WO1992021294A1 - Properitoneal mechanical retraction apparatus and methods of using - Google Patents

Properitoneal mechanical retraction apparatus and methods of using Download PDF

Info

Publication number
WO1992021294A1
WO1992021294A1 PCT/US1992/004456 US9204456W WO9221294A1 WO 1992021294 A1 WO1992021294 A1 WO 1992021294A1 US 9204456 W US9204456 W US 9204456W WO 9221294 A1 WO9221294 A1 WO 9221294A1
Authority
WO
WIPO (PCT)
Prior art keywords
legs
angle
shaped elements
leg
lifting
Prior art date
Application number
PCT/US1992/004456
Other languages
French (fr)
Inventor
Frederic H. Moll
Albert K. Chin
Rick J. Kaufmann
Charles Gresl, Jr.
Original Assignee
Origin Medsystems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Medsystems, Inc. filed Critical Origin Medsystems, Inc.
Priority to JP50054193A priority Critical patent/JP3421032B2/en
Priority to CA002109795A priority patent/CA2109795C/en
Priority to DE69213734T priority patent/DE69213734T2/en
Priority to EP92912086A priority patent/EP0586516B1/en
Publication of WO1992021294A1 publication Critical patent/WO1992021294A1/en
Priority to GR960403324T priority patent/GR3021920T3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0281Abdominal wall lifters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22031Gripping instruments, e.g. forceps, for removing or smashing calculi
    • A61B17/22032Gripping instruments, e.g. forceps, for removing or smashing calculi having inflatable gripping elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B50/20Holders specially adapted for surgical or diagnostic appliances or instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3462Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00261Discectomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00278Transorgan operations, e.g. transgastric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00557Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/30Surgical pincettes without pivotal connections
    • A61B2017/306Surgical pincettes without pivotal connections holding by means of suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320044Blunt dissectors
    • A61B2017/320048Balloon dissectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3209Incision instruments
    • A61B17/3211Surgical scalpels, knives; Accessories therefor
    • A61B2017/32113Surgical scalpels, knives; Accessories therefor with extendable or retractable guard or blade
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3482Means for supporting the trocar against the body or retaining the trocar inside the body inside
    • A61B2017/3484Anchoring means, e.g. spreading-out umbrella-like structure
    • A61B2017/3486Balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/306Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1006Balloons formed between concentric tubes

Definitions

  • the invention relates to devices for use in laparoscopic surgery, in particular, to devices that lift the abdominal wall to provide working space in which to carry out laparoscopic procedures.
  • French patent application no. 90-03980 shows a wire structure that is threaded into the belly through a small puncture to engage and to lift the abdominal wall.
  • the application also shows a fan retractor that has a first angle-shaped member having a first leg that engages with the abdominal wall, a tubular second leg having a bore, and a third leg, remote from the first leg, that has a hook-shaped member on its end distal from the second leg.
  • a second angle-shaped member has a first leg that engages with the abdominal wall, a second leg that pivots within the bore of the second leg of the first angle-shaped member, and a third leg, remote from the first leg, that serves as an operating lever for the second angle-shaped member.
  • the first legs of the angle-shaped members are closed together to insert them into the abdominal cavity through an incision.
  • the third leg of the second angle-shaped member is then operated to spread the first leg of the second angle-shaped member apart from the first leg of the first angle- shaped member.
  • the first legs are engaged with the peritoneum inside the abdominal cavity.
  • a lifting force is then applied to the hook-shaped member to lift the retractor and hence to lift the abdominal wall.
  • United States Patent Application Serial No. 706,781 the application of which this application is a Continuation-in-Part, describes a number of different mechanical devices that are inserted through one or more punctures into the belly. All or part of the device is then lifted to lift the abdominal wall away from the underlying abdominal organs.
  • One of the devices described in the prior application is a fan retractor that is inserted in a closed condition into the abdominal cavity, spread apart once inside the abdominal cavity, and brought into contact with the peritoneum inside the abdominal cavity. The apparatus is then lifted to lift the abdominal wall.
  • the known fan retractors are all intended for intra-abdominal placement. It is difficult to place the peritoneum-engaging elements of such devices inside the abdominal cavity adjacent to the peritoneum without snagging the bowel or omentum. It is often necessary to make multiple attempts at inserting the retractor before the fan retractor can be correctly positioned with its peritoneum- engaging elements adjacent to the peritoneum with no bowel or omentum caught between the peritoneum-engaging elements and the peritoneum. Insufflating the abdomen before inserting the fan retractor does not eliminate the risk of snagging.
  • Known fan retractors have a substantially constant stiffness along the length of their peritoneum-engaging elements. This causes the pressure that the peritoneum-engaging elements exert against the peritoneum to increase sharply towards the ends of the peritoneum-engaging elements. High pressure can cause trauma to the peritoneum, and there is a risk that the ends of the peritoneum- engaging elements will penetrate the peritoneum.
  • the peritoneum-engaging elements of known fan retractors move independently of one another. This can lead to the peritoneum-engaging elements of the fan retractor being asymmetrically placed within the abdominal cavity, which results in the peritoneum-engaging elements providing the retracting force unequally. With asymmetrical placement, there is the risk that the more heavily loaded peritoneum engaging element will traumatize or penetrate the peritoneum.
  • the lifting force applied by known fan retractors is generally determined by the lifting result obtained. If, for some reason, the abdominal wall fails to lift, the lifting force could accidentally be increased to the point at which trauma to or penetration of the peritoneum occurs.
  • Known fan retractors are rigidly attached to lifting bars such that, if the lifting bar is carelessly lowered at the end of treatment, the lifting bar can push the fan retractor into the abdomen, and cause a compression injury to the underlying organs.
  • a fan retractor has a pair of angle-shaped elements moveable relative to one another.
  • the angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs that extend laterally from the first legs, and are adapted to engage with the abdominal wall.
  • the second legs fan out upon rotation of the first legs relative to one another and have an effective thickness, measured in the direction defined by the first legs, that decreases distally from the first legs.
  • the retractor also includes a lifting device that applies a lifting force to the angle-shaped elements.
  • the fan retractor according to the first aspect of the invention is used properitoneally, that is, the second legs of the retractor are inserted between the peritoneal fat layer and the peritoneum. With this placement of the retractor, the peritoneum provides a drape over the bowel and omentum and prevents the second legs of the retractor from snagging the bowel or the omentum.
  • the second legs have a thickness that decreases distally from the first legs. This enables the second legs act as a wedge to separate the peritoneum from the properitoneal fat layer, and provides a stiffness that decreases distally from the second legs. This enables the second legs to flex slightly, and to conform to the curvature of the abdominal wall. The second legs conforming to the curvature of the abdominal wall enables the second legs to exert a lifting force to the abdominal wall that is substantially constant along the length of the second legs. This reduces the risk of the distal ends of the second legs traumatizing or penetrating the abdominal wall.
  • a fan retractor has a pair of angle-shaped elements moveable relative to one another.
  • the angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs that extend laterally from the first legs, and are adapted to engage with the abdominal wall.
  • the second legs fan out upon rotation of the first legs relative to one another and have a stiffness, measured in the direction defined by the first legs, that decreases distally from the first legs.
  • the retractor also includes a lifting device that applies a lifting force to the angle-shaped elements.
  • the fan retractor according to the second aspect of the invention is preferably used properitoneally and confers the advantages of properitoneal use described above in connection with the fan retractor according to the first aspect of the invention.
  • a fan retractor according to the second aspect of the invention may also be used conventionally, i.e., it may apply its lifting force to the posterior side of the peritoneum.
  • the second legs have a stiffness that decreases distally from the first legs. This characteristic enables the second legs to flex slightly, and to conform to the curvature of the abdominal wall.
  • the second legs conforming to the curvature of the abdominal wall enables the second legs to exert a lifting force to the abdominal wall that is substantially constant along the length of the second legs. This reduces the risk of the distal ends of the second legs traumatizing or penetrating the abdominal wall.
  • a fan retractor has a pair of angle-shaped elements moveable relative to one another.
  • the angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs extending laterally from the first legs. The second legs fan out upon rotation of the first legs relative to one another, are adapted to engage with the abdominal wall.
  • the retractor also include a contrarotating device that responds to rotation of the first leg of one of the angle-shaped elements through a first angle.
  • the contrarotating device rotates the first leg of the other of the first angle-shaped elements through an angle substantially equal and opposite to the first angle.
  • the retractor includes a lifting device that applies a lifting force to the angle-shaped elements.
  • the contrarotating device makes the second legs fan out symmetrically.
  • a fan retractor according to the third aspect of the invention can also be used conventionally.
  • a fan retractor has a pair of angle-shaped elements moveable relative to one another.
  • the angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs extending laterally from the first legs. The second legs fan out upon rotation of the first legs relative to one another, and are adapted to engage with the abdominal wall.
  • the retractor also includes a lifting device that applies a lifting force to the angle-shaped elements.
  • the retractor includes a lifting force measuring device that is coupled to the lifting device and that measures the lifting force.
  • a fan retractor according to the fourth aspect of the invention enables the lifting force to be monitored during the lifting operation. This prevents an excessive lifting force, that could possibly result in trauma to or penetration of the abdominal wall, from being applied to the abdominal wall.
  • a fan retractor according to the fourth aspect of the invention is preferably used properitoneally, but it can also be used conventionally.
  • a fan retractor has a pair of angle- shaped elements moveable relative to one another.
  • the angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs extending laterally from the first legs. The second legs fan out upon rotation of the first legs relative to one another, and are adapted to engage with the abdominal wall.
  • the retractor also includes a lifting device that applies a lifting force to the angle-shaped elements.
  • the lifting device includes a unidirectional coupler that applies the lifting force to the angle-shaped elements in the lifting direction, and applies a substantially zero force to the angle-shaped elements in a direction opposite to the lifting direction.
  • the unidirectional coupler of the fan retractor according to the fifth aspect of the invention reduces the risk of compression injury to the bowel or omentum occurring if a force in the direction opposite to the lifting direction is imposed on the coupling. This can occur if the lifting bar to which the coupling is attached is lowered too far.
  • a fan retractor has a pair of angle-shaped elements moveable relative to one another.
  • the angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs extending laterally from the first legs.
  • the second legs fan out upon rotation of the first legs relative to one another, and are adapted to engage with the abdominal wall.
  • At least one of the second legs includes an internal passage.
  • the retractor also includes a lifting means that applies a lifting force to the angle-shaped elements.
  • the internal passage in at least one of the second legs of the fan retractor according to the sixth aspect of the invention enables the fan retractor to provide aspiration and infusion in its vicinity. Additionally or alternatively, the internal passage can cany an optical fibre through which light to illuminate the treatment site can fed from an external light source.
  • a retractor in a first method of properitoneally lifting the abdominal wall according to the invention, includes an angle-shaped element having a first leg, and a second leg extending laterally from the first leg towards a distal end.
  • An incision is made through the abdominal wall to the peritoneal fat layer.
  • the distal end of the second leg is introduced through the incision to separate the peritoneum from the properitoneal fat layer.
  • the second leg is advanced under the peritoneum, and a lifting force is applied to the angle-shaped element.
  • a fan retractor in a second method according to the invention of properitoneally lifting the abdominal wall, includes a pair of angle-shaped elements moveable relative to one another.
  • the angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs extending laterally from the first legs towards distal ends. The second legs fan out upon rotation of the first legs relative to one another.
  • An incision is made through the abdominal wall to the properitoneal fat layer.
  • the distal ends of the second legs are introduced through the incision to separate the peritoneum from the properitoneal fat layer.
  • the second legs are advanced under the peritoneum.
  • the first legs are rotated relative to one another to fan out the second legs, and a lifting force is applied to the angle-shaped elements.
  • a fan retractor in a third method according to the invention of lifting the abdominal wall, includes a pair of angle-shaped elements moveable relative to one another.
  • the angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs extending laterally from the first legs towards distal ends.
  • the second legs fan out upon rotation of the first legs relative to one another, and have a stiffness in the direction of the first legs that decreases distally from the first legs.
  • An incision is made through the abdominal wall, and the distal ends of the second legs are advanced through the incision.
  • the first legs are rotated relative to one another to fan out the second legs, and the second legs are engaged with the abdominal wall. Finally, a lifting force is applied to the angle-shaped elements.
  • a fan retractor in a fourth method according to the invention of lifting the abdominal wall using a fan retractor having symmetrical leg opening, includes a pair of angle-shaped elements moveable relative to one another.
  • the angle-shaped members include first legs disposed in a generally parallel relationship, and linked together such that rotation of one of the first legs through a first angle rotates the other of the first legs through an angle substantially equal and opposite to the first angle.
  • the angle-shaped members also include second legs that extend laterally from the first legs and fan out symmetrically upon equal and opposite rotation of the first legs relative to one another. An incision is made through the abdominal wall, and the second legs are advanced into the incision. The first legs are rotated relative to one another to symmetrically fan out the second leg. The second legs are engaged with the abdominal wall, and a lifting force is applied to the angle-shaped elements.
  • a fan retractor in a final method according to the invention of lifting the abdominal wall using a fan retractor having a lifting force measuring device, includes a pair of angle-shaped elements moveable relative to one another.
  • the angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs that extend laterally from the first legs and that fan out upon rotation of the first legs relative to one another.
  • the angle- shaped elements also include a force measuring means for measuring the lifting force.
  • An incision through the abdominal wall, and the second legs are advanced into the incision.
  • the first legs are rotated relative to one another to fan out the second legs, and the second legs are engaged with the abdominal wall.
  • a lifting force is applied to the angle-shaped elements, and the lifting force is observed using the force measuring means.
  • Figure 1 is a perspective view of a simplified version of a fan retractor according to the invention.
  • Figure 2A is a cross sectional view of the leg actuators of a fan retractor according to the invention, taken along the line X-X' in figure 1.
  • Figure 26 is a perspective view of the leg actuators of a fan retractor according to the invention.
  • Figure 3A is a perspective view of the preferred embodiment of the second legs of a fan retractor according to the invention in their closed position.
  • Figure 3B is a cross sectional view of the first part of the second legs of a fan retractor according to the invention, taken on the line A-A' in figure 3A.
  • Figure 3C is a cross sectional view of the second part of the second legs of a fan retractor according to the invention, taken on the line B-B' in figure 3A.
  • Figure 3D is a cross sectional view of the third part of the second legs of a fan retractor according to the invention, taken on the hne C- in figure 3A.
  • Figure 3E is a cross sectional view of the fourth part of the second legs of a fan retractor according to the invention, taken on the line D-D' in figure 3A.
  • Figure 3F is a cross sectional view of the first part of an alternative embodiment of the second legs of a fan retractor according to the invention, in which the first part of the second legs has an oval cross-section.
  • Figure 3G is a cross sectional view of the second part of an alternative embodiment of the second legs of a fan retractor according to the invention, in which the first part of the second legs has an oval cross-section.
  • Figure 4A is a perspective view of the mounting block and lifting bar adaptor of a simplified version of the fan retractor according to the invention.
  • Figure 4B is a cross sectional view of the mounting block and lifting bar adaptor of a simplified version of the fan retractor according to the invention, taken along the line Y-Y'.
  • Figure 5A is a perspective view of the preferred embodiment of a fan retractor according to the invention.
  • Figure 5B is a plan view of a first embodiment of the additional lifting force indicator of a fan retractor according to the invention.
  • Figure 5C is a plan view of a second embodiment of the additional lifting force indicator of a fan retractor according to the invention.
  • Figure 6A is a cross sectional view of the preferred embodiment of the fan retractor according to the invention, taken along the line Z-Z' in figure 5A.
  • Figure 6B is a cross sectional view of the additional lifting force indicating window of a fan retractor according to the invention, taken along the line P-P' in figure 6A.
  • Figure 6C is a cross sectional view of the indicating tape channel of the fan retractor according to the invention, taken along the line Q-Q' in figure 6A.
  • Figure 7A is a longitudinal cross sectional view of a second leg of a fan retractor according to the invention.
  • the second leg has an internal bore arrangement providing aspiration and/or irrigation.
  • Figure 7B is a longitudinal cross sectional view of a second leg of a fan retractor according to the invention.
  • the second leg has an internal bore arrangement providing working lighting using optical fibres.
  • Figure 7C is a longitudinal cross sectional view of a second leg of a fan retractor according to the invention.
  • the second leg has an internal bore arrangement providing working lighting using optical fibres brought into the second leg through a bore in the first leg.
  • Figure 8 illustrates the method according to the invention of using a fan retractor according to the invention properitoneally to lift the abdominal wall.
  • Figure 8A is a longitudinal cross section of the abdomen, showing the abdominal wall, the peritoneum, and an incision through the abdominal wall as far as the peritoneum.
  • Figure 8B is a longitudinal cross section of the abdomen, showing the abdominal wall, the peritoneum, and the distal ends of the second legs of the fan retractor being inserted through the incision to abut the peritoneum.
  • Figure 8C is a longitudinal cross section of the abdomen, showing the abdominal wall, the peritoneum, and the second legs of the fan retractor being advanced between the peritoneum and the abdominal wall and progressively detaching the peritoneum from the abdominal wall.
  • Figure 8D is a longitudinal cross section of the abdomen, showing the abdominal wall, the peritoneum, and the fan retractor correctly positioned adjacent to the abdominal wall prior to opening the second legs of the retractor.
  • Figure 8E is a plan view of the abdomen showing the fan retractor correctly positioned relative to the center line of the abdomen, prior to opening the second legs of the retractor.
  • Figure 8F is a plan view of the abdomen showing the fan retractor symmetrically positioned relative to the center line of the abdomen after the second legs of the retractor have been opened.
  • Figure 8G is a longitudinal cross section of the abdomen after the abdominal wall has been lifted by the fan retractor connected to a lifting bar, showing the abdominal wall, the peritoneum, and the fan retractor with the distal parts of its second legs bent to conform with the lifted shape of the anterior abdominal wall.
  • Figure 9 is a cross sectional view of the abdominal wall showing the various layers of tissue.
  • the fan retractor 3 has a pair of first legs 1A and IB, including the leg actuators 4A and 4B, a pair of second legs 2A and 2B, and a mounting block 6 to which the lifting force is applied.
  • the second legs are shown schematically: their specific shape will be described in detail below in connection with figure .
  • the mounting block 6 is cylindrical and includes two axial bores 8A and 8B, symmetrically offset from the axis, that receive the first legs 1A and IB, respectively. The diameter of the bores is such that the bores snugly receive the first legs with the first legs free to rotate within their respective bores.
  • the mounting block 6 is preferably moulded from a suitable plastic, such as polycarbonate, but other materials, such as stainless steel, can be used.
  • the first legs 1A and IB are substantially straight, cylindrical metal rods. In the preferred embodiment, they are made from stainless steel and are about 4.5" long and about 0.15" in diameter.
  • the leg actuators 4A and 4B are attached to the end of the first legs 1A and IB, respectively, remote from the second legs, on the opposite side of the first legs from the second legs.
  • the leg actuators bear against the upper face 10 of the mounting block 6 and transfer the lifting force from the upper face 10 of the mounting block 6 to the first legs.
  • the leg actuators are attached to the first legs so that they can withstand a force of several tens of kilograms exerted in the direction of the first legs.
  • the leg actuators 4A and 4B rotate the first legs. This changes the angular positions of the second legs 2A and 2B with respect to one another.
  • the second legs 2A and 2B are not capable of independent movement. If one of the second legs, for example 2A, is moved by the operating lever 14A of the leg actuator 4A through a certain angle, the other of the second legs, for example 2B, moves through .substantially the same angle in the opposite direction.
  • the operating levers 14A and 14B of the leg actuators are on the opposite side of the first legs from the second legs. Moving the operating levers 14A and 14B of the actuators 4A and 4B away from one another brings the second legs towards being parallel to one another (closed position), and bringing the operating levers together splays the second legs apart (open position).
  • This mode of operating is preferred, especially for properitoneal use, since the second legs can be opened, and the peritoneum detached from the anterior fatty layer, simply by squeezing the operating levers together.
  • the operating levers may be mounted on the same side of the first legs as the second legs, if desired.
  • the leg actuators 4A and 4B are linked to cause the second legs to move equally and oppositely. Any rotation of one of the leg actuators causes an equal and opposite rotation in the other of the leg actuators. Many known mechanisms exist for providing such relative motion.
  • a cross section of the leg actuators of the preferred embodiment is shown in figure 2A.
  • the leg actuators 4A and 4B each comprise a bush 12A, 12B mounted on the respective first leg lA, IB, and an operating lever 14A, 14B.
  • the operating levers 14A and 14B translate a lateral movement of the operator's thumb or finger into a rotation of the respective leg actuator 4A and 4B, and of the respective first leg 1A and IB.
  • the bush 12B is provided with a peg 16 that engages with a socket 18 provided in the other bush 12A. The location of the peg and the socket can be reversed if desired.
  • the peg and socket arrangement responds to the rotation of either one of the leg actuators 4A and 4B, and imparts an equal and opposite rotation on the other. This arrangement ensures that the second legs 2A and 2B open symmetrically and reduces the risk of one of the second legs inadvertently abutting against, and possibly penetrating, the abdominal wall. This is particularly desirable when the retractor is used properitoneally and the positions of the second legs cannot be seen directly.
  • teeth can be moulded in the outer surfaces of the leg actuators 4A and 4B.
  • the leg actuators can be clamped together in the direction perpendicular to the first legs 1A and IB, and the resulting friction between them used impart the desired relative motion. Providing one or both of the leg actuators with a high friction surface is desirable in such an arrangement.
  • the rotation of the first legs themselves can be linked, instead of linking the rotation of the leg actuators.
  • Figure 2B shows details of the locking mechanism that holds the operating levers 14A and 14B in their open or closed positions, and hence holds the second legs 2A and 2B in their closed or open positions respectively.
  • the sector 20 is mounted on the mounting block 6 adjacent to the operating levers 14A and 14B.
  • the sector is moulded integrally with the mounting block. Relative to the operating levers 14A and 14B, the sector is slightly concave, and the operating levers 14A and 14B are biassed against the face 22 of the sector. This causes the sector to apply a frictional force to the operating levers. The frictional force holds the operating levers in any position in which they are set.
  • the frictional force can be released by pressing the button 24 towards the mounting block 6.
  • the button is attached to, and preferably forms an integral part of, the sector 20. Pressing the button towards the mounting block bends the sector out of contact with the operating levers 14A and 14B, which releases the frictional force.
  • the skirt 26 of the sector 20 may additionally or alternatively be provided with one, two, or all of the notches 28A, 28B and 30, and the operating levers 14A and 15B provided with the operating lever extensions 29A and 29B.
  • the notches 28A and 28B engage with the operating lever extensions 29A and 29B, respective- ly, when the operating levers are in the open position, i.e., when the second legs are in their closed position.
  • the notches 28A and 28B lock the operating levers in position, and positively hold the second legs in their closed position. Because the motions of the leg actuators 4A and 4B are linked, one of the notches 28A and 28B may be omitted, if desired.
  • the notch 30 engages with the operating lever extensions 29A and 29B when the operating levers are in their closed position, i.e., when the second legs are in their open position.
  • the notch 30 locks the operating levers in position, and positively holds the second legs in their open position.
  • FIG. 3A shows a perspective view of the second legs 2A and 2B of a fan retractor according to the invention.
  • Figures 3B through 3E show cross sections views of the second legs at various points along their lengths.
  • Distally reducing the stiffness of the second legs enables the second legs to bend to conform to the shape of the raised abdomen while having sufficient strength to provide the lifting force necessary. This spreads the lifting force evenly along the length of the second legs, instead of concentrat- ing the lifting force towards their distal ends.
  • second legs that are relatively flat are desirable to make it easy to insert the legs between the peritoneum and the properitoneal fatty layer.
  • Flat legs i.e., legs that are thin over all of their length, lack sufficient strength to exert the required lifting forces of several tens of kilograms.
  • the inventors have discovered that second legs having an effective thickness that decreases and an effective width that increases distally from the first legs are both easy to insert under the peritoneum and are strong enough to exert the required lifting forces.
  • the increasing thickness of the second legs towards the first legs acts as a wedge to detach the peritoneum progressively from the properitoneal fatty layer as the second legs are advanced under the peritoneum.
  • the distally reducing thickness of the second legs also causes the stiffness of the second legs to reduce distally, which is desirable to enable the second legs to conform with the shape of the raised abdomen.
  • the distally increasing width of the second legs helps maintain a more constant pressure against the peritoneum along the length of the second legs.
  • the second legs form a relatively compact shape when in their closed position to reduce the size of the incision required to introduce the second legs into the abdomen, either conventionally or properitoneally.
  • the preferred design for the second legs that meets the requirements just stated is shown in figures 3A through 3E. Both the cross sectional area and the cross sectional shape of the second legs change distally from the first legs 1A and IB.
  • the preferred second legs can be regarded as having four distinct parts.
  • the cross section of each second leg is substantially semi-circular, as shown in figure 3B.
  • the second legs In the first part of the second legs, the second legs have an appreciable thickness t x in the direction of the first legs. This provides considerable beam strength and stiffness, measured in the direction of the first legs, so that the required retraction force can be exerted.
  • the semicircular cross section enables the two second legs to fit together to form a compact shape when the retractor is in its closed position.
  • the thickness t 2 of the second legs 2A and 2B remains the same as the thickness tj of the first part 40, but the width w 2 of the second legs progressively reduces as the cross section changes from semi-circular to rectangular.
  • Figure 3C shows the cross section of the second legs towards the distal end of the second part where the outer surfaces 48A and 48B of the second legs are still slightly curved. At the distal end of the second part, the outer surfaces 48A and 48B are substantially straight.
  • the length y 2 of the major axis of the rectangular cross section is substantially equal to the diameter d of the semicircular cross section of the first part 40 of the second legs, shown in figure 3B.
  • the second legs have an appreciable thickness t 2 in the direction of the first legs.
  • the beam strength and stiffness of the second legs, although appreciable, is less than in the first part 40 because the width w of the second part is less than the width w 2 of the first part.
  • the rectangular cross section enables the second parts of the second legs to fit together to form a compact shape when the retractor is in its closed position, as shown in figure 3C.
  • the second legs In the third part 44 of the second legs, the second legs have the same rectangular cross section as the distal part of the second part 42, but the second leg is twisted progressively through about 90 degrees over the length of the third part.
  • the dimensions, x 3 and y 3 of the minor and major axes, respectively, of the rectangular cross section remain the same as the dimensions x 2 and y 2 of the minor and major axes, respectively, of the rectangular cross section in the second part.
  • the twisting the second legs causes the effective thickness, t 3 of the leg to decrease and the effective width w 3 of the leg to increase.
  • Both of the second legs are twisted in the same direction through the same angle so that they will fit together to form a compact shape when the retractor is in its closed position.
  • the two second legs are not identically twisted, however. So that the fourth part 46 of one of the second legs can fit on top of the fourth part of the other of the second legs when the retractor is in its closed position, the twist in one of the second legs is slightly offiset in the direction of the first legs, and the twist in the other of the second legs is offset in the direction opposite to the direction of the first legs.
  • the second legs can be made with identical twists, and be mounted on the first legs so that one forms an angle of slightly more than 90 degrees with its first leg, and the other forms an angle of slightly less than 90 degrees with its first leg.
  • the second legs have an effective thickness t 3 in the direction of the first legs that progressively decreases distally from the first legs.
  • the beam strength and stiffness of the second legs also decrease distally from the first legs.
  • the insertion height h 3 of the second legs when the retractor is in its closed position progressively decreases distally from the first legs.
  • the second legs In the fourth part 46 of the second legs, the second legs have the same rectangular cross section as the distal part of the second part 42, but the cross section is substantially perpendicular to the cross section of the second part, as shown in figure 3E.
  • the dimensions, x 4 and y k of the minor and major axes, respectively, of the rectangular cross section remain the same as the dimensions x 2 and y z of the minor and major axes, respectively, of the rectangular cross section in the second part.
  • the second legs have an effective thickness t in the direction of the first legs that remains substantially constant and equal to the physical thickness y 4 of the second legs.
  • the beam strength and stiffness of the second legs are also substantially constant in the fourth part, and are considerably less than in the first and second parts, and in the part of the third part proximal to the first legs.
  • the effective width w k of the second legs in the fourth part is substantially equal to the physical width x of the legs, and is considerably greater than in the first and second parts. This considerably reduces the pressure that the fourth parts of the second legs of the retractor exert per square centimeter of abdominal wall.
  • the insertion height h k of the fourth part of the second legs when the retractor is in its closed position is substantially equal to twice the physical thickness y k of the second legs as a result of the fourth parts of the second legs stacking on top of one another.
  • This dimension is relative small and makes it easy to insert distal ends of the second legs of the retractor between the peritoneum and the peritoneal fat layer.
  • the distal ends 49A and 49B of the second legs are rounded to further ease insertion.
  • the four parts of the second leg are ap ⁇ proximately equal to one another in length.
  • the relative lengths of the four parts can be varied to achieve a better stiffness versus distance from the first legs characteristic.
  • the first part 40 of the second legs has a semicircular cross section.
  • An alternative oval cross section is shown in figure 3F, with the corresponding cross section of the second part 42 shown in figure 3G.
  • the cross sections of the third and fourth parts are substantially the same as the cross sections of the third and fourth parts shown in figures 3D and 3E, respectively.
  • Second leg blanks having the required thickness profile for the preferred embodiment, but lacking a twisted third part 44 can be molded using a relatively simple mold. From the second leg blanks, second legs with the flat side of the first part on the left, like second leg 2A, and second legs with the flat side of the first part on the right, like second leg 2B, can be made. After a second leg blank has been moulded, it is placed in a twisting jig and supported at the distal end of its second part 42. The fourth part 46 is clamped in a rotating port of the jig. The third part of the leg is heated to soften it, and the rotating part of the jig is rotated through about 90 degrees to impart the desired twist in the third part 44 of the leg.
  • the leg is left to cool before it is removed from the jig.
  • the orientation of the flat side of the first part of the leg in the twisting jig determines whether a type-2A leg or a type-2B leg is made.
  • the twisting direction is the same for both types of leg.
  • the mounting block 6 can be provided with a variety of attachments suitable for coupling to known lifting bars.
  • the mounting block is provided with a dovetail connector 50, as shown in figures 4A and 4B.
  • the dovetail connector is trapezoidal, with its parallel sides 52 and 54 perpen ⁇ dicular to the lifting direction, and its long parallel side 52 spaced from its short parallel side 54 in the lifting direction.
  • the non-parallel sides, 56 and 58 form an acute angle with the front face 60.
  • the arrangement of non-parallel sides forming an acute angle with the front face forms a positive lock with a dovetail slot 62, which is a female version of the dovetail connector 50, formed in the lifting bar adaptor 64.
  • the lifting bar adaptor is attached to the lifting bar by conventional means (not shown).
  • the dovetail connector 50 and dovetail slot 62 form a unidirectional lifting force coupling.
  • the dovetail slot and dovetail connector will transmit to the mounting block 6 a lifting force applied to the lifting bar adaptor 64 in the direction indicated by the arrow 66.
  • a force applied in the direction opposite to that shown by the arrow 66 causes the dovetail slot to disconnect from the dovetail connector, which prevents the coupling from transmitting any force in the opposite direction.
  • the retractor When the retractor is used for lifting, the retractor is inserted into the abdomen and the dovetail connector 50 is engaged in the dovetail slot 62 in the lifting bar adaptor 64.
  • the lifting bar is then raised to lift the abdominal wall, and is maintained in position during treatment. After treatment has been completed, the lifting bar is progressively lowered to return the abdominal wall to its normal position.
  • the dovetail connector automatically disconnects from the dovetail slot. This prevents the reverse force from being transmitted to the retractor, and indicates to the operator that the lifting bar has been lowered far enough.
  • FIG 5A is a perspective view of the preferred embodiment of a fan retractor 100 including all of the aspects of the invention.
  • the first legs 101A and 101B are extended by about 1" (25 mm) distally from the leg actuators 104A and 104B.
  • the extended parts of the first legs are bent through about 90 degrees.
  • the part of each of the first legs distal from the bend is inserted into an axial bore in the first part of the respective second leg. This arrangement is stronger than the arrangement shown in figure 1.
  • the first legs 101A and 101B pass through offiset axial bores in the cylindrical lower mounting block 168, which is slidably mounted in the lower part of the bore of the mounting sleeve 170.
  • the main mounting block 106 is spring mounted in the upper part of the bore of the mounting sleeve 170, as will be described in connection with figure 6A below.
  • the dovetail connector 150 is mounted on the mounting sleeve 170, instead of directly on the mounting block 150.
  • the main mounting block can rotate relative to the mounting sleeve and the dovetail connector. This enables the second legs to face in any direction relative to the lifting bar prior to lifting.
  • the lifting force prevents the main mounting block from rotating relative to the mounting sleeve, and holds the legs in the position in which they were set prior to lifting.
  • the lifting force is applied to the mounting sleeve 170 through the dovetail connector 150.
  • the spring mounting of the main mounting block 106 enables the relative axial positions of the mounting sleeve and main mounting block to change in response to the lifting force.
  • the mounting sleeve moves relative to the scale 172 marked on the cylindrical surface of the mounting block, which indicates the magnitude of the lifting force.
  • the lifting force indicator thus provided enables the lifting force to be monitored during the lifting process, and reduces the risk that an excessive lifting force will be used.
  • the lifting force scale (not shown) can be marked on the surface of the mounting sleeve 170 and a pointer (not shown) attached to the main mounting block 106 can move against the scale to indicate the lifting force.
  • the lifting force scale on the cylindrical surface of the mounting sleeve 170 or of the mounting block 106 is most easily seen from the side.
  • the preferred embodiment includes an additional lifting force indicator 174 on the end face 178 of the mounting block to enable the lifting force to be monitored easily looking from above.
  • the additional lifting force indicator is shown in detail in figures 5B and 5C.
  • the additional lifting force indicator includes a window 176 in the end face 178 of the mounting block.
  • a tape 180 moves in the window 176 in response to the motion of the mounting block relative to the mounting sleeve as a result of the lifting force.
  • the tape is marked with a reference mark 182 that moves against the scale 184 marked in the window 176, adjacent to the tape 180.
  • the tape is marked with the scale 186 that moves against the reference mark 188 marked in the window 176, adjacent to the tape.
  • the assembly of the main mounting block 106, the lower mounting block 168, and the mounting sleeve 170, and details of the additional lifting force indicator are shown in figure 6A.
  • the mounting sleeve 170 is a tubular piece of plastic or metal having a bore.
  • the lower part 190 of the bore receives the lower mounting block 168.
  • a pin 171 passes through a radial bore in the lower mounting block between the first legs, and engages with a groove in each of the first legs to axially locate the lower mounting block relative to the first legs.
  • the groove 173A in the first leg 101A is shown.
  • the upper part 192 of the bore which, in the preferred embodiment, has a larger diameter than the lower part 190, receives the main mounting block 106. Separating the upper and lower parts of the bore is the lip 194, which provides an end-stop for upward movement of the lower mounting block 168 in the mounting sleeve 170.
  • the lip 194 also supports the nylon washer 196 on which the lower end of the coil spring 198 rests.
  • the lower surface 202 of the main mounting block 106 rests on the upper end of the coil spring 198, with a circumferential groove 200 in the lower surface receiving the spring.
  • a lifting force applied to the dovetail connector 150 on the mounting sleeve 170 is transferred through the lip 194, the nylon washer 196, and the coil spring 198 to the upper mounting block 106, and thence to the first and second legs of the retractor. Compression of the spring 198 in response to the lifting force allows the main mounting block 106 to move relative to the mounting sleeve 170, and causes the top rim 204 of the mounting sleeve to juxtapose a different point on the scale 172, which indicates the lifting force.
  • the main mounting block 106 includes an upper lifting force indicator passage 210 machined or moulded into it.
  • the passage 210 has an exit in the lower face 202 of the main mounting block, and continues distally from the lower face in a substantially straight line parallel to the curved side of the upper mounting block. Proximate to the window 176, the passage has a curved portion 212 that curves to form an arc in the window, followed by a straight portion 213 that returns at least part-way back towards the lower face 202.
  • the tape 180 runs through the passage 210.
  • One end of the tape is attached to the mounting sleeve 170, preferably adjacent to the lip 194.
  • the straight part of the passage 210 preferably has a cross section that curves across the width of the tape, as shown in figure 6C, to impart a stiffness to the tape.
  • the window 176 has a width H> W that is narrower than the width w t of the tape 180, as shown in figure 6B. This enables the lips 214 and 216 to guide the tape in the curved part 212, where part of the wall of the passage is missing because of the window 176. Compression of the spring 198 in response to the lifting force allows the main mounting block 106 to move relative to the mounting sleeve 170.
  • Solid second legs are shown in figure 3A.
  • the second legs may alternatively be provided with an arrangement of one or more internal passages, such as the arrangement of a longitudinal passage connecting to one or more transverse passages connecting to the surface of the leg shown in figures 7A-7C.
  • An internal passage can be dedicated to a specific purpose, or can be made to receive a variety of inserts that are plugged into the internal passage to provide different capabilities, as required.
  • Figures 7A and 7B show two examples of internal passage arrangements in which connections are made to an internal passage at the end of the second leg proximal to the first leg.
  • Second legs can be also made with different internal passage arrangements, including, for example, arrangements with more or fewer longitudinal passages, with more or fewer transverse passages, and/or with transverse passages connecting to the side surfaces of the second legs.
  • Figure 7A shows a second leg 202 attached to a first leg 201.
  • the second leg 202 has an internal passage arrangement with two longitudinal passages 205 and 215.
  • the longitudinal passage 205 is connected to a plurality of transverse passages, including the transverse passage 207, connecting to the lower surface 209 of the second leg.
  • a pipe 211 is plugged into the proximal end 212 of the second leg to connect to the longitudinal passage 205.
  • the pipe 211 is run up the outside of the first leg 201 to a suitable connection (not shown).
  • the pipe 211 is retained in position relative to the first leg 201 by the clamp 213.
  • the longitudinal passage 215 is connected to the single transverse passage 217 in the upper surface 219 in the second leg.
  • the pipe 221 connects to the longitudinal passage 215 and runs up the outside of the first leg 201, and is retained by the clamp 213.
  • the internal passage arrangement can be connected to a vacuum line, which enables blood and other fluids to be aspirated from the vicinity of the fan retractor. Such an arrangement can also be used to aspirate the smoke generated by electrocautery, a process commonly used in laparoscopic procedures.
  • the internal passage arrangement can be connected to a suitable syringe, pump, or water line, so that fluids can be infused into the vicinity of all or parts of the second legs.
  • the fluids can be infused into the abdomen if the fan retractor is used conventionally, or into the space between the peritoneum and the properitoneal fatty layer, if the fan retractor is used properitoneally.
  • saline can be infused for irrigation.
  • a suitable insufflation gas can be infused for pneumoperitoneum.
  • a spray of anaesthetic can be sprayed into the abdomen from the fan retractor.
  • the longitudinal passage 215 and transverse passage 217 can be used for infusion, and the longitudinal passage 205 and plurality of transverse passages, such as the transverse passage 207, can be used for aspiration.
  • the second leg 302 is attached to the first leg 301.
  • the second leg has a longitudinal passage 305, connected to a plurality of transverse passages, including the transverse passage 307, that connect to the lower surface 309 of the second leg.
  • a plurality of optical fibres 331 is inserted into the longitudinal passage 305 through the proximal end 211 of the second leg. Individual fibres, such as the fibre 333, or groups of fibres, are brought to the lower surface 309 through the transverse passages, such as the transverse passage 307.
  • the proximal end 335 of the plurality of optical fibres is connected to a suitable light source 337.
  • Light from the light source is emitted from the ends of the fibres, such as the end of the fibre 333, in the lower surface 309 of the second legs and provides working light for the surgeon to treat the tissue being treated.
  • the peritoneum is sufficiently translucent that light emitted from optical fibres in the second legs of the fan retractor will provide adequate working light even when the retractor is inserted properitoneally.
  • the optical fibres can be molded integrally with the second leg as part of the process of molding the second leg blanks.
  • Figure 7C shows an alternative arrangement in which the first leg 401 is formed using a hollow tube, the bore of which connects to the internal passage arrangement of the second leg.
  • the plurality of optical fibres 431 passes through the bore of the first leg into the longitudinal passage 405, and individual fibres, such as the fibre 433, are brought out to the lower surface 409 of the second legs through a plurality of transverse passages, such as the passage 407.
  • the construction of the second leg 402 is similar to the second leg 302 in figure 7B, and will not be described further.
  • the first leg 401 is extended through the leg actuator 404 to allow the plurality of optical fibres 431 to emerge from the bore of the first leg thus exposed.
  • Figure 7C shows a simple form of the fan retractor that lacks a lifting force indicator (figures 5 and 6A). In fan retractors equipped with lifting force indicators (figure 6A), the additional lifting force indicator has to be relocated to provide room for the plurality of optical fibres.
  • Figure 7C shows an embodiment of the fan retractor having a plurality of optical fibres inserted in the internal passages of the second leg 402.
  • Alternative versions of the embodiment of figure 7C can be made in which the internal passages are used for infusion or aspiration.
  • the infusion or aspiration pipe (similar to the pipes 211 and 221 in figure 7A) can be run inside the bore of the first leg 410. If the second leg has multiple internal passages, multiple pipes and optical fibres can be run through the bore of the first leg.
  • FIG. 8A An incision I, 0.4" - 0.8" (10 - 20 mm) long is made in a suitable location in the abdominal wall AW, as shown in figure 8A. The incision is made through the skin, the subcutaneous fat, muscle and fascia, until the properitoneal fat layer is reached, just short of the peritoneum P. A detailed cross sectional view of the abdominal wall, showing the different layers, is shown in figure 9.
  • the operating levers 114 of the fan retractor 103 are manipulated to bring the second legs 102 fan retractor to their closed state if they are not in this state already.
  • the distal ends 149 of the second legs are then inserted into the incision I and pushed through the incision until they abut against the peritoneum P.
  • the pressure of the wide, gently curved distal ends of the second legs against the peritoneum detaches the peritoneum from the properitoneal fatty layer without piercing the peritoneum, as shown in figure 8B.
  • the distal ends 149 of the second legs are worked into the space between the peritoneum and the properitoneal layer.
  • the retractor is then advanced along the center line CL of the abdomen (figure 8E), keeping the angle ⁇ between the second legs and the abdominal wall as small as possible to minimize detachment of the peritoneum, as shown in figure 8C.
  • Advancing the second legs progressively detaches the peritoneum from the properitoneal layer.
  • the first legs 101 abutting against the incision I limits the advancing of the second legs 102, as shown in figure 8D.
  • the orientation of the second legs relative to the center line CL of the abdomen is checked, and the second legs are reoriented if necessary to align them along the center line (figure 8E).
  • orientation marks on the main mounting block can be used to indicate the direction of the second legs.
  • the outline of the part of the peritoneum detached from the properitoneal layer is shown by the broken line D x in figure 8E.
  • the operating levers 114A and 114B are then squeezed together to force the second legs 102A and 102B apart, as shown in figure 8F.
  • the second legs detach more of the peritoneum from the properitoneal layer, as shown by the dotted line D 2 .
  • the orientation of the main mounting block 106 is observed to ensure that asymmetri ⁇ cal resistance to the opening of the second legs does not skew the symmetrical placement of the second legs relative to the center line CL. Since the second legs open symmetrically with respect to the main mounting block, any skewing of the second legs can be observed as rotation of the main mounting block.
  • the dovetail connector 150 is coupled to the dovetail slot 162 on the lifting bar adaptor 164, as shown in figure 8G.
  • the lifting bar adaptor is attached to the lifting bar B by conventional means (not shown).
  • the main mounting block can rotate relative to the mounting sleeve, so the orientation of the lifting bar relative to the second legs may be changed from that shown, if desired.
  • the lifting bar B is then raised progressively while watching one of the lifting force indicators, the scale 172 on the cylindrical wall of the main mounting block 106, or the additional lifting force indicator 174 in the end face of the main mounting block.
  • the lifting force can be reduced by reducing the rate of lifting, or stopping the lifting altogether.
  • the third and fourth parts 144 and 146 of the second legs bend to conform with the shape of the inside of the abdominal wall, as shown in figure 8G.
  • the incision I may be carried through the peritoneum, and used to insert endoscopes or other instruments into the abdomen.
  • the incision I can be put to further use because the first legs 101 of the retractor occupy only a relatively small part of the incision.
  • the second legs of the retractor may be used during the treatment procedure to provide illumination of the treatment area, and infusion and aspiration of the properitoneal area.
  • the lifting bar B is progressively lowered to return the abdomen to its normal state.
  • the dovetail connector 150 disconnects from the dovetail slot 162. This informs the operator that the lifting bar has been lowered far enough, and also prevents the lifting bar from driving the retractor into the abdomen and causing compression injury to the underlying bowel.
  • the operating levers 114 are moved apart to bring the second legs 102 together once more.
  • the fan retractor 103 is then manipulated to withdraw the second legs from under the peritoneum through the incision I.
  • the properitoneal retraction method according to the invention is preferably practiced using a fan retractor according to the invention, described above, which is specially designed for this purpose.
  • the fan retractor according to the invention is not a requirement for practicing the properitoneal retraction method according to the invention.
  • the method can be practiced using other suitable retractors.
  • Properitoneal retraction is preferred because interposing the peritoneum between the retractor and the underlying bowel and omentum prevents the retractor from snagging the bowel or omentum.
  • the fan retractor according to the invention is not limited to properitoneal use. Most of the advantages conferred by the fan retractor according to the invention can also be obtained when the fan retractor is used in the abdomen to exert its lifting force against the posterior face of the peritoneum.
  • the method set forth above can easily be adapted for conventional use.
  • the incision I is carried through the peritoneum.
  • the abdomen is preferably insufflated before the second legs of the retractor is inserted through the incision. Insufflation provides a clearance between the second legs of the retractor and the underlying bowel and omentum.
  • a third incision is required for an endoscope to observe placement of the second legs.
  • care must be taken to ensure that they are kept as close to the abdominal wall as possible to reduce the chance of snagging bowel or omentum.
  • the insertion process and the leg spreading process must be carried out under continuous observation to check for snagging. If snagging occurs, the second legs must be withdrawn, at least partially, to release the snag, and the insertion process recommenced.
  • the fan retractor is used to lift the abdominal wall, as described above.

