WO1992020853A2 - Product and process improvement of coated polymeric monofilament - Google Patents

Product and process improvement of coated polymeric monofilament Download PDF

Info

Publication number
WO1992020853A2
WO1992020853A2 PCT/US1992/004186 US9204186W WO9220853A2 WO 1992020853 A2 WO1992020853 A2 WO 1992020853A2 US 9204186 W US9204186 W US 9204186W WO 9220853 A2 WO9220853 A2 WO 9220853A2
Authority
WO
WIPO (PCT)
Prior art keywords
monofilament
coated
filament structure
amide
polymeric
Prior art date
Application number
PCT/US1992/004186
Other languages
French (fr)
Other versions
WO1992020853A3 (en
Inventor
Daniel Shawn Leydon
Robert Moore Marshall
Original Assignee
Allied-Signal, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied-Signal, Inc. filed Critical Allied-Signal, Inc.
Publication of WO1992020853A2 publication Critical patent/WO1992020853A2/en
Publication of WO1992020853A3 publication Critical patent/WO1992020853A3/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/416Flexible line cutters
    • A01D34/4168Constructional details of the flexible lines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M7/00Treating fibres, threads, yarns, fabrics, or fibrous goods made of other substances with subsequent freeing of the treated goods from the treating medium, e.g. swelling, e.g. polyolefins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • This invention relates to lubricative coating of polymeric monofilaments. More particularly, the present invention involves applying a polymeric coating finish that provides excellent lubricative characteristics to a polymeric monofilament.
  • eedtrimmers of the line cutting type use flailing movement of flexible filament, which usually is made of monofilamentary polymeric material, to cut the grass or weeds.
  • flexible filament which usually is made of monofilamentary polymeric material, to cut the grass or weeds.
  • Polya ides, particularly nylon 6, nylon 6,6 and copolymers thereof, are the most typically used polymeric materials for the monofilament in such line applications.
  • Such a conventional weedtrim er has a rotable driver head from which one or more of the flexible cutting filaments extends out.
  • the rotable head contains a storage spool and metering device which feed from the spool a length of filament line as the filament line abrades away or breaks away in use.
  • U.S. Patent 4,316,325 and U.S. Patent 4,651,422 describe such weedtrimmers and their parts.
  • a conventional and most widely used mechanism to replenish the cutting filament is known as the "bump head" in the art. The mechanism allows an incremental length of the cutting filament to be replenished when tapped sharply on the ground.
  • the centrifugal force of the flailing filament tends to tighten and knot the reserve filament on the spool.
  • the filament on the spool is subject to high heat and constant vibration resulting from the high speed rotation and the constant impact upon the cutting filament outside the spool.
  • the heat and vibration on the spool create an environment hot and severe enough to subject the filament on the spool to be vibrationally welded together. Such knotting and welding of the filament impede the release of the reserve filament from the spool.
  • overfinishing polymeric fiber to obtain lubricity is well known in the textile industry.
  • the fiber overfinishing technology known in the art as the spin finish or overspray
  • the spin finish lubricants which are designed to be scourable to avoid interference with dyeing and other subsequent textile processing steps, are not suitable as polymeric monofilament coating materials since they do not form permanent coatings.
  • a comprehensive list and characteristics of different spin finish lubricants are described in the article by Redston et al, Textile Research Journal, Vol. 43, 325-335, 1973.
  • a coated, flexible filament structure comprising a polymeric monofilament and a coating of an amide melamine wax.
  • the amide melamine wax may be formed by reacting melamine with a C 6 to C 36 , more preferably C-] 2 to C 22 # fatty acid to form a hydrophobic amide. The resulting amide is reacted with formaldehyde, and then the polymer is emulsified.
  • the wax is preferably applied in an amount of about 0.05 to about 1 weight percent, more preferably 0.2 to 0.8 weight percent, of the coated monofilament.
  • a method of producing such monofilament comprising the steps of passing the monofilament in an aqueous solution of the amide melamine wax and air drying the coated monofilament.
  • the resulting coated monofilament exhibits excellent lubricative and wear characteristics and can be reprocessed without adversely affecting the physical properties of the flexible polymeric monofilament.
  • a flexible polymeric monofilament coated with an amide melamine wax provides excellent lubricity and reprocessibility and extends the useful life of the monofilament.
  • any of the conventional monofilament-forming polymers including but not limited to polyamides, polyesters and polyolefins, can be employed.
  • polyamides there may be employed homopolymers of polycaprolactam (nylon 6) , polyhexamethylene adipamide (nylon 6,6), polypyrrolidone (nylon 4), polycapryllactam (nylon 8) , polynonanolactam (nylon 9) , polyundecanolactam (nylon 11) , polydodecanolactam (nylon 12) , polyhexamethylene azelaiamide (nylon 6,9) , polyhexamethylene sebacamide (nylon 6,10), a polyamide of hexamethylenediamine and n-dodecanedioic acid (nylon 6,12) , a polyamide of dodecamethylenediamine and n-dodecanedioic acid (nylon 12,12),
  • polyesters there may be employed poly(ethylene terephthalate) , poly(butylene terephthalate) , as well as others, and copolymers or mixtures thereof.
  • polyolefins there may be employed high density polyethylene, low density polyethylene, polypropylene, as well as others, and copolymers or mixtures thereof. Homopolymers of nylon 6 and nylon 6,6 and copolymers thereof are the preferred polymers for the monofilament.
  • the amide melamine wax is preferably formed by first reacting melamine with a C 6 to C 36 , preferably C- 2 to C 22 , fatty acid to form a hydrophobic amide. The amide is then reacted with formaldehyde, and the resulting resin is emulsified to form an aqueous coating emulsion of amide melamine wax.
  • amide melamine wax which includes Repel-0-TexTM 100, available from Lyndal Chemical of Dalton, GA, may be employed in this invention. Such wax is also described in the aforementioned U.S. Patent 4,800,117 to Marshall et al.
  • the amide melamine wax emulsion can be added to the last quench bath of the relaxation process in a concentration which will deposit an effective amount of the wax solids on the filament when the monofilament is passed through the quench bath.
  • an amount of about 0.05 to about 1 weight percent of the wax solids, based on the weight of the coated monofilament, is deposited on the filament. More preferably, an amount of about 0.2% to about 0.8% is applied.
  • the monofilament is air dried to provide sufficient cross-linking of the coated melamine wax to form a permanent coating.
  • the resulting coated monofilament can be reprocessed along with the virgin polymer resin of the filament to produce the monofilament without adversely affecting the physical properties.
  • substandard filaments i.e., irregular shaped, over- or undersized filaments
  • Example 1 samples of coated (Sample 1) and uncoated (Comparative Sample 1) nylon 6 monofilaments were tested for lubricity using the Twisted Strand Method of ASTM D3412-86 Yarn-to-Yarn Friction analysis.
  • the Twisted Strand Method measures the amount of increased tension to a pretensioned monofilament when the monofilament passes across itself through a double twist at a constant speed. The results were as follows:
  • Uncoated Monofilament 1700 - 1775 (Comparative Sample 1) As the above test results show, the amide melamine wax coated filaments exhibit substantially increased lubricity compared to that of uncoated filaments.
  • Example 2 The monofilament coated with an amide melamine wax as specified in Example 1 (Sample 1) was tested for the tensile strength and elongation properties using a tensile test machine in accordance with the protocols of ASTM 2256- 88 "Standard Test Method for Tensile Properties of Yarns by the Single-Strand Method". The results are shown in Table 2.
  • Example 1 The coated monofilament of Example 1 was pelletized to approximately the size of the virgin resin of Example 1 to form a reprocessed feedstock. Monofilament was extruded from a mechanically mixed resin composition consisting of 5 parts of the reprocessed feedstock and 95 parts of the virgin resin of Example 1. The coating procedure of Example 1 was repeated, and the resulting monofilament was tested for tensile strength and elongation properties. The results are shown in Table 2.
  • Example 1 The monofilament coated with an amide melamine wax as specified in Example 1 (Sample 1) was compared with a commercial weedtrimmer line (Control Cl) of the same physical specifications coated with triethanolamine, which weedtrimmer line is available from Poulan/Weed Eater of Shreveport, LA, for their wear characteristics, including the average feet per hour usage and the number of line breakages.
  • Control Cl a commercial weedtrimmer line
  • a mixed growth of Bermuda and Sage grass of 6- 12 inches (15 - 30 cm) in height was cut with a weedtrimmer manufactured by Poulan/Weed Eater, model # Husky 32L, using four 40 feet (12 m) line spools of each of the two weedtrimmer monofilaments. The results are shown in Table 3.
  • a flexible polymeric monofilament coated with an amide melamine wax provides excellent lubricity and reprocessibility without significant sacrifice in the physical properties.
  • such flexible polymeric monofilament can be produced, without modifying the current monofilament manufacturing process used in the monofilament industry, by adding an amide melamine wax emulsion to the last water quench bath of the manufacturing process.
  • the melamine wax coated monofilament of the present invention substantially improves wear and line breakage resistances, thereby extending the useful life of the monofilament.
  • the coated monofilament of the present invention is particularly suitable for the weedtrimmer monofilament line applications.

Abstract

A coated monofilament comprising a polymeric monofilament and a coating of an amide melamine wax. The coated monofilament exhibits excellent lubricative and wear characteristics and can be reprocessed without adversely affecting the physical properties of the polymeric monofilament. A process for producing the said coated monofilament is also disclosed.

Description

Product and Process Improvement of Coated Polymeric Monofilament
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to lubricative coating of polymeric monofilaments. More particularly, the present invention involves applying a polymeric coating finish that provides excellent lubricative characteristics to a polymeric monofilament.
2. Description of the Prior Art eedtrimmers of the line cutting type use flailing movement of flexible filament, which usually is made of monofilamentary polymeric material, to cut the grass or weeds. Polya ides, particularly nylon 6, nylon 6,6 and copolymers thereof, are the most typically used polymeric materials for the monofilament in such line applications.
Such a conventional weedtrim er has a rotable driver head from which one or more of the flexible cutting filaments extends out. The rotable head contains a storage spool and metering device which feed from the spool a length of filament line as the filament line abrades away or breaks away in use. U.S. Patent 4,316,325 and U.S. Patent 4,651,422 describe such weedtrimmers and their parts. A conventional and most widely used mechanism to replenish the cutting filament is known as the "bump head" in the art. The mechanism allows an incremental length of the cutting filament to be replenished when tapped sharply on the ground. However, when the driver head rotates at a high speed, the centrifugal force of the flailing filament tends to tighten and knot the reserve filament on the spool. Furthermore, the filament on the spool is subject to high heat and constant vibration resulting from the high speed rotation and the constant impact upon the cutting filament outside the spool. Frequently, the heat and vibration on the spool create an environment hot and severe enough to subject the filament on the spool to be vibrationally welded together. Such knotting and welding of the filament impede the release of the reserve filament from the spool.
It is known in the weedtrimmer industry that lubricating the filament can alleviate the filament knotting and welding problems. However, utilizing a conventional lubricant may not be economically desirable. The application of conventional lubricants has been known to adversely affect the physical integrity of the filament polymer or require additional post-extrusion treatment processes. Also, it is economical and a common practice in the industry to recycle and reprocess substandard filaments since the filament manufacturing process produces amounts of substandard quality filaments that does not meet desired dimensional specifications. Consequently, it is desirable to have a coating material that will not only provide desired lubricity but will also not adversely affect the physical properties of the filament, especially when reprocessed. It is also desirable to have a lubricative coating process that does not require substantial modification of the current filament extrusion process.
There are three basic steps in the process of manufacturing the monofilament: extrusion, orientation, and relaxation. Polymer resin pellets are extruded as continuous strands of monofilament with an extruder; the resulting filaments are stretched longitudinally to orient the filament polymer in order to increase the strength of the filament; subsequently, the oriented filaments are relaxed to relieve the strain created from the orientation process. Each manufacturing step is preceded by heating and followed by cooling. Usually, heating is accomplished by passing polymeric resins or extruded strands, depending on the manufacturing step, through at least one heating oven, and cooling is accomplished by passing the strands through at least one water quench bath.
It is known in the weedtrimmer industry to employ water soluble organic and inorganic salts, such as triethanolamine, as lubricative coating materials for the weedtrimmer cutting filament. The addition of triethanolamine to the last quench bath that follows the relaxation process apparently provides satisfactory lubricity without requiring any modification of the manufacturing process. However, the filament coated with triethanolamine cannot be reprocessed since the strongly alkaline triethanolamine coating adversely interacts with the polymer of the filament during reprocessing (i.e., remelting) . The adverse effect of triethanolamine creates bubbles and voids in the resulting monofilament, rendering the filament unsuitably frail.
The practice of overfinishing polymeric fiber to obtain lubricity is well known in the textile industry. However, the fiber overfinishing technology, known in the art as the spin finish or overspray, is not useful in coating the weedtrimmer cutting filaments. The spin finish lubricants, which are designed to be scourable to avoid interference with dyeing and other subsequent textile processing steps, are not suitable as polymeric monofilament coating materials since they do not form permanent coatings. A comprehensive list and characteristics of different spin finish lubricants are described in the article by Redston et al, Textile Research Journal, Vol. 43, 325-335, 1973.
The textile industry utilizes other types of finishes that are more permanent in nature although they may not be finishes to achieve lubricity. Such permanent finishes are applied to fabrics at the final stages of manufacturing in order to improve abrasion resistance, crease resistance, water repellency, and the like. In U.S. Patent 2,426,770, Grim discloses a permanent water repellent and crease resistant finish that requires a heat polymerizing process. In U.S. Patent 4,800,117 to Marshall (Marshall is one of the co-inventors herein) , there is disclosed an abrasion resistant finish for multifilament yarns in which an melamine wax is used as one of the components of the finishing compound. The multifilament yarn finish taught in their patent also requires an additional heat polymerizing step after the finishing compound is applied to multifilament yarns.
It would be desirable to provide a coating material for monofilaments which exhibits the necessary lubricity, does not interfere in the reprocessibility of the monofilament, and does not require additional post-coating processes. It would also be desirable to provide a process for producing such monofilament, especially for use in weedtrimmers.
SUMMARY OF TEE INVENTION
In accordance with this invention, there is provided a coated, flexible filament structure comprising a polymeric monofilament and a coating of an amide melamine wax. The amide melamine wax may be formed by reacting melamine with a C6 to C36, more preferably C-]2 to C22# fatty acid to form a hydrophobic amide. The resulting amide is reacted with formaldehyde, and then the polymer is emulsified. The wax is preferably applied in an amount of about 0.05 to about 1 weight percent, more preferably 0.2 to 0.8 weight percent, of the coated monofilament.
Also in accordance with this invention, there is provided a method of producing such monofilament comprising the steps of passing the monofilament in an aqueous solution of the amide melamine wax and air drying the coated monofilament. Further aspects of the invention will become more apparent from the detailed description following.
The resulting coated monofilament exhibits excellent lubricative and wear characteristics and can be reprocessed without adversely affecting the physical properties of the flexible polymeric monofilament.
DETAILED DESCRIPTION OF THE INVENTION
It has unexpectedly been found that a flexible polymeric monofilament coated with an amide melamine wax provides excellent lubricity and reprocessibility and extends the useful life of the monofilament.
As the monofilament, any of the conventional monofilament-forming polymers, including but not limited to polyamides, polyesters and polyolefins, can be employed. Among the polyamides, there may be employed homopolymers of polycaprolactam (nylon 6) , polyhexamethylene adipamide (nylon 6,6), polypyrrolidone (nylon 4), polycapryllactam (nylon 8) , polynonanolactam (nylon 9) , polyundecanolactam (nylon 11) , polydodecanolactam (nylon 12) , polyhexamethylene azelaiamide (nylon 6,9) , polyhexamethylene sebacamide (nylon 6,10), a polyamide of hexamethylenediamine and n-dodecanedioic acid (nylon 6,12) , a polyamide of dodecamethylenediamine and n-dodecanedioic acid (nylon 12,12), and the like, as well as copolymers or mixtures thereof, such as nylon 6,6/6 copolymer. Among the polyesters, there may be employed poly(ethylene terephthalate) , poly(butylene terephthalate) , as well as others, and copolymers or mixtures thereof. Among the polyolefins, there may be employed high density polyethylene, low density polyethylene, polypropylene, as well as others, and copolymers or mixtures thereof. Homopolymers of nylon 6 and nylon 6,6 and copolymers thereof are the preferred polymers for the monofilament.
The amide melamine wax is preferably formed by first reacting melamine with a C6 to C36, preferably C-2 to C22, fatty acid to form a hydrophobic amide. The amide is then reacted with formaldehyde, and the resulting resin is emulsified to form an aqueous coating emulsion of amide melamine wax. Commercially available amide melamine wax, which includes Repel-0-Tex™ 100, available from Lyndal Chemical of Dalton, GA, may be employed in this invention. Such wax is also described in the aforementioned U.S. Patent 4,800,117 to Marshall et al.
As mentioned before, there are three basic steps, extrusion, orientation and relaxation, in the process of manufacturing the monofilament, and each step is followed by one or more of water quench baths. The amide melamine wax emulsion can be added to the last quench bath of the relaxation process in a concentration which will deposit an effective amount of the wax solids on the filament when the monofilament is passed through the quench bath. Preferably, an amount of about 0.05 to about 1 weight percent of the wax solids, based on the weight of the coated monofilament, is deposited on the filament. More preferably, an amount of about 0.2% to about 0.8% is applied. After applying, the monofilament is air dried to provide sufficient cross-linking of the coated melamine wax to form a permanent coating.
It has been unexpectedly found that the resulting coated monofilament can be reprocessed along with the virgin polymer resin of the filament to produce the monofilament without adversely affecting the physical properties. Typically, substandard filaments (i.e., irregular shaped, over- or undersized filaments) are ground up or pelletized and fed to the monofilament extruder together with virgin resin. Unlike attempts to utilize reground monofilament coated with triethanolamine which is known to the art to react adversely with the polymer of the monofilament during reprocessing, as mentioned above, it has been observed that the use of the reprocessed monofilament of the present invention does not suffer the undesirable effects experienced with triethanolamine; the addition of the reprocessed monofilament of the present invention does not cause bubbles and voids in the resulting monofilament. The amount of reprocessed filament in the monofilament can vary, but preferably may range up to about 40% by weight. Furthermore, it has been unexpectedly found that the coated monofilament of the present invention has improved wear characteristics, thereby extending the useful life of the monofilament. In order to further describe the invention, the following non-limiting examples are given. All parts are by weight unless otherwise indicated.
EXAMPLE 1
Samples of monofilament of 0.08 inch (2 mm) diameter extruded from Capron® 8219 nylon 6 homopolymer resin available from Allied-Signal Inc., which homopolymer has a formic acid relative viscosity of about 60 to 64 and flexural modulus of about 180,000 psi (1,240 M Pas), were submerged in an aqueous amide melamine wax solution of a concentration to provide 0.2% weight percent of the wax solids on the monofilaments. The samples were then air dried at room temperature. The amide melamine wax emulsion employed was Repel-O-Tex™ 100, which is an emulsion of 25 weight percent amide melamine wax solids. Subsequently, samples of coated (Sample 1) and uncoated (Comparative Sample 1) nylon 6 monofilaments were tested for lubricity using the Twisted Strand Method of ASTM D3412-86 Yarn-to-Yarn Friction analysis. The Twisted Strand Method measures the amount of increased tension to a pretensioned monofilament when the monofilament passes across itself through a double twist at a constant speed. The results were as follows:
Table 1
Sample Yarn to Yarn Friction
(grams)
Amide Melamine Wax Coated 980 (Sample 1)
Uncoated Monofilament 1700 - 1775 (Comparative Sample 1) As the above test results show, the amide melamine wax coated filaments exhibit substantially increased lubricity compared to that of uncoated filaments.
Example 2
The monofilament coated with an amide melamine wax as specified in Example 1 (Sample 1) was tested for the tensile strength and elongation properties using a tensile test machine in accordance with the protocols of ASTM 2256- 88 "Standard Test Method for Tensile Properties of Yarns by the Single-Strand Method". The results are shown in Table 2.
Figure imgf000011_0001
PHYSICAL PROPERTIES:
Tensile Strength (x 103, psi) 33.2 32.6 31.0 30.7 (x 103, M Pas) 0.229 0.225 0.214 0.212 Elongation 164 161 178 157 _I%
Sample 2
The coated monofilament of Example 1 was pelletized to approximately the size of the virgin resin of Example 1 to form a reprocessed feedstock. Monofilament was extruded from a mechanically mixed resin composition consisting of 5 parts of the reprocessed feedstock and 95 parts of the virgin resin of Example 1. The coating procedure of Example 1 was repeated, and the resulting monofilament was tested for tensile strength and elongation properties. The results are shown in Table 2.
Sample 3
The procedure of Sample 2 was repeated except that the monofilament was extruded from a mixed resin composition consisting of 10 parts of the reprocessed feedstock specified in sample 2 and 90 parts of the virgin resin of Example 1. The result is shown in Table 2.
Sample 4
The procedure of Sample 2 was repeated except that the monofilament was extruded from a mixed resin composition consisting of 15 parts of the reprocessed feedstock specified in sample 2 and 85 parts of the virgin resin of
Example 1. The results are shown in Table 2.
The above test results in Table 2 show that the addition of the reprocessed feedstock to virgin nylon 6 resin did not produce any significant reduction in the physical properties of the cutting filament. Furthermore, there were no observed process difficulties experienced in using compositions comprising reprocessed feedstock, and the filaments of samples 1-4 were all readily produced.
Example 3
The monofilament coated with an amide melamine wax as specified in Example 1 (Sample 1) was compared with a commercial weedtrimmer line (Control Cl) of the same physical specifications coated with triethanolamine, which weedtrimmer line is available from Poulan/Weed Eater of Shreveport, LA, for their wear characteristics, including the average feet per hour usage and the number of line breakages. A mixed growth of Bermuda and Sage grass of 6- 12 inches (15 - 30 cm) in height was cut with a weedtrimmer manufactured by Poulan/Weed Eater, model # Husky 32L, using four 40 feet (12 m) line spools of each of the two weedtrimmer monofilaments. The results are shown in Table 3.
Table 3
Sample Hours of Avg. Usage Line Operation per Hour Breakage
Amide Melamine Wax Coated: ft/hr (m/hr)
1 2.83 14.13 (4.31) 0
2 3.08 12.98 (3.96) 0
3 2.00 20.00 (6.10) 1
4 2^75. 14.55 (4.43) 0
Total 10.66 Avg. 15.42 (4.70) Total 1
Control Cl Monofilament Line:
1 3.00 13.33 (4.06) 7
2 1.33 30.08 (9.17) 7
3 2.00 20.00 (6.10) 2
4 1.58 25.32 (7.72) £ Total 7.91 Avσ. 20.18 (6.15) Total 25
The above results show that the weedtrimmer monofilament of the present invention coated with an amide melamine wax has superior wear and breakage resistances than the monofilament of the prior art.
It can be seen from the above examples that a flexible polymeric monofilament coated with an amide melamine wax provides excellent lubricity and reprocessibility without significant sacrifice in the physical properties. In accordance with the present invention, such flexible polymeric monofilament can be produced, without modifying the current monofilament manufacturing process used in the monofilament industry, by adding an amide melamine wax emulsion to the last water quench bath of the manufacturing process. The melamine wax coated monofilament of the present invention substantially improves wear and line breakage resistances, thereby extending the useful life of the monofilament. The coated monofilament of the present invention is particularly suitable for the weedtrimmer monofilament line applications.

Claims

What is claimed is:
1. A coated, flexible filament structure comprising: a) a polymeric monofilament; and b) a coating of an amide melamine wax covering said polymeric monofilament.
2. The coated filament structure of claim 1 wherein said amide melamine wax is the reaction product of reacting melamine with a C6 to C36 fatty acid.
3. The coated filament structure of claim 1 wherein said coating is about 0.05% to about 1% by weight of said coated filament structure.
4. The coated filament structure of claim 1 wherein said polymeric monofilament is selected from the group consisting of polyamides,'polyesters and polyolefins.
5. The coated filament structure of claim 1 wherein said polymeric monofilament is selected from the group consisting of nylon 6, nylon 6,6 and copolymers thereof.
6. The coated filament structure of claim 1 wherein said polymeric monofilament comprises nylon 6, and said coating of an amide melamine wax is about 0.05% to about 1% by weight of said coated filament structure.
7. The coated filament structure of claim 1 wherein said polymeric monofilament comprises up to 40% by weight of a reprocessed composition of said coated, flexible filament.
8. A method for producing the coated, flexible filament structure of claim 1 comprising the steps of: passing said polymeric monofilament through an aqueous solution of said amide melamine wax, and air drying the coated monofilament.
9. The method as recited in claim 8 wherein said amide melamine wax is the reaction product of reacting melamine with a C6 to C36 fatty acid, then reacting the resulting product with formaldehyde, and then emulsifying the resulting resin.
10. The method as recited in claim 8 wherein said polymeric monofilament is selected from the group consisting of polyamides, polyesters and polyolefins.
PCT/US1992/004186 1991-05-20 1992-05-18 Product and process improvement of coated polymeric monofilament WO1992020853A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70286691A 1991-05-20 1991-05-20
US702,866 1991-05-20

Publications (2)

Publication Number Publication Date
WO1992020853A2 true WO1992020853A2 (en) 1992-11-26
WO1992020853A3 WO1992020853A3 (en) 1993-01-07

Family

ID=24822911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/004186 WO1992020853A2 (en) 1991-05-20 1992-05-18 Product and process improvement of coated polymeric monofilament

Country Status (2)

Country Link
US (2) US5580609A (en)
WO (1) WO1992020853A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2760596B1 (en) * 1997-03-14 1999-04-02 Speed France COMPOSITE CUTTING WIRE FOR TRIMMERS AND TRIMMERS
WO2003020008A1 (en) * 2001-09-03 2003-03-13 Speed France Cutting wire for brush cutters and edge trimmers
EP1511372B1 (en) * 2002-06-07 2010-08-04 Speed France S.A.S. Novel cutting unit and novel cutting filament for a plant-cutting device
FR2850237B1 (en) * 2003-01-23 2005-10-21 Speed France CUTTING HEAD FOR BRUSHCUTTER, CUTTER OR SIMILAR
FR2850236B1 (en) * 2003-01-23 2005-10-21 Speed France BRUSHCUTTER, CUTTER OR SIMILAR CUTTING HEAD
FR2850238B1 (en) * 2003-01-23 2005-10-21 Speed France CUTTING HEAD FOR BRUSHCUTTER, CUTTER OR SIMILAR
FR2854764B1 (en) * 2003-05-14 2006-06-23 Speed France NEW CUTTING WIRE FOR APPARATUS SUCH AS TRIMMERS OR BRUSHCUTTERS
US7829002B2 (en) * 2004-01-19 2010-11-09 Speed France Method for the production of plant cutting filaments
FR2881022B1 (en) * 2005-01-24 2007-04-06 Speed France Sa IMPROVED COMPOSITION CUTTING FILAMENT FOR CUTTERS, BRUSHCUTTERS, ETC.
US10100182B2 (en) * 2008-04-11 2018-10-16 Speed France Sas Cutting filament with improved composition for edge trimmers, scrub cutters and the like
BRPI0822554A2 (en) * 2008-04-11 2015-02-18 Speed France Sas CUTTING MEMBER FOR A PLANT CUTTING DEVICE AS A CLIMBER OR EDGE TRIMMER AND
US8508367B2 (en) * 2009-09-21 2013-08-13 Checkpoint Systems, Inc. Configurable monitoring device
WO2011035302A1 (en) * 2009-09-21 2011-03-24 Checkpoint Systems, Inc. Retail product tracking system, method, and apparatus
RU2606909C2 (en) * 2011-02-25 2017-01-10 Спид Франс Сас Cutting filament with improved composition for edge trimmers, scrub cutters and the like
ITTO20110927A1 (en) * 2011-10-17 2013-04-18 Colplast S R L MORTAR CABLE INCLUDING A BIODEGRADABLE POLYMERIC MATERIAL AND ITS RELATIVE BIODEGRADABLE POLYMERIC MATERIAL

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220400A2 (en) * 1985-10-24 1987-05-06 AlliedSignal Inc. Wet abrasion resistant yarn and cordage
US4800117A (en) * 1986-05-19 1989-01-24 Allied-Signal Inc. Overfinish for zero twist fabric

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR964185A (en) * 1942-02-07 1950-08-08
NL269149A (en) * 1960-09-12
DE2405717B2 (en) * 1974-02-06 1980-04-24 Wacker-Chemie Gmbh, 8000 Muenchen Process for increasing the lubricity and rendering organic fibers antistatic
US4316325A (en) * 1976-10-12 1982-02-23 Brucker William S Weed cutting apparatus
US4265019A (en) * 1977-02-23 1981-05-05 Kilmer Lauren G Filament vegetation trimmer
US4110227A (en) * 1977-09-19 1978-08-29 Basf Wyandotte Corporation Oxidation stable polyoxyalkylene fiber lubricants
US4134839A (en) * 1978-02-02 1979-01-16 Allied Chemical Corporation Soil resistant spin finish for polyamide textile yarn
US4394518A (en) * 1978-02-09 1983-07-19 Wacker-Chemie Gmbh Organic fibers having improved slip properties
US4283292A (en) * 1978-12-28 1981-08-11 Allied Chemical Corporation Soil resistant yarn finish for synthetic organic polymer yarn
US4241224A (en) * 1979-10-09 1980-12-23 Basf Wyandotte Corporation Fiber lubricants derived from the oxyalkylation of a glycerol-1,3-dialkylether
US4651422A (en) * 1982-08-04 1987-03-24 Piston Powered Products, Inc. Line guard for a line cutting type weed trimmer
JPS59202261A (en) * 1983-04-30 1984-11-16 Nippon Oil & Fats Co Ltd Method for modifying surface of high-molecular material
JPS6028582A (en) * 1983-07-25 1985-02-13 互応化学工業株式会社 Size composition
US4847142A (en) * 1986-12-22 1989-07-11 Allied-Signal Inc. Moisture permeable film for lamination to a textile material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220400A2 (en) * 1985-10-24 1987-05-06 AlliedSignal Inc. Wet abrasion resistant yarn and cordage
US4800117A (en) * 1986-05-19 1989-01-24 Allied-Signal Inc. Overfinish for zero twist fabric

Also Published As

Publication number Publication date
US5709942A (en) 1998-01-20
US5580609A (en) 1996-12-03
WO1992020853A3 (en) 1993-01-07

Similar Documents

Publication Publication Date Title
US5580609A (en) Process of making amide melamine wax coated polymeric monofilaments
EP1306471B1 (en) Fishing lines
EP0201114B2 (en) Process for the manufacture of polyester industrial yarn and cord made from said yarn and elastomeric objects reinforced with said cord
US5464676A (en) Reduced staining carpet yarns and carpet
EP0080274A2 (en) Process of melt spinning of a blend of a fibre-forming polymer and an immiscible polymer and melt spun fibres produced by such process
EP0063380B1 (en) Abrasion-resistant monofilament with molybdenum disulfide
CA1336114C (en) Monofilaments, fabrics thereof and related process
CN1044019C (en) Surface treated aramid fibers and a process for making them
DE202017002839U1 (en) Polyketone fibers, their preparation and use
CA2107777A1 (en) Soil resistant fibers
EP0350626B1 (en) Process for the production of polybutyleneterephthalate carpet yarn
DE19613965A1 (en) Low shrinkage hybrid yarns, process for their production and their use
WO2010034471A1 (en) Flame-retardant hollow fiber with silicone-free soft-touch finish
US4801492A (en) Novel monofilaments and fabrics thereof
CA1235249A (en) Aluminum silicate filled abrasion-resistant polyamide monofilament
WO2003004738A1 (en) High-strength chemically resistant thin sheath fibers and methods of manufacture
EP0736063A1 (en) Nylon containing nucleation additives
DE60217348T2 (en) PROCESS FOR PRODUCING FIBERS FROM HOMOPOLYAMIDE-4,6
AU727195B2 (en) Improved processing of polyphthalamide monofilament
EP0114933B1 (en) Antistatic cospun yarn comprising poly(hexamethylene adipamide) filaments containing n-alkyl substituted polyamide and poly(ethylene terephthalate) filaments
WO2019226967A1 (en) Polymer compositions and synthetic fibers and articles thereof
JP3958985B2 (en) Polyamide monofilament and its use
DE69914584T2 (en) METHOD FOR PRODUCING POLYETHONE FIBERS
CN1302342A (en) Emulsion polytetrafluorethylene micro-powder as additive for fiber-forming plastics
DE1620993A1 (en) Linear fiber-forming copolyamides and processes for their manufacture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP KR

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP KR

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA