WO1993013718A1 - Electrosurgical control for a trocar - Google Patents

Electrosurgical control for a trocar Download PDF

Info

Publication number
WO1993013718A1
WO1993013718A1 PCT/US1992/008980 US9208980W WO9313718A1 WO 1993013718 A1 WO1993013718 A1 WO 1993013718A1 US 9208980 W US9208980 W US 9208980W WO 9313718 A1 WO9313718 A1 WO 9313718A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
tissue
active device
stylet
tip
Prior art date
Application number
PCT/US1992/008980
Other languages
French (fr)
Inventor
Michael Steve Klicek
Original Assignee
Valleylab, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valleylab, Inc. filed Critical Valleylab, Inc.
Priority to DE9290164U priority Critical patent/DE9290164U1/en
Priority to KR1019940702509A priority patent/KR0145453B1/en
Priority to EP92923190A priority patent/EP0623008A1/en
Publication of WO1993013718A1 publication Critical patent/WO1993013718A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1487Trocar-like, i.e. devices producing an enlarged transcutaneous opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00678Sensing and controlling the application of energy using a threshold value upper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00738Depth, e.g. depth of ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00761Duration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00892Voltage

Definitions

  • An electrosurgical generator control responsive to energy required to cut tissue of a human or animal, and more specifically the energy flowing through a distal tip of a cutting instrument applied directly to the tissue.
  • U. S. Patent No. 3,595,239 discloses a catheter tube having an obturator in the form of an electrode passing coaxially therethrough.
  • the obturator electrode is connected to an electrosurgical generator in order to provide high frequency energy used to divide or cut tissue thereby forming a passage for the catheter to pass through.
  • the tip of the obturator extends beyond the catheter tip and is capable of cutting.
  • the catheter is moved along with the obturator electrode by means of a ring disposed about the obturator proximal to the tip and inside the tip of the catheter. There is no disclosure of any means for sensing the impedance or load associated with the energy required to do the cutting during insertion of the obturator tip.
  • U. S. Patent No. 4,856,530 discloses an automatic system for determination of the size of a catheter distal tip remotely at the proximal end of the catheter.
  • a capacitor at the distal tip is connected to a pair of wires which extends proximally to a microprocessor which determines the decay constant of the capacitor and thereby establishes the catheter size.
  • U. S. Patent 4,651 ,280 discloses a microprocessor with a preset control for an electrosurgical unit during a transurethral resection.
  • a current monitoring probe about the output of the electrosurgical unit is responsive to load such that differences in the tissue and in inclusions therein are measured as changes in conductivity which are directly related to the load during the resection.
  • Variation and output power of the electrosurgical unit are a measure of what tissue is resected.
  • the current changes are sensed by a peak detector, connected to a phase shifter so that a control signal relative to the current level can be provided to a sample and hold circuit to accumulate data that can be converted by an analog to digital converter for processing by a microprocessor.
  • U. S. Patent 3,601 ,126 teaches delivery of power at a constant level to the active electrode as it engages the tissue and during the entire operational procedure.
  • a reference current amplitude is used to maintain the cutting current constant.
  • U. S. Patent 4,126,137 has voltage and current sensors which are used to monitor power used during cutting.
  • the circuit suggests that to make linear the power delivery at high and low impedance the power is increased and decreased.respectively. That is, with changes in impedance the power is increased with increasing impedance. There is no appreciation of the need to cut off power with increased impedance to provide safety.
  • U. S. Patent 4,231 ,372 has a current sensor in series with the ground. A comparator sets a threshold at which an alarm or disabling circuit functions as the current exceeds the threshold. Reset of the operation is timed and automatic so there is no safety responsive to an impedance increase upon reaching an inner cavity of the body.
  • U. S. Patent 4,232,676 has a knife blade which cuts and cauterizes the incision and in so doing self limits the current flow at the knife. Specifically, the blade has electrodes across which current flows when there is a conductive path after cutting the current cauterizes the incision sealing the wound and eliminating the current path. No recognition of the impedance change due to the inner cavity of the body is disclosed.
  • U. S. Patent 4,281 ,373 has a circuit responsive to the needs of the cutting effort required. If the power is inadequate to prevent sticking of the cutter in the tissue the power is increased. There is no safety circuit responsive to the change in power required when the cutter has reached a body cavity.
  • U. S. Patent 4,416,277 monitors the contact resistance of the return electrode maintaining the impedance within a range to prevent burns. Automatic setting of the upper limit as a function of load is taught so the power is regulated. There is an alert but no shut off when a body cavity is entered and high impedance is detected.
  • U. S. Patent 4,494,541 senses capacitance between the body and an electrically conductive layer isolated from the body but part of the return electrode. If the capacitance is not within a certain range an alarm is produced. Although current to the active electrode may be stopped if an alarm condition is detected, it is not a function of having reached an internal cavity of the body.
  • U. S. Patent 4,498,475 has an intensity controlled by changing resistanr -- which controls a transistor that turns the power on and off. There is no detection of impedance change at the inner body cavity.
  • U. S. Patents 4,601 ,710 and 4,654,030 teach trocar tubes with a shielding sleeve in addition to the tube.
  • the shielding sleeve may project beyond the end of the trocar thereby shielding the tip of the trocar while in the body cavity.
  • U. S. Patent 4,535,773 discloses techniques for shielding the sharp tip of a trocar by either interposing an extensible shielding sleeve or retracting the trocar into its tube. With regard to the latter, a solenoid operated detent holds the trocar in an extended position relative its tube and electronic sensing in the tip of the trocar is used to activate the detent for release.
  • a solenoid operated detent holds the trocar in an extended position relative its tube and electronic sensing in the tip of the trocar is used to activate the detent for release.
  • Nothing in this reference has any disclosure of an impedance responsible circuit used to regulate an electrosurgical generator, attached to an electrosurgical cutting tip. Sensors and switches are used in conjunction with the probe which retracts during penetration. In particular, the probe extends beyond the cutting surface once the abdominal wall has been traversed.
  • the sensors can be connected to an oral or visual signal to indicate completion of the puncture.
  • the switches could be mechanical or magnetic, be tripped by a sleeve in the puncturing instrument, a probe or a spring wire protruding from the tip or blade of a sharp pointed cutter.
  • Multiple sensors in the cutting blade and the cannula can be used to signal circuit of the penetration position. No disclosure of an impedance sensitive circuit is in this rather extensive disclosure.
  • U. S. Patent 4,919,653 discloses a device for locating epidural space. The release of force on the tip of a needle triggers an alarm which activate a solenoid latch permitting the needle and its sleeve to move in a cannula in response to an activated electromagnet such that the distal end moves 2 mm into the epidural space.
  • Pressure sensors detect when the depression or release of pressure occurs as the needle enters the epidural space.
  • the pressure signal is converted to produce the voltage difference between the sensor and the potentiometer. This difference is shown on a meter.
  • the pressure sensor can be a small membrane with electrical contacts which are closed in the unloaded position and open when the membrane moves when the epidural space is reached. The passage of current through the contacts keeps the circuit open by means of a relay.
  • An electrosurgical control for a trocar preferably has a cannula with a stylet coaxially fit therewithin and the stylet is movable relative to the cannula along an axis common to both.
  • the trocar is most preferably shaped for insertion in a direction generally along the axis through the tissue of a human or animal body in a combined puncture procedure with its stylet.
  • a distal end and a proximal end are preferably provided on the cannula.
  • the cannula most preferably elongate so the distal end enters the tissue while the proximal end remains outside the tissue.
  • a tip on the stylet end may first enter the tissue since the tip is preferably associated with the distal end of the cannula and normally extends therebeyond in position for puncture through the tissue.
  • the stylet includes an energy supply therealong passing from the tip to an opposite end. The stylet is arranged to move reciprocally relative to the cannula for positioning the tip from its extended position to a location wherein the tip is fully within the cannula.
  • An electrosurgical generator provides energy to the energy supply at the opposite end of the stylet.
  • An electrosurgically active device is preferably included as part of the tip and connects the energy supply of the stylet to the electrosurgical generator.
  • a sampling circuit may be associated with the electrosurgically active device and is responsive to changes in energy passing through the energy supply as a function of tissue acted upon by the electrosurgically active device when as energized by the electrosurgical generator. The sampling circuit is most preferably for providing a signal relative to the energy supplied to the electrosurgically active device.
  • a measuring circuit may respond to and analyze the signal from the sampling circuit to instantly isolate a specific signal therefrom indicative of a significant change in the energy passing through the electrosurgically active device when the tip is not in tissue.
  • a comparator includes a settable predetermined threshold amount of energy at which the electrosurgical generator no longer supplies energy to the electrosurgically active device.
  • the settable predetermined threshold is preferably a peak energy level as set by a knob adjusted by the electrosurgical control operator and the peak energy level is compared to the varying signals from the sampling circuit.
  • a switch responsive to the comparator and connected to the electrosurgical generator may disconnect the energy supply therefrom when the threshold is exceeded.
  • the comparator may operate the switch when a maximum or when a minimum is exceeded.
  • the electrosurgically active device in circuit with the electrosurgical generator may form a monopolar system or a bipolar system.
  • the bipolar system may include a pair of electrodes connected to the energy supply to the electrosurgically active device wherein the electrodes terminate and provide a site across which an arc of electrical energy can be sustained in circuit with the electrosurgical generator.
  • the sampling circuit may preferably respond to changes in voltage as the measure of energy flow through the energy supply and is a function of tissue acted upon by the electrosurgically active device at the tip of the stylet when energized by the electrosurgical generator.
  • the sampling circuit provides a voltage relative to the energy supplied to the electrosurgically active device.
  • the sampling circuit most preferably responds to changes in impedance of the tissue as the measure of energy required from the energy supply to the tip of the stylet when energized by the electrosurgical generator.
  • the electrosurgically active device at the tip of the stylet is most preferably a wire passing substantially normal to the axis of the cannula.
  • the cannula is preferably cylindrical and may have a diameter thereacross and the stylet fits therein so the wire extends substantially across the diameter for cutting an opening through the tissue approximately the width of the cannula.
  • Figure 1 is a schematic illustration of an electrosurgical control for a trocar with blocks to show the relationship of the circuit components of the preferred embodiment.
  • Figure 2 is a plot showing graphically the change in energy required to cut as a function of the type of tissue in the abdominal wall of a human and specifically the tissue found between the skin and inner cavity.
  • Figure 3 is an enlarged illustration in cross section of the distal end of the trocar including the cannula and its stylet therewithin shown applied to the surface of the skin.
  • Figure 4 is an enlarged illustration of the cannula and stylet wherein the stylet and a wire across the tip thereof is exposed or extended beyond the distal end of the cannula in position for use as the electrosurgically active device.
  • Figures 5a through 5d include illustrations of the electrode designs shown in plan view for use as the electrosurgically active devices and in particular, Figure 5a is a single cutting wire as shown in Figures 1 and 2; Figure 5b has two crossing wires; Figure 5c is an electrode with a pair of spaced apart active and sensing leads between which current flows during cutting, and Figure 5d is an arrangement with two sensing leads and two active leads each pair spaced from each other and disposed normal to each other.
  • FIG. 1 is a schematic illustration of an electrosurgical control showing the preferred embodiment as applied to a human during an electrosurgical procedure.
  • the schematic blocks in Figure 1 illustrate the relationship of the circuit components of the preferred embodiment.
  • an electrosurgical control for a trocar preferably has a cannula with a stylet coaxially fit therewithin and the stylet is movable relative to the cannula along an axis common to both.
  • the trocar is shaped for insertion in a direction generally along the axis through the tissue of a human or animal body and in Figure 1 a human body is represented schematically.
  • the preferred procedure is a combined puncture procedure wherein the cannula is passed through a cut down incision with its stylet whereby the opening through the abdominal wall is enlarged to be about 10mm in diameter so an endoscope, laparoscopy or other observational or surgical instruments may have access to the internal organs.
  • a surgical needle for example, connected to a catheter is typically used to pierce a cavity (blood vessel, subarachnoid space, heart ventricle). After piercing the cavity, the needle is left in situ and used to inject or withdraw gaseous or liquid phase fluids from the cavity.
  • a small incision may be made in the skin of a patient along the abdomen for example, and the sharp point of a larger penetrating implement such as a trocar of suitable length and diameter is inserted into the incision, and pushed until the point punctures the cavity wall. Then, a sleeve is slid over the exterior surface of the implement into the puncture wound to serve as a lining for preserving the shape of the passageway created by the implement. After the sleeve is in place and the implement is withdrawn, an endoscope and/or operating instruments may be inserted through the sleeve to view and/or operate upon organs within the cavity.
  • a larger penetrating implement such as a trocar of suitable length and diameter
  • a trocar having a cannula and a stylet.
  • a distal end and a proximal end are preferably provided on the cannula in accord with Figure 1.
  • the cannula is elongate so the distal end enters the tissue while the proximal end remains outside the tissue.
  • a tip on the stylet enters the tissue first since the tip is preferably associated with the distal end of the cannula and normally extends therebeyond, as shown in Figure 4, in position for electrosurgically cut through the tissue.
  • the stylet includes an energy supply therealong passing from the tip to an opposite end.
  • the stylet is arranged to move reciprocally relative to the cannula for positioning the tip from its extended position to a location wherein the tip is fully within the cannula; axial stylet movement is suggested by the arrows of Figures 3 and 4.
  • An electrosurgical generator as shown schematically in block form in Figure 1 could be a Model Force 2 as manufactured and sold by Valley Lab Inc. of Boulder, Colorado.
  • the electrosurgical generator provides energy to the energy supply at the opposite end of the stylet.
  • An electrosurgically active device may take many forms as will be described herein and is preferably included as part of the tip and connects or completes the circuit between the energy supply of the stylet and the electrosurgical generator by a monopolar or bipolar configuration.
  • the electrosurgically active device used in conjunction with the trocar leads to certain safety concerns. While the electrosurgically active device removes or at least reduces the force required to penetrate the patient's tissue it does not eliminate the danger of contacting internal organs and/or causing electrosurgical burns. Arcing or sparking caused by the energy jumping to other internal parts of the patient is of concern since contact with the electrosurgically active device is not required for that to occur.
  • the electrosurgical control includes a sampling circuit associated with the electrosurgically active device which responds to changes in energy passing through the energy supply as a function of tissue acted upon by the electrosurgically active device when as energized by the electrosurgical generator.
  • the electrosurgical stylet may cause internal damage if the doctor continues to advance or press the device into the patient while the surgeon is unaware of the fact that the flesh/fat/muscle layer has been penetrated. Physically contacting internal organs the electrosurgical current will cut or burn them. If the voltage supplied to the electrosurgically active device is suffi ⁇ ciently high, after penetration of the flesh/fat/muscle layer sparks emitted from the cutting loop of the device could deliver coagulation type damage to the patient's internal organs. This injury would have been administered unintentionally.
  • a safety circuit associated with the electrosurgically active device must account for both unintentional contact and non-contact damage to internal organs.
  • the safety circuit should allow the insertion of the trocar into the patient with minimal probability of internal organ damage.
  • the sampling circuit preferably provides a signal relative to the energy supplied to the electrosurgically active device during entry through the incision.
  • a measuring circuit analyzes the signal from the sampling circuit to instantly isolate a specific signal therefrom indicative of a significant change in the energy passing through the electrosurgically active device.
  • a comparator includes a settable predetermined threshold amount of energy at which the electrosurgical generator no longer supplies energy to the electrosurgically active device.
  • the settable predetermined threshold is preferably a peak energy level as set by a knob adjusted by the electrosurgical control operator and the peak energy level is compared to the varying signals from the sampling circuit.
  • a switch responsive to the comparator and connected to the electrosurgical generator may disconnect the energy supply therefrom when the threshold is exceeded.
  • the comparator operates the switch when a maximum or when a minimum signal is exceeded.
  • the electrosurgically active device in circuit with the electrosurgical generator may form a monopolar system or a bipolar system.
  • the bipolar system may include a pair of electrodes connected to the energy supply to the electrosurgically active device wherein the electrodes terminate and provide a site across which an arc of electrical energy can be sustained in circuit with the electrosurgical generator.
  • the sampling circuit may respond to changes in voltage as the measure of energy flow through the energy supply and is a function of tissue acted upon by the electrosurgically active device at the tip of the stylet when energized by the electros ⁇ urgical generator.
  • the sampling circuit provides a voltage relative to the energy supplied to the electrosurgically active device.
  • the sampling circuit preferably responds to changes in impedance of the tissue as the measure of energy required from the energy supply to the tip of the stylet when energized by the electrosurgical generator.
  • FIG. 1 While the block diagram of Figure 1 is for a circuit design external to the generator, a circuit internal to the generator is also possible. If voltage is the monitored signal, the initial voltage level upon contact to the outer layer of skin will be relatively high, once the skin muscle layer is entered the voltage will drop, and the voltage will rise again when the fat layer is passed through but before organs are contacted. This voltage level will be the maximum peak value for the generator power level.
  • the peak detector will monitor the voltage wave form and through the use of a sample hold and bleed resistor maintain a value proportional to the peak voltage that the generator has delivered.
  • This signal will be delivered to the threshold comparator which has its trip level set at the peak output voltage of the generator as a function of the front panel power set point.
  • the threshold When the threshold is reached the output of the comparator will go high. The transition of the comparator output from low to high will set the flip flop indicating that maximum voltage has been obtained. The output of this flip flop will energize a relay which will open the patient return continuity and cause an alarm (if the circuit is external to a generator). A manual reset will allow the surgeon to continue tissue penetration if he deems more depth (trocar penetration) is required.
  • circuit is internal to the generator under control a more elaborate scheme can be used where a special mode of the generator is designed for trocar insertion and the signals are monitored internal to the generator. The interruption of power can then be through the primary control circuitry of the generator rather than through the external means of a patient continuity monitor.
  • the peak detector is actually looking for a minimum level of current to indicate that the probe tip is not in contact with tissue.
  • the magnitude of the current signal will be the opposite of that of the voltage signal.
  • the rest of the circuit will operate in a similar manner with the peak detector set at a minimal current level to indicate a high impedance (i.e. air) load on the generator.
  • the peak detector will actually be a minimum level detector and the polarity of the comparator will be the opposite of that shown. If power is the feedback signal, then the output power of the generator is monitored and when it reaches a near zero level (e.g. no load on the electrode tip) then the comparator is fired. Its respective output levels are similar to current assuming that no internal feedback loops are regulating the output power as a function of generator load. The peak detector and comparator polarity are similar to that described for the current monitoring circuit.
  • the electrosurgically active device at the tip of the stylet is preferably a wire passing substantially normal to the axis of the cannula as shown in Figures 3, 4, 5a and perhaps 5b.
  • the cannula is preferably cylindrical with a diameter thereacross so the stylet fits therein.
  • the wire extends substantially across the diameter for cutting an opening through the tissue approximately the width of the cannula.
  • Figure 2 is a graphical depiction of different energy parameters relative to the constituents of the abdominal wall and includes a showing of the relationship of electrosurgical energy with respect to the tissue cut. Assuming that there is a small but finite cavity between the muscle layer and the internal organs, then automatic energy control is possible. The space could be assured by insufflation, inflating the abdominal cavity before application of the trocar.
  • the device is monopolar in nature, that is only the electrosurgically active device is at the incision site and a patient return electrode is used as the return path for the cutting energy of the electrosurgically active device as suggested by Figure 1.
  • the safety circuit must be able to hold the active voltage to a minimum to achieve a sufficiently efficacious cutting performance while reducing the potential sparking between the electrosurgically active device and the return path.
  • a voltage of approximately 300 Volts may be adequate, when combined with the mechanical design of the electrode to reduce the potential for sparking. That is the electrode could be slightly retracted into a non-conductive medium such as the cannula made of a high dielectric material. With a recessed stylet tip the distal end of the cannula must be pressed gently into the tissue for the electrosurgically active device to cut.
  • the physical shape of the electrosurgically active device may be selected to be effective in reducing the potential for sparking and Figures 5a through 5d disclose various monopolar and bipolar arrangements.
  • the surgically active device could be a point but the potential for sparking is increased as the probability of non contact increases as the electrode area is reduced.
  • the shape of the tip could have a large cross sectional area which reduces the probability of non contact.
  • the amount of energy required to perform cutting will increase as the size of the electrode increases.
  • the amount of tissue damage that can occur is also directly proportional to the power setting of the generator. Therefore, increased tip size has negative impact.
  • the electrode is preferably disposable to minimize cost, the optimal design would be to use bipolar cutting electrodes as the sensing electrodes for tissue impedance, voltage, and/or current levels being delivered.
  • a monopolar needle electrode would achieve making a slender penetration hold to be mechanically distended as the trocar is inserted.
  • a larger needle would obviously make a larger diameter hole thus reducing the overall distension required during trocar insertion. Voltage control, mechanical motion reduction, and penetration monitoring would be advisable for this configuration.
  • a monopolar loop would achieve making a much larger hole with a core of tissue having to be removed.
  • the control parameters are the same as above.
  • a wire type electrode could make a slot in the tissue similar to monopolar electrode.
  • the control parameters are the same as above.
  • a cross hairs type monopolar electrode would ideally create a four section 'flap' which would facilitate easier trocar insertion.
  • the control parameters are the same as above.
  • a bipolar electrode would consist of two electrodes.
  • the two electrodes could be similar in size or vary in size to physically define one as the active electrode (the smaller) and one as the return electrode.
  • a coating on the electrodes could also achieve the same effect.
  • the two electrodes could be shaped as to penetrate the flesh/fat/muscle layer in a coring fashion or in very close proximity to achieve a similar effect as a needle's electrode.
  • bipolar electrodes are dissimilar in size by physically rotating them as they are inserted through the tissue even cutting or coring action can be achieved.
  • the impedance of the tissue that is in contact with the electrode should be monitored.
  • auxiliary measurement circuit either to the "primary" active electrode(s) or a separate dedicated pair whose AC frequency is not a multiple of the fundamental operating frequency of the generator being used so that minimal "cross talk" between the auxiliary measurement current and the primary operating frequency of the generator occurs.
  • monitoring the outputvoltage and current of the generator and using that information for calculating the tissue impedance which may be compared to a preset maximum. Assuming that the impedance of the tissue that is encountered by the electrosurgically active device changes as it is inserted into the patient's body, then either monitoring the impedance or the first derivative of the impedance may detect the fact that the tip of the stylet has penetrated the flesh/fat/muscle layer.
  • the electrosurgical control circuit can detect the abrupt change (increase) in impedance and shut the electrosurgical generator off.
  • the device is bipolar in configuration it could be inherently safer than a monopolar electrosurgically active device.
  • the potential for sparking to internal organs is reduced as the electrosurgical generator output will be confined between the two electrodes that are in close proximity to each other; see for example Figures 5c and 5d.
  • the possibility for over inserting the device and damaging the internal organs still exists. Impedance monitoring would still be necessary to check for this misuse.
  • the optimal design might have a control that is bipolar.
  • the device need not be driven from the bipolar output of an electrosurgical generator as a true bipolar cut has yet to be achieved but rather the device can be connected to the monopolar stage of an electrosurgical generator in a bipolar configuration. This will reduce the potential for sparking to internal organs once penetration has occurred.
  • the trocar could be powered with a monopolar electrosurgical generator configured in the bipolar mode.
  • the power level required to perform the trocar entry would be a function of the bipolar electrode configuration (size, spacing, etc.) and, as explained elsewhere, has an active electrode and patient return is conencted to the other electrode of the device.
  • the electrodes should be as close as possible together so a coring action would result from its use. If a small diameter hole is achieved then the electrode body can be used to expand the hole through tissue flexibility.
  • the trocar can be blunt and slowly inserted to avoid tissue damage at this point.
  • the device had the mechanical means to allow slow entry of the electrode into the patient the probability of internal organ damage might be further reduced. This could easily be achieved if a simple reducing mechanism were used so that as the surgeon either turned a knob or dial, the electrode was slowly passed through the tissue layer. If the doctor has the capability of approximating the depth of the flesh/fat/muscle layer and a simple micrometer measurement device (e.g. markings on a wheel) could be used to determine when penetration is complete. A rotational to linear motion could be used for example with an associated reduction in motion. This would be ideal if the linear motion were derived from a rotation motion (e.g. the slow threading of the electrode into the patient). The depth of the flesh/fat/muscle layer could be measurable with a pair of micrometers. These device concepts could be used in conjunction with an impedance, current, and/or voltage monitoring control.
  • the monitoring of impedance can be done either by the electrosurgically active device performing the cutting or a pair or other combination of electrodes attached to the tip of the stylet.
  • the monitoring circuit would interrogate the impedance by means of an AC electrical current and either look for an absolute value in either voltage or current, or would calculate impedance and monitor for an absolute impedance level or a change in the impedance.
  • An absolute limit would be set an an impedance slightly greater than fat tissue to deactivate the generator while a change in imedpance trip would be set for the impedance transition after the skin/fat muscle layer is penetrated.
  • the electrosurgical generator could be deactivated at its return electrode by opening the return path. Once this circuit was interrupted, a physical action on the part of the practitioner (e.g. press a reset button) would be required to reactivate the generator.
  • a patient alarm signal could be used to signal that the inner cavity has detected or that penetration has occurred.
  • an external control is used as a measuring and control circuit for the trocar insertion device, it would be attached to the generator when the trocar is being inserted and removed after insertion has occurred.
  • a predefined parameter would be electrically monitored for sensing that penetration has occurred i.e. entry to the inner cavity and would shut the generator off.
  • a mechanical resetting action of the part of the practitioner would be required to continue using the device.
  • An ultrasonic tip may also be used to achieve tissue penetration. This could be indicated by mechanical depth, tissue selectivity using cavi-pulse, or an electronic control of impedance.
  • the measurement electrodes for impedance could be either part of the ultrasonic tip or separate attachments.
  • An ultrasonic device would add the capabilities of electrosurgery to this type of device. Automatic shut off the ultrasonic and/or electrosurgical generator could be achieved via the use of the monitoring electronic box.
  • the electrosurgical generator could deactivate the patient return elec ⁇ trode path and the ultrasonic generator could be manually shut off with the handswitch control being connected through electronic monitor for deactivating the "on" signal.
  • any electrode tip whether purely ultrasonic or electrosurgical or a combination of the two technologies, should be as blunt as possible to minimize any mechanical puncturing of tissue and to allow the maximum amount of penetration to be achieved by the respective cutting mechanism of the modality.

Abstract

An electrosurgical control (10) for a trocar (11) has a trocar (11) with a cannula (12) with a stylet (13) coaxially fit therein. The stylet (13) is movable relative to the cannula (12) along a common axis. The trocar (11) is shaped for insertion in a direction generally along the axis through tissue in a puncture procedure with its stylet (13). A distal end (15) and a proximal end (16) on the elongate cannula (12) so the distal end (15) enters the tissue while the proximal end (16) remains outside. A tip (17) on the stylet (13) end, near the distal end (15) of the cannula (12), normally extends therebeyond in position to puncture the tissue. The stylet (13) has an energy supply (18) passing from the tip (17) to its opposite end (19) and moves reciprocally relative to the cannula (12) so the tip (17) extends or is fully within the cannula (12). An electrosurgical generator (20) provides energy to the opposite end (19) of the stylet (13) and an electrosurgically active device is a part of the tip (17) and connects to the energy supply (18). A sampling circuit (21) is connected to the electrosurgically active device and responds to changes in energy passing through the energy supply (18) as a function of tissue cut by the electrosurgically active device. The sampling circuit (21) provides a signal relative to the energy supplied and a measuring circuit (22) analyzes the signal to instantly isolate a specific signal therefrom indicative of a significant change in the energy when the tip (17) is not in tissue. A comparator (23) has a settable predetermined threshold amount of energy at which the electrosurgical generator (20) no longer supplies energy. A peak energy level is set by a knob (24) and is compared to the varying signals from the sampling circuit (21). A switch (25) responds to the comparator (23) to disconnect the energy when the threshold is exceeded.