Abstract

A fan retractor (100) has a pair of angle-shaped elements (102A, 102B) moveable relative to one another. The angle-shaped elements include first legs (101A, 101B) disposed in a generally parallel relationship, and second legs that extend laterally from the first legs, and are adapted for engaging with the abdominal wall. The second legs fan out upon rotation of the first legs relative to one another and have an effective thickness, measured in the direction defined by the first legs, that decreases distally from the first legs. The retractor also includes a lifting device (150) that applies a lifting force to the angle-shoped elements. In variations, the second legs have a stiffness that decreases distally from the first legs; the first legs are linked so as to contra-rotate relative to one another; the retractor includes a lifting force indicator (172); and the lifting device unidirectionally applies the lifting force to the angle-shaped elements. The fan retractor is preferably used properitoneally, that is, the second legs of the retractor are inserted between the properitoneal fat layer and the peritoneum. With this placement of the retractor, the peritoneum provides a drape over the bowel and omentum and prevents the second legs of the retractor from snagging the bowel or the omentum. The fan retractor may additionally be used conventionally with its second legs placed posteriorly relative to the peritoneum.

Description

PROPERITONEAL MECHANICAL RETRACTION APPARATUS AND METHODS OF USING
*
Field of the Invention
The invention relates to devices for use in laparoscopic surgery, in particular, to devices that lift the abdominal wall to provide working space in which to carry out laparoscopic procedures.
5 Background of the Invention
Laparoscopy dates back to the turn of the 20th Century. Early laparoscopic techniques were used primarily for diagnostic purposes to view the internal organs, without the necessity of conventional surgery. Since the 1930s, laparoscopy has been used for sterilization and, more recently, for suturing hernias. U.S. Patents
10 4,919,152 and 4,944,443 are concerned with techniques for suturing hernias. Another recent innovation is the use of laparoscopic surgery for removing the gallbladder.
In the course of performing laparoscopic procedures in the abdomen, it is necessary to raise the abdominal wall to create space in which to work. A well-
15 known method of raising the abdominal wall is to insufflate the abdominal cavity with a suitable insufflation gas, such as air, or carbon dioxide. A significant disadvantage of gas insufflation is that instruments must be passed into the abdominal cavity through gas-tight seals, which significantly reduce the surgeon's feel of the instruments.
20 Several mechanical alternatives to gas insufflation have been proposed. The
Gazayerli Endoscopic Retractor Model 1, described in SURGICAL LAPAROSCOPY AND E DOSCOPY, Vol. 1, No. 2, 1991, pages 98-100, has a rigid rod with a hinged blade at the distal end. The blade can rotate through 360 degrees about an axis perpendicular to the long axis of the rod. The blade is aligned with the long axis of the rod for insertion into the abdomen through a small puncture. Once inside the abdomen, the blade is swivelled through about 90 degrees to form a T- shaped structure. The proximal end of the rod can be raised by hand or by a rope, pulley and weight arrangement. Raising the rod causes the blade to engage the abdominal wall and to lift it.
French patent application no. 90-03980 shows a wire structure that is threaded into the belly through a small puncture to engage and to lift the abdominal wall. The application also shows a fan retractor that has a first angle-shaped member having a first leg that engages with the abdominal wall, a tubular second leg having a bore, and a third leg, remote from the first leg, that has a hook-shaped member on its end distal from the second leg. A second angle-shaped member has a first leg that engages with the abdominal wall, a second leg that pivots within the bore of the second leg of the first angle-shaped member, and a third leg, remote from the first leg, that serves as an operating lever for the second angle-shaped member. The first legs of the angle-shaped members are closed together to insert them into the abdominal cavity through an incision. The third leg of the second angle-shaped member is then operated to spread the first leg of the second angle-shaped member apart from the first leg of the first angle- shaped member. The first legs are engaged with the peritoneum inside the abdominal cavity. A lifting force is then applied to the hook-shaped member to lift the retractor and hence to lift the abdominal wall. United States Patent Application Serial No. 706,781, the application of which this application is a Continuation-in-Part, describes a number of different mechanical devices that are inserted through one or more punctures into the belly. All or part of the device is then lifted to lift the abdominal wall away from the underlying abdominal organs. One of the devices described in the prior application is a fan retractor that is inserted in a closed condition into the abdominal cavity, spread apart once inside the abdominal cavity, and brought into contact with the peritoneum inside the abdominal cavity. The apparatus is then lifted to lift the abdominal wall.
The known fan retractors are all intended for intra-abdominal placement. It is difficult to place the peritoneum-engaging elements of such devices inside the abdominal cavity adjacent to the peritoneum without snagging the bowel or omentum. It is often necessary to make multiple attempts at inserting the retractor before the fan retractor can be correctly positioned with its peritoneum- engaging elements adjacent to the peritoneum with no bowel or omentum caught between the peritoneum-engaging elements and the peritoneum. Insufflating the abdomen before inserting the fan retractor does not eliminate the risk of snagging.
If the retractor is inserted, lifted, and maintained in a lifted state with an unrecognized loop of bowel caught between the peritoneum-engaging elements of the retractor and the peritoneum, trauma or necrosis to that loop of bowel may occur, with significant morbidity or mortality.
Known fan retractors have a substantially constant stiffness along the length of their peritoneum-engaging elements. This causes the pressure that the peritoneum-engaging elements exert against the peritoneum to increase sharply towards the ends of the peritoneum-engaging elements. High pressure can cause trauma to the peritoneum, and there is a risk that the ends of the peritoneum- engaging elements will penetrate the peritoneum.
The peritoneum-engaging elements of known fan retractors move independently of one another. This can lead to the peritoneum-engaging elements of the fan retractor being asymmetrically placed within the abdominal cavity, which results in the peritoneum-engaging elements providing the retracting force unequally. With asymmetrical placement, there is the risk that the more heavily loaded peritoneum engaging element will traumatize or penetrate the peritoneum.
The lifting force applied by known fan retractors is generally determined by the lifting result obtained. If, for some reason, the abdominal wall fails to lift, the lifting force could accidentally be increased to the point at which trauma to or penetration of the peritoneum occurs.
Known fan retractors are rigidly attached to lifting bars such that, if the lifting bar is carelessly lowered at the end of treatment, the lifting bar can push the fan retractor into the abdomen, and cause a compression injury to the underlying organs.
Summary of the Invention
In the following description, the word "organ" will be used to mean an organ or a tissue that is retracted by a retraction device. The word "treat" will be used to mean both treat and observe, and the word "treatment" will be used to mean both treatment and observation. The word "tissue" or the phrase "tissue to be treated" will both be used to mean the organ or the tissue that is treated through or inside a retraction device. A fan retractor according to the first aspect of the invention has a pair of angle-shaped elements moveable relative to one another. The angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs that extend laterally from the first legs, and are adapted to engage with the abdominal wall. The second legs fan out upon rotation of the first legs relative to one another and have an effective thickness, measured in the direction defined by the first legs, that decreases distally from the first legs. The retractor also includes a lifting device that applies a lifting force to the angle-shaped elements. The fan retractor according to the first aspect of the invention is used properitoneally, that is, the second legs of the retractor are inserted between the peritoneal fat layer and the peritoneum. With this placement of the retractor, the peritoneum provides a drape over the bowel and omentum and prevents the second legs of the retractor from snagging the bowel or the omentum.
The second legs have a thickness that decreases distally from the first legs. This enables the second legs act as a wedge to separate the peritoneum from the properitoneal fat layer, and provides a stiffness that decreases distally from the second legs. This enables the second legs to flex slightly, and to conform to the curvature of the abdominal wall. The second legs conforming to the curvature of the abdominal wall enables the second legs to exert a lifting force to the abdominal wall that is substantially constant along the length of the second legs. This reduces the risk of the distal ends of the second legs traumatizing or penetrating the abdominal wall.
A fan retractor according to a second aspect of the invention has a pair of angle-shaped elements moveable relative to one another. The angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs that extend laterally from the first legs, and are adapted to engage with the abdominal wall. The second legs fan out upon rotation of the first legs relative to one another and have a stiffness, measured in the direction defined by the first legs, that decreases distally from the first legs. The retractor also includes a lifting device that applies a lifting force to the angle-shaped elements. The fan retractor according to the second aspect of the invention is preferably used properitoneally and confers the advantages of properitoneal use described above in connection with the fan retractor according to the first aspect of the invention. However, a fan retractor according to the second aspect of the invention may also be used conventionally, i.e., it may apply its lifting force to the posterior side of the peritoneum.
Whether used properitoneally or conventionally, the second legs have a stiffness that decreases distally from the first legs. This characteristic enables the second legs to flex slightly, and to conform to the curvature of the abdominal wall. The second legs conforming to the curvature of the abdominal wall enables the second legs to exert a lifting force to the abdominal wall that is substantially constant along the length of the second legs. This reduces the risk of the distal ends of the second legs traumatizing or penetrating the abdominal wall.
A fan retractor according to the third aspect of the invention has a pair of angle-shaped elements moveable relative to one another. The angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs extending laterally from the first legs. The second legs fan out upon rotation of the first legs relative to one another, are adapted to engage with the abdominal wall. The retractor also include a contrarotating device that responds to rotation of the first leg of one of the angle-shaped elements through a first angle. The contrarotating device rotates the first leg of the other of the first angle-shaped elements through an angle substantially equal and opposite to the first angle. Finally, the retractor includes a lifting device that applies a lifting force to the angle-shaped elements. The contrarotating device makes the second legs fan out symmetrically. This feature is especially useful when the fan retractor is used properitoneally, since the position of the second legs cannot be directly seen when the second legs are between the peritoneal fat layer and the peritoneum. With symmetrical fanning, the risk that one of the second legs may inadvertently abut, and possibly pierce, the abdominal side wall is significantly reduced. A fan retractor according to the third aspect of the invention can also be used conventionally.
A fan retractor according to the fourth aspect of the invention has a pair of angle-shaped elements moveable relative to one another. The angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs extending laterally from the first legs. The second legs fan out upon rotation of the first legs relative to one another, and are adapted to engage with the abdominal wall. The retractor also includes a lifting device that applies a lifting force to the angle-shaped elements. Finally, the retractor includes a lifting force measuring device that is coupled to the lifting device and that measures the lifting force.
A fan retractor according to the fourth aspect of the invention enables the lifting force to be monitored during the lifting operation. This prevents an excessive lifting force, that could possibly result in trauma to or penetration of the abdominal wall, from being applied to the abdominal wall. A fan retractor according to the fourth aspect of the invention is preferably used properitoneally, but it can also be used conventionally.
A fan retractor according to a fifth aspect of the invention has a pair of angle- shaped elements moveable relative to one another. The angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs extending laterally from the first legs. The second legs fan out upon rotation of the first legs relative to one another, and are adapted to engage with the abdominal wall. The retractor also includes a lifting device that applies a lifting force to the angle-shaped elements. The lifting device includes a unidirectional coupler that applies the lifting force to the angle-shaped elements in the lifting direction, and applies a substantially zero force to the angle-shaped elements in a direction opposite to the lifting direction.
The unidirectional coupler of the fan retractor according to the fifth aspect of the invention reduces the risk of compression injury to the bowel or omentum occurring if a force in the direction opposite to the lifting direction is imposed on the coupling. This can occur if the lifting bar to which the coupling is attached is lowered too far.
A fan retractor according to a sixth aspect of the invention has a pair of angle-shaped elements moveable relative to one another. The angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs extending laterally from the first legs. The second legs fan out upon rotation of the first legs relative to one another, and are adapted to engage with the abdominal wall. At least one of the second legs includes an internal passage. The retractor also includes a lifting means that applies a lifting force to the angle-shaped elements. The internal passage in at least one of the second legs of the fan retractor according to the sixth aspect of the invention enables the fan retractor to provide aspiration and infusion in its vicinity. Additionally or alternatively, the internal passage can cany an optical fibre through which light to illuminate the treatment site can fed from an external light source.
In a first method of properitoneally lifting the abdominal wall according to the invention, a retractor is provided that includes an angle-shaped element having a first leg, and a second leg extending laterally from the first leg towards a distal end. An incision is made through the abdominal wall to the peritoneal fat layer. The distal end of the second leg is introduced through the incision to separate the peritoneum from the properitoneal fat layer. The second leg is advanced under the peritoneum, and a lifting force is applied to the angle-shaped element.
In a second method according to the invention of properitoneally lifting the abdominal wall, a fan retractor is provided that includes a pair of angle-shaped elements moveable relative to one another. The angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs extending laterally from the first legs towards distal ends. The second legs fan out upon rotation of the first legs relative to one another. An incision is made through the abdominal wall to the properitoneal fat layer. The distal ends of the second legs are introduced through the incision to separate the peritoneum from the properitoneal fat layer. The second legs are advanced under the peritoneum. The first legs are rotated relative to one another to fan out the second legs, and a lifting force is applied to the angle-shaped elements.
In a third method according to the invention of lifting the abdominal wall, a fan retractor is provided that includes a pair of angle-shaped elements moveable relative to one another. The angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs extending laterally from the first legs towards distal ends. The second legs fan out upon rotation of the first legs relative to one another, and have a stiffness in the direction of the first legs that decreases distally from the first legs. An incision is made through the abdominal wall, and the distal ends of the second legs are advanced through the incision. The first legs are rotated relative to one another to fan out the second legs, and the second legs are engaged with the abdominal wall. Finally, a lifting force is applied to the angle-shaped elements. In a fourth method according to the invention of lifting the abdominal wall using a fan retractor having symmetrical leg opening, a fan retractor is provided that includes a pair of angle-shaped elements moveable relative to one another. The angle-shaped members include first legs disposed in a generally parallel relationship, and linked together such that rotation of one of the first legs through a first angle rotates the other of the first legs through an angle substantially equal and opposite to the first angle. The angle-shaped members also include second legs that extend laterally from the first legs and fan out symmetrically upon equal and opposite rotation of the first legs relative to one another. An incision is made through the abdominal wall, and the second legs are advanced into the incision. The first legs are rotated relative to one another to symmetrically fan out the second leg. The second legs are engaged with the abdominal wall, and a lifting force is applied to the angle-shaped elements.
In a final method according to the invention of lifting the abdominal wall using a fan retractor having a lifting force measuring device, a fan retractor is provided that includes a pair of angle-shaped elements moveable relative to one another. The angle-shaped elements include first legs disposed in a generally parallel relationship, and second legs that extend laterally from the first legs and that fan out upon rotation of the first legs relative to one another. The angle- shaped elements also include a force measuring means for measuring the lifting force. An incision through the abdominal wall, and the second legs are advanced into the incision. The first legs are rotated relative to one another to fan out the second legs, and the second legs are engaged with the abdominal wall. A lifting force is applied to the angle-shaped elements, and the lifting force is observed using the force measuring means.
Brief Description of the Drawings
Figure 1 is a perspective view of a simplified version of a fan retractor according to the invention.
Figure 2A is a cross sectional view of the leg actuators of a fan retractor according to the invention, taken along the line X-X' in figure 1.
Figure 26 is a perspective view of the leg actuators of a fan retractor according to the invention.
Figure 3A is a perspective view of the preferred embodiment of the second legs of a fan retractor according to the invention in their closed position. Figure 3B is a cross sectional view of the first part of the second legs of a fan retractor according to the invention, taken on the line A-A' in figure 3A.
Figure 3C is a cross sectional view of the second part of the second legs of a fan retractor according to the invention, taken on the line B-B' in figure 3A. Figure 3D is a cross sectional view of the third part of the second legs of a fan retractor according to the invention, taken on the hne C- in figure 3A.
Figure 3E is a cross sectional view of the fourth part of the second legs of a fan retractor according to the invention, taken on the line D-D' in figure 3A.
Figure 3F is a cross sectional view of the first part of an alternative embodiment of the second legs of a fan retractor according to the invention, in which the first part of the second legs has an oval cross-section.
Figure 3G is a cross sectional view of the second part of an alternative embodiment of the second legs of a fan retractor according to the invention, in which the first part of the second legs has an oval cross-section. Figure 4A is a perspective view of the mounting block and lifting bar adaptor of a simplified version of the fan retractor according to the invention.
Figure 4B is a cross sectional view of the mounting block and lifting bar adaptor of a simplified version of the fan retractor according to the invention, taken along the line Y-Y'. Figure 5A is a perspective view of the preferred embodiment of a fan retractor according to the invention.
Figure 5B is a plan view of a first embodiment of the additional lifting force indicator of a fan retractor according to the invention.
Figure 5C is a plan view of a second embodiment of the additional lifting force indicator of a fan retractor according to the invention.
Figure 6A is a cross sectional view of the preferred embodiment of the fan retractor according to the invention, taken along the line Z-Z' in figure 5A.
Figure 6B is a cross sectional view of the additional lifting force indicating window of a fan retractor according to the invention, taken along the line P-P' in figure 6A.
Figure 6C is a cross sectional view of the indicating tape channel of the fan retractor according to the invention, taken along the line Q-Q' in figure 6A.
Figure 7A is a longitudinal cross sectional view of a second leg of a fan retractor according to the invention. The second leg has an internal bore arrangement providing aspiration and/or irrigation. Figure 7B is a longitudinal cross sectional view of a second leg of a fan retractor according to the invention. The second leg has an internal bore arrangement providing working lighting using optical fibres.
Figure 7C is a longitudinal cross sectional view of a second leg of a fan retractor according to the invention. The second leg has an internal bore arrangement providing working lighting using optical fibres brought into the second leg through a bore in the first leg.
Figure 8 illustrates the method according to the invention of using a fan retractor according to the invention properitoneally to lift the abdominal wall. Figure 8A is a longitudinal cross section of the abdomen, showing the abdominal wall, the peritoneum, and an incision through the abdominal wall as far as the peritoneum.
Figure 8B is a longitudinal cross section of the abdomen, showing the abdominal wall, the peritoneum, and the distal ends of the second legs of the fan retractor being inserted through the incision to abut the peritoneum.
Figure 8C is a longitudinal cross section of the abdomen, showing the abdominal wall, the peritoneum, and the second legs of the fan retractor being advanced between the peritoneum and the abdominal wall and progressively detaching the peritoneum from the abdominal wall. Figure 8D is a longitudinal cross section of the abdomen, showing the abdominal wall, the peritoneum, and the fan retractor correctly positioned adjacent to the abdominal wall prior to opening the second legs of the retractor.
Figure 8E is a plan view of the abdomen showing the fan retractor correctly positioned relative to the center line of the abdomen, prior to opening the second legs of the retractor.
Figure 8F is a plan view of the abdomen showing the fan retractor symmetrically positioned relative to the center line of the abdomen after the second legs of the retractor have been opened. Figure 8G is a longitudinal cross section of the abdomen after the abdominal wall has been lifted by the fan retractor connected to a lifting bar, showing the abdominal wall, the peritoneum, and the fan retractor with the distal parts of its second legs bent to conform with the lifted shape of the anterior abdominal wall. Figure 9 is a cross sectional view of the abdominal wall showing the various layers of tissue.
Detailed Description of the Invention
A simplified representation of a fan retractor according to the invention is shown in figure 1. The fan retractor 3 has a pair of first legs 1A and IB, including the leg actuators 4A and 4B, a pair of second legs 2A and 2B, and a mounting block 6 to which the lifting force is applied. The second legs are shown schematically: their specific shape will be described in detail below in connection with figure . The mounting block 6 is cylindrical and includes two axial bores 8A and 8B, symmetrically offset from the axis, that receive the first legs 1A and IB, respectively. The diameter of the bores is such that the bores snugly receive the first legs with the first legs free to rotate within their respective bores. The mounting block 6 is preferably moulded from a suitable plastic, such as polycarbonate, but other materials, such as stainless steel, can be used.
The first legs 1A and IB are substantially straight, cylindrical metal rods. In the preferred embodiment, they are made from stainless steel and are about 4.5" long and about 0.15" in diameter.
The leg actuators 4A and 4B are attached to the end of the first legs 1A and IB, respectively, remote from the second legs, on the opposite side of the first legs from the second legs. The leg actuators bear against the upper face 10 of the mounting block 6 and transfer the lifting force from the upper face 10 of the mounting block 6 to the first legs. The leg actuators are attached to the first legs so that they can withstand a force of several tens of kilograms exerted in the direction of the first legs.
The leg actuators 4A and 4B rotate the first legs. This changes the angular positions of the second legs 2A and 2B with respect to one another. In a fan retractor according to the invention, the second legs 2A and 2B are not capable of independent movement. If one of the second legs, for example 2A, is moved by the operating lever 14A of the leg actuator 4A through a certain angle, the other of the second legs, for example 2B, moves through .substantially the same angle in the opposite direction.
In the preferred embodiment, the operating levers 14A and 14B of the leg actuators are on the opposite side of the first legs from the second legs. Moving the operating levers 14A and 14B of the actuators 4A and 4B away from one another brings the second legs towards being parallel to one another (closed position), and bringing the operating levers together splays the second legs apart (open position). This mode of operating is preferred, especially for properitoneal use, since the second legs can be opened, and the peritoneum detached from the anterior fatty layer, simply by squeezing the operating levers together. However, the operating levers may be mounted on the same side of the first legs as the second legs, if desired. Mounted in this way, the operating levers operate in the opposite sense, i.e., squeezing the operating levers together closes the second legs. The leg actuators 4A and 4B are linked to cause the second legs to move equally and oppositely. Any rotation of one of the leg actuators causes an equal and opposite rotation in the other of the leg actuators. Many known mechanisms exist for providing such relative motion. A cross section of the leg actuators of the preferred embodiment is shown in figure 2A. The leg actuators 4A and 4B each comprise a bush 12A, 12B mounted on the respective first leg lA, IB, and an operating lever 14A, 14B. The operating levers 14A and 14B translate a lateral movement of the operator's thumb or finger into a rotation of the respective leg actuator 4A and 4B, and of the respective first leg 1A and IB. The bush 12B is provided with a peg 16 that engages with a socket 18 provided in the other bush 12A. The location of the peg and the socket can be reversed if desired. The peg and socket arrangement responds to the rotation of either one of the leg actuators 4A and 4B, and imparts an equal and opposite rotation on the other. This arrangement ensures that the second legs 2A and 2B open symmetrically and reduces the risk of one of the second legs inadvertently abutting against, and possibly penetrating, the abdominal wall. This is particularly desirable when the retractor is used properitoneally and the positions of the second legs cannot be seen directly.
Instead of the peg and socket arrangement shown, teeth can be moulded in the outer surfaces of the leg actuators 4A and 4B. Alternatively, the leg actuators can be clamped together in the direction perpendicular to the first legs 1A and IB, and the resulting friction between them used impart the desired relative motion. Providing one or both of the leg actuators with a high friction surface is desirable in such an arrangement. As a further alternative, the rotation of the first legs themselves can be linked, instead of linking the rotation of the leg actuators. Figure 2B shows details of the locking mechanism that holds the operating levers 14A and 14B in their open or closed positions, and hence holds the second legs 2A and 2B in their closed or open positions respectively. The sector 20 is mounted on the mounting block 6 adjacent to the operating levers 14A and 14B. In the preferred embodiment, the sector is moulded integrally with the mounting block. Relative to the operating levers 14A and 14B, the sector is slightly concave, and the operating levers 14A and 14B are biassed against the face 22 of the sector. This causes the sector to apply a frictional force to the operating levers. The frictional force holds the operating levers in any position in which they are set.
The frictional force can be released by pressing the button 24 towards the mounting block 6. The button is attached to, and preferably forms an integral part of, the sector 20. Pressing the button towards the mounting block bends the sector out of contact with the operating levers 14A and 14B, which releases the frictional force.
The skirt 26 of the sector 20 may additionally or alternatively be provided with one, two, or all of the notches 28A, 28B and 30, and the operating levers 14A and 15B provided with the operating lever extensions 29A and 29B. The notches 28A and 28B engage with the operating lever extensions 29A and 29B, respective- ly, when the operating levers are in the open position, i.e., when the second legs are in their closed position. The notches 28A and 28B lock the operating levers in position, and positively hold the second legs in their closed position. Because the motions of the leg actuators 4A and 4B are linked, one of the notches 28A and 28B may be omitted, if desired. The notch 30 engages with the operating lever extensions 29A and 29B when the operating levers are in their closed position, i.e., when the second legs are in their open position. The notch 30 locks the operating levers in position, and positively holds the second legs in their open position.
If the notches 28A, 28B and 30 are provided, a clearance must be provided between the sector 20 and the operating levers 14A and 14B to enable the notches to engage with the operating lever extensions 29A and 29B. However, with this arrangement, the skirt 26 applies a frictional force against to the operating lever extensions capable of holding the operating levers, and hence the second legs, in intermediate positions. Figure 3A shows a perspective view of the second legs 2A and 2B of a fan retractor according to the invention. Figures 3B through 3E show cross sections views of the second legs at various points along their lengths. For both properitoneal use and for conventional use, the stiffness of the second legs in the lifting direction, i.e., in the direction of the first legs, is required to decrease distally from the first legs. Distally reducing the stiffness of the second legs enables the second legs to bend to conform to the shape of the raised abdomen while having sufficient strength to provide the lifting force necessary. This spreads the lifting force evenly along the length of the second legs, instead of concentrat- ing the lifting force towards their distal ends.
For properitoneal use, second legs that are relatively flat are desirable to make it easy to insert the legs between the peritoneum and the properitoneal fatty layer. Flat legs, i.e., legs that are thin over all of their length, lack sufficient strength to exert the required lifting forces of several tens of kilograms. The inventors have discovered that second legs having an effective thickness that decreases and an effective width that increases distally from the first legs are both easy to insert under the peritoneum and are strong enough to exert the required lifting forces. The increasing thickness of the second legs towards the first legs acts as a wedge to detach the peritoneum progressively from the properitoneal fatty layer as the second legs are advanced under the peritoneum. The distally reducing thickness of the second legs also causes the stiffness of the second legs to reduce distally, which is desirable to enable the second legs to conform with the shape of the raised abdomen. The distally increasing width of the second legs helps maintain a more constant pressure against the peritoneum along the length of the second legs.
It is also desirable that the second legs form a relatively compact shape when in their closed position to reduce the size of the incision required to introduce the second legs into the abdomen, either conventionally or properitoneally. The preferred design for the second legs that meets the requirements just stated is shown in figures 3A through 3E. Both the cross sectional area and the cross sectional shape of the second legs change distally from the first legs 1A and IB.
The preferred second legs can be regarded as having four distinct parts. In the first part 40 of the second legs, close to the first legs, the cross section of each second leg is substantially semi-circular, as shown in figure 3B. In the first part of the second legs, the second legs have an appreciable thickness tx in the direction of the first legs. This provides considerable beam strength and stiffness, measured in the direction of the first legs, so that the required retraction force can be exerted. The semicircular cross section enables the two second legs to fit together to form a compact shape when the retractor is in its closed position. In the second part 42 of the second legs, the thickness t2 of the second legs 2A and 2B remains the same as the thickness tj of the first part 40, but the width w2 of the second legs progressively reduces as the cross section changes from semi-circular to rectangular. Figure 3C shows the cross section of the second legs towards the distal end of the second part where the outer surfaces 48A and 48B of the second legs are still slightly curved. At the distal end of the second part, the outer surfaces 48A and 48B are substantially straight. The length y2 of the major axis of the rectangular cross section is substantially equal to the diameter d of the semicircular cross section of the first part 40 of the second legs, shown in figure 3B.
In the second part 42, the second legs have an appreciable thickness t2 in the direction of the first legs. The beam strength and stiffness of the second legs, although appreciable, is less than in the first part 40 because the width w of the second part is less than the width w2 of the first part. The rectangular cross section enables the second parts of the second legs to fit together to form a compact shape when the retractor is in its closed position, as shown in figure 3C.
In the third part 44 of the second legs, the second legs have the same rectangular cross section as the distal part of the second part 42, but the second leg is twisted progressively through about 90 degrees over the length of the third part. The cross section of the legs about half-way along the third part, at which point the legs are twisted through about 45 degrees, is shown in figure 3D. The dimensions, x3 and y3 of the minor and major axes, respectively, of the rectangular cross section remain the same as the dimensions x2 and y2 of the minor and major axes, respectively, of the rectangular cross section in the second part. Along the third part distally from the second part, the twisting the second legs causes the effective thickness, t3 of the leg to decrease and the effective width w3 of the leg to increase.
Both of the second legs are twisted in the same direction through the same angle so that they will fit together to form a compact shape when the retractor is in its closed position. The two second legs are not identically twisted, however. So that the fourth part 46 of one of the second legs can fit on top of the fourth part of the other of the second legs when the retractor is in its closed position, the twist in one of the second legs is slightly offiset in the direction of the first legs, and the twist in the other of the second legs is offset in the direction opposite to the direction of the first legs. Alternatively, the second legs can be made with identical twists, and be mounted on the first legs so that one forms an angle of slightly more than 90 degrees with its first leg, and the other forms an angle of slightly less than 90 degrees with its first leg. In the third part 44, the second legs have an effective thickness t3 in the direction of the first legs that progressively decreases distally from the first legs. Hence, the beam strength and stiffness of the second legs also decrease distally from the first legs. Finally, the insertion height h3 of the second legs when the retractor is in its closed position progressively decreases distally from the first legs. In the fourth part 46 of the second legs, the second legs have the same rectangular cross section as the distal part of the second part 42, but the cross section is substantially perpendicular to the cross section of the second part, as shown in figure 3E. The dimensions, x4 and yk of the minor and major axes, respectively, of the rectangular cross section remain the same as the dimensions x2 and yz of the minor and major axes, respectively, of the rectangular cross section in the second part.
In the fourth part 46, the second legs have an effective thickness t in the direction of the first legs that remains substantially constant and equal to the physical thickness y4 of the second legs. Hence, the beam strength and stiffness of the second legs are also substantially constant in the fourth part, and are considerably less than in the first and second parts, and in the part of the third part proximal to the first legs. The effective width wk of the second legs in the fourth part is substantially equal to the physical width x of the legs, and is considerably greater than in the first and second parts. This considerably reduces the pressure that the fourth parts of the second legs of the retractor exert per square centimeter of abdominal wall. Finally, the insertion height hk of the fourth part of the second legs when the retractor is in its closed position is substantially equal to twice the physical thickness yk of the second legs as a result of the fourth parts of the second legs stacking on top of one another. This dimension is relative small and makes it easy to insert distal ends of the second legs of the retractor between the peritoneum and the peritoneal fat layer. Also, the distal ends 49A and 49B of the second legs are rounded to further ease insertion.
In the preferred embodiment, the four parts of the second leg are ap¬ proximately equal to one another in length. However, the relative lengths of the four parts can be varied to achieve a better stiffness versus distance from the first legs characteristic.
In the preferred embodiment, the first part 40 of the second legs has a semicircular cross section. An alternative oval cross section is shown in figure 3F, with the corresponding cross section of the second part 42 shown in figure 3G. The cross sections of the third and fourth parts are substantially the same as the cross sections of the third and fourth parts shown in figures 3D and 3E, respectively.
Second leg blanks having the required thickness profile for the preferred embodiment, but lacking a twisted third part 44, can be molded using a relatively simple mold. From the second leg blanks, second legs with the flat side of the first part on the left, like second leg 2A, and second legs with the flat side of the first part on the right, like second leg 2B, can be made. After a second leg blank has been moulded, it is placed in a twisting jig and supported at the distal end of its second part 42. The fourth part 46 is clamped in a rotating port of the jig. The third part of the leg is heated to soften it, and the rotating part of the jig is rotated through about 90 degrees to impart the desired twist in the third part 44 of the leg. The leg is left to cool before it is removed from the jig. The orientation of the flat side of the first part of the leg in the twisting jig determines whether a type-2A leg or a type-2B leg is made. The twisting direction is the same for both types of leg.
It is preferred, however, to make a more complex tool and to mold the second legs the required twist. With considerably more complex tools, second legs can be made having a stiffness versus distance from the first legs characteristic that is fully optimized along the length of the leg for its intended application. The mounting block 6 can be provided with a variety of attachments suitable for coupling to known lifting bars. In the preferred embodiment, the mounting block is provided with a dovetail connector 50, as shown in figures 4A and 4B. The dovetail connector is trapezoidal, with its parallel sides 52 and 54 perpen¬ dicular to the lifting direction, and its long parallel side 52 spaced from its short parallel side 54 in the lifting direction. The non-parallel sides, 56 and 58, form an acute angle with the front face 60. The arrangement of non-parallel sides forming an acute angle with the front face forms a positive lock with a dovetail slot 62, which is a female version of the dovetail connector 50, formed in the lifting bar adaptor 64. The lifting bar adaptor is attached to the lifting bar by conventional means (not shown).
The dovetail connector 50 and dovetail slot 62 form a unidirectional lifting force coupling. The dovetail slot and dovetail connector will transmit to the mounting block 6 a lifting force applied to the lifting bar adaptor 64 in the direction indicated by the arrow 66. A force applied in the direction opposite to that shown by the arrow 66 causes the dovetail slot to disconnect from the dovetail connector, which prevents the coupling from transmitting any force in the opposite direction.
When the retractor is used for lifting, the retractor is inserted into the abdomen and the dovetail connector 50 is engaged in the dovetail slot 62 in the lifting bar adaptor 64. The lifting bar is then raised to lift the abdominal wall, and is maintained in position during treatment. After treatment has been completed, the lifting bar is progressively lowered to return the abdominal wall to its normal position. At a point at which the force between the dovetail connector 50 and the dovetail slot 62, measured in the lifting direction, falls below zero, the dovetail connector automatically disconnects from the dovetail slot. This prevents the reverse force from being transmitted to the retractor, and indicates to the operator that the lifting bar has been lowered far enough. The dovetail connector provides a safety mechanism that prevents compression injury to the bowel if the lifting bar is lowered too far. Figure 5A is a perspective view of the preferred embodiment of a fan retractor 100 including all of the aspects of the invention. In the preferred embodiment, the first legs 101A and 101B are extended by about 1" (25 mm) distally from the leg actuators 104A and 104B. The extended parts of the first legs are bent through about 90 degrees. The part of each of the first legs distal from the bend is inserted into an axial bore in the first part of the respective second leg. This arrangement is stronger than the arrangement shown in figure 1.
Also, in the preferred embodiment, the first legs 101A and 101B pass through offiset axial bores in the cylindrical lower mounting block 168, which is slidably mounted in the lower part of the bore of the mounting sleeve 170. The main mounting block 106 is spring mounted in the upper part of the bore of the mounting sleeve 170, as will be described in connection with figure 6A below. The dovetail connector 150 is mounted on the mounting sleeve 170, instead of directly on the mounting block 150. The main mounting block can rotate relative to the mounting sleeve and the dovetail connector. This enables the second legs to face in any direction relative to the lifting bar prior to lifting. Once lifted, the lifting force prevents the main mounting block from rotating relative to the mounting sleeve, and holds the legs in the position in which they were set prior to lifting. When the preferred embodiment of the retractor is used to retract the abdominal wall, the lifting force is applied to the mounting sleeve 170 through the dovetail connector 150. The spring mounting of the main mounting block 106 enables the relative axial positions of the mounting sleeve and main mounting block to change in response to the lifting force. The mounting sleeve moves relative to the scale 172 marked on the cylindrical surface of the mounting block, which indicates the magnitude of the lifting force. The lifting force indicator thus provided enables the lifting force to be monitored during the lifting process, and reduces the risk that an excessive lifting force will be used.
Alternatively, the lifting force scale (not shown) can be marked on the surface of the mounting sleeve 170 and a pointer (not shown) attached to the main mounting block 106 can move against the scale to indicate the lifting force.
The lifting force scale on the cylindrical surface of the mounting sleeve 170 or of the mounting block 106 is most easily seen from the side. The preferred embodiment includes an additional lifting force indicator 174 on the end face 178 of the mounting block to enable the lifting force to be monitored easily looking from above. The additional lifting force indicator is shown in detail in figures 5B and 5C. The additional lifting force indicator includes a window 176 in the end face 178 of the mounting block. A tape 180 moves in the window 176 in response to the motion of the mounting block relative to the mounting sleeve as a result of the lifting force. In the variation shown in figure 5B, the tape is marked with a reference mark 182 that moves against the scale 184 marked in the window 176, adjacent to the tape 180. In the variation shown in figure 5C, the tape is marked with the scale 186 that moves against the reference mark 188 marked in the window 176, adjacent to the tape. The assembly of the main mounting block 106, the lower mounting block 168, and the mounting sleeve 170, and details of the additional lifting force indicator are shown in figure 6A. The mounting sleeve 170 is a tubular piece of plastic or metal having a bore. The lower part 190 of the bore receives the lower mounting block 168. A pin 171 passes through a radial bore in the lower mounting block between the first legs, and engages with a groove in each of the first legs to axially locate the lower mounting block relative to the first legs. In figure 6A, the groove 173A in the first leg 101A is shown.
The upper part 192 of the bore, which, in the preferred embodiment, has a larger diameter than the lower part 190, receives the main mounting block 106. Separating the upper and lower parts of the bore is the lip 194, which provides an end-stop for upward movement of the lower mounting block 168 in the mounting sleeve 170. The lip 194 also supports the nylon washer 196 on which the lower end of the coil spring 198 rests. The lower surface 202 of the main mounting block 106 rests on the upper end of the coil spring 198, with a circumferential groove 200 in the lower surface receiving the spring.
A lifting force applied to the dovetail connector 150 on the mounting sleeve 170 is transferred through the lip 194, the nylon washer 196, and the coil spring 198 to the upper mounting block 106, and thence to the first and second legs of the retractor. Compression of the spring 198 in response to the lifting force allows the main mounting block 106 to move relative to the mounting sleeve 170, and causes the top rim 204 of the mounting sleeve to juxtapose a different point on the scale 172, which indicates the lifting force.
The main mounting block 106 includes an upper lifting force indicator passage 210 machined or moulded into it. The passage 210 has an exit in the lower face 202 of the main mounting block, and continues distally from the lower face in a substantially straight line parallel to the curved side of the upper mounting block. Proximate to the window 176, the passage has a curved portion 212 that curves to form an arc in the window, followed by a straight portion 213 that returns at least part-way back towards the lower face 202.
The tape 180 runs through the passage 210. One end of the tape is attached to the mounting sleeve 170, preferably adjacent to the lip 194. The straight part of the passage 210 preferably has a cross section that curves across the width of the tape, as shown in figure 6C, to impart a stiffness to the tape. The window 176 has a width H>W that is narrower than the width wt of the tape 180, as shown in figure 6B. This enables the lips 214 and 216 to guide the tape in the curved part 212, where part of the wall of the passage is missing because of the window 176. Compression of the spring 198 in response to the lifting force allows the main mounting block 106 to move relative to the mounting sleeve 170. This causes the tape 180 to move relative to the passage 210, and the reference mark 182 (or graduations 186) on the tape to move relative to the graduations 184 (or reference mark 188) in the window 176. The movement of the tape relative to the window indicates the lifting force.
Solid second legs are shown in figure 3A. The second legs may alternatively be provided with an arrangement of one or more internal passages, such as the arrangement of a longitudinal passage connecting to one or more transverse passages connecting to the surface of the leg shown in figures 7A-7C. An internal passage can be dedicated to a specific purpose, or can be made to receive a variety of inserts that are plugged into the internal passage to provide different capabilities, as required.
Figures 7A and 7B show two examples of internal passage arrangements in which connections are made to an internal passage at the end of the second leg proximal to the first leg. Second legs can be also made with different internal passage arrangements, including, for example, arrangements with more or fewer longitudinal passages, with more or fewer transverse passages, and/or with transverse passages connecting to the side surfaces of the second legs.
Figure 7A shows a second leg 202 attached to a first leg 201. The second leg 202 has an internal passage arrangement with two longitudinal passages 205 and 215. The longitudinal passage 205 is connected to a plurality of transverse passages, including the transverse passage 207, connecting to the lower surface 209 of the second leg. A pipe 211 is plugged into the proximal end 212 of the second leg to connect to the longitudinal passage 205. The pipe 211 is run up the outside of the first leg 201 to a suitable connection (not shown). The pipe 211 is retained in position relative to the first leg 201 by the clamp 213.
The longitudinal passage 215 is connected to the single transverse passage 217 in the upper surface 219 in the second leg. The pipe 221 connects to the longitudinal passage 215 and runs up the outside of the first leg 201, and is retained by the clamp 213. The internal passage arrangement can be connected to a vacuum line, which enables blood and other fluids to be aspirated from the vicinity of the fan retractor. Such an arrangement can also be used to aspirate the smoke generated by electrocautery, a process commonly used in laparoscopic procedures. The internal passage arrangement can be connected to a suitable syringe, pump, or water line, so that fluids can be infused into the vicinity of all or parts of the second legs. The fluids can be infused into the abdomen if the fan retractor is used conventionally, or into the space between the peritoneum and the properitoneal fatty layer, if the fan retractor is used properitoneally. For example, saline can be infused for irrigation. In another example, a suitable insufflation gas can be infused for pneumoperitoneum. In procedures using local anaesthesia, a spray of anaesthetic can be sprayed into the abdomen from the fan retractor.
In the arrangement with two longitudinal passages and connecting transverse passages shown in figure 7A, the longitudinal passage 215 and transverse passage 217 can be used for infusion, and the longitudinal passage 205 and plurality of transverse passages, such as the transverse passage 207, can be used for aspiration. In the embodiment of a fan retractor having second legs with an internal passage arrangement shown in figure 7B, the second leg 302 is attached to the first leg 301. The second leg has a longitudinal passage 305, connected to a plurality of transverse passages, including the transverse passage 307, that connect to the lower surface 309 of the second leg. A plurality of optical fibres 331 is inserted into the longitudinal passage 305 through the proximal end 211 of the second leg. Individual fibres, such as the fibre 333, or groups of fibres, are brought to the lower surface 309 through the transverse passages, such as the transverse passage 307.
The proximal end 335 of the plurality of optical fibres is connected to a suitable light source 337. Light from the light source is emitted from the ends of the fibres, such as the end of the fibre 333, in the lower surface 309 of the second legs and provides working light for the surgeon to treat the tissue being treated. The peritoneum is sufficiently translucent that light emitted from optical fibres in the second legs of the fan retractor will provide adequate working light even when the retractor is inserted properitoneally. Instead of inserting a plurality of optical fibres into passages in the second leg, the optical fibres can be molded integrally with the second leg as part of the process of molding the second leg blanks.
Figure 7C shows an alternative arrangement in which the first leg 401 is formed using a hollow tube, the bore of which connects to the internal passage arrangement of the second leg. In the example shown, the plurality of optical fibres 431 passes through the bore of the first leg into the longitudinal passage 405, and individual fibres, such as the fibre 433, are brought out to the lower surface 409 of the second legs through a plurality of transverse passages, such as the passage 407. Otherwise, the construction of the second leg 402 is similar to the second leg 302 in figure 7B, and will not be described further.
The first leg 401 is extended through the leg actuator 404 to allow the plurality of optical fibres 431 to emerge from the bore of the first leg thus exposed. Figure 7C shows a simple form of the fan retractor that lacks a lifting force indicator (figures 5 and 6A). In fan retractors equipped with lifting force indicators (figure 6A), the additional lifting force indicator has to be relocated to provide room for the plurality of optical fibres.
Figure 7C shows an embodiment of the fan retractor having a plurality of optical fibres inserted in the internal passages of the second leg 402. Alternative versions of the embodiment of figure 7C can be made in which the internal passages are used for infusion or aspiration. In these, the infusion or aspiration pipe (similar to the pipes 211 and 221 in figure 7A) can be run inside the bore of the first leg 410. If the second leg has multiple internal passages, multiple pipes and optical fibres can be run through the bore of the first leg. A method of using a fan retractor according to the invention properitoneally to lift the abdominal will next be described.
An incision I, 0.4" - 0.8" (10 - 20 mm) long is made in a suitable location in the abdominal wall AW, as shown in figure 8A. The incision is made through the skin, the subcutaneous fat, muscle and fascia, until the properitoneal fat layer is reached, just short of the peritoneum P. A detailed cross sectional view of the abdominal wall, showing the different layers, is shown in figure 9.
The operating levers 114 of the fan retractor 103 are manipulated to bring the second legs 102 fan retractor to their closed state if they are not in this state already. The distal ends 149 of the second legs are then inserted into the incision I and pushed through the incision until they abut against the peritoneum P. The pressure of the wide, gently curved distal ends of the second legs against the peritoneum detaches the peritoneum from the properitoneal fatty layer without piercing the peritoneum, as shown in figure 8B. The distal ends 149 of the second legs are worked into the space between the peritoneum and the properitoneal layer. The retractor is then advanced along the center line CL of the abdomen (figure 8E), keeping the angle α between the second legs and the abdominal wall as small as possible to minimize detachment of the peritoneum, as shown in figure 8C. Advancing the second legs progressively detaches the peritoneum from the properitoneal layer. The first legs 101 abutting against the incision I limits the advancing of the second legs 102, as shown in figure 8D. The orientation of the second legs relative to the center line CL of the abdomen is checked, and the second legs are reoriented if necessary to align them along the center line (figure 8E). Since the second legs 102 have a fixed orientation relative to the main mounting block 106, orientation marks on the main mounting block can be used to indicate the direction of the second legs. The outline of the part of the peritoneum detached from the properitoneal layer is shown by the broken line Dx in figure 8E.
The operating levers 114A and 114B are then squeezed together to force the second legs 102A and 102B apart, as shown in figure 8F. In moving apart, the second legs detach more of the peritoneum from the properitoneal layer, as shown by the dotted line D2. While squeezing the operating levers, the orientation of the main mounting block 106 is observed to ensure that asymmetri¬ cal resistance to the opening of the second legs does not skew the symmetrical placement of the second legs relative to the center line CL. Since the second legs open symmetrically with respect to the main mounting block, any skewing of the second legs can be observed as rotation of the main mounting block. An appropriate torque applied to the main mounting block can be used to correct any skewing that occurs, and ensure that the second legs are symmetrically placed. The dovetail connector 150 is coupled to the dovetail slot 162 on the lifting bar adaptor 164, as shown in figure 8G. The lifting bar adaptor is attached to the lifting bar B by conventional means (not shown). The main mounting block can rotate relative to the mounting sleeve, so the orientation of the lifting bar relative to the second legs may be changed from that shown, if desired. The lifting bar B is then raised progressively while watching one of the lifting force indicators, the scale 172 on the cylindrical wall of the main mounting block 106, or the additional lifting force indicator 174 in the end face of the main mounting block. If the lifting force comes close to the allowable limit for the procedure, the lifting force can be reduced by reducing the rate of lifting, or stopping the lifting altogether. As the lifting force applied to the retractor increases, and the abdomen becomes more curved as a result of being lifted, the third and fourth parts 144 and 146 of the second legs bend to conform with the shape of the inside of the abdominal wall, as shown in figure 8G. The bending and the relatively large width of the distal parts of the second legs, and the symmetrical placing of the second legs within the abdomen, substantially reduce the risk of the ends 149 of the second legs traumatizing or penetrating the abdominal wall AW.
Once the required amount of lifting has been obtained, the lifting bar B is locked in position, and the treatment procedure is carried out. The incision I may be carried through the peritoneum, and used to insert endoscopes or other instruments into the abdomen. The incision I can be put to further use because the first legs 101 of the retractor occupy only a relatively small part of the incision.
If the second legs of the retractor have longitudinal passages, these may be used during the treatment procedure to provide illumination of the treatment area, and infusion and aspiration of the properitoneal area.
After treatment has been completed, the lifting bar B is progressively lowered to return the abdomen to its normal state. When the lifting force on the dovetail connector 150 falls to zero, the dovetail connector disconnects from the dovetail slot 162. This informs the operator that the lifting bar has been lowered far enough, and also prevents the lifting bar from driving the retractor into the abdomen and causing compression injury to the underlying bowel.
The operating levers 114 are moved apart to bring the second legs 102 together once more. The fan retractor 103 is then manipulated to withdraw the second legs from under the peritoneum through the incision I. The properitoneal retraction method according to the invention is preferably practiced using a fan retractor according to the invention, described above, which is specially designed for this purpose. However, the fan retractor according to the invention is not a requirement for practicing the properitoneal retraction method according to the invention. The method can be practiced using other suitable retractors. Properitoneal retraction is preferred because interposing the peritoneum between the retractor and the underlying bowel and omentum prevents the retractor from snagging the bowel or omentum. This makes the process of inserting the retractor easier, and less risky. The fan retractor according to the invention is not limited to properitoneal use. Most of the advantages conferred by the fan retractor according to the invention can also be obtained when the fan retractor is used in the abdomen to exert its lifting force against the posterior face of the peritoneum.
The method set forth above can easily be adapted for conventional use. The incision I is carried through the peritoneum. The abdomen is preferably insufflated before the second legs of the retractor is inserted through the incision. Insufflation provides a clearance between the second legs of the retractor and the underlying bowel and omentum. A third incision is required for an endoscope to observe placement of the second legs. When the second legs are inserted into the abdomen, care must be taken to ensure that they are kept as close to the abdominal wall as possible to reduce the chance of snagging bowel or omentum. The insertion process and the leg spreading process must be carried out under continuous observation to check for snagging. If snagging occurs, the second legs must be withdrawn, at least partially, to release the snag, and the insertion process recommenced.
Providing illumination in the vicinity of the second legs using a plurality of optical fibres inserted into internal passages in the second legs makes it easier to see snags than conventional illumination methods.
Once the second legs have been fully inserted and it is confirmed that they do not snag anything, the fan retractor is used to lift the abdominal wall, as described above.

Claims

ClaimsWe claim:
1. Apparatus for properitoneally lifting the abdominal wall, the apparatus comprising:
(a) a pair of angle-shaped elements moveable relative to one another, the angle-shaped elements including: (1) first legs disposed in a generally parallel relationship, the first legs having a direction, and
(2) second legs extending laterally from the first legs, the second legs: (i) fanning out upon rotation of the first legs relative to one another,
(ii) being adapted for engagement with the abdominal wall, and (iii) having an effective thickness in the direction of the first legs that decreases distally from the first legs; and
(b) lifting means for applying a lifting force to the angle-shaped elements.
2. The apparatus of claim 1, wherein the second legs each have a length and a cross-section, wherein: the cross-section is substantially semi-circular in a first part of the length of the second legs, proximal to the first legs, the semi-circular cross-section having a diameter that is substantially parallel to the first legs, the cross-section gradually changes to substantially oblong in a second part of the length of the second legs, adjacent to the first part, the oblong cross- section having a long axis that is substantially parallel to the first legs, and the cross-section remains substantially oblong in a third part, adjacent to the second part, and in a fourth part, adjacent to the third part, of the length of the second legs, the oblong cross-section having a long axis that progressively changes from substantially parallel to the first legs to substantially perpendicular to the first legs over the third part, and remains substantially perpendicular to the first legs in the fourth part to provide the effective thickness that decreases distally from the first legs.
3. The apparatus of claim 2, wherein the cross-section of the first part of the length of the second leg of the one of the angle-shaped elements is a mirror image of the cross-section of the first part of the length of the second leg of the other of the angle-shaped elements.
4. The apparatus of claim 2, wherein the long axis of the oblong cross- section of the second legs of one of the angle-shaped elements changes from substantially parallel to the first legs to substantially perpendicular to the first legs in a first direction, and the long axis of the oblong cross-section of the second legs of the other of the angle-shaped elements changes from substantially parallel to the first legs to substantially perpendicular to the first legs in the first direction.
5. The apparatus of claim 2, wherein the second legs of the angle-shaped elements have a closed position wherein the second legs are substantially parallel to one another, the first and second parts of the length of the second leg of one of the angle-shaped elements being substantially parallel to the first and second parts of the length of the second leg of the other of the angle-shaped elements in a first plane, and the fourth part of the length of the second leg of the one of the angle- shaped element being substantially parallel to the fourth part of the length of the second leg of the other of the angle-shaped elements in a plane substantially perpendicular to the first plane.
6. The apparatus of claim 2, wherein the first part, the second part, the third part, and the fourth part of the lengths of the second legs each have a length approximately equal to one-fourth of the length of the second legs.
7. The apparatus of claim 1, wherein the second legs have a length and a cross-section, wherein: the cross-section is substantially semi-circular in a first part of the length of the second legs, proximal to the first legs, the semi-circular cross-section having a diameter that is substantially parallel to the first legs, the cross-section gradually changes to substantially oval in a second part of the length of the second legs, adjacent to the first part, the oval cross-section having a major axis that is substantially parallel to the first legs, and the cross-section remains substantially oval in a third part, adjacent to the second part, and in a fourth part, adjacent to the third part, of the length of the second legs, the oval cross-section having a major axis that progressively changes from substantially parallel to the first legs to substantially perpendicular to the first legs over the third part, and remains substantially perpendicular to the first legs in the fourth part to provide the thickness that decreases distally from the first legs.
8. The apparatus of claim 7, wherein the cross-section of the first part of the length of the second leg of the one of the angle-shaped elements is a mirror image of the cross-section of the first part of the length of the second leg of the other of the angle-shaped elements.
9. The apparatus of claim 7, wherein the major axis of the oval cross- section of the second legs of one of the angle-shaped elements changes from substantially parallel to the first legs to substantially perpendicular to the first legs in a first direction, and the major axis of the oval cross-section of the second legs of the other of the angle-shaped elements changes from substantially parallel to the first legs to substantially perpendicular to the first legs in the first direction.
10. The apparatus of claim 7, wherein the second legs of the angle-shaped elements have a closed position wherein the second legs are substantially parallel to one another, the first and second parts of the length of the second leg of one of the angle-shaped elements being substantially parallel to the first and second parts of the length of the second leg of the other of the angle-shaped elements in a first plane, and the fourth part of the length of the second leg of the one of the angle- shaped element being substantially parallel to the fourth part of the length of the second leg of the other of the angle-shaped elements in a plane substantially perpendicular to the first plane.
11. The apparatus of claim 7, wherein the first part, the second part, the third part, and the fourth part of the lengths of the second legs each have a length approximately equal to one-fourth of the length of the second legs.
12. Apparatus for lifting an abdominal wall, the apparatus comprising:
(a) a pair of angle-shaped elements moveable relative to one another, the angle-shaped elements including:
(1) first legs disposed in a generally parallel relationship, the first legs having a direction, and
(2) second legs extending laterally from the first legs, the second legs: (i) fanning out upon rotation of the first legs relative to one another,
(ii) being adapted for engagement with the abdominal wall, and (iii) having a stiffness in the direction of the first legs that decreases distally from the first legs; and
(b) lifting means for applying a lifting force to the angle-shaped elements.
13. The apparatus of claim 12, wherein the second legs each have length and a cross-section, wherein: the cross-section is substantially semicircular in a first part of the length of the second legs, proximal to the first legs, the semi-circular cross-section having a diameter that is substantially parallel to the first legs, the cross-section gradually changes to substantially oblong in a second part of the length of the second legs, adjacent to the first part, the oblong cross- section having a long axis that is substantially parallel to the first legs, and the cross-section remains substantially oblong in a third part, adjacent to the second part, and in a fourth part, adjacent to the third part, of the length of the second legs, the oblong cross-section having a long axis that progressively changes from substantially parallel to the first legs to substantially perpendicular to the first legs over the third part, and remains substantially perpendicular to the first legs in the fourth part to provide the stiffness that decreases distally from the first legs.
14. The apparatus of claim 13, wherein the cross-section of the first part of the length of the second leg of one of the angle-shaped elements is a mirror image of the cross-section of the first part of the length of the second leg of the other of the angle-shaped elements.
15. The apparatus of claim 13, wherein the long axis of the oblong cross- section of the second legs of one of the angle-shaped elements changes from substantially parallel to the first legs to substantially perpendicular to the first legs in a first direction, and the long axis of the oblong cross-section of the second leg of the other of the angle-shaped elements changes from substantially parallel to the first legs to substantially perpendicular to the first legs in the first direction.
16. The apparatus of claim 13, wherein the second legs of the angle-shaped elements have a closed position wherein the second legs are substantially parallel to one another, the first and second parts of the length of the second leg of one of the angle-shaped elements being substantially parallel to the first and second parts of the length of the second leg of the other of the angle-shaped elements in a first plane, and the fourth part of the length of the second leg of one of the angle- shaped elements being substantially parallel to the fourth part of the length of the second leg of the other of the angle-shaped elements in a plane substantially perpendicular to the first plane.
17. The apparatus of claim 13, wherein the first part, the second part, the third part, and the fourth part of the lengths of the second legs each have a length approximately equal to one-fourth of the length of the second legs.
18. The apparatus of claim 12, wherein the second legs have a length and a cross-section, wherein: the cross-section is substantially semi-circular in a first. part of the length of the second legs, proximal to the first legs, the semi-circular cross-section having a diameter that is substantially parallel to the first legs, the cross-section gradually changes to substantially oval in a second part of the length of the second legs, adjacent to the first part, the oval cross-section having a major axis that is substantially parallel to the first legs, and the cross-section remains substantially oval in a third part, adjacent to the second part, and in a fourth part, adjacent to the third part, of the length of the second legs, the oval cross-section having a major axis that progressively changes from substantially parallel to the first legs to substantially perpendicular to the first legs over the third part, and remains substantially perpendicular to the first legs in the fourth part to provide the stiffness that decreases distally from the first legs.
19. The apparatus of claim 18, wherein the cross-section of the first part of the length of the second leg of one of the angle-shaped elements is a mirror image of the cross-section of the first part of the length of the second leg of the other of the angle-shaped elements.
20. The apparatus of claim 18, wherein the major axis of the oval cross- section of the second legs of one of the angle-shaped elements changes from substantially parallel to the first legs to substantially perpendicular to the first legs in a first direction, and the major axis of the oval cross-section of the second leg of the other of the angle-shaped elements changes from substantially parallel to the first legs to substantially perpendicular to the first legs in the first direction.
21. The apparatus of claim 18, wherein the second legs of the angle-shaped elements have a closed position wherein the second legs are substantially parallel to one another, the first and second parts of the length of the second leg of one of the angle-shaped elements being substantially parallel to the first and second parts of the length of the second leg of the other of the angle-shaped elements in a first plane, and the fourth part of the length of the second leg of one of the angle- shaped elements being substantially parallel to the fourth part of the length of the second leg of the other of the angle-shaped elements in a plane substantially perpendicular to the first plane.
22. The apparatus of claim 18, wherein the first part, the second part, the third part, and the fourth part of the lengths of the second legs each have a length approximately equal to one-fourth of the length of the second legs.
23. Apparatus for lifting the abdominal wall, the apparatus comprising:
(a) a pair of angle-shaped elements moveable relative to one another, the angle-shaped elements including:
(1) first legs disposed in a generally parallel relationship, and (2) second legs extending laterally from the first legs, the second legs fanning out upon rotation of the first legs relative to one another, and being adapted for engagement with the abdominal wall;
(b) a contrarotating means, responsive to rotation of one of the angle- shaped elements through a first angle, for rotating the other of the first angle- shaped elements through an angle substantially equal and opposite to the first angle; and
(c) lifting means for applying a lifting force to the angle-shaped elements.
24. The apparatus of claim 23, wherein the contrarotating means comprises a peg extending radially from the first leg of the one of the angle-shaped elements engaging in a socket radially disposed in the first leg of the other of the angle-shaped elements.
25. The apparatus of claim 23, wherein the contrarotating means comprises a gear on the first leg of one of the angle-shaped elements meshing with a gear on the first leg of the other of the angle-shaped elements.
26. The apparatus of claim 23, wherein the contrarotating means comprises part of the first leg of one of the angle-shaped elements in frictional contact with part of the first leg of the other of the angle-shaped elements.
27. The apparatus of claim 23, additionally comprising an operating means, attached to the angle-shaped elements, for rotating the angle-shaped elements with respect to one another.
28. The apparatus of claim 27, wherein the operating means comprises a lever attached to the first leg of each angle-shaped element distal from the second leg, each lever being substantially parallel to the second legs in first plane, and being angularly offset from the second legs in a plane perpendicular to the first plane.
29. The apparatus of claim 28, wherein the second legs of the angle-shaped elements have a closed position wherein the second legs are substantially parallel to one another, and an open position, and the second legs are moved from the closed position to the open position by squeezing the levers together.
30. The apparatus of claim 27, wherein the second legs of the angle-shaped elements have a closed position wherein the second legs are substantially parallel to one another, and an open position, and the operating means additionally comprises a locking means, coupled to the operating means, for locking the second legs in the closed position, and for locking the second legs in the open position.
31. The apparatus of claim 23, wherein the first legs have a direction, and the second legs have a stiffness in the direction of the first legs that decreases distally from the first legs.
32. The apparatus of claim 23, wherein the first legs have a direction, and the second legs have an effective thickness in the direction of the first legs that decreases distally from the first legs.
33. Apparatus for lifting the abdominal wall, the apparatus comprising:
(a) a pair of angle-shaped elements moveable relative to one another, the angle-shaped elements including:
(1) first legs disposed in a generally parallel relationship, and (2) second legs extending laterally from the first legs, the second legs fanning out upon rotation of the first legs relative to one another, and being adapted for engagement with the abdominal wall;
(b) a lifting means for applying a lifting force to the angle-shaped elements; and (c) a force measuring means, coupled to the lifting means, for measuring the lifting force.
34. The apparatus of claim 33, wherein
(a) the lifting means comprises:
(1) a cylindrical sleeve having a bore with a lip part-way along, the bore receiving the first legs of the angle-shaped members; and (2) a means for attaching the cylindrical sleeve to a lifting arm, and
(b) the force measuring means additionally comprises:
(1) a mounting block, slidably mounted in the bore of the cylindrical sleeve, the mounting block being cylindrical, and including a contact face, and a force indicating means for indicating the lifting force, the first legs of the angle-shaped elements being rotatably mounted in the mounting block with the second legs facing the contact face; and
(2) a coil spring, disposed within the bore of the cylindrical sleeve between the lip and the contact face of the mounting block, and surrounding the first legs of the angle-shaped elements.
35. The apparatus of claim 34, wherein the lifting means additionally comprises a dovetail attached to the cylindrical sleeve.
36. The apparatus of claim 34, wherein the mounting block has an axial movement relative to the cylindrical sleeve in response to the lifting force, and the force indicating means indicates the lifting force in response to the axial movement of the mounting block.
37. The apparatus of claim 36, wherein the cylindrical means includes a surface adjacent to the cylindrical sleeve, and the force indicating means comprises a scale marked on the surface adjacent to the cylindrical sleeve.
38. The apparatus of claim 36, wherein
(a) the mounting block includes:
(1) a second face opposite the contact face, the second face including a window having a reference mark, and (2) a curved groove adjacent to the window, and
(b) the force indicating means additionally comprises an elongate tape, including:
(1) an end attached to the bore of the cylindrical sleeve,
(2) a face marked with a scale, and (3) an edge engaging in the curved groove such that the scale appears in the window adjacent to the reference mark.
39. The apparatus of claim 36, wherein
(a) the mounting block includes:
(1) a second face opposite the contact face, the second face including a window marked with a scale, and (2) a curved groove adjacent to the window, and
(b) the indicating means additionally comprises an elongate tape, including:
(1) an end attached to the bore of the cylindrical sleeve,
(2) a face marked with a reference mark, and
(3) an edge engaging in the curved groove such that the reference mark appears in the window adjacent to the scale.
40. The apparatus of claim 33, wherein the first legs have a direction, and the second legs have a stiffness in the direction of the first legs that decreases distally from the first legs.
41. The apparatus of claim 33, wherein the first legs have a direction, and the second legs have an effective thickness in the direction of the first legs that decreases distally from the first legs.
42. Apparatus for lifting the abdominal wall in a lifting direction, the apparatus comprising:
(a) a pair of angle-shaped elements moveable relative to one another, the angle-shaped elements including: (1) first legs disposed in a generally parallel relationship, and
(2) second legs extending laterally from the first legs, the second legs fanning out upon rotation of the first legs relative to one another, and being adapted for engagement with the abdominal wall;
(b) a lifting means for applying a lifting force to the angle-shaped elements, the lifting means including a unidirectional coupling means for applying the lifting force to the angle-shaped elements in the lifting direction, and for applying a substantially zero force to the angle-shaped elements in a direction opposite to the lifting direction.
43. The apparatus of claim 42, wherein the unidirectional coupling means comprises a dovetail connector.
44. Apparatus for lifting the abdominal wall, the apparatus comprising: (a) a pair of angle-shaped elements moveable relative to one another, the angle-shaped elements including:
(1) first legs disposed in a generally parallel relationship, and (2) second legs extending laterally from the first legs, the second legs
(i) fanning out upon rotation of the first legs relative to one another,
(ii) being adapted for engagement with the abdominal wall, and (iii) including an internal passage; and (b) a lifting means for applying a lifting force to the angle-shaped elements.
45. The apparatus of claim 44, wherein at least one of the first legs has a bore connecting with the internal passage.
46. The apparatus of claim 44, further including an optical fibre in the internal passage.
47. The apparatus of claim 46, wherein at least one of the first legs has a bore connecting with the internal passage, and the optical fibre passes through the bore.
48. The apparatus of claim 44, wherein the second leg has a surface, and the internal passage comprises: a transverse passage connecting to the surface of the second leg, and a longitudinal passage connecting to the transverse passage.
49. A method of lifting an abdominal wall, the abdominal wall including a properitoneal fat layer and a peritoneum, the method comprising the steps of:
(a) providing a retractor including an angle-shaped element having a first leg and a second leg extending laterally from the first leg towards a distal end; (b) making an incision through the abdominal wall to the peritoneal fat layer;
(c) introducing the distal end of the second leg through the incision to abut the peritoneum;
(d) advancing the second leg between the properitoneal fat layer and the peritoneum; and
(e) applying a lifting force to the angle-shaped element.
50. The method of claim 49, wherein the first leg has a direction, and the step of providing a retractor comprises providing a retractor including a second leg having a stiffness in the direction of the first leg that decreases distally from the first leg.
51. The method of claim 49, wherein the first leg has a direction, and the step of providing a retractor comprises providing a retractor including a second leg having an effective thickness in the direction of the first leg that decreases distally from the first leg.
52. A method of properitoneally lifting an abdominal wall, the abdominal wall including a properitoneal fat layer and a peritoneum, the method comprising the steps of:
(a) providing a retractor including a pair of angle-shaped elements moveable relative to one another and including:
(1) first legs disposed in a generally parallel relationship, and
(2) second legs extending laterally from the first legs towards distal ends, the second legs fanning out upon rotation of the first legs relative to one another; (b) making an incision through the abdominal wall to the properitoneal fat layer;
(c) introducing the distal ends of the second legs through the incision to abut the peritoneum;
(d) advancing the second legs between the properitoneal fat layer and the peritoneum;
(e) rotating the first legs relative to one another to fan out the second legs; and
(f) applying a lifting force to the angle-shaped elements.
53. The method of claim 52, wherein the first legs have a direction, and the step of providing a retractor comprises providing a retractor including second legs having a stiffness in the direction of the first legs that decreases distally from the first legs.
54. The method of claim 52, wherein the first legs have a direction, and the step of providing a retractor comprises providing a retractor including second legs having an effective thickness in the direction of the first legs that decreases distally from the first legs.
55. The method of claim 52, wherein the step of advancing the distal ends of the second legs of the retractor between the properitoneal fat layer and the peritoneum detaches a part of the peritoneum from the peritoneal fat layer, and the step of rotating the first legs relative to one another to fan out the second legs detaches a further part of the peritoneum from the peritoneal fat layer.
56. The method of claim 52, wherein the step of providing a retractor includes providing a retractor having a lifting force indicator, and the step of applying a lifting force to the first legs of the retractor includes observing the lifting force indicator to determine the lifting force.
57. A method of lifting an abdominal wall, the method comprising the steps of:
(a) providing a retractor including a pair of angle-shaped elements moveable relative to one another, and including: (1) first legs disposed in a generally parallel relationship, and
(2) second legs extending laterally from the first legs towards distal ends, the second legs
(i) fanning out upon rotation of the first legs relative to one another, and (ii) having a stiffness in the direction of the first legs that decreases distally from the first legs;
(b) making an incision through the abdominal wall;
(c) advancing the second legs into the incision;
(d) rotating the first legs relative to one another to fan out the second legs; (e) engaging the second legs with the abdominal wall; and
(f) applying a lifting force to the angle-shaped elements.
58. A method of lifting an abdominal wall, the method comprising the steps of:
(a) providing a retractor including a pair of angle-shaped elements moveable relative to one another, and including: (1) first legs disposed in a generally parallel relationship, and linked together such that rotation of one of the first legs through a first angle rotates the other of the first legs through an angle equal and opposite to the first angle, and
(2) second legs extending laterally from the first legs, the second legs fanning out symmetrically upon equal and opposite rotation of the first legs relative to one another;
(b) making an incision through the abdominal wall;
(c) advancing the second legs into the incision;
(d) rotating the first legs relative to one another to symmetrically fan out the second legs;
(e) engaging the second legs with the abdominal wall; and
(f) applying a lifting force to the angle-shaped elements.
59. A method of lifting an abdominal wall, the method comprising the steps of:
(a) providing a retractor including a pair of angle-shaped elements moveable relative to one another, and including: (1) first legs disposed in a generally parallel relationship,
(2) second legs extending laterally from the first legs, the second legs fanning out upon rotation of the first legs relative to one another, and
(3) a force measuring means for measuring a lifting force;
(b) making an incision through the abdominal wall; (c) advancing the second legs into the incision;
(d) rotating the first legs relative to one another to fan out the second legs;
(e) engaging the second legs with the abdominal wall;
(f) applying a lifting force to the angle-shaped elements; and
(g) observing the lifting force using the force measuring means.
60. A method of treating a tissue under the abdominal wall, the method comprising:
A. providing a fan retractor, including:
(a) a pair of angle-shaped elements moveable relative to one another, the angle-shaped elements including:
(1) first legs disposed in a generally parallel relationship, and
(2) second legs extending laterally from the first legs, the second legs:
(i) fanning out upon rotation of the first legs relative to one another, and
(ii) each having a surface;
(b) an optical fibre having a proximal end and a distal end, the distal end passing through an internal passage in one of the second legs to the surface of the one of the second legs; and (c) a lifting means for applying a lifting force to the angle-shaped elements;
B. providing a light source;
C. engaging the second legs of the fan retractor with the abdominal wall;
D. lifting the abdominal wall by applying a lifting force to the lifting means of the fan retractor;
E. illuminating the proximal end of the optical fibre with the light source; and
F. treating the tissue under illumination provided by light emitted from the proximal end of the optical fibre.
61. The method of claim 60, wherein at least one of the first legs of the fan retractor has a bore connecting with the internal passage, and the distal end of the optical fibre additionally runs through the bore of the one of the first legs.
62. A method of treating a tissue under the abdominal wall, the method comprising:
A. providing a fan retractor, including:
(a) a pair of angle-shaped elements moveable relative to one another, the angle-shaped elements including:
(1) first legs disposed in a generally parallel relationship, and
(2) second legs extending laterally from the first legs,
(i) the second legs fanning out upon rotation of the first legs relative to one another, (ii) each second leg having a surface, and
(iii) at least one of the second legs including an internal passage connecting with the surface of the at least one of the second legs; and (b) a lifting means for applying a lifting force to the angle-shaped elements;
B. providing a vacuum line;
C. engaging the second legs of the fan retractor with the abdominal wall;
D. lifting the abdominal wall by applying a lifting force to the lifting means of the fan retractor; E. connecting the internal passage to the vacuum line; and
F. Aspirating a fluid through the internal passage to the vacuum line.
63. A method of treating a tissue under the abdominal wall, the method comprising:
A. providing a fan retractor, including:
(a) a pair of angle-shaped elements moveable relative to one another, the angle-shaped elements including:
(1) first legs disposed in a generally parallel relationship, and
(2) second legs extending laterally from the first legs,
(i) the second legs fanning out upon rotation of the first legs relative to one another, (ii) each second leg having a surface; and
(iii) at least one of the second legs including an internal passage connecting with the surface of the at least one of the second legs; and
(b) a lifting means for applying a lifting force to the angle-shaped elements;
B. providing a source of an infusion fluid;
C. engaging the second legs of the fan retractor with the abdominal wall;
D. lifting the abdominal wall by applying a lifting force to the lifting means of the fan retractor; E. connecting the internal passage to the source of infusing fluid; and
F. infusing the infusion fluid through the internal passage from the source of infusion fluid.
64. The method of claim 63, wherein the infusion fluid is an insufflation gas.
PCT/US1992/004456 1991-05-29 1992-05-28 Properitoneal mechanical retraction apparatus and methods of using WO1992021294A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP50054193A JP3421032B2 (en) 1991-05-29 1992-05-28 Equipment for lifting the abdominal wall
CA002109795A CA2109795C (en) 1991-05-29 1992-05-28 Properitoneal mechanical retraction apparatus and methods of using
DE69213734T DE69213734T2 (en) 1991-05-29 1992-05-28 MECHANICAL RETRACTOR DEVICE FOR THE PERITONEUM
EP92912086A EP0586516B1 (en) 1991-05-29 1992-05-28 Properitoneal mechanical retraction apparatus
GR960403324T GR3021920T3 (en) 1991-05-29 1996-12-05 Properitoneal mechanical retraction apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70678191A 1991-05-29 1991-05-29
US706,781 1991-05-29

Publications (1)

Publication Number Publication Date
WO1992021294A1 true WO1992021294A1 (en) 1992-12-10

Family

ID=24839022

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/US1992/004392 WO1992021291A2 (en) 1991-05-29 1992-05-26 Apparatus and method for peritoneal retraction
PCT/US1992/004456 WO1992021294A1 (en) 1991-05-29 1992-05-28 Properitoneal mechanical retraction apparatus and methods of using
PCT/US1992/004205 WO1992021298A1 (en) 1991-05-29 1992-05-29 Body structure manipulation and dissection system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US1992/004392 WO1992021291A2 (en) 1991-05-29 1992-05-26 Apparatus and method for peritoneal retraction

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US1992/004205 WO1992021298A1 (en) 1991-05-29 1992-05-29 Body structure manipulation and dissection system

Country Status (12)

Country Link
US (8) US5370134A (en)
EP (4) EP1287786B1 (en)
JP (2) JP2761578B2 (en)
AT (4) ATE162940T1 (en)
AU (4) AU666855B2 (en)
CA (3) CA2109937C (en)
DE (4) DE69232998T2 (en)
DK (2) DK0586580T3 (en)
ES (4) ES2194150T3 (en)
GR (2) GR3021920T3 (en)
MX (1) MX9202597A (en)
WO (3) WO1992021291A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025148A1 (en) * 1992-06-16 1993-12-23 Loma Linda University Medical Center Trocar facilitator for endoscopic surgery
US5398671A (en) * 1993-08-18 1995-03-21 Ethicon, Inc. Abdominal lift device
US5415159A (en) * 1993-08-18 1995-05-16 Ethicon, Inc. Support structure for abdominal lift
US5443484A (en) * 1992-06-16 1995-08-22 Loma Linda University Medical Center Trocar and method for endoscopic surgery
FR2722084A1 (en) * 1994-07-07 1996-01-12 Michaud Jean Reymond Surgical instrument for lifting and supporting abdominal wall
EP0720446A1 (en) * 1993-09-28 1996-07-10 Origin Medsystems, Inc. Abdominal wall retraction system
US5545123A (en) * 1994-03-15 1996-08-13 Ethicon, Inc. Surgical lift method and apparatus
US5547458A (en) * 1994-07-11 1996-08-20 Ethicon, Inc. T-shaped abdominal wall lift with telescoping member
WO1997021384A1 (en) * 1995-12-11 1997-06-19 Enrique Gerardo Segovia Cortes Laparo-lifter for simultaneously lifting the four quadrants of an abdominal cavity for laparoscopic surgery
WO1997029889A1 (en) * 1996-02-19 1997-08-21 Bergstroem Bo Uterine manipulator
US5741274A (en) * 1995-12-22 1998-04-21 Cardio Vascular Concepts, Inc. Method and apparatus for laparoscopically reinforcing vascular stent-grafts
US5755661A (en) * 1993-06-17 1998-05-26 Schwartzman; Alexander Planar abdominal wall retractor for laparoscopic surgery
EP1647229A2 (en) * 1995-06-07 2006-04-19 Heartport, Inc. Retraction device for port access multivessel coronary artery bypass surgery
US8147453B2 (en) 2006-03-13 2012-04-03 Applied Medical Resources Corporation Balloon trocar
US8888692B1 (en) 2011-08-26 2014-11-18 Applied Medical Resources Corporation Trocar cannula assembly and method of manufacture
US9474518B2 (en) 2007-10-05 2016-10-25 Covidien Lp Expanding seal anchor for single incision surgery
US9522265B2 (en) 2013-03-15 2016-12-20 Applied Medical Resources Corporation Trocar cannula assembly with low profile insertion configuration and method of manufacture

Families Citing this family (891)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374261A (en) 1990-07-24 1994-12-20 Yoon; Inbae Multifunctional devices for use in endoscopic surgical procedures and methods-therefor
US5188630A (en) * 1991-03-25 1993-02-23 Christoudias George C Christoudias endospongestick probe
JP3307392B2 (en) 1991-05-29 2002-07-24 オリジン・メドシステムズ・インク Endoscope retraction device for surgery
US5803901A (en) * 1991-05-29 1998-09-08 Origin Medsystems, Inc. Inflatable devices for separating layers of tissue and methods of using
US5865728A (en) * 1991-05-29 1999-02-02 Origin Medsystems, Inc. Method of using an endoscopic inflatable lifting apparatus to create an anatomic working space
US5632761A (en) * 1991-05-29 1997-05-27 Origin Medsystems, Inc. Inflatable devices for separating layers of tissue, and methods of using
US5779728A (en) * 1991-05-29 1998-07-14 Origin Medsystems, Inc. Method and inflatable chamber apparatus for separating layers of tissue
US5728119A (en) * 1991-05-29 1998-03-17 Origin Medsystems, Inc. Method and inflatable chamber apparatus for separating layers of tissue
US7744617B2 (en) * 1991-05-29 2010-06-29 Covidien Ag Method and inflatable chamber apparatus for separating layers of tissue
US5704372A (en) * 1991-05-29 1998-01-06 Origin Medsystems, Inc. Endoscopic inflatable retraction devices for separating layers of tissue, and methods of using
US5676636A (en) * 1994-07-22 1997-10-14 Origin Medsystems, Inc. Method for creating a mediastinal working space
US5836871A (en) * 1991-05-29 1998-11-17 Origin Medsystems, Inc. Method for lifting a body wall using an inflatable lifting apparatus
US5947895A (en) * 1991-05-29 1999-09-07 Origin Medsystems, Inc. Abdominal retractor with rotating arms and method of using the same
US6361543B1 (en) 1991-05-29 2002-03-26 Sherwood Services Ag Inflatable devices for separating layers of tissue, and methods of using
US5452733A (en) * 1993-02-22 1995-09-26 Stanford Surgical Technologies, Inc. Methods for performing thoracoscopic coronary artery bypass
US5735290A (en) * 1993-02-22 1998-04-07 Heartport, Inc. Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5431662A (en) * 1992-02-12 1995-07-11 United States Surgical Corporation Manipulator apparatus
US5571115A (en) * 1992-02-12 1996-11-05 United States Surgical Corporation Manipulator apparatus
US5540711A (en) * 1992-06-02 1996-07-30 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
US5730756A (en) * 1992-06-02 1998-03-24 General Surgical Innovations, Inc. Method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
US5607443A (en) * 1992-06-02 1997-03-04 General Surgical Innovations, Inc. Expansible tunneling apparatus for creating an anatomic working space with laparoscopic observation
US6312442B1 (en) * 1992-06-02 2001-11-06 General Surgical Innovations, Inc. Method for developing an anatomic space for laparoscopic hernia repair
US6364892B1 (en) 1992-06-02 2002-04-02 General Surgical Innovations, Inc. Ballon dissector with improved visualization
US6565589B1 (en) 1992-06-02 2003-05-20 General Surgical Innovations, Inc. Balloon device for use in surgery and method of use
US6540764B1 (en) 1992-06-02 2003-04-01 General Surgical Innovations, Inc. Apparatus and method for dissecting tissue layers
US6432121B1 (en) 1992-06-02 2002-08-13 General Surgical Innovations, Inc. Apparatus and method for guiding placement of a minimally invasive surgical instrument
US5269753A (en) * 1992-07-14 1993-12-14 Wilk Peter J Method for use in laparoscopic hernia repair
US6283127B1 (en) * 1992-12-03 2001-09-04 Wesley D. Sterman Devices and methods for intracardiac procedures
US6325067B1 (en) 1992-12-03 2001-12-04 Wesley D. Sterman Methods and systems for performing thoracoscopic coronary bypass and other procedures
FR2700110A1 (en) * 1993-01-05 1994-07-08 Kacenelenbogen Yves Dilator for use in surgical operations
US5400773A (en) * 1993-01-19 1995-03-28 Loma Linda University Medical Center Inflatable endoscopic retractor
US5439476A (en) * 1993-02-04 1995-08-08 Trigonon, Inc. Inflatable laparoscopic retractor
US6010531A (en) 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US6494211B1 (en) * 1993-02-22 2002-12-17 Hearport, Inc. Device and methods for port-access multivessel coronary artery bypass surgery
US6346074B1 (en) * 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US6161543A (en) * 1993-02-22 2000-12-19 Epicor, Inc. Methods of epicardial ablation for creating a lesion around the pulmonary veins
FR2706309B1 (en) * 1993-06-17 1995-10-06 Sofamor Instrument for surgical treatment of an intervertebral disc by the anterior route.
US6063025A (en) * 1993-07-09 2000-05-16 Bioenterics Corporation Apparatus for holding intestines out of an operative field
US5795290A (en) * 1993-07-09 1998-08-18 Bioplexus Corporation Apparatus for holding intestines out of an operative field
EP0776180B1 (en) * 1993-09-06 2000-01-05 Encoret Limited Apparatus for use in surgery
US5578048A (en) * 1993-09-15 1996-11-26 United States Surgical Corporation Manipulator apparatus
US6248110B1 (en) * 1994-01-26 2001-06-19 Kyphon, Inc. Systems and methods for treating fractured or diseased bone using expandable bodies
US20060100635A1 (en) * 1994-01-26 2006-05-11 Kyphon, Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US5452732A (en) * 1994-04-26 1995-09-26 Bircoll; Mel Method of dissecting along connective tissue lines
WO1996001130A1 (en) * 1994-07-01 1996-01-18 Origin Medsystems, Inc. Everting cannula apparatus and method
US5571172A (en) * 1994-08-15 1996-11-05 Origin Medsystems, Inc. Method and apparatus for endoscopic grafting
US5735845A (en) * 1995-01-17 1998-04-07 Uros Corporation Method of treating the prostate using cryosurgery
US5897553A (en) 1995-11-02 1999-04-27 Medtronic, Inc. Ball point fluid-assisted electrocautery device
US6409722B1 (en) 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US5681341A (en) * 1995-03-14 1997-10-28 Origin Medsystems, Inc. Flexible lifting apparatus
US5607441A (en) * 1995-03-24 1997-03-04 Ethicon Endo-Surgery, Inc. Surgical dissector
US5738628A (en) * 1995-03-24 1998-04-14 Ethicon Endo-Surgery, Inc. Surgical dissector and method for its use
US6245072B1 (en) * 1995-03-27 2001-06-12 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US5980549A (en) * 1995-07-13 1999-11-09 Origin Medsystems, Inc. Tissue separation cannula with dissection probe and method
DE19516932C2 (en) * 1995-05-09 1998-02-26 Aesculap Ag & Co Kg Surgical tensioning and lifting device
US5814038A (en) 1995-06-07 1998-09-29 Sri International Surgical manipulator for a telerobotic system
DE69637531D1 (en) * 1995-06-07 2008-06-26 Stanford Res Inst Int Surgical manipulator for a remote-controlled robot system
US7384423B1 (en) 1995-07-13 2008-06-10 Origin Medsystems, Inc. Tissue dissection method
US5681342A (en) * 1995-08-17 1997-10-28 Benchetrit; Salomon Device and method for laparoscopic inguinal hernia repair
US5645530A (en) * 1995-08-28 1997-07-08 Alcon Laboratories, Inc. Phacoemulsification sleeve
US5582620A (en) * 1995-09-14 1996-12-10 Thomas Jefferson University Radial distention of a soft tissue space using a finger guided distention balloon
JP4020965B2 (en) * 1995-10-06 2007-12-12 フォトエレクトロン コーポレイション Device for irradiating the inner surface of a body cavity with X-rays
US5816257A (en) * 1995-12-20 1998-10-06 Origin Medsystems, Inc. Gasless retroperitoneal surgical procedure
US6852075B1 (en) * 1996-02-20 2005-02-08 Cardiothoracic Systems, Inc. Surgical devices for imposing a negative pressure to stabilize cardiac tissue during surgery
ES2274540T3 (en) * 1996-03-20 2007-05-16 General Surgical Innovations, Inc. DEVICE FOR DISSECTION AND SEPARATION COMBINED.
US5743852A (en) * 1996-04-15 1998-04-28 Johnson; William T. M. Speculums
US6036640A (en) * 1996-04-29 2000-03-14 Medtronic, Inc. Device and method for repositioning the heart during surgery
NL1003024C2 (en) 1996-05-03 1997-11-06 Tjong Hauw Sie Stimulus conduction blocking instrument.
US5954713A (en) * 1996-07-12 1999-09-21 Newman; Fredric A. Endarterectomy surgical instruments and procedure
US5913870A (en) * 1996-08-13 1999-06-22 United States Surgical Corporation Surgical dissector
US5725545A (en) * 1996-09-27 1998-03-10 Bircoll; Melvyn Balloon dissector
NO303522B1 (en) * 1996-11-08 1998-07-27 Nyfotek As probe device
US5938681A (en) * 1997-04-15 1999-08-17 Cryolife Acquisition Corporation Cardiac manipulator for minimally invasive surgical procedures
US6015421A (en) 1997-05-15 2000-01-18 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic procedures
US6936057B1 (en) * 1997-05-19 2005-08-30 Cardio Medical Solutions, Inc. (Cms) Device and method for partially occluding blood vessels using flow-through balloon
US5913818A (en) * 1997-06-02 1999-06-22 General Surgical Innovations, Inc. Vascular retractor
US6096037A (en) 1997-07-29 2000-08-01 Medtronic, Inc. Tissue sealing electrosurgery device and methods of sealing tissue
US5873889A (en) * 1997-08-08 1999-02-23 Origin Medsystems, Inc. Tissue separation cannula with dissection probe and method
US5984944A (en) * 1997-09-12 1999-11-16 B. Braun Medical, Inc. Introducer for an expandable vascular occlusion device
US5895410A (en) * 1997-09-12 1999-04-20 B. Braun Medical, Inc. Introducer for an expandable vascular occlusion device
US6171316B1 (en) 1997-10-10 2001-01-09 Origin Medsystems, Inc. Endoscopic surgical instrument for rotational manipulation
US6015382A (en) * 1997-10-16 2000-01-18 General Surgical Innovations, Inc. Inflatable manipulator for organ positioning during surgery and method of use
US6270464B1 (en) 1998-06-22 2001-08-07 Artemis Medical, Inc. Biopsy localization method and device
US6530923B1 (en) * 1998-02-10 2003-03-11 Artemis Medical, Inc. Tissue removal methods and apparatus
US5993461A (en) * 1998-01-07 1999-11-30 Abae; Mick Laparoscopic instrument for manipulating the uterus during laparoscopic surgery
US6602265B2 (en) * 1998-02-10 2003-08-05 Artemis Medical, Inc. Tissue separation medical device and method
JP2002502626A (en) 1998-02-10 2002-01-29 アーテミス・メディカル・インコーポレイテッド Supplementary device and method of using the same
US5916233A (en) * 1998-03-05 1999-06-29 Origin Medsystems, Inc. Vessel harvesting method and instrument including access port
US6024759A (en) * 1998-05-08 2000-02-15 Walter Lorenz Surgical, Inc. Method and apparatus for performing pectus excavatum repair
US6200280B1 (en) 1998-05-29 2001-03-13 Theracardia, Inc. Cardiac massage apparatus and method
WO1999062457A1 (en) * 1998-05-29 1999-12-09 Theracardia, Inc. Cardiac massage apparatus and method
US20020058882A1 (en) * 1998-06-22 2002-05-16 Artemis Medical, Incorporated Biopsy localization method and device
US6537248B2 (en) 1998-07-07 2003-03-25 Medtronic, Inc. Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US6706039B2 (en) 1998-07-07 2004-03-16 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6527748B1 (en) * 1998-08-17 2003-03-04 Yutaka Suzuki Method of gastrostomy, and an infection preventive cover, kit or catheter kit, and a gastrostomy catheter kit
USD426635S (en) * 1998-08-18 2000-06-13 Genicon, Lc Combination trocar, cannula, and valve
US6099518A (en) 1998-10-20 2000-08-08 Boston Scientific Corporation Needle herniorrhaphy devices
US6485410B1 (en) 1998-11-04 2002-11-26 Synergyn Technologies, Inc. Hysteroscope port and methods
US20030130563A1 (en) * 1998-11-04 2003-07-10 Loy Randall A. Hysteroscope port and methods
US20070004968A1 (en) * 1998-12-01 2007-01-04 Frank Bonadio Seal for a cannula
US7559893B2 (en) 1998-12-01 2009-07-14 Atropos Limited Wound retractor device
US7537564B2 (en) 1998-12-01 2009-05-26 Atropos Limited Wound retractor device
US6254534B1 (en) * 1999-10-14 2001-07-03 Atropos Limited Retractor
EP1602333B1 (en) 1998-12-01 2008-06-04 Atropos Limited A wound retractor device
US6551241B1 (en) * 1999-12-17 2003-04-22 Leonard S. Schultz Instruments and methods for performing percutaneous surgery
US6042539A (en) 1999-03-26 2000-03-28 Ethicon Endo-Surgery, Inc. Vacuum-actuated tissue-lifting device and method
US6328729B1 (en) * 1999-04-27 2001-12-11 General Surgical Innovations, Inc. Colporrhaphy method and apparatus
US6283912B1 (en) * 1999-05-04 2001-09-04 Cardiothoracic Systems, Inc. Surgical retractor platform blade apparatus
AU6059200A (en) 1999-07-02 2001-01-22 Quickpass, Inc. Suturing device
US6287290B1 (en) * 1999-07-02 2001-09-11 Pulmonx Methods, systems, and kits for lung volume reduction
US6338738B1 (en) 1999-08-31 2002-01-15 Edwards Lifesciences Corp. Device and method for stabilizing cardiac tissue
US6592602B1 (en) 1999-10-08 2003-07-15 General Surgical Innovations, Inc. Balloon dissection apparatus
US20050203346A1 (en) * 1999-10-14 2005-09-15 Frank Bonadio Wound retractor device
US6689062B1 (en) 1999-11-23 2004-02-10 Microaccess Medical Systems, Inc. Method and apparatus for transesophageal cardiovascular procedures
US8021296B2 (en) 1999-12-01 2011-09-20 Atropos Limited Wound retractor
US6692450B1 (en) 2000-01-19 2004-02-17 Medtronic Xomed, Inc. Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same
US7706882B2 (en) 2000-01-19 2010-04-27 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area
US8221402B2 (en) 2000-01-19 2012-07-17 Medtronic, Inc. Method for guiding a medical device
US7153319B1 (en) 2000-01-26 2006-12-26 Genico, Inc. Trocar system having shielded trocar
USD449887S1 (en) 2000-01-26 2001-10-30 Genicon Lc Combined obturator, cannula and valve assembly
AU2001233098A1 (en) * 2000-01-27 2001-08-07 Sterilis, Inc. Cavity enlarger method and apparatus
US8083736B2 (en) 2000-03-06 2011-12-27 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US8048070B2 (en) 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
USD443360S1 (en) 2000-03-22 2001-06-05 Dexterity Surgical Inc. Distal end of obturator for a trocar
EP1278471B1 (en) 2000-04-27 2005-06-15 Medtronic, Inc. Vibration sensitive ablation apparatus
US6514250B1 (en) * 2000-04-27 2003-02-04 Medtronic, Inc. Suction stabilized epicardial ablation devices
US6488680B1 (en) 2000-04-27 2002-12-03 Medtronic, Inc. Variable length electrodes for delivery of irrigated ablation
JP3773050B2 (en) * 2000-07-27 2006-05-10 株式会社ジェイ・エム・エス Biological tissue support device for medical treatment
DE10040774A1 (en) * 2000-08-21 2002-03-28 Ebert Dieter Device for enabling a clear view of a surgical treatment site
US6926669B1 (en) 2000-10-10 2005-08-09 Medtronic, Inc. Heart wall ablation/mapping catheter and method
CA2422782C (en) 2000-10-19 2012-02-07 Applied Medical Resources Corporation Surgical access apparatus and method
US7033373B2 (en) 2000-11-03 2006-04-25 Satiety, Inc. Method and device for use in minimally invasive placement of space-occupying intragastric devices
US6607549B2 (en) * 2000-12-12 2003-08-19 Pro David Inc. Oral rehabilitation device
US20040138621A1 (en) 2003-01-14 2004-07-15 Jahns Scott E. Devices and methods for interstitial injection of biologic agents into tissue
US7740623B2 (en) 2001-01-13 2010-06-22 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20020128571A1 (en) * 2001-03-07 2002-09-12 Brenneman Rodney A. Method and apparatus for intercostal cardiac compression device
US6616673B1 (en) * 2001-04-19 2003-09-09 Biomet, Inc. Segmented joint distractor
US6663627B2 (en) 2001-04-26 2003-12-16 Medtronic, Inc. Ablation system and method of use
US7250048B2 (en) 2001-04-26 2007-07-31 Medtronic, Inc. Ablation system and method of use
US6648883B2 (en) 2001-04-26 2003-11-18 Medtronic, Inc. Ablation system and method of use
US6699240B2 (en) 2001-04-26 2004-03-02 Medtronic, Inc. Method and apparatus for tissue ablation
US7959626B2 (en) 2001-04-26 2011-06-14 Medtronic, Inc. Transmural ablation systems and methods
US6807968B2 (en) 2001-04-26 2004-10-26 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
JP2002338688A (en) * 2001-05-15 2002-11-27 Sumitomo Chem Co Ltd Method for producing purified polyethersulfone
US7083629B2 (en) 2001-05-30 2006-08-01 Satiety, Inc. Overtube apparatus for insertion into a body
US6558400B2 (en) 2001-05-30 2003-05-06 Satiety, Inc. Obesity treatment tools and methods
US20040138702A1 (en) * 2001-05-31 2004-07-15 Kenneth Peartree Balloon cannula with over-center clamp
CA2457687C (en) 2001-08-14 2013-01-15 Applied Medical Resources Corporation Access sealing apparatus and method
US20050033246A1 (en) 2002-05-14 2005-02-10 Ahlberg Russell E. Surgical device with tack-free gel and method of manufacture
US6913610B2 (en) * 2001-10-16 2005-07-05 Granit Medical Innovations, Inc. Endoscopic retractor instrument and associated method
US6958037B2 (en) 2001-10-20 2005-10-25 Applied Medical Resources Corporation Wound retraction apparatus and method
US6656175B2 (en) 2001-12-11 2003-12-02 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
US7967816B2 (en) 2002-01-25 2011-06-28 Medtronic, Inc. Fluid-assisted electrosurgical instrument with shapeable electrode
US6827715B2 (en) 2002-01-25 2004-12-07 Medtronic, Inc. System and method of performing an electrosurgical procedure
US6723044B2 (en) * 2002-03-14 2004-04-20 Apple Medical Corporation Abdominal retractor
US7294143B2 (en) 2002-05-16 2007-11-13 Medtronic, Inc. Device and method for ablation of cardiac tissue
US7118566B2 (en) 2002-05-16 2006-10-10 Medtronic, Inc. Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
WO2003103548A1 (en) 2002-06-05 2003-12-18 Applied Medical Resources Corporation Wound retractor
US8287561B2 (en) * 2002-06-28 2012-10-16 Boston Scientific Scimed, Inc. Balloon-type actuator for surgical applications
US6746460B2 (en) 2002-08-07 2004-06-08 Satiety, Inc. Intra-gastric fastening devices
US9271753B2 (en) 2002-08-08 2016-03-01 Atropos Limited Surgical device
US7214233B2 (en) 2002-08-30 2007-05-08 Satiety, Inc. Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US7033384B2 (en) 2002-08-30 2006-04-25 Satiety, Inc. Stented anchoring of gastric space-occupying devices
ES2287516T3 (en) 2002-09-19 2007-12-16 Atropos Limited WOUND RETRACTOR SYSTEM.
EP1545324B1 (en) 2002-10-04 2009-06-03 Tyco Healthcare Group Lp Balloon dissector with cannula
US7300448B2 (en) * 2002-10-04 2007-11-27 Tyco Healthcare Group Lp Balloon dissector with cannula
US7229428B2 (en) * 2002-10-23 2007-06-12 Satiety, Inc. Method and device for use in endoscopic organ procedures
US7220237B2 (en) 2002-10-23 2007-05-22 Satiety, Inc. Method and device for use in endoscopic organ procedures
US7083620B2 (en) 2002-10-30 2006-08-01 Medtronic, Inc. Electrosurgical hemostat
US6656194B1 (en) 2002-11-05 2003-12-02 Satiety, Inc. Magnetic anchoring devices
DE10305553B4 (en) * 2003-02-10 2005-11-03 Lothar Dr.med. Göbel Device for tamponade of body cavities
US20050020884A1 (en) 2003-02-25 2005-01-27 Hart Charles C. Surgical access system
US7162309B2 (en) * 2003-04-07 2007-01-09 Medtronic, Inc. Epicardial lead delivery system and method
US7175638B2 (en) 2003-04-16 2007-02-13 Satiety, Inc. Method and devices for modifying the function of a body organ
US7497857B2 (en) 2003-04-29 2009-03-03 Medtronic, Inc. Endocardial dispersive electrode for use with a monopolar RF ablation pen
US7101387B2 (en) * 2003-04-30 2006-09-05 Scimed Life Systems, Inc. Radio frequency ablation cooling shield
US7967835B2 (en) 2003-05-05 2011-06-28 Tyco Healthcare Group Lp Apparatus for use in fascial cleft surgery for opening an anatomic space
JP4610563B2 (en) 2003-05-08 2011-01-12 タイコ ヘルスケア グループ リミテッド パートナーシップ Balloon dissection instrument with balloon tip cannula
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
GB0315479D0 (en) 2003-07-02 2003-08-06 Paz Adrian Virtual ports devices
US7960935B2 (en) 2003-07-08 2011-06-14 The Board Of Regents Of The University Of Nebraska Robotic devices with agent delivery components and related methods
US20060079924A1 (en) * 2003-07-24 2006-04-13 Femspec Llc Apparatus for accessing a body cavity and methods of making same
DE112004001370B8 (en) * 2003-07-25 2010-06-10 Impliant Ltd. Elastomeric nucleus replacement
AU2004258765A1 (en) * 2003-07-30 2005-02-03 Atropos Limited Cannula with instrument seal
US7163510B2 (en) 2003-09-17 2007-01-16 Applied Medical Resources Corporation Surgical instrument access device
EP2545864B1 (en) * 2003-10-03 2015-06-10 Applied Medical Resources Corporation Bladeless optical obturator
US7914543B2 (en) 2003-10-14 2011-03-29 Satiety, Inc. Single fold device for tissue fixation
US7097650B2 (en) 2003-10-14 2006-08-29 Satiety, Inc. System for tissue approximation and fixation
WO2005044111A2 (en) * 2003-11-05 2005-05-19 Atropos Limited A surgical sealing device
US20050101839A1 (en) * 2003-11-11 2005-05-12 Bertolero Arthur A. Thorax mounted stabilization platform
US7294103B2 (en) * 2003-11-12 2007-11-13 Endoscopic Technologies, Inc. Retractor with inflatable blades
US7524302B2 (en) * 2003-12-17 2009-04-28 Numed, Inc. Prenatal balloon catheter
US7344495B2 (en) * 2004-01-27 2008-03-18 Arvik Enterprises, Llc Surgical retractor apparatus for use with a surgical port
US7195592B2 (en) * 2004-01-27 2007-03-27 Sundaram Ravikumar Surgical retractor apparatus for use with a surgical port
US20050177176A1 (en) 2004-02-05 2005-08-11 Craig Gerbi Single-fold system for tissue approximation and fixation
EP1713402B1 (en) 2004-02-13 2018-07-04 Ethicon Endo-Surgery, Inc. Device for reducing stomach volume
WO2005079683A1 (en) * 2004-02-17 2005-09-01 Boston Scientific Limited Endoscopic tissue stabilization device and related methods of use
NZ550020A (en) 2004-02-26 2011-02-25 Linguaflex Llc A tissue retractor for treatment of a breathing disorder comprising a shaft, a retractor, and an anchor
US10524954B2 (en) 2004-02-26 2020-01-07 Linguaflex, Inc. Methods and devices for treating sleep apnea and snoring
US8074655B2 (en) 2004-02-26 2011-12-13 Linguaflex, Inc. Methods and devices for treating sleep apnea and snoring
EP1725194B1 (en) 2004-02-27 2018-01-17 Ethicon Endo-Surgery, Inc. Methods and devices for reducing stomach volume
US8449560B2 (en) 2004-03-09 2013-05-28 Satiety, Inc. Devices and methods for placement of partitions within a hollow body organ
US8252009B2 (en) 2004-03-09 2012-08-28 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
US9028511B2 (en) 2004-03-09 2015-05-12 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
US8628547B2 (en) 2004-03-09 2014-01-14 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
CA2561193A1 (en) 2004-03-26 2005-10-20 Satiety, Inc. Systems and methods for treating obesity
EP1742586B1 (en) * 2004-04-26 2012-10-24 Patrick Leahy A laparoscopic surgical device
US8764646B2 (en) * 2004-04-29 2014-07-01 Umc Utrecht Holding B.V. Surgical expansion device
US8333764B2 (en) 2004-05-12 2012-12-18 Medtronic, Inc. Device and method for determining tissue thickness and creating cardiac ablation lesions
US20060009756A1 (en) 2004-05-14 2006-01-12 Francischelli David E Method and devices for treating atrial fibrillation by mass ablation
WO2005120375A2 (en) 2004-06-02 2005-12-22 Medtronic, Inc. Loop ablation apparatus and method
WO2005120376A2 (en) 2004-06-02 2005-12-22 Medtronic, Inc. Ablation device with jaws
WO2005120374A1 (en) 2004-06-02 2005-12-22 Medtronic, Inc. Compound bipolar ablation device and method
ATE516762T1 (en) 2004-06-02 2011-08-15 Medtronic Inc ABLATION AND STAPLE INSTRUMENT
US8663245B2 (en) 2004-06-18 2014-03-04 Medtronic, Inc. Device for occlusion of a left atrial appendage
US8409219B2 (en) 2004-06-18 2013-04-02 Medtronic, Inc. Method and system for placement of electrical lead inside heart
US8926635B2 (en) 2004-06-18 2015-01-06 Medtronic, Inc. Methods and devices for occlusion of an atrial appendage
US20060004398A1 (en) * 2004-07-02 2006-01-05 Binder Lawrence J Jr Sequential dilator system
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
WO2006040748A1 (en) 2004-10-11 2006-04-20 Atropos Limited An instrument access device
US20070078476A1 (en) * 2004-10-12 2007-04-05 Hull Wendell C Sr Overweight control apparatuses for insertion into the stomach
US20060079922A1 (en) * 2004-10-12 2006-04-13 Brian Creston Balloon anchored surgical apparatus, its use and manufacture
US20060106288A1 (en) 2004-11-17 2006-05-18 Roth Alex T Remote tissue retraction device
US7811253B2 (en) * 2004-12-09 2010-10-12 Applied Medical Resources Corporation Insufflation gas warmer and humidifier
US7785291B2 (en) * 2005-03-01 2010-08-31 Tulip Medical Ltd. Bioerodible self-deployable intragastric implants
US7699863B2 (en) * 2005-03-01 2010-04-20 Tulip Medical Ltd. Bioerodible self-deployable intragastric implants
US20060212126A1 (en) * 2005-03-17 2006-09-21 Jerry Zucker Device and a method for extending a distal end of an anatomic tube
US20060270911A1 (en) * 2005-04-08 2006-11-30 Voegele James W Tissue retraction device
NL1029010C2 (en) * 2005-05-11 2006-11-14 Robert Walter Kreis Flexible film device for covering open abdominal wound, contains inflatable channels for stretching film
US20070049849A1 (en) * 2005-05-24 2007-03-01 Schwardt Jeffrey D Bone probe apparatus and method of use
US8083664B2 (en) 2005-05-25 2011-12-27 Maquet Cardiovascular Llc Surgical stabilizers and methods for use in reduced-access surgical sites
US8740988B1 (en) * 2005-06-16 2014-06-03 Robert L. Hively Bariatric balloon apparatus
EP1909655A2 (en) 2005-06-20 2008-04-16 Sutura, Inc. Method and apparatus for applying a knot to a suture
US8007508B2 (en) 2005-07-01 2011-08-30 Cox John A System for tissue dissection and retraction
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
CA2625730C (en) 2005-10-14 2015-04-14 Applied Medical Resources Corporation Split hoop wound retractor with gel pad
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
DE102005053831A1 (en) 2005-11-11 2007-05-24 Haindl, Hans, Dr.med. Dipl.-Ing. Device for supporting the abdominal wall against underlying organs in minimally invasive surgery
US20070167967A1 (en) * 2006-01-13 2007-07-19 Olympus Medical Systems Corp. Medical procedure via natural orifice and puncture device
US20070173855A1 (en) * 2006-01-17 2007-07-26 Sdgi Holdings, Inc. Devices and methods for spacing of vertebral members over multiple levels
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
WO2007106079A2 (en) * 2006-03-10 2007-09-20 The Board Of Trustees Of The Leland Stanford Junior University Percutaneous access and visualization of the spine
US8133255B2 (en) * 2006-03-13 2012-03-13 Mini-Lap Technologies, Inc. Minimally invasive surgical assembly and methods
US8313507B2 (en) * 2006-03-13 2012-11-20 Mini-Lap Technologies, Inc. Minimally invasive rake retractor and method for using same
US8287503B2 (en) 2006-03-13 2012-10-16 Applied Medical Resources Corporation Balloon trocar
US7766937B2 (en) 2006-03-13 2010-08-03 Mini-Lap Technologies, Inc. Minimally invasive surgical assembly and methods
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8357085B2 (en) * 2009-03-31 2013-01-22 Ethicon Endo-Surgery, Inc. Devices and methods for providing access into a body cavity
US20100228096A1 (en) * 2009-03-06 2010-09-09 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US20080039746A1 (en) 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20070282170A1 (en) * 2006-05-30 2007-12-06 Sundaram Ravikumar Rake Retractor and Needle Assembly for Minimally Invasive Surgical Applications
US8818322B2 (en) * 2006-06-09 2014-08-26 Trapeze Networks, Inc. Untethered access point mesh system and method
US9579088B2 (en) 2007-02-20 2017-02-28 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical visualization and device manipulation
WO2007149559A2 (en) 2006-06-22 2007-12-27 Board Of Regents Of The University Of Nebraska Magnetically coupleable robotic devices and related methods
US8679096B2 (en) 2007-06-21 2014-03-25 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
US20070299393A1 (en) * 2006-06-23 2007-12-27 Podmore Jonathan L Device and method for surgical treatments
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US20080033431A1 (en) * 2006-06-29 2008-02-07 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Position augmenting mechanism
US20080045986A1 (en) * 2006-06-30 2008-02-21 Atheromed, Inc. Atherectomy devices and methods
US20110112563A1 (en) * 2006-06-30 2011-05-12 Atheromed, Inc. Atherectomy devices and methods
US9314263B2 (en) * 2006-06-30 2016-04-19 Atheromed, Inc. Atherectomy devices, systems, and methods
US8361094B2 (en) * 2006-06-30 2013-01-29 Atheromed, Inc. Atherectomy devices and methods
US9492192B2 (en) 2006-06-30 2016-11-15 Atheromed, Inc. Atherectomy devices, systems, and methods
AU2007269189A1 (en) 2006-06-30 2008-01-10 Atheromed, Inc. Atherectomy devices and methods
US20090018566A1 (en) 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
US8628549B2 (en) 2006-06-30 2014-01-14 Atheromed, Inc. Atherectomy devices, systems, and methods
US20080004645A1 (en) * 2006-06-30 2008-01-03 Atheromed, Inc. Atherectomy devices and methods
US8007506B2 (en) * 2006-06-30 2011-08-30 Atheromed, Inc. Atherectomy devices and methods
US20100010530A1 (en) * 2006-07-14 2010-01-14 Ams Research Corporation Balloon Dilation for Implantable Prosthesis
JP4885640B2 (en) * 2006-08-01 2012-02-29 オリンパスメディカルシステムズ株式会社 Endoscope insertion aid
US7544213B2 (en) * 2006-09-12 2009-06-09 Adams Jason P Inflatable hernia patch
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8220690B2 (en) 2006-09-29 2012-07-17 Ethicon Endo-Surgery, Inc. Connected surgical staples and stapling instruments for deploying the same
US20080086166A1 (en) * 2006-10-10 2008-04-10 Sundaram Ravikumar Minimally Invasive Surgical Assembly with Balloon Instrument
US7763033B2 (en) * 2006-10-18 2010-07-27 Interlace Medical, Inc. System and methods for preventing intravasation during intrauterine procedures
US8025656B2 (en) 2006-11-07 2011-09-27 Hologic, Inc. Methods, systems and devices for performing gynecological procedures
US9392935B2 (en) * 2006-11-07 2016-07-19 Hologic, Inc. Methods for performing a medical procedure
ES2869849T3 (en) * 2006-11-27 2021-10-26 Davol Inc An especially useful device for hernia repair surgeries
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8827133B2 (en) 2007-01-11 2014-09-09 Ethicon Endo-Surgery, Inc. Surgical stapling device having supports for a flexible drive mechanism
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7669747B2 (en) 2007-03-15 2010-03-02 Ethicon Endo-Surgery, Inc. Washer for use with a surgical stapling instrument
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
JP5411125B2 (en) 2007-03-29 2014-02-12 ノーブルズ メディカル テクノロジーズ、インコーポレイテッド Suture device and system for closing a patent foramen ovale
US9095366B2 (en) 2007-04-06 2015-08-04 Hologic, Inc. Tissue cutter with differential hardness
US9259233B2 (en) * 2007-04-06 2016-02-16 Hologic, Inc. Method and device for distending a gynecological cavity
EP2134283B1 (en) * 2007-04-06 2014-06-11 Hologic, Inc. System and device for tissue removal
US8951274B2 (en) * 2007-04-06 2015-02-10 Hologic, Inc. Methods of high rate, low profile tissue removal
JP5602010B2 (en) * 2007-04-09 2014-10-08 クレアトイベ スルギカル,エルエルシー Frame device
EP2719340B1 (en) 2007-05-11 2017-02-08 Applied Medical Resources Corporation Surgical retractor
CA2682923C (en) 2007-05-11 2014-10-07 Applied Medical Resources Corporation Surgical retractor with gel pad
US20080300467A1 (en) * 2007-05-29 2008-12-04 Schaefer Robert W Surgical wound retractor with reusable rings
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
ES2557882T3 (en) 2007-06-05 2016-01-29 Atropos Limited Instrument Access Device
US8657740B2 (en) 2007-06-05 2014-02-25 Atropos Limited Instrument access device
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8128592B2 (en) 2007-07-11 2012-03-06 Apollo Endosurgery, Inc. Methods and systems for performing submucosal medical procedures
US8929988B2 (en) 2007-07-11 2015-01-06 Apollo Endosurgery, Inc. Methods and systems for submucosal implantation of a device for diagnosis and treatment of a body
US8317771B2 (en) 2007-07-11 2012-11-27 Apollo Endosurgery, Inc. Methods and systems for performing submucosal medical procedures
US8066689B2 (en) 2007-07-11 2011-11-29 Apollo Endosurgery, Inc. Methods and systems for submucosal implantation of a device for diagnosis and treatment with a therapeutic agent
US20100217151A1 (en) * 2007-07-11 2010-08-26 Zach Gostout Methods and Systems for Performing Submucosal Medical Procedures
WO2009014917A2 (en) 2007-07-12 2009-01-29 Board Of Regents Of The University Of Nebraska Methods and systems of actuation in robotic devices
US8500773B2 (en) * 2007-08-01 2013-08-06 Boston Scientific Scimed, Inc. Spring detach joint for delivering a detachable implantable device
JP5475662B2 (en) 2007-08-15 2014-04-16 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Modular and segmented medical devices and related systems
JP2010536435A (en) * 2007-08-15 2010-12-02 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Medical inflation, attachment and delivery devices and associated methods
WO2009024955A1 (en) * 2007-08-20 2009-02-26 Atropos Limited A hand and instrument access device
US8465515B2 (en) * 2007-08-29 2013-06-18 Ethicon Endo-Surgery, Inc. Tissue retractors
US7976497B2 (en) 2007-09-25 2011-07-12 Polyzen Inc. Multi-layer film welded articulated balloon
AU2008308426A1 (en) 2007-10-05 2009-04-09 Synthes Gmbh Dilation system and method of using the same
US8500762B2 (en) * 2007-10-17 2013-08-06 Davol, Inc. (a C.R. Bard Company) Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries and methods thereof
US8236016B2 (en) 2007-10-22 2012-08-07 Atheromed, Inc. Atherectomy devices and methods
US8070762B2 (en) 2007-10-22 2011-12-06 Atheromed Inc. Atherectomy devices and methods
US8128559B2 (en) * 2007-11-26 2012-03-06 Ethicon Endo-Surgery, Inc. Tissue retractors
US8517931B2 (en) * 2007-11-26 2013-08-27 Ethicon Endo-Surgery, Inc. Tissue retractors
US20090149714A1 (en) * 2007-12-05 2009-06-11 Frank Bonadio Surgical devices and methods
US8016851B2 (en) * 2007-12-27 2011-09-13 Cook Medical Technologies Llc Delivery system and method of delivery for treating obesity
EP2227174B1 (en) 2007-12-28 2019-05-01 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical device
GB0800835D0 (en) * 2008-01-17 2008-02-27 Cardioprec Ltd Retractor
US8343047B2 (en) 2008-01-22 2013-01-01 Applied Medical Resources Corporation Surgical instrument access device
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US20090326518A1 (en) * 2008-02-14 2009-12-31 Rabin Barry H Devices and methods for manipulating tissue
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US20090275804A1 (en) * 2008-04-30 2009-11-05 Rudolf Bertagnoli Hinged Retractor With Sheath
CA2723705C (en) 2008-05-07 2016-08-30 Davol Inc. Method and apparatus for repairing a hernia
EP2291125B1 (en) 2008-05-09 2021-04-21 Nobles Medical Technologies, Inc. Suturing devices for suturing an anatomic valve
US8821488B2 (en) 2008-05-13 2014-09-02 Medtronic, Inc. Tissue lesion evaluation
US20090287045A1 (en) 2008-05-15 2009-11-19 Vladimir Mitelberg Access Systems and Methods of Intra-Abdominal Surgery
EP2317942B1 (en) 2008-06-13 2020-02-12 Stryker Corporation Apparatus for joint distraction
US8974462B2 (en) 2008-06-13 2015-03-10 Pivot Medical, Inc. Devices and methods for minimally invasive access into a joint
US8771170B2 (en) * 2008-08-01 2014-07-08 Microaccess, Inc. Methods and apparatus for transesophageal microaccess surgery
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
EP3811900A1 (en) * 2008-10-10 2021-04-28 Implantica Patent Ltd. Artificial stomach
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
AU2009303470B2 (en) 2008-10-13 2015-04-23 Applied Medical Resources Corporation Single port access system
JP5623411B2 (en) 2008-10-16 2014-11-12 リンガフレックス・インコーポレーテッド Method and device for treating sleep apnea
CN101401734B (en) * 2008-11-06 2010-10-06 钱建民 Lower abdominal region retractor
CA2744206C (en) 2008-11-21 2019-05-21 C.R. Bard, Inc. Soft tissue repair prosthesis, expandable device, and method of soft tissue repair
US9254168B2 (en) 2009-02-02 2016-02-09 Medtronic Advanced Energy Llc Electro-thermotherapy of tissue using penetrating microelectrode array
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8375955B2 (en) 2009-02-06 2013-02-19 Atropos Limited Surgical procedure
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
CA2751664A1 (en) 2009-02-06 2010-08-12 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
JP5592409B2 (en) 2009-02-23 2014-09-17 サリエント・サージカル・テクノロジーズ・インコーポレーテッド Fluid-assisted electrosurgical device and method of use thereof
JP5415925B2 (en) * 2009-03-02 2014-02-12 オリンパス株式会社 Endoscope
US8747297B2 (en) * 2009-03-02 2014-06-10 Olympus Corporation Endoscopic heart surgery method
US9737334B2 (en) 2009-03-06 2017-08-22 Ethicon Llc Methods and devices for accessing a body cavity
WO2010107949A1 (en) * 2009-03-17 2010-09-23 Pivot Medical, Inc. Method and apparatus for distracting a joint, including the provision and use of a novel joint-spacing balloon catheter and a novel inflatable perineal post
US9186181B2 (en) 2009-03-17 2015-11-17 Pivot Medical, Inc. Method and apparatus for distracting a joint
US10426453B2 (en) 2009-03-17 2019-10-01 Pivot Medical, Inc. Method and apparatus for distracting a joint
US8353824B2 (en) * 2009-03-31 2013-01-15 Ethicon Endo-Surgery, Inc. Access method with insert
US20100249520A1 (en) * 2009-03-31 2010-09-30 Shelton Iv Frederick E Method Of Surgical Access
US11903602B2 (en) 2009-04-29 2024-02-20 Hologic, Inc. Uterine fibroid tissue removal device
US20230263514A1 (en) * 2009-06-10 2023-08-24 Conmed Corporation Tissue specimen retrieval bag, method for retrieving tissue
US9974528B2 (en) * 2014-04-25 2018-05-22 Conmed Corporation Tissue specimen retrieval bag, method for retrieving tissue
US20110028793A1 (en) * 2009-07-30 2011-02-03 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US20120238806A1 (en) 2009-08-24 2012-09-20 Quali-Med Gmbh Implantation system with handle and catheter and method of use thereof
US9439652B2 (en) * 2009-08-24 2016-09-13 Qualimed Innovative Medizinprodukte Gmbh Implantation device with handle and method of use thereof
US9999531B2 (en) 2009-08-24 2018-06-19 Qualimed Innovative Medizinprodukte Gmbh Variable scale stent deployment device
IN2012DN01917A (en) 2009-09-08 2015-07-24 Salient Surgical Tech Inc
IE20100592A1 (en) 2009-09-17 2011-05-11 Atropos Ltd An instrument access device
WO2011037068A1 (en) * 2009-09-22 2011-03-31 オリンパス株式会社 Space-securing device
WO2011037046A1 (en) * 2009-09-22 2011-03-31 オリンパス株式会社 Device for injecting therapeutic solution
JP5567840B2 (en) * 2009-09-22 2014-08-06 オリンパス株式会社 Cell injection device
US9474540B2 (en) 2009-10-08 2016-10-25 Ethicon-Endo-Surgery, Inc. Laparoscopic device with compound angulation
US20110112373A1 (en) * 2009-11-10 2011-05-12 Trans1 Inc. Soft tissue access apparatus and methods for spinal surgery
US8870759B2 (en) * 2009-12-04 2014-10-28 Covidien Lp Suspension system for minimally invasive surgery
CA2784883A1 (en) 2009-12-17 2011-06-23 Board Of Regents Of The University Of Nebraska Modular and cooperative medical devices and related systems and methods
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US9326757B2 (en) 2009-12-31 2016-05-03 Teleflex Medical Incorporated Surgical instruments for laparoscopic aspiration and retraction
WO2011103370A1 (en) 2010-02-17 2011-08-25 Reprise Technologies, Llc System and method for image-guided arthroscopy
US9168063B2 (en) 2010-03-07 2015-10-27 Faisal Mirza Void containment apparatus and method of use for creating a sealed environment for product delivery
WO2011112991A1 (en) 2010-03-11 2011-09-15 Salient Surgical Technologies, Inc. Bipolar electrosurgical cutter with position insensitive return electrode contact
US8562592B2 (en) 2010-05-07 2013-10-22 Ethicon Endo-Surgery, Inc. Compound angle laparoscopic methods and devices
US9226760B2 (en) 2010-05-07 2016-01-05 Ethicon Endo-Surgery, Inc. Laparoscopic devices with flexible actuation mechanisms
US9173705B2 (en) * 2010-05-13 2015-11-03 Ncontact Surgical, Inc. Subxyphoid epicardial ablation
CN103002793B (en) * 2010-05-13 2015-07-22 Livac私人有限公司 Suction retractor
US20110295249A1 (en) * 2010-05-28 2011-12-01 Salient Surgical Technologies, Inc. Fluid-Assisted Electrosurgical Devices, and Methods of Manufacture Thereof
US8460337B2 (en) 2010-06-09 2013-06-11 Ethicon Endo-Surgery, Inc. Selectable handle biasing
US9655605B2 (en) 2010-06-14 2017-05-23 Maquet Cardiovascular Llc Surgical instruments, systems and methods of use
US9138289B2 (en) 2010-06-28 2015-09-22 Medtronic Advanced Energy Llc Electrode sheath for electrosurgical device
US8906012B2 (en) 2010-06-30 2014-12-09 Medtronic Advanced Energy Llc Electrosurgical devices with wire electrode
US8920417B2 (en) 2010-06-30 2014-12-30 Medtronic Advanced Energy Llc Electrosurgical devices and methods of use thereof
GB201012336D0 (en) * 2010-07-23 2010-09-08 Univ Leeds Surgical device and procedure
US8672207B2 (en) 2010-07-30 2014-03-18 Ethicon Endo-Surgery, Inc. Transwall visualization arrangements and methods for surgical circular staplers
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
JP2014529414A (en) 2010-08-06 2014-11-13 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Method and system for handling or delivery of natural orifice surgical material
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
GB201015746D0 (en) 2010-09-21 2010-10-27 Cardioprec Ltd Optical switch
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US8702592B2 (en) 2010-09-30 2014-04-22 David Allan Langlois System and method for inhibiting injury to a patient during laparoscopic surgery
US9592050B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc End effector comprising a distal tissue abutment member
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
ES2743503T3 (en) 2010-10-01 2020-02-19 Applied Med Resources Surgical system for natural orifice
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9289115B2 (en) 2010-10-01 2016-03-22 Applied Medical Resources Corporation Natural orifice surgery system
WO2012047939A2 (en) * 2010-10-04 2012-04-12 Ind Platforms Llc Expandable devices, rail systems, and motorized devices
US9808331B2 (en) 2010-10-05 2017-11-07 C.R. Bard, Inc. Soft tissue repair prosthesis and expandable device
US9023040B2 (en) 2010-10-26 2015-05-05 Medtronic Advanced Energy Llc Electrosurgical cutting devices
CN103458954A (en) 2010-11-08 2013-12-18 皮沃特医疗公司 Method and apparatus for distracting a joint
US8968188B2 (en) * 2010-11-24 2015-03-03 Covidien Lp Expandable segmented and sectioned access assembly
US9445800B2 (en) 2011-01-04 2016-09-20 The Johns Hopkins University Minimally invasive laparoscopic retractor
EP2670328B1 (en) 2011-02-01 2019-10-16 Channel Medsystems, Inc. Apparatus for cyrogenic treatment of a body cavity or lumen
KR20230160959A (en) 2011-02-16 2023-11-24 더 제너럴 하스피탈 코포레이션 Optical coupler for an endoscope
US9427281B2 (en) 2011-03-11 2016-08-30 Medtronic Advanced Energy Llc Bronchoscope-compatible catheter provided with electrosurgical device
US9113884B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Modular surgical tool systems
US9326760B2 (en) 2011-03-28 2016-05-03 Prabhat Kumar Ahluwalia Organ retractor
CN110882021A (en) 2011-04-15 2020-03-17 心脏缝合有限公司 Suturing device and method for suturing an anatomical valve
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
EP2706923B1 (en) 2011-05-10 2015-08-05 Applied Medical Resources Corporation Wound retractor
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
EP2717796B1 (en) 2011-06-10 2020-02-26 Board of Regents of the University of Nebraska In vivo vessel sealing end effector
CA3082073C (en) 2011-07-11 2023-07-25 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US9521996B2 (en) 2011-07-13 2016-12-20 Cook Medical Technologies Llc Surgical retractor device
WO2013009795A1 (en) 2011-07-13 2013-01-17 Cook Medical Technologies Llc Foldable surgical retractor
WO2013013215A2 (en) * 2011-07-20 2013-01-24 Quimby Jennifer C Surgical manipulation and occlusion device
US9750565B2 (en) 2011-09-30 2017-09-05 Medtronic Advanced Energy Llc Electrosurgical balloons
US20130085339A1 (en) * 2011-10-04 2013-04-04 Cook Medical Technologies Llc Surgical retractor
CN103957825B (en) 2011-10-13 2018-12-07 阿瑟罗迈德公司 Atherectomy device, system and method
US8870864B2 (en) 2011-10-28 2014-10-28 Medtronic Advanced Energy Llc Single instrument electrosurgery apparatus and its method of use
CA2860725A1 (en) 2012-01-10 2013-07-18 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for the prevention of surgical site infections
EP3970784A1 (en) 2012-01-10 2022-03-23 Board of Regents of the University of Nebraska Systems and devices for surgical access and insertion
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
JP5972599B2 (en) * 2012-02-22 2016-08-17 株式会社リバーセイコー Observation field expansion device
CA2865294A1 (en) * 2012-02-23 2013-08-29 Mickey KARRAM Transperitoneal prolapse repair system and method
US9017249B2 (en) * 2012-03-26 2015-04-28 Covidien Lp Surgical access assembly and method of use therefor
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
JP6224070B2 (en) 2012-03-28 2017-11-01 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Retainer assembly including tissue thickness compensator
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
WO2013144959A1 (en) 2012-03-29 2013-10-03 Lapspace Medical Ltd. Tissue retractor
CA2871149C (en) 2012-05-01 2020-08-25 Board Of Regents Of The University Of Nebraska Single site robotic device and related systems and methods
US10159552B2 (en) * 2012-05-01 2018-12-25 C.R. Bard, Inc. Self adhering implantable mesh prosthesis with reduced insertion profile
EP3597115A1 (en) 2012-05-11 2020-01-22 Heartstitch, Inc. Suturing devices for suturing an anatomic structure
CN103462655A (en) * 2012-06-06 2013-12-25 仁齐企业有限公司 Non-inflatable balloon suspension system
CN104334123B (en) 2012-06-07 2019-02-12 意比图密医疗有限公司 Expansion device
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
CN103505251B (en) * 2012-06-15 2016-03-02 中央大学 Replaceable micro-surgical instrument
JP6228196B2 (en) 2012-06-22 2017-11-08 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Locally controlled robotic surgical device
CN104487005B (en) 2012-06-28 2017-09-08 伊西康内外科公司 Empty squeeze latching member
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US20140018836A1 (en) * 2012-07-13 2014-01-16 Top-Bound Enterprise Co., Ltd Endo-Safe-Bag-Gasless support system
JP2015526171A (en) 2012-08-08 2015-09-10 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Robotic surgical device, system and related methods
US9770305B2 (en) 2012-08-08 2017-09-26 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
US10512482B2 (en) 2012-10-05 2019-12-24 Board Of Regents Of The University Of Texas System System and method for scoring the left ventricular endocardium to increase left ventricular compliance
JPWO2014069292A1 (en) * 2012-10-31 2016-09-08 学校法人東京女子医科大学 Sheet-like therapeutic substance delivery device, method for applying sheet-like therapeutic substance
CN103027721B (en) * 2012-12-05 2014-08-06 广西大学 Laparoscopic pneumoperitoneum-free mechanical device
MX364729B (en) 2013-03-01 2019-05-06 Ethicon Endo Surgery Inc Surgical instrument with a soft stop.
MX368026B (en) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Articulatable surgical instruments with conductive pathways for signal communication.
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9743987B2 (en) 2013-03-14 2017-08-29 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers
WO2014152418A1 (en) 2013-03-14 2014-09-25 Board Of Regents Of The University Of Nebraska Methods, systems, and devices relating to force control surgical systems
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
WO2014159225A2 (en) 2013-03-14 2014-10-02 Baxano Surgical, Inc. Spinal implants and implantation system
EP3970604A1 (en) 2013-03-15 2022-03-23 Board of Regents of the University of Nebraska Robotic surgical devices and systems
EP2967512B1 (en) 2013-03-15 2019-11-06 Applied Medical Resources Corporation Mechanical gel surgical access device
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US10166376B2 (en) 2013-06-11 2019-01-01 Covidien Lp Restricted expansion dissector
CN105283136B (en) * 2013-06-12 2019-10-25 Umc乌得勒支控股有限公司 Operation device for providing channel to operative site
EA032962B1 (en) 2013-07-02 2019-08-30 Мед-Венче Инвестментс, Ллс Suturing device for suturing an anatomic structure
EP3021779A4 (en) 2013-07-17 2017-08-23 Board of Regents of the University of Nebraska Robotic surgical devices, systems and related methods
US10070853B2 (en) 2013-08-14 2018-09-11 Covidien Lp Expandable balloon desufflation assembly
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
CN106028966B (en) 2013-08-23 2018-06-22 伊西康内外科有限责任公司 For the firing member restoring device of powered surgical instrument
US10433861B2 (en) 2013-08-27 2019-10-08 Board Of Regents Of The University Of Texas System System and method for cutting trabeculae carneae of the left ventricle to increase LV compliance
US11129793B2 (en) 2013-12-05 2021-09-28 Epitomee Medical Ltd Retentive devices and systems for in-situ release of pharmaceutical active agents
WO2015085145A1 (en) 2013-12-06 2015-06-11 Med-Venture Investments, Llc Suturing methods and apparatuses
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
CN104939887B (en) * 2014-03-28 2019-03-26 上海微创电生理医疗科技有限公司 Pericardium endoscope, lasso trick device and heart left auricle of heart closed system
US10610279B2 (en) 2014-04-10 2020-04-07 Channel Medsystems, Inc. Apparatus and methods for regulating cryogenic treatment
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US20150297225A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US20150313633A1 (en) * 2014-05-05 2015-11-05 Rainbow Medical Ltd. Pericardial access device
US10178993B2 (en) 2014-07-11 2019-01-15 Cardio Medical Solutions, Inc. Device and method for assisting end-to-side anastomosis
CA2952640C (en) 2014-07-18 2023-04-04 Applied Medical Resources Corporation Gels having permanent tack free coatings and method of manufacture
WO2016014819A1 (en) * 2014-07-23 2016-01-28 Joseph Hutchison Modifications to access ports for minimally invasive neuro surgery
US9974599B2 (en) 2014-08-15 2018-05-22 Medtronic Ps Medical, Inc. Multipurpose electrosurgical device
ES2731049T3 (en) 2014-08-15 2019-11-13 Applied Med Resources Natural hole surgery system
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10342561B2 (en) 2014-09-12 2019-07-09 Board Of Regents Of The University Of Nebraska Quick-release end effectors and related systems and methods
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US9459442B2 (en) 2014-09-23 2016-10-04 Scott Miller Optical coupler for optical imaging visualization device
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
CN107427300B (en) 2014-09-26 2020-12-04 伊西康有限责任公司 Surgical suture buttress and buttress material
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
JP6608928B2 (en) 2014-11-11 2019-11-20 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Robotic device with miniature joint design and related systems and methods
CA2968846A1 (en) 2014-11-25 2016-06-02 Applied Medical Resources Corporation Circumferential wound retraction with support and guidance structures
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
PL410790A1 (en) * 2014-12-29 2016-07-04 Maciej Skórski Retractor for laparoscopic operations
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
JP5940190B1 (en) * 2015-03-25 2016-06-29 日機装株式会社 Surgical area securing device
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10433960B1 (en) 2015-05-07 2019-10-08 Cardioprecision Limited Method and system for transcatheter intervention
US10548467B2 (en) 2015-06-02 2020-02-04 GI Scientific, LLC Conductive optical element
US10123791B2 (en) * 2015-07-02 2018-11-13 Atlantic Health System, Inc. Lighted polyhedral retractor
US10758218B2 (en) * 2015-07-02 2020-09-01 Atlantic Health System, Inc. Lighted polyhedral retractor
CN108289595B (en) 2015-07-21 2021-03-16 图像科学有限责任公司 Endoscopic accessory with angularly adjustable exit port
CA2994823A1 (en) 2015-08-03 2017-02-09 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems and related methods
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US11389227B2 (en) 2015-08-20 2022-07-19 Medtronic Advanced Energy Llc Electrosurgical device with multivariate control
US11051875B2 (en) 2015-08-24 2021-07-06 Medtronic Advanced Energy Llc Multipurpose electrosurgical device
ES2836282T3 (en) 2015-09-15 2021-06-24 Applied Med Resources Surgical robotic access system
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
JP6953402B2 (en) 2015-10-07 2021-10-27 アプライド メディカル リソーシーズ コーポレイション Wound retractor with multi-segment outer ring
US10327812B2 (en) 2015-11-04 2019-06-25 Rainbow Medical Ltd. Pericardial access device
US10716612B2 (en) 2015-12-18 2020-07-21 Medtronic Advanced Energy Llc Electrosurgical device with multiple monopolar electrode assembly
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
GB201601858D0 (en) * 2016-02-02 2016-03-16 Univ Leeds Surgical retraction device and procedure
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
CN108882932B (en) 2016-02-09 2021-07-23 伊西康有限责任公司 Surgical instrument with asymmetric articulation configuration
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10369338B2 (en) 2016-02-23 2019-08-06 Globus Medical, Inc. Expandable tissue dilator for dilating tissue around a spinal column
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
EP3442437B1 (en) 2016-04-11 2020-11-11 Nobles Medical Technologies II, Inc. Tissue suturing device with suture spool
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
JP7176757B2 (en) 2016-05-18 2022-11-22 バーチャル インシジョン コーポレイション ROBOTIC SURGICAL DEVICES, SYSTEMS AND RELATED METHODS
WO2018013787A1 (en) * 2016-07-13 2018-01-18 Boston Scientific Scimed, Inc. Apparatus and method for maintaining patency in a vessel adjacent to nearby surgery
JP2019524371A (en) 2016-08-25 2019-09-05 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Quick release tool coupler and related systems and methods
CN114872081A (en) 2016-08-30 2022-08-09 内布拉斯加大学董事会 Robotic devices with compact joint design and additional degrees of freedom and related systems and methods
AU2017324450B2 (en) 2016-09-12 2022-09-29 Applied Medical Resources Corporation Surgical robotic access system for irregularly shaped robotic actuators and associated robotic surgical instruments
EP3544539A4 (en) 2016-11-22 2020-08-05 Board of Regents of the University of Nebraska Improved gross positioning device and related systems and methods
EP3548773A4 (en) 2016-11-29 2020-08-05 Virtual Incision Corporation User controller with user presence detection and related systems and methods
US10722319B2 (en) 2016-12-14 2020-07-28 Virtual Incision Corporation Releasable attachment device for coupling to medical devices and related systems and methods
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US20180168575A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US20180168609A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Firing assembly comprising a fuse
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
IT201700060398A1 (en) 2017-06-01 2018-12-01 Medacta Int Sa DEVICE FOR THE RETREAT OF SOFT TISSUES IN A PATIENT SUBJECT TO ARTHROSCOPIC SURGERY
US11839370B2 (en) 2017-06-19 2023-12-12 Heartstitch, Inc. Suturing devices and methods for suturing an opening in the apex of the heart
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10194975B1 (en) 2017-07-11 2019-02-05 Medtronic Advanced Energy, Llc Illuminated and isolated electrosurgical apparatus
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
EP3668415B1 (en) 2017-08-18 2023-10-25 Nobles Medical Technologies II, Inc. Apparatus for applying a knot to a suture
US11051894B2 (en) 2017-09-27 2021-07-06 Virtual Incision Corporation Robotic surgical devices with tracking camera technology and related systems and methods
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
WO2019094502A1 (en) 2017-11-07 2019-05-16 Prescient Surgical, Inc. Methods and apparatus for prevention of surgical site infection
US10667842B2 (en) 2017-11-24 2020-06-02 Rainbow Medical Ltd. Pericardial needle mechanism
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
EP3735341A4 (en) 2018-01-05 2021-10-06 Board of Regents of the University of Nebraska Single-arm robotic device with compact joint design and related systems and methods
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10932767B2 (en) 2018-12-07 2021-03-02 Covidien Lp Surgical access assembly and method of use therefor
CN114302665A (en) 2019-01-07 2022-04-08 虚拟切割有限公司 Robot-assisted surgical system and related devices and methods
US11369400B2 (en) 2019-03-20 2022-06-28 Covidien Lp Balloon dissector
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
CA3154279A1 (en) * 2019-09-11 2021-03-18 Noleus Technologies Inc. Apparatuses and methods for improving recovery from minimally invasive surgery
CN110680514A (en) * 2019-10-21 2020-01-14 凌斌 Pelvic cavity and abdominal cavity isolation protection diaphragm for laparoscope
JPWO2021090532A1 (en) * 2019-11-05 2021-05-14
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11484337B2 (en) 2020-02-06 2022-11-01 Covidien Lp Surgical access device including anchor with rachet mechanism
US11672563B2 (en) 2020-02-07 2023-06-13 Covidien Lp Surgical access device with rotatably actuated fixation mechanism
US11547441B2 (en) 2020-02-20 2023-01-10 Covidien Lp Retention anchor for surgical access devices
US11786233B2 (en) 2020-03-27 2023-10-17 Covidien Lp Retention anchor with suture tie down for surgical access devices
US11432846B2 (en) 2020-05-05 2022-09-06 Covidien Lp Surgical access device including alternating cutout fluid flow pathway for anchor inflation and deflation
US11376037B2 (en) 2020-05-08 2022-07-05 Covidien Lp Surgical access device including dual lumen cannula for anchor inflation and deflation
US11439430B2 (en) 2020-05-11 2022-09-13 Covidien Lp Surgical access device with air release mechanism
US11896263B2 (en) 2020-05-11 2024-02-13 Covidien Lp Surgical access device with fixation mechanism
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US11564708B2 (en) 2020-06-15 2023-01-31 Covidien Lp Cannula assembly including an adjustable elongate shaft assembly
CN111887910A (en) * 2020-07-13 2020-11-06 杭州山友医疗器械有限公司 Abdominal cavity dilator
US11839404B2 (en) 2020-07-28 2023-12-12 Covidien Lp Surgical access assembly having pre-filled air chamber
US20220031351A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
US11717322B2 (en) 2020-08-17 2023-08-08 Covidien Lp Flexible cannula having selective rigidity
CN112022251A (en) * 2020-09-18 2020-12-04 宁波天益医疗器械股份有限公司 Suspension device for endoscopic surgery
US11844549B2 (en) 2020-10-15 2023-12-19 Covidien Lp Surgical access device including a universal fluid flow valve
US11751906B2 (en) 2020-10-29 2023-09-12 Covidien Lp Adapter for use with surgical access device for evacuation of smoke
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11471189B2 (en) 2020-10-29 2022-10-18 Covidien Lp Surgical access device with fixation mechanism and illumination mechanism
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11583315B2 (en) 2020-11-09 2023-02-21 Covidien Lp Surgical access device including variable length cannula
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11849969B2 (en) 2020-12-04 2023-12-26 Covidien Lp Cannula with smoke evacuation housing
US11304723B1 (en) 2020-12-17 2022-04-19 Avantec Vascular Corporation Atherectomy devices that are self-driving with controlled deflection
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11944348B2 (en) 2021-04-07 2024-04-02 Covidien Lp Surgical access device including an anchor having a suture retention mechanism
US11751907B2 (en) 2021-04-13 2023-09-12 Covidien Lp Surgical access device with self-inflating balloon
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
CN113100849B (en) * 2021-05-31 2021-10-22 中南大学湘雅医院 Pneumoperitoneum-free type laparoscopic abdominal wall suspension device for general surgery department operation
WO2022269614A1 (en) * 2021-06-24 2022-12-29 Tel Hashomer Medical Research, Infrastructure And Services Ltd. Peritoneal separation apparatus
US11864761B2 (en) 2021-09-14 2024-01-09 Covidien Lp Surgical instrument with illumination mechanism
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841148A (en) * 1957-06-21 1958-07-01 Godfrey J Kadavy Viscera retainer for use in abdominal operations
US4052980A (en) * 1976-06-10 1977-10-11 Guenter A. Grams Triaxial fiberoptic soft tissue retractor
US4705040A (en) * 1985-11-18 1987-11-10 Medi-Tech, Incorporated Percutaneous fixation of hollow organs
WO1991002493A1 (en) * 1989-08-16 1991-03-07 Raychem Corporation A device for grasping or cutting an object
WO1991014392A1 (en) * 1990-03-20 1991-10-03 Philippe Mouret Instrument for performing medical or surgical operations by laparoscopy or coeliscopy

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1618261A (en) * 1927-02-22 Viscera retainer for use in abdominal operations
US1060350A (en) * 1911-12-18 1913-04-29 Robert E L Miller Intestine-protector.
US1275520A (en) * 1917-06-14 1918-08-13 William L Bell Gauze-dam surgical instrument.
US1735519A (en) * 1926-07-17 1929-11-12 Arlyn T Vance Physician's dilator
US1798124A (en) * 1929-08-15 1931-03-24 Josiah Brinkerhoff Urethral sound and axis-traction prostatic retractor
US1947649A (en) * 1931-12-05 1934-02-20 Godfrey J Kadavy Surgical instrument
US2243285A (en) * 1936-01-06 1941-05-27 Charles E Pope Operating scope
GB502331A (en) * 1937-09-16 1939-03-15 Wolf Gmbh Georg Improvements in oesophagoscopes
US2663020A (en) * 1950-12-20 1953-12-22 Cecil A Cushman Pneumatic injury pad
US3039468A (en) * 1959-01-07 1962-06-19 Joseph L Price Trocar and method of treating bloat
US3173418A (en) * 1961-01-10 1965-03-16 Ostap E Baran Double-wall endotracheal cuff
US3168092A (en) * 1961-06-15 1965-02-02 Silverman Daniel Medical probing instrument having flexible, extrudable tubing adapted to be extraverted under pressure into a body cavity
US3417745A (en) * 1963-08-23 1968-12-24 Sheldon Edward Emanuel Fiber endoscope provided with focusing means and electroluminescent means
DE1516411A1 (en) * 1966-03-04 1969-07-24 Albert Hauber Dismountable belly spatula
US3460539A (en) * 1967-03-10 1969-08-12 James E Anhalt Sr Cautery tip
US3626949A (en) * 1969-01-23 1971-12-14 Wallace B Shute Cervical dilator
US3717151A (en) * 1971-03-11 1973-02-20 R Collett Flesh penetrating apparatus
US3774596A (en) * 1971-06-29 1973-11-27 G Cook Compliable cavity speculum
US3800788A (en) * 1972-07-12 1974-04-02 N White Antral catheter for reduction of fractures
US3782370A (en) * 1972-07-12 1974-01-01 B Mcdonald Surgical retractor
US3817251A (en) * 1972-10-04 1974-06-18 H Hasson Laparoscope cannula
US3831587A (en) * 1973-02-08 1974-08-27 Mc Anally R Multipurpose vaginal and cervical device
US3882852A (en) * 1974-01-11 1975-05-13 Manfred Sinnreich Surgical dilators having insufflating means
US3863639A (en) * 1974-04-04 1975-02-04 Richard N Kleaveland Disposable visceral retainer
US3961632A (en) * 1974-12-13 1976-06-08 Moossun Mohamed H Stomach intubation and catheter placement system
US4148307A (en) * 1975-12-26 1979-04-10 Olympus Optical Company Limited Tubular medical instrument having a flexible sheath driven by a plurality of cuffs
US4083369A (en) * 1976-07-02 1978-04-11 Manfred Sinnreich Surgical instruments
US4217889A (en) * 1976-09-15 1980-08-19 Heyer-Schulte Corporation Flap development device and method of progressively increasing skin area
AU516114B2 (en) * 1977-03-29 1981-05-21 Frank Baskind Allen Apparatus for obtaining oytological specimens
US4137906A (en) * 1977-05-05 1979-02-06 Koken Co., Ltd. Catheter apparatus with occlusion and flow diverting means
US4165746A (en) * 1977-06-30 1979-08-28 Burgin Kermit H Plastic forceps
SU736949A1 (en) * 1977-07-12 1980-05-30 2-Ой Московский Ордена Ленина Государственный Институт Им. Н.И.Пирогова Device for manipulations in abdominal cavity
US4240433A (en) * 1977-07-22 1980-12-23 Bordow Richard A Fluid aspiration device and technique for reducing the risk of complications
US4183102A (en) * 1977-09-08 1980-01-15 Jacques Guiset Inflatable prosthetic device for lining a body duct
JPS6051913B2 (en) * 1977-11-04 1985-11-16 オリンパス光学工業株式会社 balloon catheter
US4291687A (en) * 1978-03-02 1981-09-29 Manfred Sinnreich Inflatable packing for surgical use having auxiliary intestinal supporting member
US4157085A (en) * 1978-03-24 1979-06-05 Dow Corning Corporation Surgically implantable tissue expanding device and the method of its use
US4198981A (en) * 1978-03-27 1980-04-22 Manfred Sinnreich Intrauterine surgical device
SU797668A1 (en) * 1978-06-13 1981-01-23 Петрозаводский Государственныйуниверситет Им. O.B.Куусинена Device for limiting surgery field on small pelvis
US4271830A (en) * 1978-07-26 1981-06-09 Moon Derryl E Chiropractic table
US4207891A (en) * 1978-10-10 1980-06-17 Population Research Incorporated Dispensing instrument with supported balloon
US4263900A (en) * 1979-04-20 1981-04-28 Codman And Shurtleff, Inc. Pressure-responsive surgical tool assembly
US4271839A (en) * 1979-07-25 1981-06-09 Thomas J. Fogarty Dilation catheter method and apparatus
US4254762A (en) * 1979-10-23 1981-03-10 Inbae Yoon Safety endoscope system
DE2948434A1 (en) * 1979-12-01 1981-06-11 Hoechst Ag, 6000 Frankfurt 1-PIPERIDINSULFONYL UREA AND METHOD FOR THE PRODUCTION THEREOF
US4357940A (en) * 1979-12-13 1982-11-09 Detroit Neurosurgical Foundation Tissue pneumatic separator structure
US4709697A (en) * 1980-12-09 1987-12-01 Joseph J. Berke Tissue pneumatic separator structure and method
DE3047131A1 (en) * 1979-12-13 1981-08-27 A.I.R. Foundation, 48104 Ann Arbor, Mich. DEVICE FOR THE PNEUMATIC SEPARATION OF FABRIC PARTS AND METHOD FOR THEIR OPERATION
GB2071502A (en) * 1980-03-14 1981-09-23 Nat Res Dev Surgical retractors
US4318410A (en) * 1980-08-07 1982-03-09 Thomas J. Fogarty Double lumen dilatation catheter
US4449519A (en) * 1980-09-24 1984-05-22 Transidyne General Corporation Endoscope
JPS57176079A (en) * 1981-04-21 1982-10-29 Iwatsu Electric Co Ltd Forming device for latent image
US4430076A (en) * 1982-02-04 1984-02-07 Harris James H Combined uterine injector and manipulative device
US4535773A (en) * 1982-03-26 1985-08-20 Inbae Yoon Safety puncturing instrument and method
US4459978A (en) * 1982-05-17 1984-07-17 Endoscopy Surgical Systems, Inc. Medical retractor device
US4447227A (en) * 1982-06-09 1984-05-08 Endoscopy Surgical Systems, Inc. Multi-purpose medical devices
US4493711A (en) * 1982-06-25 1985-01-15 Thomas J. Fogarty Tubular extrusion catheter
DE3323365C2 (en) * 1982-09-04 1994-10-20 Gsf Forschungszentrum Umwelt Method and device for illuminating cavities
DE3370132D1 (en) * 1982-12-13 1987-04-16 Sumitomo Electric Industries Endoscope
SU1210800A1 (en) * 1983-01-06 1986-02-15 Egorov Dmitrij F Elevator
US4693243A (en) * 1983-01-14 1987-09-15 Buras Sharon Y Conduit system for directly administering topical anaesthesia to blocked laryngeal-tracheal areas
US4465072A (en) * 1983-02-22 1984-08-14 Taheri Syde A Needle catheter
JPS59172621A (en) * 1983-03-22 1984-09-29 Sumitomo Electric Ind Ltd Fiberscope
US4919152A (en) * 1987-03-02 1990-04-24 Ralph Ger Method of closing the opening of a hernial sac
US4944443A (en) * 1988-04-22 1990-07-31 Innovative Surgical Devices, Inc. Surgical suturing instrument and method
US4601710B1 (en) * 1983-08-24 1998-05-05 United States Surgical Corp Trocar assembly
US4826485A (en) * 1984-07-11 1989-05-02 Concept Polymer Technologies, Inc. Device for guiding tubings
US4574780A (en) * 1984-11-13 1986-03-11 Manders Ernest K Tissue expander and method
US4615704A (en) * 1984-11-26 1986-10-07 Dow Corning Corporation Shape retention tissue expander and method of using
DE3443337A1 (en) * 1984-11-28 1986-05-28 Richard Wolf Gmbh, 7134 Knittlingen INSTRUMENT FOR THE EXAMINATION AND TREATMENT OF BODY CHANNELS
US4666447A (en) * 1985-01-30 1987-05-19 Mentor Corporation Skin expansion device and method of making the same
US4763653A (en) * 1985-02-19 1988-08-16 Rockey Arthur G Medical sleeve
SU1367947A1 (en) * 1985-03-21 1988-01-23 Петрозаводский государственный университет им.О.В.Куусинена Arrangement for restricting the operational field
US4608965A (en) * 1985-03-27 1986-09-02 Anspach Jr William E Endoscope retainer and tissue retracting device
US4651717A (en) * 1985-04-04 1987-03-24 Dow Corning Corporation Multiple envelope tissue expander device
DE8516286U1 (en) * 1985-06-04 1986-10-02 F.M.N. Schuster GmbH & Co KG, 5030 Hürth Device for feeding threads, yarns and the like to a winding device
US4598699A (en) * 1985-06-10 1986-07-08 Garren Lloyd R Endoscopic instrument for removing stomach insert
US4601713A (en) * 1985-06-11 1986-07-22 Genus Catheter Technologies, Inc. Variable diameter catheter
US4622955A (en) * 1985-09-05 1986-11-18 Mehdi Fakhrai Surgical retractor for dissection of internal mammary artery
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4863440A (en) * 1985-12-23 1989-09-05 Thomas J. Fogarty Pressurized manual advancement dilatation catheter
US4803029A (en) * 1986-01-28 1989-02-07 Pmt Corporation Process for manufacturing an expandable member
US4654030A (en) * 1986-02-24 1987-03-31 Endotherapeutics Trocar
US4719918A (en) * 1986-05-08 1988-01-19 Cox-Uphoff Corporation Subperiosteal tissue expander
EP0246086A3 (en) * 1986-05-14 1988-08-10 Aldo Sergio Kleiman A procedure for carrying out a surgical operation and a retracting laparoscope for separating organs in surgery
US4721507A (en) * 1986-06-05 1988-01-26 Thomas J. Fogarty Shear force gauge and method and apparatus for limiting embolectomy shear force
US4744363A (en) * 1986-07-07 1988-05-17 Hasson Harrith M Intra-abdominal organ stabilizer, retractor and tissue manipulator
US4775371A (en) * 1986-09-02 1988-10-04 Advanced Cardiovascular Systems, Inc. Stiffened dilatation catheter and method of manufacture
US5109875A (en) * 1986-10-20 1992-05-05 City Of Hope Ring tissue expanders and their method of use
US5007898A (en) * 1988-06-02 1991-04-16 Advanced Surgical Intervention, Inc. Balloon dilatation catheter
US4762130A (en) * 1987-01-15 1988-08-09 Thomas J. Fogarty Catheter with corkscrew-like balloon
US4976710A (en) * 1987-01-28 1990-12-11 Mackin Robert A Working well balloon method
US4765331A (en) * 1987-02-10 1988-08-23 Circon Corporation Electrosurgical device with treatment arc of less than 360 degrees
US4779611A (en) * 1987-02-24 1988-10-25 Grooters Ronald K Disposable surgical scope guide
US4878495A (en) * 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4800901A (en) * 1987-09-09 1989-01-31 Lior Rosenberg Balloon-type Tissue expansion device
SU1577769A1 (en) * 1988-05-26 1990-07-15 Ростовский научно-исследовательский онкологический институт Surgical instrument for tumor fixation
US5514091A (en) 1988-07-22 1996-05-07 Yoon; Inbae Expandable multifunctional manipulating instruments for various medical procedures
US4877016A (en) * 1988-07-29 1989-10-31 Kantor Edward A Video endoscopic microscope
US5159925A (en) * 1988-09-09 1992-11-03 Gynelab, Inc. Cauterizing apparatus and method for laparoscopic cholecystostomy, gallbladder ablation and treatment of benign prostate hypertrophy
US4949718B1 (en) * 1988-09-09 1998-11-10 Gynelab Products Intrauterine cauterizing apparatus
US4966583A (en) * 1989-02-03 1990-10-30 Elie Debbas Apparatus for locating a breast mass
US5183463A (en) * 1989-02-03 1993-02-02 Elie Debbas Apparatus for locating a breast mass
US5002557A (en) * 1989-04-06 1991-03-26 Hasson Harrith M Laparoscopic cannula
US5176697A (en) * 1989-04-06 1993-01-05 Hasson Harrith M Laparoscopic cannula
US5083576A (en) * 1989-04-19 1992-01-28 Inamed Development Company Elongation of linear and tubular tissue
DE3921886A1 (en) * 1989-07-04 1991-01-17 Wolfgang Mohr DEVICE FOR CUTTING STACKED, SHEET-SHAPED GOODS
FR2649324B1 (en) * 1989-07-06 1991-10-31 Dow Corning Sa FLEXIBLE ARTICLE FOR SURGICAL TREATMENT, ASSEMBLY COMPRISING SAME AND METHOD OF USING SAME
US5100426A (en) * 1989-07-26 1992-03-31 Fts Engineering, Inc. Catheter for performing an atherectomy procedure
JPH0649034B2 (en) * 1989-08-04 1994-06-29 株式会社日立メディコ Image reconstruction method in magnetic resonance imaging apparatus
US4984564A (en) * 1989-09-27 1991-01-15 Frank Yuen Surgical retractor device
US5122122A (en) * 1989-11-22 1992-06-16 Dexide, Incorporated Locking trocar sleeve
US5049132A (en) * 1990-01-08 1991-09-17 Cordis Corporation Balloon catheter for delivering therapeutic agents
US5197971A (en) * 1990-03-02 1993-03-30 Bonutti Peter M Arthroscopic retractor and method of using the same
US5331975A (en) * 1990-03-02 1994-07-26 Bonutti Peter M Fluid operated retractors
US5163949A (en) * 1990-03-02 1992-11-17 Bonutti Peter M Fluid operated retractors
IL93842A (en) 1990-03-22 1995-10-31 Argomed Ltd Apparatus for localized thermal treatment of mammals
US5158548A (en) * 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5103804A (en) * 1990-07-03 1992-04-14 Boston Scientific Corporation Expandable tip hemostatic probes and the like
US5201752A (en) * 1990-09-27 1993-04-13 Pod, Inc. Cholecystectomy dissector instrument
US5188596A (en) * 1990-09-27 1993-02-23 Mentor Corporation Transparent prostate dilation balloon and scope
US5141515A (en) * 1990-10-11 1992-08-25 Eberbach Mark A Apparatus and methods for repairing hernias
US5116357A (en) * 1990-10-11 1992-05-26 Eberbach Mark A Hernia plug and introducer apparatus
FR2668695B1 (en) 1990-11-06 1995-09-29 Ethnor ENDOSCOPIC SURGICAL INSTRUMENT FOR MOVING TISSUES OR ORGANS.
US5159921A (en) * 1990-11-27 1992-11-03 Hoover Rocklin L Surgical retractor
US5082005A (en) * 1990-12-18 1992-01-21 New England Deaconess Hospital Surgical access device
US5195505A (en) * 1990-12-27 1993-03-23 United States Surgical Corporation Surgical retractor
US5062847A (en) * 1990-12-31 1991-11-05 Barnes William E Laparoscopic retractor
US5197948A (en) * 1991-01-03 1993-03-30 Kamran Ghodsian Intra-abdominal organ manipulator, irrigator and aspirator
US5176128A (en) * 1991-01-24 1993-01-05 Andrese Craig A Organ retractor
US5359995A (en) 1991-02-04 1994-11-01 Sewell Jr Frank Method of using an inflatable laparoscopic retractor
US5165387A (en) * 1991-02-04 1992-11-24 Transidyne General Corporation Endoscope with disposable light
US5379759A (en) 1991-02-04 1995-01-10 Sewell, Jr.; Frank K. Retractor for endoscopic surgery
US5188630A (en) * 1991-03-25 1993-02-23 Christoudias George C Christoudias endospongestick probe
US5178133A (en) * 1991-03-26 1993-01-12 Pena Louis T Laparoscopic retractor and sheath
US5183468A (en) * 1991-04-02 1993-02-02 Mclees Donald J Snap ring needle guard
DE9106553U1 (en) * 1991-04-10 1991-08-08 Wisap Gesellschaft Fuer Wissenschaftlichen Apparatebau Mbh, 8029 Sauerlach, De
DE9104383U1 (en) * 1991-04-10 1991-06-06 Wisap Gesellschaft Fuer Wissenschaftlichen Apparatebau Mbh, 8029 Sauerlach, De
US5183464A (en) * 1991-05-17 1993-02-02 Interventional Thermodynamics, Inc. Radially expandable dilator
US5195959A (en) * 1991-05-31 1993-03-23 Paul C. Smith Electrosurgical device with suction and irrigation
US5183033A (en) * 1991-07-15 1993-02-02 Wilk Peter J Surgical instrument assembly and apparatus and surgical method
US5242240A (en) 1991-10-17 1993-09-07 Minnesota Scientific, Inc. Clamping device for a surgical retractor
US5308327A (en) 1991-11-25 1994-05-03 Advanced Surgical Inc. Self-deployed inflatable retractor
US5176692A (en) * 1991-12-09 1993-01-05 Wilk Peter J Method and surgical instrument for repairing hernia
FR2688695B1 (en) * 1992-03-20 1994-06-17 Bogdanoff Joseph MEDICAL MATTRESS.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841148A (en) * 1957-06-21 1958-07-01 Godfrey J Kadavy Viscera retainer for use in abdominal operations
US4052980A (en) * 1976-06-10 1977-10-11 Guenter A. Grams Triaxial fiberoptic soft tissue retractor
US4705040A (en) * 1985-11-18 1987-11-10 Medi-Tech, Incorporated Percutaneous fixation of hollow organs
WO1991002493A1 (en) * 1989-08-16 1991-03-07 Raychem Corporation A device for grasping or cutting an object
WO1991014392A1 (en) * 1990-03-20 1991-10-03 Philippe Mouret Instrument for performing medical or surgical operations by laparoscopy or coeliscopy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Surgical Laparoscopy and Endoscopy, vol. 1, no. 2, 27 June 1991, Raven Press Ltd, (New York, US), M.M. GAZAYERLI: "The gazayerli endoscopic retractor Model 1", pages 98-100, see whole document (cited in the application) *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407427A (en) * 1992-06-16 1995-04-18 Loma Linda University Medical Center Trocar facilitator for endoscopic surgery
US5443484A (en) * 1992-06-16 1995-08-22 Loma Linda University Medical Center Trocar and method for endoscopic surgery
WO1993025148A1 (en) * 1992-06-16 1993-12-23 Loma Linda University Medical Center Trocar facilitator for endoscopic surgery
US5577993A (en) * 1992-06-16 1996-11-26 Loma Linda University Medical Center Trocar facilitator for endoscopic surgery and method of using the same
US5755661A (en) * 1993-06-17 1998-05-26 Schwartzman; Alexander Planar abdominal wall retractor for laparoscopic surgery
US5643177A (en) * 1993-08-18 1997-07-01 Ethicon, Inc. Method for using an abdominal lift device
US5398671A (en) * 1993-08-18 1995-03-21 Ethicon, Inc. Abdominal lift device
US5415159A (en) * 1993-08-18 1995-05-16 Ethicon, Inc. Support structure for abdominal lift
EP0720446A1 (en) * 1993-09-28 1996-07-10 Origin Medsystems, Inc. Abdominal wall retraction system
EP0720446A4 (en) * 1993-09-28 1998-05-06 Origin Medsystems Inc Abdominal wall retraction system
US5545123A (en) * 1994-03-15 1996-08-13 Ethicon, Inc. Surgical lift method and apparatus
FR2722084A1 (en) * 1994-07-07 1996-01-12 Michaud Jean Reymond Surgical instrument for lifting and supporting abdominal wall
US5547458A (en) * 1994-07-11 1996-08-20 Ethicon, Inc. T-shaped abdominal wall lift with telescoping member
EP1647229A2 (en) * 1995-06-07 2006-04-19 Heartport, Inc. Retraction device for port access multivessel coronary artery bypass surgery
EP1647229A3 (en) * 1995-06-07 2006-04-26 Heartport, Inc. Retraction device for port access multivessel coronary artery bypass surgery
WO1997021384A1 (en) * 1995-12-11 1997-06-19 Enrique Gerardo Segovia Cortes Laparo-lifter for simultaneously lifting the four quadrants of an abdominal cavity for laparoscopic surgery
US5741274A (en) * 1995-12-22 1998-04-21 Cardio Vascular Concepts, Inc. Method and apparatus for laparoscopically reinforcing vascular stent-grafts
WO1997029889A1 (en) * 1996-02-19 1997-08-21 Bergstroem Bo Uterine manipulator
US8147453B2 (en) 2006-03-13 2012-04-03 Applied Medical Resources Corporation Balloon trocar
US8939946B2 (en) 2006-03-13 2015-01-27 Applied Medical Resources Corporation Balloon trocar
US9259238B2 (en) 2006-03-13 2016-02-16 Applied Medical Resources Corporation Balloon trocar
US9474518B2 (en) 2007-10-05 2016-10-25 Covidien Lp Expanding seal anchor for single incision surgery
US8888692B1 (en) 2011-08-26 2014-11-18 Applied Medical Resources Corporation Trocar cannula assembly and method of manufacture
US9655607B2 (en) 2011-08-26 2017-05-23 Applied Medical Resources Corporation Trocar cannula assembly and method of manufacture
US10357234B2 (en) 2011-08-26 2019-07-23 Applied Medical Resources Corporation Trocar cannula assembly and method of manufacture
US11058407B2 (en) 2011-08-26 2021-07-13 Applied Medical Resources Corporation Trocar cannula assembly and method of manufacture
US9522265B2 (en) 2013-03-15 2016-12-20 Applied Medical Resources Corporation Trocar cannula assembly with low profile insertion configuration and method of manufacture
US10420584B2 (en) 2013-03-15 2019-09-24 Applied Medical Resources Corporation Trocar cannula assembly with low profile insertion configuration and method of manufacture
US11382659B2 (en) 2013-03-15 2022-07-12 Applied Medical Resources Corporation Trocar cannula assembly with low profile insertion configuration and method of manufacture

Also Published As

Publication number Publication date
EP0804901A2 (en) 1997-11-05
ES2210215T3 (en) 2004-07-01
GR3021920T3 (en) 1997-03-31
DE69224382T2 (en) 1998-06-04
US5634883A (en) 1997-06-03
US5738629A (en) 1998-04-14
DE69224382D1 (en) 1998-03-12
CA2109795A1 (en) 1992-12-10
DE69232998T2 (en) 2003-11-13
ES2194150T3 (en) 2003-11-16
EP1287786B1 (en) 2003-12-03
ATE162940T1 (en) 1998-02-15
CA2110152A1 (en) 1992-12-10
GR3026755T3 (en) 1998-07-31
US5309896A (en) 1994-05-10
CA2109795C (en) 2003-02-11
ES2093835T3 (en) 1997-01-01
MX9202597A (en) 1994-05-31
ES2113430T3 (en) 1998-05-01
AU2158792A (en) 1993-01-08
WO1992021291A2 (en) 1992-12-10
DK0586516T3 (en) 1996-10-07
EP0804901B1 (en) 2003-04-09
WO1992021298A1 (en) 1992-12-10
AU1999292A (en) 1993-01-08
AU666855B2 (en) 1996-02-29
US5520609A (en) 1996-05-28
US5823945A (en) 1998-10-20
JP3421032B2 (en) 2003-06-30
JPH06508050A (en) 1994-09-14
ATE255363T1 (en) 2003-12-15
AU5457396A (en) 1996-08-08
DE69232998D1 (en) 2003-05-15
AU2157492A (en) 1993-01-08
ATE236576T1 (en) 2003-04-15
JPH06508049A (en) 1994-09-14
DE69213734D1 (en) 1996-10-17
JP2761578B2 (en) 1998-06-04
EP1287786A1 (en) 2003-03-05
DE69233267D1 (en) 2004-01-15
EP0586516B1 (en) 1996-09-11
EP0804901A3 (en) 1998-03-04
US5370134A (en) 1994-12-06
EP0586580A1 (en) 1994-03-16
CA2109937A1 (en) 1992-12-10
DK0586580T3 (en) 1998-09-23
EP0586580B1 (en) 1998-02-04
AU696547B2 (en) 1998-09-10
ATE142453T1 (en) 1996-09-15
US5743850A (en) 1998-04-28
DE69233267T2 (en) 2004-05-27
CA2109937C (en) 1999-08-10
WO1992021291A3 (en) 1993-01-21
US5643178A (en) 1997-07-01
EP0586516A1 (en) 1994-03-16
DE69213734T2 (en) 1997-01-23

Similar Documents

Publication Publication Date Title
US5514075A (en) Properitoneal mechanical retraction apparatus and methods of using
EP0586516B1 (en) Properitoneal mechanical retraction apparatus
US5505689A (en) Propertioneal mechanical retraction apparatus
EP2308384B1 (en) Handle assembly for endoscopic suturing device
US6964675B2 (en) Tissue opening locator and everter and method
US5293863A (en) Bladed endoscopic retractor
US5769865A (en) Instrument and method for transection of a ligament
CA2334226C (en) Tissue opening locator
US5910155A (en) Vascular wound closure system
EP0955900B1 (en) Vascular wound closure system
US7210485B2 (en) Method for spinal surgery
EP3431026B1 (en) Insufflating optical surgical instrument
US5624381A (en) Surgical instrument and method for retraction of an anatomic structure defining an interior lumen
US20100056862A1 (en) Access needle for natural orifice translumenal endoscopic surgery
US6454762B1 (en) Instrument for applying light, especially laser light, to the human or animal body
AU2003266664B2 (en) Tissue Opening Locator and Method
CA2716444A1 (en) Handle assembly for endoscopic suturing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2109795

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992912086

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992912086

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992912086

Country of ref document: EP