WO1993012887A1 - Centrifugal processing system with direct access drawer - Google Patents

Centrifugal processing system with direct access drawer Download PDF

Info

Publication number
WO1993012887A1
WO1993012887A1 PCT/US1992/011216 US9211216W WO9312887A1 WO 1993012887 A1 WO1993012887 A1 WO 1993012887A1 US 9211216 W US9211216 W US 9211216W WO 9312887 A1 WO9312887 A1 WO 9312887A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
base
drawer
centrifuge
centrifuge assembly
Prior art date
Application number
PCT/US1992/011216
Other languages
French (fr)
Inventor
Warren P. Williamson, Iv
Original Assignee
Baxter International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baxter International Inc. filed Critical Baxter International Inc.
Priority to JP5511906A priority Critical patent/JPH06505675A/en
Priority to AU33348/93A priority patent/AU652888B2/en
Publication of WO1993012887A1 publication Critical patent/WO1993012887A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0407Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles
    • B04B5/0428Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles with flexible receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/02Casings; Lids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • B04B2005/045Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation having annular separation channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • B04B2005/0492Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation with fluid conveying umbilicus between stationary and rotary centrifuge parts

Definitions

  • the invention relates to centrifugal pro ⁇ cessing systems and apparatus. Background of the Invention
  • Disposable systems are often preformed into desired shapes to simplify the loading and unloading process.
  • this approach is often counterpro- ductive, as it increases the cost of the disposables.
  • the invention provides improved centrifugal processing systems that ptovide easy access to the rotating parts of the centrifuge for loading and un- loading disposable processing components.
  • the inven ⁇ tion achieves this objective without complicating or increasing the cost of the disposable components.
  • the invention allows relatively inexpensive and straight- forward disposable components to be used.
  • One aspect of the invention provides a sys ⁇ tem that includes a centrifuge assembly carried by a frame.
  • the frame encloses an interior area.
  • the cen ⁇ trifuge assembly including a chamber and a mechanism for rotating the chamber about an axis.
  • a base supports the centrifuge assembly on the frame.
  • the base includes a mechanism for moving the base and, with it, the entire centrifuge assembly on the frame.
  • the movable base allows user to locate the entire cen ⁇ trifuge assembly within the interior are of the frame, thereby blocking access to the centrifuge as ⁇ sembly during a processing procedure.
  • the movable base also allows the user to locate the entire centri- fuge assembly outside the interior area of the frame, thereby permitting access to the centrifuge assembly at the end of a processing procedure.
  • the centrifuge assembly can be made readily accessible to the user after the processing operations are over. For example, once the centrifuge assembly is located outside the frame, the user can quickly and easily handle the disposable processing elements that must be installed and then removed be ⁇ fore and after each processing operation. This elimi ⁇ nates the need for expensive processing elements spe ⁇ cially design to be fitted into tight and awkward quarters.
  • the base moves in a direction generally perpendicular to the rotation axis of the chamber in a drawer that can be opened and closed. The drawer carries the centrifuge assembly, allowing the user to locate the centrifuge assembly in its first position when the drawer is closed and to locate the centrifuge assembly in its second position when the drawer is opened.
  • force dampening mounts isolate the base from vibration and oscillation caused by the rotating chamber. In this arrangement, the entire isolated mass of the centrifuge assembly is accessible to the user.
  • Another aspect of the invention provides movable centrifuge assembly as just described having a processing element that is removably insertable into the processing chamber.
  • An umbilicus conveys fluid into the processing element to undergo centrifugal separation during rotation of the chamber.
  • the centrifuge assembly includes a holder that releasably receives the umbilicus.
  • the holder assumes an operating position that orients the umbilicus in a prescribed relationship with the centrifuge assembly during processing operations.
  • the holder also as- sumes an nonoperating position spaced away from cen ⁇ trifuge assembly that allowing user access to the chamber.
  • a locking mecha ⁇ nism retains the holder in its operating position when the base is in its enclosed position. The locking mechanism is freed in response to movement of the base from its enclosed position toward its exposed posi ⁇ tion.
  • the holder like the centrifuge assembly itself, is carried on the force dampening mounts, thereby forming a part of the isolated mass of the centrifuge.
  • FIG. 1 is a side elevation view of a pro ⁇ cessing system that embodies the features of the in ⁇ vention, with the drawer carrying the rotating components of the centrifuge assembly shown in its open position for loading the associated fluid processing chamber;
  • FIG. 2 is a front perspective view of the processing system shown in Fig. 1, with the drawer closed as it would be during normal processing operations;
  • Fig. 3 is an exploded perspective view of the drawer and rotating components of the centrifuge assembly;
  • Fig. 4 is an enlarged perspective view of the rotating components of the centrifuge assembly shown in its suspended operating position
  • Fig. 5 is a side sectional view of the ro ⁇ tating components of the centrifuge assembly taken generally along line 5-5 in Fig. 4;
  • Fig. 6 is a side elevation view, with por- tions broken away and in section, of the rotating com- ponents of the centrifuge assembly housed within the drawer, which is shown closed;
  • Fig. 7 is an enlarged side elevation view of the umbilicus mounts associated with the centrifuge assembly
  • Fig. 8 is an enlarged perspective view of the zero omega holder and associated upper umbilicus mount
  • Fig. 8A is an enlarged perspective view of an alternative embodiment of the zero omega holder, with the associated latch member in its upraised posi ⁇ tion;
  • Fig. 8B is an enlarged perspective view of the alternative embodiment of the zero omega holder shown in Fig. 8A, with the associated latch member in its lowered position;
  • Fig. 9 is a top section view of the upper umbilicus block taken generally along line 9-9 in Fig. 7;
  • Fig. 10 is a schematic view of the drive controller for the rotating components of the centri ⁇ fuge assembly;
  • Fig. 11 is a side elevation view, with por ⁇ tions broken away and in section, of the rotating com- ponents of the centrifuge assembly housed within the drawer, which is shown in a partially opened condi ⁇ tion;
  • Fig. 12 is a side elevation view, with por ⁇ tions broken away and in section, of the rotating co - ponents of the centrifuge assembly housed within the drawer, which is shown in a fully opened condition;
  • Fig. 13 is a side elevation view, with por ⁇ tions broken away and in section, of the rotating com ⁇ ponents of the centrifuge assembly housed within the drawer, which is shown in a fully opened condition, with the centrifuge assembly upright and opened for loading and unloading the associated processing cham ⁇ ber;
  • Fig. 14 is a schematic view of the drawer interlocks associated with the centrifuge assembly
  • Fig. 15 is an enlarged perspective view of the rotating components of the centrifuge assembly shown in its upraised position for loading and unload ⁇ ing the associated processing chamber;
  • Fig. 16 is a perspective exploded view of the locking pin component of the swinging lock assem ⁇ bly that pivots the rotating components of the centrifuge assembly between operating and upraised positions;
  • Fig. 17 is a perspective exploded view of the entire the swinging lock assembly that pivots the rotating components of the centrifuge assembly between its operating and upraised positions;
  • Figs. 18A; 18B; and 18C are a series of side section views showing the operation of the swinging lock assembly
  • Fig. 19 is a side sectional view of the ro ⁇ tating components of the centrifuge assembly when in its upraised position, taken generally along line 19- 19 in Fig. 15;
  • Fig. 20 is a side sectional view of the ro ⁇ tating components of the centrifuge assembly when in its upraised and open position;
  • Fig. 21 is an enlarged and exploded perspec- tive view, with portions broken away and in section, of a mechanism for moving and securing the centrifuge assembly in its open and closed positions, as well as clamping the umbilicus near the processing chamber;
  • Fig. 22 is a side section view, taken gener- ally along line 22-22 in Fig. 21, of the latch member associated with the mechanism shown in Fig. 21;
  • Figs. 23 and 24 are side section views show ⁇ ing the operation of the latch member associated with the mechanism shown in Fig. 21;
  • Fig. 25 is an enlarged and exploded perspec ⁇ tive view, with portions broken away and in section, of an alternative mechanism for moving and securing the centrifuge assembly in its open and closed positions, as well as clamping the umbilicus near the processing chamber;
  • Figs. 26 and 27 are side sectional views showing the operation of the mechanism shown in Fig. 25;
  • Fig. 28 is a perspective view of the pro- cessing chamber as it is being wrapped onto the cen ⁇ trifuge spool prior to use;
  • Fig. 29 is a perspective view of the pro ⁇ cessing chamber wrapped on the centrifuge spool for use;
  • Fig. 30 is a perspective view, with portions broken away, of the centrifuge spool holding the pro ⁇ cessing chamber and in position within the centrifuge bowl for use;
  • Fig. 31 is a top section view, taken gener- ally along line 31-31 of Fig. 30, of the centrifuge spool holding the processing chamber and in position within the centrifuge bowl for use;
  • Fig. 32 is an exploded perspective view of an interchangeable centrifuge spool assembly on which a processing chamber can be mounted;
  • Figs. 1 and 2 show a centrifugal processing system 10 that embodies the features of the invention.
  • the system 10 can be used for processing various flu- ids.
  • the system 10 is particularly well suited for processing whole blood and other suspensions of cellu ⁇ lar materials that are subject to trauma. Ac ⁇ cordingly, the illustrated embodiment shows the system 10 used for this purpose.
  • the system 10 includes a centrifuge assembly
  • the centrifuge assembly 12 is a durable equipment item.
  • the fluid processing assembly 14 is a single use, disposable item that the user loads on the cen- trifuge assembly 12 before beginning a processing pro ⁇ cedure (as Fig. 1 generally shows) and removes from the centrifuge assembly 12 upon the completing the procedure.
  • the centrifuge assembly 12 comprises a centrifuge 16 mounted for rotation within a cabinet 18.
  • the user maneuvers and transports the cabinet 18 upon the associated wheels 20. It should be appreci ⁇ ated that, due to its compact form, the centrifuge as ⁇ sembly 12 also could be made as a tabletop unit.
  • the cabinet 18 includes a sliding drawer 36 that holds the centrifuge 16.
  • the user opens the drawer 36 to enter the centrifuge 16 for inserting and removing the processing chamber 22.
  • Fig. 2 shows, the user closes the drawer 36 when conducting a processing op ⁇ eration.
  • the processing assembly 14 comprises a pro ⁇ cessing chamber 22 mounted on th centrifuge 16 for rotation (as Fig. 1 shows) .
  • An associated fluid cir- cuit 24 conveys fluids to and from the processing chamber 22.
  • the fluid circuit 24 has several fluid containers 26. As Fig. 2 shows, in use, the contain ⁇ ers 26 hang from a support pole outside the cabinet 18.
  • the fluid circuit 24 transits several peristaltic pumps 28 and clamps 30 on the face of the cabinet 18.
  • the fluid circuit 24 enters an access opening 100 leading to the processing chamber 22 mounted within the cabinet 18. In the illustrated environment, the fluid circuit 24 preconnects the processing chamber 22 with the containers 26, forming an integral, sterile unit closed to communication with the atmosphere.
  • the centrifuge assembly 12 includes a pro ⁇ cessing controller 32, various details of which are shown in Figs. 10 and 14.
  • the processing controller 32 coordinates the operation of the centrifuge 16.
  • the processing controller 32 preferably uses an in ⁇ put/output terminal 34 to receive and display informa ⁇ tion relating to the processing procedure.
  • the centrifuge 16 includes a base 42 that supports a plate 45 mounted upon flexible isolation mounts 44.
  • the flexible mounts 44 structur ⁇ ally isolate the components mounted on the plate 45 from the rest of the centrifuge 16, by dampening vi ⁇ bration and oscillation caused by these plate-mounted components.
  • the components mounted on the plate 45 make up the isolated mass of the centrifuge 16.
  • a nonrotating outer housing or bucket 46 is mounted on the plate 45.
  • the bucket 46 encloses a stationary platform 48, which in turn supports the rotating components of the centrifuge 16.
  • the ro ⁇ tating components include a centrifuge yoke assembly 50 and a centrifuge chamber assembly 52.
  • the yoke assembly 50 rotates upon the platform 48 on a first drive shaft 54.
  • the chamber assembly 52 rotates on the yoke assembly 50 on a second drive shaft 56.
  • the rotating chamber assembly 52 carries the processing chamber 22.
  • the yoke assembly 50 includes a yoke base 58, a pair of upstanding yoke arms 60, and a yoke cross mem ⁇ ber 62 mounted between the arms 60.
  • the base 58 is attached to the first drive shaft 54, which spins on a bearing element 64 about the stationary platform 48.
  • a first electric drive 66 rotates the yoke assembly 50 on the first drive shaft 54.
  • the chamber assembly 52 is attached to the second drive shaft 56, which spins on a bearing element 68 in the yoke cross member 62.
  • the second drive shaft 56 and the bearing element 68 spin as a unit on ball bearings 70.
  • a second electric drive 72 rotates the centrifuge chamber assembly 52 on the second drive shaft.
  • the first electric drive 66 and the second electric drive 72 each comprises a permanent magnet, brushless DC motor.
  • the stationary platform holds the field coils 74 of the first motor 66, while the yoke base 58 comprises the armature or rotor of the first motor 66.
  • the yoke cross member 62 holds the field coils 74 of the second motor 72, while the chamber assembly 52 comprises the associated ar ⁇ mature or rotor.
  • the first electric motor 66 spins the yoke assembly 50 at a predetermined speed of rotation (which will be called "one omega”) .
  • the second electric motor 72 spins the chamber assembly 52 at the same speed of rotation as the first electric motor 66 in the same direction and about the same axis as the spinning yoke assembly 50.
  • the chamber assembly 52 spins at twice the rotational speed of the yoke assembly 50 (which will be called "two omega”) .
  • the fluid circuit 24 join- ing the processing chamber 22 and the processing con ⁇ tainers 26 comprises separate tubes 74 joined to form an umbilicus 76. Fluids pass to and from the proces ⁇ sing chamber 22 through these tubes 74.
  • the centrifuge 16 in- eludes several umbilicus mounts 78, 80, 82, and 84 positioned at spaced apart zero omega, one omega, and two omega positions on the centrifuge 16.
  • the mounts 78, 80, 82, and 84 secure the upper, middle, and lower portions of the umbilicus 76, holding it in an in- verted question mark shape during processing operations.
  • the first umbilicus mount 78 is part of a holder
  • the mount 78 holds the upper portion of the umbilicus 76 against rotation at this position.
  • the zero omega holder 86 includes a support frame 88, which is itself at ⁇ tached to the isolation plate 45.
  • the zero omega holder 86 therefore forms a part of the isolated mass of the centrifuge 16.
  • a pin 90 attaches one end of the zero omega hold ⁇ er 86 to the support frame 88.
  • the holder 86 pivots on this pin 90 along the rotational axis of centrifuge 16 (as generally shown by arrows in Fig. 3).
  • a spring 92 normally biases the holder 86 away from the rotat ⁇ ing components 50 and 52 of the centrifuge 16.
  • a so ⁇ lenoid operated latch pin 94 normally locks the holder 86 in the operating position shown in Fig. 6. It should be appreciated that, alternatively, the holder 86 can be manually locked in the operating position using a conventional over-center toggle mechanism (not shown) or the like.
  • the zero omega holder 86 has a roller member 96 at its opposite end.
  • the roller member 96 rotates on a shaft 98.
  • the roller member 96 is relieved in its mid-portion (see Fig. 8) to receive the umbilicus 76 as it enters the cabinet 18 through an access opening
  • the first umbilicus mount 78 is located next to the roller member 96.
  • the mount 78 comprises a channel in the holder 86 that captures an upper block 102 carried by the umbilicus
  • the zero omega holder 86 applies tension on the umbilicus 76, thereby seating the upper umbilicus block 102 within the mount 78.
  • the upper umbilicus block 102 is generally hexagonally shaped.
  • the mount 78 is also configured as a hexagon to mate with the block 102. It should be appreciated that other mating shapes can be used to seat the um ⁇ bilicus block 102 within the mount 78.
  • Figs. 8A and 8B show an alternative embodiment for the zero omega holder 86.
  • the holder 86' is mounted for pivotal movement on a pin 90' to the support frame 88 (not shown in Figs. 8A and 8B) .
  • the holder 86' has a roller member 96' and an umbilicus mount 78' located next to it. The functions of these components are as previ ⁇ ously described.
  • the holder 86' includes a mechanism for clamping the upper umbilicus block 102 within the mount 78'. While the mechanism can vary, in the illustrated embodiment, it comprises a latch member 250 mounted on pins 252 for pivotal movement on the holder 86'.
  • Fig. 8A shows the latch member 250 in an upraised position, opening the mount 78' for receiving the upper umbilicus block 102.
  • Fig. 8B shows the latch member 250 in a lowered posi ⁇ tion, covering the mount 78' and retaining the umbili ⁇ cus block 102 therein. As Fig. 8B shows, the latch member 250 includes a relieved region that accommo- dates passage of the umbilicus 76 when the latch mem ⁇ ber 250 is lowered.
  • a pair of resilient tabs 256 on the latch member 250 mate within undercuts 258 on the holder 86' to releasably lock the latch member 250 in its lowered position. Manually squeezing in the area 260 above the resilient tabs 256 releases them from the under ⁇ cuts 258.
  • the second and third umbilicus mounts 80 and 82 form a part of a one omega holder 104 carried on the yoke cross member 62.
  • the mounts 80 and 82 take the form of spaced apart slotted apertures that secure the mid-portion of the umbilicus 76 to the yoke cross mem ⁇ ber 62.
  • the mid-portion of the umbilicus 76 carries a pair of spaced apart resilient bushings 106 that snap-fit within the slotted second and third mounts 80 and 82 (see Figs. 4 and 7) .
  • the slotted mounts 80 and 82 allow the umbilicus bushings 106 to rotate within them, but otherwise secure the umbilicus 76 as the yoke assembly 50 rotates.
  • the yoke cross member 62 carries a counterweight 103 opposite to the one omega holder 104.
  • the fourth umbilicus mount 84 forms a part of a two omega holder 108 on the processing chamber assem ⁇ bly 52. As best shown in Figs. 15 and 19, the mount 84 comprises a clamp that captures a lower block 110 carried by the umbilicus 76. The clamp mount 84 grips the lower block 110 to rotate the lower portion of the umbilicus 76 as the chamber 22 itself rotates.
  • the lower umbilicus block 110 (like the upper umbilicus block 102) is generally hexagonally shaped.
  • the clamp mount 84 is also configured to mate with the lower block 110 seated within it. As before pointed out, it should be appreciated that other mating shapes can be used to seat the umbilicus block 110 within the clamp mount 84.
  • the zero omega holder 86 holds the upper portion of the umbilicus in a non-rotating position above the rotating yoke and chamber assemblies 50 and 52.
  • the holder 104 rotates the mid-portion of the umbilicus 76 at the one omega speed of the yoke assembly 50.
  • the holder 108 rotates the lower end of the umbilicus 76 at the two omega speed of the chamber assembly 52. This relative rotation keeps the umbilicus 76 untwist ⁇ ed, in this way avoiding the need for rotating seals.
  • the processing controller 32 includes an all- electrical synchronous drive controller 184 for main ⁇ taining the desired one omega/two omega relationship between the yoke assembly 50 and the chamber assembly 52.
  • Fig. 10 shows the details of the drive controller 184.
  • both motors 66 and 72 are three phase motors. Still, double or other multiple phase motors can be used, if desired.
  • the drive controller 184 in- eludes a three phase power driver 186.
  • the drive con ⁇ troller 184 also includes a commutation controller 188 for three commutator sensors 190 associated with the first three phase electric motor 66.
  • the power driver 186 uses a single slip ring as- sembly 192 that serves the second electric motor 72.
  • the slip ring assembly 192 includes three slip rings (designated RA, RB, and RC in Fig. 10) , one associated with each pole of the second motor (designated PA, PB, and PC in Fig. 10) .
  • the slip rings RA/RB/RC serve as a conducting means for electricity.
  • Alternative con ⁇ ducting means such as a transformer coupling, could be used.
  • the power driver 186 includes three power feeds (designated FA, FB, and FC in Fig. 10) connected in parallel to the three poles PA/PB/PC of first electric motor 66.
  • the power feeds FA/FB/FC operate the first motor 66 at the preselected constant one omega speed in a closed loop fashion.
  • the power feeds FA/FB/FC are, in turn, connected in parallel to the three poles PA/PB/PC of the second electric motor 72, each via one slip ring RA/RB/RC.
  • the slip rings serve as a rotating electrical connec ⁇ tor, transferring power between the first motor 66 (operating at constant speed and in a closed loop) and the second motor 72.
  • phase error will occur whenever the second motor 72 is not synchronous with the first motor 66.
  • the phase error causes the two motors 66 and 72 to exchange power.
  • the motors 66 and 72 will either transfer power from the feed lines FA/FB/FC to the rotors (through normal mo ⁇ tor action) or deliver power from the rotors to a feed line FA/FB/FC (through generator action) .
  • the second motor 72 becomes a gen ⁇ erator, delivering power to the first motor 66.
  • Be ⁇ cause the first motor 66 operates in a closed loop at a constant speed, this power transfer retards the ro- tor of the second motor 72, causing the phase error to disappear.
  • the first motor 66 lags behind the first motor 66, the first motor 66 be ⁇ comes a generator, delivering power to the second mo- tor 72. This power transfer advances the rotor of the second motor 72, again causing the phase error to dis ⁇ appear.
  • This continuous power exchange applies a correc ⁇ tive torque on the rotor of the second motor 72 that either advances or retards the rotor of the second motor 72.
  • the corrective torque elim ⁇ inates any phase error between the first and second motors 66 and 72. This keeps the second motor 72 con ⁇ tinuously in synch with and operating at the same ro- tational speed as the closed loop, constant speed first motor 66.
  • a drive controller 184 embodying the above features can be used to maintain virtual any speed ratio between two or more motors.
  • the drive controller 184 continuously maintains the desired speed ratio without noisy and heavy geared or belted mechanical mechanisms or without complicat ⁇ ed, sensitive electronic feedback mechanisms.
  • the drive controller 184 allows the centrifuge 16 to be small and lightweight, yet reliable and accurate.
  • the centrifuge drawer 36 moves the entire iso ⁇ lated mass of the centrifuge 16 (carried on the plate 45) across the axis of rotation.
  • the drawer 36 moves the isolated mass between an operating enclosed posi ⁇ tion (shown in Figs. 2 and 6) and an opened position accessible to the user (shown in Figs. 1 and 12) .
  • the centrifuge drawer 36 can be constructed in various ways. In the illustrated embodiment (as best shown in Fig. 3) , the centrifuge base 42 (which sup ⁇ ports the plate 45 upon the flexible isolation mounts 44) rides on tracks 38 within the cabinet 18.
  • the drawer 36 includes a housing 34 attached to the iso ⁇ lated base 42 for movement on the tracks 38.
  • the housing 34 has a front handle 40 that the user can grasp to move the entire isolated mass of the centri ⁇ fuge 16 along the tracks 38 between the enclosed and opened positions.
  • the controller 32 includes a user-accessible switch 114 (see Fig. 1) that operates a latch solenoid 116 for the drawer 36.
  • the solenoid 116 normally locks the drawer 36 to keep the centrifuge 16 in its enclosed operating position (as Fig. 6 shows) .
  • the processing controller 32 includes an in ⁇ terlock 118 (see Fig. 14) that prevents operation of the solenoid 196 to unlock the drawer 36 whenever pow ⁇ er is supplied to the centrifuge motors 66 and 72.
  • the interlock 118 also preferably retains the latch pin 94 in its engaged position with the zero omega holder 86 (as Fig. 6 also .shows) , keeping the holder 86 in its operating position during processing operations.
  • Figs. 11 and 12 show, as the user opens the drawer 36, moving the isolated mass of the centrifuge 16 to its accessible position, the roller member 96 on the zero omega holder 86 travels along an interior ramp 112 within the cabinet 18. As the drawer 36 opens, the ramp 112 urges the zero omega holder 86 down against the biasing force of the spring 92, guid ⁇ ing the roller member 96 into and through the access opening 100.
  • the user can apply a downward force upon the spring biased zero omega holder 86 to free the upper umbilicus block 102 from the mount 78.
  • the biasing spring 92 pivots the zero omega holder to a fully upraised and out-of-the-way position shown in phantom lines in Fig. 12 and in solid lines in Fig. 13.
  • the ramp 112 also serves to guide the roller member 96 as the drawer 36 closes to return the zero omega hold ⁇ er 86 to its normal operating position.
  • FIG. 13 shows, once the centrifuge 16 occu ⁇ pies its accessible position outside the cabinet 18, the user can pivot the entire processing chamber as ⁇ sembly 52 about the yoke cross member 62 to an upright position convenient for loading and unloading the pro ⁇ cessing chamber 22 (Fig. 1 shows this, too) .
  • Fig. 13 also shows, once in its upright position, the user can further open the entire processing chamber assem ⁇ bly 52 to further simplify loading and unloading oper- ations. 1.
  • Pivoting the Chamber Assembly for Loading Figs. 15 to 18A/B/C show the details of the pivot assembly 194 for moving the processing chamber 52 into its upright position.
  • the pivot assembly 194 suspends the yoke cross member 62 between the yoke arms 60.
  • the two omega chamber assembly 52 carried on the cross member 62 thereby rotates between a downward suspended position (shown in Fig. 4) and an upright position (shown in Fig. 15) .
  • the chamber assembly 52 When operating, the chamber assembly 52 oc ⁇ cupies the suspended position.
  • the user places the chamber assembly 52 in the upright position for load- ing and unloading the processing chamber 22 after hav ⁇ ing placed the isolated mass of the centrifuge 16 is in its accessible opened position outside the cabinet.
  • the pivot assembly 194 for the chamber assembly 52 may be constructed in various alternative ways. Figs. 15 to 18A/B/C to 18 show the details of one pre ⁇ ferred embodiment. The Figures show only one side of the pivot assembly 194 in detail, because the other side is constructed in the same manner.
  • the pivot assembly 194 includes a pair of left and right pivot pins 196.
  • Bearings 198 carry the piv ⁇ ot pins 196 on the yoke arms 60.
  • a retainer bracket 200 secures each pivot pin 196 to the yoke cross mem ⁇ ber 62.
  • the pivot assembly 194 employs a swinging lock assembly 202 to control the extent and speed of rotation of the chamber assembly 52 on the pivot pins 96.
  • the swinging lock assembly 202 includes a rotat ⁇ ing cam 204 secured to the end of each pivot pin 196.
  • Each cam 204 includes a cut out arcuate groove 206 (see Fig.. 16) that ends at opposite first and second detents, respectively 208 and 210.
  • the groove 206 defines the range of rotation of the chamber assembly 52 on the pivot assembly 194.
  • the swinging lock assembly 202 also includes left and right locking pins 212 carried in the top of each yoke arm 60.
  • Each locking pin 212 has an end key 214 that rides within the interior groove 206 of the associated cam 204.
  • the opposite end of each locking pin 212 forms a control button for manipulation by the user at the top of the upright yoke arms 60.
  • the user can independently move each locking pin 212 between an upraised position (shown in Figs. 18A and 18C) and a depressed position (shown in Fig. 18B) .
  • the swinging lock assembly 202 uses a spring 218 to normally bias each locking pin 212 toward its upraised position.
  • each locking pin 212 When in its upraised position, the end key 214 of each locking pin 212 is captured within either the first detent 208 or the second detent 210 of the as- sociated cam 204, depending upon the rotational position of the cam 204. When captured by either detent 208/210, the end key 214 prevents further rota ⁇ tion of the associated cam 204. When in its upraised position, the end key 214 locks the chamber assembly 52 into either its upright load position or its sus ⁇ pended operating position.
  • the locked cam 204 holds the chamber assembly 52 in its suspended operating posi ⁇ tion (shown in Fig. 4) .
  • the locked cam 204 holds the chamber assembly 52 in its upraised load position (shown in Fig. 15).
  • the end key 214 moves out of the detent 208/210 and into the groove 206, freeing the associated cam 204 for rotation within the limits of groove 206.
  • the swinging lock assembly 202 also includes a biasing spring 220 associated with each cam 204.
  • the springs 220 rotationally bias the cams 204 toward the position shown in Fig. 18C, where the second detent 210 cap ⁇ tures the end keys 214 of the locking pins 212. To- gether, the springs 220 bias the chamber assembly 52 toward its upraised load position.
  • the swinging lock assembly 202 also preferably includes a damping cylinder 222 associated with each spring assisted cam 204.
  • the damping cylinder 222 has a spring or pressure operated pin 224 that con ⁇ tinuously presses against an outwardly radially tapered damping surface 226 on each cam 204.
  • the pin 224 progressively resists the spring-assisted rotation of each cam 204, moving from the first detent 208 (the downward operating position) toward the second detent 210 (the upraised load position) .
  • the progressive re ⁇ sistance of the pin 224 slows the pivotal movement of the assembly 52, as the pin 224 comes to rest at the outermost radius of the ramp 226 (as Fig.
  • a protective cover 221 is preferably mounted on each side of the yoke arms 60 to enclose the pivot assembly 194 and associated compo ⁇ nents. This protective cover 221 has been removed or cut away in some of the drawings to simplify the dis- cussion. 2.
  • the chamber assembly 52 includes a rotating outer bowl 128 that carries within it an inner spool 130.
  • the inner spool 130 holds the processing chamber 22.
  • the inner spool 130 telescopically moves into and out of the outer bowl 128 to allow the mounting and removal of the chamber 22 upon the spool 130.
  • the outer bowl 128 has a generally cylindrical interior surface 132.
  • the inner spool 130 has an ex ⁇ terior peripheral surface 134 that fits telescopically within the outer bowl surface 132 (see Fig. 9) .
  • An arcuate channel 136 extends between the two surfaces 132 and 134. When mounted on the spool 130, the pro- cessing chamber 22 occupies this channel 136.
  • the spool 130 preferably includes top and bottom flanges 138 to orient the processing chamber 22 within the channel 136.
  • the centrifuge assembly 12 includes a mechanism for moving the inner spool 130 into and out of the bowl 128.
  • the mechanism can be variously constructed, and Figs. 19 to 24 show one preferred arrangement.
  • the outer bowl 128 is coupled to the second drive shaft 56.
  • the inner spool 130 includes a center hub 140.
  • a spool shaft 142 is secured to the hub 140 by a pin 144.
  • the spool shaft 142 fits telescopically within the open bore of the second drive shaft 56.
  • the exterior surface of the spool shaft 142 has a hexagonal shape (as Fig. 21 best shows) .
  • the inte- rior bore at the base 146 of the second drive shaft 56 has a mating hexagonal shape.
  • the mating hexagonal surfaces couple the spool 130 to the bowl 128 for com ⁇ mon rotation with the second drive shaft 56.
  • the inner spool 130 is movable along the second drive shaft 56 between a low ⁇ ered operating position within the outer bowl 128 (as Fig. 19 shows) and an unlifted loading position out of the outer bowl 128 (as Fig. 20 shows) .
  • the hub 140 preferably takes the shape of a handle that the user can easily grasp to raise and lower the spool 130.
  • the spool shaft 142 includes an axial keyway 148 having a lower detent 150 and an upper detent 152.
  • the keyway 148 defines the range of up and down movement of the spool 130 within the bowl 128.
  • the bowl 128 includes a detent pin 154 that ex ⁇ tends into the open bore of the second drive shaft 56.
  • a spring 156 biases the detent pin 154 into the keyway 148, where it rides into and out of releasable engagement with the lower and upper detents 150 and 152 as the user raises and lowers the spool 130.
  • the user can wrap the processing chamber 22 upon the peripheral spool surface 134 (as Fig. 1 shows) .
  • the wrapped processing chamber 22 is sandwiched within the channel 136 between the spool 130 and the bowl 128. Rotation of the chamber assem ⁇ bly 52 subjects the processing chamber 22 to centrifugal forces within the channel 136.
  • a locking mechanism 158 prevents the spool 130 from dropping out of the bowl 128 while the chamber assembly 52 rotates in its downward suspended operat ⁇ ing position.
  • the mechanism 158 includes locking pin 160 fas ⁇ tened to the bowl 128.
  • the distal end of the locking pin 160 extends out through a passage 120 in the hub 140.
  • the distal end includes a notch 122.
  • a latch member 124 slides on tracks 126 upon the handle end of the hub 140.
  • the notched distal end of the locking pin 160 passes through an elongated slot 162 in the latch mem- ber 124.
  • Springs 164 normally bias the latch member 124 toward a forward position on the handle end of the hub 140. In this position (shown in Fig. 24), the notch 122 engages the rear edge 163 of the slot 162. This engagement secures the spool 130 to the bowl 128.
  • the latch member 124 is mass balanced so that centrif ⁇ ugal force will not open it during use.
  • the sliding latch member 124 also forms a part of the two omega umbilicus clamp mount 84.
  • Figs. 21 and 23 show, sliding the latch member 124 rearward opens the mount 84 to receive the lower umbilicus block 110.
  • the spring assisted return of the latch member 124 to its forward position captures the lower umbilicus block 110 within the mount 84.
  • the biasing springs 164 also hold the latch member 124 closed to clamp the block 110 within the mount during processing operations.
  • the locking pin 160 is preferably flexible enough to be resiliently displaced by the user (as the phantom lines in Fig. 24 show) to free the notch 122 from the rear slot edge 163 without operating the latch member 124. This allows the user to lift the spool 130 into its upraised position with ⁇ out freeing the lower umbilicus block (as Fig. 13 shows) .
  • the latch member 124 is preferably vertically moveable within the tracks to drop the rear slot edge 163 into engagement against the rear edge 166 of the hub handle. This allows the user to temporarily secure the latch member 124 in its rearward position against the action of the biasing springs 164, freeing both of the user's hands to load the umbilicus 76. Lifting upward frees the rear slot edge 163, allowing the springs 164 to return the latch member 164 to its forward clamping position.
  • Figs. 25 to 27 show an alternative locking mechanism 158 for the spool 130.
  • the second drive shaft 56 includes an undercut latchway 168.
  • the hub 140 houses a latch pawl 170 carried by a pin 172 for pivotal movement between an engaged position with the latchway 168 (as Fig. 26 shows) and a disengaged position from the latchway 168 (as Figs. 25 and 27 show) .
  • the hub 140 carries linkage 174 that operates the latch pawl 170.
  • the linkage 174 has a hooked end 176 coupled to the latch pawl 170 and a pin end 178 positioned in the path of a cam 180 carried by a latch lever 182.
  • a pin 228 attaches the latch lever 182 to the hub 140 for pivotal movement between an unlatched position (shown in Figs. 25 and 27) and a latching position (shown in Fig. 26) .
  • a spring 230 normally biases the linkage 190 to maintain the latch pawl 170 in its disengaged position when the latch lever 182 is in its unlatched position. In this orientation, the user is free to raise the spool 130 in the manner just described.
  • spring biased pins 232 releasably engage detents 234 on the latch lever 182.
  • the pins 232 releasably resist movement of the latch lever 182 out of its latching position.
  • the user can overcome the spring biased pins 232 to move the latch ⁇ ing lever 182 into its unlatched position.
  • a holding bracket 236 as ⁇ sociated with the latch lever 182 locks the lower um ⁇ bilicus block 110 within the mount 84 while the spool 130 is locked into its lowered position.
  • the holding bracket 236 opens the mount 84 when the latch lever 182 is in its unlatched position (shown in Fig. 25) and closes the mount 84 when the latch lever 182 is in its latching position (shown in Fig. 26) .
  • Figs. 28 to 31 show the details of loading a representative processing assembly 14 on the centri ⁇ fuge 16, as is generally depicted in Fig. 1.
  • the rep ⁇ resentative processing assembly 14 includes a processing chamber 22 formed as an elongated flexible tube or belt made of a flexible, biocompatible plastic material such as plasticized medical grade polyvinyl chloride.
  • the umbilicus tubes 74 communicate with ports 248 to conduct fluids into and out of the pro- cessing chamber 22.
  • the user begins the loading process by wrapping the flexible processing chamber 22 about the upraised and open spool 130.
  • the spool 130 includes one or more alignment tabs 238 on the spool 130.
  • the spool alignment tabs 238 register with alignment notches 240 on the processing chamber 22 to assure the desired orientation of the processing chamber 22 on the spool 130.
  • the ways of aligning the chamber 22 on the spool 130 can vary. In the illustrated em ⁇ bodiment, the spool 130 has two alignment tabs 238A and 238B, and the processing chamber 22 has two mating alignment notches 240A and 240B. Alternatively, pins or other alignment mechanisms can be used.
  • one spool alignment tab 238A protrudes from the spool surface 134 and mates with the notch 240A on the processing chamber 22.
  • the oth ⁇ er spool alignment tab 238B protrudes from a flap 242 that extends from and overhangs a portion of the spool surface 134.
  • the flap 242 is hinged. It is movable between a raised position (shown in phantom lines in Fig. 28) , away from the spool surface 134, and a lowered position (shown in solid lines in Fig. 28) , facing toward the spool sur ⁇ face 134.
  • the alignment tab 238B on the flap 242 fits within a retainer 244 in the spool surface 134.
  • the user aligns the notch 240A with the tab 238A and aligns the notch 24OB over the retainer 244.
  • Lowering the flap 242 places the tab 238B into the retainer 244, capturing the notch 240B between the flap 242 and the spool surface 134 (as Fig. 28 shows) to hold the processing chamber 22 in place.
  • a flap fixed in the lowered position can be used instead of a hinged flap 242 .
  • the user tucks the processing chamber 22 beneath the flap.
  • Fig. 29 shows, the user completes the loading process by overlapping the free ends of the processing chamber 22 on the opposite side of the spool 130.
  • a clip 246 captures the overlapping ends, holding them close against the spool surface 134.
  • an adhesive tab (not shown) can be used to hold the overlapping ends of the processing chamber 22 together, a"s could pins mating with associated holes in the processing chamber 22.
  • the user then lowers and locks the spool 130 within the bowl 128 in the manner previously described to complete the loading process (as Fig. 30 shows) .
  • the user clamps the lower umbilicus block 110 into the mount 84 in the manner previously described and pivots the chamber assembly 52 into its downward suspended position shown in Fig. 4.
  • the user closes the drawer 36 and completes the loading process by placing the tubes 74 into operative alignment with the pumps 28 and clamps 30 on the front panel of the cabinet 18.
  • the user generally follows a reverse sequence of steps to unload the fluid processing assembly 14.
  • the interior bowl surface 132 and the exterior spool surface 134 are preformed to create within the high-G and low-G regions of the processing chamber 22 the specific contours required either to get the de ⁇ sired separation effects or to achieve optimal priming and air purging, or both.
  • the interi ⁇ or bowl surface 132 is preformed with a constant outer radius (as measured from the rotational axis) .
  • the exterior spool surface 134 is preformed with contours of varying radii (also as mea ⁇ sured from the rotational axis) to present the desired geometry for the low-G region.
  • the chamber assembly 52 includes an overhanging attachment on the spool 130 extending between the low-G spool surface 134 and the high-G bowl surface 132.
  • the attachment comprises the hinged flap 242 previously described. As Fig. 31 shows, the flap 242 is clipped, fastened by screws, or otherwise con ⁇ veniently attached to the spool 130.

Abstract

A drawer-mounted (36) centrifuge (12) provides easy access for loading and unloading disposable processing elements (22). The centrifuge also includes an umbilicus holder (86) that moves between an operating position and an out-of-way position as the drawer opens and closes.

Description

Centrifugal Processing system With Direct Access Drawer
Field of the Invention
The invention relates to centrifugal pro¬ cessing systems and apparatus. Background of the Invention
Today people routinely separate whole blood by centrifugation into its various therapeutic compo¬ nents, such as red blood cells, platelets, and plasma- Conventional blood processing methods use durable centrifuge equipment in association with single use, sterile processing systems, typically made of plastic. The operator loads the disposable systems upon the centrifuge before processing and removes them afterwards.
Conventional centrifuges often do not permit easy access to the areas where the disposable systems reside during use. As a result, loading and unloading operations can be time consuming and tedious.
Disposable systems are often preformed into desired shapes to simplify the loading and unloading process. However, this approach is often counterpro- ductive, as it increases the cost of the disposables.
Summary of the Invention
The invention provides improved centrifugal processing systems that ptovide easy access to the rotating parts of the centrifuge for loading and un- loading disposable processing components. The inven¬ tion achieves this objective without complicating or increasing the cost of the disposable components. The invention allows relatively inexpensive and straight- forward disposable components to be used.
One aspect of the invention provides a sys¬ tem that includes a centrifuge assembly carried by a frame. The frame encloses an interior area. The cen¬ trifuge assembly including a chamber and a mechanism for rotating the chamber about an axis.
According to this aspect of the invention, a base supports the centrifuge assembly on the frame. The base includes a mechanism for moving the base and, with it, the entire centrifuge assembly on the frame. The movable base allows user to locate the entire cen¬ trifuge assembly within the interior are of the frame, thereby blocking access to the centrifuge as¬ sembly during a processing procedure. The movable base also allows the user to locate the entire centri- fuge assembly outside the interior area of the frame, thereby permitting access to the centrifuge assembly at the end of a processing procedure.
This arrangement fully encloses the centri¬ fuge assembly when necessary during processing opera- tions. Still, the centrifuge assembly can be made readily accessible to the user after the processing operations are over. For example, once the centrifuge assembly is located outside the frame, the user can quickly and easily handle the disposable processing elements that must be installed and then removed be¬ fore and after each processing operation. This elimi¬ nates the need for expensive processing elements spe¬ cially design to be fitted into tight and awkward quarters. In a preferred embodiment, the base moves in a direction generally perpendicular to the rotation axis of the chamber in a drawer that can be opened and closed. The drawer carries the centrifuge assembly, allowing the user to locate the centrifuge assembly in its first position when the drawer is closed and to locate the centrifuge assembly in its second position when the drawer is opened.
In a preferred embodiment, force dampening mounts isolate the base from vibration and oscillation caused by the rotating chamber. In this arrangement, the entire isolated mass of the centrifuge assembly is accessible to the user.
Another aspect of the invention provides movable centrifuge assembly as just described having a processing element that is removably insertable into the processing chamber. An umbilicus conveys fluid into the processing element to undergo centrifugal separation during rotation of the chamber.
According to this aspect of the invention, the centrifuge assembly includes a holder that releasably receives the umbilicus. The holder assumes an operating position that orients the umbilicus in a prescribed relationship with the centrifuge assembly during processing operations. The holder also as- sumes an nonoperating position spaced away from cen¬ trifuge assembly that allowing user access to the chamber.
In this arrangement, as the base and, with it, the centrifuge assembly and holder means are moved to the enclosed position within the frame, the holder moves toward its operating position, ready for pro¬ cessing operations. Likewise, as the base moves to its exposed position outside the frame, the holder moves toward its nonoperating position, opening up access to the chamber. In a preferred embodiment, a locking mecha¬ nism retains the holder in its operating position when the base is in its enclosed position. The locking mechanism is freed in response to movement of the base from its enclosed position toward its exposed posi¬ tion.
In a preferred embodiment, the holder, like the centrifuge assembly itself, is carried on the force dampening mounts, thereby forming a part of the isolated mass of the centrifuge.
The features and advantages of the invention will become apparent from the following description, the drawings, and the claims. Brief Description of the Drawings Fig. 1 is a side elevation view of a pro¬ cessing system that embodies the features of the in¬ vention, with the drawer carrying the rotating components of the centrifuge assembly shown in its open position for loading the associated fluid processing chamber;
Fig. 2 is a front perspective view of the processing system shown in Fig. 1, with the drawer closed as it would be during normal processing operations; Fig. 3 is an exploded perspective view of the drawer and rotating components of the centrifuge assembly;
Fig. 4 is an enlarged perspective view of the rotating components of the centrifuge assembly shown in its suspended operating position;
Fig. 5 is a side sectional view of the ro¬ tating components of the centrifuge assembly taken generally along line 5-5 in Fig. 4;
Fig. 6 is a side elevation view, with por- tions broken away and in section, of the rotating com- ponents of the centrifuge assembly housed within the drawer, which is shown closed;
Fig. 7 is an enlarged side elevation view of the umbilicus mounts associated with the centrifuge assembly;
Fig. 8 is an enlarged perspective view of the zero omega holder and associated upper umbilicus mount;
Fig. 8A is an enlarged perspective view of an alternative embodiment of the zero omega holder, with the associated latch member in its upraised posi¬ tion;
Fig. 8B is an enlarged perspective view of the alternative embodiment of the zero omega holder shown in Fig. 8A, with the associated latch member in its lowered position;
Fig. 9 is a top section view of the upper umbilicus block taken generally along line 9-9 in Fig. 7; Fig. 10 is a schematic view of the drive controller for the rotating components of the centri¬ fuge assembly;
Fig. 11 is a side elevation view, with por¬ tions broken away and in section, of the rotating com- ponents of the centrifuge assembly housed within the drawer, which is shown in a partially opened condi¬ tion;
Fig. 12 is a side elevation view, with por¬ tions broken away and in section, of the rotating co - ponents of the centrifuge assembly housed within the drawer, which is shown in a fully opened condition;
Fig. 13 is a side elevation view, with por¬ tions broken away and in section, of the rotating com¬ ponents of the centrifuge assembly housed within the drawer, which is shown in a fully opened condition, with the centrifuge assembly upright and opened for loading and unloading the associated processing cham¬ ber;
Fig. 14 is a schematic view of the drawer interlocks associated with the centrifuge assembly;
Fig. 15 is an enlarged perspective view of the rotating components of the centrifuge assembly shown in its upraised position for loading and unload¬ ing the associated processing chamber; Fig. 16 is a perspective exploded view of the locking pin component of the swinging lock assem¬ bly that pivots the rotating components of the centrifuge assembly between operating and upraised positions; Fig. 17 is a perspective exploded view of the entire the swinging lock assembly that pivots the rotating components of the centrifuge assembly between its operating and upraised positions;
Figs. 18A; 18B; and 18C are a series of side section views showing the operation of the swinging lock assembly;
Fig. 19 is a side sectional view of the ro¬ tating components of the centrifuge assembly when in its upraised position, taken generally along line 19- 19 in Fig. 15;
Fig. 20 is a side sectional view of the ro¬ tating components of the centrifuge assembly when in its upraised and open position;
Fig. 21 is an enlarged and exploded perspec- tive view, with portions broken away and in section, of a mechanism for moving and securing the centrifuge assembly in its open and closed positions, as well as clamping the umbilicus near the processing chamber;
Fig. 22 is a side section view, taken gener- ally along line 22-22 in Fig. 21, of the latch member associated with the mechanism shown in Fig. 21;
Figs. 23 and 24 are side section views show¬ ing the operation of the latch member associated with the mechanism shown in Fig. 21; Fig. 25 is an enlarged and exploded perspec¬ tive view, with portions broken away and in section, of an alternative mechanism for moving and securing the centrifuge assembly in its open and closed positions, as well as clamping the umbilicus near the processing chamber;
Figs. 26 and 27 are side sectional views showing the operation of the mechanism shown in Fig. 25;
Fig. 28 is a perspective view of the pro- cessing chamber as it is being wrapped onto the cen¬ trifuge spool prior to use;
Fig. 29 is a perspective view of the pro¬ cessing chamber wrapped on the centrifuge spool for use; Fig. 30 is a perspective view, with portions broken away, of the centrifuge spool holding the pro¬ cessing chamber and in position within the centrifuge bowl for use;
Fig. 31 is a top section view, taken gener- ally along line 31-31 of Fig. 30, of the centrifuge spool holding the processing chamber and in position within the centrifuge bowl for use; and
Fig. 32 is an exploded perspective view of an interchangeable centrifuge spool assembly on which a processing chamber can be mounted;
Description of the Preferred Embodiments
Figs. 1 and 2 show a centrifugal processing system 10 that embodies the features of the invention.
The system 10 can be used for processing various flu- ids. The system 10 is particularly well suited for processing whole blood and other suspensions of cellu¬ lar materials that are subject to trauma. Ac¬ cordingly, the illustrated embodiment shows the system 10 used for this purpose. The system 10 includes a centrifuge assembly
12 and an associated fluid processing assembly 14. The centrifuge assembly 12 is a durable equipment item. The fluid processing assembly 14 is a single use, disposable item that the user loads on the cen- trifuge assembly 12 before beginning a processing pro¬ cedure (as Fig. 1 generally shows) and removes from the centrifuge assembly 12 upon the completing the procedure.
The centrifuge assembly 12 comprises a centrifuge 16 mounted for rotation within a cabinet 18. The user maneuvers and transports the cabinet 18 upon the associated wheels 20. It should be appreci¬ ated that, due to its compact form, the centrifuge as¬ sembly 12 also could be made as a tabletop unit. As Figs. 1 and 2 show, the cabinet 18 includes a sliding drawer 36 that holds the centrifuge 16. As Fig. 1 shows, the user opens the drawer 36 to enter the centrifuge 16 for inserting and removing the processing chamber 22. As Fig. 2 shows, the user closes the drawer 36 when conducting a processing op¬ eration.
The processing assembly 14 comprises a pro¬ cessing chamber 22 mounted on th centrifuge 16 for rotation (as Fig. 1 shows) . An associated fluid cir- cuit 24 conveys fluids to and from the processing chamber 22. The fluid circuit 24 has several fluid containers 26. As Fig. 2 shows, in use, the contain¬ ers 26 hang from a support pole outside the cabinet 18. The fluid circuit 24 transits several peristaltic pumps 28 and clamps 30 on the face of the cabinet 18. The fluid circuit 24 enters an access opening 100 leading to the processing chamber 22 mounted within the cabinet 18. In the illustrated environment, the fluid circuit 24 preconnects the processing chamber 22 with the containers 26, forming an integral, sterile unit closed to communication with the atmosphere.
The centrifuge assembly 12 includes a pro¬ cessing controller 32, various details of which are shown in Figs. 10 and 14. The processing controller 32 coordinates the operation of the centrifuge 16. The processing controller 32 preferably uses an in¬ put/output terminal 34 to receive and display informa¬ tion relating to the processing procedure.
The following sections disclose further de- tails of construction of the centrifuge assembly 12, the processing assembly 14, and processing controller 32.
I. THE CENTRIFUGE ASSEMBLY A. The One Omega Platform and Two Omega Chamber
As Fig. 3 shows, the centrifuge 16 includes a base 42 that supports a plate 45 mounted upon flexible isolation mounts 44. The flexible mounts 44 structur¬ ally isolate the components mounted on the plate 45 from the rest of the centrifuge 16, by dampening vi¬ bration and oscillation caused by these plate-mounted components. The components mounted on the plate 45 make up the isolated mass of the centrifuge 16.
A nonrotating outer housing or bucket 46 is mounted on the plate 45. The bucket 46 encloses a stationary platform 48, which in turn supports the rotating components of the centrifuge 16.
As Figs. 4 and 5 show in greater detail, the ro¬ tating components include a centrifuge yoke assembly 50 and a centrifuge chamber assembly 52. The yoke assembly 50 rotates upon the platform 48 on a first drive shaft 54. The chamber assembly 52 rotates on the yoke assembly 50 on a second drive shaft 56. The rotating chamber assembly 52 carries the processing chamber 22.
The yoke assembly 50 includes a yoke base 58, a pair of upstanding yoke arms 60, and a yoke cross mem¬ ber 62 mounted between the arms 60. The base 58 is attached to the first drive shaft 54, which spins on a bearing element 64 about the stationary platform 48. A first electric drive 66 rotates the yoke assembly 50 on the first drive shaft 54.
The chamber assembly 52 is attached to the second drive shaft 56, which spins on a bearing element 68 in the yoke cross member 62. The second drive shaft 56 and the bearing element 68 spin as a unit on ball bearings 70. A second electric drive 72 rotates the centrifuge chamber assembly 52 on the second drive shaft. The first electric drive 66 and the second electric drive 72 each comprises a permanent magnet, brushless DC motor. As Fig. 5 shows, the stationary platform holds the field coils 74 of the first motor 66, while the yoke base 58 comprises the armature or rotor of the first motor 66. The yoke cross member 62 holds the field coils 74 of the second motor 72, while the chamber assembly 52 comprises the associated ar¬ mature or rotor.
In the illustrated and preferred embodiment, the first electric motor 66 spins the yoke assembly 50 at a predetermined speed of rotation (which will be called "one omega") . The second electric motor 72 spins the chamber assembly 52 at the same speed of rotation as the first electric motor 66 in the same direction and about the same axis as the spinning yoke assembly 50. As a result, when viewed from a station¬ ary (i.e., non-rotating or "zero omega") position, the chamber assembly 52 spins at twice the rotational speed of the yoke assembly 50 (which will be called "two omega") .
B. The umb-iUcua Mounts at Zero. One, and Two
Omega As Figs. 6 to 9 show, the fluid circuit 24 join- ing the processing chamber 22 and the processing con¬ tainers 26 comprises separate tubes 74 joined to form an umbilicus 76. Fluids pass to and from the proces¬ sing chamber 22 through these tubes 74.
As Figs. 6 and 7 best show, the centrifuge 16 in- eludes several umbilicus mounts 78, 80, 82, and 84 positioned at spaced apart zero omega, one omega, and two omega positions on the centrifuge 16. The mounts 78, 80, 82, and 84 secure the upper, middle, and lower portions of the umbilicus 76, holding it in an in- verted question mark shape during processing operations.
The first umbilicus mount 78 is part of a holder
86 mounted at a zero omega position above and aligned with the rotational axis of the centrifuge 16. The mount 78 holds the upper portion of the umbilicus 76 against rotation at this position.
As Figs. 3 and 6 best show, the zero omega holder 86 includes a support frame 88, which is itself at¬ tached to the isolation plate 45. The zero omega holder 86 therefore forms a part of the isolated mass of the centrifuge 16.
A pin 90 attaches one end of the zero omega hold¬ er 86 to the support frame 88. The holder 86 pivots on this pin 90 along the rotational axis of centrifuge 16 (as generally shown by arrows in Fig. 3). A spring 92 normally biases the holder 86 away from the rotat¬ ing components 50 and 52 of the centrifuge 16. A so¬ lenoid operated latch pin 94 normally locks the holder 86 in the operating position shown in Fig. 6. It should be appreciated that, alternatively, the holder 86 can be manually locked in the operating position using a conventional over-center toggle mechanism (not shown) or the like.
The zero omega holder 86 has a roller member 96 at its opposite end. The roller member 96 rotates on a shaft 98. The roller member 96 is relieved in its mid-portion (see Fig. 8) to receive the umbilicus 76 as it enters the cabinet 18 through an access opening
100. As Figs. 7 and 8 best show, the first umbilicus mount 78 is located next to the roller member 96. The mount 78 comprises a channel in the holder 86 that captures an upper block 102 carried by the umbilicus
76. When locked in its operating position (shown in Fig. 6) , the zero omega holder 86 applies tension on the umbilicus 76, thereby seating the upper umbilicus block 102 within the mount 78.
In the embodiment illustrated in Figs. 7 to 9, the upper umbilicus block 102 is generally hexagonally shaped. The mount 78 is also configured as a hexagon to mate with the block 102. It should be appreciated that other mating shapes can be used to seat the um¬ bilicus block 102 within the mount 78.
Figs. 8A and 8B show an alternative embodiment for the zero omega holder 86. Like the holder 86 shown in Figs. 7 and 8, the holder 86' is mounted for pivotal movement on a pin 90' to the support frame 88 (not shown in Figs. 8A and 8B) . Also like the holder 86 shown in Figs. 7 and 8, the holder 86' has a roller member 96' and an umbilicus mount 78' located next to it. The functions of these components are as previ¬ ously described.
Unlike the holder 86' shown in Figs. 7 and 8, the holder 86' includes a mechanism for clamping the upper umbilicus block 102 within the mount 78'. While the mechanism can vary, in the illustrated embodiment, it comprises a latch member 250 mounted on pins 252 for pivotal movement on the holder 86'. Fig. 8A shows the latch member 250 in an upraised position, opening the mount 78' for receiving the upper umbilicus block 102. Fig. 8B shows the latch member 250 in a lowered posi¬ tion, covering the mount 78' and retaining the umbili¬ cus block 102 therein. As Fig. 8B shows, the latch member 250 includes a relieved region that accommo- dates passage of the umbilicus 76 when the latch mem¬ ber 250 is lowered.
A pair of resilient tabs 256 on the latch member 250 mate within undercuts 258 on the holder 86' to releasably lock the latch member 250 in its lowered position. Manually squeezing in the area 260 above the resilient tabs 256 releases them from the under¬ cuts 258.
The second and third umbilicus mounts 80 and 82 form a part of a one omega holder 104 carried on the yoke cross member 62. The mounts 80 and 82 take the form of spaced apart slotted apertures that secure the mid-portion of the umbilicus 76 to the yoke cross mem¬ ber 62. The mid-portion of the umbilicus 76 carries a pair of spaced apart resilient bushings 106 that snap-fit within the slotted second and third mounts 80 and 82 (see Figs. 4 and 7) . The slotted mounts 80 and 82 allow the umbilicus bushings 106 to rotate within them, but otherwise secure the umbilicus 76 as the yoke assembly 50 rotates. The yoke cross member 62 carries a counterweight 103 opposite to the one omega holder 104.
The fourth umbilicus mount 84 forms a part of a two omega holder 108 on the processing chamber assem¬ bly 52. As best shown in Figs. 15 and 19, the mount 84 comprises a clamp that captures a lower block 110 carried by the umbilicus 76. The clamp mount 84 grips the lower block 110 to rotate the lower portion of the umbilicus 76 as the chamber 22 itself rotates.
In the illustrated embodiment (see Fig. 19) , the lower umbilicus block 110 (like the upper umbilicus block 102) is generally hexagonally shaped. The clamp mount 84 is also configured to mate with the lower block 110 seated within it. As before pointed out, it should be appreciated that other mating shapes can be used to seat the umbilicus block 110 within the clamp mount 84.
Further details of the fourth umbilicus mount 84 will be discussed later.
The zero omega holder 86 holds the upper portion of the umbilicus in a non-rotating position above the rotating yoke and chamber assemblies 50 and 52. The holder 104 rotates the mid-portion of the umbilicus 76 at the one omega speed of the yoke assembly 50. The holder 108 rotates the lower end of the umbilicus 76 at the two omega speed of the chamber assembly 52. This relative rotation keeps the umbilicus 76 untwist¬ ed, in this way avoiding the need for rotating seals.
C. The One Omeg /Two Omega Drive Control The processing controller 32 includes an all- electrical synchronous drive controller 184 for main¬ taining the desired one omega/two omega relationship between the yoke assembly 50 and the chamber assembly 52. Fig. 10 shows the details of the drive controller 184. As Fig. 10 shows, both motors 66 and 72 are three phase motors. Still, double or other multiple phase motors can be used, if desired. In the illustrated three phase arrangement, the drive controller 184 in- eludes a three phase power driver 186. The drive con¬ troller 184 also includes a commutation controller 188 for three commutator sensors 190 associated with the first three phase electric motor 66.
The power driver 186 uses a single slip ring as- sembly 192 that serves the second electric motor 72. The slip ring assembly 192 includes three slip rings (designated RA, RB, and RC in Fig. 10) , one associated with each pole of the second motor (designated PA, PB, and PC in Fig. 10) . The slip rings RA/RB/RC serve as a conducting means for electricity. Alternative con¬ ducting means, such as a transformer coupling, could be used.
The power driver 186 includes three power feeds (designated FA, FB, and FC in Fig. 10) connected in parallel to the three poles PA/PB/PC of first electric motor 66. The power feeds FA/FB/FC operate the first motor 66 at the preselected constant one omega speed in a closed loop fashion.
The power feeds FA/FB/FC are, in turn, connected in parallel to the three poles PA/PB/PC of the second electric motor 72, each via one slip ring RA/RB/RC. The slip rings serve as a rotating electrical connec¬ tor, transferring power between the first motor 66 (operating at constant speed and in a closed loop) and the second motor 72.
Since the poles PA/PB/PC of both motors 66 and 72 are connected directly together in parallel, a phase error will occur whenever the second motor 72 is not synchronous with the first motor 66. The phase error causes the two motors 66 and 72 to exchange power. Depending upon the phase angle between the counter- electromotive force (emf) voltage vector generated by the rotor and the voltage vector of the feed line, the motors 66 and 72 will either transfer power from the feed lines FA/FB/FC to the rotors (through normal mo¬ tor action) or deliver power from the rotors to a feed line FA/FB/FC (through generator action) .
More particularly, if the rotor of the second motor 72 (spinning the chamber assembly 52) moves ahead of the rotor of the first motor 66 (spinning the yoke assembly 50) , the second motor 72 becomes a gen¬ erator, delivering power to the first motor 66. Be¬ cause the first motor 66 operates in a closed loop at a constant speed, this power transfer retards the ro- tor of the second motor 72, causing the phase error to disappear.
Similarly, if the rotor of the second motor 72 lags behind the first motor 66, the first motor 66 be¬ comes a generator, delivering power to the second mo- tor 72. This power transfer advances the rotor of the second motor 72, again causing the phase error to dis¬ appear.
This continuous power exchange applies a correc¬ tive torque on the rotor of the second motor 72 that either advances or retards the rotor of the second motor 72. In either case, the corrective torque elim¬ inates any phase error between the first and second motors 66 and 72. This keeps the second motor 72 con¬ tinuously in synch with and operating at the same ro- tational speed as the closed loop, constant speed first motor 66.
This arrangement keeps the chamber assembly 52 spinning, relative to zero omega, at exactly two ome¬ ga; i.e., twice the one omega speed of the yoke assem- bly 50. As the following Table illustrates, a drive controller 184 embodying the above features can be used to maintain virtual any speed ratio between two or more motors.
TABLE 1
Figure imgf000019_0001
The drive controller 184 continuously maintains the desired speed ratio without noisy and heavy geared or belted mechanical mechanisms or without complicat¬ ed, sensitive electronic feedback mechanisms. The drive controller 184 allows the centrifuge 16 to be small and lightweight, yet reliable and accurate.
D. The Centrifuge Drawer
The centrifuge drawer 36 moves the entire iso¬ lated mass of the centrifuge 16 (carried on the plate 45) across the axis of rotation. The drawer 36 moves the isolated mass between an operating enclosed posi¬ tion (shown in Figs. 2 and 6) and an opened position accessible to the user (shown in Figs. 1 and 12) .
When in its enclosed position, the cabinet 18 shields all sides of the isolated mass of the centri¬ fuge 16 during operation. When in its opened posi¬ tion, the isolated mass of the centrifuge 18 is with- drawn from the cabinet 18. The user can access all sides of the centrifuge 16 either for maintenance or to conveniently and quickly load and unload the dis¬ posable processing assembly 14. The centrifuge drawer 36 can be constructed in various ways. In the illustrated embodiment (as best shown in Fig. 3) , the centrifuge base 42 (which sup¬ ports the plate 45 upon the flexible isolation mounts 44) rides on tracks 38 within the cabinet 18. The drawer 36 includes a housing 34 attached to the iso¬ lated base 42 for movement on the tracks 38. The housing 34 has a front handle 40 that the user can grasp to move the entire isolated mass of the centri¬ fuge 16 along the tracks 38 between the enclosed and opened positions.
The controller 32 includes a user-accessible switch 114 (see Fig. 1) that operates a latch solenoid 116 for the drawer 36. The solenoid 116 normally locks the drawer 36 to keep the centrifuge 16 in its enclosed operating position (as Fig. 6 shows) . Pref¬ erable, the processing controller 32 includes an in¬ terlock 118 (see Fig. 14) that prevents operation of the solenoid 196 to unlock the drawer 36 whenever pow¬ er is supplied to the centrifuge motors 66 and 72. The interlock 118 also preferably retains the latch pin 94 in its engaged position with the zero omega holder 86 (as Fig. 6 also .shows) , keeping the holder 86 in its operating position during processing operations. When power is not being supplied to the centri¬ fuge motors 66 and 72, operation of the switch 114 moves the solenoid 116 to its unlocked position (as Fig. ' 11 shows) . This frees the drawer 36, allowing the user to enter the centrifuge 16. Also, the latch- ing pin 94 withdraws, freeing the zero omega holder 86 for pivotal movement on the support frame 88.
As Figs. 11 and 12 show, as the user opens the drawer 36, moving the isolated mass of the centrifuge 16 to its accessible position, the roller member 96 on the zero omega holder 86 travels along an interior ramp 112 within the cabinet 18. As the drawer 36 opens, the ramp 112 urges the zero omega holder 86 down against the biasing force of the spring 92, guid¬ ing the roller member 96 into and through the access opening 100.
Once the isolated mass of the centrifuge 16 is in its opened position (as Fig. 12 shows) , the user can apply a downward force upon the spring biased zero omega holder 86 to free the upper umbilicus block 102 from the mount 78. Once freed from the block 102, the biasing spring 92 pivots the zero omega holder to a fully upraised and out-of-the-way position shown in phantom lines in Fig. 12 and in solid lines in Fig. 13. As will be described in greater detail later, the ramp 112 also serves to guide the roller member 96 as the drawer 36 closes to return the zero omega hold¬ er 86 to its normal operating position.
E. The Two Omega π a-mbar Assembly
As Fig. 13 shows, once the centrifuge 16 occu¬ pies its accessible position outside the cabinet 18, the user can pivot the entire processing chamber as¬ sembly 52 about the yoke cross member 62 to an upright position convenient for loading and unloading the pro¬ cessing chamber 22 (Fig. 1 shows this, too) . As Fig. 13 also shows, once in its upright position, the user can further open the entire processing chamber assem¬ bly 52 to further simplify loading and unloading oper- ations. 1. Pivoting the Chamber Assembly for Loading Figs. 15 to 18A/B/C show the details of the pivot assembly 194 for moving the processing chamber 52 into its upright position.
The pivot assembly 194 suspends the yoke cross member 62 between the yoke arms 60. The two omega chamber assembly 52 carried on the cross member 62 thereby rotates between a downward suspended position (shown in Fig. 4) and an upright position (shown in Fig. 15) .
When operating, the chamber assembly 52 oc¬ cupies the suspended position. The user places the chamber assembly 52 in the upright position for load- ing and unloading the processing chamber 22 after hav¬ ing placed the isolated mass of the centrifuge 16 is in its accessible opened position outside the cabinet. The pivot assembly 194 for the chamber assembly 52 may be constructed in various alternative ways. Figs. 15 to 18A/B/C to 18 show the details of one pre¬ ferred embodiment. The Figures show only one side of the pivot assembly 194 in detail, because the other side is constructed in the same manner.
The pivot assembly 194 includes a pair of left and right pivot pins 196. Bearings 198 carry the piv¬ ot pins 196 on the yoke arms 60. A retainer bracket 200 secures each pivot pin 196 to the yoke cross mem¬ ber 62.
- The pivot assembly 194 employs a swinging lock assembly 202 to control the extent and speed of rotation of the chamber assembly 52 on the pivot pins 96. The swinging lock assembly 202 includes a rotat¬ ing cam 204 secured to the end of each pivot pin 196. Each cam 204 includes a cut out arcuate groove 206 (see Fig.. 16) that ends at opposite first and second detents, respectively 208 and 210. The groove 206 defines the range of rotation of the chamber assembly 52 on the pivot assembly 194.
The swinging lock assembly 202 also includes left and right locking pins 212 carried in the top of each yoke arm 60. Each locking pin 212 has an end key 214 that rides within the interior groove 206 of the associated cam 204. The opposite end of each locking pin 212 forms a control button for manipulation by the user at the top of the upright yoke arms 60.
The user can independently move each locking pin 212 between an upraised position (shown in Figs. 18A and 18C) and a depressed position (shown in Fig. 18B) . The swinging lock assembly 202 uses a spring 218 to normally bias each locking pin 212 toward its upraised position.
When in its upraised position, the end key 214 of each locking pin 212 is captured within either the first detent 208 or the second detent 210 of the as- sociated cam 204, depending upon the rotational position of the cam 204. When captured by either detent 208/210, the end key 214 prevents further rota¬ tion of the associated cam 204. When in its upraised position, the end key 214 locks the chamber assembly 52 into either its upright load position or its sus¬ pended operating position.
More particularly, when the first detent 208 captures the end key 214 of at least one locking pin 212 (as Fig. 18A shows) , the locked cam 204 holds the chamber assembly 52 in its suspended operating posi¬ tion (shown in Fig. 4) . When the second detent 210 captures the end key 214 of at least one locking pin 212 (as Fig. 18C shows) , the locked cam 204 holds the chamber assembly 52 in its upraised load position (shown in Fig. 15). When the user depresses the locking pin 212 (as Fig. 18B shows) , the end key 214 moves out of the detent 208/210 and into the groove 206, freeing the associated cam 204 for rotation within the limits of groove 206. By freeing the end keys 214 of both lock¬ ing pins 212 from their associated detents 208/210, the user pivots the chamber assembly 52 between its operating and load positions. Upon rotation from one detent position to the other, the biasing springs 218 automatically snap the end key 214 of each the locking pin 212 into the other detent as it reaches alignment with the end key 214, thereby automatically locking the chamber assembly 52 in the other detent position. In the illustrated and preferred embodiment, the swinging lock assembly 202 also includes a biasing spring 220 associated with each cam 204. The springs 220 rotationally bias the cams 204 toward the position shown in Fig. 18C, where the second detent 210 cap¬ tures the end keys 214 of the locking pins 212. To- gether, the springs 220 bias the chamber assembly 52 toward its upraised load position.
In this arrangement, by depressing both locking pins 212 with the chamber assembly 52 located in its downward operating position (Fig. 18A) , the freed cams 204 automatically swing the chamber assembly 52 in re¬ sponse to the springs 220 into its upraised load posi¬ tion (Fig. 18C) .
The swinging lock assembly 202 also preferably includes a damping cylinder 222 associated with each spring assisted cam 204. The damping cylinder 222 has a spring or pressure operated pin 224 that con¬ tinuously presses against an outwardly radially tapered damping surface 226 on each cam 204. As it rides upon the tapered damping surface 226, the pin 224 progressively resists the spring-assisted rotation of each cam 204, moving from the first detent 208 (the downward operating position) toward the second detent 210 (the upraised load position) . The progressive re¬ sistance of the pin 224 slows the pivotal movement of the assembly 52, as the pin 224 comes to rest at the outermost radius of the ramp 226 (as Fig. 18B shows) , which amounts to about 100 degrees of rotation from the suspended operating position. The user then pulls on the processing chamber 52 to rotate it about an additional 30 degrees to slip the pin 224 into a re¬ taining notch 216 (as Fig. 18C shows) . There, the biasing springs 218 of each locking pin 212 snap the end keys 214 into the second detents 210, locking the chamber assembly 52 in its upraised load position. With the chamber assembly 52 located in its up¬ raised position, the user can simultaneously depress both locking pins 212. The chamber assembly.52 will rotate about 30 degrees, until the pin 224 abuts against the ramped portion 217 of the notch 216. The user is then free to release the locking pins 212 without engaging the second detents 210 and manually pivot the chamber assembly 52 to free the pin 224 from the retaining notch 216. Further rotation against the action of the biasing springs 220 brings the chamber assembly 52 back to its operating position. There, the biasing springs 218 of each locking pin 212 snap the end keys 214 into the first detents 208 of the cams 204, preventing further rotation out of this po¬ sition during processing. As Fig. 15 shows, a protective cover 221 is preferably mounted on each side of the yoke arms 60 to enclose the pivot assembly 194 and associated compo¬ nents. This protective cover 221 has been removed or cut away in some of the drawings to simplify the dis- cussion. 2. Opening the Chamber Assembly for Loading As Figs. 13, 19 and 20 show, when locked in its upraised position, the user also can open the chamber assembly 52 for loading and unloading the replaceable processing chamber 22 in the manner shown in Fig. 1. For this purpose, the chamber assembly 52 includes a rotating outer bowl 128 that carries within it an inner spool 130. In use, the inner spool 130 holds the processing chamber 22. The inner spool 130 telescopically moves into and out of the outer bowl 128 to allow the mounting and removal of the chamber 22 upon the spool 130.
The outer bowl 128 has a generally cylindrical interior surface 132. The inner spool 130 has an ex¬ terior peripheral surface 134 that fits telescopically within the outer bowl surface 132 (see Fig. 9) . An arcuate channel 136 extends between the two surfaces 132 and 134. When mounted on the spool 130, the pro- cessing chamber 22 occupies this channel 136. The spool 130 preferably includes top and bottom flanges 138 to orient the processing chamber 22 within the channel 136.
The centrifuge assembly 12 includes a mechanism for moving the inner spool 130 into and out of the bowl 128. The mechanism can be variously constructed, and Figs. 19 to 24 show one preferred arrangement.
As Figs. 19 and 20 show, the outer bowl 128 is coupled to the second drive shaft 56. The inner spool 130 includes a center hub 140. A spool shaft 142 is secured to the hub 140 by a pin 144. The spool shaft 142 fits telescopically within the open bore of the second drive shaft 56.
The exterior surface of the spool shaft 142 has a hexagonal shape (as Fig. 21 best shows) . The inte- rior bore at the base 146 of the second drive shaft 56 has a mating hexagonal shape. The mating hexagonal surfaces couple the spool 130 to the bowl 128 for com¬ mon rotation with the second drive shaft 56. In the arrangement, the inner spool 130 is movable along the second drive shaft 56 between a low¬ ered operating position within the outer bowl 128 (as Fig. 19 shows) and an unlifted loading position out of the outer bowl 128 (as Fig. 20 shows) . As Fig. 21 best shows, the hub 140 preferably takes the shape of a handle that the user can easily grasp to raise and lower the spool 130.
As Figs. 19 and 20 show, the spool shaft 142 includes an axial keyway 148 having a lower detent 150 and an upper detent 152. The keyway 148 defines the range of up and down movement of the spool 130 within the bowl 128.
The bowl 128 includes a detent pin 154 that ex¬ tends into the open bore of the second drive shaft 56. A spring 156 biases the detent pin 154 into the keyway 148, where it rides into and out of releasable engagement with the lower and upper detents 150 and 152 as the user raises and lowers the spool 130.
In this arrangement, when the upper detent 152 engages the spring biased pin 154 (as Fig. 19 shows) , the spool 130 is releasably retained in its lowered operating position. When the lower detent 150 engages the spring biased pin 154 (as Fig. 20 shows) , the spool 130 is releasably retained in its uplifted load- ing position. Normal external lifting and lowering force exerted by the user overcomes the biasing force of the spring 156 to easily move the spool 130 up and down between these two limit positions.
With the spool 130 locked in its uplifted posi- tion, the user can wrap the processing chamber 22 upon the peripheral spool surface 134 (as Fig. 1 shows) . With the spool 130 locked in its lowered position (see Fig. 19) , the wrapped processing chamber 22 is sandwiched within the channel 136 between the spool 130 and the bowl 128. Rotation of the chamber assem¬ bly 52 subjects the processing chamber 22 to centrifugal forces within the channel 136.
A locking mechanism 158 prevents the spool 130 from dropping out of the bowl 128 while the chamber assembly 52 rotates in its downward suspended operat¬ ing position.
The mechanism 158 includes locking pin 160 fas¬ tened to the bowl 128. The distal end of the locking pin 160 extends out through a passage 120 in the hub 140. The distal end includes a notch 122.
As Figs. 21 and 22 show, a latch member 124 slides on tracks 126 upon the handle end of the hub 140. The notched distal end of the locking pin 160 passes through an elongated slot 162 in the latch mem- ber 124. Springs 164 normally bias the latch member 124 toward a forward position on the handle end of the hub 140. In this position (shown in Fig. 24), the notch 122 engages the rear edge 163 of the slot 162. This engagement secures the spool 130 to the bowl 128. The latch member 124 is mass balanced so that centrif¬ ugal force will not open it during use.
As Fig. 23 shows, sliding the latch member 124 rearward frees the notch 122 from the rear slot edge
163. This releases the spool 130 from the bowl 128, allowing the user to lift the spool 130 from the bowl
120 in the manner previously described.
In the embodiment shown in Figs. 19 to 24, the sliding latch member 124 also forms a part of the two omega umbilicus clamp mount 84. As Figs. 21 and 23 show, sliding the latch member 124 rearward opens the mount 84 to receive the lower umbilicus block 110. The spring assisted return of the latch member 124 to its forward position (shown in Fig. 24) captures the lower umbilicus block 110 within the mount 84. The biasing springs 164 also hold the latch member 124 closed to clamp the block 110 within the mount during processing operations.
In this arrangement, the locking pin 160 is preferably flexible enough to be resiliently displaced by the user (as the phantom lines in Fig. 24 show) to free the notch 122 from the rear slot edge 163 without operating the latch member 124. This allows the user to lift the spool 130 into its upraised position with¬ out freeing the lower umbilicus block (as Fig. 13 shows) .
As Figs. 22 and 23 also show, the latch member 124 is preferably vertically moveable within the tracks to drop the rear slot edge 163 into engagement against the rear edge 166 of the hub handle. This allows the user to temporarily secure the latch member 124 in its rearward position against the action of the biasing springs 164, freeing both of the user's hands to load the umbilicus 76. Lifting upward frees the rear slot edge 163, allowing the springs 164 to return the latch member 164 to its forward clamping position.
Figs. 25 to 27 show an alternative locking mechanism 158 for the spool 130. In this arrangement, the second drive shaft 56 includes an undercut latchway 168. The hub 140 houses a latch pawl 170 carried by a pin 172 for pivotal movement between an engaged position with the latchway 168 (as Fig. 26 shows) and a disengaged position from the latchway 168 (as Figs. 25 and 27 show) .
The hub 140 carries linkage 174 that operates the latch pawl 170. The linkage 174 has a hooked end 176 coupled to the latch pawl 170 and a pin end 178 positioned in the path of a cam 180 carried by a latch lever 182. A pin 228 attaches the latch lever 182 to the hub 140 for pivotal movement between an unlatched position (shown in Figs. 25 and 27) and a latching position (shown in Fig. 26) .
A spring 230 normally biases the linkage 190 to maintain the latch pawl 170 in its disengaged position when the latch lever 182 is in its unlatched position. In this orientation, the user is free to raise the spool 130 in the manner just described.
With the spool 130 in its lowered position, movement of the latch lever 182 to the latching posi¬ tion brings the cam 180 into contact with the pin end 178. Depressing the pin end 178 in turn moves the linkage 174 against the biasing force of the spring 230 to pivot the latch pawl 170 into its engaged po¬ sition with the latchway 168. In this orientation, the interference between the latch pawl 170 and the latchway 168 prevents axial movement of the spool 130 along the second drive shaft.
When the latch lever 182 is in its latching position, spring biased pins 232 releasably engage detents 234 on the latch lever 182. The pins 232 releasably resist movement of the latch lever 182 out of its latching position. By applying deliberate lifting force to the latch lever 182, the user can overcome the spring biased pins 232 to move the latch¬ ing lever 182 into its unlatched position. In this arrangement, a holding bracket 236 as¬ sociated with the latch lever 182 locks the lower um¬ bilicus block 110 within the mount 84 while the spool 130 is locked into its lowered position. In this em¬ bodiment, the holding bracket 236 opens the mount 84 when the latch lever 182 is in its unlatched position (shown in Fig. 25) and closes the mount 84 when the latch lever 182 is in its latching position (shown in Fig. 26) .
F. Loading the Fluid Processing Assembly
Figs. 28 to 31 show the details of loading a representative processing assembly 14 on the centri¬ fuge 16, as is generally depicted in Fig. 1. The rep¬ resentative processing assembly 14 includes a processing chamber 22 formed as an elongated flexible tube or belt made of a flexible, biocompatible plastic material such as plasticized medical grade polyvinyl chloride. The umbilicus tubes 74 communicate with ports 248 to conduct fluids into and out of the pro- cessing chamber 22.
The user begins the loading process by wrapping the flexible processing chamber 22 about the upraised and open spool 130.
As Fig. 28 best shows, the spool 130 includes one or more alignment tabs 238 on the spool 130. The spool alignment tabs 238 register with alignment notches 240 on the processing chamber 22 to assure the desired orientation of the processing chamber 22 on the spool 130. Of course, the ways of aligning the chamber 22 on the spool 130 can vary. In the illustrated em¬ bodiment, the spool 130 has two alignment tabs 238A and 238B, and the processing chamber 22 has two mating alignment notches 240A and 240B. Alternatively, pins or other alignment mechanisms can be used.
As Fig. 28 shows, one spool alignment tab 238A protrudes from the spool surface 134 and mates with the notch 240A on the processing chamber 22. The oth¬ er spool alignment tab 238B protrudes from a flap 242 that extends from and overhangs a portion of the spool surface 134.
In the illustrated embodiment, the flap 242 is hinged. It is movable between a raised position (shown in phantom lines in Fig. 28) , away from the spool surface 134, and a lowered position (shown in solid lines in Fig. 28) , facing toward the spool sur¬ face 134. By placing the flap 242 into its lowered position, the alignment tab 238B on the flap 242 fits within a retainer 244 in the spool surface 134. In this arrangement, with the flap 242 upraised, the user aligns the notch 240A with the tab 238A and aligns the notch 24OB over the retainer 244. Lowering the flap 242 places the tab 238B into the retainer 244, capturing the notch 240B between the flap 242 and the spool surface 134 (as Fig. 28 shows) to hold the processing chamber 22 in place.
Instead of a hinged flap 242, a flap fixed in the lowered position can be used. In this arrange¬ ment, the user tucks the processing chamber 22 beneath the flap.
As Fig. 29 shows, the user completes the loading process by overlapping the free ends of the processing chamber 22 on the opposite side of the spool 130. A clip 246 captures the overlapping ends, holding them close against the spool surface 134. Alternatively, an adhesive tab (not shown) can be used to hold the overlapping ends of the processing chamber 22 together, a"s could pins mating with associated holes in the processing chamber 22. The user then lowers and locks the spool 130 within the bowl 128 in the manner previously described to complete the loading process (as Fig. 30 shows) . The user clamps the lower umbilicus block 110 into the mount 84 in the manner previously described and pivots the chamber assembly 52 into its downward suspended position shown in Fig. 4.
The user then snaps the umbilicus bushings 106 into position in the slotted second and third mounts 80 and 82 on the one omega holder 104, as Fig. 4 shows. The user lowers the zero omega holder 86 to¬ ward the rotating components 50 and 52 of the centrifuge 16 to seat the upper block 102 into the mount 78.
The user closes the drawer 36 and completes the loading process by placing the tubes 74 into operative alignment with the pumps 28 and clamps 30 on the front panel of the cabinet 18.
The user generally follows a reverse sequence of steps to unload the fluid processing assembly 14.
G. Shaping the Processing Chamber The interior bowl surface 132 and the exterior spool surface 134 are preformed to create within the high-G and low-G regions of the processing chamber 22 the specific contours required either to get the de¬ sired separation effects or to achieve optimal priming and air purging, or both.
In the embodiment shown in Fig. 32, the interi¬ or bowl surface 132 is preformed with a constant outer radius (as measured from the rotational axis) . In this arrangement, the exterior spool surface 134 is preformed with contours of varying radii (also as mea¬ sured from the rotational axis) to present the desired geometry for the low-G region. For areas where a non-iso-radial geometry on the high-G wall is desired, the chamber assembly 52 includes an overhanging attachment on the spool 130 extending between the low-G spool surface 134 and the high-G bowl surface 132. In the illustrated embodi- ment the attachment comprises the hinged flap 242 previously described. As Fig. 31 shows, the flap 242 is clipped, fastened by screws, or otherwise con¬ veniently attached to the spool 130.
In this arrangement, all structures that create the desired contours in both the high-G and low-G re¬ gions of the chamber 22 are associated with the inner spool 130. In this way, changes in the contours to do different procedures or air purging methods can be made simply by changing the spool 130. As Fig. 32 shows, the user can completely separate the spool 130 from the bowl 128 by pulling up on the spool 130 to fully release the spool 130 from the locking pin 160. Since the spool 130 contains the desired contour forming surfaces for the processing chamber 22, the user can easily and quickly remove and exchange a spool having one configuration with a spool having another configuration.
Various features of the invention are set forth in the following claims.

Claims

I claim:
1. A centrifugation system comprising a frame enclosing an interior area, a centrifuge assembly including a chamber and means for rotating the chamber about an axis, and a base for supporting the centrifuge assem¬ bly on the frame including track means for moving the base and, with it, the centrifuge assembly between a first position within the interior area of the frame blocking access to the centrifuge assembly and a sec- ond position outside the interior area of the frame permitting access to the centrifuge assembly.
2. A centrifugation system comprising a frame enclosing an interior area, a centrifuge assembly including a chamber, means for rotating the chamber about an axis, and a processing element removably insertable into the cham¬ ber for receiving fluids to undergo centrifugal sepa¬ ration during rotation of the chamber, a base for supporting the centrifuge assem¬ bly on the frame including track means for moving the base and, with it, the centrifuge assembly between a first position within the interior area of the frame blocking access to the centrifuge assembly and a sec¬ ond position outside the interior area of the frame permitting access to the centrifuge assembly for in- sertion and removal of the processing element.
3. A system according to claim 1 or 2 and further including force dampening means between the centrifuge assembly and the base for isolating the base from vibration and oscillation caused by the ro- tating chamber.
4. A system according to claim 1 or 2 wherein the track means moves the base in a direction generally perpendicular to the rotation axis of the chamber.
5. A system according to claim 1 or 2 wherein the frame includes a drawer moveable in the track means between a closed position and an opened position, and wherein the centrifuge assembly base is mounted within the drawer to locate the centrifuge assembly in its first position when the drawer is closed and to locate the centrifuge assembly in its second position when the drawer is opened.
6. A system according to claim 5 and further including means for locking the drawer in its closed position.
7. A system according to claim 5 and further including interlock means for preventing opening of drawer when the chamber is ro¬ tated.
8. A centrifugation system comprising a frame enclosing an interior area, a centrifuge assembly including a chamber, means for rotating the chamber about an axis, a processing element removably insertable into the chamber, an umbilicus for conveying fluid into the processing element to undergo centrifugal separation during rotation of the chamber, a base for supporting the centrifuge assem¬ bly on the frame and including holder means including mounting means for releasably receiving the umbilicus, the holder means being moveable between an operating position for orienting the umbilicus within the mounting means in a prescribed relationship with the centrifuge assembly and an nonoperating position spaced away from centri¬ fuge assembly and allowing user access to the chamber. track means for moving the base and, with it, the centrifuge assembly and holder means be¬ tween an enclosed position within the interior area of the frame blocking access to the centrifuge assembly and holder means and an exposed position outside the interior area of the frame permitting access to the centrifuge assembly and holder means for insertion and removal of the processing element in the chamber and mounting and removing the umbilicus on the holder means, and means for moving the holder means to- ward its operating position during movement of the base toward the enclosed position and for moving the holder means toward its nonoperating position during movement of the base toward the exposed position.
9. A system according to claim 8 and further including locking means for re¬ taining the holder means in its operating position when the base is in its enclosed position.
10. A system according to claim 9 wherein the locking means is freed in re¬ sponse to movement of the base from its enclosed posi¬ tion toward its exposed position.
11. A system according to claim 8 and further including force dampening means between the base and the centrifuge assembly and the holder means for isolating the base from vibration and oscillation of the centrifuge assembly and holder means caused by the rotating chamber.
12. A system according to claim 8 wherein the track means moves the base in a direction generally perpendicular to the rotation axis of the chamber, and wherein the means for moving the holder means pivots the holder means generally axially of the rotational axis.
13. A system according to claim 8 wherein the frame includes a drawer moveable in the track means between an closed position and an opened position, and wherein the centrifuge assembly base is mounted within the drawer to locate the centrifuge assembly and the holder means in the enclosed position when the drawer is closed and to locate the centrifuge assembly in its exposed position when the drawer is opened.
14. A system according to claim 13 wherein the drawer has an open top to allow user access to the centrifuge assembly when the drawer is opened.
15. A system according to claim 14 wherein the holder means orients the umbili¬ cus in a prescribed relationship above the centrifuge assembly when in its operating position and is spaced away from centrifuge assembly when in its nonoperating position to allow user access to the chamber through the open top of the drawer when the drawer is opened.
16. A system according to claim 13 wherein the drawer means moves the base in a direction generally perpendicular to the rotation axis of the chamber, and wherein the means for moving the holder means pivots the holder means generally axially of the rotational axis during movement of the drawer means.
17. A system according to claim 8 wherein the means for moving the holder means includes first means for biasing the holder means toward its nonoperating position and second means for retaining the holder means in its operating position against the force of the first means when the base is in its enclosed position.
18. A system according to claim 17 wherein the second means includes locking means for retaining the holder means in its operating position when the base is in its enclosed position and means for releasing the locking means in response to movement of the base.from its enclosed position toward its exposed position to allow the first means to urge the holder means towards its nonoperating position.
PCT/US1992/011216 1991-12-23 1992-12-23 Centrifugal processing system with direct access drawer WO1993012887A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5511906A JPH06505675A (en) 1991-12-23 1992-12-23 Centrifugal processing system with direct access drawer
AU33348/93A AU652888B2 (en) 1991-12-23 1992-12-23 Centrifugal processing system with direct access drawer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81315791A 1991-12-23 1991-12-23
US7/813,157 1991-12-23

Publications (1)

Publication Number Publication Date
WO1993012887A1 true WO1993012887A1 (en) 1993-07-08

Family

ID=25211609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/011216 WO1993012887A1 (en) 1991-12-23 1992-12-23 Centrifugal processing system with direct access drawer

Country Status (6)

Country Link
US (1) US5362291A (en)
EP (1) EP0572623A1 (en)
JP (1) JPH06505675A (en)
AU (1) AU652888B2 (en)
CA (1) CA2103914A1 (en)
WO (1) WO1993012887A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683695A1 (en) * 1993-12-22 1995-11-29 Baxter International Inc. Centrifuge with sloped rotational axis and sloped control panel
EP0933133A2 (en) * 1998-01-30 1999-08-04 Fresenius AG Centrifuge and conduit for supplying and/or removing at least one fluid from the separation unit of a centrifuge to a fixed connection site
US6716154B2 (en) * 2001-08-31 2004-04-06 Fresenius Hemocare Gmbh Centrifuge with a fluid line guide element having a curved bearing surface
CN101875026A (en) * 2010-08-17 2010-11-03 金卫医疗科技(上海)有限公司 Rotary limit device applied to differential centrifugal separation system
US7914477B2 (en) 2002-03-04 2011-03-29 Therakos, Inc. Apparatus for the continuous separation of biological fluids into components and method of using same
US9238097B2 (en) 2002-03-04 2016-01-19 Therakos, Inc. Method for collecting a desired blood component and performing a photopheresis treatment
US9839920B2 (en) 2009-10-06 2017-12-12 Satorius Stedim North America Inc. Apparatus for manipulating particles using at least one chamber having an inlet and an opposed outlet

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551942A (en) * 1993-12-22 1996-09-03 Baxter International Inc. Centrifuge with pivot-out, easy-load processing chamber
US5514069A (en) * 1993-12-22 1996-05-07 Baxter International Inc. Stress-bearing umbilicus for a compact centrifuge
AU702151B2 (en) * 1995-04-18 1999-02-18 Gambro Inc Particle separation apparatus and method
US5674173A (en) * 1995-04-18 1997-10-07 Cobe Laboratories, Inc. Apparatus for separating particles
US6053856A (en) * 1995-04-18 2000-04-25 Cobe Laboratories Tubing set apparatus and method for separation of fluid components
US5913768A (en) * 1995-04-18 1999-06-22 Cobe Laboratories, Inc. Particle filter apparatus
US6022306A (en) * 1995-04-18 2000-02-08 Cobe Laboratories, Inc. Method and apparatus for collecting hyperconcentrated platelets
US5653887A (en) * 1995-06-07 1997-08-05 Cobe Laboratories, Inc. Apheresis blood processing method using pictorial displays
US5702357A (en) 1995-06-07 1997-12-30 Cobe Laboratories, Inc. Extracorporeal blood processing methods and apparatus
US5738644A (en) 1995-06-07 1998-04-14 Cobe Laboratories, Inc. Extracorporeal blood processing methods and apparatus
US5720716A (en) * 1995-06-07 1998-02-24 Cobe Laboratories, Inc. Extracorporeal blood processing methods and apparatus
US6790195B2 (en) * 1995-06-07 2004-09-14 Gambro Inc Extracorporeal blood processing methods and apparatus
US5795317A (en) * 1995-06-07 1998-08-18 Cobe Laboratories, Inc. Extracorporeal blood processing methods and apparatus
US5750025A (en) * 1995-06-07 1998-05-12 Cobe Laboratories, Inc. Disposable for an apheresis system with a contoured support
US5837150A (en) * 1995-06-07 1998-11-17 Cobe Laboratories, Inc. Extracorporeal blood processing methods
US5676644A (en) * 1995-06-07 1997-10-14 Cobe Laboratories, Inc. Extracorporeal blood processing methods and apparatus
WO1996040322A2 (en) * 1995-06-07 1996-12-19 Cobe Laboratories, Inc. Extracorporeal blood processing methods and apparatus
US5722946A (en) * 1995-06-07 1998-03-03 Cobe Laboratories, Inc. Extracorporeal blood processing methods and apparatus
US5904645A (en) * 1996-05-15 1999-05-18 Cobe Laboratories Apparatus for reducing turbulence in fluid flow
DE69702979T2 (en) * 1996-05-15 2000-12-28 Gambro Inc METHOD AND DEVICE FOR REDUCING TURBULENCES IN LIQUID FLOWS
US5792038A (en) * 1996-05-15 1998-08-11 Cobe Laboratories, Inc. Centrifugal separation device for providing a substantially coriolis-free pathway
US6344020B1 (en) 1997-04-11 2002-02-05 Baxter International Inc. Bearing and umbilicus gimbal with bearing retainer in blood processing system
US5989177A (en) * 1997-04-11 1999-11-23 Baxter International Inc. Umbilicus gimbal with bearing retainer
US6200287B1 (en) 1997-09-05 2001-03-13 Gambro, Inc. Extracorporeal blood processing methods and apparatus
US6051146A (en) * 1998-01-20 2000-04-18 Cobe Laboratories, Inc. Methods for separation of particles
US6153113A (en) 1999-02-22 2000-11-28 Cobe Laboratories, Inc. Method for using ligands in particle separation
US6334842B1 (en) 1999-03-16 2002-01-01 Gambro, Inc. Centrifugal separation apparatus and method for separating fluid components
US6524231B1 (en) 1999-09-03 2003-02-25 Baxter International Inc. Blood separation chamber with constricted interior channel and recessed passage
US6860846B2 (en) * 1999-09-03 2005-03-01 Baxter International Inc. Blood processing systems and methods with umbilicus-driven blood processing chambers
US20020094927A1 (en) * 1999-09-03 2002-07-18 Baxter International Inc. Blood separation systems and methods with umbilicus-driven blood separation chambers
US6315707B1 (en) 1999-09-03 2001-11-13 Baxter International Inc. Systems and methods for seperating blood in a rotating field
US6322488B1 (en) * 1999-09-03 2001-11-27 Baxter International Inc. Blood separation chamber with preformed blood flow passages and centralized connection to external tubing
US6354986B1 (en) 2000-02-16 2002-03-12 Gambro, Inc. Reverse-flow chamber purging during centrifugal separation
WO2001066172A2 (en) * 2000-03-09 2001-09-13 Gambro, Inc. Extracorporeal blood processing method and apparatus
DE10129769A1 (en) * 2001-06-20 2003-01-09 Fresenius Hemocare Gmbh Hose assembly and method of making it
KR100415727B1 (en) * 2001-11-02 2004-01-24 (주)메드큐브 Medical device for medical treatment
EP1454135B1 (en) * 2001-12-05 2009-01-21 CaridianBCT, Inc. Methods and apparatus for separation of blood components
EP1494735B1 (en) 2002-04-16 2008-01-02 Gambro BCT, Inc. Blood component processing system and method
US7297272B2 (en) 2002-10-24 2007-11-20 Fenwal, Inc. Separation apparatus and method
US6849039B2 (en) * 2002-10-24 2005-02-01 Baxter International Inc. Blood processing systems and methods for collecting plasma free or essentially free of cellular blood components
US7316286B2 (en) * 2004-08-17 2008-01-08 Mi-T-M Corporation Pressure washer with vibration dampener
US7476209B2 (en) 2004-12-21 2009-01-13 Therakos, Inc. Method and apparatus for collecting a blood component and performing a photopheresis treatment
US20080035585A1 (en) * 2006-08-10 2008-02-14 Gambro Bct, Inc. Method and Apparatus for Recirculating Elutriation Fluids
US8257239B2 (en) * 2010-06-15 2012-09-04 Fenwal, Inc. Umbilicus for use in an umbilicus-driven fluid processing
US8277369B2 (en) 2010-06-15 2012-10-02 Fenwal, Inc. Bearing and bearing assembly for umbilicus of a fluid processing system
CN104345165B (en) 2010-07-23 2016-09-14 贝克曼考尔特公司 Comprise the system and method for analytic unit
US9700672B2 (en) 2011-09-21 2017-07-11 Bayer Healthcare Llc Continuous multi-fluid pump device, drive and actuating system and method
CN104105969B (en) * 2011-11-07 2016-10-12 贝克曼考尔特公司 Centrifuge system and workflow
ES2778054T3 (en) 2011-11-07 2020-08-07 Beckman Coulter Inc System and method for transporting sample containers
KR102040996B1 (en) 2011-11-07 2019-11-05 베크만 컬터, 인코포레이티드 Robotic arm
JP6062449B2 (en) 2011-11-07 2017-01-18 ベックマン コールター, インコーポレイテッド Specimen container detection
WO2013070748A1 (en) 2011-11-07 2013-05-16 Beckman Coulter, Inc. Magnetic damping for specimen transport system
KR20140092377A (en) 2011-11-07 2014-07-23 베크만 컬터, 인코포레이티드 Aliquotter system and workflow
US9733805B2 (en) 2012-06-26 2017-08-15 Terumo Bct, Inc. Generating procedures for entering data prior to separating a liquid into components
US9383044B2 (en) 2013-02-15 2016-07-05 Fenwal, Inc. Low cost umbilicus without overmolding
US9248446B2 (en) 2013-02-18 2016-02-02 Terumo Bct, Inc. System for blood separation with a separation chamber having an internal gravity valve
AU2016205275B2 (en) 2015-01-09 2020-11-12 Bayer Healthcare Llc Multiple fluid delivery system with multi-use disposable set and features thereof
US9545637B2 (en) * 2015-04-22 2017-01-17 Fenwal, Inc. Bearing for umbilicus of a fluid processing system
US9551754B2 (en) 2015-06-05 2017-01-24 Circor Aerospace, Inc. Test device for kinetic switches and method of testing kinetic switches
US10427162B2 (en) 2016-12-21 2019-10-01 Quandx Inc. Systems and methods for molecular diagnostics
US11898967B2 (en) * 2021-02-02 2024-02-13 Fenwal, Inc. Predicting malfunction and failure of centrifuge umbilicus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514171A (en) * 1968-07-15 1970-05-26 Pelton & Crane Co Dental instrument cabinet and storage mechanism
US4113173A (en) * 1975-03-27 1978-09-12 Baxter Travenol Laboratories, Inc. Centrifugal liquid processing apparatus
US4114802A (en) * 1977-08-29 1978-09-19 Baxter Travenol Laboratories, Inc. Centrifugal apparatus with biaxial connector
US4164318A (en) * 1977-10-12 1979-08-14 Baxter Travenol Laboratories, Inc. Centrifugal processing apparatus with reduced-load tubing
US4244513A (en) * 1978-09-15 1981-01-13 Coulter Corporation Centrifuge unit
US4283004A (en) * 1979-08-15 1981-08-11 Baxter Travenol Laboratories, Inc. Vibration attenuation support assembly for a centrifugal liquid processing apparatus
US4535610A (en) * 1984-05-31 1985-08-20 Speed Queen Company Apparatus and control for tilt-out washer
US4710161A (en) * 1985-04-22 1987-12-01 The Green Cross Corporation Continuous type centrifugal separator
US4936820A (en) * 1988-10-07 1990-06-26 Baxter International Inc. High volume centrifugal fluid processing system and method for cultured cell suspensions and the like
US5067938A (en) * 1987-03-20 1991-11-26 Kabushiki Kaisha Kubota Seisakusho Centrifugal separator

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UST955355I4 (en) * 1959-06-24 1900-01-01
US3347454A (en) * 1964-05-13 1967-10-17 Baxter Laboratories Inc Method and apparatus for the centrifugal washing of particles in a closed system
US3655123A (en) * 1966-08-08 1972-04-11 Us Health Education & Welfare Continuous flow blood separator
US3561672A (en) * 1968-03-18 1971-02-09 Baxter Laboratories Inc Washing process and centrifuge assembly
US3519201A (en) * 1968-05-07 1970-07-07 Us Health Education & Welfare Seal means for blood separator and the like
US3586413A (en) * 1969-03-25 1971-06-22 Dale A Adams Apparatus for providing energy communication between a moving and a stationary terminal
US3724747A (en) * 1971-03-15 1973-04-03 Aga Ab Centrifuge apparatus with means for moving material
US3786919A (en) * 1971-12-13 1974-01-22 Parker B Method and apparatus for concentrating ore pulps
US3737096A (en) * 1971-12-23 1973-06-05 Ibm Blood processing control apparatus
BE794220A (en) * 1972-01-28 1973-05-16 Ibm RESERVOIR INTENDED IN PARTICULAR FOR THE TREATMENT OF BLOOD
JPS50107565A (en) * 1974-01-29 1975-08-25
US4056224A (en) * 1975-03-27 1977-11-01 Baxter Travenol Laboratories, Inc. Flow system for centrifugal liquid processing apparatus
US3957197A (en) * 1975-04-25 1976-05-18 The United States Of America As Represented By The United States Energy Research And Development Administration Centrifuge apparatus
US4007871A (en) * 1975-11-13 1977-02-15 International Business Machines Corporation Centrifuge fluid container
US4010894A (en) * 1975-11-21 1977-03-08 International Business Machines Corporation Centrifuge fluid container
US4425112A (en) * 1976-02-25 1984-01-10 The United States Of America As Represented By The Department Of Health And Human Services Flow-through centrifuge
US4734089A (en) * 1976-05-14 1988-03-29 Baxter Travenol Laboratories, Inc. Centrifugal blood processing system
US4636193A (en) * 1976-05-14 1987-01-13 Baxter Travenol Laboratories, Inc. Disposable centrifugal blood processing system
US4098456A (en) * 1977-03-29 1978-07-04 Baxter Travenol Laboratories, Inc. Centrifuge system having collapsible centrifuge bags
US4430072A (en) * 1977-06-03 1984-02-07 International Business Machines Corporation Centrifuge assembly
US4120448A (en) * 1977-06-08 1978-10-17 Baxter Travenol Laboratories, Inc. Centrifugal liquid processing apparatus with automatically positioned collection port
US4109854A (en) * 1977-06-13 1978-08-29 Baxter Travenol Laboratories, Inc. Centrifugal apparatus with outer enclosure
US4120449A (en) * 1977-06-13 1978-10-17 Baxter Travenol Laboratories, Inc. Centrifugal processing apparatus using tube drive
US4194684A (en) * 1977-06-13 1980-03-25 Baxter Travenol Laboratories, Inc. Centifugal apparatus using polyester elastomer tubing
US4094461A (en) * 1977-06-27 1978-06-13 International Business Machines Corporation Centrifuge collecting chamber
US4111356A (en) * 1977-07-13 1978-09-05 Baxter Travenol Laboratories, Inc. Centrifugal apparatus with flexible sheath
US4419089A (en) * 1977-07-19 1983-12-06 The United States Of America As Represented By The Department Of Health And Human Services Blood cell separator
SE408859B (en) * 1977-08-03 1979-07-16 Separex Sa DEVICE FOR THE OCCUPATION OF UNLIMITED CORRECT RELATIVE ROTATION BETWEEN THE ENDS OF A WIRED ELEMENT
US5217426A (en) * 1977-08-12 1993-06-08 Baxter International Inc. Combination disposable plastic blood receiving container and blood component centrifuge
US5217427A (en) * 1977-08-12 1993-06-08 Baxter International Inc. Centrifuge assembly
US5006103A (en) * 1977-08-12 1991-04-09 Baxter International Inc. Disposable container for a centrifuge
US4108353A (en) * 1977-08-31 1978-08-22 Baxter Travenol Laboratories, Inc. Centrifugal apparatus with oppositely positioned rotational support means
US4387848A (en) * 1977-10-03 1983-06-14 International Business Machines Corporation Centrifuge assembly
US4379452A (en) * 1977-10-18 1983-04-12 Baxter Travenol Laboratories, Inc. Prepackaged, self-contained fluid circuit module
US4185629A (en) * 1977-10-18 1980-01-29 Baxter Travenol Laboratories, Inc. Method and apparatus for processing blood
US4146172A (en) * 1977-10-18 1979-03-27 Baxter Travenol Laboratories, Inc. Centrifugal liquid processing system
US4109852A (en) * 1977-10-21 1978-08-29 Baxter Travenol Laboratories, Inc. Centrifugal strain relief sheath for processing apparatus
US4109855A (en) * 1977-10-25 1978-08-29 Baxter Travenol Laboratories, Inc. Drive system for centrifugal processing apparatus
USD255935S (en) 1977-11-07 1980-07-15 Baxter Travenol Laboratories, Inc. Blood processing container
USD255936S (en) 1977-11-07 1980-07-15 Baxter Travenol Laboratories, Inc. Blood processing container
US4142670A (en) * 1978-01-27 1979-03-06 Beckman Instruments, Inc. Chylomicron rotor
FR2429044A1 (en) * 1978-06-19 1980-01-18 Cailliot Serge CONTINUOUS CENTRIFUGAL SEPARATOR
US4386730A (en) * 1978-07-21 1983-06-07 International Business Machines Corporation Centrifuge assembly
SE412528B (en) * 1978-07-25 1980-03-10 Separex Sa CENTRIFUGROTOR AND COLLABLE SEPARATION CONTAINER
USD258909S (en) 1978-07-31 1981-04-14 Baxter Travenol Laboratories, Inc. Blood processing machine
US4187979A (en) * 1978-09-21 1980-02-12 Baxter Travenol Laboratories, Inc. Method and system for fractionating a quantity of blood into the components thereof
DE2848953A1 (en) * 1978-11-11 1980-05-22 Heraeus Christ Gmbh SEPARATING CENTRIFUGE
US4223672A (en) * 1979-02-08 1980-09-23 Baxter Travenol Laboratories, Inc. Variable volume plasma treatment chamber for an apparatus for the extracorporeal treatment of disease
US4215688A (en) * 1979-02-09 1980-08-05 Baxter Travenol Laboratories, Inc. Apparatus for the extracorporeal treatment of disease
US4266717A (en) * 1979-04-13 1981-05-12 Baxter Travenol Laboratories, Inc. Platen, holder and latch assembly for securing platens in place within a centrifuge device
DE2948177A1 (en) * 1979-11-30 1981-06-04 Dr. Eduard Fresenius Chemisch-Pharmazeutische Industrie Kg Apparatebau Kg, 6380 Bad Homburg SEPARATOR FOR ULTRA CENTRIFUGE
US4283276A (en) * 1980-02-29 1981-08-11 E. I. Du Pont De Nemours And Company Rotor for sedimentation field flow fractionation
US4357235A (en) * 1980-02-29 1982-11-02 E. I. Du Pont De Nemours And Company Drive for rotating seal
US4316576A (en) * 1980-11-06 1982-02-23 Baxter Travenol Laboratories, Inc. Method and chamber for separating granulocytes from whole blood
US4405079A (en) * 1980-11-10 1983-09-20 Haemonetics Corporation Centrifugal displacer pump
US4353795A (en) * 1981-04-01 1982-10-12 E. I. Du Pont De Nemours And Company Field flow fractionation channel
US4446015A (en) * 1981-11-30 1984-05-01 E. I. Du Pont De Nemours And Company Field flow fractionation channel
US4448679A (en) * 1981-11-30 1984-05-15 E. I. Du Pont De Nemours And Company Apparatus and method for sedimentation field flow fractionation
US4446014A (en) * 1981-11-30 1984-05-01 Dilks Jr Charles H Sedimentation field flow fractionation channel and method
US4445883A (en) * 1982-01-18 1984-05-01 Haemonetics Corporation Deformable support for fluid processing centrifuge
US4447221A (en) * 1982-06-15 1984-05-08 International Business Machines Corporation Continuous flow centrifuge assembly
US4605503A (en) * 1983-05-26 1986-08-12 Baxter Travenol Laboratories, Inc. Single needle blood fractionation system having adjustable recirculation through filter
US4530691A (en) * 1983-12-13 1985-07-23 Baxter Travenol Laboratories, Inc. Centrifuge with movable mandrel
ATE108693T1 (en) * 1984-03-21 1994-08-15 Mclaughlin William F FILTRATION OF A LIQUID SUSPENSION.
US4647279A (en) * 1985-10-18 1987-03-03 Cobe Laboratories, Inc. Centrifugal separator
US4724317A (en) * 1985-12-05 1988-02-09 Baxter Travenol Laboratories, Inc. Optical data collection apparatus and method used with moving members
US4708712A (en) * 1986-03-28 1987-11-24 Cobe Laboratories, Inc. Continuous-loop centrifugal separator
GB2205257B (en) * 1986-06-17 1991-05-01 Jeol Ltd A column for continuous particle fractionation in a centrifugal force field
DE3632176A1 (en) * 1986-09-22 1988-04-07 Fresenius Ag CONTROL OF A SYSTEM FOR SEPARATING THE COMPONENTS OF BLOOD TAKEN FROM A DONOR "IN VIVO"
DE3632500A1 (en) * 1986-09-24 1988-04-07 Fresenius Ag CENTRIFUGAL ARRANGEMENT
US4806252A (en) * 1987-01-30 1989-02-21 Baxter International Inc. Plasma collection set and method
US5104526A (en) * 1987-01-30 1992-04-14 Baxter International Inc. Centrifugation system having an interface detection system
US4834890A (en) * 1987-01-30 1989-05-30 Baxter International Inc. Centrifugation pheresis system
USD314824S (en) 1987-06-09 1991-02-19 Cobe Laboratories, Inc. Blood centrifuge or the like
US4850995A (en) * 1987-08-19 1989-07-25 Cobe Laboratories, Inc. Centrifugal separation of blood
US4900298A (en) * 1987-08-21 1990-02-13 Cobe Laboratories, Inc. Centrifuge drive and support assembly
US4897185A (en) * 1988-10-06 1990-01-30 Cobe Laboratories, Inc. Cell processing apparatus and method
SE9001196L (en) * 1990-04-02 1991-10-03 Omega Teknik Hb PRINCIPLE AND DEVICE OF FLOW CENTIFUG

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514171A (en) * 1968-07-15 1970-05-26 Pelton & Crane Co Dental instrument cabinet and storage mechanism
US4113173A (en) * 1975-03-27 1978-09-12 Baxter Travenol Laboratories, Inc. Centrifugal liquid processing apparatus
US4114802A (en) * 1977-08-29 1978-09-19 Baxter Travenol Laboratories, Inc. Centrifugal apparatus with biaxial connector
US4164318A (en) * 1977-10-12 1979-08-14 Baxter Travenol Laboratories, Inc. Centrifugal processing apparatus with reduced-load tubing
US4244513A (en) * 1978-09-15 1981-01-13 Coulter Corporation Centrifuge unit
US4283004A (en) * 1979-08-15 1981-08-11 Baxter Travenol Laboratories, Inc. Vibration attenuation support assembly for a centrifugal liquid processing apparatus
US4535610A (en) * 1984-05-31 1985-08-20 Speed Queen Company Apparatus and control for tilt-out washer
US4710161A (en) * 1985-04-22 1987-12-01 The Green Cross Corporation Continuous type centrifugal separator
US5067938A (en) * 1987-03-20 1991-11-26 Kabushiki Kaisha Kubota Seisakusho Centrifugal separator
US4936820A (en) * 1988-10-07 1990-06-26 Baxter International Inc. High volume centrifugal fluid processing system and method for cultured cell suspensions and the like

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683695A1 (en) * 1993-12-22 1995-11-29 Baxter International Inc. Centrifuge with sloped rotational axis and sloped control panel
EP0683695A4 (en) * 1993-12-22 1998-08-12 Baxter Int Centrifuge with sloped rotational axis and sloped control panel.
EP0933133A2 (en) * 1998-01-30 1999-08-04 Fresenius AG Centrifuge and conduit for supplying and/or removing at least one fluid from the separation unit of a centrifuge to a fixed connection site
EP0933133A3 (en) * 1998-01-30 2000-06-21 Fresenius AG Centrifuge and conduit for supplying and/or removing at least one fluid from the separation unit of a centrifuge to a fixed connection site
US6273849B1 (en) 1998-01-30 2001-08-14 Fresenius Ag Centrifuge and line for supplying and/or removing at least one fluid from the separation unit of a centrifuge to a stationary connection
US6716154B2 (en) * 2001-08-31 2004-04-06 Fresenius Hemocare Gmbh Centrifuge with a fluid line guide element having a curved bearing surface
US7914477B2 (en) 2002-03-04 2011-03-29 Therakos, Inc. Apparatus for the continuous separation of biological fluids into components and method of using same
US9238097B2 (en) 2002-03-04 2016-01-19 Therakos, Inc. Method for collecting a desired blood component and performing a photopheresis treatment
US10556055B2 (en) 2002-03-04 2020-02-11 Mallinckrodt Hospital Products IP Limited Method for collecting a desired blood component and performing a photopheresis treatment
US9839920B2 (en) 2009-10-06 2017-12-12 Satorius Stedim North America Inc. Apparatus for manipulating particles using at least one chamber having an inlet and an opposed outlet
US10888878B2 (en) 2009-10-06 2021-01-12 Sartorius Stedim North America Inc. Methods, systems and apparatus for manipulating particles
CN101875026A (en) * 2010-08-17 2010-11-03 金卫医疗科技(上海)有限公司 Rotary limit device applied to differential centrifugal separation system

Also Published As

Publication number Publication date
CA2103914A1 (en) 1993-06-24
US5362291A (en) 1994-11-08
JPH06505675A (en) 1994-06-30
EP0572623A1 (en) 1993-12-08
AU652888B2 (en) 1994-09-08
AU3334893A (en) 1993-07-28

Similar Documents

Publication Publication Date Title
AU652888B2 (en) Centrifugal processing system with direct access drawer
EP0572656B1 (en) Centrifuge with separable bowl and spool elements providing access to the separation chamber
US5525218A (en) Centrifuge with separable bowl and spool elements providing access to the separation chamber
EP2345439B1 (en) Extracorporeal blood pump with disposable pump head portion having magnetically levitated impeller
US5322620A (en) Centrifugation system having an interface detection surface
US7695423B2 (en) Method of simultaneous blood collection and separation using a continuous flow centrifuge having a separation channel
EP0486480A2 (en) Centrifugal processing apparatus
EP0773832B1 (en) Easy load umbilicus holder for a centrifuge
JPH04500170A (en) portable centrifugal separator
EP0574573B1 (en) Centrifuge with dual motor synchronous drive system
WO2013103446A1 (en) Drive system for centrifuge
EP3170562A1 (en) Systems and methods for automatically balancing a centrifuge
CN216368442U (en) Blood centrifuge
CN117599965A (en) Centrifugal machine capable of automatically positioning

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2103914

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993901078

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993901078

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993901078

Country of ref document: EP