Description

ELECTROSURGICAL CONTROL FOR A TROCAR
1. Field of the Invention
An electrosurgical generator control responsive to energy required to cut tissue of a human or animal, and more specifically the energy flowing through a distal tip of a cutting instrument applied directly to the tissue.
2. Background of the Disclosure
Surgery through a trocar inserted cannula and particularly with an opening through the tissue of an animal or human abdominal wall has become an important means to minimize the extent of surgical invasion. The lessening of invasion improves the cosmetic result, shortens recovery and lowers the cost. Endoscopic internal surgical procedures and equipment are available and in use for a variety of medical operations including gall bladder, bowel and gynecological surgery. A proper and simple instrument to open the passage through the abdominal wall and avoid injury to internal organs during the placement of the cannula by means of a trocar is needed.
U. S. Patent No. 3,595,239 discloses a catheter tube having an obturator in the form of an electrode passing coaxially therethrough. The obturator electrode is connected to an electrosurgical generator in order to provide high frequency energy used to divide or cut tissue thereby forming a passage for the catheter to pass through. The tip of the obturator extends beyond the catheter tip and is capable of cutting. The catheter is moved along with the obturator electrode by means of a ring disposed about the obturator proximal to the tip and inside the tip of the catheter. There is no disclosure of any means for sensing the impedance or load associated with the energy required to do the cutting during insertion of the obturator tip.
U. S. Patent No. 4,856,530 discloses an automatic system for determination of the size of a catheter distal tip remotely at the proximal end of the catheter. A capacitor at the distal tip is connected to a pair of wires which extends proximally to a microprocessor which determines the decay constant of the capacitor and thereby establishes the catheter size. There is no disclosure of interactive measurement of the energy required for cutting tissue by impedance load or otherwise.
U. S. Patent 4,651 ,280 discloses a microprocessor with a preset control for an electrosurgical unit during a transurethral resection. A current monitoring probe about the output of the electrosurgical unit is responsive to load such that differences in the tissue and in inclusions therein are measured as changes in conductivity which are directly related to the load during the resection. Variation and output power of the electrosurgical unit are a measure of what tissue is resected. The current changes are sensed by a peak detector, connected to a phase shifter so that a control signal relative to the current level can be provided to a sample and hold circuit to accumulate data that can be converted by an analog to digital converter for processing by a microprocessor.
U. S. Patent 3,601 ,126 teaches delivery of power at a constant level to the active electrode as it engages the tissue and during the entire operational procedure. A reference current amplitude is used to maintain the cutting current constant. There is no disclosure of monitoring the energy or preventing the increase of energy upon entry into an internal cavity of the body.
U. S. Patent 4,126,137 has voltage and current sensors which are used to monitor power used during cutting. The circuit suggests that to make linear the power delivery at high and low impedance the power is increased and decreased.respectively. That is, with changes in impedance the power is increased with increasing impedance. There is no appreciation of the need to cut off power with increased impedance to provide safety.
U. S. Patent 4,231 ,372 has a current sensor in series with the ground. A comparator sets a threshold at which an alarm or disabling circuit functions as the current exceeds the threshold. Reset of the operation is timed and automatic so there is no safety responsive to an impedance increase upon reaching an inner cavity of the body. U. S. Patent 4,232,676 has a knife blade which cuts and cauterizes the incision and in so doing self limits the current flow at the knife. Specifically, the blade has electrodes across which current flows when there is a conductive path after cutting the current cauterizes the incision sealing the wound and eliminating the current path. No recognition of the impedance change due to the inner cavity of the body is disclosed.
U. S. Patent 4,281 ,373 has a circuit responsive to the needs of the cutting effort required. If the power is inadequate to prevent sticking of the cutter in the tissue the power is increased. There is no safety circuit responsive to the change in power required when the cutter has reached a body cavity.
U. S. Patent 4,416,277 monitors the contact resistance of the return electrode maintaining the impedance within a range to prevent burns. Automatic setting of the upper limit as a function of load is taught so the power is regulated. There is an alert but no shut off when a body cavity is entered and high impedance is detected.
U. S. Patent 4,494,541 senses capacitance between the body and an electrically conductive layer isolated from the body but part of the return electrode. If the capacitance is not within a certain range an alarm is produced. Although current to the active electrode may be stopped if an alarm condition is detected, it is not a function of having reached an internal cavity of the body.
U. S. Patent 4,498,475 has an intensity controlled by changing resistanr -- which controls a transistor that turns the power on and off. There is no detection of impedance change at the inner body cavity.
U. S. Patents 4,601 ,710 and 4,654,030 teach trocar tubes with a shielding sleeve in addition to the tube. The shielding sleeve may project beyond the end of the trocar thereby shielding the tip of the trocar while in the body cavity.
U. S. Patent 4,535,773 discloses techniques for shielding the sharp tip of a trocar by either interposing an extensible shielding sleeve or retracting the trocar into its tube. With regard to the latter, a solenoid operated detent holds the trocar in an extended position relative its tube and electronic sensing in the tip of the trocar is used to activate the detent for release. Nothing in this reference has any disclosure of an impedance responsible circuit used to regulate an electrosurgical generator, attached to an electrosurgical cutting tip. Sensors and switches are used in conjunction with the probe which retracts during penetration. In particular, the probe extends beyond the cutting surface once the abdominal wall has been traversed. The sensors can be connected to an oral or visual signal to indicate completion of the puncture. The switches could be mechanical or magnetic, be tripped by a sleeve in the puncturing instrument, a probe or a spring wire protruding from the tip or blade of a sharp pointed cutter. Multiple sensors in the cutting blade and the cannula can be used to signal circuit of the penetration position. No disclosure of an impedance sensitive circuit is in this rather extensive disclosure.
U. S. Patent 4,919,653 discloses a device for locating epidural space. The release of force on the tip of a needle triggers an alarm which activate a solenoid latch permitting the needle and its sleeve to move in a cannula in response to an activated electromagnet such that the distal end moves 2 mm into the epidural space.
Pressure sensors detect when the depression or release of pressure occurs as the needle enters the epidural space. The pressure signal is converted to produce the voltage difference between the sensor and the potentiometer. This difference is shown on a meter. The pressure sensor can be a small membrane with electrical contacts which are closed in the unloaded position and open when the membrane moves when the epidural space is reached. The passage of current through the contacts keeps the circuit open by means of a relay.
To safely place a cannula by a trocar technique requires knowledge of the position of the distal cutting tip of the stylet used to open the passage for the cannula through the animal or human tissue of the abdominal wall. A device to instant indicate when the cutting tip has passed through the tissue and reached the inside of the body is needed so that the internal organs are not injured. Because the organs fill the inside cavity and are close to the wall there is the possibility of injury before the surgeon can stop advancing the distal cutting tip. Summary of the Disclosure
An electrosurgical control for a trocar preferably has a cannula with a stylet coaxially fit therewithin and the stylet is movable relative to the cannula along an axis common to both. The trocar is most preferably shaped for insertion in a direction generally along the axis through the tissue of a human or animal body in a combined puncture procedure with its stylet.
A distal end and a proximal end are preferably provided on the cannula. The cannula most preferably elongate so the distal end enters the tissue while the proximal end remains outside the tissue. A tip on the stylet end may first enter the tissue since the tip is preferably associated with the distal end of the cannula and normally extends therebeyond in position for puncture through the tissue. The stylet includes an energy supply therealong passing from the tip to an opposite end. The stylet is arranged to move reciprocally relative to the cannula for positioning the tip from its extended position to a location wherein the tip is fully within the cannula.
An electrosurgical generator provides energy to the energy supply at the opposite end of the stylet. An electrosurgically active device is preferably included as part of the tip and connects the energy supply of the stylet to the electrosurgical generator. A sampling circuit may be associated with the electrosurgically active device and is responsive to changes in energy passing through the energy supply as a function of tissue acted upon by the electrosurgically active device when as energized by the electrosurgical generator. The sampling circuit is most preferably for providing a signal relative to the energy supplied to the electrosurgically active device.
A measuring circuit may respond to and analyze the signal from the sampling circuit to instantly isolate a specific signal therefrom indicative of a significant change in the energy passing through the electrosurgically active device when the tip is not in tissue. A comparator includes a settable predetermined threshold amount of energy at which the electrosurgical generator no longer supplies energy to the electrosurgically active device. The settable predetermined threshold is preferably a peak energy level as set by a knob adjusted by the electrosurgical control operator and the peak energy level is compared to the varying signals from the sampling circuit. A switch responsive to the comparator and connected to the electrosurgical generator may disconnect the energy supply therefrom when the threshold is exceeded. The comparator may operate the switch when a maximum or when a minimum is exceeded. The electrosurgically active device in circuit with the electrosurgical generator may form a monopolar system or a bipolar system. The bipolar system may include a pair of electrodes connected to the energy supply to the electrosurgically active device wherein the electrodes terminate and provide a site across which an arc of electrical energy can be sustained in circuit with the electrosurgical generator.
The sampling circuit may preferably respond to changes in voltage as the measure of energy flow through the energy supply and is a function of tissue acted upon by the electrosurgically active device at the tip of the stylet when energized by the electrosurgical generator. The sampling circuit provides a voltage relative to the energy supplied to the electrosurgically active device. The sampling circuit most preferably responds to changes in impedance of the tissue as the measure of energy required from the energy supply to the tip of the stylet when energized by the electrosurgical generator.
The electrosurgically active device at the tip of the stylet is most preferably a wire passing substantially normal to the axis of the cannula. The cannula is preferably cylindrical and may have a diameter thereacross and the stylet fits therein so the wire extends substantially across the diameter for cutting an opening through the tissue approximately the width of the cannula.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic illustration of an electrosurgical control for a trocar with blocks to show the relationship of the circuit components of the preferred embodiment. Figure 2 is a plot showing graphically the change in energy required to cut as a function of the type of tissue in the abdominal wall of a human and specifically the tissue found between the skin and inner cavity.
Figure 3 is an enlarged illustration in cross section of the distal end of the trocar including the cannula and its stylet therewithin shown applied to the surface of the skin.
Figure 4 is an enlarged illustration of the cannula and stylet wherein the stylet and a wire across the tip thereof is exposed or extended beyond the distal end of the cannula in position for use as the electrosurgically active device.
Figures 5a through 5d include illustrations of the electrode designs shown in plan view for use as the electrosurgically active devices and in particular, Figure 5a is a single cutting wire as shown in Figures 1 and 2; Figure 5b has two crossing wires; Figure 5c is an electrode with a pair of spaced apart active and sensing leads between which current flows during cutting, and Figure 5d is an arrangement with two sensing leads and two active leads each pair spaced from each other and disposed normal to each other.
Detailed Description of the Drawings
Figure 1 is a schematic illustration of an electrosurgical control showing the preferred embodiment as applied to a human during an electrosurgical procedure. The schematic blocks in Figure 1 illustrate the relationship of the circuit components of the preferred embodiment. Specifically, an electrosurgical control for a trocar preferably has a cannula with a stylet coaxially fit therewithin and the stylet is movable relative to the cannula along an axis common to both.
The trocar is shaped for insertion in a direction generally along the axis through the tissue of a human or animal body and in Figure 1 a human body is represented schematically. The preferred procedure is a combined puncture procedure wherein the cannula is passed through a cut down incision with its stylet whereby the opening through the abdominal wall is enlarged to be about 10mm in diameter so an endoscope, laparoscopy or other observational or surgical instruments may have access to the internal organs.
Since many medical procedures access the inside of an anatomical cavity by using an implement such as a trocar, cannula or needle having a sharpened point to pierce or puncture the bodily tissues, muscles and membranes forming the cavity wall. A surgical needle, for example, connected to a catheter is typically used to pierce a cavity (blood vessel, subarachnoid space, heart ventricle). After piercing the cavity, the needle is left in situ and used to inject or withdraw gaseous or liquid phase fluids from the cavity. Similarly, in several endoscopic procedures, a small incision may be made in the skin of a patient along the abdomen for example, and the sharp point of a larger penetrating implement such as a trocar of suitable length and diameter is inserted into the incision, and pushed until the point punctures the cavity wall. Then, a sleeve is slid over the exterior surface of the implement into the puncture wound to serve as a lining for preserving the shape of the passageway created by the implement. After the sleeve is in place and the implement is withdrawn, an endoscope and/or operating instruments may be inserted through the sleeve to view and/or operate upon organs within the cavity.
Although penetrating the wall of an anatomical cavity with a surgical puncturing instrument can be quickly done creating a small neat passageway and providing communication to the interior of the cavity, the sharp point of a penetrating implement pushed through a cavity wall may encounter great resistance from the tissue, muscle and membranes forming the cavity wall. When the sharp point and blade of the implement has passed through the cavity wall and into the cavity, the resistance drops significantly. The sharp point of the implement, however, can easily injure organ structure upon the slightest contact. Unless a surgeon stops pushing the implement just as soon as penetration is complete, there is a grave risk that the implement wilt continue penetrating deeply into the cavity and injure neighboring organ structure. If an unintended bodily member is injured by the point of the implement, unless an immediate and massive hemorrhage occurs, the injury may not become apparent until long after completion of the surgery. At a minimum, such an injury will delay a patient's recovery and may seriously endanger the patient's health and corrective surgery may be required.
Use of electrosurgery to cut through the wall if controlled automatically can prevent the unintended injury since the cutting may be monitored and controlled externally near or at the source of the energy supply. Moreover the energy to the electrosurgical cutter may by terminated when it is not in tissue. The preferred control and various electrosurgical cutters are described by way of example and are not disclosed to limit the coverage in the claims.
A trocar having a cannula and a stylet. A distal end and a proximal end are preferably provided on the cannula in accord with Figure 1. The cannula is elongate so the distal end enters the tissue while the proximal end remains outside the tissue. A tip on the stylet enters the tissue first since the tip is preferably associated with the distal end of the cannula and normally extends therebeyond, as shown in Figure 4, in position for electrosurgically cut through the tissue. The stylet includes an energy supply therealong passing from the tip to an opposite end. The stylet is arranged to move reciprocally relative to the cannula for positioning the tip from its extended position to a location wherein the tip is fully within the cannula; axial stylet movement is suggested by the arrows of Figures 3 and 4.
An electrosurgical generator as shown schematically in block form in Figure 1 could be a Model Force 2 as manufactured and sold by Valley Lab Inc. of Boulder, Colorado. The electrosurgical generator provides energy to the energy supply at the opposite end of the stylet. An electrosurgically active device may take many forms as will be described herein and is preferably included as part of the tip and connects or completes the circuit between the energy supply of the stylet and the electrosurgical generator by a monopolar or bipolar configuration.
The electrosurgically active device used in conjunction with the trocar leads to certain safety concerns. While the electrosurgically active device removes or at least reduces the force required to penetrate the patient's tissue it does not eliminate the danger of contacting internal organs and/or causing electrosurgical burns. Arcing or sparking caused by the energy jumping to other internal parts of the patient is of concern since contact with the electrosurgically active device is not required for that to occur.
The electrosurgical control includes a sampling circuit associated with the electrosurgically active device which responds to changes in energy passing through the energy supply as a function of tissue acted upon by the electrosurgically active device when as energized by the electrosurgical generator. The electrosurgical stylet may cause internal damage if the doctor continues to advance or press the device into the patient while the surgeon is unaware of the fact that the flesh/fat/muscle layer has been penetrated. Physically contacting internal organs the electrosurgical current will cut or burn them. If the voltage supplied to the electrosurgically active device is suffi¬ ciently high, after penetration of the flesh/fat/muscle layer sparks emitted from the cutting loop of the device could deliver coagulation type damage to the patient's internal organs. This injury would have been administered unintentionally.
Therefore, a safety circuit associated with the electrosurgically active device must account for both unintentional contact and non-contact damage to internal organs. The safety circuit should allow the insertion of the trocar into the patient with minimal probability of internal organ damage.
The sampling circuit preferably provides a signal relative to the energy supplied to the electrosurgically active device during entry through the incision. A measuring circuit analyzes the signal from the sampling circuit to instantly isolate a specific signal therefrom indicative of a significant change in the energy passing through the electrosurgically active device. A comparator includes a settable predetermined threshold amount of energy at which the electrosurgical generator no longer supplies energy to the electrosurgically active device.
The settable predetermined threshold is preferably a peak energy level as set by a knob adjusted by the electrosurgical control operator and the peak energy level is compared to the varying signals from the sampling circuit. A switch responsive to the comparator and connected to the electrosurgical generator may disconnect the energy supply therefrom when the threshold is exceeded. The comparator operates the switch when a maximum or when a minimum signal is exceeded.
The electrosurgically active device in circuit with the electrosurgical generator may form a monopolar system or a bipolar system. The bipolar system may include a pair of electrodes connected to the energy supply to the electrosurgically active device wherein the electrodes terminate and provide a site across which an arc of electrical energy can be sustained in circuit with the electrosurgical generator.
The sampling circuit may respond to changes in voltage as the measure of energy flow through the energy supply and is a function of tissue acted upon by the electrosurgically active device at the tip of the stylet when energized by the electros¬ urgical generator. The sampling circuit provides a voltage relative to the energy supplied to the electrosurgically active device. The sampling circuit preferably responds to changes in impedance of the tissue as the measure of energy required from the energy supply to the tip of the stylet when energized by the electrosurgical generator.
While the block diagram of Figure 1 is for a circuit design external to the generator, a circuit internal to the generator is also possible. If voltage is the monitored signal, the initial voltage level upon contact to the outer layer of skin will be relatively high, once the skin muscle layer is entered the voltage will drop, and the voltage will rise again when the fat layer is passed through but before organs are contacted. This voltage level will be the maximum peak value for the generator power level. The peak detector will monitor the voltage wave form and through the use of a sample hold and bleed resistor maintain a value proportional to the peak voltage that the generator has delivered.
This signal will be delivered to the threshold comparator which has its trip level set at the peak output voltage of the generator as a function of the front panel power set point. When the threshold is reached the output of the comparator will go high. The transition of the comparator output from low to high will set the flip flop indicating that maximum voltage has been obtained. The output of this flip flop will energize a relay which will open the patient return continuity and cause an alarm (if the circuit is external to a generator). A manual reset will allow the surgeon to continue tissue penetration if he deems more depth (trocar penetration) is required.
If the circuit is internal to the generator under control a more elaborate scheme can be used where a special mode of the generator is designed for trocar insertion and the signals are monitored internal to the generator. The interruption of power can then be through the primary control circuitry of the generator rather than through the external means of a patient continuity monitor.
If current is the feedback signal then the peak detector is actually looking for a minimum level of current to indicate that the probe tip is not in contact with tissue. The magnitude of the current signal will be the opposite of that of the voltage signal. The rest of the circuit will operate in a similar manner with the peak detector set at a minimal current level to indicate a high impedance (i.e. air) load on the generator.
The peak detector will actually be a minimum level detector and the polarity of the comparator will be the opposite of that shown. If power is the feedback signal, then the output power of the generator is monitored and when it reaches a near zero level (e.g. no load on the electrode tip) then the comparator is fired. Its respective output levels are similar to current assuming that no internal feedback loops are regulating the output power as a function of generator load. The peak detector and comparator polarity are similar to that described for the current monitoring circuit.
The electrosurgically active device at the tip of the stylet is preferably a wire passing substantially normal to the axis of the cannula as shown in Figures 3, 4, 5a and perhaps 5b. The cannula is preferably cylindrical with a diameter thereacross so the stylet fits therein. The wire extends substantially across the diameter for cutting an opening through the tissue approximately the width of the cannula.
The physical topology of the flesh/fat/muscle layer that must be penetrated is a variable in thickness and impedance range from patient to patient. Figure 2 is a graphical depiction of different energy parameters relative to the constituents of the abdominal wall and includes a showing of the relationship of electrosurgical energy with respect to the tissue cut. Assuming that there is a small but finite cavity between the muscle layer and the internal organs, then automatic energy control is possible. The space could be assured by insufflation, inflating the abdominal cavity before application of the trocar.
Assuming that the device is monopolar in nature, that is only the electrosurgically active device is at the incision site and a patient return electrode is used as the return path for the cutting energy of the electrosurgically active device as suggested by Figure 1. The safety circuit must be able to hold the active voltage to a minimum to achieve a sufficiently efficacious cutting performance while reducing the potential sparking between the electrosurgically active device and the return path. A voltage of approximately 300 Volts may be adequate, when combined with the mechanical design of the electrode to reduce the potential for sparking. That is the electrode could be slightly retracted into a non-conductive medium such as the cannula made of a high dielectric material. With a recessed stylet tip the distal end of the cannula must be pressed gently into the tissue for the electrosurgically active device to cut.
The physical shape of the electrosurgically active device may be selected to be effective in reducing the potential for sparking and Figures 5a through 5d disclose various monopolar and bipolar arrangements. The surgically active device could be a point but the potential for sparking is increased as the probability of non contact increases as the electrode area is reduced. Conversely, the shape of the tip could have a large cross sectional area which reduces the probability of non contact. However, the amount of energy required to perform cutting will increase as the size of the electrode increases. The amount of tissue damage that can occur is also directly proportional to the power setting of the generator. Therefore, increased tip size has negative impact.
The electrode is preferably disposable to minimize cost, the optimal design would be to use bipolar cutting electrodes as the sensing electrodes for tissue impedance, voltage, and/or current levels being delivered. A monopolar needle electrode would achieve making a slender penetration hold to be mechanically distended as the trocar is inserted. A larger needle would obviously make a larger diameter hole thus reducing the overall distension required during trocar insertion. Voltage control, mechanical motion reduction, and penetration monitoring would be advisable for this configuration.
A monopolar loop would achieve making a much larger hole with a core of tissue having to be removed. The control parameters are the same as above. A wire type electrode could make a slot in the tissue similar to monopolar electrode. The control parameters are the same as above. A cross hairs type monopolar electrode would ideally create a four section 'flap' which would facilitate easier trocar insertion. The control parameters are the same as above.
A bipolar electrode would consist of two electrodes. The two electrodes could be similar in size or vary in size to physically define one as the active electrode (the smaller) and one as the return electrode. A coating on the electrodes could also achieve the same effect. The two electrodes could be shaped as to penetrate the flesh/fat/muscle layer in a coring fashion or in very close proximity to achieve a similar effect as a needle's electrode.
If the bipolar electrodes are dissimilar in size by physically rotating them as they are inserted through the tissue even cutting or coring action can be achieved.
The impedance of the tissue that is in contact with the electrode should be monitored.
There are two ways of doing this: a. adding an auxiliary measurement circuit either to the "primary" active electrode(s) or a separate dedicated pair whose AC frequency is not a multiple of the fundamental operating frequency of the generator being used so that minimal "cross talk" between the auxiliary measurement current and the primary operating frequency of the generator occurs. b. monitoring the outputvoltage and current of the generator and using that information for calculating the tissue impedance which may be compared to a preset maximum. Assuming that the impedance of the tissue that is encountered by the electrosurgically active device changes as it is inserted into the patient's body, then either monitoring the impedance or the first derivative of the impedance may detect the fact that the tip of the stylet has penetrated the flesh/fat/muscle layer. That is, entered the inner cavity. This concept is consistent with the data of Figure 2. If there is a small void or cavity within the external layer and the internal organs, the electrosurgical control circuit can detect the abrupt change (increase) in impedance and shut the electrosurgical generator off.
If the device is bipolar in configuration it could be inherently safer than a monopolar electrosurgically active device. The potential for sparking to internal organs is reduced as the electrosurgical generator output will be confined between the two electrodes that are in close proximity to each other; see for example Figures 5c and 5d. The possibility for over inserting the device and damaging the internal organs still exists. Impedance monitoring would still be necessary to check for this misuse.
The optimal design might have a control that is bipolar. The device need not be driven from the bipolar output of an electrosurgical generator as a true bipolar cut has yet to be achieved but rather the device can be connected to the monopolar stage of an electrosurgical generator in a bipolar configuration. This will reduce the potential for sparking to internal organs once penetration has occurred. The trocar could be powered with a monopolar electrosurgical generator configured in the bipolar mode. The power level required to perform the trocar entry would be a function of the bipolar electrode configuration (size, spacing, etc.) and, as explained elsewhere, has an active electrode and patient return is conencted to the other electrode of the device. The electrodes should be as close as possible together so a coring action would result from its use. If a small diameter hole is achieved then the electrode body can be used to expand the hole through tissue flexibility. The trocar can be blunt and slowly inserted to avoid tissue damage at this point.
If the device had the mechanical means to allow slow entry of the electrode into the patient the probability of internal organ damage might be further reduced. This could easily be achieved if a simple reducing mechanism were used so that as the surgeon either turned a knob or dial, the electrode was slowly passed through the tissue layer. If the doctor has the capability of approximating the depth of the flesh/fat/muscle layer and a simple micrometer measurement device (e.g. markings on a wheel) could be used to determine when penetration is complete. A rotational to linear motion could be used for example with an associated reduction in motion. This would be ideal if the linear motion were derived from a rotation motion (e.g. the slow threading of the electrode into the patient). The depth of the flesh/fat/muscle layer could be measurable with a pair of micrometers. These device concepts could be used in conjunction with an impedance, current, and/or voltage monitoring control.
The monitoring of impedance can be done either by the electrosurgically active device performing the cutting or a pair or other combination of electrodes attached to the tip of the stylet. The monitoring circuit would interrogate the impedance by means of an AC electrical current and either look for an absolute value in either voltage or current, or would calculate impedance and monitor for an absolute impedance level or a change in the impedance. An absolute limit would be set an an impedance slightly greater than fat tissue to deactivate the generator while a change in imedpance trip would be set for the impedance transition after the skin/fat muscle layer is penetrated.
If the control were a connected to an electrosurgical generator with a safety on the return electrode, the electrosurgical generator could be deactivated at its return electrode by opening the return path. Once this circuit was interrupted, a physical action on the part of the practitioner (e.g. press a reset button) would be required to reactivate the generator. A patient alarm signal could be used to signal that the inner cavity has detected or that penetration has occurred.
If an external control is used as a measuring and control circuit for the trocar insertion device, it would be attached to the generator when the trocar is being inserted and removed after insertion has occurred.
A predefined parameter would be electrically monitored for sensing that penetration has occurred i.e. entry to the inner cavity and would shut the generator off. A mechanical resetting action of the part of the practitioner would be required to continue using the device.
An ultrasonic tip may also be used to achieve tissue penetration. This could be indicated by mechanical depth, tissue selectivity using cavi-pulse, or an electronic control of impedance. The measurement electrodes for impedance could be either part of the ultrasonic tip or separate attachments. An ultrasonic device would add the capabilities of electrosurgery to this type of device. Automatic shut off the ultrasonic and/or electrosurgical generator could be achieved via the use of the monitoring electronic box. The electrosurgical generator could deactivate the patient return elec¬ trode path and the ultrasonic generator could be manually shut off with the handswitch control being connected through electronic monitor for deactivating the "on" signal.
It should be noted that any electrode tip, whether purely ultrasonic or electrosurgical or a combination of the two technologies, should be as blunt as possible to minimize any mechanical puncturing of tissue and to allow the maximum amount of penetration to be achieved by the respective cutting mechanism of the modality.

Claims

What is claimed is:
1. An electrosurgical control 10 for a trocar 11 comprising a trocar 11 having a stylet 13 and a cannula 12 coaxially fit to one another and the stylet 13 is movable reciprocally relative to the cannula 12 along an axis common to both, the trocar 11 shaped for insertion in a direction generally along the axis through tissue of a human or animal body 14 in a combined puncture procedure with its stylet 13; a distal end 15 and a proximal end 16 on the cannula 12, the cannula 12 elongate between the ends thereof, the distal end 15 for entering the tissue and the proximal end 16 for remaining outside the tissue; a tip 17 on the stylet 13 end which enters the tissue, the tip 17 associated with the distal end 15 of the cannula 12 and normally extending therebeyond in position for puncture through the tissue of a human or animal, the stylet 13 having an opposite end 19 arranged to be moveable relative to the cannula 12 for positioning the tip 17 in the extended position to a location with the tip 17 fully within the cannula 12; an energy supply 18 associated with the stylet 13 for permitting the passage of energy between the tip 17 and the opposite end 19; an electrosurgical generator 20 for providing energy to the opposite end
19 of the stylet 13; an electrosurgically active device as part of the tip 17 for connecting to the energy supply 18 along the stylet 13 to the electrosurgical generator 20; a sampling circuit 21 associated with the electro-surgically active device responsive to changes in energy through the energy supply 18 as a function of tissue acted upon by the electrosurgically active device at the tip 17 of the stylet 13 and as energized by the electrosurgical generator 20, the sampling circuit 21 for providing a signal relative to the energy supplied to the electrosurgically active device; a measuring circuit 22 to respond to and for analyzing the signal from the sampling circuit 21 for instantly isolating a specific signal therefrom indicative of a significant change in the energy passing through the electrosurgically active device when the tip 17 thereof is in a body 14 cavity and no longer in the tissue, and a comparator 23 including a settable predetermined threshold amount of energy at which the electrosurgical generator 20 no longer supplies energy to the electrosurgically active device.
2. The electrosurgical control 10 for a trocar 11 of Claim 1 wherein the settable predetermined threshold is a peak energy level as set by a knob 24 adjusted by the electrosurgical control 10 operator and the peak energy level is compared to the varying signals from the sampling circuit 21.
3. The electrosurgical control 10 for a trocar 11 of Claim 1 wherein a switch
25 responsive to the comparator 23 and connected to the electrosurgical generator 20 disconnects the energy supply 18 therefrom when the threshold is exceeded and wherein the comparator 23 operates the switch 25 when a maximum or minimum is exceeded.
4. The electrosurgical control 10 for a trocar 11 of Claim 1 wherein the electrosurgically active device in circuit with the electrosurgical generator 20 form a monopolar system 26 or 27 or bipolar system 28 or 29.
5. The electrosurgical control 10 for a trocar 11 of Claim 4 wherein the bipolar system 28 or 29 includes a pair of electrodes 30 connected to the energy supply 18 to the electrosurgically active device wherein the electrodes 30 terminate an provide a site across which an arc of electrical energy can be sustained in circuit with the electrosurgical generator 20.
6. The electrosurgical control 10 for a trocar 11 of Claim 1 wherein the sampling circuit 21 responds to changes in voltage is the measure of energy flow through the energy supply 18 as a function of tissue acted upon by the electrosurgically active device at the tip 17 of the stylet 13 when energized by the electrosurgical generator 20, the sampling circuit 21 for providing a voltage relative to the energy supplied to the electrosurgically active device.
7. The electrosurgical control 10 for a trocar 1 1 of Claim 1 wherein the sampling circuit 21 responds to changes in impedance of the tissue as the measure of energy required from the energy supply 18 to the tip 17 of the stylet 13 when energized by the electrosurgical generator 20.
8. The electrosurgical control 10 for a trocar 1 1 of Claim 1 wherein the electrosurgically active device at the tip 17 of the stylet 13 is a wire 34 passing substantially normal to the axis of the cannula 12 and wherein the cannula 12 is cylindrical and has a diameter thereacross and the stylet 13 that fits therein and the wire 34 extends across the diameter for cutting an opening through the tissue approximately the width of the cannula 12.
9. An electrosurgical control 10 comprising: an active device for an electrosurgical procedure for cutting an animal or human tissue wherein high frequency energy passes thereacross; an electrosurgical generator 20 for providing high frequency energy to the active device; a sampling circuit 21 associated with the electrosurgically active device responsive to changes in energy supplied therethrough as a function of tissue acted upon by the electrosurgically active device and as energized by the electrosurgical generator 20, the sampling circuit 21 for providing a signal relative to the energy supplied to the electrosurgically active device; a measuring circuit 22 to respond to and for analyzing the signal from the sampling circuit 21 for instantly isolating a specific signal therefrom indicative of a significant change in the energy passing through the electrosurgically active device as a consequence of the tip 17 being no longer in the tissue, and a comparator 23 including a settable predetermined threshold amount of energy at which the electrosurgical generator 20 no longer supplies energy to the electrosurgically active device.
10. The electrosurgical control 10 of Claim 9 wherein the signal from the sampling circuit 21 is indicative of an increase or decrease in the energy passing
SUBSTITUTE SHEET ISA/EP through the electrosurgically active device as a consequence of the tip 17 being beyond the tissue such as the abdominal wall.
PCT/US1992/008980 1992-01-21 1992-10-27 Electrosurgical control for a trocar WO1993013718A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE9290164U DE9290164U1 (en) 1992-01-21 1992-10-27 Electrosurgical control for a trocar
KR1019940702509A KR0145453B1 (en) 1992-01-21 1992-10-27 Electrosurgical trocar control device
EP92923190A EP0623008A1 (en) 1992-01-21 1992-10-27 Electrosurgical control for a trocar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82309392A 1992-01-21 1992-01-21
US823,093 1992-01-21

Publications (1)

Publication Number Publication Date
WO1993013718A1 true WO1993013718A1 (en) 1993-07-22

Family

ID=25237774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/008980 WO1993013718A1 (en) 1992-01-21 1992-10-27 Electrosurgical control for a trocar

Country Status (7)

Country Link
US (1) US5423809A (en)
EP (1) EP0623008A1 (en)
JP (1) JP2547520B2 (en)
KR (1) KR0145453B1 (en)
DE (1) DE9290164U1 (en)
TW (1) TW223013B (en)
WO (1) WO1993013718A1 (en)

Cited By (282)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003743A1 (en) * 1993-07-27 1995-02-09 Valleylab, Inc. Apparatus for esu leakage current control and relevant method
GB2266245B (en) * 1992-03-17 1996-02-07 Conmed Corp Electrosurgical trocar assembly
US5558671A (en) * 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5693051A (en) * 1993-07-22 1997-12-02 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device with adaptive electrodes
EP0815796A2 (en) * 1996-07-01 1998-01-07 Gebr. Berchtold GmbH & Co. Trocar for laparoscopic operations
WO1998027880A1 (en) * 1996-12-20 1998-07-02 Gyrus Medical Limited Electrosurgical generator and system for underwater operation
US5807393A (en) * 1992-12-22 1998-09-15 Ethicon Endo-Surgery, Inc. Surgical tissue treating device with locking mechanism
US5817093A (en) * 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US6261241B1 (en) 1998-03-03 2001-07-17 Senorx, Inc. Electrosurgical biopsy device and method
EP1157667A2 (en) * 2000-05-25 2001-11-28 Ethicon Endo-Surgery, Inc. Electrosurgical generator with RF leakage reduction
US6517498B1 (en) 1998-03-03 2003-02-11 Senorx, Inc. Apparatus and method for tissue capture
WO2008124643A1 (en) * 2007-04-05 2008-10-16 Velomedix, Inc. Device and method for safe access to a body cavity
US7981051B2 (en) 2005-08-05 2011-07-19 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
US8100880B2 (en) 2007-04-05 2012-01-24 Velomedix, Inc. Automated therapy system and method
US8113410B2 (en) 2008-02-14 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
US8141762B2 (en) 2009-10-09 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical stapler comprising a staple pocket
US8157153B2 (en) 2006-01-31 2012-04-17 Ethicon Endo-Surgery, Inc. Surgical instrument with force-feedback capabilities
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186560B2 (en) 2007-03-15 2012-05-29 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8196795B2 (en) 2008-02-14 2012-06-12 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8196796B2 (en) 2007-06-04 2012-06-12 Ethicon Endo-Surgery, Inc. Shaft based rotary drive system for surgical instruments
US8205781B2 (en) 2008-09-19 2012-06-26 Ethicon Endo-Surgery, Inc. Surgical stapler with apparatus for adjusting staple height
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US8317070B2 (en) 2005-08-31 2012-11-27 Ethicon Endo-Surgery, Inc. Surgical stapling devices that produce formed staples having different lengths
US8317725B2 (en) 2005-08-05 2012-11-27 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US8322589B2 (en) 2007-06-22 2012-12-04 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US8348131B2 (en) 2006-09-29 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US8353438B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid cap assembly configured for easy removal
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8371491B2 (en) 2008-02-15 2013-02-12 Ethicon Endo-Surgery, Inc. Surgical end effector having buttress retention features
US8393514B2 (en) 2010-09-30 2013-03-12 Ethicon Endo-Surgery, Inc. Selectively orientable implantable fastener cartridge
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8424740B2 (en) 2007-06-04 2013-04-23 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US8439960B2 (en) 2007-07-09 2013-05-14 Velomedix, Inc. Hypothermia devices and methods
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8464923B2 (en) 2005-08-31 2013-06-18 Ethicon Endo-Surgery, Inc. Surgical stapling devices for forming staples with different formed heights
US8479969B2 (en) 2007-01-10 2013-07-09 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8540129B2 (en) 2008-02-13 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8567656B2 (en) 2005-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8573461B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US8602288B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery. Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8616431B2 (en) 2007-06-04 2013-12-31 Ethicon Endo-Surgery, Inc. Shiftable drive interface for robotically-controlled surgical tool
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8631987B2 (en) 2006-08-02 2014-01-21 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8657176B2 (en) 2010-09-30 2014-02-25 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8672207B2 (en) 2010-07-30 2014-03-18 Ethicon Endo-Surgery, Inc. Transwall visualization arrangements and methods for surgical circular staplers
US8672884B2 (en) 2005-10-21 2014-03-18 Velomedix, Inc. Method and apparatus for peritoneal hypothermia and/or resuscitation
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8783541B2 (en) 2003-05-20 2014-07-22 Frederick E. Shelton, IV Robotically-controlled surgical end effector system
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8789739B2 (en) 2011-09-06 2014-07-29 Ethicon Endo-Surgery, Inc. Continuous stapling instrument
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US8789741B2 (en) 2010-09-24 2014-07-29 Ethicon Endo-Surgery, Inc. Surgical instrument with trigger assembly for generating multiple actuation motions
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US8844789B2 (en) 2006-01-31 2014-09-30 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
US8875972B2 (en) 2008-02-15 2014-11-04 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US8911437B2 (en) 2008-09-15 2014-12-16 Olympus Winter & Ibe Gmbh Medical technology device and medical technology device arrangement
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9028519B2 (en) 2008-09-23 2015-05-12 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9095325B2 (en) 2005-05-23 2015-08-04 Senorx, Inc. Tissue cutting member for a biopsy device
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9113874B2 (en) 2006-01-31 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument system
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9216012B2 (en) 1998-09-01 2015-12-22 Senorx, Inc Methods and apparatus for securing medical instruments to desired locations in a patient's body
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9282966B2 (en) 2004-07-28 2016-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9408592B2 (en) 2003-12-23 2016-08-09 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US9510809B2 (en) 1999-01-27 2016-12-06 Senorx, Inc. Tissue specimen isolating and damaging device and method
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9622670B2 (en) 2010-07-09 2017-04-18 Potrero Medical, Inc. Method and apparatus for pressure measurement
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
US10039529B2 (en) 2010-09-17 2018-08-07 Ethicon Llc Power control arrangements for surgical instruments and batteries
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10052102B2 (en) 2015-06-18 2018-08-21 Ethicon Llc Surgical end effectors with dual cam actuated jaw closing features
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10172619B2 (en) 2015-09-02 2019-01-08 Ethicon Llc Surgical staple driver arrays
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10231715B2 (en) 2003-02-24 2019-03-19 Senorx, Inc. Biopsy device with inner cutting member
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10499890B2 (en) 2006-01-31 2019-12-10 Ethicon Llc Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US10542979B2 (en) 2016-06-24 2020-01-28 Ethicon Llc Stamped staples and staple cartridges using the same
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US11446177B2 (en) 2005-10-21 2022-09-20 Theranova, Llc Method and apparatus for peritoneal oxygenation
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces

Families Citing this family (357)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330471A (en) * 1991-06-07 1994-07-19 Hemostatic Surgery Corporation Bi-polar electrosurgical endoscopic instruments and methods of use
US5599300A (en) * 1992-05-11 1997-02-04 Arrow Precision Products, Inc. Method for electrosurgically obtaining access to the biliary tree with an adjustably positionable needle-knife
US6770066B1 (en) 1992-05-11 2004-08-03 Ballard Medical Products Multi-lumen endoscopic catheter
US6346074B1 (en) * 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US6015406A (en) 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
CA2224975A1 (en) 1995-06-23 1997-01-09 Gyrus Medical Limited An electrosurgical instrument
DE69634014T2 (en) 1995-06-23 2006-03-02 Gyrus Medical Ltd. Electrosurgical device
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US5827271A (en) * 1995-09-19 1998-10-27 Valleylab Energy delivery system for vessel sealing
US6013076A (en) 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
GB2314274A (en) 1996-06-20 1997-12-24 Gyrus Medical Ltd Electrode construction for an electrosurgical instrument
US6565561B1 (en) 1996-06-20 2003-05-20 Cyrus Medical Limited Electrosurgical instrument
GB9612993D0 (en) 1996-06-20 1996-08-21 Gyrus Medical Ltd Electrosurgical instrument
US5893848A (en) * 1996-10-24 1999-04-13 Plc Medical Systems, Inc. Gauging system for monitoring channel depth in percutaneous endocardial revascularization
US5964732A (en) * 1997-02-07 1999-10-12 Abbeymoor Medical, Inc. Urethral apparatus with position indicator and methods of use thereof
US5921996A (en) * 1997-05-02 1999-07-13 Cardio Thoracic Systems, Inc. Surgical clamp applier/remover and detachable clamp
US5971967A (en) * 1997-08-19 1999-10-26 Abbeymoor Medical, Inc. Urethral device with anchoring system
US6344026B1 (en) * 1998-04-08 2002-02-05 Senorx, Inc. Tissue specimen encapsulation device and method thereof
US6162216A (en) * 1998-03-02 2000-12-19 Guziak; Robert Andrew Method for biopsy and ablation of tumor cells
GB9807303D0 (en) 1998-04-03 1998-06-03 Gyrus Medical Ltd An electrode assembly for an electrosurgical instrument
US6679882B1 (en) * 1998-06-22 2004-01-20 Lina Medical Aps Electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US8282573B2 (en) 2003-02-24 2012-10-09 Senorx, Inc. Biopsy device with selectable tissue receiving aperture orientation and site illumination
US6582427B1 (en) * 1999-03-05 2003-06-24 Gyrus Medical Limited Electrosurgery system
US6203541B1 (en) * 1999-04-23 2001-03-20 Sherwood Services Ag Automatic activation of electrosurgical generator bipolar output
US6267759B1 (en) 1999-06-22 2001-07-31 Senorx, Inc. Shaped scalpel
US6773432B1 (en) 1999-10-14 2004-08-10 Applied Medical Resources Corporation Electrosurgical snare
US6514248B1 (en) 1999-10-15 2003-02-04 Neothermia Corporation Accurate cutting about and into tissue volumes with electrosurgically deployed electrodes
US6287304B1 (en) 1999-10-15 2001-09-11 Neothermia Corporation Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes
US6471659B2 (en) 1999-12-27 2002-10-29 Neothermia Corporation Minimally invasive intact recovery of tissue
FR2802640B1 (en) 1999-12-17 2003-01-03 Pasteur Sanofi Diagnostics DEVICE AND METHOD FOR COLLECTING A BIOLOGICAL SAMPLE
US6277083B1 (en) 1999-12-27 2001-08-21 Neothermia Corporation Minimally invasive intact recovery of tissue
US6740079B1 (en) 2001-07-12 2004-05-25 Neothermia Corporation Electrosurgical generator
US7429258B2 (en) * 2001-10-26 2008-09-30 Massachusetts Institute Of Technology Microneedle transport device
DE60315970T2 (en) 2002-05-06 2008-05-21 Covidien Ag BLOOD DETECTOR FOR CHECKING AN ELECTROSURGICAL UNIT
DE10224153A1 (en) * 2002-05-27 2003-12-11 Celon Ag Medical Instruments therapy device
US7220260B2 (en) 2002-06-27 2007-05-22 Gyrus Medical Limited Electrosurgical system
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US7947040B2 (en) * 2003-01-21 2011-05-24 Baylis Medical Company Inc Method of surgical perforation via the delivery of energy
US9597146B2 (en) * 2003-01-21 2017-03-21 Baylis Medical Company Inc. Method of surgical perforation via the delivery of energy
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
AU2003284929B2 (en) 2003-10-23 2010-07-22 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
WO2005050151A1 (en) 2003-10-23 2005-06-02 Sherwood Services Ag Thermocouple measurement circuit
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
EP1699363B1 (en) * 2003-12-16 2014-03-12 Idexx Laboratories, Inc. Tissue sampling device
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
DE102004041681A1 (en) 2004-08-20 2006-02-23 Celon Ag Medical Instruments Device for the electrosurgical desquamation of body tissue
US7860137B2 (en) * 2004-10-01 2010-12-28 Finisar Corporation Vertical cavity surface emitting laser with undoped top mirror
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US20090204021A1 (en) * 2004-12-16 2009-08-13 Senorx, Inc. Apparatus and method for accessing a body site
US8343071B2 (en) * 2004-12-16 2013-01-01 Senorx, Inc. Biopsy device with aperture orientation and improved tip
DE102005025946A1 (en) * 2005-01-26 2006-08-03 Erbe Elektromedizin Gmbh High frequency surgical device for treating monopolar coagulation of biological tissue, has control unit controlling generator to supply voltage to target region and producing switching off signal if target input reaches final value
US20060173480A1 (en) * 2005-01-31 2006-08-03 Yi Zhang Safety penetrating method and apparatus into body cavities, organs, or potential spaces
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US9339323B2 (en) 2005-05-12 2016-05-17 Aesculap Ag Electrocautery method and apparatus
US8696662B2 (en) 2005-05-12 2014-04-15 Aesculap Ag Electrocautery method and apparatus
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US7972328B2 (en) 2006-01-24 2011-07-05 Covidien Ag System and method for tissue sealing
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
EP1839581A1 (en) * 2006-03-28 2007-10-03 VibraTech AB Anti-seeding arrangement
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US20210121227A1 (en) 2006-09-29 2021-04-29 Baylis Medical Company Inc. Connector system for electrosurgical device
US11666377B2 (en) 2006-09-29 2023-06-06 Boston Scientific Medical Device Limited Electrosurgical device
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8150505B2 (en) * 2007-05-03 2012-04-03 Path Scientific, Llc Method and apparatus for the formation of multiple microconduits
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
DE102009024612A1 (en) * 2009-06-10 2010-12-16 Erbe Elektromedizin Gmbh Supply device for providing an HF output voltage, HF surgery device with corresponding supply device and method for operating an HF generator unit
US8932282B2 (en) 2009-08-03 2015-01-13 Covidien Lp Power level transitioning in a surgical instrument
JP5836964B2 (en) 2009-11-05 2015-12-24 ニンバス・コンセプツ・エルエルシー Method and system for spinal radiofrequency nerve cutting
US8419727B2 (en) * 2010-03-26 2013-04-16 Aesculap Ag Impedance mediated power delivery for electrosurgery
US8827992B2 (en) * 2010-03-26 2014-09-09 Aesculap Ag Impedance mediated control of power delivery for electrosurgery
EP2571439B1 (en) 2010-05-21 2020-06-24 Stratus Medical, LLC Systems for tissue ablation
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
WO2013179103A1 (en) 2012-05-31 2013-12-05 Baylis Medical Inc. Radiofrequency perforation apparatus
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
KR101436131B1 (en) * 2012-07-18 2014-09-23 메덱스테크놀로지 주식회사 High-frequency surgical liposuction cannulas
US9364277B2 (en) 2012-12-13 2016-06-14 Cook Medical Technologies Llc RF energy controller and method for electrosurgical medical devices
US9204921B2 (en) 2012-12-13 2015-12-08 Cook Medical Technologies Llc RF energy controller and method for electrosurgical medical devices
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US20140171986A1 (en) 2013-09-13 2014-06-19 Ethicon Endo-Surgery, Inc. Surgical Clip Having Comliant Portion
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
CN108348233B (en) 2015-08-26 2021-05-07 伊西康有限责任公司 Surgical staple strip for allowing changing staple characteristics and achieving easy cartridge loading
MX2022006191A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10779883B2 (en) 2015-09-09 2020-09-22 Baylis Medical Company Inc. Epicardial access system and methods
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
JP6911054B2 (en) 2016-02-09 2021-07-28 エシコン エルエルシーEthicon LLC Surgical instruments with asymmetric joint composition
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
JP6957532B2 (en) 2016-06-24 2021-11-02 エシコン エルエルシーEthicon LLC Staple cartridges including wire staples and punched staples
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US20180168647A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments having end effectors with positive opening features
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
JP2020501779A (en) 2016-12-21 2020-01-23 エシコン エルエルシーEthicon LLC Surgical stapling system
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US20190000461A1 (en) 2017-06-28 2019-01-03 Ethicon Llc Surgical cutting and fastening devices with pivotable anvil with a tissue locating arrangement in close proximity to an anvil pivot axis
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
EP3579909B1 (en) 2017-12-05 2020-09-09 Pedersen, Wesley Robert Transseptal guide wire puncture system
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11759190B2 (en) 2019-10-18 2023-09-19 Boston Scientific Medical Device Limited Lock for medical devices, and related systems and methods
US11801087B2 (en) 2019-11-13 2023-10-31 Boston Scientific Medical Device Limited Apparatus and methods for puncturing tissue
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11724070B2 (en) 2019-12-19 2023-08-15 Boston Scientific Medical Device Limited Methods for determining a position of a first medical device with respect to a second medical device, and related systems and medical devices
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11819243B2 (en) 2020-03-19 2023-11-21 Boston Scientific Medical Device Limited Medical sheath and related systems and methods
US11826075B2 (en) 2020-04-07 2023-11-28 Boston Scientific Medical Device Limited Elongated medical assembly
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
KR102591845B1 (en) 2020-06-17 2023-10-19 보스턴 사이언티픽 메디칼 디바이스 리미티드 Electroanatomical mapping system
US20220031351A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US20220378424A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a firing lockout
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3601126A (en) * 1969-01-08 1971-08-24 Electro Medical Systems Inc High frequency electrosurgical apparatus
US4416277A (en) * 1981-11-03 1983-11-22 Valleylab, Inc. Return electrode monitoring system for use during electrosurgical activation
US4494541A (en) * 1980-01-17 1985-01-22 Medical Plastics, Inc. Electrosurgery safety monitor
US4651280A (en) * 1983-05-24 1987-03-17 Chang Sien S Electrosurgical control system using tissue conductivity
DE3824913A1 (en) * 1988-07-22 1990-02-01 Thomas Hill Device for monitoring high-frequency (radio-frequency) electric leakage currents

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308544A (en) * 1988-06-06 1989-12-13 Sumitomo Electric Ind Ltd Body cavity laser operation apparatus
US5273524A (en) * 1991-10-09 1993-12-28 Ethicon, Inc. Electrosurgical device
US5300070A (en) * 1992-03-17 1994-04-05 Conmed Corporation Electrosurgical trocar assembly with bi-polar electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3601126A (en) * 1969-01-08 1971-08-24 Electro Medical Systems Inc High frequency electrosurgical apparatus
US4494541A (en) * 1980-01-17 1985-01-22 Medical Plastics, Inc. Electrosurgery safety monitor
US4416277A (en) * 1981-11-03 1983-11-22 Valleylab, Inc. Return electrode monitoring system for use during electrosurgical activation
US4651280A (en) * 1983-05-24 1987-03-17 Chang Sien S Electrosurgical control system using tissue conductivity
DE3824913A1 (en) * 1988-07-22 1990-02-01 Thomas Hill Device for monitoring high-frequency (radio-frequency) electric leakage currents

Cited By (821)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2266245B (en) * 1992-03-17 1996-02-07 Conmed Corp Electrosurgical trocar assembly
US5807393A (en) * 1992-12-22 1998-09-15 Ethicon Endo-Surgery, Inc. Surgical tissue treating device with locking mechanism
US5558671A (en) * 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5693051A (en) * 1993-07-22 1997-12-02 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device with adaptive electrodes
US5817093A (en) * 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
WO1995003743A1 (en) * 1993-07-27 1995-02-09 Valleylab, Inc. Apparatus for esu leakage current control and relevant method
US5925044A (en) * 1996-07-01 1999-07-20 Gebrueder Berchtold Gmbh & Co. Trocar for laparoscopic operations
EP0815796A2 (en) * 1996-07-01 1998-01-07 Gebr. Berchtold GmbH & Co. Trocar for laparoscopic operations
EP0815796A3 (en) * 1996-07-01 1998-03-11 Gebr. Berchtold GmbH & Co. Trocar for laparoscopic operations
AU731415B2 (en) * 1996-12-20 2001-03-29 Gyrus Medical Limited Electrosurgical generator and system for underwater operation
WO1998027880A1 (en) * 1996-12-20 1998-07-02 Gyrus Medical Limited Electrosurgical generator and system for underwater operation
US6261241B1 (en) 1998-03-03 2001-07-17 Senorx, Inc. Electrosurgical biopsy device and method
US6517498B1 (en) 1998-03-03 2003-02-11 Senorx, Inc. Apparatus and method for tissue capture
US6689071B2 (en) 1998-03-03 2004-02-10 Senorx, Inc. Electrosurgical biopsy device and method
US7625347B2 (en) 1998-03-03 2009-12-01 Senorx, Inc. Electrosurgical biopsy device and method
US9216012B2 (en) 1998-09-01 2015-12-22 Senorx, Inc Methods and apparatus for securing medical instruments to desired locations in a patient's body
US9510809B2 (en) 1999-01-27 2016-12-06 Senorx, Inc. Tissue specimen isolating and damaging device and method
EP1157667A2 (en) * 2000-05-25 2001-11-28 Ethicon Endo-Surgery, Inc. Electrosurgical generator with RF leakage reduction
EP1157667A3 (en) * 2000-05-25 2003-07-02 Ethicon Endo-Surgery, Inc. Electrosurgical generator with RF leakage reduction
US10231715B2 (en) 2003-02-24 2019-03-19 Senorx, Inc. Biopsy device with inner cutting member
US10335127B2 (en) 2003-02-24 2019-07-02 Senorx, Inc. Biopsy device with selectable tissue receiving aperature orientation and site illumination
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US8783541B2 (en) 2003-05-20 2014-07-22 Frederick E. Shelton, IV Robotically-controlled surgical end effector system
US9408592B2 (en) 2003-12-23 2016-08-09 Senorx, Inc. Biopsy device with aperture orientation and improved tip
US10485547B2 (en) 2004-07-28 2019-11-26 Ethicon Llc Surgical staple cartridges
US9282966B2 (en) 2004-07-28 2016-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US9737303B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US9737302B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Surgical stapling instrument having a restraining member
US9844379B2 (en) 2004-07-28 2017-12-19 Ethicon Llc Surgical stapling instrument having a clearanced opening
US10278702B2 (en) 2004-07-28 2019-05-07 Ethicon Llc Stapling system comprising a firing bar and a lockout
US10314590B2 (en) 2004-07-28 2019-06-11 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9603991B2 (en) 2004-07-28 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling instrument having a medical substance dispenser
US10292707B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Articulating surgical stapling instrument incorporating a firing mechanism
US9585663B2 (en) 2004-07-28 2017-03-07 Ethicon Endo-Surgery, Llc Surgical stapling instrument configured to apply a compressive pressure to tissue
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US9510830B2 (en) 2004-07-28 2016-12-06 Ethicon Endo-Surgery, Llc Staple cartridge
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US10383634B2 (en) 2004-07-28 2019-08-20 Ethicon Llc Stapling system incorporating a firing lockout
US8517244B2 (en) 2004-07-28 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US9750487B2 (en) 2005-05-23 2017-09-05 Senorx, Inc. Tissue cutting member for a biopsy device
US11426149B2 (en) 2005-05-23 2022-08-30 SenoRx., Inc. Tissue cutting member for a biopsy device
US9095325B2 (en) 2005-05-23 2015-08-04 Senorx, Inc. Tissue cutting member for a biopsy device
US10478161B2 (en) 2005-05-23 2019-11-19 Senorx, Inc. Tissue cutting member for a biopsy device
US8915864B2 (en) 2005-08-05 2014-12-23 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US8317725B2 (en) 2005-08-05 2012-11-27 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US10064609B2 (en) 2005-08-05 2018-09-04 Senorx, Inc. Method of collecting one or more tissue specimens
US10874381B2 (en) 2005-08-05 2020-12-29 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US7981051B2 (en) 2005-08-05 2011-07-19 Senorx, Inc. Biopsy device with fluid delivery to tissue specimens
US9561032B2 (en) 2005-08-31 2017-02-07 Ethicon Endo-Surgery, Llc Staple cartridge comprising a staple driver arrangement
US9848873B2 (en) 2005-08-31 2017-12-26 Ethicon Llc Fastener cartridge assembly comprising a driver and staple cavity arrangement
US10842488B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10842489B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10245035B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Stapling assembly configured to produce different formed staple heights
US10321909B2 (en) 2005-08-31 2019-06-18 Ethicon Llc Staple cartridge comprising a staple including deformable members
US10869664B2 (en) 2005-08-31 2020-12-22 Ethicon Llc End effector for use with a surgical stapling instrument
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10729436B2 (en) 2005-08-31 2020-08-04 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10932774B2 (en) 2005-08-31 2021-03-02 Ethicon Llc Surgical end effector for forming staples to different heights
US10463369B2 (en) 2005-08-31 2019-11-05 Ethicon Llc Disposable end effector for use with a surgical instrument
US8636187B2 (en) 2005-08-31 2014-01-28 Ethicon Endo-Surgery, Inc. Surgical stapling systems that produce formed staples having different lengths
US10271845B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10070863B2 (en) 2005-08-31 2018-09-11 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil
US9839427B2 (en) 2005-08-31 2017-12-12 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
US8317070B2 (en) 2005-08-31 2012-11-27 Ethicon Endo-Surgery, Inc. Surgical stapling devices that produce formed staples having different lengths
US10420553B2 (en) 2005-08-31 2019-09-24 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US8464923B2 (en) 2005-08-31 2013-06-18 Ethicon Endo-Surgery, Inc. Surgical stapling devices for forming staples with different formed heights
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US8567656B2 (en) 2005-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10278697B2 (en) 2005-08-31 2019-05-07 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US9844373B2 (en) 2005-08-31 2017-12-19 Ethicon Llc Fastener cartridge assembly comprising a driver row arrangement
US11446177B2 (en) 2005-10-21 2022-09-20 Theranova, Llc Method and apparatus for peritoneal oxygenation
US8672884B2 (en) 2005-10-21 2014-03-18 Velomedix, Inc. Method and apparatus for peritoneal hypothermia and/or resuscitation
US9968356B2 (en) 2005-11-09 2018-05-15 Ethicon Llc Surgical instrument drive systems
US10028742B2 (en) 2005-11-09 2018-07-24 Ethicon Llc Staple cartridge comprising staples with different unformed heights
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US10149679B2 (en) 2005-11-09 2018-12-11 Ethicon Llc Surgical instrument comprising drive systems
US10052099B2 (en) 2006-01-31 2018-08-21 Ethicon Llc Surgical instrument system comprising a firing system including a rotatable shaft and first and second actuation ramps
US11051811B2 (en) 2006-01-31 2021-07-06 Ethicon Llc End effector for use with a surgical instrument
US8844789B2 (en) 2006-01-31 2014-09-30 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US10342533B2 (en) 2006-01-31 2019-07-09 Ethicon Llc Surgical instrument
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US8292155B2 (en) 2006-01-31 2012-10-23 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9113874B2 (en) 2006-01-31 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument system
US10098636B2 (en) 2006-01-31 2018-10-16 Ethicon Llc Surgical instrument having force feedback capabilities
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10653417B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US9320520B2 (en) 2006-01-31 2016-04-26 Ethicon Endo-Surgery, Inc. Surgical instrument system
US10058963B2 (en) 2006-01-31 2018-08-28 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US10335144B2 (en) 2006-01-31 2019-07-02 Ethicon Llc Surgical instrument
US10052100B2 (en) 2006-01-31 2018-08-21 Ethicon Llc Surgical instrument system configured to detect resistive forces experienced by a tissue cutting implement
US9451958B2 (en) 2006-01-31 2016-09-27 Ethicon Endo-Surgery, Llc Surgical instrument with firing actuator lockout
US9326769B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US8172124B2 (en) 2006-01-31 2012-05-08 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11058420B2 (en) 2006-01-31 2021-07-13 Cilag Gmbh International Surgical stapling apparatus comprising a lockout system
US9517068B2 (en) 2006-01-31 2016-12-13 Ethicon Endo-Surgery, Llc Surgical instrument with automatically-returned firing member
US10893853B2 (en) 2006-01-31 2021-01-19 Ethicon Llc Stapling assembly including motor drive systems
US8167185B2 (en) 2006-01-31 2012-05-01 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US10993717B2 (en) 2006-01-31 2021-05-04 Ethicon Llc Surgical stapling system comprising a control system
US10278722B2 (en) 2006-01-31 2019-05-07 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US9326770B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US10463383B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling instrument including a sensing system
US8820605B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instruments
US10463384B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling assembly
US9439649B2 (en) 2006-01-31 2016-09-13 Ethicon Endo-Surgery, Llc Surgical instrument having force feedback capabilities
US10010322B2 (en) 2006-01-31 2018-07-03 Ethicon Llc Surgical instrument
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
US8746529B2 (en) 2006-01-31 2014-06-10 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US8157153B2 (en) 2006-01-31 2012-04-17 Ethicon Endo-Surgery, Inc. Surgical instrument with force-feedback capabilities
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US8752747B2 (en) 2006-01-31 2014-06-17 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US10299817B2 (en) 2006-01-31 2019-05-28 Ethicon Llc Motor-driven fastening assembly
US10499890B2 (en) 2006-01-31 2019-12-10 Ethicon Llc Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US9149274B2 (en) 2006-03-23 2015-10-06 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US10070861B2 (en) 2006-03-23 2018-09-11 Ethicon Llc Articulatable surgical device
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US9402626B2 (en) 2006-03-23 2016-08-02 Ethicon Endo-Surgery, Llc Rotary actuatable surgical fastener and cutter
US9492167B2 (en) 2006-03-23 2016-11-15 Ethicon Endo-Surgery, Llc Articulatable surgical device with rotary driven cutting member
US9301759B2 (en) 2006-03-23 2016-04-05 Ethicon Endo-Surgery, Llc Robotically-controlled surgical instrument with selectively articulatable end effector
US10213262B2 (en) 2006-03-23 2019-02-26 Ethicon Llc Manipulatable surgical systems with selectively articulatable fastening device
US10064688B2 (en) 2006-03-23 2018-09-04 Ethicon Llc Surgical system with selectively articulatable end effector
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
US10420560B2 (en) 2006-06-27 2019-09-24 Ethicon Llc Manually driven surgical cutting and fastening instrument
US9320521B2 (en) 2006-06-27 2016-04-26 Ethicon Endo-Surgery, Llc Surgical instrument
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US8631987B2 (en) 2006-08-02 2014-01-21 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US8499993B2 (en) 2006-09-29 2013-08-06 Ethicon Endo-Surgery, Inc. Surgical staple cartridge
US10595862B2 (en) 2006-09-29 2020-03-24 Ethicon Llc Staple cartridge including a compressible member
US8348131B2 (en) 2006-09-29 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US8763875B2 (en) 2006-09-29 2014-07-01 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US9179911B2 (en) 2006-09-29 2015-11-10 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US11406379B2 (en) 2006-09-29 2022-08-09 Cilag Gmbh International Surgical end effectors with staple cartridges
US10695053B2 (en) 2006-09-29 2020-06-30 Ethicon Llc Surgical end effectors with staple cartridges
US9603595B2 (en) 2006-09-29 2017-03-28 Ethicon Endo-Surgery, Llc Surgical instrument comprising an adjustable system configured to accommodate different jaw heights
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US8973804B2 (en) 2006-09-29 2015-03-10 Ethicon Endo-Surgery, Inc. Cartridge assembly having a buttressing member
US9408604B2 (en) 2006-09-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instrument comprising a firing system including a compliant portion
US8365976B2 (en) 2006-09-29 2013-02-05 Ethicon Endo-Surgery, Inc. Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US8360297B2 (en) 2006-09-29 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling instrument with self adjusting anvil
US8899465B2 (en) 2006-09-29 2014-12-02 Ethicon Endo-Surgery, Inc. Staple cartridge comprising drivers for deploying a plurality of staples
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US9706991B2 (en) 2006-09-29 2017-07-18 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples including a lateral base
US10448952B2 (en) 2006-09-29 2019-10-22 Ethicon Llc End effector for use with a surgical fastening instrument
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US10342541B2 (en) 2006-10-03 2019-07-09 Ethicon Llc Surgical instruments with E-beam driver and rotary drive arrangements
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US9757123B2 (en) 2007-01-10 2017-09-12 Ethicon Llc Powered surgical instrument having a transmission system
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US8479969B2 (en) 2007-01-10 2013-07-09 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US8517243B2 (en) 2007-01-10 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US11064998B2 (en) 2007-01-10 2021-07-20 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US10751138B2 (en) 2007-01-10 2020-08-25 Ethicon Llc Surgical instrument for use with a robotic system
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US10433918B2 (en) 2007-01-10 2019-10-08 Ethicon Llc Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US10441369B2 (en) 2007-01-10 2019-10-15 Ethicon Llc Articulatable surgical instrument configured for detachable use with a robotic system
US10517682B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US11006951B2 (en) 2007-01-10 2021-05-18 Ethicon Llc Surgical instrument with wireless communication between control unit and sensor transponders
US11000277B2 (en) 2007-01-10 2021-05-11 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8746530B2 (en) 2007-01-10 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US9675355B2 (en) 2007-01-11 2017-06-13 Ethicon Llc Surgical stapling device with a curved end effector
US10912575B2 (en) 2007-01-11 2021-02-09 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US9999431B2 (en) 2007-01-11 2018-06-19 Ethicon Endo-Surgery, Llc Surgical stapling device having supports for a flexible drive mechanism
US9730692B2 (en) 2007-01-11 2017-08-15 Ethicon Llc Surgical stapling device with a curved staple cartridge
US9655624B2 (en) 2007-01-11 2017-05-23 Ethicon Llc Surgical stapling device with a curved end effector
US9775613B2 (en) 2007-01-11 2017-10-03 Ethicon Llc Surgical stapling device with a curved end effector
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US9724091B2 (en) 2007-01-11 2017-08-08 Ethicon Llc Surgical stapling device
US9750501B2 (en) 2007-01-11 2017-09-05 Ethicon Endo-Surgery, Llc Surgical stapling devices having laterally movable anvils
US9700321B2 (en) 2007-01-11 2017-07-11 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US9603598B2 (en) 2007-01-11 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling device with a curved end effector
US9757130B2 (en) 2007-02-28 2017-09-12 Ethicon Llc Stapling assembly for forming different formed staple heights
US8590762B2 (en) 2007-03-15 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US9872682B2 (en) 2007-03-15 2018-01-23 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US8672208B2 (en) 2007-03-15 2014-03-18 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a releasable buttress material
US9289206B2 (en) 2007-03-15 2016-03-22 Ethicon Endo-Surgery, Llc Lateral securement members for surgical staple cartridges
US8991676B2 (en) 2007-03-15 2015-03-31 Ethicon Endo-Surgery, Inc. Surgical staple having a slidable crown
US8925788B2 (en) 2007-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. End effectors for surgical stapling instruments
US8186560B2 (en) 2007-03-15 2012-05-29 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US8668130B2 (en) 2007-03-15 2014-03-11 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US8480648B2 (en) 2007-04-05 2013-07-09 Velomedix, Inc. Automated therapy system and method
US8100880B2 (en) 2007-04-05 2012-01-24 Velomedix, Inc. Automated therapy system and method
WO2008124643A1 (en) * 2007-04-05 2008-10-16 Velomedix, Inc. Device and method for safe access to a body cavity
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US9987003B2 (en) 2007-06-04 2018-06-05 Ethicon Llc Robotic actuator assembly
US9186143B2 (en) 2007-06-04 2015-11-17 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US10327765B2 (en) 2007-06-04 2019-06-25 Ethicon Llc Drive systems for surgical instruments
US9750498B2 (en) 2007-06-04 2017-09-05 Ethicon Endo Surgery, Llc Drive systems for surgical instruments
US10368863B2 (en) 2007-06-04 2019-08-06 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US10441280B2 (en) 2007-06-04 2019-10-15 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US8616431B2 (en) 2007-06-04 2013-12-31 Ethicon Endo-Surgery, Inc. Shiftable drive interface for robotically-controlled surgical tool
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US10363033B2 (en) 2007-06-04 2019-07-30 Ethicon Llc Robotically-controlled surgical instruments
US9795381B2 (en) 2007-06-04 2017-10-24 Ethicon Endo-Surgery, Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8196796B2 (en) 2007-06-04 2012-06-12 Ethicon Endo-Surgery, Inc. Shaft based rotary drive system for surgical instruments
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US8424740B2 (en) 2007-06-04 2013-04-23 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US9585658B2 (en) 2007-06-04 2017-03-07 Ethicon Endo-Surgery, Llc Stapling systems
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US8353437B2 (en) 2007-06-22 2013-01-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a geared return mechanism
US8333313B2 (en) 2007-06-22 2012-12-18 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a firing member return mechanism
US8322589B2 (en) 2007-06-22 2012-12-04 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US9138225B2 (en) 2007-06-22 2015-09-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US9662110B2 (en) 2007-06-22 2017-05-30 Ethicon Endo-Surgery, Llc Surgical stapling instrument with an articulatable end effector
US8439960B2 (en) 2007-07-09 2013-05-14 Velomedix, Inc. Hypothermia devices and methods
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US10765424B2 (en) 2008-02-13 2020-09-08 Ethicon Llc Surgical stapling instrument
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8540129B2 (en) 2008-02-13 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US9687231B2 (en) 2008-02-13 2017-06-27 Ethicon Llc Surgical stapling instrument
US9901344B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US8998058B2 (en) 2008-02-14 2015-04-07 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US8991677B2 (en) 2008-02-14 2015-03-31 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US10265067B2 (en) 2008-02-14 2019-04-23 Ethicon Llc Surgical instrument including a regulator and a control system
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8113410B2 (en) 2008-02-14 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
US8657178B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US8196795B2 (en) 2008-02-14 2012-06-12 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US9211121B2 (en) 2008-02-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US10779822B2 (en) 2008-02-14 2020-09-22 Ethicon Llc System including a surgical cutting and fastening instrument
US9072515B2 (en) 2008-02-14 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US10238387B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument comprising a control system
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US10238385B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument system for evaluating tissue impedance
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US9084601B2 (en) 2008-02-14 2015-07-21 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US9867618B2 (en) 2008-02-14 2018-01-16 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9872684B2 (en) 2008-02-14 2018-01-23 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9095339B2 (en) 2008-02-14 2015-08-04 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10004505B2 (en) 2008-02-14 2018-06-26 Ethicon Llc Detachable motor powered surgical instrument
US9877723B2 (en) 2008-02-14 2018-01-30 Ethicon Llc Surgical stapling assembly comprising a selector arrangement
US9498219B2 (en) 2008-02-14 2016-11-22 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US9901345B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US9901346B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US8573461B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US9962158B2 (en) 2008-02-14 2018-05-08 Ethicon Llc Surgical stapling apparatuses with lockable end effector positioning systems
US9980729B2 (en) 2008-02-14 2018-05-29 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US9999426B2 (en) 2008-02-14 2018-06-19 Ethicon Llc Detachable motor powered surgical instrument
US8540130B2 (en) 2008-02-14 2013-09-24 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US10470763B2 (en) 2008-02-14 2019-11-12 Ethicon Llc Surgical cutting and fastening instrument including a sensing system
US9839429B2 (en) 2008-02-15 2017-12-12 Ethicon Endo-Surgery, Llc Stapling system comprising a lockout
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US9913647B2 (en) 2008-02-15 2018-03-13 Ethicon Llc Disposable loading unit for use with a surgical instrument
US8371491B2 (en) 2008-02-15 2013-02-12 Ethicon Endo-Surgery, Inc. Surgical end effector having buttress retention features
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8875972B2 (en) 2008-02-15 2014-11-04 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US11058418B2 (en) 2008-02-15 2021-07-13 Cilag Gmbh International Surgical end effector having buttress retention features
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US10058327B2 (en) 2008-02-15 2018-08-28 Ethicon Llc End effector coupling arrangements for a surgical cutting and stapling instrument
US10856866B2 (en) 2008-02-15 2020-12-08 Ethicon Llc Surgical end effector having buttress retention features
US8911437B2 (en) 2008-09-15 2014-12-16 Olympus Winter & Ibe Gmbh Medical technology device and medical technology device arrangement
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
US8205781B2 (en) 2008-09-19 2012-06-26 Ethicon Endo-Surgery, Inc. Surgical stapler with apparatus for adjusting staple height
US10258336B2 (en) 2008-09-19 2019-04-16 Ethicon Llc Stapling system configured to produce different formed staple heights
US9289210B2 (en) 2008-09-19 2016-03-22 Ethicon Endo-Surgery, Llc Surgical stapler with apparatus for adjusting staple height
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US9326771B2 (en) 2008-09-19 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridge
US9655614B2 (en) 2008-09-23 2017-05-23 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument with an end effector
US10130361B2 (en) 2008-09-23 2018-11-20 Ethicon Llc Robotically-controller motorized surgical tool with an end effector
US10238389B2 (en) 2008-09-23 2019-03-26 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US11617575B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US8602287B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery, Inc. Motor driven surgical cutting instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8602288B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery. Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US9549732B2 (en) 2008-09-23 2017-01-24 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting instrument
US10105136B2 (en) 2008-09-23 2018-10-23 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10045778B2 (en) 2008-09-23 2018-08-14 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US10485537B2 (en) 2008-09-23 2019-11-26 Ethicon Llc Motorized surgical instrument
US9028519B2 (en) 2008-09-23 2015-05-12 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US10456133B2 (en) 2008-09-23 2019-10-29 Ethicon Llc Motorized surgical instrument
US10898184B2 (en) 2008-09-23 2021-01-26 Ethicon Llc Motor-driven surgical cutting instrument
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10149683B2 (en) 2008-10-10 2018-12-11 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10758233B2 (en) 2009-02-05 2020-09-01 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
US8141762B2 (en) 2009-10-09 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical stapler comprising a staple pocket
US8348129B2 (en) 2009-10-09 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapler having a closure mechanism
US8622275B2 (en) 2009-11-19 2014-01-07 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid distal end portion
US8353438B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid cap assembly configured for easy removal
US8899466B2 (en) 2009-11-19 2014-12-02 Ethicon Endo-Surgery, Inc. Devices and methods for introducing a surgical circular stapling instrument into a patient
US8353439B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
US8453914B2 (en) 2009-12-24 2013-06-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US9675372B2 (en) 2009-12-24 2017-06-13 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US9307987B2 (en) 2009-12-24 2016-04-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument that analyzes tissue thickness
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US9585660B2 (en) 2010-01-07 2017-03-07 Ethicon Endo-Surgery, Llc Method for testing a surgical tool
US9931044B2 (en) 2010-07-09 2018-04-03 Potrero Medical, Inc. Method and apparatus for pressure measurement
US10758135B2 (en) 2010-07-09 2020-09-01 Potrero Medical, Inc. Method and apparatus for pressure measurement
US9622670B2 (en) 2010-07-09 2017-04-18 Potrero Medical, Inc. Method and apparatus for pressure measurement
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US9597075B2 (en) 2010-07-30 2017-03-21 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8672207B2 (en) 2010-07-30 2014-03-18 Ethicon Endo-Surgery, Inc. Transwall visualization arrangements and methods for surgical circular staplers
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8801734B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Circular stapling instruments with secondary cutting arrangements and methods of using same
US8801735B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical circular stapler with tissue retention arrangements
US10470770B2 (en) 2010-07-30 2019-11-12 Ethicon Llc Circular surgical fastening devices with tissue acquisition arrangements
US9232945B2 (en) 2010-09-09 2016-01-12 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8794497B2 (en) 2010-09-09 2014-08-05 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US10675035B2 (en) 2010-09-09 2020-06-09 Ethicon Llc Surgical stapling head assembly with firing lockout for a surgical stapler
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US10188393B2 (en) 2010-09-17 2019-01-29 Ethicon Llc Surgical instrument battery comprising a plurality of cells
US10595835B2 (en) 2010-09-17 2020-03-24 Ethicon Llc Surgical instrument comprising a removable battery
US10492787B2 (en) 2010-09-17 2019-12-03 Ethicon Llc Orientable battery for a surgical instrument
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US10039529B2 (en) 2010-09-17 2018-08-07 Ethicon Llc Power control arrangements for surgical instruments and batteries
US8789741B2 (en) 2010-09-24 2014-07-29 Ethicon Endo-Surgery, Inc. Surgical instrument with trigger assembly for generating multiple actuation motions
US10130363B2 (en) 2010-09-29 2018-11-20 Ethicon Llc Staple cartridge
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9131940B2 (en) 2010-09-29 2015-09-15 Ethicon Endo-Surgery, Inc. Staple cartridge
US9113862B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a variable staple forming system
US8474677B2 (en) 2010-09-30 2013-07-02 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and a cover
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US10265072B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Surgical stapling system comprising an end effector including an implantable layer
US8978956B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Jaw closure arrangements for surgical instruments
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US10258330B2 (en) 2010-09-30 2019-04-16 Ethicon Llc End effector including an implantable arrangement
US10258332B2 (en) 2010-09-30 2019-04-16 Ethicon Llc Stapling system comprising an adjunct and a flowable adhesive
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US8925782B2 (en) 2010-09-30 2015-01-06 Ethicon Endo-Surgery, Inc. Implantable fastener cartridge comprising multiple layers
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9044228B2 (en) 2010-09-30 2015-06-02 Ethicon Endo-Surgery, Inc. Fastener system comprising a plurality of fastener cartridges
US9795383B2 (en) 2010-09-30 2017-10-24 Ethicon Llc Tissue thickness compensator comprising resilient members
US9044227B2 (en) 2010-09-30 2015-06-02 Ethicon Endo-Surgery, Inc. Collapsible fastener cartridge
US9295464B2 (en) 2010-09-30 2016-03-29 Ethicon Endo-Surgery, Inc. Surgical stapler anvil comprising a plurality of forming pockets
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9301755B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Compressible staple cartridge assembly
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9801634B2 (en) 2010-09-30 2017-10-31 Ethicon Llc Tissue thickness compensator for a surgical stapler
US9808247B2 (en) 2010-09-30 2017-11-07 Ethicon Llc Stapling system comprising implantable layers
US8864007B2 (en) 2010-09-30 2014-10-21 Ethicon Endo-Surgery, Inc. Implantable fastener cartridge having a non-uniform arrangement
US9307965B2 (en) 2010-09-30 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-microbial agent
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US8864009B2 (en) 2010-09-30 2014-10-21 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9320518B2 (en) 2010-09-30 2016-04-26 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an oxygen generating agent
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9833236B2 (en) 2010-09-30 2017-12-05 Ethicon Llc Tissue thickness compensator for surgical staplers
US10213198B2 (en) 2010-09-30 2019-02-26 Ethicon Llc Actuator for releasing a tissue thickness compensator from a fastener cartridge
US9833238B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Retainer assembly including a tissue thickness compensator
US9833242B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Tissue thickness compensators
US8857694B2 (en) 2010-09-30 2014-10-14 Ethicon Endo-Surgery, Inc. Staple cartridge loading assembly
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US8393514B2 (en) 2010-09-30 2013-03-12 Ethicon Endo-Surgery, Inc. Selectively orientable implantable fastener cartridge
US10335150B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge comprising an implantable layer
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US8840003B2 (en) 2010-09-30 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with compact articulation control arrangement
US10335148B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge including a tissue thickness compensator for a surgical stapler
US10194910B2 (en) 2010-09-30 2019-02-05 Ethicon Llc Stapling assemblies comprising a layer
US8814024B2 (en) 2010-09-30 2014-08-26 Ethicon Endo-Surgery, Inc. Fastener system comprising a plurality of connected retention matrix elements
US9345477B2 (en) 2010-09-30 2016-05-24 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US9844372B2 (en) 2010-09-30 2017-12-19 Ethicon Llc Retainer assembly including a tissue thickness compensator
US9848875B2 (en) 2010-09-30 2017-12-26 Ethicon Llc Anvil layer attached to a proximal end of an end effector
US10182819B2 (en) 2010-09-30 2019-01-22 Ethicon Llc Implantable layer assemblies
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US8529600B2 (en) 2010-09-30 2013-09-10 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US10149682B2 (en) 2010-09-30 2018-12-11 Ethicon Llc Stapling system including an actuation system
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
US9883861B2 (en) 2010-09-30 2018-02-06 Ethicon Llc Retainer assembly including a tissue thickness compensator
US10398436B2 (en) 2010-09-30 2019-09-03 Ethicon Llc Staple cartridge comprising staples positioned within a compressible portion thereof
US10136890B2 (en) 2010-09-30 2018-11-27 Ethicon Llc Staple cartridge comprising a variable thickness compressible portion
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US10405854B2 (en) 2010-09-30 2019-09-10 Ethicon Llc Surgical stapling cartridge with layer retention features
US9113864B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instruments with separate and distinct fastener deployment and tissue cutting systems
US10123798B2 (en) 2010-09-30 2018-11-13 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9480476B2 (en) 2010-09-30 2016-11-01 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising resilient members
US10064624B2 (en) 2010-09-30 2018-09-04 Ethicon Llc End effector with implantable layer
US9168038B2 (en) 2010-09-30 2015-10-27 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a tissue thickness compensator
US8657176B2 (en) 2010-09-30 2014-02-25 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler
US9566061B2 (en) 2010-09-30 2017-02-14 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasably attached tissue thickness compensator
US9572574B2 (en) 2010-09-30 2017-02-21 Ethicon Endo-Surgery, Llc Tissue thickness compensators comprising therapeutic agents
US9924947B2 (en) 2010-09-30 2018-03-27 Ethicon Llc Staple cartridge comprising a compressible portion
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US8783542B2 (en) 2010-09-30 2014-07-22 Ethicon Endo-Surgery, Inc. Fasteners supported by a fastener cartridge support
US8777004B2 (en) 2010-09-30 2014-07-15 Ethicon Endo-Surgery, Inc. Compressible staple cartridge comprising alignment members
US10028743B2 (en) 2010-09-30 2018-07-24 Ethicon Llc Staple cartridge assembly comprising an implantable layer
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US8740038B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a releasable portion
US8763877B2 (en) 2010-09-30 2014-07-01 Ethicon Endo-Surgery, Inc. Surgical instruments with reconfigurable shaft segments
US8752699B2 (en) 2010-09-30 2014-06-17 Ethicon Endo-Surgery, Inc. Implantable fastener cartridge comprising bioabsorbable layers
US8757465B2 (en) 2010-09-30 2014-06-24 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US10485536B2 (en) 2010-09-30 2019-11-26 Ethicon Llc Tissue stapler having an anti-microbial agent
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US8740034B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with interchangeable staple cartridge arrangements
US10463372B2 (en) 2010-09-30 2019-11-05 Ethicon Llc Staple cartridge comprising multiple regions
US8740037B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Compressible fastener cartridge
US8746535B2 (en) 2010-09-30 2014-06-10 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising detachable portions
US9592050B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc End effector comprising a distal tissue abutment member
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US9687236B2 (en) 2010-10-01 2017-06-27 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9089330B2 (en) 2011-03-14 2015-07-28 Ethicon Endo-Surgery, Inc. Surgical bowel retractor devices
US9918704B2 (en) 2011-03-14 2018-03-20 Ethicon Llc Surgical instrument
US8978955B2 (en) 2011-03-14 2015-03-17 Ethicon Endo-Surgery, Inc. Anvil assemblies with collapsible frames for circular staplers
US8858590B2 (en) 2011-03-14 2014-10-14 Ethicon Endo-Surgery, Inc. Tissue manipulation devices
US9113883B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Collapsible anvil plate assemblies for circular surgical stapling devices
US9980713B2 (en) 2011-03-14 2018-05-29 Ethicon Llc Anvil assemblies with collapsible frames for circular staplers
US9033204B2 (en) 2011-03-14 2015-05-19 Ethicon Endo-Surgery, Inc. Circular stapling devices with tissue-puncturing anvil features
US10588612B2 (en) 2011-03-14 2020-03-17 Ethicon Llc Collapsible anvil plate assemblies for circular surgical stapling devices
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US10130352B2 (en) 2011-03-14 2018-11-20 Ethicon Llc Surgical bowel retractor devices
US8827903B2 (en) 2011-03-14 2014-09-09 Ethicon Endo-Surgery, Inc. Modular tool heads for use with circular surgical instruments
US9211122B2 (en) 2011-03-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical access devices with anvil introduction and specimen retrieval structures
US9974529B2 (en) 2011-03-14 2018-05-22 Ethicon Llc Surgical instrument
US9113884B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Modular surgical tool systems
US9125654B2 (en) 2011-03-14 2015-09-08 Ethicon Endo-Surgery, Inc. Multiple part anvil assemblies for circular surgical stapling devices
US8734478B2 (en) 2011-03-14 2014-05-27 Ethicon Endo-Surgery, Inc. Rectal manipulation devices
US10045769B2 (en) 2011-03-14 2018-08-14 Ethicon Llc Circular surgical staplers with foldable anvil assemblies
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US10117652B2 (en) 2011-04-29 2018-11-06 Ethicon Llc End effector comprising a tissue thickness compensator and progressively released attachment members
US10071452B2 (en) 2011-05-27 2018-09-11 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US10383633B2 (en) 2011-05-27 2019-08-20 Ethicon Llc Robotically-driven surgical assembly
US9775614B2 (en) 2011-05-27 2017-10-03 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotatable staple deployment arrangements
US10420561B2 (en) 2011-05-27 2019-09-24 Ethicon Llc Robotically-driven surgical instrument
US10335151B2 (en) 2011-05-27 2019-07-02 Ethicon Llc Robotically-driven surgical instrument
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US10130366B2 (en) 2011-05-27 2018-11-20 Ethicon Llc Automated reloading devices for replacing used end effectors on robotic surgical systems
US9913648B2 (en) 2011-05-27 2018-03-13 Ethicon Endo-Surgery, Llc Surgical system
US10004506B2 (en) 2011-05-27 2018-06-26 Ethicon Llc Surgical system
US10231794B2 (en) 2011-05-27 2019-03-19 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
US10485546B2 (en) 2011-05-27 2019-11-26 Ethicon Llc Robotically-driven surgical assembly
US10426478B2 (en) 2011-05-27 2019-10-01 Ethicon Llc Surgical stapling systems
US9271799B2 (en) 2011-05-27 2016-03-01 Ethicon Endo-Surgery, Llc Robotic surgical system with removable motor housing
US8789739B2 (en) 2011-09-06 2014-07-29 Ethicon Endo-Surgery, Inc. Continuous stapling instrument
US8833632B2 (en) 2011-09-06 2014-09-16 Ethicon Endo-Surgery, Inc. Firing member displacement system for a stapling instrument
US9107663B2 (en) 2011-09-06 2015-08-18 Ethicon Endo-Surgery, Inc. Stapling instrument comprising resettable staple drivers
US9198661B2 (en) 2011-09-06 2015-12-01 Ethicon Endo-Surgery, Inc. Stapling instrument comprising a plurality of staple cartridges stored therein
US9216019B2 (en) 2011-09-23 2015-12-22 Ethicon Endo-Surgery, Inc. Surgical stapler with stationary staple drivers
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9592054B2 (en) 2011-09-23 2017-03-14 Ethicon Endo-Surgery, Llc Surgical stapler with stationary staple drivers
US9687237B2 (en) 2011-09-23 2017-06-27 Ethicon Endo-Surgery, Llc Staple cartridge including collapsible deck arrangement
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9730697B2 (en) 2012-02-13 2017-08-15 Ethicon Endo-Surgery, Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US10166025B2 (en) 2012-03-26 2019-01-01 Ethicon Llc Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9918716B2 (en) 2012-03-28 2018-03-20 Ethicon Llc Staple cartridge comprising implantable layers
US9314247B2 (en) 2012-03-28 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating a hydrophilic agent
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9974538B2 (en) 2012-03-28 2018-05-22 Ethicon Llc Staple cartridge comprising a compressible layer
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US10064621B2 (en) 2012-06-15 2018-09-04 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US10874391B2 (en) 2012-06-28 2020-12-29 Ethicon Llc Surgical instrument system including replaceable end effectors
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US10485541B2 (en) 2012-06-28 2019-11-26 Ethicon Llc Robotically powered surgical device with manually-actuatable reversing system
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US11058423B2 (en) 2012-06-28 2021-07-13 Cilag Gmbh International Stapling system including first and second closure systems for use with a surgical robot
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US10383630B2 (en) 2012-06-28 2019-08-20 Ethicon Llc Surgical stapling device with rotary driven firing member
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US9907620B2 (en) 2012-06-28 2018-03-06 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US10687812B2 (en) 2012-06-28 2020-06-23 Ethicon Llc Surgical instrument system including replaceable end effectors
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US10420555B2 (en) 2012-06-28 2019-09-24 Ethicon Llc Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9468438B2 (en) 2013-03-01 2016-10-18 Eticon Endo-Surgery, LLC Sensor straightened end effector during removal through trocar
US9326767B2 (en) 2013-03-01 2016-05-03 Ethicon Endo-Surgery, Llc Joystick switch assemblies for surgical instruments
US9398911B2 (en) 2013-03-01 2016-07-26 Ethicon Endo-Surgery, Llc Rotary powered surgical instruments with multiple degrees of freedom
US10285695B2 (en) 2013-03-01 2019-05-14 Ethicon Llc Articulatable surgical instruments with conductive pathways
US9358003B2 (en) 2013-03-01 2016-06-07 Ethicon Endo-Surgery, Llc Electromechanical surgical device with signal relay arrangement
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9554794B2 (en) 2013-03-01 2017-01-31 Ethicon Endo-Surgery, Llc Multiple processor motor control for modular surgical instruments
US9782169B2 (en) 2013-03-01 2017-10-10 Ethicon Llc Rotary powered articulation joints for surgical instruments
US9700309B2 (en) 2013-03-01 2017-07-11 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US10470762B2 (en) 2013-03-14 2019-11-12 Ethicon Llc Multi-function motor for a surgical instrument
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9888919B2 (en) 2013-03-14 2018-02-13 Ethicon Llc Method and system for operating a surgical instrument
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9814460B2 (en) 2013-04-16 2017-11-14 Ethicon Llc Modular motor driven surgical instruments with status indication arrangements
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US10149680B2 (en) 2013-04-16 2018-12-11 Ethicon Llc Surgical instrument comprising a gap setting system
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US10441281B2 (en) 2013-08-23 2019-10-15 Ethicon Llc surgical instrument including securing and aligning features
US9987006B2 (en) 2013-08-23 2018-06-05 Ethicon Llc Shroud retention arrangement for sterilizable surgical instruments
US10828032B2 (en) 2013-08-23 2020-11-10 Ethicon Llc End effector detection systems for surgical instruments
US9510828B2 (en) 2013-08-23 2016-12-06 Ethicon Endo-Surgery, Llc Conductor arrangements for electrically powered surgical instruments with rotatable end effectors
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
US10624634B2 (en) 2013-08-23 2020-04-21 Ethicon Llc Firing trigger lockout arrangements for surgical instruments
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
US9445813B2 (en) 2013-08-23 2016-09-20 Ethicon Endo-Surgery, Llc Closure indicator systems for surgical instruments
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US11918209B2 (en) 2013-08-23 2024-03-05 Cilag Gmbh International Torque optimization for surgical instruments
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US10265065B2 (en) 2013-12-23 2019-04-23 Ethicon Llc Surgical staples and staple cartridges
US9763662B2 (en) 2013-12-23 2017-09-19 Ethicon Llc Fastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9585662B2 (en) 2013-12-23 2017-03-07 Ethicon Endo-Surgery, Llc Fastener cartridge comprising an extendable firing member
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9839423B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument
US9884456B2 (en) 2014-02-24 2018-02-06 Ethicon Llc Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments
US9757124B2 (en) 2014-02-24 2017-09-12 Ethicon Llc Implantable layer assemblies
US9775608B2 (en) 2014-02-24 2017-10-03 Ethicon Llc Fastening system comprising a firing member lockout
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US10136889B2 (en) 2014-03-26 2018-11-27 Ethicon Llc Systems and methods for controlling a segmented circuit
US10117653B2 (en) 2014-03-26 2018-11-06 Ethicon Llc Systems and methods for controlling a segmented circuit
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US9730695B2 (en) 2014-03-26 2017-08-15 Ethicon Endo-Surgery, Llc Power management through segmented circuit
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US10010324B2 (en) 2014-04-16 2018-07-03 Ethicon Llc Fastener cartridge compromising fastener cavities including fastener control features
US9877721B2 (en) 2014-04-16 2018-01-30 Ethicon Llc Fastener cartridge comprising tissue control features
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US10327776B2 (en) 2014-04-16 2019-06-25 Ethicon Llc Surgical stapling buttresses and adjunct materials
US11517315B2 (en) 2014-04-16 2022-12-06 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US10470768B2 (en) 2014-04-16 2019-11-12 Ethicon Llc Fastener cartridge including a layer attached thereto
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10426476B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Circular fastener cartridges for applying radially expandable fastener lines
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10426477B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Staple cartridge assembly including a ramp
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10052104B2 (en) 2014-10-16 2018-08-21 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US10045779B2 (en) 2015-02-27 2018-08-14 Ethicon Llc Surgical instrument system comprising an inspection station
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10729432B2 (en) 2015-03-06 2020-08-04 Ethicon Llc Methods for operating a powered surgical instrument
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10206605B2 (en) 2015-03-06 2019-02-19 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10052102B2 (en) 2015-06-18 2018-08-21 Ethicon Llc Surgical end effectors with dual cam actuated jaw closing features
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10166026B2 (en) 2015-08-26 2019-01-01 Ethicon Llc Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom
US10213203B2 (en) 2015-08-26 2019-02-26 Ethicon Llc Staple cartridge assembly without a bottom cover
US11103248B2 (en) 2015-08-26 2021-08-31 Cilag Gmbh International Surgical staples for minimizing staple roll
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
US10980538B2 (en) 2015-08-26 2021-04-20 Ethicon Llc Surgical stapling configurations for curved and circular stapling instruments
US10470769B2 (en) 2015-08-26 2019-11-12 Ethicon Llc Staple cartridge assembly comprising staple alignment features on a firing member
US10390829B2 (en) 2015-08-26 2019-08-27 Ethicon Llc Staples comprising a cover
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
US10188394B2 (en) 2015-08-26 2019-01-29 Ethicon Llc Staples configured to support an implantable adjunct
US11058426B2 (en) 2015-08-26 2021-07-13 Cilag Gmbh International Staple cartridge assembly comprising various tissue compression gaps and staple forming gaps
US10517599B2 (en) 2015-08-26 2019-12-31 Ethicon Llc Staple cartridge assembly comprising staple cavities for providing better staple guidance
US10433845B2 (en) 2015-08-26 2019-10-08 Ethicon Llc Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US10251648B2 (en) 2015-09-02 2019-04-09 Ethicon Llc Surgical staple cartridge staple drivers with central support features
US10314587B2 (en) 2015-09-02 2019-06-11 Ethicon Llc Surgical staple cartridge with improved staple driver configurations
US10357252B2 (en) 2015-09-02 2019-07-23 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US10172619B2 (en) 2015-09-02 2019-01-08 Ethicon Llc Surgical staple driver arrays
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10307160B2 (en) 2015-09-30 2019-06-04 Ethicon Llc Compressible adjunct assemblies with attachment layers
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US11690623B2 (en) 2015-09-30 2023-07-04 Cilag Gmbh International Method for applying an implantable layer to a fastener cartridge
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10470764B2 (en) 2016-02-09 2019-11-12 Ethicon Llc Surgical instruments with closure stroke reduction arrangements
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US10413291B2 (en) 2016-02-09 2019-09-17 Ethicon Llc Surgical instrument articulation mechanism with slotted secondary constraint
US10653413B2 (en) 2016-02-09 2020-05-19 Ethicon Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10420552B2 (en) 2016-04-01 2019-09-24 Ethicon Llc Surgical stapling system configured to provide selective cutting of tissue
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US10413293B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US10682136B2 (en) 2016-04-01 2020-06-16 Ethicon Llc Circular stapling system comprising load control
US10413297B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Surgical stapling system configured to apply annular rows of staples having different heights
US10675021B2 (en) 2016-04-01 2020-06-09 Ethicon Llc Circular stapling system comprising rotary firing system
US10456140B2 (en) 2016-04-01 2019-10-29 Ethicon Llc Surgical stapling system comprising an unclamping lockout
US10357246B2 (en) 2016-04-01 2019-07-23 Ethicon Llc Rotary powered surgical instrument with manually actuatable bailout system
US10433849B2 (en) 2016-04-01 2019-10-08 Ethicon Llc Surgical stapling system comprising a display including a re-orientable display field
US10531874B2 (en) 2016-04-01 2020-01-14 Ethicon Llc Surgical cutting and stapling end effector with anvil concentric drive member
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US11045191B2 (en) 2016-04-01 2021-06-29 Cilag Gmbh International Method for operating a surgical stapling system
US10342543B2 (en) 2016-04-01 2019-07-09 Ethicon Llc Surgical stapling system comprising a shiftable transmission
US10709446B2 (en) 2016-04-01 2020-07-14 Ethicon Llc Staple cartridges with atraumatic features
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10542979B2 (en) 2016-06-24 2020-01-28 Ethicon Llc Stamped staples and staple cartridges using the same
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10603036B2 (en) 2016-12-21 2020-03-31 Ethicon Llc Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US11571210B2 (en) 2016-12-21 2023-02-07 Cilag Gmbh International Firing assembly comprising a multiple failed-state fuse
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument

Also Published As

Publication number Publication date
JP2547520B2 (en) 1996-10-23
KR0145453B1 (en) 1998-07-01
JPH06511175A (en) 1994-12-15
DE9290164U1 (en) 1994-09-15
EP0623008A1 (en) 1994-11-09
US5423809A (en) 1995-06-13
TW223013B (en) 1994-05-01
KR950700034A (en) 1995-01-16

Similar Documents

Publication Publication Date Title
US5423809A (en) Electrosurgical control for a trocar
US5300070A (en) Electrosurgical trocar assembly with bi-polar electrode
CA2161326C (en) Bipolar electrosurgical trocar
CA2137004C (en) An electrosurgical tubular trocar
US5797906A (en) Retrograde tissue splitter and method
US8753333B2 (en) System for determining proximity relative to a nerve
US6391028B1 (en) Probe with distally orientated concave curve for arthroscopic surgery
EP2364661B1 (en) System and method for determining proximity relative to a critical structure
US5335668A (en) Diagnostic impedance measuring system for an insufflation needle
US6645198B1 (en) Systems and methods for reducing post-surgical complications
JP5814569B2 (en) System and method for determining proximity to critical structures
GB2213381A (en) Electro-surgical apparatus with body impedance monitoring
US8226640B2 (en) Laparoscopic electrosurgical electrical leakage detection
WO1993009725A1 (en) Method and apparatus for guiding a catheter
AU659261B2 (en) Electrosurgical trocar assembly
CN114288010A (en) Uterine manipulator with neutral return electrode
JP2007509646A (en) Oxygen detection during surgical procedures
CN116096318A (en) Systems and methods for eliciting smooth muscle responses during surgery
CA2089691A1 (en) Electrosurgical trocar assembly with bi-polar electrode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1992923190

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992923190

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992923190

Country of ref document: EP