably from about 0.30 inch to about 0.050 inch.
  • the carrier gas flow rate through the jet passage member is advantageously in the range of from about 0.5 to about 3.25 liters per minute, to disperse the medicant into the carrier gas and form a pulmonarily effective nebulized medicant in the carrier gas, as a medicant/carrier gas mixture.
  • the volumetric flow rate of carrier gas tends to become insufficient to achieve good dispersion of the medicant in the flowing gas stream.
  • the volumetric carrier gas flow rate is in the range of from about 1.0 to about 3.0 liters per minute, and most preferably is in the range of from about 2.2 to about 2.8 liters per minute, based on corresponding considerations, as regards the end point values of the preferred and most preferred ranges, corresponding to the reasons set out above in the respect of the end points of the broad volumetric flow rate range of from about 0.5 to about 3.25 liters per minute.
  • nebulizer device and nebulization method of the present invention are usefully employed with any of a wide variety of nebulizable materials, including liquid and solid medicants, liquid medicants being advantageously practiced with liquid nebulizer devices in accordance with the present invention, as illustratively embodied in the device shown and described with reference to Figures 1-3 hereof, and the nebulization structure alternatively described in connection with Figure 4 hereof; particulate solid, e.g., powdered, medicants may usefully be administered with powder nebulizer means as more fully shown and described in our prior copending U.S. patent application number 07/846,784 filed March 4, 1992, the disclosure of which hereby is incorporated herein by reference.
  • An illustratively powder nebulizer potentially useful in the broad practice of the present invention is illustratively described hereinafter with reference to Figures 5 and 6 herein.
  • a pulmonarily degradable encapsulant medium i.e., a medium in which the bioactive substances encapsulated and which is degradable in the pulmonary locus to release the bioactive substance.
  • liquid nebulizer apparatus in accordance with the present invention are particularly usefully employed for administration of lung surfactants, such as NEOSURF® (Burroughs Wellcome Company, Research Triangle Park, NC) and pentamidine, which is usefully employed in the treatment of pneumocystis infections accompanying HIV infection, and development of ARC and AIDS.
  • lung surfactants such as NEOSURF® (Burroughs Wellcome Company, Research Triangle Park, NC) and pentamidine, which is usefully employed in the treatment of pneumocystis infections accompanying HIV infection, and development of ARC and AIDS.
  • the present invention contemplates a method of forming a solid particle dispersion with the use of a carrier gas at the low volumetric flow rate values discussed hereinabove, and with a suitably configured nebulizer apparatus, featuring a jet passage member having the dimensional characteristics described hereinabove.
  • the nebulizer housing includes a reservoir portion for the particulate solid medicant, which preferably is general conical-shaped or funicular in shape, for containing the particulate solid to be dispersed.
  • a jet of carrier gas is directed downwardly through the jet passage member to the lower extremity of such generally conical-shape or funicular shaped receptacle to entrain particles of the particulate solid in the carrier, to form a solids dispersion in the carrier gas which then is discharged from the nebulizer device to suitable breathing circuitry means.
  • the gas stream directed at the particulate solid is passed through the nozzle orifice of the jet passage member, then expanded and passed through a second orifice of the expansion chamber, with an entrainment structure channeling gas from the receptacle to the jet structure, to increase total gas flow and assist in the production of a gas jet flow stream of desired velocity and pressure characteristics.
  • the entrainment structure may comprise a chamber defining a plenum, with an entrainment port communicating gas flow relationship with the interior volume of the housing, and with an outlet port communicating with the second orifice to cooperatively form a jet structure therewith, as described in the aforementioned prior copending application number 07/846,784.
  • a patient 430 undergoing respiratory therapy, is fitted with an endotracheal tube 424.
  • the proximal trunk end 418 of a "Y"-shaped connector 432 is insertably connected to a distal end 425 of endotracheal tube 424.
  • Nebulizing device 448 is connected to arm 434 of "Y"-shaped connector 423 via tube 422 which is interposed and connected between exit port 421 of nebulizer device 48 and arm 34 of the "Y"- shaped connector 432 at port 433.
  • a distal end 435 of arm 434 is insertably connected to a proximal end 14 of gas delivery tube 412.
  • Gas delivery tube 412 provides the distal portion of inhalation respiratory pathway 426 and connects to the output inhalation gas of a ventilator 410.
  • Ventilator 410 therapy supplies periodic, breath-sustaining pulses of pressurized gas through tube 412 and through arm 34 of "Y"-shaped connector 432 into endotracheal tube 424 and to patient 430.
  • the other distal end 36 of "Y"-shaped connector 432 comprises a proximal portion of an exhalation respiratory pathway 428 which further comprises tube 416 which returns exhalation flow to ventilator 410.
  • ventilators are known and available in the art. Generally, ventilators which are conventionally used with nebulizers may be used with the present invention.
  • Nebulizer device 448 receives a supply of nebulizing gas from a flow meter 40 along a fluid pathway 426' which passes through a tube 42 interposed and connected between flow meter 440 and a top nebulizer inflow connecting tube 444'.
  • Flow meter 440 receives a pressurized gas from a gas source 444 through a connecting tube 442'. Gas pressure from gas source 444 is sufficient to provide the volumetric flow for which flow meter 440 is preset.
  • Gas source 444 may comprise pressurized oxygen or other breathable gas from the hospital pressurized oxygen delivery system, from a tank of compressed oxygen, a blender, directly from ventilator 410 or from other sources of pressurized gases used in respiratory therapy.
  • Flow meters are well known and widely used in the art. Such flow meters may comprise macro and vernier adjustable controls for very accurate and precise gas flow setting. Although oxygen is preferred for some selected medicants, source 444 may supply oxygen blended with other gases.
  • Nebulizing device 448 comprises nebulizer upper portion 420 and a nebulizer receptacle 450. Nebulizing device 448 nebulizes or aerosolizes powdered medication contained in nebulizer receptacle 450 therapy producing a mist (particulate solids-in-gas dispersion) which is carried to patient 430 by influent flow of gas form ventilator 410 through pathway 426' and by nebulizing gas received from gas source 444.
  • mist particle solids-in-gas dispersion
  • the nebulizing device 448 comprises nebulizer receptacle 450 which is attached to nebulizer upper portion 420.
  • the top of the nebulizer receptacle 450 is 1.5 inches in diameter
  • the bottom is 0.25 inches in diameter
  • the nebulizer receptacle 450 measures 1.5 inches from top to bottom.
  • an end 468 of nozzle 466 is disposed above the surface of a reservoir 472 in the bottom of the nebulizer receptacle 450.
  • Figure 4 provides a sectional view of nebulizing device 448 of Figure 5, comprising nebulizer upper portion 420 and nebulizer receptacle 450.
  • the nebulizer upper portion 420 comprises a housing 362 which includes a nebulizer inflow connector tube 444', a first nozzle 360, and a second nozzle 466.
  • Pressurized gas is provided through nebulizer inflow connecting tube 444'.
  • the high velocity stream of gas for nebulization is produced by nozzle 360 and nozzle 466.
  • the pressurized gas is discharged from the first nozzle 466.
  • the pressurized gas is discharged from the first nozzle 360 into the receiving volume 465 of the second nozzle 466, thereby undergoing expansion, following which the gas is discharged into entrainment assembly 467.
  • a resulting below ambient pressure within entrainment assembly 467 creates a sufficient pressure differential between entrainment port 469 and nebulizer receptacle 450 to draw gas from nebulizer receptacle 450 through entrainment port 469 and into entrainment assembly 467 where the entrained gas is added to the high velocity gas stream being directed toward reservoir 472.
  • the resultingly augmented gas stream exits entrainment assembly 467 through outlet port 470.
  • the high velocity gas stream thus discharged from jet structure 471 engages the powdered medication in the lower portion of nebulizer receptacle 450, which is of progressively decreasing transverse cross-section. As a result, there is achieved a high extent of solids entrainment in the gas stream, as discharged into inhalation pathway 426' via exit 421.
  • the nebulizer system is suitably of a configuration as shown and described with reference to Figure 2 herein, as arranged for continuous delivery of liquid from a reservoir which is separate and distinct from the nebulizer device, being coupled thereto by suitable tubing or connection means including an interposed pump, to ensure continuous liquid delivery, and maintenance of a constant liquid level in the housing of the nebulizer device.
  • the nebulizer features a jet passage member, e.g., of a type as shown in Figures 3 or 4 hereof, in which the nozzle orifice has an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch, and most preferably from about 0.010 inch to about 0.012 inch.
  • the nebulizer system may be arranged as shown in Figure 5, utilizing a nebulizer as described in connection with Figure 6 hereof.
  • the flow of carrier gas through the jet passage member of the nebulizer is at a flow rate in the range of from about 0.5 to about 3.25 liters per minute, preferably from about 1.0 to about 3.0 liters per minute, and most preferably in the range of from about 2.2 to about 2.8 liters per minute.
  • the nebulization technology of the present invention permits a low flow rate of carrier gas to be utilized in the delivery of medicament to a patient, without the deterioration of nebulization efficiency which has characterized prior art nebulization systems attempting to use flow rates below the conventional flow rate range of from about 6 to about 8 liters per minute.
  • the nebulization system of the present invention thus is highly efficacious in delivering medicaments to a pulmonary situs, including medicament species such as lung surfactants or precursors thereof, terbutaline, salbutamol, dexamethasone, chromolyn sodium, pentamidine, and bioactive substances encapsulated in a pulmonarily degradable medium.
  • medicament species such as lung surfactants or precursors thereof, terbutaline, salbutamol, dexamethasone, chromolyn sodium, pentamidine, and bioactive substances encapsulated in a pulmonarily degradable medium.

Abstract

A nebulizer device (48), comprising: a housing (262) defining an interior volume therewithin, including a reservoir portion (72) for holding medicament therein for entrainment into a carrier gas to form a delivery gas mixture comprising nebulized medicament and carrier gas; a discharge port (22) connected to the housing in flow communication with the interior volume therewithin, for discharging the delivery gas mixture from the housing; a jet passage member (260) having (i) an inlet portion (44') for introduction of carrier gas thereinto and (ii) a nozzle portion positioned in the interior volume of the housing for discharging carrier gas in jet form in the interior volume, for entrainment of medicament from the reservoir portion of the housing in the carrier gas jet, such nozzle portion comprising a nozzle orifice (203) accommodating carrier gas flow therethrough, wherein the nozzle orifice has an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch.

Description

LOW FLOW RATE NEBULIZER, METHOD AND APPARATUS .
Description
Field of the Invention
The present invention relates to a low flow rate nebulization method and a low flow rate nebulizer apparatus used in respiratory care and, in particular, to a continuously connected, continuous low gas flow rate liquid nebulizer useful in respiratory care to deliver liquid medications.
Description of the Related Art
Critically ill patients requiring mechanical ventilation are often victims of respiratory distress syndrome, status asthamaticus and pulmonary infections. Treatment of these and other sever respiratory conditions includes medications delivered directly to the lungs of the patient.
Respiratory delivery of medication for these conditions is preferable to oral, intravenous and subcutaneous delivery because it is non-invasive, permits rapid action of medicament, requires a relatively small dosage, is not filtered through the liver of the patient, and produces a low incidence of systemic side effects.
Nebulized or aerosolized solutions are the preferred method of respiratory delivery of medication; when fragmented into small particles, medicants are more efficiently deposited near sites of medicant activity in the lung.
Respiratory medications may be delivered to the lungs of the patient as an aerosol of a liquid or a powder. Clinical aerosols are currently generated by jet or ultrasonic nebulizers, metered dose inhalers (MDI) and dry powdered inhalers.
Liquid nebulizers are well known in the art. Aerosolization of liquid medications is performed by putting a liquid product in a chamber (nebulizer vial) that has a pressurized flow of gas through it. Utilizing the Bernoulli principle, liquid is drawn through an aspirator tube into the path of a high velocity gas and is fractured into a mist. The mist flows out of the nebulizer by inertial forces.
There are two principal types of nebulizers for the delivery of liquid medication to the lungs: jet nebulizers and ultrasonic nebulizers. In conventional jet nebulizers, compressed gas from a compressor or hospital air line is passed through a narrow constriction known as a jet. This creates an area of low pressure, and liquid medication from a reservoir is drawn up through a feed tube and fragmented into droplets by the airstream. Only the smallest drops leave the nebulizer directly, while the majority impact on baffles and walls and are returned to the reservoir. Consequently, jet nebulization takes several minutes to complete, depending upon the initial volume.
Important disadvantages of nebulizers include low lung deposition related to the use of tidal breathing. A substantial portion of the dose used in a jet nebulizer is retained permanently as a dead or residual volume on baffles and internal walls of the nebulizer chamber and cannot be released. Generally only 2- 10% of the dose placed in the nebulizer ever reaches the lung. The consequences are a higher drug dosage and longer administrative time, along with the associated cost and risk of contamination.
Current conventional liquid aerosol drug therapy involves administering a finite quantity (dose) of liquid medication deposited into the nebulizer vial and administered until the vial is empty. In normal practice, the period of delivery of each dose is measured in minutes or fractions of an hour. Depending upon the severity of the illness and the duration of activity of the medication, this process is repeated periodically at variable frequencies.
Such intermittent drug administration has the inherent results of (1) subjecting the patient to "peaks and "valleys" of drug dosage effects, (2) requiring respiratory therapy personnel to periodically service the needs of the patient and nebulizer by measuring doses, disconnecting, filling and reconnecting the nebulizer and periodically monitoring the administration, and (3) disconnecting the patient from an attached ventilator during nebulizer service. Further, medication which is administered as a large volume, such as a surfactant, now requires large medicant flow volume through the nebulizer requiring frequent servicing and refilling of the nebulizer vial which interferes with ventilator function.
In some cases, a significant proportion of the respiratory flow to the patient is through the nebulizer such as in the operational use of the VISAN nebulizer of Burroughs Wellcome Company. In the delivery of the medicant EXOSURF® surfactant, up to half of the tidal volume flows through the nebulizing ports of the nebulizer to unite with the balance of the respiratory gas delivered directly from the ventilator in a Y-shaped junction in the flow path to the patient downstream from the nebulizer. In such delivery, the nebulizing gas is synchronized with the nebulizer such that nebulizing gas is delivered to the nebulizer only during the ventilatory inhalation cycle.
A nebulizer comprising a vial-like nebulizing chamber which comprises a two-position flow control valve assembly for accessibly draining and refilling the nebulizing chamber is disclosed in U.S. Patent 4,805,609. While the valve assembly provides access for resupplying a medication close while the nebulizing chamber remains in sealed relation with the nebulizer, such resupply is service intensive and limited to volumes containable by the nebulizing chamber.
Recent developments in respiration therapy involve aerosolization and delivery of nebulized mist on a continuous basis over several hours. For example, an entire day's medication dosage is delivered at a constant rate over twenty-four hours, as opposed to conventionally delivering the same dosage as four separate aliquots at six hour intervals. Such deliver eliminates the "peak" and "valleys" effects of the drug, reduces respiratory personnel support time, and also reduces the number of time critical medication/nebulizer interconnections are interrupted, thereby diminishing the potentially dangerous exposures of the patient to the effects of respiratory circuit contamination.
Delivery of medicated mist is both in combination with a ventilator and through masks, mouthpieces, and other voluntary mist inhalation apparatus.
The second type of aerosol generator is a metered dose inhalator (MDI), which delivers a bolus of more concentrated drug aerosols than the solution commonly available for nebulizers. For optimal effect, MDI delivery systems require proper administration technique, which includes coordinated actuation of aerosol delivery with inhalation, a slow inhalation of 0.5-0.75 liters per second, a deep breath approaching inspiratory capacity inhalation, and at least 4 seconds of breath holding.
Many patients find it difficult to properly administer medication with an MDI, especially during acute exorbation. An article which appeared in Eur. J. Respir. Dis., 68(5), 332 (1986), entitled "Bronchodilator Affects of a Fenoterol Meter Dose Inhaler and Fenoterol Powder in Asthamatics with Poor Inhaler Technique," described test findings showing that the effectiveness of bronchodilator medication, when delivered with an MDI, is dependent on good MDI technique. The article suggested that delivery of medication in a powdered form is more reliable for patients who do not exercise proper MDI technique.
MDI's can be equipped with devices that automatically couple actuation to inspiratory effort, thus eliminating the need for coordinating hand action with inhalation. Devices such as spacers and holding chambers also decrease partial velocity and reduce the number of large particles. Both of these features reduce oral pharyngeal and large airway deposition with a consequent reduction in systemic absorption. Deposition of aerosols from an MDI with a spacer or holding chamber is similar and perhaps better than the deposition of a property used MDI alone.
Advantages of the MDI include deposition of 10-15% of the metered dose with consequent short treatment time, low cost and increased convenience. However, MDI's cannot be used by patients requiring mechanical ventilation. Other advantages include the need for patient cooperation, the practical limitations and inconveniences associated with increased dosing requirements due to the typically small dosages administered with an MDI, the limited number of currently available drugs, and the dependence on fluorocarbons of aerosol generation.
Others have recognized the need for new inhalation devices such as modified dry powder inhalers to replace use of MDI's due to environmental concerns related to the use of fluorocarbons. See "Today's Treatment of Airway Obstruction...and Tomorrow's?" Flenley, D.C., Respiration, 55 Suppl. 2, 4 (1989). The third type of aerosol generator is a dry powder inhaler. Dry powdered inhalation devices currently in use are the Spinhaler, the Rotahaler, the Turbuhaler and the disc inhaler. Dry powdered inhalers are breath actuated and usually require a higher inspiratory flow rate than that required for an MDI or a nebulizer. Flow rates of 1-2 liters per second are usually considered optimal, although flow rates as low as 0.5 liters per second may be effective for some dry powdered inhalers.
Advantages of dry powdered inhalers include relative ease of administration and the fact that they do not require fluorocarbon propellants. When a dry powdered inhaler is used properly, deposition appears to be similar to that of a properly used MDI.
However, powdered inhalers are limited by the dose they can provide and by the number of drugs currently available. Only terbutaline, salbutamol, dexamethasone and chromolyn sodium are available in powder form.
All conventional powder inhaler delivery systems utilize single dose capsules except the Turbuhaler for administration of terbutaline. While several devices have been developed which permit preloading of several single dose capsules, neither these devices nor the Turbuhaler have eliminated the other disadvantages of conventional powdered inhalers. See "A New Inhalation System for Bronchodilation. Study of the Acceptance of the Ingelheim M Inhaler in Chronic Obstructive Respiratory Tract Disease." Mutterlein, B. Schmidt, B., Fleisher, W., and Freund, D., Fortschr. Med., April 15, 108(11), 225 (1990); "In Vivo Evaluation of the New Multiple Dose Powder Inhaler and the Rotahaler Using the Gama Scintigraphy," Vidaren, M., Paronen, P., Vidaren, P. Vainir, P., and Nuutinen, J., Acta. Pharm. Nord., 2(1), 3 (1990); "Clinical Use of Dry Powder Systems," Crompton, G. K., Eur. J. Respir. Dis. Sυppl., 122, 96 (1962).
Other disadvantages of dry powdered inhalers include the following: a) they are usually not particle size-selective and thus heavy oral pharyngeal deposition may occur; b) high humidity environments may cause clumping of the particles; and c) dry powdered inhalers cannot be used in ventilatory circuits. Currently available devices for delivery of powdered medications to respiratory therapy do not employ nebulization technology.
The use of compressed air powered jet mills as a power generator or inhalation experiments is disclosed in "Use of a Jet Mill for Disbursing Dry Powder for Inhalation Studies," Cheng, Y.S., Marshall, T.C., Henderson, R.R., and Newton, G. J., Am. Ind. Hya. Assoc. J., 46(8), 449 (1985). The jet mill consisted of an elongated channel), one material delivery jet, and two high speed air jets. Powder fed into the channel was disbursed by turbulence and centrifugal forces. The powder used in the inhalation experiments consisted of dye materials to be tested for toxicity. A flow rate of 400 liters per minute was maintained. The article does not address nebulization of powdered medication for purposes of respiratory therapy.
U.S. Patent 4,232,002 discloses procedures for administering antihistamines. Methods disclosed include inhalation by a patient of mist, nebulized spray, or a cloud of fine solid particles. Products for delivery of medication include pressurized canister inhalers, portable dry powder insuffilators using capsules, and nebulizer. The only dry powder delivery system described is a dry powder inhaler using capsules of dry powder in single dose units. The delivery method described involves puncturing a capsule of dry powder medication which is disbursed by means of a turbomixer to be inhaled through a mouth piece. This patent does not address continuous flow or continuous delivery of inhalable medication. It does not enablingly teach or address jet nebulization of powdered solid medications, and does not teach a nebulizer vial which connects to a nebulizer to provide a device for introducing continuous flow.
U.S. Patent 3,669,113 discloses a method and device for dispensing powdered medication from a perforated container by rotating the container by pneumatic means and causing the axis of rotation to the container to precess and describe a path of precession which is contained within a generally conical surface of a precession. The mechanisms described are based on varying shaft and bearing configurations. The method of this patent is said to be especially well suited to delivery of particles less than 80 microns in diameter. The patent does not address jet nebulization, continuous flow or continuous nebulization. Recent developments in respiration therapy involve aerosolization and delivery of nebulized liquids on a continuous basis over several hours. Such delivery stabilizes the effects of the medication over time, reduces respiratory personnel support time, and reduces the changes of respiratory circuit contamination.
In our prior co-pending U.S. Patent Application No. 07/729,518, filed July 12, 1991, a liquid nebulizer system is disclosed comprising a nebulizer attachable nebulizer vial, a large supply vessel, and a fluid delivery system, to be used with a conventional liquid nebulizer. The liquid nebulizer system provides for continuous delivery of liquid medication from a large supply vessel into the nebulizer vial which is attached to a conventional nebulizing apparatus, permitting continuous delivery of nebulized liquid medication. The disclosure of such prior copending application is hereby incorporated herein by reference.
In conventional, commercially available liquid nebulizer systems, a carrier gas flow rate in the range of from about 6 to about 8 liters per minute is used. Such flow rate range is necessary for conventional nebulizer devices to operate with suitable efficiency, but such relatively large flow rates also lead to substantial loss and wastage of the nebulized drug, due primarily to the fact that the flow rates in such range exceed the patient uptake rate on a continuous basis.
It is possible to reduce carrier gas flow rate below such 6-8 liter per minute range, but at such lower flow rates, nebulization efficiency becomes disproportionately poorer as the flow rate is reduced to levels as low as 4-5 liters per minute, with the result that a carrier gas flow rate of 4 liters per minute is considered a conventional "low flow" regime defining the limits of operability of commercially available liquid nebulizer devices.
Further, even at such "low flow" conditions on the order of 4-5 liters per minute, the tidal volume respiratory gas is substantially larger than lung capacity for neonatal patients and others with reduced lung capacity such as patients who possess only one lung. At low flow rates, on the order of 4-5 liters per minute, the nebulization efficiency becomes unsuitable since the gas flow rate is not adequate to produce a usefully fine particle size distribution of the medicant. Accordingly, where low flow deliver of medicant materials is required, the only practical device is an ultrasonic nozzle. However, ultrasonic nozzles suffer the deficiencies that they are costly, tend to denature a variety of otherwise useful drugs which in denatured form are non-efficacious, and ultrasonic nozzles tend to have a short operating life, due to nozzle wear and degradation.
It would therefore be highly desirable to provide a liquid nebulizer device which is usefully employed to delivery medicant materials in a carrier gas flow stream at a flow rate substantially below the range of 4-5 liters per minute, which is the practical lower limit with conventional nebulizer apparatus.
Accordingly, it is an object of the present invention to provide such a liquid nebulizer system capable of operating at carrier gas flow rates substantially below the 4-5 liter per minute practical lower limit of currently available commercial nebulizer devices.
It is another object of the present invention to provide a nebulization system of such type which may be used for delivery of liquid as well as solid medicaments.
It is a further object of the present invention to provide a method and apparatus for continuous respiratory delivery by low flow rate gas nebulization of liquid medicaments.
It is still another object of the present invention to provide a method and apparatus for respiratory delivery of low gas flow nebulization of liquid medication which may be used in ventilatory circuits.
It is yet another object of the invention to provide a method and apparatus which overcome the disadvantages associated with currently available respiratory medicant delivery systems.
These and other objects and advantages of the present invention will be more fully apparent from the ensuing disclosure and appended claims. SUMMARY OF THE INVENTION
In a broad apparatus aspect, the present invention relates to a nebulizer device, comprising:
(a) a housing defining an interior volume therewithin, including a reservoir portion for holding medicament therein for entrainment into a carrier gas to form a delivery gas mixture comprising nebulized medicament and carrier gas;
(b) a discharge port connected to the housing in flow communication with the interior volume therewithin, for discharging the delivery gas mixture from the housing;
(c) a jet passage member having (i) an inlet portion for introduction of carrier gas thereinto and (ii) a nozzle portion positioned in the interior volume of the housing for discharging carrier gas in jet form in the interior volume, for entrainment of medicament from the reservoir portion of the housing in the carrier gas jet, said nozzle portion comprising a nozzle orifice accommodating carrier gas flow therethrough, wherein the nozzle orifice has an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch.
In the above-described apparatus, the nozzle orifice preferably is in the range of from about 0.007 inch to about 0.018 inch, more preferably from about 0.008 inch to about 0.015 inch, and most preferably from about 0.010 inch to about 0.012 inch.
The nebulizer device in one embodiment particularly suited for nebulization of liquid medicants may further comprising means disposed in the interior volume of the housing for delivering liquid from the reservoir portion of the housing to a discharge locus of the nozzle orifice of the jet passage member, whereby delivered liquid is entrained in carrier gas flowed through the jet passage member when the reservoir portion contains liquid. In a specific embodiment, such means may comprise a nebulization structure mounted in the interior volume of the housing, including: an expansion chamber in flow-receiving communication with the nozzle portion of the jet passage member, such expansion chamber having an orifice therein, in alignment with the orifice of the jet passage member; an impingement baffle presenting an impingement surface in alignment with the orifices of the jet passage member and the expansion chamber; and means for aspiratingly delivering liquid from the reservoir portion of the housing when liquid is contained in the reservoir and carrier gas is flowed in sequence through the orifices of the jet passage member and the expansion chamber at sufficient volumetric flow rate. In such embodiment, the orifice in the expansion chamber has an equivalent orifice diameter in the range of from about 0.025 inch to about 0.060 inch, and preferably from about 0.030 inch to about 0.050 inch.
The nebulizer devise of the invention may further comprise pressurized carrier gas supply means coupled in gas-supplying relationship with the inlet portion of the jet passage member, and/or a breathing circuit coupled with the discharge port for receiving delivery gas mixture and conveying same to a patient interconnected with the breathing circuit.
In one method aspect, the present invention relates to a method of delivering a nebulized medicant to a patient, comprising:
(a) providing a nebulizer apparatus including a breathing circuit coupled to the patient and including a nebulizer device (i) containing the medicant, and (ii) constructed and arranged for producing a pulmonarily effective nebulized medicant in a carrier gas passed through the nebulizer device at a carrier gas flow rate in the range of from about 0.5 to about 3.25 liters per minute;
(b) flowing the carrier gas through the nebulizer device at a flow rate in the range of from about 0.5 to about 3.25 liters per minute, to disperse the medicant into the carrier gas and form said pulmonarily effective nebulized medicant in the carrier gas, as a medicant/carrier gas mixture; and
(c) passing the medicant/carrier gas mixture through the breathing circuit to a pulmonary situs of the patient.
In another method aspect, the present invention relates to a method of delivering a nebulized medicant to a patient, comprising:
(I) providing a nebulizer apparatus including a breathing circuit coupled to the patient and including a nebulizer device, wherein the nebulizer device comprises: (a) a housing defining an interior volume therewithin, including a reservoir portion for holding medicament therein for entrainment into a carrier gas to form a delivery gas mixture comprising nebulized medicament and carrier gas;
(b) a discharge port connected to the housing in flow communication with the interior volume therewithin, for discharging the delivery gas mixture from the housing;
(c) a jet passage member having (i) an inlet portion for introduction of carrier gas thereinto and (ii) a nozzle portion positioned in the interior volume of the housing for discharging carrier gas in jet form in the interior volume, for entrainment of medicament from the reservoir portion of the housing in the carrier gas jet, such nozzle portion comprising a nozzle orifice accommodating carrier gas flow therethrough, wherein the nozzle orifice has an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch;
(II) disposing a medicant in the reservoir portion of the housing;
(III) flowing the carrier gas through the jet passage member of the nebulizer device at a flow rate in the range of from about 0.5 to about 3.25 liters per minute, to disperse the medicant into the carrier gas and form a pulmonarily effective nebulized medicant in the carrier gas, as a medicant/carrier gas mixture; and
(IV) passing the medicant/carrier gas mixture through the breathing circuit to a pulmonary situs of the patient.
In the practice of the method of the present invention, the carrier gas flow rate preferably is in the range of from about 1.0 to about 3.0 liters per minute, and most preferably is in the range of from about 2.2 to about 2.8 liters per minute.
The medicant which is administered to the patient in the practice of the nebulization technology of the present invention may for example comprise a material selected from the group consisting of lung surfactants or precursors thereof, terbutaline, salbutamol, dexamethasone, chromolyn sodium, pentamidine, and bioactive substances encapsulated in a pulmonarily degradeable encapsulant medium. As used herein, the term "equivalent orifice diameter' refers to the diameter of an orifice having a circular opening which is equivalent in cross-sectional open area (i.e., the open area of the orifice opening perpendicular to the direction of the flow of carrier gas therethrough) to the cross-sectional open area of the actual orifice in the nebulization system of the present invention. This terminology defines the dimensional character of the orifice regardless of the actual shape of the orifice opening, and thus the invention contemplates the employment of orifice openings which are of circular or generally circular opening shape, as well as orifice openings which are of non-circular or irregular opening shape. Of course, when the orifice opening is of circular shape, the equivalent orifice diameter of such opening is identical to its actual diameter. Preferably, the orifice opening is of circular shape, or at least generally circular shape, although as mentioned, other non-circular shapes, e.g., square, ovoid, rectangular, star-shape, cruciform, etc. shapes, may advantageously be employed within the broad practice of the present invention.
As used herein, the terms "medicant" and "medicament" are intended to be broadly construed to include any substances, formulations, compositions, compounds, materials, etc. which are physiologically beneficial.
As used herein, the term "pulmonarily effective" means physiologically beneficial in application to a patient at a pulmonary situs, viz., the lungs and associated inspiratory and expiratory passages and body structures.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic representation of a patient receiving respiratory support and medication via a continuous flow liquid nebulizing device interposed between an endotracheal tube and a ventilator.
Figure 2 is an exploded perspective view of a nebulizer and a continuous flow supporting system comprising a large medication storage vessel, a rate controllable pump, an influent port accessible nebulizer vial separated from the nebulizer device upper portion, and influent flow regulating and supply devices.
Figure 3 is an elevational cross-section of the nebulizer device of Figure 2.
Figure 4 is an elevational cross-section of a low flow rate jet structure of a type such as may be alternatively employed in the nebulizer device of Figure 2.
Figure 5 is a schematic representation of a patient receiving respiratory support and medication via a powder nebulizing device interposed between an endotracheal tube and a ventilator.
Figure 6 is an elevational cross-section of the powder nebulizer device of Figure 5.
DETAILED DESCRIPTION OF THE INVENTION, AND PREFERRED EMBODIMENTS THEREOF
In this description, the term "proximal" is used to indicate the segment of the device normally closest to the patient when it is being used. The term "distal" refers to the other end. Herein the term nebulizing device is defined to be a nebulizing unit or instrument used to aerosolize fluid or disperse particulate solid material, e.g., powder, for delivery to a patient. The term nebulizer vial is sometimes used herein to denote the portion of a nebulizing device which comprises a container providing a reservoir for fluid or particulate solid material to be nebulized. The term nebulizer is sometimes used herein to denote the non- nebulizer-vial portion of the nebulizing device which comprises at least a portion of the nebulizing mechanism. Reference is now made to the embodiments illustrated in Figures 1-3 wherein like numerals are used to designate like parts throughout.
As seen in Figure 1 , a patient 30, undergoing respiratory therapy, is fitted with an endotracheal tube 24. The proximal trunk end 18 of a "Y"-shaped connector 32 is insertably connected to a distal end 25 of endotracheal tube 24. One bifurcated distal end 34 of "Y"-shaped connector 32, is insertably connected to a proximal port 22 of a nebulizer 20 which is part of a nebulizing device 48. Nebulizer 20 is disposed between distal end 34 of "Y"-shaped connector 32 and a proximal end 14 of a respiratory gas delivery tube 12. Thereat a distal part 38 of nebulizer 20 is insertably connected to gas delivery tube 12. Gas delivery tube 12 provides the distal portion of inhalation respiratory pathway 26 and connects to the output inhalation gas of a ventilator 10. Ventilator 10 therapy supplies periodic, breath-sustaining pulses of pressurized gas through tube 12, nebulizer device 48, and "Y"-shaped connector 32 into endotracheal tube 24 and to patient 30.
The other distal end 36 of "Y"-shaped connector 32 comprises a proximal portion of an exhalation respiratory pathway 28 which further comprises tube 16 which returns exhalation flow to ventilator 10. Many different ventilators are known and available in the art. Generally, ventilators which are conventionally used with nebulizers may be used with the invention.
Nebulizer 20 receives a supply of nebulizing gas from a flow meter 40 along a fluid pathway 26' which passes through a tube 42 interposed and connected between flow meter 40 and a top nebulizer inflow connecting tube 44'. Flow meter 40 receives a pressurized gas from a gas source 44 through a connecting tube 42'. Gas pressure from gas source 44 is sufficient to provide the volumetric flow for which flow meter 40 is preset. Gas source 44 may comprise pressurized oxygen or other breathable gas from a hospital pressurized 02 delivery system, from a tank of compressed oxygen, a blender, directly from ventilator 10, or from other sources of pressurized gases conventionally used in respiratory therapy. Flow meters are well known and widely used in the art. Such flow meters may comprise macro and vernier adjustable controls for very accurate and precise gas flow settings. Although O2 is preferred for some selected medicants, source 44 may supply oxygen blended with other gases.
Nebulizing device 48 comprises nebulizer 20 which functions in combination with an attached nebulizer vial 50. Nebulizing device 48 nebulizes or aerosolizes fluids contained in reservoir 72 in nebulizer vial 50, thereby producing a mist which is carried to patient 30 by influent flow of gas from ventilator 10 through pathway 26 and by nebulizing gas received from gas source 44. Delivery of nebulized fluid to patient 30 is therefore dependent upon the availability of fluid resident in the reservoir 72 at any given moment.
In a currently preferred embodiment shown in Figures 1 and 2, a continuous flow system 106 provides substantially continuous delivery of fluid to nebulizer vial 50 to maintain the volume of liquid at an adequate and essentially unchanging level in reservoir 72. Continuous flow system 106 comprises (i) nebulizer vial 50, (ii) at least one influent access port 50 to nebulizer vial 50, (iii) connecting tubing 54 interposed between a pump 60 and connected at influent access port 52, (iv) the pump 60, (v) additional tubing 58 providing a medicant pathway 56' interposed between and connected to pump 60 and a large medicant supply vessel 70, and (vi) the large medicant supply vessel 70. As continuous flow system 106 maintains a constant volume of liquid in nebulizer vial 50, continuation upon the initial contents of reservoir 72 at the time nebulizer vial 50 is joined to nebulizer 20, but upon the larger volume available in large medicant supply vessel 70. Such supply vessels may be IV bags, bottles or other nebulizing medication and reagent containing vessels from which therapeutic liquids are drawn.
As seen in Figure 2, nebulizing device 48 comprises nebulizer vial 50 which releasibly and sealably attaches to nebulizer 20. Such attachment may be by a male threaded member 62 of nebulizer vial 50 insertably joined into a female threaded member 64 of nebulizer 20. When nebulizer 20 is so disposed and connected to nebulizer vial 50, an end 68 of an aspirator tube 66 is disposed below the surface of a reservoir 72 in the bottom of nebulizer vial 50 as best seen in Figure 3.
Nebulizer 20 may be a general construction similar to commercially available nebulizer devices generally used for administration of aerosolized fluids but featuring a jet passage member having (i) an inlet portion for introduction of carrier gas thereinto and (ii) a nozzle portion positioned in the interior volume of the nebulizer housing for discharging carrier gas in jet form in the interior volume, for entrainment of medicament from the reservoir portion of the housing in the carrier gas jet, with the nozzle portion comprising a nozzle orifice accommodating carrier gas flow therethrough, wherein the nozzle orifice has an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch, preferably from about 0.007 inch to about 0.018 inch, more preferably from about 0.008 inch to about 0.015 inch, and most preferably from about 0.010 inch to about 0.012 inch. Nebulizer vial 50 may suitably comprise a container made to releasibly but sealably attach to commercially available nebulizer 20 and, in combination with a gravitational or mechanical pump and a large supply vessel provide a continuously filled reservoir 72 from which medicants are aspirated via aspirator tube 66 into nebulizer 20 and aerosolized. Alternatively the nebulizer vial may be of a conventional type, unconnected to any external liquid supply vessel, for delivery of a unitary does of medicant from the reservoir portion 72 of the nebulizer housing.
Figure 3 provides a sectional view of nebulizing device 48, comprising nebulizer 20 threadably interconnected to nebulizer vial 50. The following description of nebulizer 20 is provided for a general understanding of the interaction between nebulizer 20 and nebulizer vial 50.
Nebulizer 20, as seen in Figure 3, comprises a housing 262 which comprises a top nebulizer inflow connecting tube 44', a jet passage member 260, with nozzle orifice 203 in the lower nozzle portion thereof, a baffle assembly 268, and aspirator tube 66. Baffle assembly 268 further comprises an aspirator tube connecting orifice 274, a liquid effluent orifice 276, and an impingement baffle 272 in the form of a baffle plate presenting an impingement surface to gas exiting nozzle orifice 203 and liquid entrained in the gas from liquid effluent orifice 276. Pressurized gas which provides the nebulizing high velocity stream for nebulization is provided through top nebulizer inflow connecting tube 44'. The high velocity stream is produced by jet passage member 260 in the direction of impingement baffle 272. As the high velocity stream passes by liquid effluent orifice 276 a resulting below ambient pressure at orifice 276 which is carried by the high velocity carrier gas stream to impact against the impingement surface of impingement baffle 272 to thereby produce a mist.
Housing 262 further comprises a pair of baffles 264 and 266 which lie in inhalation pathway 26 and shield the space where nebulization occurs. A hollow frustoconical baffle 278 is disposed in the medial space between inhalation pathway 26 and the extension of baffles 264 and 266 to limit air flow into nebulizer vial 50 and aid in entraining mist into inhalation pathway 26. While this description of an illustrative nebulizer embodiment is for a single connecting tube 44', nozzle 260 and associated parts, the number of inflow connecting tubes, nozzles, and associated nebulizer parts may vary in the nebulizer as is well known in the art.
Nebulizer vial 50 is suitably made from synthetic resinous material and preferably is transparent for easy monitoring by a respiratory technician or other patient attendant. The materials of construction of nebulizer vials are well known in the art. They are usually of chemically-inert thermoplastic such as polyolefins or polyvinyl chlorides. Their selection and fabrication are well within the skill of the art.
As seen in Figures 2 and 3, nebulizer vial 50 comprises a port 52 and a therethrough inserted feedthrough 74. Also as seen in combination in Figures 2 and 3, port 52 may be located at different sites in nebulizer vial 50 as required to meet tubing placement and other physical fluid delivery restrictions. As seen in Figure 2, tube 54 is engaged about feedthrough 74 to be relasibly but snugly affixed thereat in pressure-sealed relation. Feedthrough 74 comprises a through hole 280, as seen in Figure 3, through which fluid received under pressure from pump 60 flows into nebulizer vial 50. The bottom of nebulizer vial 50 comprises an inverted conically shaped part 76. Apex 78 of inverted conically shaped part 76 provides a low point for fluid contained in reservoir 72 where aspirating tube 66 end 68 is normally disposed when nebulizer 20 is affixed to nebulizer vial 50. A plurality of legs 80 provide a level support when nebulizer vial 50 is disposed on a horizontal surface to maintain fluid at the bottom of inverted conically shaped part 76.
Referring again to Figure 2, large supply vessel 70, seen to be in the form of a plastic container bag, is disposed on a hook 72', such as an IV bag is hung. Tube 58 provides the fluid pathway to pump 60. Pump 60 comprises rate control dial 282 and flow rate display 284 which provide for manual flow rate adjustment. Thereby, the flow rate of pump 60 is set to provide a rate flow of liquid into nebulizer vial 50 which is substantially equal to the rate of loss of liquid from the reservoir 72 through aerosolization. Such a flow rate for pump 60 is derived from a nomogram which comprises the variables of gas flow through flow meter 40 and through ventilator 10. A different nomogram is generated for each combination of nebulizer 20, flow meter 40, and ventilator 10. Derivation of such nomograms is well within the skill of the art. As disclosed above, pump 60 is a variable flow controlling pump which provides and maintains an accurate and precise flow rate. Pump 60 may be a syringe infusion pump, model number 2001 , available from Medfusion, a Medox, Inc. Company, 3450 River Green Court, Duluth, GA 30136.
Figure 4 is a cross-sectional elevation view of a nebulization structure 300 which is mountable in the interior volume of a nebulizer housing, as for example a nebulizer housing of the type illustratively shown and described with respect to Figures 1-3 hereof.
Nebulization structure 300 includes a jet passage member 302 having an inlet portion 304 for introduction of carrier gas thereinto, such carrier gas being introduced from suitable conduit or flow circuit means (not shown) to effect flow of carrier gas into the inlet portion 304 of jet passage member 302 in the direction indicated by arrow A in Figure 4.
Jet passage member 302 further includes a nozzle portion 306, which is positioned in the interior volume of the nebulizer housing, for discharging carrier gas in jet form in the interior volume, through nozzle orifice 308. The nozzle orifice has an equivalent orifice diameter in the range of from about 0.05 inch to about 0.020 inch, and preferably is at least generally circular in cross-sectional shape, transverse to the flow direction indicated by arrow A.
By this arrangement, carrier gas passing through the jet passage member 302 flows through the nozzle orifice 308 in the direction indicated by arrow B, with the carrier gas flow rate suitably being on the order of from about 1.75 to about 3.25 liters per minute.
In this embodiment of Figure 4, the nebulization structure 300 further comprises an expansion chamber 310 in flow-receiving communication with the nozzle portion 306 of the jet passage member. The expansion 310 defines an expansion volume 312 therewithin, and the expansion chamber includes an orifice 314 through which the carrier gas is flowed in the direction indicated by arrow C subsequent to entrainment in such carrier gas of liquid to be nebulized, which enters the expansion volume 312 in the direction indicated by arrow D, from extension tube 316 of the expansion chamber. Expansion tube 316 has a lower open end 318 as shown, and the tube is journaled or otherwise secured in closed flow relationship to aspiration tube 320 having an interior flow passage 322 and a lower open end 324 into which liquid is aspiratingly drawn in the direction indicated by arrow E.
Secured to the aspiration tube 320, as shown, by means of arm 326 is an impingement member 328 presenting an impingement surface on its upper portion onto which the delivery mixture comprising carrier gas and entrained liquid is impinged, for dispersion in the directions indicated by arrows F in Figure 4.
The impingement member 328 may, as shown, feature a convex impingement surface, whereby dispersion in a wide variety of directions in the interior volume, is achieved.
In use, the nebulization structure 300 is disposed so that the lower open end 324 of aspiration tube 320 is disposed in a pool or body of liquid medicant in the lower reservoir portion of the nebulizer housing. The flow of carrier gas in the direction indicated by sequential arrows A, B, and C causes a reduced gas pressure in the expansion chamber 312 which effects aspiration of liquid through aspiration tube 320 and extension tube 316 to the locus of the expansion chamber 310 interior volume 312 in proximity to nozzle orifice 308. By this arrangement, a highly efficient dispersion of liquid into the gas is achieved, and the droplet size distribution is extremely favorable for highly efficient nebulization, due to the fineness of the mist liquid particles thereby obtained.
Nozzle orifice 308 may suitably have an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch, preferably in the range of from about 0.007 to about 0.018 inch, more preferably from about 0.008 inch to about 0.015 inch, and most preferably from about 0.010 inch to about 0.012 inch.
At equivalent orifice diameter values below about 0.005 inch, the orifice becomes disproportionately more difficult to reliably manufacture and fabricate. Above about 0.020 inch, the velocity of carrier gas flow achievable by the jet passage member becomes unsuitably low to accommodate the low gas flow rate nebulization conditions desired in the practice of the invention. The further preferred, more preferred, and most preferred ranges represent further balances of these corresponding considerations associated with the end points of the broad range of equivalent orifice diameter values.
Similar considerations dictate the range of permissible sizes potentially employable for the expansion chamber orifice 314, which suitably has an equivalent orifice diameter in the range of from about 0.025 inch to about 0.060 inch, and more preferably from about 0.30 inch to about 0.050 inch.
Correspondingly operational considerations govern the gas flow rate past through the jet passage member of the nebulizer device. In accordance with the low flow rate nebulization method of the present invention, the carrier gas flow rate through the jet passage member is advantageously in the range of from about 0.5 to about 3.25 liters per minute, to disperse the medicant into the carrier gas and form a pulmonarily effective nebulized medicant in the carrier gas, as a medicant/carrier gas mixture. At flow rate values below about 0.5 liters per minute, the volumetric flow rate of carrier gas tends to become insufficient to achieve good dispersion of the medicant in the flowing gas stream. At volumetric flow rate values above about 3.25 liters per minute, the small-size orifice dimensions employed in the practice of the invention tend to produce a back pressure which renders it disproportionately more difficult to achieve a reliable coupling and seal between the inlet portion of the jet passage member and the associated carrier gas flow means. Preferably, the volumetric carrier gas flow rate is in the range of from about 1.0 to about 3.0 liters per minute, and most preferably is in the range of from about 2.2 to about 2.8 liters per minute, based on corresponding considerations, as regards the end point values of the preferred and most preferred ranges, corresponding to the reasons set out above in the respect of the end points of the broad volumetric flow rate range of from about 0.5 to about 3.25 liters per minute. The nebulizer device and nebulization method of the present invention are usefully employed with any of a wide variety of nebulizable materials, including liquid and solid medicants, liquid medicants being advantageously practiced with liquid nebulizer devices in accordance with the present invention, as illustratively embodied in the device shown and described with reference to Figures 1-3 hereof, and the nebulization structure alternatively described in connection with Figure 4 hereof; particulate solid, e.g., powdered, medicants may usefully be administered with powder nebulizer means as more fully shown and described in our prior copending U.S. patent application number 07/846,784 filed March 4, 1992, the disclosure of which hereby is incorporated herein by reference. An illustratively powder nebulizer potentially useful in the broad practice of the present invention is illustratively described hereinafter with reference to Figures 5 and 6 herein.
Illustrative of medicants which may be administered utilizing the nebulization technology of the present invention are materials such as lung surfactants or precursors thereof (precursors being materials or substances which are converted in situ in the pulmonary locus to surfactant material), terbutaline, salbutamol, dexamethasone, chromolyn sodium and pentamidine, and bioactive substances encapsulated in a pulmonarily degradable encapsulant medium (i.e., a medium in which the bioactive substances encapsulated and which is degradable in the pulmonary locus to release the bioactive substance). The liquid nebulizer apparatus in accordance with the present invention are particularly usefully employed for administration of lung surfactants, such as NEOSURF® (Burroughs Wellcome Company, Research Triangle Park, NC) and pentamidine, which is usefully employed in the treatment of pneumocystis infections accompanying HIV infection, and development of ARC and AIDS.
In application to particulate solids nebulization, the present invention contemplates a method of forming a solid particle dispersion with the use of a carrier gas at the low volumetric flow rate values discussed hereinabove, and with a suitably configured nebulizer apparatus, featuring a jet passage member having the dimensional characteristics described hereinabove.
In the practice of nebulizing particulate solid medicants in the practice of the present invention, the nebulizer housing includes a reservoir portion for the particulate solid medicant, which preferably is general conical-shaped or funicular in shape, for containing the particulate solid to be dispersed. A jet of carrier gas is directed downwardly through the jet passage member to the lower extremity of such generally conical-shape or funicular shaped receptacle to entrain particles of the particulate solid in the carrier, to form a solids dispersion in the carrier gas which then is discharged from the nebulizer device to suitable breathing circuitry means. In a preferred particulate solid medicant nebulization system, the gas stream directed at the particulate solid is passed through the nozzle orifice of the jet passage member, then expanded and passed through a second orifice of the expansion chamber, with an entrainment structure channeling gas from the receptacle to the jet structure, to increase total gas flow and assist in the production of a gas jet flow stream of desired velocity and pressure characteristics. The entrainment structure may comprise a chamber defining a plenum, with an entrainment port communicating gas flow relationship with the interior volume of the housing, and with an outlet port communicating with the second orifice to cooperatively form a jet structure therewith, as described in the aforementioned prior copending application number 07/846,784.
Referring now the solids nebulization system shown in Figure 5, a patient 430, undergoing respiratory therapy, is fitted with an endotracheal tube 424. The proximal trunk end 418 of a "Y"-shaped connector 432 is insertably connected to a distal end 425 of endotracheal tube 424. Nebulizing device 448 is connected to arm 434 of "Y"-shaped connector 423 via tube 422 which is interposed and connected between exit port 421 of nebulizer device 48 and arm 34 of the "Y"- shaped connector 432 at port 433. A distal end 435 of arm 434 is insertably connected to a proximal end 14 of gas delivery tube 412. Gas delivery tube 412 provides the distal portion of inhalation respiratory pathway 426 and connects to the output inhalation gas of a ventilator 410. Ventilator 410 therapy supplies periodic, breath-sustaining pulses of pressurized gas through tube 412 and through arm 34 of "Y"-shaped connector 432 into endotracheal tube 424 and to patient 430.
The other distal end 36 of "Y"-shaped connector 432 comprises a proximal portion of an exhalation respiratory pathway 428 which further comprises tube 416 which returns exhalation flow to ventilator 410. Many different ventilators are known and available in the art. Generally, ventilators which are conventionally used with nebulizers may be used with the present invention.
Nebulizer device 448 receives a supply of nebulizing gas from a flow meter 40 along a fluid pathway 426' which passes through a tube 42 interposed and connected between flow meter 440 and a top nebulizer inflow connecting tube 444'. Flow meter 440 receives a pressurized gas from a gas source 444 through a connecting tube 442'. Gas pressure from gas source 444 is sufficient to provide the volumetric flow for which flow meter 440 is preset. Gas source 444 may comprise pressurized oxygen or other breathable gas from the hospital pressurized oxygen delivery system, from a tank of compressed oxygen, a blender, directly from ventilator 410 or from other sources of pressurized gases used in respiratory therapy. Flow meters are well known and widely used in the art. Such flow meters may comprise macro and vernier adjustable controls for very accurate and precise gas flow setting. Although oxygen is preferred for some selected medicants, source 444 may supply oxygen blended with other gases.
Nebulizing device 448 comprises nebulizer upper portion 420 and a nebulizer receptacle 450. Nebulizing device 448 nebulizes or aerosolizes powdered medication contained in nebulizer receptacle 450 therapy producing a mist (particulate solids-in-gas dispersion) which is carried to patient 430 by influent flow of gas form ventilator 410 through pathway 426' and by nebulizing gas received from gas source 444.
The nebulizing device 448 comprises nebulizer receptacle 450 which is attached to nebulizer upper portion 420. In a specific embodiment, the top of the nebulizer receptacle 450 is 1.5 inches in diameter, the bottom is 0.25 inches in diameter, and the nebulizer receptacle 450 measures 1.5 inches from top to bottom. As shown in Figure 6, an end 468 of nozzle 466 is disposed above the surface of a reservoir 472 in the bottom of the nebulizer receptacle 450.
While specific dimensions and tolerances are illustratively set forth herein in respect of the preferred embodiments of the invention, it will be appreciated that the specific size, design, dimensions, and tolerances, may be varied widely within the broad scope of the present invention, with the choice of a specific set of such design parameters being dependent on the particular end use application contemplated in a given instance. The present invention may be embodied in the various embodiments illustrated in our prior co-pending U.S. Patent Application No. 07/729,518, filed July 12, 1991 , which is hereby incorporated herein by reference. Figure 4 provides a sectional view of nebulizing device 448 of Figure 5, comprising nebulizer upper portion 420 and nebulizer receptacle 450.
The nebulizer upper portion 420, as seen in Figure 6, comprises a housing 362 which includes a nebulizer inflow connector tube 444', a first nozzle 360, and a second nozzle 466. Pressurized gas is provided through nebulizer inflow connecting tube 444'. The high velocity stream of gas for nebulization is produced by nozzle 360 and nozzle 466. The pressurized gas is discharged from the first nozzle 466. The pressurized gas is discharged from the first nozzle 360 into the receiving volume 465 of the second nozzle 466, thereby undergoing expansion, following which the gas is discharged into entrainment assembly 467. As the high velocity gas stream passes through entrainment assembly 467, a resulting below ambient pressure within entrainment assembly 467, creates a sufficient pressure differential between entrainment port 469 and nebulizer receptacle 450 to draw gas from nebulizer receptacle 450 through entrainment port 469 and into entrainment assembly 467 where the entrained gas is added to the high velocity gas stream being directed toward reservoir 472. The resultingly augmented gas stream exits entrainment assembly 467 through outlet port 470. The high velocity gas stream thus discharged from jet structure 471 engages the powdered medication in the lower portion of nebulizer receptacle 450, which is of progressively decreasing transverse cross-section. As a result, there is achieved a high extent of solids entrainment in the gas stream, as discharged into inhalation pathway 426' via exit 421.
Best Mode For Carrying Out the Invention
In a preferred aspect for delivering nebulized liquid medicament to a patient in accordance with the present invention, the nebulizer system is suitably of a configuration as shown and described with reference to Figure 2 herein, as arranged for continuous delivery of liquid from a reservoir which is separate and distinct from the nebulizer device, being coupled thereto by suitable tubing or connection means including an interposed pump, to ensure continuous liquid delivery, and maintenance of a constant liquid level in the housing of the nebulizer device. In such system, the nebulizer features a jet passage member, e.g., of a type as shown in Figures 3 or 4 hereof, in which the nozzle orifice has an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch, and most preferably from about 0.010 inch to about 0.012 inch.
In a preferred arrangement for delivery of solid medicament, the nebulizer system may be arranged as shown in Figure 5, utilizing a nebulizer as described in connection with Figure 6 hereof.
In both liquid medicament and solid medicament delivery aspects, the flow of carrier gas through the jet passage member of the nebulizer is at a flow rate in the range of from about 0.5 to about 3.25 liters per minute, preferably from about 1.0 to about 3.0 liters per minute, and most preferably in the range of from about 2.2 to about 2.8 liters per minute.
Industrial Applicability
The nebulization technology of the present invention permits a low flow rate of carrier gas to be utilized in the delivery of medicament to a patient, without the deterioration of nebulization efficiency which has characterized prior art nebulization systems attempting to use flow rates below the conventional flow rate range of from about 6 to about 8 liters per minute.
The nebulization system of the present invention thus is highly efficacious in delivering medicaments to a pulmonary situs, including medicament species such as lung surfactants or precursors thereof, terbutaline, salbutamol, dexamethasone, chromolyn sodium, pentamidine, and bioactive substances encapsulated in a pulmonarily degradable medium.

Claims

THE CLAIMSWHAT IS CLAIMED IS:
1. A nebulizer device, comprising:
(a) a housing defining an interior volume therewithin, including a reservoir portion for holding medicament therein for entrainment into a carrier gas to form a delivery gas mixture comprising nebulized medicament and carrier gas;
(b) a discharge port connected to the housing in flow communication with the interior volume therewithin, for discharging the delivery gas mixture from the housing;
(c) a jet passage member having (i) an inlet portion for introduction of carrier gas thereinto and (ii) a nozzle portion positioned in the interior volume of the housing for discharging carrier gas in jet form in the interior volume, for entrainment of medicament from the reservoir portion of the housing in the carrier gas jet, said nozzle portion comprising a nozzle orifice accommodating carrier gas flow therethrough, wherein the nozzle orifice has an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch.
2. A device according to claim 1 , wherein the equivalent orifice diameter is in the range of from about 0.007 inch to about 0.018 inch.
3. A device according to claim 1 , wherein the equivalent orifice diameter is in the range of from about 0.008 inch to about 0.015 inch.
4. A device according to claim 1 , wherein the equivalent orifice diameter is in the range of from about 0.010 inch to about 0.012 inch.
5. A device according to claim 1, further comprising a nebulization structure mounted in the interior volume of the housing, including: an expansion chamber in flow-receiving communication with the nozzle portion of the jet passage member, said expansion chamber having an orifice therein, in alignment with the orifice of the jet passage member; an impingement baffle presenting an impingement surface in alignment with the orifices of the jet passage member and the expansion chamber; and means for aspiratingly delivering liquid from the reservoir portion of the housing when liquid is contained in the reservoir and carrier gas is flowed in sequence through the orifices of the jet passage member and the expansion chamber at sufficient volumetric flow rate.
6. A device according to claim 5, wherein the orifice in the expansion chamber has an equivalent orifice diameter in the range of from about 0.025 inch to about 0.060 inch.
7. A device according to claim 5, wherein the orifice in the expansion chamber has an equivalent orifice diameter in the range of from about 0.030 inch to about 0.050 inch.
8. A device according to claim 1 , further comprising pressurized carrier gas supply means coupled in gas-supplying relationship with the inlet portion of the jet passage member.
9. A device according to claim 1 , further comprising a breathing circuit coupled with the discharge port for receiving delivery gas mixture and conveying same to a patient interconnected with the breathing circuit.
10. A device according to claim 1, further comprising means disposed in the interior volume of the housing for delivering liquid from the reservoir portion of the housing to a discharge locus of the nozzle orifice of the jet passage member, whereby delivered liquid is entrained in carrier gas flowed through the jet passage member when the reservoir portion contains liquid.
11. A method of delivering a nebulized medicant to a patient, comprising:
(a) providing a nebulizer apparatus including a breathing circuit coupled to the patient and including a nebulizer device (i) containing the medicant, and (ii) constructed and arranged for producing a pulmonarily effective nebulized medicant in a carrier gas passed through the nebulizer device at a carrier gas flow rate in the range of from about 0.5 to about 3.25 liters per minute; (b) flowing the carrier gas through the nebulizer device at a flow rate in the range of from about 0.5 to about 3.25 liters per minute, to disperse the medicant into the carrier gas and form said pulmonarily effective nebulized medicant in the carrier gas, as a medicant/carrier gas mixture; and
(c) passing the medicant/carrier gas mixture through the breathing circuit to a pulmonary situs of the patient.
12. A method according to claim 11 , wherein the carrier gas flow rate is in the range of from about 1.0 to about 3.0 liters per minute.
13. A method according to claim 11 , wherein the carrier gas flow rate is in the range of from about 2.2 to about 2.8 liters per minute.
14. A method according to claim 11 , wherein the medicant comprises a material selected from the group consisting of lung surfactants or precursors thereof, terbutaline, salbutamol, dexamethasone, chromolyn sodium, pentamidine, and bioactive substances encapsulated in a pulmonarily degradable encapsulant medium.
15. A method of delivering a nebulized medicant to a patient, comprising:
(I) providing a nebulizer apparatus including a breathing circuit coupled to the patient and including a nebulizer device, wherein the nebulizer device comprises:
(a) a housing defining an interior volume therewithin, including a reservoir portion for holding medicament therein for entrainment into a carrier gas to form a delivery gas mixture comprising nebulized medicament and carrier gas;
(b) a discharge port connected to the housing in flow communication with the interior volume therewithin, for discharging the delivery gas mixture from the housing;
(c) a jet passage member having (i) an inlet portion for introduction of carrier gas thereinto and (ii) a nozzle portion positioned in the interior volume of the housing for discharging carrier gas in jet form in the interior volume, for entrainment of medicament from the reservoir portion of the housing in the carrier gas jet, said nozzle portion comprising a nozzle orifice accommodating carrier gas flow therethrough, wherein the nozzle orifice has an equivalent orifice diameter in the range of from about 0.005 inch to about 0.020 inch;
(II) disposing a medicant in the reservoir portion of the housing;
(b) flowing the carrier gas through the jet passage member of the jet nebulizer device at a flow rate in the range of from about 0.5 to about 3.25 liters per minute, to disperse the medicant into the carrier gas and form a pulmonarily effective nebulized medicant in the carrier gas, as a medicant/carrier gas mixture; and
(c) passing the medicant/carrier gas mixture through the breathing circuit to a pulmonary situs of the patient.
16. A method according to claim 15, wherein the carrier gas flow rate is in the range of from about 1.0 to about 3.0 liters per minute.
17. A method according to claim 15, wherein the carrier gas flow rate is in the range of from about 2.2 to about 2.8 liters per minute.
18. A method according to claim 15, wherein the medicant comprises a material selected from the group consisting of lung surfactants or precursors thereof, terbutaline, salbutamol, dexamethasone, chromolyn sodium, pentamidine, and bioactive substances encapsulated in a pulmonarily degradable encapsulant medium.
19. A method according to claim 15, wherein the medicant comprises a material selected from the group consisting of lung surfactant and pentamidine.
20. A device according to claim 15, wherein the equivalent orifice diameter is in the range of from about 0.007 inch to about 0.018 inch.
PCT/US1993/007515 1992-08-10 1993-08-10 Low flow rate nebulizer, method and apparatus WO1994003225A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT93919951T ATE198160T1 (en) 1992-08-10 1993-08-10 LOW FLOW RATE ATOMIZER
JP6505621A JPH08502904A (en) 1992-08-10 1993-08-10 Low flow nebulizer, atomization method and device
DE69329775T DE69329775T2 (en) 1992-08-10 1993-08-10 SPRAYER WITH LOW FLOW RATE
AU50040/93A AU674023B2 (en) 1992-08-10 1993-08-10 Low flow rate nebulizer, method and apparatus
EP93919951A EP0653946B1 (en) 1992-08-10 1993-08-10 Low flow rate nebulizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US927,834 1992-08-10
US07927834 US5355872B1 (en) 1992-03-04 1992-08-10 Low flow rate nebulizer apparatus and method of nebulization

Publications (1)

Publication Number Publication Date
WO1994003225A1 true WO1994003225A1 (en) 1994-02-17

Family

ID=25455331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/007515 WO1994003225A1 (en) 1992-08-10 1993-08-10 Low flow rate nebulizer, method and apparatus

Country Status (9)

Country Link
US (1) US5355872B1 (en)
EP (1) EP0653946B1 (en)
JP (1) JPH08502904A (en)
AT (1) ATE198160T1 (en)
AU (1) AU674023B2 (en)
CA (1) CA2142006A1 (en)
DE (1) DE69329775T2 (en)
ES (1) ES2154272T3 (en)
WO (1) WO1994003225A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU674472B2 (en) * 1994-02-02 1996-12-19 Allegiance Corporation Continuous flow adaptor for a nebulizer
WO1997013540A1 (en) * 1995-10-10 1997-04-17 The Government Of The United States Of America, Represented By The Secretary Of The Department Of Health And Human Services Self-cleaning endotracheal tube apparatus
US6257233B1 (en) 1998-06-04 2001-07-10 Inhale Therapeutic Systems Dry powder dispersing apparatus and methods for their use
US6598602B1 (en) * 1999-07-08 2003-07-29 Siemens-Elema Ab Medical nebulizer
US6679256B2 (en) 1999-12-17 2004-01-20 Nektar Therapeutics Systems and methods for extracting powders from receptacles
WO2006108557A1 (en) 2005-04-08 2006-10-19 Nycomed Gmbh Dry nebulizer
US8852557B2 (en) 2007-08-31 2014-10-07 Pari Pharma Gmbh Aerosols for sinunasal drug delivery

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295479A (en) * 1991-04-15 1994-03-22 Leiras Oy Device intended for measuring a dose of powdered medicament for inhalation
US6681767B1 (en) 1991-07-02 2004-01-27 Nektar Therapeutics Method and device for delivering aerosolized medicaments
JP3230056B2 (en) * 1991-07-02 2001-11-19 インヘイル・インコーポレーテッド Device for forming an aerosolized dose of a drug
US5785049A (en) * 1994-09-21 1998-07-28 Inhale Therapeutic Systems Method and apparatus for dispersion of dry powder medicaments
US6290991B1 (en) 1994-12-02 2001-09-18 Quandrant Holdings Cambridge Limited Solid dose delivery vehicle and methods of making same
CA2555600C (en) * 1994-09-21 2008-01-29 Nektar Therapeutics Apparatus and methods for dispersing dry powder medicaments
US5983956A (en) 1994-10-03 1999-11-16 Astra Aktiebolag Formulation for inhalation
US5980949A (en) * 1994-10-03 1999-11-09 Astra Aktiebolag Formulation for inhalation
US5758637A (en) 1995-08-31 1998-06-02 Aerogen, Inc. Liquid dispensing apparatus and methods
JP3845736B2 (en) * 1995-09-18 2006-11-15 レスメッド・リミテッド Pressure control in CPAP treatment or assisted ventilation
DE19615422A1 (en) 1996-04-19 1997-11-20 Boehringer Ingelheim Kg Two-chamber cartridge for propellant-free MDIs
GB9616237D0 (en) * 1996-08-01 1996-09-11 Norton Healthcare Ltd Aerosol formulations
SE9700133D0 (en) * 1997-01-20 1997-01-20 Astra Ab New formulation
SE9700135D0 (en) * 1997-01-20 1997-01-20 Astra Ab New formulation
US6009869A (en) * 1997-12-29 2000-01-04 Allegiance Corporation Supersonic nozzle nebulizer
GB2334686B (en) * 1998-02-26 2002-06-19 Medic Aid Ltd Nebuliser
US7963955B2 (en) * 1998-02-27 2011-06-21 Boehringer Ingelheim International Gmbh Container for a medicinal liquid
US6685691B1 (en) * 1998-02-27 2004-02-03 Boehringer Ingelheim Gmbh Container for a medicinal liquid
US6041776A (en) * 1998-05-14 2000-03-28 Briggs, Iii; Stephen W. Medical nebulization device
DE19851404A1 (en) * 1998-11-07 2000-05-11 Boehringer Ingelheim Int Pressure compensation device for a double tank
DE19940713A1 (en) * 1999-02-23 2001-03-01 Boehringer Ingelheim Int Diffusion resistant cartridge for storing and dosing liquids, especially for producing drug-containing inhalable aerosols, has three-shell structure with collapsible bag, container and rigid housing
US6328030B1 (en) * 1999-03-12 2001-12-11 Daniel E. Kidwell Nebulizer for ventilation system
SE522908C2 (en) * 1999-05-10 2004-03-16 Aneo Ab Arrangements for granting a living being an anesthetic condition
US6230703B1 (en) * 1999-06-02 2001-05-15 Michael Bono Aerosol inhalation device providing improved aerosol delivery
US6338443B1 (en) 1999-06-18 2002-01-15 Mercury Enterprises, Inc. High efficiency medical nebulizer
US6235177B1 (en) 1999-09-09 2001-05-22 Aerogen, Inc. Method for the construction of an aperture plate for dispensing liquid droplets
US7600511B2 (en) * 2001-11-01 2009-10-13 Novartis Pharma Ag Apparatus and methods for delivery of medicament to a respiratory system
MXPA02010884A (en) * 2000-05-05 2003-03-27 Aerogen Ireland Ltd Apparatus and methods for the delivery of medicaments to the respiratory system.
US8336545B2 (en) 2000-05-05 2012-12-25 Novartis Pharma Ag Methods and systems for operating an aerosol generator
US7971588B2 (en) 2000-05-05 2011-07-05 Novartis Ag Methods and systems for operating an aerosol generator
EP1326642A2 (en) * 2000-09-29 2003-07-16 Board of Trustees operating Michigan State University Catecholamine pharmaceutical compositions and methods
DE10118146A1 (en) * 2001-04-11 2002-10-17 Michael Kandler Artificial respiration apparatus, for patients with a respiratory distress syndrome, has an aerosol generator at the hose system to give an effective delivery of perfluorocarbon into the patient's lungs
US6994083B2 (en) 2001-12-21 2006-02-07 Trudell Medical International Nebulizer apparatus and method
US7677467B2 (en) 2002-01-07 2010-03-16 Novartis Pharma Ag Methods and devices for aerosolizing medicament
MXPA04006629A (en) 2002-01-07 2004-11-10 Aerogen Inc Devices and methods for nebulizing fluids for inhalation.
ES2603067T3 (en) 2002-01-15 2017-02-23 Novartis Ag Methods and systems for operating an aerosol generator
US7607436B2 (en) * 2002-05-06 2009-10-27 The Research Foundation Of State University Of New York Methods, devices and formulations for targeted endobronchial therapy
US7334580B2 (en) * 2002-05-07 2008-02-26 Smaldone Gerald C Methods, devices and formulations for targeted endobronchial therapy
ES2572770T3 (en) 2002-05-20 2016-06-02 Novartis Ag Apparatus for providing spray for medical treatment and methods
GB0215270D0 (en) 2002-07-02 2002-08-14 Optinose As Nasal devices
US8616195B2 (en) 2003-07-18 2013-12-31 Novartis Ag Nebuliser for the production of aerosolized medication
US7270123B2 (en) * 2003-08-13 2007-09-18 Trudell Medical International Nebulizer apparatus and method
WO2005051177A2 (en) * 2003-11-25 2005-06-09 Coifman Robert E Devices for measuring inspiratory airflow
US7994225B2 (en) * 2004-03-17 2011-08-09 Rempex Pharmaceuticals, Inc. Bacterial efflux pump inhibitors for the treatment of ophthalmic and otic infections
EP1732527A2 (en) * 2004-03-17 2006-12-20 Mpex Pharmaceuticals, Inc. Use and administration of bacterial efflux pump inhibitors
US7946291B2 (en) * 2004-04-20 2011-05-24 Novartis Ag Ventilation systems and methods employing aerosol generators
US7191776B2 (en) * 2004-05-10 2007-03-20 Smiths Medical Asd, Inc. Nebulizer breathing system
EP1755720A1 (en) * 2004-05-20 2007-02-28 Discovery Laboratories, Inc. Methods , systems and devices for noninvasive pulmonary delivery
GB0427028D0 (en) * 2004-12-09 2005-01-12 Cambridge Consultants Dry powder inhalers
US8028697B2 (en) 2005-04-28 2011-10-04 Trudell Medical International Ventilator circuit and method for the use thereof
BRPI0611198B1 (en) 2005-05-25 2018-02-06 Aerogen, Inc. VIBRATION SYSTEMS AND METHODS
US7900625B2 (en) * 2005-08-26 2011-03-08 North Carolina State University Inhaler system for targeted maximum drug-aerosol delivery
US20090038610A1 (en) * 2005-10-18 2009-02-12 Equine Nebulizer Aps Inhalation device for providing a mist of nebulised liquid medical solution to a user
US8156933B2 (en) * 2006-06-21 2012-04-17 Puthalath Koroth Raghuprasad Cloud nebulizer
EP2073861B1 (en) 2006-10-17 2015-03-04 C.R.Bard, Inc. Waste management system
US8042536B1 (en) * 2006-10-18 2011-10-25 Care 2 Medical Nebulizer apparatus
US7934498B1 (en) 2006-11-13 2011-05-03 Robert Heidelberger Device and method for facilitating delivery of medication/humidity to a patient without breaking a ventilator circuit
JP2008199905A (en) * 2007-02-16 2008-09-04 Snow Brand Milk Prod Co Ltd Improving agent for survivability of lactic acid bacterium
US8777912B2 (en) * 2007-07-22 2014-07-15 C. R. Bard, Inc. Waste management system
WO2009046215A2 (en) * 2007-10-02 2009-04-09 Lab International Srl Safety and abuse deterrent improved device
CA2706090C (en) * 2007-11-19 2016-11-15 Allegiance Corporation Patient interface assembly for respiratory therapy
EP2265309B1 (en) 2008-03-17 2015-12-16 Discovery Laboratories, Inc. Ventilation circuit adaptor and proximal aerosol delivery system
WO2010035251A2 (en) * 2008-09-26 2010-04-01 Stamford Devices Limited A supplemental oxygen delivery system
ES2402241T3 (en) 2008-10-22 2013-04-30 Trudell Medical International Modular Spray Supply System
US10854105B2 (en) * 2009-02-15 2020-12-01 Cheryl L. Evans Method for objectively reproducing a dysphagia diet
US9858831B2 (en) * 2009-02-15 2018-01-02 Cheryl L. Evans Method for determining and prescribing quantifiable and customized diet for patient suffering from dysphagia
US9149605B2 (en) 2009-07-28 2015-10-06 Clement Kleinstreuer Methods and devices for targeted injection of microspheres
US9032951B2 (en) 2010-08-24 2015-05-19 Trudell Medical International Aerosol delivery device
EP2720744B1 (en) * 2011-06-20 2017-09-06 DMF Medical Incorporated An anesthetic circuit
US10076620B2 (en) 2012-12-22 2018-09-18 Dmf Medical Incorporated Anesthetic circuit having a hollow fiber membrane
JP6361165B2 (en) * 2014-02-27 2018-07-25 オムロンヘルスケア株式会社 Nebulizer and nebulizer kit
KR20170122748A (en) 2015-02-27 2017-11-06 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 Polypeptide therapeutic agents and uses thereof
US20160271357A1 (en) * 2015-03-16 2016-09-22 Care 2 Innovations, Inc. Nebulizer Apparatus
WO2016159889A1 (en) 2015-04-02 2016-10-06 Hill-Rom Services Pte. Ltd. Manifold for respiratory device
US9566399B1 (en) 2015-04-14 2017-02-14 Clempharma LLC Deep lung alveolar aerosol targeted drug delivery
US20210001062A1 (en) * 2018-03-08 2021-01-07 University Of Washington Devices, systems, and methods for delivery of a reperfusion-injury-modifying drug to a patient
EP3801715A4 (en) * 2018-06-06 2022-04-13 The Research Foundation for The State University of New York Ventilator circuit for breath actuated nebulizers
US20200016360A1 (en) 2018-07-11 2020-01-16 Martin Allan Morris Low flow adaptor to deliver aerosols via nasal cannula without crashout
WO2020055812A1 (en) 2018-09-10 2020-03-19 Lung Therapeutics, Inc. Modified peptide fragments of cav-1 protein and the use thereof in the treatment of fibrosis
WO2021191266A1 (en) 2020-03-25 2021-09-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Aerosolization of hdl for the treatment of lung infections
EP3892275A1 (en) 2020-04-08 2021-10-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Aerosolization of hcq or its metabolites for the treatment of lung infections
US20240033462A1 (en) * 2020-12-21 2024-02-01 The Research Foundation For The State University Of New York Side Port For Addition Of Multiple Drugs To A Nebulizer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054622A (en) * 1970-11-03 1977-10-18 Lester Victor E Combination nebulizer and humidifier
US4344574A (en) * 1979-10-24 1982-08-17 Sherritt Gordon Mines Limited Cross-flow nebulizer
US5086765A (en) * 1990-08-29 1992-02-11 Walter Levine Nebulizer

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2792971A (en) * 1955-03-03 1957-05-21 Haloid Co Particle aerosol generation
US3172406A (en) * 1962-04-05 1965-03-09 Forrest M Bird Nebulizer
US3353873A (en) * 1966-07-11 1967-11-21 Dietert Co Harry W Valve structure for bulk materials
DE1813993C3 (en) * 1968-12-11 1974-01-24 Paul Ritzau Pari-Werk Kg, 8135 Soecking Device for atomizing and atomizing liquid or powdery substances
US3809080A (en) * 1970-06-24 1974-05-07 Deaton Medical Co Sterile liquid entraining system
US3864326A (en) * 1972-05-22 1975-02-04 Robert S Babington Spraying devices, in particular nebulizing devices
US3874379A (en) * 1973-08-15 1975-04-01 Becton Dickinson Co Manifold nebulizer system
US4098853A (en) * 1974-03-25 1978-07-04 Chemetron Corporation Humidifier and automatic control system therefor
US4195044A (en) * 1975-04-18 1980-03-25 Respiratory Care, Inc. Humidifier-nebulizer
US4094318A (en) * 1976-07-09 1978-06-13 Burron Medical Products, Inc. Electronic control means for a plurality of intravenous infusion sets
DE2754894C2 (en) * 1977-12-09 1983-10-13 Fresenius AG, 6380 Bad Homburg Device for balancing a fluid withdrawn from a patient with a replacement fluid
US4268460A (en) * 1977-12-12 1981-05-19 Warner-Lambert Company Nebulizer
US4197843A (en) * 1978-04-03 1980-04-15 Minnesota Mining And Manufacturing Company Volume limiting ventilator
FI64896C (en) * 1978-04-18 1984-02-10 Taisto Haekkinen RESPIRATOR
SU835910A1 (en) * 1979-07-09 1981-06-07 Государственный Проектный Институт "Ярос-Лавский Промстроипроект" Chamber feeder of pneumatic conveying unit
US4462397A (en) * 1981-04-03 1984-07-31 Terumo Corporation Breathing circuit
JPS5827562A (en) * 1981-08-10 1983-02-18 テルモ株式会社 Transfusion liquid control apparatus
US4703753A (en) * 1982-04-30 1987-11-03 Cadema Medical Products, Inc. Radioactive aerosol inhalation apparatus
US4657007A (en) * 1982-06-28 1987-04-14 Whittaker General Medical Corporation Nebulizer
ZA838246B (en) * 1982-12-01 1984-06-27 Boc Group Plc Gas mixing apparatus
US4682010A (en) * 1983-03-07 1987-07-21 Safeway Products, Inc. In-line electric heater for an aerosol delivery system
GB2148127B (en) * 1983-08-25 1986-07-30 Penlon Ltd Gas humidifying apparatus and method
US4588129A (en) * 1983-09-06 1986-05-13 Hudson Oxygen Therapy Sales Company Nebulizer
DE3429389C1 (en) * 1984-08-09 1986-03-13 Brugger, Inge, geb. Ritzau, 8130 Starnberg Inhaler
US4598704A (en) * 1984-08-22 1986-07-08 Cadema Medical Products, Inc. Aerosol inhalation device
FI76929C (en) * 1984-09-25 1989-01-10 Etelae Haemeen Keuhkovammayhdi Inhalation dosing device intended for accurate dosing of disposable drugs given for respiratory illness in the examination stage and / or drugs given as a spray during treatment.
JPH0614786B2 (en) * 1984-12-28 1994-02-23 富士電機株式会社 PWM signal generation circuit
GB2173107B (en) * 1985-04-04 1988-06-15 Boc Group Plc Improvements in inhalation apparatus
US4662799A (en) * 1985-05-17 1987-05-05 Fuller Company Apparatus and process for pneumatically conveying particulate material
FI81500C (en) * 1985-05-23 1990-11-12 Etelae Haemeen Keuhkovammayhdi Respiratory Treatment Unit
SU1418218A1 (en) * 1986-07-18 1988-08-23 Производственное Объединение "Ворошиловградский Тепловозостроительный Завод Им.Октябрьской Революции" Chamber feeder
US4838856A (en) * 1987-07-02 1989-06-13 Truckee Meadows Research & Development Fluid infusion flow control system
US4832012A (en) * 1987-07-08 1989-05-23 Vortran Medical Technology, Inc. Intermittent signal actuated nebulizer
US5080093A (en) * 1987-07-08 1992-01-14 Vortran Medical Technology, Inc. Intermittant signal actuated nebulizer
US4805609A (en) * 1987-07-17 1989-02-21 Josephine A. Roberts Pressurized ventilation system for patients
US5119807A (en) * 1987-07-17 1992-06-09 Josephine A. Roberts Pressurized medical ventilation system
US4921642A (en) * 1987-12-03 1990-05-01 Puritan-Bennett Corporation Humidifier module for use in a gas humidification assembly
US4950245A (en) * 1988-07-08 1990-08-21 I-Flow Corporation Multiple fluid cartridge and pump
US4946439A (en) * 1988-08-15 1990-08-07 Critikon, Inc. Dual source parenteral infusion system with secondary infusion module
US4920336A (en) * 1988-11-22 1990-04-24 Fisher Scientific Company Method and apparatus for monitoring the level of the contents in a container
US4938209A (en) * 1989-01-12 1990-07-03 Fry William J Mask for a nebulizer
US5025829A (en) * 1990-01-29 1991-06-25 Harmac Medical Products, Inc. Parenteral check valve
US5277175A (en) * 1991-07-12 1994-01-11 Riggs John H Continuous flow nebulizer apparatus and method, having means maintaining a constant-level reservoir
US5186166A (en) * 1992-03-04 1993-02-16 Riggs John H Powder nebulizer apparatus and method of nebulization
US5287847A (en) * 1992-07-24 1994-02-22 Vortran Medical Technology, Inc. Universal nebulizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054622A (en) * 1970-11-03 1977-10-18 Lester Victor E Combination nebulizer and humidifier
US4344574A (en) * 1979-10-24 1982-08-17 Sherritt Gordon Mines Limited Cross-flow nebulizer
US5086765A (en) * 1990-08-29 1992-02-11 Walter Levine Nebulizer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU674472B2 (en) * 1994-02-02 1996-12-19 Allegiance Corporation Continuous flow adaptor for a nebulizer
WO1997013540A1 (en) * 1995-10-10 1997-04-17 The Government Of The United States Of America, Represented By The Secretary Of The Department Of Health And Human Services Self-cleaning endotracheal tube apparatus
US5687714A (en) * 1995-10-10 1997-11-18 The United States Of America As Represented By The Department Of Health And Human Services Self-cleaning endotracheal tube apparatus
US6257233B1 (en) 1998-06-04 2001-07-10 Inhale Therapeutic Systems Dry powder dispersing apparatus and methods for their use
US6598602B1 (en) * 1999-07-08 2003-07-29 Siemens-Elema Ab Medical nebulizer
US6679256B2 (en) 1999-12-17 2004-01-20 Nektar Therapeutics Systems and methods for extracting powders from receptacles
WO2006108557A1 (en) 2005-04-08 2006-10-19 Nycomed Gmbh Dry nebulizer
US8852557B2 (en) 2007-08-31 2014-10-07 Pari Pharma Gmbh Aerosols for sinunasal drug delivery
US9744314B2 (en) 2007-08-31 2017-08-29 Pari Pharma Gmbh Aerosols for sinunasal drug delivery

Also Published As

Publication number Publication date
EP0653946A1 (en) 1995-05-24
CA2142006A1 (en) 1994-02-17
DE69329775T2 (en) 2001-06-21
ES2154272T3 (en) 2001-04-01
JPH08502904A (en) 1996-04-02
US5355872B1 (en) 1998-10-20
US5355872A (en) 1994-10-18
AU674023B2 (en) 1996-12-05
ATE198160T1 (en) 2001-01-15
EP0653946B1 (en) 2000-12-20
DE69329775D1 (en) 2001-01-25
AU5004093A (en) 1994-03-03
EP0653946A4 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
EP0653946B1 (en) Low flow rate nebulizer
US5186166A (en) Powder nebulizer apparatus and method of nebulization
EP0940154B1 (en) Device for delivering aerosolized medicaments
US5752502A (en) General purpose aerosol inhalation apparatus
US6681767B1 (en) Method and device for delivering aerosolized medicaments
US6085742A (en) Intrapulmonary delivery device
JPH06507814A (en) Continuous flow nebulizer device and method
EP2421588A1 (en) Improved apparatus for the aerosolization of large volumes of dry powder
EP2001535A1 (en) Inhaler flow channel
US20100095958A1 (en) Pre-filled, single-use, disposable small volume medication nebulizer
CN110013589A (en) Valve system device
WO1998007464A1 (en) Valved aerosol inhalation apparatus with reservoir
GB2233919A (en) "Aerosol delivery apparatus"

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2142006

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993919951

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993919951

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993919951

Country of ref document: EP