WO1993020562A1 - Conductor-filled thermosetting resin - Google Patents

Conductor-filled thermosetting resin Download PDF

Info

Publication number
WO1993020562A1
WO1993020562A1 PCT/US1993/003314 US9303314W WO9320562A1 WO 1993020562 A1 WO1993020562 A1 WO 1993020562A1 US 9303314 W US9303314 W US 9303314W WO 9320562 A1 WO9320562 A1 WO 9320562A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
weight percent
formulation
free radical
silver
Prior art date
Application number
PCT/US1993/003314
Other languages
French (fr)
Inventor
William L. Jamison
Andrzej J. Moscicki
Original Assignee
Thermoset Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermoset Plastics, Inc. filed Critical Thermoset Plastics, Inc.
Publication of WO1993020562A1 publication Critical patent/WO1993020562A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4827Materials
    • H01L23/4828Conductive organic material or pastes, e.g. conductive adhesives, inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0245Flakes, flat particles or lamellar particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating

Definitions

  • This invention relates to conductor-filled thermoset resins. More particularly this invention is directed to resin formulations that are readily set to an electrically conductive, low stress, matrix by a thermally initiated free radical reaction.
  • the conductor-filled resins are characterized by chemical and physical properties which render them uniquely adapted for surface mount and die attach applications.
  • the die attach adhesive contains a solvent, care must be taken to slowly remove the volatiles below the cure temperature to minimize void formation in the bond line. Such does not allow use of the more production efficient in-line automation for die attachment processes. While in-line curing has been detailed for certain snap-cure epoxy die attach adhesives, use of such compositions suffers the disadvantage of high rate of stress-related device failure, (especially for large chip manufacture) and corrosion due to extractable ionic species. There is clearly a significant need for the development of snap-cure conductive adhesives which avoid the known disadvantages of available snap-cure epoxies and other state-of-the-art die attach formulations.
  • Solder paste is a soldering material in paste form that readily adapts to automation, and accordingly has become the primary interconnecting material for board-level packaging.
  • Solder paste is a mixture of a fusible metal powder with fluxes, activators, solvents, binders and other ingredients designed to give the paste its targeted rheology.
  • the tacky characteristic of solder paste allows parts to be held in position without additional adhesives before permanent electrically conductive bonds are formed in the solder reflow process.
  • the rheological properties of solder paste are such that it can be applied by mesh screen printing, metal stencil printing, pneumatic dot' dispensing, positive displacement dispensing and pin transfer techniques.
  • Metal mask stencil has become a popular means for solder paste application because of its compatibility with solder pattern and performance/maintenance advantages. Yet the use of solder paste for electrical conductive bonding is not without its disadvantages. Differential expansion between bonded surfaces leads to stress on solder joints leading to joint cracking and concomitant device failure. Further the use of solder paste in manufacturing operations typically results in high waste — the pastes are not rheologically stable when exposed to the air and therefore have short "open times". Significantly, too, there are environmental concerns associated with the high volume use of solder paste. The paste typically contain high levels of toxic metals, including lead. Further, following solder reflow, most manufacturing processes require cleaning of solder flux contaminants, which involve additional labor costs and capital equipment. Solvent cleaning is sometimes required; there are many environmental/health issues associated with the handling of chlorinated and fluorinated solvents.
  • solder paste replacement formulations Recognition of the disadvantages along with the high volume use of solder paste has provided significant incentive to develop solder paste replacement formulations.
  • Yet epoxy-based solder replacement formulations suffer from the same disadvantages, although of a lesser significance, seen with their use in die attach adhesives, and accordingly have not been accepted for production in industry.
  • thermosetting resin formulation that can be thermally cured in in-line processing operations to provide a low stress, electrically conductive resin matrix.
  • Another object of this invention is to provide a thermosetting resin formulation that can be used as a solder paste replacement in surface mount printed circuit board manufacturing processes.
  • thermosetting resin formulation utilizing a free radical propagated cure mechanism as a die attach adhesive.
  • Another object of this invention is- to provide an improved method for electrically conductive attachment of surface mount electronics components to printed circuit boards utilizing a thermally initiated, free radical based curing conductor-filled resin formulation.
  • One other object of this invention to provide a die attach adhesive that can be fully cured in an in-line process with much reduced device failure due to stress failure.
  • thermosetting resin formulation comprising a free radical cross linkable polymer, a free radical initiating agent, and an unsaturated monomer capable of cross-linking the polymer.
  • the cross-linking unsaturated monomer is pref rably a bifunctional olefinic monomer having a boiling point greater than 200°C at atmospheric pressure
  • the thermosetting resin of this invention optionally includes a low shrink or low profile thermoplastic resin to reduce shrinkage and concomitant internal stress in the cured resin.
  • the resin formulations can be cured to form a shape-retaining electrically conducting resin matrix in less than 5 minutes, more typically less than 2 minutes, at a temperature of 200°C or below. Physical and chemical properties of the resin formulations allow them to be used for die attachment and surface mount applications with little or no revision to existing manufacturing protocols.
  • thermosetting resin formulation which can be cured through a free radical cross-linking/polymerizatio ⁇ mechanism to provide electrically conductive resin matrices.
  • the present resin formulations are in the form of a thixotropic fluid/paste having rheological characteristics that will allow it to be substituted for state-of-the-art die attach and solder paste formulations.
  • the resin formulations of this invention comprise a free radical cross-linkable polymer, an unsaturated monomer capable of cross-linking the polymer, a free radical initiating agent, and an electrically conductive microparticulate filler.
  • the present formulation further comprises a thermoplastic resin, most preferably a low shrink or low profile thermoplastic resin which functions to reduce post-cure stress in the cured electrically conductive matrix.
  • a thermoplastic resin most preferably a low shrink or low profile thermoplastic resin which functions to reduce post-cure stress in the cured electrically conductive matrix.
  • Other optional additives can be employed to optimize chemical and rheological characteristics. For example, a small amount of a polymerization inhibitor can be added to enhance "open time” and shelf life.
  • coupling agents can be added to improve "wetting" of the electrically conductive icrocparticulate filler component and, as well, to improve adhesion characteristics of the cured conductive resin matrix.
  • the resin component of the present formulation comprises about 30 to about 100 weight percent, more typically from about 30 to about 80 weight percent, and most preferably about 35 to about 75 weight percent of a free radical cross-linkable polymer.
  • cross-linkable polymers include the commercially available thermosetting, unsaturated polyesters, vinyl esters, polybutadiene homopolymers and co-polymers having pendant 1,2-vin ⁇ l groupings, and other unsaturated pre-polymers prepared by partial polymerization of bifunctional olefinic monomers such as divinylbenzene, diallyl isopthlate or diallyl isopthalate, and other polymeric compounds having pendant unsaturated groups capable of undergoing free radical polymerization itself or co-polymerization with unsaturated monomer components.
  • free radical cross-linkable polymers are those that exhibit high free radical initiated cure rates in the presence of a monomer cross-linking agents.
  • Vinyl esters and commercial polyesters prepared from maleic or fumaric acid with dihydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, dipropylene glycol or triethylene glycol are preferred reactive free radical cross-linkable polymers.
  • the resin composition of the present formulation is formulated to contain about 0 to about 70 weight percent of an unsaturated monomer capable of cross-linking the cross-linkable polymer.
  • the monomer and the free radical cross-linkable polymer are selected so that they form a homogeneous mixture.
  • Commercially available monomers include styrene, vinyl toluene, methyl methacrylate, methyl styrene, divinylbenzene, divinylpyridine, diallyl phthalate and diallyl isopthalate.
  • Monomers exhibiting low vapor pressure (having a boiling point, for example, > 200°C) are preferred.
  • thermosetting resin formulations of the invention Bifunctional olefinic monomers are used to prepare preferred thermosetting resin formulations of the invention.
  • Diallyl phthalate is most preferred. Its high boiling point and concomitant low volatility allows curing of the present resin formulations even in thin films without premature loss (evaporation) of the monomer component.
  • liquid cross- linkable polymers such as Ricon® brand high vinyl 1-2 vinyl liquid polybutadiene that are free radical cross- linkable without added monomer. Such polymers can be used neat as the sole resin component of the formulation or with minor amounts of monomer added only for viscosity control.
  • the present thermosetting resin formulation further comprises about 40 to about 85 weight percent, more preferably about 50 to about 80 weight percent, of an electrically conductive microparticulate filler.
  • microparticulate fillers are commercially available. They include microparticulate metals including silver, gold, platinum, palladium, nickel and copper.
  • the conductive microparticulate compositions can be in the form of powders, flakes, or coated metal, glass, or ceramic particles.
  • the nature of the electrically microparticulate filler is not critical except to the extent that the filler should be used in a quantity and of a nature such that the cured resin has a resistivity of less than about 10 "3 ohms per centimeter, preferably less than 10 "5 ohms per centimeter.
  • One electrically conductive microparticulate filler that has imparted favorable conductivity characteristics to the cured resin and, as well, favorable rheological properties to the pre-polymerized resin formulation is silver powder/flakes having a tap density > 3.0.
  • the electrically conductive microparticulate filler comprises -silver flake having a tap density of > 4.0.
  • Such high tap density silver flake is commercially available as product AX10C from Amepox Microelectronics Ltd. of Lodz, Tru.
  • Thermosetting resin formulations of this invention that have performed particularly well in solder paste applications have been formulated using mixtures of the very high tap density silver flake with other silver particulates of somewhat lower tap density. It has been found that rheological characteristics of the resin formulation, for example the thixotropic index which is important for processability in many applications, can be adjusted by adjusting the ratio of high tap density and low tap density silver powder components.
  • thermosetting resin formulation of the present invention is a free radical initiating agent. That component is added in an amount sufficient to promote short cure times for the thermosetting resin formulations at temperatures of about 200°C or below.
  • the free radical initiator is added in an amount effective to promote a short resin cure cycle - the resin formulation should cure to a shape-retaining electrical conductive matrix in about 30 seconds to about 5 minutes at a temperature of about 100 to about 200°C.
  • the resin formulation should be formulated to cure to a shape-retaining electrically conductive resin matrix in less than about 2 minutes at about 150°C to about 200°C.
  • the free radical initiators are typically peroxide or other free radical initiators which are stable at room temperatures, but decompose at elevated temperatures to propagate free radical polymerization and concomitant cure of the resin formulation. Many organic peroxides detailed for use as free radical initiators are commercially available.
  • peroxide examples include dicumyl peroxide, di-t- butyl peroxide, t-butyl perbenzoate, t-butyl peroxy-2- ethylhexylcarbonate, t-butyl peroctoate, 2,5-dimethyl 2,5- di(2-ethylhexanoylperoxy)hexane, t-amyl perbenzoate, and t- a yl peroctoate.
  • the free radical initiating agent is used at less than 1 percent by weight of the resin composition, more preferably less than 0.5 percent by weight.
  • the resin component of the thermosetting resin formulation further comprises from about 5 to about 35 weight percent, more preferably from about 10 to about 30 weight percent of a thermoplastic resin, preferably a low shrink or a low profile thermoplastic resin.
  • a thermoplastic resin preferably a low shrink or a low profile thermoplastic resin.
  • the thermoplastic resin should be compatible with (miscible or soluble in) the resin composition component of the thermosetting formulation.
  • the effect of the thermoplastic resin in the thermosetting system is to reduce the intrinsic shrinkage of the curing system and concomitantly to reduce the internal stress in the cured resin matrix.
  • electrically conductive resin matrices prepared by thermosetting (curing) resin formulations in accordance with this invention exhibit reduced cracking during resin cure and during thermal cycling commonly associated with electronics device usage.
  • thermoplastic resin additives in the present thermosetting resin formulations is particularly advantageous in resin formulations adapted for die attach applications.
  • Numerous low shrink and low profile thermoplastic resins are detailed in the technical and commercial literature.
  • Exemplary of such additives are styrene polymers and co-polymers, polyethylene, polyvinyl chloride, polyvinyl alcohol, methacrylate polymers and co- polymers, polycaprolactone ⁇ , saturated polyesters, polyurethane polymers, and elastomeric additives such as styrene butadiene rubber.
  • the thermosetting resin formulations of this invention include other additives to complement the physical and chemical properties of the formulation.
  • one or more commercially available coupling agents can be employed to facilitate blending of the conductive microparticulate filler with the resin composition.
  • Coupling agents for example, organofunctional silane coupling agent sold by Union Carbide, can be employed, often in trace amounts, but generally from about 0.1 to about .5 weight percent based on the weight of the resin composition, not only to facilitate blending of the resin formulation, but further to promote adhesion of the formulation to the substrate surfaces to which it is applied.
  • Another additive that has been found useful at trace levels is a polymerization inhibitor which functions to prevent premature polymerization of the resin formulation and thus enhances shelf life and "open time".
  • exemplary of such inhibitors are hydroquinone, p-methoxy phenol, and 2,6-di- t-butyl phenol.
  • the formulation comprises from about 20 to about 50 weight percent of a resin composition comprising about 50 to about 90 weight percent of a vinyl ester or a highly reactive unsaturated polyester, and about 10 to about 50 weight percent of a bifunctional olefinic monomer selected from the group consisting of divinyl benzene, divinyl pyridine, diallyl phthalate and diallyl isophthalate.
  • the preferred formulation further comprises from about 50 to about 80 weight percent of an electrically conductive microparticulate filler comprising a metal selected from the group consisting of silver, gold, palladium, platinum, nickel and copper, most preferably silver powder or silver flake having a tap density > 3.0.
  • the resin composition further comprises a free radical initiating agent in an amount effective to promote thermosetting of said formulation to a shape-retaining, electrically conductive resin matrix in about 30 seconds to about 5 minutes at about 100 to about 200°C.
  • a free radical initiating agent in an amount effective to promote thermosetting of said formulation to a shape-retaining, electrically conductive resin matrix in about 30 seconds to about 5 minutes at about 100 to about 200°C.
  • the formulation can be thermoset to a shape-retaining, electrically conductive resin matrix in less than 2 minutes at a temperature of about 150° to about 200°C.
  • the thixotropic electrically conductive resin formulation of the present invention can be prepared using conventional resin/paste mixing/blending equipment.
  • the compositions are optionally prepared utilizing a conventional 3-roll mill.
  • the resin components including the optional thermoplastic resin, polymerization inhibitor, or coupling agent are first blended and the resulting resin composition blend is combined with at least a major portion of the conductive filler and thereafter the remaining portion of the conductive filler is added and blended in the composition.
  • the conductor-filled thermosetting resin formulations of this invention find specific application as die attach adhesives and as solder paste replacements for electrically conductive attachment of surface mount electronics components to printed circuit boards.
  • the present conductor-filled resin formulations can be prepared to have viscosities typically ranging from about 30,000 to about 400,000 centipoise and further can be formulated to have rheological properties which permit direct substitution of the present conductor filled resin formulations for state-of-the-art solder paste and die attach adhesive compositions without significant, if any, modification of existing manufacturing protocols. Indeed, use of the present resin formulations in both die attach and solder paste replacement applications offers multiple cost-saving advantages, not only in terms of processability, but as well in product performance.
  • Hetron® 912 is a vinyl ester resin sold by Ashland Chemical, Inc.
  • DAP is the notation for diallyl phthalate.
  • Catalysts 331, 575 and 256 are the free radical initiating catalysts l,l-di-t- butylperoxycyclohexane; t-amyl peroctoate; and 2,5-dimethyl 2,5-di(2-2-ethylhexanoylperoxy)hexane, respectively, sold under the trade name Lupersol.
  • Leguval® resins are thermoplastic resins available from DSM.
  • the coupling agent A-187 silane is gamma- glycidoxypropyltrimethoxysilane, an epoxide functional coupling agent sold by Union Carbide.
  • the silver powder/flakes identified as AX10C and AX20L are silver flake products available from Amepox.
  • AX10C is a silver semi-flake product having a tap density of about 4.8 to about 5.6.
  • AX20L is a silver flake product having a tap density of about 3.1 to about 3.6
  • Each of Formulas A331, B575, and L575 were used to prepare silver filled resin formulations in accordance with the present invention.
  • the resin formulations were prepared by blending the silver flake components into the prepared resin compositions.
  • the data obtained upon assessment of the chemical and physical properties of the silver filled formulations is shown in Table 2.
  • a resin formulation having the following formula was prepared as a solder paste replacement.
  • solder paste replacement formulation was tested as a replacement for solder paste used in a stencil- printed solder paste application.
  • the formulation was substituted for a state-of-the-art solder paste composition.
  • the solder paste replacement exhibited stencil printability in a 20 mil pitch pattern.

Abstract

Conductor-filled thermosetting resins having a free radical based cure chemistry are prepared for use as solder paste replacements for electrical conducting attachments of surface mount electronics components to printed circuit boards and as a die attach adhesive. The thermosetting resins exhibit rheological properties that allow them to be substituted for state-of-the-art solder paste and die attach adhesives. The conductor filled resins can be thermally cured in in-line processing operations to provide a low stress, substrate adherent, electrically conductive resin matrix.

Description

CONDUCTOR-FILLED THERMOSETTING RESIN
Field of the Invention
This invention relates to conductor-filled thermoset resins. More particularly this invention is directed to resin formulations that are readily set to an electrically conductive, low stress, matrix by a thermally initiated free radical reaction. The conductor-filled resins are characterized by chemical and physical properties which render them uniquely adapted for surface mount and die attach applications.
Background and Summary of the Invention
Common to the manufacture of all electronic devices is the formation of electrically conductive connections and bonds between cooperating microelectronic components. It is important, indeed critical, to device performance that the electrically conducting interconnections of device components are made as, dependable as the device components themselves. Yet there are many practical considerations, not the least of which is manufacturing cost, which often dictate the nature of the process steps on the assembly line. Electronics device manufacturers and their suppliers have invested in a significant ongoing research and development effort to define new materials and processes for forming reliable electrically conductive connections for electronic device manufacture. The goal of many of such efforts has been to define new conductive adhesives that exhibit good processability and provide reliable product performance. Two product areas that have been the target of significant research and development efforts are conductive adhesives for die attach (chip bonding) applications and solder paste used for board-level packaging — surface mount technology. Industry manufacturing practices for die attach include the use of thermoplastic (solvent containing) die attach adhesives, -thermoset epoxies (both low temperature — slow curing for batch operations - and snap-cure epoxies, and solvent-based bismaleimide systems and polya ide systems, among others. State-of-the-art die attach materials are applied using either stamping or pin transfer, dispense or screen printing equipment. The die are then placed in contact with the adhesive which is typically batch cured in a forced air, recirculating oven. If the die attach adhesive contains a solvent, care must be taken to slowly remove the volatiles below the cure temperature to minimize void formation in the bond line. Such does not allow use of the more production efficient in-line automation for die attachment processes. While in-line curing has been detailed for certain snap-cure epoxy die attach adhesives, use of such compositions suffers the disadvantage of high rate of stress-related device failure, (especially for large chip manufacture) and corrosion due to extractable ionic species. There is clearly a significant need for the development of snap-cure conductive adhesives which avoid the known disadvantages of available snap-cure epoxies and other state-of-the-art die attach formulations.
Solder paste is a soldering material in paste form that readily adapts to automation, and accordingly has become the primary interconnecting material for board-level packaging. Solder paste is a mixture of a fusible metal powder with fluxes, activators, solvents, binders and other ingredients designed to give the paste its targeted rheology. The tacky characteristic of solder paste allows parts to be held in position without additional adhesives before permanent electrically conductive bonds are formed in the solder reflow process. The rheological properties of solder paste are such that it can be applied by mesh screen printing, metal stencil printing, pneumatic dot' dispensing, positive displacement dispensing and pin transfer techniques. Metal mask stencil has become a popular means for solder paste application because of its compatibility with solder pattern and performance/maintenance advantages. Yet the use of solder paste for electrical conductive bonding is not without its disadvantages. Differential expansion between bonded surfaces leads to stress on solder joints leading to joint cracking and concomitant device failure. Further the use of solder paste in manufacturing operations typically results in high waste — the pastes are not rheologically stable when exposed to the air and therefore have short "open times". Significantly, too, there are environmental concerns associated with the high volume use of solder paste. The paste typically contain high levels of toxic metals, including lead. Further, following solder reflow, most manufacturing processes require cleaning of solder flux contaminants, which involve additional labor costs and capital equipment. Solvent cleaning is sometimes required; there are many environmental/health issues associated with the handling of chlorinated and fluorinated solvents.
Recognition of the disadvantages along with the high volume use of solder paste has provided significant incentive to develop solder paste replacement formulations. Paralleling the development of electrically conductive epoxy adhesives for die attach applications, metal filled conductive epoxies have also been proposed as solder paste replacements. Yet epoxy-based solder replacement formulations suffer from the same disadvantages, although of a lesser significance, seen with their use in die attach adhesives, and accordingly have not been accepted for production in industry. There is still a significant need in the electronics manufacturing industry to develop reliable, electrically conductive bonding materials which not only provide good performance properties but as well exhibit cost saving processability advantages.
Therefore, it is one object of this invention to provide a thermosetting resin formulation that can be thermally cured in in-line processing operations to provide a low stress, electrically conductive resin matrix.
It is another object of this invention to provide conductor-filled thermosetting resins which due to their free radical based cure chemistry not only exhibit good rheological stability at ambient temperature but can be induced to cure rapidly at temperatures of 150-200°C.
Another object of this invention is to provide a thermosetting resin formulation that can be used as a solder paste replacement in surface mount printed circuit board manufacturing processes.
It is still another object of this invention to provide a thermosetting resin formulation utilizing a free radical propagated cure mechanism as a die attach adhesive. Another object of this invention is- to provide an improved method for electrically conductive attachment of surface mount electronics components to printed circuit boards utilizing a thermally initiated, free radical based curing conductor-filled resin formulation.
One other object of this invention to provide a die attach adhesive that can be fully cured in an in-line process with much reduced device failure due to stress failure.
Those and other objects of this invention are achieved by a conductor-filled thermosetting resin formulation comprising a free radical cross linkable polymer, a free radical initiating agent, and an unsaturated monomer capable of cross-linking the polymer. The cross-linking unsaturated monomer is pref rably a bifunctional olefinic monomer having a boiling point greater than 200°C at atmospheric pressure, The thermosetting resin of this invention optionally includes a low shrink or low profile thermoplastic resin to reduce shrinkage and concomitant internal stress in the cured resin. The resin formulations can be cured to form a shape-retaining electrically conducting resin matrix in less than 5 minutes, more typically less than 2 minutes, at a temperature of 200°C or below. Physical and chemical properties of the resin formulations allow them to be used for die attachment and surface mount applications with little or no revision to existing manufacturing protocols.
Detailed Description of the Invention
In accordance with the present invention there is provided a thermosetting resin formulation which can be cured through a free radical cross-linking/polymerizatioη mechanism to provide electrically conductive resin matrices. The present resin formulations are in the form of a thixotropic fluid/paste having rheological characteristics that will allow it to be substituted for state-of-the-art die attach and solder paste formulations. Generally the resin formulations of this invention comprise a free radical cross-linkable polymer, an unsaturated monomer capable of cross-linking the polymer, a free radical initiating agent, and an electrically conductive microparticulate filler. In one preferred embodiment, the present formulation further comprises a thermoplastic resin, most preferably a low shrink or low profile thermoplastic resin which functions to reduce post-cure stress in the cured electrically conductive matrix. Other optional additives can be employed to optimize chemical and rheological characteristics. For example, a small amount of a polymerization inhibitor can be added to enhance "open time" and shelf life. In addition, coupling agents can be added to improve "wetting" of the electrically conductive icrocparticulate filler component and, as well, to improve adhesion characteristics of the cured conductive resin matrix.
The resin component of the present formulation comprises about 30 to about 100 weight percent, more typically from about 30 to about 80 weight percent, and most preferably about 35 to about 75 weight percent of a free radical cross-linkable polymer. Such cross-linkable polymers include the commercially available thermosetting, unsaturated polyesters, vinyl esters, polybutadiene homopolymers and co-polymers having pendant 1,2-vinγl groupings, and other unsaturated pre-polymers prepared by partial polymerization of bifunctional olefinic monomers such as divinylbenzene, diallyl isopthlate or diallyl isopthalate, and other polymeric compounds having pendant unsaturated groups capable of undergoing free radical polymerization itself or co-polymerization with unsaturated monomer components. Most preferred of the free radical cross-linkable polymers are those that exhibit high free radical initiated cure rates in the presence of a monomer cross-linking agents. Vinyl esters and commercial polyesters prepared from maleic or fumaric acid with dihydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, dipropylene glycol or triethylene glycol are preferred reactive free radical cross-linkable polymers.
The resin composition of the present formulation is formulated to contain about 0 to about 70 weight percent of an unsaturated monomer capable of cross-linking the cross-linkable polymer. The monomer and the free radical cross-linkable polymer are selected so that they form a homogeneous mixture. The monomer is generally of the vinyl type (including at least one group - C=CH2 in each molecule) . Commercially available monomers include styrene, vinyl toluene, methyl methacrylate, methyl styrene, divinylbenzene, divinylpyridine, diallyl phthalate and diallyl isopthalate. Monomers exhibiting low vapor pressure (having a boiling point, for example, > 200°C) , are preferred. Bifunctional olefinic monomers are used to prepare preferred thermosetting resin formulations of the invention. Diallyl phthalate is most preferred. Its high boiling point and concomitant low volatility allows curing of the present resin formulations even in thin films without premature loss (evaporation) of the monomer component. There are commercially available liquid cross- linkable polymers, such as Ricon® brand high vinyl 1-2 vinyl liquid polybutadiene that are free radical cross- linkable without added monomer. Such polymers can be used neat as the sole resin component of the formulation or with minor amounts of monomer added only for viscosity control. The present thermosetting resin formulation further comprises about 40 to about 85 weight percent, more preferably about 50 to about 80 weight percent, of an electrically conductive microparticulate filler. A wide variety of microparticulate fillers are commercially available. They include microparticulate metals including silver, gold, platinum, palladium, nickel and copper. The conductive microparticulate compositions can be in the form of powders, flakes, or coated metal, glass, or ceramic particles. The nature of the electrically microparticulate filler is not critical except to the extent that the filler should be used in a quantity and of a nature such that the cured resin has a resistivity of less than about 10"3 ohms per centimeter, preferably less than 10"5 ohms per centimeter. One electrically conductive microparticulate filler that has imparted favorable conductivity characteristics to the cured resin and, as well, favorable rheological properties to the pre-polymerized resin formulation is silver powder/flakes having a tap density > 3.0. In a most preferred thermosetting resin formulation of this invention, the electrically conductive microparticulate filler comprises -silver flake having a tap density of > 4.0. Such high tap density silver flake is commercially available as product AX10C from Amepox Microelectronics Ltd. of Lodz, Poland. Thermosetting resin formulations of this invention that have performed particularly well in solder paste applications have been formulated using mixtures of the very high tap density silver flake with other silver particulates of somewhat lower tap density. It has been found that rheological characteristics of the resin formulation, for example the thixotropic index which is important for processability in many applications, can be adjusted by adjusting the ratio of high tap density and low tap density silver powder components.
One other component of the thermosetting resin formulation of the present invention is a free radical initiating agent. That component is added in an amount sufficient to promote short cure times for the thermosetting resin formulations at temperatures of about 200°C or below. Preferably the free radical initiator is added in an amount effective to promote a short resin cure cycle - the resin formulation should cure to a shape-retaining electrical conductive matrix in about 30 seconds to about 5 minutes at a temperature of about 100 to about 200°C. Most preferably the resin formulation should be formulated to cure to a shape-retaining electrically conductive resin matrix in less than about 2 minutes at about 150°C to about 200°C. The free radical initiators are typically peroxide or other free radical initiators which are stable at room temperatures, but decompose at elevated temperatures to propagate free radical polymerization and concomitant cure of the resin formulation. Many organic peroxides detailed for use as free radical initiators are commercially available. Examples of such peroxide include dicumyl peroxide, di-t- butyl peroxide, t-butyl perbenzoate, t-butyl peroxy-2- ethylhexylcarbonate, t-butyl peroctoate, 2,5-dimethyl 2,5- di(2-ethylhexanoylperoxy)hexane, t-amyl perbenzoate, and t- a yl peroctoate. Typically the free radical initiating agent is used at less than 1 percent by weight of the resin composition, more preferably less than 0.5 percent by weight.
In a preferred embodiment of this invention the resin component of the thermosetting resin formulation further comprises from about 5 to about 35 weight percent, more preferably from about 10 to about 30 weight percent of a thermoplastic resin, preferably a low shrink or a low profile thermoplastic resin. Importantly the thermoplastic resin should be compatible with (miscible or soluble in) the resin composition component of the thermosetting formulation. The effect of the thermoplastic resin in the thermosetting system is to reduce the intrinsic shrinkage of the curing system and concomitantly to reduce the internal stress in the cured resin matrix. Thus electrically conductive resin matrices prepared by thermosetting (curing) resin formulations in accordance with this invention, including effective amounts of one or more thermoplastic resin components, exhibit reduced cracking during resin cure and during thermal cycling commonly associated with electronics device usage. The use of low shrink or low profile thermoplastic resin additives in the present thermosetting resin formulations is particularly advantageous in resin formulations adapted for die attach applications. Numerous low shrink and low profile thermoplastic resins are detailed in the technical and commercial literature. Exemplary of such additives are styrene polymers and co-polymers, polyethylene, polyvinyl chloride, polyvinyl alcohol, methacrylate polymers and co- polymers, polycaprolactoneε, saturated polyesters, polyurethane polymers, and elastomeric additives such as styrene butadiene rubber. Exemplary of commercially available low profile thermoplastic resins for use in the present resin formulations are the Uralloy® hybrid polymer LP85-05, a low profile modified polyurethane sold by Olin Chemicals, Stamford, Connecticut, and the Leguval® thermoplastic resins, including Leguval KU3-7248, Leguval KU3-7232B, and Leguval KU3-7258, all sold by DSM Resins of Zwolle, The Netherlands. The thermosetting resin formulations of this invention include other additives to complement the physical and chemical properties of the formulation. Thus, for example, one or more commercially available coupling agents can be employed to facilitate blending of the conductive microparticulate filler with the resin composition. Coupling agents, for example, organofunctional silane coupling agent sold by Union Carbide, can be employed, often in trace amounts, but generally from about 0.1 to about .5 weight percent based on the weight of the resin composition, not only to facilitate blending of the resin formulation, but further to promote adhesion of the formulation to the substrate surfaces to which it is applied. Another additive that has been found useful at trace levels (generally less than .1 weight percent based on the resin formulation) is a polymerization inhibitor which functions to prevent premature polymerization of the resin formulation and thus enhances shelf life and "open time". Exemplary of such inhibitors are hydroquinone, p-methoxy phenol, and 2,6-di- t-butyl phenol.
In a preferred embodiment of the resin formulation of the present invention, the formulation comprises from about 20 to about 50 weight percent of a resin composition comprising about 50 to about 90 weight percent of a vinyl ester or a highly reactive unsaturated polyester, and about 10 to about 50 weight percent of a bifunctional olefinic monomer selected from the group consisting of divinyl benzene, divinyl pyridine, diallyl phthalate and diallyl isophthalate. The preferred formulation further comprises from about 50 to about 80 weight percent of an electrically conductive microparticulate filler comprising a metal selected from the group consisting of silver, gold, palladium, platinum, nickel and copper, most preferably silver powder or silver flake having a tap density > 3.0. The resin composition further comprises a free radical initiating agent in an amount effective to promote thermosetting of said formulation to a shape-retaining, electrically conductive resin matrix in about 30 seconds to about 5 minutes at about 100 to about 200°C. Most preferably the formulation can be thermoset to a shape-retaining, electrically conductive resin matrix in less than 2 minutes at a temperature of about 150° to about 200°C.
The thixotropic electrically conductive resin formulation of the present invention can be prepared using conventional resin/paste mixing/blending equipment. The compositions are optionally prepared utilizing a conventional 3-roll mill. Typically the resin components including the optional thermoplastic resin, polymerization inhibitor, or coupling agent are first blended and the resulting resin composition blend is combined with at least a major portion of the conductive filler and thereafter the remaining portion of the conductive filler is added and blended in the composition. The conductor-filled thermosetting resin formulations of this invention find specific application as die attach adhesives and as solder paste replacements for electrically conductive attachment of surface mount electronics components to printed circuit boards. The present conductor-filled resin formulations can be prepared to have viscosities typically ranging from about 30,000 to about 400,000 centipoise and further can be formulated to have rheological properties which permit direct substitution of the present conductor filled resin formulations for state-of-the-art solder paste and die attach adhesive compositions without significant, if any, modification of existing manufacturing protocols. Indeed, use of the present resin formulations in both die attach and solder paste replacement applications offers multiple cost-saving advantages, not only in terms of processability, but as well in product performance. Those advantages derive not only from the inherent purity of the present formulations, but further from the inherent low stress condition of the cured conductive resin matrices and in the elimination of problems associated with the use of solvents, either in the use of formulations per se (i.e., void formation at the bond line in die attach applications) and elimination of the solvent cleaning required for most metal reflow solder paste in surface mount applications. The invention is further described with reference to the following examples.
In the following examples Hetron® 912 is a vinyl ester resin sold by Ashland Chemical, Inc. DAP is the notation for diallyl phthalate. Catalysts 331, 575 and 256 are the free radical initiating catalysts l,l-di-t- butylperoxycyclohexane; t-amyl peroctoate; and 2,5-dimethyl 2,5-di(2-2-ethylhexanoylperoxy)hexane, respectively, sold under the trade name Lupersol. Leguval® resins are thermoplastic resins available from DSM. The coupling agent A-187 silane is gamma- glycidoxypropyltrimethoxysilane, an epoxide functional coupling agent sold by Union Carbide. The silver powder/flakes identified as AX10C and AX20L are silver flake products available from Amepox. AX10C is a silver semi-flake product having a tap density of about 4.8 to about 5.6. AX20L is a silver flake product having a tap density of about 3.1 to about 3.6
Several test resin compositions for use in the present conductor filled resin formulations were prepared to evaluate viscosity and cure time. The results of that test are shown in Table 1.
TABLE 1
Figure imgf000015_0001
Each of Formulas A331, B575, and L575 were used to prepare silver filled resin formulations in accordance with the present invention. The resin formulations were prepared by blending the silver flake components into the prepared resin compositions. The data obtained upon assessment of the chemical and physical properties of the silver filled formulations is shown in Table 2.
Figure imgf000016_0001
* Curing 175βC - T5 minutes - For stimulation long term work.
*" Curing 175°C - 2-3 minutes - After this time was no change of resistance.
A resin formulation having the following formula was prepared as a solder paste replacement.
SOLDER PASTE Hetron 912 Resin 42.25 DAP Monomer 36.75
Leguval 7223B Solids 21.00 *Hydroquinone Solution 0.05 Lupersol 575-P75 2.00
5.30 Tap Density Silver 204.00 3.35 Tap Density Silver 204.00 A-187 Silane 0.38
510.43
*Hydroquinone Solution
Hydroquinone 0.66 Styrene T-50 7.44
Cellosolve Glycol EE 6.90
The solder paste replacement formulation was tested as a replacement for solder paste used in a stencil- printed solder paste application. The formulation was substituted for a state-of-the-art solder paste composition. The solder paste replacement exhibited stencil printability in a 20 mil pitch pattern.

Claims

CLAIMS :
1. A thermosetting resin formulation comprising about 15 to about 60 weight percent of a resin composition comprising about 30 to about 80 weight percent of a free radical cross-linkable unsaturated polyester or vinyl ester, about 5 to about 35 weight percent of a thermoplastic resin and about 0 to about 70 weight percent of an unsaturated monomer capable of cross-linking the cross-linkable polyester or vinyl ester, about 40 to about 85 weight percent of an electrically conductive microparticulate filler, and a free radical initiating agent in an amount effective to promote thermosetting of said formulation to a shape retaining electrically conducting resin matrix in about 30 seconds to about 5 minutes at about 100 to about 200°C.
2. The resin formulation of claim 1 wherein the monomer is selected from the group consisting.of divinylbenzene, divinylpyridine, diallyl phthalate and diallyl isopthalate.
3. The resin formulation of claim 1 wherein the electrically conductive microparticulate filler comprises a metal selected from the group consisting of silver, gold, platinum, palladium, nickel and copper.
4. The resin formulation of claim 3 wherein the electrically conductive microparticulate filler comprises a silver having a tap density > 3.
5. The resin formulation of claim 4 wherein the electrically conductive microparticulate filler is silver powder or silver flake having a tap density of > 4.
6. The resin formulation of claim 1 wherein the unsaturated monomer is diallyl phthalate or diallyl isopthalate.
7. The resin formulation of claim 6 wherein the electrically conductive microparticulate filler comprises a metal selected from the group consisting of silver, gold, platinum, palladium, nickel and copper.
8. The resin formulation of claim 7 wherein the electrically conductive microparticulate filler comprises silver flake or silver powder having a tap density of > 3.0.
9. The resin formulation of claim 8 wherein the electrically conductive microparticulate filler comprises silver powder or silver flake having a tap density of > 4.0.
10. The resin formulation of claim 1 comprising about 20 to about 50 weight percent of a resin composition comprising about 50 to about 90 weight percent of a vinyl ester or an unsaturated polyester, about 10 to about 30 weight percent of a thermoplastic resin, and about 10 to about 50 weight percent of a bifunctional olefinic monomer selected from the group consisting of divinylbenzene, divinylpyridine, diallyl phthalate and diallyl isophthalate, about 50 to about 80 weight percent of an electrically conductive microparticulate filler comprising a metal selected from the group consisting of silver, gold, palladium, nickel and copper, and a free radical initiating agent in an amount effective to promote thermosetting of said formulation to a shape-retaining, electrically conducting resin matrix in about 30 seconds to about 5 minutes at about 100 to about 200°C.
11. The resin formulation of claim 10 wherein the thermoplastic resin is a low profile thermoplastic resin.
12. The resin formulation of claim 11 wherein the free radical cross-linkable polymer is a vinyl ester.
13. The resin formulation of claim 12 wherein the unsaturated monomer is diallyl phthalate or diallyl isophthalate.
14. The resin formulation of claim 13 wherein the electrically conductive microparticulate filler comprises silver powder or silver flake having a tap density > 3.0.
15. The resin formulation of claim 14 wherein the free radical initiating agent is in an amount effective to promote thermosetting of said formulation to a shape- retaining, electrically conducting resin matrix in less than 2 minutes at a temperature of 200°C.
16. The resin formulation of claim 1 wherein the free radical initiating agent is in an amount effective to promote thermosetting of said formulation to a shape- retaining, electrically conducting resin matrix in less than 2 minutes at a temperature of 200°C.
17. The resin formulation of claim 1 further comprising about 0.05 to about 1 weight percent of an antioxidant.
18. In a method for bonding a microelectronics device to a lead frame using a thermosetting resin containing an electrically conducting microparticulate filler, the improvement which comprises bonding said microelectronics device to the lead frame with a thermosetting resin formulation comprising about 15 to about 60 weight percent of a resin composition comprising about 30 to about 80 weight percent of a free radical cross-linkable unsaturated polyester or a vinyl ester, about 5 to about 35 weight percent of a thermoplastic resin, and about 0 to about 70 weight percent of an unsaturated monomer capable of cross-linking the cross-linkable polyester or vinyl ester, about 40 to about 85 weight percent of an electrically conductive microparticulate filler, and a free radical initiating agent in an amount effective to promote thermosetting of said formulation to a shape retaining electrically conducting resin matrix in about 30 second to about 5 minutes at a temperature of about 100 to about 200°C.
19. The improvement of claim 18 wherein the thermoplastic resin is a low profile thermoplastic resin.
20. The improvement of claim 18 wherein the unsaturated monomer is diallyl isophthalate or diallyl phthalate.
21. The improvement of claim 20 wherein the electrically conducting microparticulate filler comprises silver flake or silver powder having a tap density > 3.0.
22. The improvement of claim 20 wherein the electrically conducting microparticulate filler comprises silver flake or silver powder having a tap density > 4.0.
23. An improved method for electrical attachment of surface mount electronics components to a printed circuit board, said method comprising the steps of applying a thermosetting resin formulation to said circuit board in a pre-determined pattern, said thermosetting resin formulation comprising about 15 to about 60 weight percent of a resin composition comprising about 30 to about 80 weight percent of a free radical cross-linkable unsaturated polyester or vinyl ester, about 5 to about 35 weight percent of a thermoplastic resin, and about 0 to about 70 weight percent of an unsaturated monomer capable of cross-linking the cross-linkable polyester or vinyl ester, about 40 to about 85 weight percent of an electrically conducting microparticulate filler, and a free radical initiating agent in an amount effective to promote thermosetting of said formulation to a shape-retaining electrically conducting resin matrix in about 30 seconds to about 5 minutes at a temperature of about 100 to about 200°C, and exposing said circuit board to a temperature sufficient to cure the applied thermosetting resin.
24. The improved method of claim 23 wherein the monomer is selected from the group consisting of divinylbenzene, divinylpyridine, diallyl phthalate and diallyl isopthalate.
25. The improved method of claim 23 wherein the microparticulate conductor comprises a metal selected from the group consisting of silver, gold, platinum, palladium, nickel and copper.
26. The improved method of claim 25 wherein the electrically conducting microparticulate filler comprises silver having a tap density > 3.
27. The improved method of claim 26 wherein the electrically conducting microparticulate filler is silver flake having a tap density of > 4.0.
PCT/US1993/003314 1992-04-03 1993-04-01 Conductor-filled thermosetting resin WO1993020562A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86345292A 1992-04-03 1992-04-03
US07/863,452 1992-04-03

Publications (1)

Publication Number Publication Date
WO1993020562A1 true WO1993020562A1 (en) 1993-10-14

Family

ID=25341129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/003314 WO1993020562A1 (en) 1992-04-03 1993-04-01 Conductor-filled thermosetting resin

Country Status (3)

Country Link
US (1) US5475048A (en)
AU (1) AU3975793A (en)
WO (1) WO1993020562A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753358A (en) * 1994-08-25 1998-05-19 W. L. Gore & Associates, Inc. Adhisive-filler polymer film composite
US5766750A (en) * 1994-08-25 1998-06-16 W. L. Gore & Associates, Inc. Process for making an adhesive-filler polymer film composite
US5879794A (en) * 1994-08-25 1999-03-09 W. L. Gore & Associates, Inc. Adhesive-filler film composite
US6143401A (en) * 1996-11-08 2000-11-07 W. L. Gore & Associates, Inc. Electronic chip package
DE102022113019A1 (en) 2022-05-24 2023-11-30 Emil Frei Gmbh & Co. Kg Coating material, use of the coating material for coating components, method for coating components with the coating material and components coated with the coating material

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034194A (en) * 1994-09-02 2000-03-07 Quantum Materials/Dexter Corporation Bismaleimide-divinyl adhesive compositions and uses therefor
FR2722138B1 (en) 1994-07-07 1996-09-20 Bourrieres Francis SCREEN PRINTING STENCIL AND METHOD FOR PRODUCING THE SAME
US7645899B1 (en) 1994-09-02 2010-01-12 Henkel Corporation Vinyl compounds
US6852814B2 (en) * 1994-09-02 2005-02-08 Henkel Corporation Thermosetting resin compositions containing maleimide and/or vinyl compounds
US6960636B2 (en) 1994-09-02 2005-11-01 Henkel Corporation Thermosetting resin compositions containing maleimide and/or vinyl compounds
US20030055121A1 (en) * 1996-09-10 2003-03-20 Dershem Stephen M. Thermosetting resin compositions containing maleimide and/or vinyl compounds
US7618713B2 (en) * 1997-03-31 2009-11-17 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
EP0979854B1 (en) * 1997-03-31 2006-10-04 Hitachi Chemical Company, Ltd. Circuit connecting material, and structure and method of connecting circuit terminal
US5744533A (en) * 1997-06-04 1998-04-28 Johnson Matthey, Inc. Adhesive composition for bonding a semiconductor device
US6238223B1 (en) 1997-08-20 2001-05-29 Micro Technology, Inc. Method of depositing a thermoplastic polymer in semiconductor fabrication
US6110805A (en) * 1997-12-19 2000-08-29 Micron Technology, Inc. Method and apparatus for attaching a workpiece to a workpiece support
US6117367A (en) * 1998-02-09 2000-09-12 International Business Machines Corporation Pastes for improved substrate dimensional control
JP2001262078A (en) 2000-03-17 2001-09-26 Sony Chem Corp Connecting material
FR2811922B1 (en) * 2000-07-20 2003-01-10 Optoform Sarl Procedes De Prot METAL POWDER LOADED PASTE COMPOSITION, PROCESS FOR OBTAINING METAL PRODUCTS FROM THE SAME, AND METAL PRODUCT OBTAINED BY SAID PROCESS
WO2002015302A2 (en) 2000-08-14 2002-02-21 World Properties Inc. Thermosetting composition for electrochemical cell components and methods of making thereof
US7138203B2 (en) * 2001-01-19 2006-11-21 World Properties, Inc. Apparatus and method of manufacture of electrochemical cell components
WO2002080295A2 (en) * 2001-01-19 2002-10-10 World Properties Inc. Apparatus and method for electrochemical cell components
EP1313158A3 (en) * 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
JP4650456B2 (en) * 2006-08-25 2011-03-16 日立化成工業株式会社 Circuit connection material, circuit member connection structure using the same, and manufacturing method thereof
JP4975514B2 (en) * 2007-04-26 2012-07-11 信越化学工業株式会社 DIE BONDING AGENT AND SEMICONDUCTOR DEVICE USING THE SAME
KR100792664B1 (en) 2007-06-01 2008-01-09 주식회사 동부하이텍 Plastic conductive particles
KR101551758B1 (en) * 2012-12-11 2015-09-09 제일모직주식회사 Composition for use of an anisotropic conductive film and an anisotropic conductive film thereof
JP7369031B2 (en) * 2019-12-27 2023-10-25 京セラ株式会社 Paste composition and method for manufacturing electronic component device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102930A (en) * 1977-02-21 1978-09-07 Murata Manufacturing Co Conducting paint
US4288571A (en) * 1971-01-18 1981-09-08 Union Carbide Corporation Polyester compositions
US4387115A (en) * 1980-08-08 1983-06-07 Mitsui Toatsu Chemicals, Inc. Composition for conductive cured product
EP0099717A2 (en) * 1982-07-20 1984-02-01 The British Petroleum Company p.l.c. Conducting unsaturated polyester resin compositions
JPS6395275A (en) * 1986-10-13 1988-04-26 Toshiba Chem Corp Electrically conductive paste
US4767806A (en) * 1987-01-05 1988-08-30 Uniroyal Chemical Company, Inc. Carboxyl modified olefinic copolymer composition
JPH01251625A (en) * 1988-03-31 1989-10-06 Toshiba Chem Corp Resin sealed type semiconductor device
JPH0447604A (en) * 1990-06-15 1992-02-17 Du Pont Japan Ltd Conductive resin composition
US5158708A (en) * 1989-12-01 1992-10-27 Kao Corporation Conductive paste and conductive coating film
US5171479A (en) * 1990-04-27 1992-12-15 Dai-Ichi Kogyo Seiyaku Co., Ltd. Antistatic and ionically conductive resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1372608A (en) * 1972-10-27 1974-10-30 Standard Telephones Cables Ltd Filled plastics resin
US3903027A (en) * 1974-05-13 1975-09-02 Cpc International Inc Diallyl isophthalate encapsulating compositions and process for preparing the same
US4327369A (en) * 1979-08-06 1982-04-27 Hi-Tech Industries, Inc. Encapsulating moisture-proof coating
JPS60223872A (en) * 1984-04-20 1985-11-08 Matsushita Electric Ind Co Ltd Electrically conductive paint
JPH01103906A (en) * 1987-07-16 1989-04-21 Hitachi Metals Ltd Amorphous bn film and its production
US4971841A (en) * 1989-06-08 1990-11-20 Basf Corporation Reflective automotive coating compositions
JPH03152177A (en) * 1989-11-09 1991-06-28 Asahi Chem Ind Co Ltd Acrylic conductive paste and electric conductor using same paste
US5250228A (en) * 1991-11-06 1993-10-05 Raychem Corporation Conductive polymer composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288571A (en) * 1971-01-18 1981-09-08 Union Carbide Corporation Polyester compositions
JPS53102930A (en) * 1977-02-21 1978-09-07 Murata Manufacturing Co Conducting paint
US4387115A (en) * 1980-08-08 1983-06-07 Mitsui Toatsu Chemicals, Inc. Composition for conductive cured product
EP0099717A2 (en) * 1982-07-20 1984-02-01 The British Petroleum Company p.l.c. Conducting unsaturated polyester resin compositions
JPS6395275A (en) * 1986-10-13 1988-04-26 Toshiba Chem Corp Electrically conductive paste
US4767806A (en) * 1987-01-05 1988-08-30 Uniroyal Chemical Company, Inc. Carboxyl modified olefinic copolymer composition
JPH01251625A (en) * 1988-03-31 1989-10-06 Toshiba Chem Corp Resin sealed type semiconductor device
US5158708A (en) * 1989-12-01 1992-10-27 Kao Corporation Conductive paste and conductive coating film
US5171479A (en) * 1990-04-27 1992-12-15 Dai-Ichi Kogyo Seiyaku Co., Ltd. Antistatic and ionically conductive resin composition
JPH0447604A (en) * 1990-06-15 1992-02-17 Du Pont Japan Ltd Conductive resin composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OLIN RESEARCH CENTER, 38TH SOCIETY OF PLASTIC SYMPOSIUM, February 1983, (CHANDALIA et al.), "Polyurethane Low Profile Additives for RP", Session 3-B, pages 1-4. *
THERMOSET PLASTICS, Inc., Product Literature, September 1991, (Amepox Microelectronics LTD), "High Purity Silver Powder & Silver Flake". *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753358A (en) * 1994-08-25 1998-05-19 W. L. Gore & Associates, Inc. Adhisive-filler polymer film composite
US5766750A (en) * 1994-08-25 1998-06-16 W. L. Gore & Associates, Inc. Process for making an adhesive-filler polymer film composite
US5879794A (en) * 1994-08-25 1999-03-09 W. L. Gore & Associates, Inc. Adhesive-filler film composite
US6143401A (en) * 1996-11-08 2000-11-07 W. L. Gore & Associates, Inc. Electronic chip package
US6544638B2 (en) 1996-11-08 2003-04-08 Gore Enterprise Holdings, Inc. Electronic chip package
DE102022113019A1 (en) 2022-05-24 2023-11-30 Emil Frei Gmbh & Co. Kg Coating material, use of the coating material for coating components, method for coating components with the coating material and components coated with the coating material

Also Published As

Publication number Publication date
AU3975793A (en) 1993-11-08
US5475048A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
US5475048A (en) Conductor-filled thermosetting resin
KR100586333B1 (en) An Anisotropic Conductive Adhesive and Method for Preparation Thereof and An Electronic Apparatus Using Said Adhesive
JP3459012B2 (en) Surface mount conductive adhesive
EP0169060B1 (en) Solderable conductive compositions, their use as coatings on substrates, and compositions useful in forming them
US8361614B2 (en) Anisotropic electrically conductive film and connection structure
KR930000776B1 (en) Conductive compositions and preparation thereof
TWI425072B (en) Semi thermosetting anisotropic conductive film composition
WO2004090942A9 (en) Thermally conductive adhesive composition and process for device attachment
KR20140148333A (en) Anisotropic conductive paste and printed wiring board using the same
JP2974256B2 (en) Highly conductive polymer thick film composition
JP2000517092A (en) Printable compositions and their application to dielectric surfaces used in the manufacture of printed circuit boards
US4695404A (en) Hyperconductive filled polymers
US2851380A (en) Conductive ink and article coated therewith
JPH11209713A (en) Anisotropically electroconductive adhesive
US5039472A (en) Adhesion promoter for thermoplastic substrates and method employing same
JP2000044905A (en) Anisotropic, electrically conductive adhesive and electronic equipment using the same
JPH11279512A (en) Circuit connection material, connected structure of circuit terminal, and method for connecting circuit terminal
KR100776138B1 (en) Anisotropic conductive adhesive composition for high overflow, peel strength and the anisotropic conductive film thereof
JPH11236540A (en) Anisotropic conductive adhesive
JPH02155113A (en) Conductive silver paste
JPH0339378A (en) Adhesive composition, method for fixing electronic component to print substrate and production of integrated circuit board
JPH11279513A (en) Circuit connection material, connected structure of circuit terminal, and method for connecting circuit terminal
JP2654066B2 (en) Conductive silver paste
JPS63154780A (en) Adhesive composition and method of using the same as adhesive
JPH0552862B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR CA CZ FI HU JP KP KR LK MG MN MW NO NZ PL RO RU SD SK UA VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA