WO1993016108A1 - Macromolecular material based on polysaccharides and ionic conduction material containing it - Google Patents

Macromolecular material based on polysaccharides and ionic conduction material containing it Download PDF

Info

Publication number
WO1993016108A1
WO1993016108A1 PCT/FR1993/000140 FR9300140W WO9316108A1 WO 1993016108 A1 WO1993016108 A1 WO 1993016108A1 FR 9300140 W FR9300140 W FR 9300140W WO 9316108 A1 WO9316108 A1 WO 9316108A1
Authority
WO
WIPO (PCT)
Prior art keywords
saccharide
material according
oligomer
substituents
conducting material
Prior art date
Application number
PCT/FR1993/000140
Other languages
French (fr)
Inventor
Alessandro Gandini
Jean-François LE NEST
Original Assignee
Institut National Polytechnique De Grenoble
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National Polytechnique De Grenoble filed Critical Institut National Polytechnique De Grenoble
Publication of WO1993016108A1 publication Critical patent/WO1993016108A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes

Definitions

  • Macromolecular material based on polysaccharides and ion-conducting material containing it.
  • the present invention relates to a macromole ⁇ cular material consisting of a polysaccharide, as well as its use for the preparation of an ionically conductive material.
  • the use of various macromolecular materials for the preparation of solid electrolytes is known.
  • the macromolecular materials used can be linear or branched polymers of high molecular weight, for example those described in Advanced Materials, Vol. 2, page 278, 1990, or crosslinked polymers such as those described for example in British Polymer Journal, Vol. 20, page 253, 1988. These materials can have homopolymeric or copolymeric chemical structures.
  • the macromolecular materials In order for the macromolecular materials to be usable for the preparation of electrolytes, they must be able to solvate the ionic species intended for the transport of electric current.
  • Polymers based on polyethylene oxide (POE) thus provide very good electrical conductivity. However, polymers of the POE type crystallize easily, giving non-conductive areas.
  • linear or branched structures based on POE are thermoplastic and therefore exhibit a tendency to creep, especially above room temperature.
  • structures in the form of networks have been used, for example using telechelic oligomers of POE crosslinked by multifunctional agents.
  • the formation of a network eliminates creep and, to a large extent, crystallinity, but it tends to increase the rigidity of materials, in particular with aromatic di- and tri-isocyanates as multifunctional agents.
  • the film-forming properties of these mixtures are limited.
  • Another solution consisted, to reduce the crystallinity, in adding plasticizers; but in this case, the problem of creep was generally accentuated.
  • JP-A-1014201 Korean Fine Chemie
  • a polysaccharide of the modified chitin type obtained by reacting chitin with a halogenated poly (ethylene oxide), said modified polysaccharide being used as raw material for development of cosmetic products or medicines.
  • a halogenated poly (ethylene oxide) said modified polysaccharide being used as raw material for development of cosmetic products or medicines.
  • GB-1019228 The Dow Chemical Company
  • cellulose ethers made insoluble by reaction with a poly (oxyalkylene) glycol diglycidyl ether, said insoluble esters being useful in particular as coatings.
  • the present invention aims to provide an elastomeric macromolecular material, ensuring high electrical conductivity, as well as good mechanical and film-forming properties, allowing its use for the production of an ionically conductive material, usable in particular as an electrolyte. solid.
  • the present invention therefore relates to a new macromolecular material.
  • It also relates to an ionically conductive material.
  • the macromolecular material of the present invention consisting essentially of at least one linear and branched polymer and / or oligomer of saccharide and / or saccharide derivative, is characterized in that at least part of the saccharide units or saccharide derivative bear solvating oligomer substituents and anionic groups.
  • the anionic groups are linked by covalent bonds, either on the backbone of the polymer itself, or on the solvating substituent, or even on both.
  • anionic groups mention may be made of the groups - (CH2) n C00 ", - (CF 2 ) n C00-, - (CH2) n S ⁇ 3", -OCONHSO3-, - (CF 2 ) n S0 3 -, - (CF 2 ) n S0 2 -N-S0 2 CF 3 -, phosphates and thiophosphates, -BPh 3 ", -SbFs", -PF 5 ".
  • a macromolecular material according to the present invention can carry different anionic groups .
  • the word "polymer” will designate, unless otherwise indicated, both a polymer in the strict sense and an oligomer.
  • the ion-conducting material of the present invention is characterized in that it comprises at least one macromolecular material consisting essentially of at least one polymer and / or at least one linear or branched oligomer of saccharide and / or derivative of saccharide, and in that at least a part of the saccharide or saccharide derivative units carry solvent oligomer substituents.
  • the polymers constituting the macromolecular material of the present invention can be homopolymers. They can also be heteropolymers.
  • the polymers of saccharide or saccharide derivatives which can be used in the present invention mention may be made of cellulose, amylose, starch, chitin, chitosan, hemicelluloses and their derivatives.
  • the saccharide derivatives ethers, esters, thioethers, amides and urethanes are particularly preferred.
  • the derivatives can be obtained with varying degrees of substitution.
  • the substituents of the saccharide may have different sizes and structures.
  • the saccharide ethers derivatives can be obtained from ethylene oxide, propylene oxide, butylene oxide or with epichlorohydrin.
  • the solvating oligomer substituents carried by the backbone of the polymers constituting the macro-olecular material of the present invention consist of chains of variable length, homopolymers or copolymers, linear or branched, and comprising heteroatoms.
  • These solvating oligomeric substituents can be chosen from polyethers, polysulphides, polyamines, polysiloxanes and polyphosphazenes.
  • Solvent oligomers preferably contain from 3 to 50 monomer units.
  • Macromolecular materials can be obtained by reaction of a polysaccharide or a polysaccharide derivative charide with one or more monofunctional or polyfunctional solvating oligomers, the polysaccharide or polysaccharide derivative carrying functional groups capable of reacting with at least one functional group of 1 solvating oligomer.
  • the functional groups carried by the polysaccharides or the polysaccharide derivatives the most common are the hydroxyl groups. Mention may also be made of the NH or NH2 groups (carried by chitin or chitosan for example), the COOH groups carried by certain hemicelluloses or obtained from OH groups. Mention may also be made of the allyl groups obtained from the OH groups.
  • the grafting is carried out according to conventional methods for the various functions.
  • the OH groups of a polysaccharide can react with isocyanate functions, carboxylic acid functions or acid chloride functions, carried by the solvating oligomers. It is also possible to carry out condensation reactions on pairs of groups such as (NH 2 / NCO), (NH 2 / COOH), (COOH / OH) or (allyl / Si-H) the first cities belonging to the polysaccharide or to the polysaccharide derivative, the second named belonging to the oligomer.
  • the solvating oligomer is monofunctional, it constitutes after fixation on the saccharide polymer, a graft having a free end.
  • the final polymer is then a grafted polysaccharide, therefore thermoplastic, independent of the stoichiometry of the reaction.
  • the final polymer is crosslinked and its mesh density depends on the average number of reactive groups carried by the polysaccharide, on the functionality of the solvating oligomer and on the stoichiometry used.
  • the present invention thus provides macromolecular materials which can be either thermoplastic or crosslinked, and which have a controllable elastic modulus.
  • the ion-conducting material contains a macromolecular material carrying anionic groups linked by covalent bonds, either on the backbone of the polymer itself, or on the substituent solva ⁇ so much, or even on both.
  • the macromolecular material constitutes in itself an ionically conductive material, the ionic conduction resulting from the migration of cations
  • the material to ion conduction contains, in addition to the macromolecular material, a salt which can be easily dissociated in the macromolecular material, among these salts, there may be mentioned the salts of a mono-, di- or trivalent metal cation and of an anion derived from a Br ⁇ nsted acid or Lewis acid.
  • CIO4 " " , CF3SO3 "” (CF 3 S ⁇ 2) 2N ⁇ , SCN ⁇ , CH3SO3-, CH 3 PhS0 3 ⁇ , CF 3 C0 2 ⁇ , BF 4 ⁇ , SbF ⁇ -, PF ⁇ " , AsCl 6 ⁇ .
  • An ion-conducting material of the present invention can also simultaneously comprise a macro-molecular material carrying anionic groups fixed by covalent bond and an added salt.
  • the ionic conductivity of said material will then be increased not only by the dissociation of the added salt, but also by a synergistic effect with respect to an increased dissociation of the ionic functions attached to the network.
  • the mechanical properties of the materials of the present invention can be improved by incorporating fibrous fillers.
  • the fibrous fillers are preferably incorporated during the reaction of the polysaccharide polymer with the solvent oligomer.
  • the fibrous filler can consist of natural fibers or synthetic fibers. Mention may be made, for example, of cellulose, polyamide or polyester fibers.
  • the fibrous load can be in the form of individual fibers or in an organized form such as a braid, a fabric, a mattress, for example a polyamide mesh or a sheet of paper.
  • the fibrous filler is a sheet of paper, the shaping of the ion-conducting composite material is facilitated by the presence of a continuous support on which the polymer matrix is deposited. Paper technologies can be advantageously used in this case.
  • the materials of the present invention containing a fibrous filler, have an additional advantage linked to the possibility of producing thin layers continuously.
  • the sheet thicknesses obtained can reach values of less than 100 ⁇ ⁇ while retaining good mechanical strength, provided by the fibrous load.
  • the composite materials of the present invention are therefore particularly advantageous for the production of multilayer solid electrolytes.
  • the ion-conducting materials of the present invention are very advantageous for the production of electrochemical generators, for the production electrochromic windows and for the production of electrochemical sensors.
  • EXAMPLE 1 3 g of cellulose were suspended in 20 ml of dimethyl sulfoxide at room temperature. 6 g of POE diisocyanate of molecular weight 600, prepared according to the method described in Polymer Bulletin, Vol. 25, page 443, 1991, in the presence of traces of tin dibutyl dilaurate as catalyst. The reaction mixture was then brought to 60 ° C and left for 24 h at this temperature. There was thus obtained a gel which was dried under vacuum, then subjected to an extraction with dichloromethane. The insoluble elastomer mass obtained was dried, then impregnated by diffusion of LiCl ⁇ 4 .
  • the membrane thus obtained containing 10% by mass of salt, has an electrical conductivity of 10 " 5 S cm” 1 at 25 ° C. Its modulus of elasticity is 10 7 Pa at 23 ° C. Its glass transition temperature is -30 "C. It is therefore a good electrolyte.
  • EXAMPLE 2 3 g of amylose were dissolved in 20 ml of dimethyl sulfoxide at room temperature. To this solution, 6 g of diisocyanate was added PEO molecular weight 600 and 10 g of molecular weight monoisocyanate 600, synthesized from the corresponding monoamine according to the procedure used for the diisocyanate in Example 1 above above. The solution was then brought to 50 ° C. and kept at this temperature for 24 h. The procedure of Example 1 was used to recover, fractionate and dry the product. LiCl ⁇ 4 was introduced by diffusion into the product, up to a content of 15%. The conductivity of the material obtained is 5.10 " 5 S cm" 1 at 25 ° C.
  • EXAMPLE 3 5 g of hydroxyethylcellulose having an average number of ethylene oxide units per hydroxyl function of the cellulose of 1.9 were dissolved in 17 ml of dimethylacetate with stirring at room temperature. To this solution was added 6 g of POE diisocyanate of molecular weight 900 in the presence of tin dibutyl dilaurate as catalyst. The reaction mixture was then poured into a mold consisting of two plates of silylated glass. The material was removed from the mold after 48 h, then the solvent was evaporated in vacuo while heating to 80 ° C., and the membrane obtained was subjected to an extraction with dichloromethane.
  • the level of extract, representing the soluble fraction, therefore non-crosslinked, of the material after reaction is 3%.
  • the crosslinked material obtained after extraction has a glass transition temperature of -60 ° C and a modulus of elasticity E 'at 24 ° C of 5.10 6 Pa. It was then inserted by diffusion into a disc cut from the material obtained in the form of a membrane, 24% by weight of bis (trifluoromethane sulfonyl) iidide of lithium (CF3SO2) 2NLi. The conductivity of this electrolyte is 5.10 " 5 S cm" 1 at 22 ° C.
  • EXAMPLE 5 5 g of hydroxyethylcellulose analogous to that of Example 3, were dissolved in 20 ml of dimethylacetamide with stirring at room temperature. To this solution was added 10 g of a linear POE of molecular weight 1000 carrying a COC1 group at each of its ends and 2.1 g of triethylamine. This mixture was then treated according to the procedure of Example 3. The extract rate was 3%, apart from the ammonium salt resulting from the reaction of HCl, released during the esterification, with triethyla ⁇ mine. The glass transition temperature of the crosslinked material obtained is -57 ° C, its modulus of elasticity is 5.10 6 Pa 23 ° C. After introduction by diffusion of 12% by mass of LiCl ⁇ 4, the material has an electrical conductivity of 4.10 " 5 S cm -1 at 23 ° C.
  • EXAMPLE 6 2.5 g of a modified cellulose carrying on average 2 methoxy groups and 1 POE graft (DP ⁇ 12) terminated by an allyl function per anhydroglucose unit, were dissolved in 15 ml of diethylacetamide with stirring at room temperature. 0.2 g of tetramethyl tetrahydrocyclotetrasiloxane was added to this solution in the presence of traces of chloroplatinic acid as catalyst. This mixture was then treated according to the procedure of Example 3. The level of extract is 4%. The glass transition temperature of the material obtained is -62 "C. After introduction by diffusion of 13% by mass of (CF3SO2) 2NLi, the material has an electrical conductivity of 5.10 ' 5 S cm" 1 at 23 ° C .
  • EXAMPLE 7 2.5 g of hydroxyethylcellulose analogous to that of Example 3 were dissolved in 10 ml of dimethylacetamide with stirring at room temperature. To this solution were added 6 g of POE diisocyanate of molecular weight 900 and 1.5 g of chlorosulfonyl isocyanate CISO2NCO in presence of traces of tin dibutyl dilaurate as a catalyst. This mixture was then treated according to the procedure of Example 3. The extracted and dried membrane was then treated with an aqueous solution of LiOH to convert the -OCONHSO2CI groups attached to the network into -0C0NHS03 "Li + functions .
  • the glass transition temperature is -53 ° C., its electrical conductivity from 10 " 5 S cm” 1 to 22 ° C.
  • This example illustrates the preparation of a material comprising fixed anionic groups. on the polysaccharide by covalent bonds.
  • EXAMPLE 8 The procedure of Example 3 was repeated, but adding 1.5 g of cellulosic fibers during the preparation of the hydroxyethylcellulose solution. After reaction, purification and drying, a composite material was obtained having substantially the same glass transition temperature and the same electrical conductivity as the material obtained in Example 3, but having a modulus of elasticity of 2.10 7 Pa at 23 ° C.
  • Example 9 The procedure of Example 3 was repeated, but by introducing into the mold a sheet of paper previously dried before pouring the reaction mixture into it. After reaction, purification and drying, a composite material with a fibrous mat was obtained having substantially the same glass transition temperature and the same electrical conductivity as the material obtained in Example 3, but having a modulus of elasticity of 10 8 Pa at 22 ° C.
  • EXAMPLE 10 The procedure of Example 3 was repeated, but by introducing into the mold a sheet of paper previously dried before pouring the reaction mixture into it. After reaction, purification and drying, a composite material with a fibrous mat was obtained having substantially the same glass transition temperature and the same electrical conductivity as the material obtained in Example 3, but having a modulus of elasticity of 10 8 Pa at 22 ° C.
  • a sheet of paper previously dried was impregnated with POE monoisocyanate of molecular weight 900 in the presence of traces of tin dibutyl dilaurate.
  • the system was heated at 60 ° C. for 24 h.
  • the composite material obtained has a modulus of elasticity of 1.2 ⁇ 10 8 Pa at 22 ° C. It was then introduced by diffusion into this composite material 15% of LiCl ⁇ 4. conductivity electric, measured after drying, is 2.10 " 5 S cm" 1 at 24 ° C.
  • EXAMPLE 11 The procedure was as in Example 8, but using a POE diisocyanate of molecular weight 900 as the impregnating liquid.
  • the composite obtained had a modulus of elasticity of 2.10 8 Pa at 23 "C and an electrical conductivity, measured after drying, of 10" 5 S cm " 1 at 23 ° C.

Abstract

The invention relates to a macromolecular material comprised of a polysaccharide, as well as its utilization for making a ionic conduction material. The macromolecular material is essentially comprised of at least one linear or branched polymer and/or oligomer of saccharide and/or of saccharide derivative, at least one part of saccharide or saccharide derivative units bearing solvatant oligomer substituents. The ionic conduction materials are particularly useful for making electrochemical generators, electrochrome windows and electrochemical sensors.

Description

Matériau macromoléculaire à base de polysaccharides et matériau à conduction ionique le contenant. La présente invention concerne un matériau macromolé¬ culaire constitué par un polysaccharide, ainsi que son utilisation pour l'élaboration d'un matériau à conduction ionique. Macromolecular material based on polysaccharides and ion-conducting material containing it. The present invention relates to a macromole¬ cular material consisting of a polysaccharide, as well as its use for the preparation of an ionically conductive material.
L'utilisation de divers matériaux macromoléculaires pour l'élaboration d'électrolytes solides est connue. Les matériaux macromoléculaires utilisés peuvent être des poly- mères linéaires ou ramifiés de haute masse moléculaire, par exemple ceux décrits dans Advanced Materials, Vol. 2, page 278, 1990, ou des polymères réticulés tels que ceux décrits par exemple dans British Polymer Journal, Vol. 20, page 253, 1988. Ces matériaux peuvent avoir des structures chimiques homopolymères ou copoly ères. Pour que les maté¬ riaux macromoléculaires soient utilisables pour l'élabora¬ tion d'électrolytes, il est nécessaire qu'ils puissent solvater les espèces ioniques destinées au transport du courant électrique. Ainsi, les polymères à base de polyoxyde d'éthylène (POE) assurent de très bonnes conduc- tivités électriques. Toutefois, les polymères du type POE cristallisent facilement, donnant des zones non-conductri¬ ces. En outre, les structures linéaires ou ramifiées à base de POE sont thermoplastiques et manifestent donc une tendance au fluage, surtout au-dessus de la température ambiante. Afin de minimiser ces deux inconvénients, on a fait appel à des structures en forme de réseaux en utili¬ sant par exemple des oligomères téléchéliques de POE réti¬ culés par des agents multifonctionnels. La formation d'un réseau élimine le fluage et, en grande partie, la cristal- linité, mais elle a tendance à faire augmenter la rigidité des matériaux, notamment avec des di- et des tri-isocyana- tes aromatiques comme agents multifonctionnels. En outre, les propriétés filmogènes de ces mélanges sont limitées. Une autre solution a consisté, pour réduire la cristalli- nité, à ajouter des plastifiants ; mais dans ce cas, le problème du fluage était en général accentué. On connaît, par JP-A-1014201 (Kawaken Fine Chemie) , un polysaccharide du type chitine modifiée, obtenu par réac¬ tion de chitine avec un poly(oxyde d'éthylène) halogène, ledit polysaccharide modifié étant utilisé comme matière première pour l'élaboration de produits cosmétiques ou de médicaments. On connaît également, par GB-1019228 (The Dow Chemical Company) , des éthers de cellulose rendus insolu¬ bles par réaction avec un diglycidyléther de poly(oxyalkylène) glycol, lesdits esters insolubles étant utiles notamment comme revêtements.The use of various macromolecular materials for the preparation of solid electrolytes is known. The macromolecular materials used can be linear or branched polymers of high molecular weight, for example those described in Advanced Materials, Vol. 2, page 278, 1990, or crosslinked polymers such as those described for example in British Polymer Journal, Vol. 20, page 253, 1988. These materials can have homopolymeric or copolymeric chemical structures. In order for the macromolecular materials to be usable for the preparation of electrolytes, they must be able to solvate the ionic species intended for the transport of electric current. Polymers based on polyethylene oxide (POE) thus provide very good electrical conductivity. However, polymers of the POE type crystallize easily, giving non-conductive areas. In addition, linear or branched structures based on POE are thermoplastic and therefore exhibit a tendency to creep, especially above room temperature. In order to minimize these two drawbacks, structures in the form of networks have been used, for example using telechelic oligomers of POE crosslinked by multifunctional agents. The formation of a network eliminates creep and, to a large extent, crystallinity, but it tends to increase the rigidity of materials, in particular with aromatic di- and tri-isocyanates as multifunctional agents. In addition, the film-forming properties of these mixtures are limited. Another solution consisted, to reduce the crystallinity, in adding plasticizers; but in this case, the problem of creep was generally accentuated. Known from JP-A-1014201 (Kawaken Fine Chemie), a polysaccharide of the modified chitin type, obtained by reacting chitin with a halogenated poly (ethylene oxide), said modified polysaccharide being used as raw material for development of cosmetic products or medicines. Also known from GB-1019228 (The Dow Chemical Company), cellulose ethers made insoluble by reaction with a poly (oxyalkylene) glycol diglycidyl ether, said insoluble esters being useful in particular as coatings.
La présente invention a pour but de fournir un maté¬ riau macromoléculaire élastomère, assurant une conductivité électrique élevée, ainsi que de bonnes propriétés mécani¬ ques et filmogènes, permettant son utilisation pour la réalisation d'un matériau à conduction ionique, utilisable notamment comme électrolyte solide.The present invention aims to provide an elastomeric macromolecular material, ensuring high electrical conductivity, as well as good mechanical and film-forming properties, allowing its use for the production of an ionically conductive material, usable in particular as an electrolyte. solid.
La présente invention a par conséquent pour objet un nouveau matériau macromoléculaire.The present invention therefore relates to a new macromolecular material.
Elle a également pour objet un matériau à conduction ionique.It also relates to an ionically conductive material.
Le matériau macromoléculaire de la présente invention, constitué essentiellement par au moins un polymère et/ou oligomère linéaire ou ramifié de saccharide et/ou de dérivé de saccharide, est caractérisé en ce qu'au moins une partie des unités saccharide ou dérivé de saccharide portent des substituants oligomères solvatants et des groupements anio- niques.The macromolecular material of the present invention, consisting essentially of at least one linear and branched polymer and / or oligomer of saccharide and / or saccharide derivative, is characterized in that at least part of the saccharide units or saccharide derivative bear solvating oligomer substituents and anionic groups.
Les groupements anioniques sont liés par des liaisons covalentes, soit sur le squelette du polymère lui-même, soit sur le substituant solvatant, soit encore sur les deux. Parmi les groupements anioniques préférés, on peut citer les groupements -(CH2)nC00", -(CF2)nC00- , -(CH2)nSθ3", -OCONHSO3-, -(CF2)nS03-, -(CF2)nS02-N-S02CF3-, les phosphates et les thiophosphates, -BPh3" , -SbFs", -PF5". Un matériau macromoléculaire selon la présente invention peut porter des groupements anioniques différents. Dans la suite du texte, le mot "polymère" désignera, sauf indication contraire, aussi bien un polymère au sens strict qu'un oligomère.The anionic groups are linked by covalent bonds, either on the backbone of the polymer itself, or on the solvating substituent, or even on both. Among the preferred anionic groups, mention may be made of the groups - (CH2) n C00 ", - (CF 2 ) n C00-, - (CH2) n Sθ3", -OCONHSO3-, - (CF 2 ) n S0 3 -, - (CF 2 ) n S0 2 -N-S0 2 CF 3 -, phosphates and thiophosphates, -BPh 3 ", -SbFs", -PF 5 ". A macromolecular material according to the present invention can carry different anionic groups . In the rest of the text, the word "polymer" will designate, unless otherwise indicated, both a polymer in the strict sense and an oligomer.
Le matériau à conduction ionique de la présente inven- tion est caractérisé en ce qu'il comporte au moins un maté¬ riau macromoléculaire constitué essentiellement par au moins un polymère et/ou au moins un oligomère linéaire ou ramifié de saccharide et/ou de dérivé de saccharide, et en ce qu'au moins une partie des unités saccharide ou dérivé de saccharide portent des substituants oligomères solva- tants.The ion-conducting material of the present invention is characterized in that it comprises at least one macromolecular material consisting essentially of at least one polymer and / or at least one linear or branched oligomer of saccharide and / or derivative of saccharide, and in that at least a part of the saccharide or saccharide derivative units carry solvent oligomer substituents.
Les polymères constituant le matériau macromoléculaire de la présente invention peuvent être des homopolymères. Ils peuvent être également des hétéropolymères. Parmi les polymères de saccharide ou de dérivés de saccharide utili¬ sables dans la présente invention, on peut citer la cellu¬ lose, l'amylose, l'amidon, la chitine, le chitosane, les hémicelluloses et leurs dérivés. Parmi les dérivés de saccharide, on préfère tout particulièrement les éthers, les esters, les thioéthers, les amides et les uréthanes. Les dérivés peuvent être obtenus avec des degrés de substi¬ tution variables. Selon le réactif utilisé pour la prépara¬ tion du dérivé, les substituants du saccharide peuvent avoir des tailles et des structures différentes. Ainsi par exemple, les dérivés éthers de saccharide peuvent être obtenus à partir d'oxyde d'éthylène, de propylène, de buty¬ lène ou avec 1'épichlorhydrine.The polymers constituting the macromolecular material of the present invention can be homopolymers. They can also be heteropolymers. Among the polymers of saccharide or saccharide derivatives which can be used in the present invention, mention may be made of cellulose, amylose, starch, chitin, chitosan, hemicelluloses and their derivatives. Among the saccharide derivatives, ethers, esters, thioethers, amides and urethanes are particularly preferred. The derivatives can be obtained with varying degrees of substitution. Depending on the reagent used for the preparation of the derivative, the substituents of the saccharide may have different sizes and structures. Thus, for example, the saccharide ethers derivatives can be obtained from ethylene oxide, propylene oxide, butylene oxide or with epichlorohydrin.
Les substituants oligomeres solvatants portés par le squelette des polymères constituant le matériau macro olé- culaire de la présente invention sont constitués de chaînes de longueur variable, homopolymères ou copolymères, linéai¬ res ou ramifiées, et comportant des hétéroatomes. Ces subs¬ tituants oligomères solvatants peuvent être choisis parmi les polyéthers, les polysulfures, les polyamines, les poly- siloxanes et les polyphosphazenes. Les oligomères solva¬ tants comportent de préférence de 3 à 50 unités monomères.The solvating oligomer substituents carried by the backbone of the polymers constituting the macro-olecular material of the present invention consist of chains of variable length, homopolymers or copolymers, linear or branched, and comprising heteroatoms. These solvating oligomeric substituents can be chosen from polyethers, polysulphides, polyamines, polysiloxanes and polyphosphazenes. Solvent oligomers preferably contain from 3 to 50 monomer units.
Les matériaux macromoléculaires peuvent être obtenus par réaction d'un polysaccharide ou d'un dérivé de polysac- charide avec un ou plusieurs oligomeres solvatants mono¬ fonctionnels ou poly-fonctionnels, le polysaccharide ou dérivé de polysaccharide portant des groupements fonction¬ nels capables de réagir avec au moins un groupement fonc- tionnel de 1 Oligomère solvatant. Parmi les groupements fonctionnels portés par les polysaccharides ou les dérivés de polysaccharide, les plus courants sont les groupements hydroxyles. On peut également citer les groupements NH ou NH2 (portés par la chitine ou le chitosane par exemple) , les groupements COOH portés par certaines hémicelluloses ou obtenus à partir des groupements OH. On peut citer en outre les groupements allyles obtenus à partir des groupements OH. Le greffage est effectué selon des procédés classiques pour les différentes fonctions. Ainsi, les groupements OH d'un polysaccharide peuvent réagir avec des fonctions iso- cyanates, des fonctions acide carboxylique ou des fonctions chlorure d'acide, portées par les oligomeres solvatants. On peut en outre effectuer des réactions de condensation des couples de groupements tels que (NH2 / NCO) , (NH2 / COOH) , (COOH / OH) ou (allyle / Si-H) les premiers cités apparte¬ nant au polysaccharide ou au dérivé de polysaccharide, les seconds nommés appartenant à l'oligomère. Ainsi, parmi les oligomères utilisables pour la préparation des matériaux macromoléculaires de la présente invention, on peut citer les mono- et les di-isocyanates de polyoxyde d'éthylène, les mono- et les di-isocyanates de polyoxyde de propylène, les polyoxydes d'éthylène ou de propylène portant un ou plusieurs groupements terminaux COOH ou chlorure d'acide, ainsi que des copolymères de ces deux types d'unités mono- mères avec un ou plusieurs groupements terminaux NCO, COOH ou chlorure d'acide. On peut également citer les polysulfu- res d'éthylène ou de propylène ou des copolymères de ces deux unités monomères, portant les mêmes groupements termi¬ naux, c'est-à-dire une ou plusieurs fonctions NCO, COOH ou chlorure d'acide.Macromolecular materials can be obtained by reaction of a polysaccharide or a polysaccharide derivative charide with one or more monofunctional or polyfunctional solvating oligomers, the polysaccharide or polysaccharide derivative carrying functional groups capable of reacting with at least one functional group of 1 solvating oligomer. Among the functional groups carried by the polysaccharides or the polysaccharide derivatives, the most common are the hydroxyl groups. Mention may also be made of the NH or NH2 groups (carried by chitin or chitosan for example), the COOH groups carried by certain hemicelluloses or obtained from OH groups. Mention may also be made of the allyl groups obtained from the OH groups. The grafting is carried out according to conventional methods for the various functions. Thus, the OH groups of a polysaccharide can react with isocyanate functions, carboxylic acid functions or acid chloride functions, carried by the solvating oligomers. It is also possible to carry out condensation reactions on pairs of groups such as (NH 2 / NCO), (NH 2 / COOH), (COOH / OH) or (allyl / Si-H) the first cities belonging to the polysaccharide or to the polysaccharide derivative, the second named belonging to the oligomer. Thus, among the oligomers which can be used for the preparation of the macromolecular materials of the present invention, mention may be made of polyethylene oxide mono- and di-isocyanates, polypropylene oxide mono- and di-isocyanates, polyoxides of ethylene or propylene bearing one or more end groups COOH or acid chloride, as well as copolymers of these two types of monomer units with one or more end groups NCO, COOH or acid chloride. Mention may also be made of ethylene or propylene polysulphides or of copolymers of these two monomer units, carrying the same terminal groups, that is to say one or more NCO, COOH or acid chloride functions. .
Si l'oligomère solvatant est monofonctionnel, il cons¬ titue après fixation sur le polymère de saccharide, un greffon ayant une extrémité libre. Le polymère final est alors un polysaccharide greffé, donc thermoplastigue, indé¬ pendamment de la stoechiométrie de la réaction.If the solvating oligomer is monofunctional, it constitutes after fixation on the saccharide polymer, a graft having a free end. The final polymer is then a grafted polysaccharide, therefore thermoplastic, independent of the stoichiometry of the reaction.
Si l'oligomère solvatant est polyfonctionnel, le poly¬ mère final est réticulé et sa densité de maille dépend du nombre moyen de groupements réactifs portés par le polysac¬ charide, de la fonctionnalité de l'oligomère solvatant et de la stoechiométrie utilisée.If the solvating oligomer is polyfunctional, the final polymer is crosslinked and its mesh density depends on the average number of reactive groups carried by the polysaccharide, on the functionality of the solvating oligomer and on the stoichiometry used.
La présente invention fournit ainsi des matériaux macromoléculaires qui peuvent être soit thermoplastiques, soit réticulés, et qui présentent un module d'élasticité contrôlable.The present invention thus provides macromolecular materials which can be either thermoplastic or crosslinked, and which have a controllable elastic modulus.
Dans un mode de réalisation particulier de la présente invention, le matériau à conduction ionique contient un matériau macromoléculaire portant des groupements anioni- ques liés par des liaisons covalentes, soit sur le sque¬ lette du polymère lui-même, soit sur le substituant solva¬ tant, soit encore sur les deux. Parmi les groupements anio¬ niques intéressants, on peut citer les groupements -(CH2)nCOO-, -(CF2)nCOO-, -(CH2)nS03-, -OCONHSO3-, -(CF2)nS03-, -(CF2)nS02-N-S02CF3" , les phosphates et les thiophosphates, -BPh3 ~, -SbFs", -PF5". Dans ce cas, le matériau macromolécu¬ laire constitue en lui-même un matériau à conduction ioni¬ que, la conduction ionique résultant de la migration des cations. Lorsque le matériau macromoléculaire de l'invention est choisi parmi ceux qui ne portent pas de groupements anioniques fixés par une liaison covalente, le matériau à conduction ionique contient, outre le matériau macromolécu¬ laire, un sel facilement dissociable dans le matériau macromoléculaire. Parmi ces sels, on peut citer les sels d'un cation métallique mono-, di- ou trivalent et d'un anion issu d'un acide de Brόnsted ou d'un acide de Lewis. Parmi les cations préférés, on peut citer Li+, Na+, K+, Cs+, Rb+, Ca++, ZIÎ++, Cd++, Co++, Ni++, Al+++ et La+++. Parmi les anions préférés, on peut citer CIO4"", CF3SO3"", (CF3Sθ2)2N~, SCN~, CH3SO3-, CH3PhS03~, CF3C02~, BF4~, SbFό-, PFÔ", AsCl6~. Un matériau à conduction ionique de la présente inven¬ tion peut aussi comporter simultanément un matériau macro¬ moléculaire portant des groupements anioniques fixés par liaison covalente et un sel ajouté. La conductivité ionique dudit matériau sera alors augmentée non seulement par la dissociation du sel ajouté, mais aussi par un effet de synergie vis-à-vis d'une dissociation accrue des fonctions ioniques attachées au réseau.In a particular embodiment of the present invention, the ion-conducting material contains a macromolecular material carrying anionic groups linked by covalent bonds, either on the backbone of the polymer itself, or on the substituent solva¬ so much, or even on both. Among the interesting anionic groups, mention may be made of the groups - (CH 2 ) n COO-, - (CF 2 ) n COO-, - (CH 2 ) n S0 3 -, -OCONHSO3-, - (CF 2 ) n S03-, - (CF 2 ) nS0 2 -N-S0 2 CF 3 ", phosphates and thiophosphates, -BPh 3 ~ , -SbFs", -PF 5 ". In this case, the macromolecular material constitutes in itself an ionically conductive material, the ionic conduction resulting from the migration of cations When the macromolecular material of the invention is chosen from those which do not carry anionic groups fixed by a covalent bond, the material to ion conduction contains, in addition to the macromolecular material, a salt which can be easily dissociated in the macromolecular material, among these salts, there may be mentioned the salts of a mono-, di- or trivalent metal cation and of an anion derived from a Brόnsted acid or Lewis acid. Among the preferred cations, mention may be made of Li + , Na + , K + , Cs + , Rb +, Ca ++ , ZIÎ ++ , Cd ++ , Co + + , Ni ++ , Al +++ and La + + +. Among the preferred anions, mention may be made of CIO4 "" , CF3SO3 "" , (CF 3 Sθ2) 2N ~, SCN ~, CH3SO3-, CH 3 PhS0 3 ~, CF 3 C0 2 ~, BF 4 ~, SbFό-, PFÔ " , AsCl 6 ~. An ion-conducting material of the present invention can also simultaneously comprise a macro-molecular material carrying anionic groups fixed by covalent bond and an added salt. The ionic conductivity of said material will then be increased not only by the dissociation of the added salt, but also by a synergistic effect with respect to an increased dissociation of the ionic functions attached to the network.
Les propriétés mécaniques des matériaux de la présente invention, qu'il s'agisse du matériau macromoléculaire ou du matériau à conduction ionique qui le contient, peuvent être améliorées par incorporation de charges fibreuses. Les charges fibreuses sont incorporées de préférence lors de la réaction du polymère polysaccharide avec 1 Oligomère solva- tant. La charge fibreuse peut être constituée de fibres naturelles ou de fibres synthétiques. On peut citer par exemples les fibres de cellulose, de polyamide ou de poly¬ ester. La charge fibreuse peut se présenter sous forme de fibres individualisées ou sous une forme organisée telle qu'une tresse, un tissu, un matelas, par exemple une maille de polyamide ou une feuille de papier. Lorsque la charge fibreuse est une feuille de papier, la mise en forme du matériau composite à conduction ionique est facilitée par la présence d'un support continu sur lequel vient se dépo- ser la matrice polymère. Les technologies papetières peuvent être avantageusement mises en oeuvre dans ce cas.The mechanical properties of the materials of the present invention, whether the macromolecular material or the ionically conductive material which contains it, can be improved by incorporating fibrous fillers. The fibrous fillers are preferably incorporated during the reaction of the polysaccharide polymer with the solvent oligomer. The fibrous filler can consist of natural fibers or synthetic fibers. Mention may be made, for example, of cellulose, polyamide or polyester fibers. The fibrous load can be in the form of individual fibers or in an organized form such as a braid, a fabric, a mattress, for example a polyamide mesh or a sheet of paper. When the fibrous filler is a sheet of paper, the shaping of the ion-conducting composite material is facilitated by the presence of a continuous support on which the polymer matrix is deposited. Paper technologies can be advantageously used in this case.
Les matériaux de la présente invention, contenant une charge fibreuse, présentent un avantage supplémentaire lié à la possibilité de réaliser des couches minces en continu. Les épaisseurs de feuilles obtenues peuvent atteindre des valeurs inférieures à 100 μτ~ tout en gardant une bonne tenue mécanique, assurée par la charge fibreuse. Les maté¬ riaux composites de la présente invention sont par consé¬ quent particulièrement intéressants pour la réalisation d'électrolytes solides multicouches.The materials of the present invention, containing a fibrous filler, have an additional advantage linked to the possibility of producing thin layers continuously. The sheet thicknesses obtained can reach values of less than 100 μτ ~ while retaining good mechanical strength, provided by the fibrous load. The composite materials of the present invention are therefore particularly advantageous for the production of multilayer solid electrolytes.
En outre, les matériaux à conduction ionique de la présente invention sont très intéressants pour la réalisa¬ tion de générateurs électrochimiques, pour la réalisation de fenêtres électrochromes et pour la réalisation de capteurs électrochimiques.In addition, the ion-conducting materials of the present invention are very advantageous for the production of electrochemical generators, for the production electrochromic windows and for the production of electrochemical sensors.
La présente invention est décrite plus en détail à l'aide des exemples ci-dessous, donnés à titre illustratif, mais ne limitant pas la portée de l'invention.The present invention is described in more detail using the examples below, given by way of illustration, but without limiting the scope of the invention.
EXEMPLE 1 3 g de cellulose ont été mis en suspension dans 20 ml de diméthyl suifoxyde à température ambiante. On a ajouté sous agitation 6 g de diisocyanate de POE de masse molécu- laire 600, préparé selon le procédé décrit dans Polymer Bulletin, Vol. 25, page 443, 1991, en présence de traces de dibutyl dilaurate d'étain comme catalyseur. Le mélange réactionnel a ensuite été porté à 60°C et laissé pendant 24 h à cette température. On a ainsi obtenu un gel qui a été séché sous vide, puis soumis à une extraction par le dichlorométhane. La masse élastomère insoluble obtenue a été séchée, puis imprégnée par diffusion de LiClθ4. La membrane ainsi obtenue, contenant 10% en masse de sel, présente une conductivité électrique de 10"5 S cm"1 à 25°C. Son module d'élasticité est de 107 Pa à 23°C. Sa tempéra¬ ture de transition vitreuse est de -30"C. Elle constitue par conséquent un bon électrolyte.EXAMPLE 1 3 g of cellulose were suspended in 20 ml of dimethyl sulfoxide at room temperature. 6 g of POE diisocyanate of molecular weight 600, prepared according to the method described in Polymer Bulletin, Vol. 25, page 443, 1991, in the presence of traces of tin dibutyl dilaurate as catalyst. The reaction mixture was then brought to 60 ° C and left for 24 h at this temperature. There was thus obtained a gel which was dried under vacuum, then subjected to an extraction with dichloromethane. The insoluble elastomer mass obtained was dried, then impregnated by diffusion of LiClθ 4 . The membrane thus obtained, containing 10% by mass of salt, has an electrical conductivity of 10 " 5 S cm" 1 at 25 ° C. Its modulus of elasticity is 10 7 Pa at 23 ° C. Its glass transition temperature is -30 "C. It is therefore a good electrolyte.
Des résultats analogues ont été obtenus en remplaçant la cellulose de coton pour de la cellulose régénérée dite cellophane.Similar results have been obtained by replacing cotton cellulose for regenerated cellulose called cellophane.
EXEMPLE 2 3 g d'amylose ont été dissous dans 20 ml de dimé- thylsulfoxyde à température ambiante. A cette solution, on a ajouté 6 g de diisocyanate de POE de ' masse moléculaire 600 et 10 g de monoisocyanate de masse moléculaire 600, synthétisé à partir de la monoamine correspondante suivant le mode opératoire utilisé pour le diisocyanate dans l'exemple 1 ci-dessus. La solution a ensuite été portée à 50°C et maintenue à cette température pendant 24 h. Le mode opératoire de l'exemple 1 a été mis en oeuvre pour récupé¬ rer, fractionner et sécher le produit. LiClθ4 a été intro¬ duit par diffusion dans le produit, jusqu'à une teneur de 15%. La conductivité du matériau obtenu est de 5.10"5S cm"1 à 25°C.EXAMPLE 2 3 g of amylose were dissolved in 20 ml of dimethyl sulfoxide at room temperature. To this solution, 6 g of diisocyanate was added PEO molecular weight 600 and 10 g of molecular weight monoisocyanate 600, synthesized from the corresponding monoamine according to the procedure used for the diisocyanate in Example 1 above above. The solution was then brought to 50 ° C. and kept at this temperature for 24 h. The procedure of Example 1 was used to recover, fractionate and dry the product. LiClθ 4 was introduced by diffusion into the product, up to a content of 15%. The conductivity of the material obtained is 5.10 " 5 S cm" 1 at 25 ° C.
EXEMPLE 3 5 g d'hydroxyéthylcellulose possédant un nombre moyen d'unités oxyde d'éthylène par fonction hydroxyle de la cellulose de 1,9 ont été dissous dans 17 ml de diméthyl- acéta ide sous agitation à température ambiante. On a ajou¬ té à cette solution 6 g de diisocyanate de POE de masse moléculaire 900 en présence de dibutyl dilaurate d'étain comme catalyseur. Le mélange réactionnel a ensuite été coulé dans un moule constitué de deux plaques de verre silylé. Le matériau a été démoulé après 48 h, puis on a évaporé le solvant sous vide en chauffant à 80°C, et on a soumis la membrane obtenue à une extraction par le dichlo- rométhane. Le taux d'extrait, représentant la fraction soluble, donc non réticulée, du matériau après réaction est de 3%. Le matériau réticulé obtenu après extraction présente une température de transition vitreuse de -60°C et un module d'élasticité E' à 24 °C de 5.106 Pa. On a ensuite inséré par diffusion dans un disque découpé dans le maté¬ riau obtenu sous forme de membrane, 24% en poids de bis(trifluorométhane sulfonyl) i idure de lithium (CF3SO2) 2NLi. La conductivité de cet électrolyte est de 5.10"5 S cm"1 à 22°C. EXEMPLE 4EXAMPLE 3 5 g of hydroxyethylcellulose having an average number of ethylene oxide units per hydroxyl function of the cellulose of 1.9 were dissolved in 17 ml of dimethylacetate with stirring at room temperature. To this solution was added 6 g of POE diisocyanate of molecular weight 900 in the presence of tin dibutyl dilaurate as catalyst. The reaction mixture was then poured into a mold consisting of two plates of silylated glass. The material was removed from the mold after 48 h, then the solvent was evaporated in vacuo while heating to 80 ° C., and the membrane obtained was subjected to an extraction with dichloromethane. The level of extract, representing the soluble fraction, therefore non-crosslinked, of the material after reaction is 3%. The crosslinked material obtained after extraction has a glass transition temperature of -60 ° C and a modulus of elasticity E 'at 24 ° C of 5.10 6 Pa. It was then inserted by diffusion into a disc cut from the material obtained in the form of a membrane, 24% by weight of bis (trifluoromethane sulfonyl) iidide of lithium (CF3SO2) 2NLi. The conductivity of this electrolyte is 5.10 " 5 S cm" 1 at 22 ° C. EXAMPLE 4
2,5 g d'hydroxyéthylcellulose, analogue à celle de l'exemple 3, ont été dissous dans 15 ml de diméthylacéta- mide sous agitation à température ambiante. On a ajouté à cette solution, 9 g de diisocyanate de POE de masse molécu- laire 2000 et 5 g de monoisocyanate de POE de masse molécu¬ laire 600 en présence de traces de dibutyl dilaurate d'étain comme catalyseur. Ce mélange a ensuite été traité selon le mode opératoire de l'exemple 3. Le taux d'extrait est de 4%. La température de transition vitreuse du maté- riau réticulé obtenu est de -65°C, son module d'élasticité est de 2.106 Pa à 25°C. Après introduction par diffusion de 15% en masse de LiCF3Sθ3, le matériau présente une conductivité de 7.105 S cm"1 à 25°C.2.5 g of hydroxyethylcellulose, analogous to that of Example 3, were dissolved in 15 ml of dimethylacetamide with stirring at room temperature. To this solution were added 9 g of POE diisocyanate of molecular weight 2000 and 5 g of POE monoisocyanate of molecular weight 600 in the presence of traces of tin dibutyl dilaurate as catalyst. This mixture was then treated according to the procedure of Example 3. The level of extract is 4%. The glass transition temperature of the crosslinked material obtained is -65 ° C, its modulus of elasticity is 2.10 6 Pa at 25 ° C. After introduction by diffusion of 15% by mass of LiCF3Sθ3, the material has a conductivity of 7.10 5 S cm " 1 at 25 ° C.
EXEMPLE 5 5 g d'hydroxyéthylcellulose analogue à celle de l'exemple 3, ont été dissous dans 20 ml de diméthylacéta- mide sous agitation à température ambiante. On a ajouté à cette solution, 10 g d'un POE linéaire de masse moléculaire 1000 portant un groupement COC1 à chacune de ses extrémités et 2,1 g de triéthylamine. Ce mélange a ensuite été traité selon le mode opératoire de l'exemple 3. Le taux d'extrait était de 3%, hormis le sel d'ammonium issu de la réaction du HC1, libéré lors de 1 'estérification, avec la triéthyla¬ mine. La température de transition vitreuse du matériau réticulé obtenu est de -57°C, son module d'élasticité est de 5.106 Pa 23 °C. Après introduction par diffusion de 12% en masse de LiClθ4, le matériau présente une conductivité électrique de 4.10"5 S cm-1 à 23°C.EXAMPLE 5 5 g of hydroxyethylcellulose analogous to that of Example 3, were dissolved in 20 ml of dimethylacetamide with stirring at room temperature. To this solution was added 10 g of a linear POE of molecular weight 1000 carrying a COC1 group at each of its ends and 2.1 g of triethylamine. This mixture was then treated according to the procedure of Example 3. The extract rate was 3%, apart from the ammonium salt resulting from the reaction of HCl, released during the esterification, with triethyla¬ mine. The glass transition temperature of the crosslinked material obtained is -57 ° C, its modulus of elasticity is 5.10 6 Pa 23 ° C. After introduction by diffusion of 12% by mass of LiClθ4, the material has an electrical conductivity of 4.10 " 5 S cm -1 at 23 ° C.
EXEMPLE 6 2,5 g d'une cellulose modifiée portant en moyenne 2 groupements méthoxy et 1 greffon POE (DP ≈ 12) terminé par une fonction allyle par unité anhydroglucose, ont été dissous dans 15 ml de di éthylacétamide sous agitation à température ambiante. On a ajouté à cette solution 0,2 g de tétramethyl tetrahydrocyclotetrasiloxane en présence de traces d'acide chloroplatinique comme catalyseur. Ce mélange a ensuite été traité selon le mode opératoire de l'exemple 3. Le taux d'extrait est de 4%. La température de transition vitreuse du matériau obtenu est de -62"C. Après introduction par diffusion de 13% en masse de (CF3SO2)2NLi, le matériau présente une conductivité élec¬ trique de 5.10'5 S cm"1 à 23°C.EXAMPLE 6 2.5 g of a modified cellulose carrying on average 2 methoxy groups and 1 POE graft (DP ≈ 12) terminated by an allyl function per anhydroglucose unit, were dissolved in 15 ml of diethylacetamide with stirring at room temperature. 0.2 g of tetramethyl tetrahydrocyclotetrasiloxane was added to this solution in the presence of traces of chloroplatinic acid as catalyst. This mixture was then treated according to the procedure of Example 3. The level of extract is 4%. The glass transition temperature of the material obtained is -62 "C. After introduction by diffusion of 13% by mass of (CF3SO2) 2NLi, the material has an electrical conductivity of 5.10 ' 5 S cm" 1 at 23 ° C .
EXEMPLE 7 2,5 g d' ydroxyéthylcellulose analogue à celle de l'exemple 3 ont été dissous dans 10 ml de diméthylacétamide sous agitation à température ambiante. On a ajouté à cette solution, 6 g de diisocyanate de POE de masse moléculaire 900 et 1,5 g d'isocyanate de chlorosulfonyle CISO2NCO en présence de traces de dibutyl dilaurate d'étain comme cata¬ lyseur. Ce mélange a ensuite été traité selon le mode opératoire de l'exemple 3. La membrane extraite et séchée a ensuite été traitée avec une solution aqueuse de LiOH pour convertir les groupements -OCONHSO2CI accrochés au réseau en fonctions -0C0NHS03"Li+. Elle a ensuite été séchée et caractérisée. La température de transition vitreuse est de -53 °C, sa conductivité électrique de 10"5 S cm"1 à 22°C. Cet exemple illustre la préparation d'un matériau compor- tant des groupements anioniques fixés sur le polysaccharide par des liaisons covalentes.EXAMPLE 7 2.5 g of hydroxyethylcellulose analogous to that of Example 3 were dissolved in 10 ml of dimethylacetamide with stirring at room temperature. To this solution were added 6 g of POE diisocyanate of molecular weight 900 and 1.5 g of chlorosulfonyl isocyanate CISO2NCO in presence of traces of tin dibutyl dilaurate as a catalyst. This mixture was then treated according to the procedure of Example 3. The extracted and dried membrane was then treated with an aqueous solution of LiOH to convert the -OCONHSO2CI groups attached to the network into -0C0NHS03 "Li + functions . then dried and characterized The glass transition temperature is -53 ° C., its electrical conductivity from 10 " 5 S cm" 1 to 22 ° C. This example illustrates the preparation of a material comprising fixed anionic groups. on the polysaccharide by covalent bonds.
EXEMPLE 8 On a repris le mode opératoire de l'exemple 3, mais en ajoutant 1,5 g de fibres cellulosiques lors de la prépara¬ tion de la solution d'hydroxyéthylcellulose. Après réac¬ tion, purification et séchage, on a obtenu un matériau composite ayant sensiblement la même température de transi¬ tion vitreuse et la même conductivité électrique que le matériau obtenu dans l'exemple 3, mais possédant un module d'élasticité de 2.107 Pa à 23°C.EXAMPLE 8 The procedure of Example 3 was repeated, but adding 1.5 g of cellulosic fibers during the preparation of the hydroxyethylcellulose solution. After reaction, purification and drying, a composite material was obtained having substantially the same glass transition temperature and the same electrical conductivity as the material obtained in Example 3, but having a modulus of elasticity of 2.10 7 Pa at 23 ° C.
EXEMPLE 9 On a repris le mode opératoire de l'exemple 3, mais en introduisant dans le moule une feuille de papier préalable¬ ment séchée avant d'y couler le mélange réactionnel. Après réaction, purification et séchage, on a obtenu un matériau composite à matelas fibreux ayant sensiblement la même température de transition vitreuse et la même conductivité électrique que le matériau obtenu dans l'exemple 3, mais possédant un module d'élasticité de 108 Pa à 22 °C. EXEMPLE 10EXAMPLE 9 The procedure of Example 3 was repeated, but by introducing into the mold a sheet of paper previously dried before pouring the reaction mixture into it. After reaction, purification and drying, a composite material with a fibrous mat was obtained having substantially the same glass transition temperature and the same electrical conductivity as the material obtained in Example 3, but having a modulus of elasticity of 10 8 Pa at 22 ° C. EXAMPLE 10
On a imprégné une feuille de papier préalablement séchée avec du monoisocyanate de POE de masse moléculaire 900 en présence de traces de dibutyl dilaurate d'étain. On a chauffé le système à 60"C pendant 24 h. Le matériau composite obtenu présente un module d'élasticité de 1,2.108 Pa à 22°C. On a ensuite introduit par diffusion dans ce matériau composite 15% de LiClθ4. La conductivité électrique, mesurée après séchage, est de 2.10"5 S cm"1 à 24°C.A sheet of paper previously dried was impregnated with POE monoisocyanate of molecular weight 900 in the presence of traces of tin dibutyl dilaurate. The system was heated at 60 ° C. for 24 h. The composite material obtained has a modulus of elasticity of 1.2 × 10 8 Pa at 22 ° C. It was then introduced by diffusion into this composite material 15% of LiClθ4. conductivity electric, measured after drying, is 2.10 " 5 S cm" 1 at 24 ° C.
EXEMPLE 11 On a procédé comme dans l'exemple 8, mais en utilisant un diisocyanate de POE de masse molaire 900 comme liquide d'imprégnation. Le composite obtenu présentait un module d'élasticité de 2.108 Pa à 23 "C et une conductivité élec¬ trique, mesurée après séchage, de 10"5 S cm"1 à 23°C. EXAMPLE 11 The procedure was as in Example 8, but using a POE diisocyanate of molecular weight 900 as the impregnating liquid. The composite obtained had a modulus of elasticity of 2.10 8 Pa at 23 "C and an electrical conductivity, measured after drying, of 10" 5 S cm " 1 at 23 ° C.

Claims

REVENDICATIONS
1. Matériau macromoléculaire constitué essentielle¬ ment par au moins un polymère et/ou au moins un oligomère linéaire ou ramifié de saccharide et/ou de dérivé de saccharide, caractérisé en ce qu'au moins une partie des unités saccharide ou dérivé de saccharide portent des substituants oligomères solvatants et des groupements anio¬ niques. 1. Macromolecular material essentially consisting of at least one polymer and / or at least one linear or branched oligomer of saccharide and / or saccharide derivative, characterized in that at least part of the saccharide units or saccharide derivative carry solvating oligomer substituents and anionic groups.
2. Matériau selon la revendication 1, caractérisé en ce que les groupements anioniques, identiques ou diffé¬ rents, sont choisis parmi -(CH2)nC00", -(CF2)πCOO", -(CH2)nS03 ", -OCONHSO3-, -(CF2)nS03 ', -(CF2)nS02-N-S02CF3" , les phosphates et les thiophosphateε, -BPh3", -SbFs", -PF5". 2. Material according to claim 1, characterized in that the anionic groups, identical or different, are chosen from - (CH 2 ) n C00 ", - (CF 2 ) π COO", - (CH2) nS0 3 " , -OCONHSO3-, - (CF 2 ) n S0 3 ' , - (CF2) nS0 2 -N-S0 2 CF3 " , phosphates and thiophosphateε, -BPh 3 ", -SbFs ", -PF 5 ".
3. Matériau selon la revendication 1, caractérisé en ce que le polymère ou l'oligomère de saccharide ou de déri¬ vé de saccharide sont respectivement un homopolymère ou un hétéropolymère, ou un homooligomère ou un hétérooligomère.3. Material according to claim 1, characterized in that the polymer or the saccharide oligomer or saccharide derivative are respectively a homopolymer or a heteropolymer, or a homooligomer or a heterooligomer.
4. Matériau selon la revendication 1, caractérisé en ce que les polymères ou oligomères de saccharide sont choi¬ sis parmi la cellulose, l'amylose, l'amidon, la chitine, le chitosane, les hémicelluloses.4. Material according to claim 1, characterized in that the polymers or oligomers of saccharide are chosen from cellulose, amylose, starch, chitin, chitosan, hemicelluloses.
5. Matériau selon la revendication 1, caractérisé en ce que les dérivés de saccharide sont des dérivés d'éthers, d'esters, de thioéthers, d'amides ou d'uréthanes,5. Material according to claim 1, characterized in that the saccharide derivatives are derivatives of ethers, esters, thioethers, amides or urethanes,
6. Matériau selon la revendication 1, caractérisé en ce que les substituants oligomères solvatants sont des homopolymères ou des copolymères linéaires ou ramifiés comportant des hétéroatomes. 6. Material according to claim 1, characterized in that the solvating oligomer substituents are homopolymers or linear or branched copolymers comprising heteroatoms.
7. Matériau selon la revendication 6, caractérisé en ce que les substituants oligomères solvatants sont choisis parmi les polyéthers, les polysulfures, les polyamines, les polysiloxanes ou les polyphosphazenes.7. Material according to claim 6, characterized in that the solvating oligomer substituents are chosen from polyethers, polysulfides, polyamines, polysiloxanes or polyphosphazenes.
8. Matériau selon la revendication 1, caractérisé en ce que les substituants solvatants constituent des greffons ayant une extrémité libre provenant d'oligomères monofonc¬ tionnels, ou constituent des segments provenant d'oligomè- res polyfonctionnels, liés à au moins deux unités saccha¬ ride ou dérivé de saccharide.8. Material according to claim 1, characterized in that the solvating substituents constitute grafts having a free end coming from monofunctional oligomers, or constitute segments coming from oligomè- polyfunctional res, linked to at least two saccha¬ ride units or saccharide derivatives.
9. Matériau à conduction ionique, caractérisé en ce qu'il comporte au moins un matériau macromoléculaire cons- titué essentiellement par au moins un polymère et/ou au moins un oligomère linéaire ou ramifié de saccharide et/ou de dérivé de saccharide, et en ce qu'au moins une partie des unités saccharide ou dérivé de saccharide portent des substituants oligomeres solvatants. 9. Ionically conducting material, characterized in that it comprises at least one macromolecular material consisting essentially of at least one polymer and / or at least one linear or branched oligomer of saccharide and / or saccharide derivative, and in that at least part of the saccharide or saccharide derivative units carry solvating oligomeric substituents.
10. Matériau à conduction ionique selon la revendica¬ tion 9, caractérisé en ce que les polymères ou oligomères de saccharide ou de dérivé de saccharide et/ou les substi¬ tuants oligomeres solvatants portent des groupements anio¬ niques. 10. Ionically conducting material as claimed in claim 9, characterized in that the polymers or oligomers of saccharide or saccharide derivative and / or the solvating oligomeric substituents carry anionic groups.
11. Matériau à conduction ionique selon la revendica¬ tion 10, caractérisé en ce que les groupements anioniques, identiques ou différents, sont choisis parmi -(CH2)nCOO", -(CF )nCOO-, -(CH2)nSθ3", -OCONHS03" , -(CF2)nS02-N-S02CF3- , _(CF2)nS03", les phosphates et les thiophosphates, -BPI13", -SbF5 ", -PF5 ".11. Ionically conducting material according to claim 10, characterized in that the anionic groups, identical or different, are chosen from - (CH 2 ) n COO ", - (CF) n COO-, - (CH 2 ) n Sθ3 " , -OCONHS0 3 ", - (CF 2 ) n S0 2 -N-S0 2 CF3-, _ (CF 2 ) n S0 3 ", phosphates and thiophosphates, -BPI1 3 ", -SbF 5 " , -PF 5 " .
12. Matériau à conduction ionique selon la revendica¬ tion 9, caractérisé en ce que le polymère est un homopoly¬ mère ou un hétéropolymère, et l'oligomère est un homooligo- mère ou un hétérooligo ère. 12. Ionically conducting material as claimed in claim 9, characterized in that the polymer is a homopoly¬ mother or a heteropolymer, and the oligomer is a homooligomer or a heterooligo era.
13. Matériau à conduction ionique selon la revendica¬ tion 9, caractérisé en ce que les polymères ou oligomères de saccharide sont choisis parmi la cellulose, l'amylose, l'amidon, la chitine, le chitosane, les hémicelluloses.13. Ionically conducting material as claimed in claim 9, characterized in that the saccharide polymers or oligomers are chosen from cellulose, amylose, starch, chitin, chitosan, hemicelluloses.
14. Matériau à conduction ionique selon la revendica- tion 9, caractérisé en ce que les dérivés de saccharide sont des dérivés d'éthers, d'esters, de thioéthers, d'a i- des ou d'uréthanes.14. Ionically conductive material according to claim 9, characterized in that the saccharide derivatives are derivatives of ethers, esters, thioethers, acids or urethanes.
15. Matériau à conduction ionique selon la revendica¬ tion 9, caractérisé en ce que les substituants oligomères solvatants sont des homopolymères ou des copolymères linéaires ou ramifiés comportant des hétéroatomes.15. Ionically conducting material as claimed in claim 9, characterized in that the solvating oligomer substituents are homopolymers or linear or branched copolymers comprising heteroatoms.
16. Matériau à conduction ionique selon la revendica¬ tion 15, caractérisé en ce que les substituants oligomères solvatants sont des polyéthers, des polysulfures, des polyamines, des polysiloxanes ou des polyphosphazenes.16. Ionically conducting material as claimed in claim 15, characterized in that the oligomeric substituents solvents are polyethers, polysulfides, polyamines, polysiloxanes or polyphosphazenes.
17. Matériau à conduction ionique selon la revendica¬ tion 15, caractérisé en ce que les substituants oligomeres comportent de 3 à 50 unités monomères.17. Ionically conducting material according to claim 15, characterized in that the oligomeric substituents comprise from 3 to 50 monomer units.
18. Matériau à conduction ionique selon la revendica¬ tion 15, caractérisé en ce que les substituants solvatants constituent des greffons ayant une extrémité libre prove¬ nant dOligomères monofonctionnels, ou constituent des segments provenant 'oligomeres polyfonctionnels, liés à au moins deux unités saccharide ou dérivé de saccharide.18. Ionically conducting material as claimed in claim 15, characterized in that the solvating substituents constitute grafts having a free end coming from monofunctional oligomers, or constitute segments originating from polyfunctional oligomers, linked to at least two saccharide units or saccharide derivative.
19. Matériau à conduction ionique selon la revendica¬ tion 9, caractérisé en ce qu'il contient en outre une charge fibreuse. 19. Ionically conducting material according to claim 9, characterized in that it also contains a fibrous filler.
20. Matériau à conduction ionique selon la revendica¬ tion 9, caractérisé en ce qu'il contient en outre un sel d'un cation métallique mono-, di- ou trivalent et d'un anion issu d'un acide de Brόnsted ou d'un acide de Lewis.20. Ionically conducting material according to claim 9, characterized in that it also contains a salt of a mono-, di- or trivalent metal cation and of an anion derived from a Brόnsted acid or d 'a Lewis acid.
21. Application d'un matériau à conduction ionique selon l'une des revendications 9 à 20 à la réalisation d'un électrolyte solide polymère.21. Application of an ionically conductive material according to one of claims 9 to 20 to the production of a solid polymer electrolyte.
22. Application d'un matériau à conduction ionique selon l'une des revendications 9 à 20 comme électrolyte solide dans un générateur électrochimique, ou pour la réalisation de fenêtres électrochromes, ou pour la réalisa¬ tion de capteurs électrochimiques. 22. Application of an ion-conducting material according to one of claims 9 to 20 as a solid electrolyte in an electrochemical generator, or for the production of electrochromic windows, or for the production of electrochemical sensors.
PCT/FR1993/000140 1992-02-13 1993-02-11 Macromolecular material based on polysaccharides and ionic conduction material containing it WO1993016108A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR92/01581 1992-02-13
FR9201581A FR2687405A1 (en) 1992-02-13 1992-02-13 MACROMOLECULAR MATERIAL BASED ON POLYSACCHARIDES AND ION CONDUCTIVE MATERIAL CONTAINING THE SAME.

Publications (1)

Publication Number Publication Date
WO1993016108A1 true WO1993016108A1 (en) 1993-08-19

Family

ID=9426576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000140 WO1993016108A1 (en) 1992-02-13 1993-02-11 Macromolecular material based on polysaccharides and ionic conduction material containing it

Country Status (2)

Country Link
FR (1) FR2687405A1 (en)
WO (1) WO1993016108A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603793A2 (en) * 1992-12-25 1994-06-29 Ykk Corporation Organic solid electrolyte and coloring-discoloring device using the same
WO1994014828A2 (en) * 1992-12-23 1994-07-07 Arthur D. Little, Inc. Ion-conductive polymer and electrolyte additives
US5433876A (en) * 1992-12-23 1995-07-18 Arthur D. Little, Inc. Ion-conductive polymer and electrolyte additives
FR2723098A1 (en) * 1994-07-28 1996-02-02 Centre Nat Rech Scient MACROMOLECULAR MATERIAL COMPRISING IONIC SUBSTITUENTS AND ITS USE IN ELECTROCHEMICAL SYSTEMS
EP0714149A1 (en) * 1994-11-22 1996-05-29 Nisshinbo Industries, Inc. Solid ion conductive polymer electrolyte and composition and production method therefor
EP0757397A1 (en) * 1995-08-03 1997-02-05 Nisshinbo Industries, Inc. Battery having solid ion conductive polymer electrolyte
GB2325236A (en) * 1997-05-16 1998-11-18 Pilkington Plc Polymer electrolyte for an electrochromic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1019228A (en) * 1963-04-02 1966-02-02 Dow Chemical Co Insolubilization of water-soluble cellulose ethers
GB2143539A (en) * 1983-07-18 1985-02-13 Secr Defence Polymeric electrolyte materials
US4654279A (en) * 1986-07-10 1987-03-31 The United States Of America As Represented By The Secretary Of The Navy Interpenetrating-network polymeric electrolytes
EP0294231A1 (en) * 1987-06-03 1988-12-07 Montclair State College Method for preparing conducting polymer films

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165058A (en) * 1984-02-07 1985-08-28 Orient Watch Co Ltd Solid electrolyte
JPS63193954A (en) * 1987-02-07 1988-08-11 Hitachi Maxell Ltd Lithium ion conductive polymer electrolyte
JP2511675B2 (en) * 1987-07-07 1996-07-03 川研ファインケミカル株式会社 Method for producing polyoxyethylenated chitin
JP2593320B2 (en) * 1987-10-23 1997-03-26 住友精化株式会社 Solidification of non-aqueous electrolyte solution
JP2555418B2 (en) * 1988-07-08 1996-11-20 株式会社トクヤマ Polysaccharide composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1019228A (en) * 1963-04-02 1966-02-02 Dow Chemical Co Insolubilization of water-soluble cellulose ethers
GB2143539A (en) * 1983-07-18 1985-02-13 Secr Defence Polymeric electrolyte materials
US4654279A (en) * 1986-07-10 1987-03-31 The United States Of America As Represented By The Secretary Of The Navy Interpenetrating-network polymeric electrolytes
EP0294231A1 (en) * 1987-06-03 1988-12-07 Montclair State College Method for preparing conducting polymer films

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 85 Columbus, Ohio, US; abstract no. 53715y, 'Miniature alkaline batteries' *
DATABASE WPIL Section Ch, Week 8909, Derwent Publications Ltd., London, GB; Class A, AN 89-063830 *
DATABASE WPIL Section Ch, Week 9010, Derwent Publications Ltd., London, GB; Class A, AN 90-069622 *
DATABASE WPIL Week 8923, Derwent Publications Ltd., London, GB; AN 89-170126 *
PATENT ABSTRACTS OF JAPAN vol. 10, no. 1 (E-371)7 Janvier 1986 *
PATENT ABSTRACTS OF JAPAN vol. 12, no. 479 (C-552)(3326) 14 Décembre 1988 *
PATENT ABSTRACTS OF JAPAN vol. 15, no. 375 (E-1114)20 Septembre 1991 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014828A2 (en) * 1992-12-23 1994-07-07 Arthur D. Little, Inc. Ion-conductive polymer and electrolyte additives
WO1994014828A3 (en) * 1992-12-23 1994-08-18 Little Inc A Ion-conductive polymer and electrolyte additives
US5433876A (en) * 1992-12-23 1995-07-18 Arthur D. Little, Inc. Ion-conductive polymer and electrolyte additives
US5453335A (en) * 1992-12-23 1995-09-26 Arthur D Little, Inc. Ion-conductive polymer and electrolyte additives
EP0603793A2 (en) * 1992-12-25 1994-06-29 Ykk Corporation Organic solid electrolyte and coloring-discoloring device using the same
EP0603793A3 (en) * 1992-12-25 1995-11-08 Yoshida Kogyo Kk Organic solid electrolyte and coloring-discoloring device using the same.
FR2723098A1 (en) * 1994-07-28 1996-02-02 Centre Nat Rech Scient MACROMOLECULAR MATERIAL COMPRISING IONIC SUBSTITUENTS AND ITS USE IN ELECTROCHEMICAL SYSTEMS
US5696224A (en) * 1994-07-28 1997-12-09 Centre National De La Recherche Scientifique Ionically conductive macromelecular materials and their use in electrochemical systems
EP0714149A1 (en) * 1994-11-22 1996-05-29 Nisshinbo Industries, Inc. Solid ion conductive polymer electrolyte and composition and production method therefor
EP0757397A1 (en) * 1995-08-03 1997-02-05 Nisshinbo Industries, Inc. Battery having solid ion conductive polymer electrolyte
GB2325236A (en) * 1997-05-16 1998-11-18 Pilkington Plc Polymer electrolyte for an electrochromic device

Also Published As

Publication number Publication date
FR2687405A1 (en) 1993-08-20

Similar Documents

Publication Publication Date Title
Dawsey et al. The lithium chloride/dimethylacetamide solvent for cellulose: a literature review
Söderqvist Lindblad et al. Biodegradable polymers from renewable sources. New hemicellulose‐based hydrogels
US4097666A (en) Solvent system for polysaccharides
US20180362405A1 (en) Resin composition and method for producing same
Lai et al. Nanocomposite films based on TEMPO-mediated oxidized bacterial cellulose and chitosan
WO1993016108A1 (en) Macromolecular material based on polysaccharides and ionic conduction material containing it
Brovko et al. Influence of the conformation of biopolyelectrolytes on the morphological structure of their interpolymer complexes
EP0020183A1 (en) Poly-ion complex, process for its preparation and shaped articles prepared therefrom
Rusa et al. Conformational Changes Induced in Bombyx m ori Silk Fibroin by Cyclodextrin Inclusion Complexation
Zahra et al. Close packing of cellulose and chitosan in regenerated cellulose fibers improves carbon yield and structural properties of respective carbon fibers
CH670092A5 (en)
Velazquez-Morales et al. Polymer electrolytes derived from chitosan/polyether networks
EP0215082B1 (en) Method for the preparation of solutions of lignocellulosic materil and solutions obtained thereby
EP0839850B1 (en) Process for producing a polyoxyalkylene derivative substituted with succinimidyl group
Vega-Rios et al. Synthesis and electrical properties of polyaniline/iota-carrageenan biocomposites
EP0783015A1 (en) Conductive cellulose microfibrils and composites incorporating same
Ren et al. Structural aspects of poly (methyl methacrylate)-grafted β-chitin copolymers initiated by ceric salt
Salama et al. Preparation and dielectric relaxation of a novel ionocellulose derivative
WO2019057920A1 (en) Boronate ester crosslinked nanogels based on modified polysaccharides
EP0020469A1 (en) Process for depolymerising cellulose fibers and depolymerised cellulosic material with a low crystallinity degree obtainable by this process.
JPH1036402A (en) Thermoplastic material containing aliphatic carbamic acid derivative of polysaccharide and low-molecular urea derivative, and production and use thereof
Heinze et al. Cellulose esters
Mallik et al. Fabrication of polysaccharide-based materials using ionic liquids and scope for biomedical use
JP2001518952A (en) Thermoplastic materials based on polysaccharides, their preparation and their use
Heinze et al. Recent advances in cellulose chemistry

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA