WO1992019708A1 - Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme - Google Patents

Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme Download PDF

Info

Publication number
WO1992019708A1
WO1992019708A1 PCT/US1992/003373 US9203373W WO9219708A1 WO 1992019708 A1 WO1992019708 A1 WO 1992019708A1 US 9203373 W US9203373 W US 9203373W WO 9219708 A1 WO9219708 A1 WO 9219708A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid detergent
alkyl
detergent composition
composition according
enzyme
Prior art date
Application number
PCT/US1992/003373
Other languages
French (fr)
Inventor
Pierre Marie Alain Lenoir
Christiaan Arthur Jacques Kamiel Thoen
Rajan Keshav Panandiker
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to US08/137,206 priority Critical patent/US5422030A/en
Priority to JP4511920A priority patent/JPH06507199A/en
Publication of WO1992019708A1 publication Critical patent/WO1992019708A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38663Stabilised liquid enzyme compositions

Definitions

  • This invention relates to liquid detergent compositions comprising anionic or nonionic surfactant, proteolytic enzyme, second enzyme, and an aromatic borate ester.
  • protease-containing liquid detergents i the degradation of second enzymes in the composition by the proteolytic enzyme.
  • the stability of the second enzyme upon storage in product and its effect on cleaning are impaired by the proteolytic enzyme.
  • boronic acid peptide boronic acid
  • peptide boronic acid is discussed as an inhibito of trypsin-like serine proteases, especially in pharmaceuticals, in Europea Patent Application 0 293 881, Kettner et al., published December 7, 1988.
  • German Patent 3 918 761 published June 28, 1990 discloses liquid enzyme concentrate which is said to be usable as a raw material solution for makin liquid detergents and the like.
  • the concentrate contains hydrolase, propylene glycol and boric acid or its salt.
  • the proteolytic enzy Upon dilution, such as under typical wash conditions, the proteolytic enzy is no longer inhibited and can function (e.g. to remove protease-sensitive stains from fabrics in the wash) .
  • the present invention relates to a liquid detergent composition containin a. an aromatic borate ester formed by the complexation of boric acid with an aromatic reagent of the structure:
  • -X is OH, SH, or NH 2 .
  • _Y is CO2H, substituted or unsubstituted CH2OH,
  • each Z is H or a substituted or unsubstituted C ⁇ -
  • R is H or a C ⁇ -C alkyl chain
  • -i is an integer of from 1 to 4, b. from about 0.0001 to 1 % of active proteolytic enzyme; c. a performance-enhancing amount of a detergent-compatible second enzyme; d. from about 1 to 80 weight % of anionic or nonionic surfactant.
  • the present liquid detergent compositions contain certain essential ingredients : (a) an aromatic borate ester formed by the complexation of a aromatic reagent described herein after with boric acid or its derivatives; (b) proteolytic enzyme; (c) detergent-compatible second enzyme; (d) anioni and/or nonionic detersive surfactant. These compositions will most commonly be used for cleaning of laundry, fabrics, textiles, fibers, and hard surf ces. Heavy duty liquid laundry detergents are the preferred liquid detergent compositions herein.
  • the present liquid detergent compositions contain an aromatic borate est formed by the complexation of an aromatic reagent such as described herei after with boric acid or its derivatives.
  • the aromatic borate ester can either be formed prior to incorporation in detergent composition, or it can be formed in situ, by simply adding bori acid and the aromatic reagent in the detergent composition at any stage i its manufacturing process, or on top of the finished product.
  • the molar ratio of boric acid or its derivatives to aromatic reagent is preferably between about 20:1 and 1:20, more preferably between about 10:1 and 1:10, most preferably between 5:1 and 1:5.
  • the aromatic reagent has the following structure:
  • each Z is H or a substituted or unsubstituted C ⁇ -
  • -i is an integer of from 1 to 4; i.e there can be up to four substituents per aromatic ring.
  • Preferred aromatic reagents according to the invention are substituted or unsubstituted 2-hydroxybenzylalcohol or 2-hydroxybenzoic acid, more preferably 2-hydroxybenzylalcohol, 2,6-dihydroxybenzylalcohol, 2- hydroxybenzoic acid, 2,6- dihydroxybenzoic acid.
  • the boric acid or its derivatives used in the mixture can be boric acid, borax, boric oxide, polyborates, orthoborates, pyroborates, metaborates, mixtures thereof.
  • Boric acid salts are of course included.
  • liquid detergent compositions from about 0.001 to 20, more preferably about 0.02 to 10, most preferably 0.05 to 5, weight % of boric acid or derivatives is incorporated.
  • a second essential ingredient in the present liquid detergent compositions is from about 0.0001 to 1.0, preferably about 0.0005 to 0.5, most preferably about 0.002 to 0.1, weight % of active proteolytic enzyme. Mixtures of proteolytic enzyme are also included.
  • the proteolyti enzyme can be of animal, vegetable or microorganism (preferred) origin. More preferred is serine proteolytic enzyme of bacterial origin. Purified or nonpurified forms of this enzyme may be used. Proteolytic enzymes produced by chemically or genetically modified mutants are included. Particularly preferred is bacterial serine proteolytic enzyme obtained f Bacillus Subtillis and/or Bacillus Licheniformis.
  • Suitable proteolytic enzymes include Alcalase ⁇ -, Esperase ⁇ , Savin (preferred); Maxatase ⁇ -, Maxacal ⁇ - (preferred) , and Maxapem 15 ⁇ - (protein engineered Maxacal ⁇ -) ; and subtilisin BPN and BPN' (preferred) ; which are commercially available.
  • Preferred proteolytic enzymes are also modified bacterial serine proteases, such as those described in European Patent Application Serial Number 87303761.8, published April 28, 1987(particular pages 19, 24 and 98), and which is called herein "Protease B", and in European Patent Application 199,404, Venegas, published October 29, 1986, which refers to a modified bacterial serine proteolytic enzyme which is called "Protease A” herein.
  • Preferred proteolytic enzymes are selected from the group consisting of Savinase ⁇ -, Maxacal*-, BPN' , Protease and Protease B, and mixtures thereof. Protease B is most preferred.
  • the third essential ingredient in the present- liquid composition s a performance-enhancing amount of a detergent-compatible second enzyme.
  • detergent-compatible is meant compatibility with the other ingredients a liquid detergent composition, such as detersive surfactant and detergen builder.
  • These second enzymes are preferably selected from the group consisting of lipase, amylase, cellulase, and mixtures thereof.
  • second enzyme excludes the proteolytic enzymes discussed abo so each composition herein contains at least two kinds of enzyme, includi at least one proteolytic enzyme.
  • the amount of second enzyme used in the composition varies accordin to the type of enzyme and the use intended. In general, from about 0.0001 to 1.0, more preferably 0.001 to 0.5, weight % on an active basis of the second enzymes are preferably used.
  • enzymes from the same class e.g. lipase
  • two or mor classes e.g. cellulase and lipase
  • Purified or non-purified forms of the enzyme may be used.
  • Any lipase suitable for use in a liquid detergent composition can b used herein.
  • Suitable lipases for use herein include those of bacterial a fungal origin. Second enzymes from chemically or genetically modified mutants are included.
  • Suitable bacterial lipases include those produced by Pseudomonas. such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034, incorporated herein by reference.
  • Suitable lipases include tho which show a positive immunological cross-reaction with the antibody of th lipase produced by the microorganism Pseudomonas fluorescens IAM 1057. Th lipase and a method for its purification have been described in Japanese Patent Application 53-20487, laid open on February 24, 1978, which is incorporated herein by reference.
  • Lipase P Lipase P "Amano,” hereinafter referred to as "Amano-P.”
  • Such lipases should show a positive immunological cross reaction with the Amano-P antibody, using the standard and well-known immunodiffusion procedure according to Ouchterlony (Acta. Med. Scan., 133, pages 76-79 (1950)).
  • Ouchterlony Acta. Med. Scan., 133, pages 76-79 (1950)
  • These lipases, and a method for their immunological cross-reaction with Amano-P are also described in U.S. Patent 4,707,291, Thorn et al. , issued November 17, 1987, incorporated herein by reference.
  • Typical examples thereof are the Amano-P lipase, the lipase ex Pseudomonas fragi FERM P 133 (available under the trade name Amano-B) , lipase ex Psuedomonas nitroreducens var. lipolvticum FERM P 1338 (available under the trade na Amano-CES) , lipases ex Chromobacter viscosum. e.g. Chromobacter viscosum var. lipolvticum NRRLB 3673, and further Chromobacter viscosum lipases, an lipases ex Pseudomonas gladioli.
  • Other lipases of interest are Amano AKG and Bacillis Sp lipase (ex. Solvay enzyme).
  • Suitable fungal lipases include those producible by Humicola lanuginosa and Thermomvces lanuginosus. Most preferred is lipase obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus orvzae as described in European Patent Application 0 258 068, incorporated herein by reference, commercially available under the trade name Lipolase ⁇ .
  • lipase units lipase per gram (LU/g) of product can be used in these compositions.
  • a lipase unit is that amount of lipase which produces 1 ⁇ mol of titratable butyric acid per minute in a pH stat, where pH is 9.0, temperature is 30°C, and substrate is an emulsion of 3.3wt % of tributyrin and 3.3% of gum arabic, in the presence of 2.2 ⁇ mol/1 Ca and 50 ⁇ mol/l NaCl in 5 ⁇ mol/l phosphate.
  • Suitable cellulase enzymes for use herein include those of bacterial and fungal origins. Preferably, they will have pH optimum of between 5 and 9.5. From about 0.0001 to 1.0, preferably 0.00 to 0.5, weight % on an active enzyme basis of cellulase can be used. Suitable cellulases are disclosed in U.S. Patent 4,435,307,
  • cellulases produced by a strain o
  • Humicola insolens (Humicola grisea var. thermoidea) , particularly the
  • Humicola strain DSM 1800 and cellulases produced by a fungus of Bacillus or a cellulase 212-producing fungus belonging to the genus Aeromonas. and cellulase extracted from the hepatopancreas of a marine mollusc (Dolabell
  • Amylases include, for example, amylases obtained from a special strain of B.licheniforms. described in more detai in British Patent Specification No. 1,296,839.
  • Amylolytic proteins include for example, Rapidase , Maxamyl and Termamyl
  • detersive surfactant is the fourth essential ingredient in the present invention.
  • the detersive surfactant can be selected from the group consisting of anionics, nonionics, cationics, ampholytics, zwitterionics, and mixtures thereof. Anionic and nonionic surfactants are preferred.
  • Heavy duty liquid laundry detergents are the preferred liquid detergent compositions herein.
  • the particular surfactants used can vary widely depending upon the particular end-use envisioned. These compositio will most commonly be used for cleaning of laundry, fabrics, textiles, fibers, and hard surfaces.
  • the benefits of the present invention are especially pronounced in compositions containing ingredients that are harsh to enzymes such as certain detergency builders and surfactants.
  • the anionic surfactant comprises C_, noticeto C_ n alkyl ether sulfate and C- to C__ linear alkylbenzene sulfonate. Suitable surfactants are described below.
  • Anionic Surfactants are described below.
  • alkyl ester sulfonates One type of anionic surfactant which can be utilized is alkyl ester sulfonates. These are desirable because they can be made with renewable, non-petroleum resources. Preparation of the alkyl ester sulfonate surfactant component is according to known methods disclosed in the technical literature. For instance, linear esters of C Manual-C n carboxylic acids can be sulfonated with gaseous S0ray according to "The Journal of th
  • Suitable starti materials would include natural fatty substances as derived from tallow, palm, and coconut oils, etc.
  • the preferred alkyl ester sulfonate surfactant especially for laundry applications, comprises alkyl ester sulfonate surfactants of the structural formula:
  • R is a C
  • C__ hydrocarbyl preferably an alkyl, or combination
  • R is a C.-C, hydrocarbyl, preferably an alkyl, or combination thereof
  • M is a soluble salt-forming cation.
  • Suitable salts include metal salts such as sodium, potassium, and lithium salts, and substituted unsubstituted ammonium salts, such as methyl-, dimethyl, -trimethyl, and quaternary ammonium cations, e.g. tetramethyl-ammonium and dimethyl piperydinium, and cations derived from alkanolamines, e.g. monoethanolamin diethanolamine, and triethanolamine.
  • R is C 1fi -C lg alkyl, and R is methyl, ethyl or isopropyl.
  • methyl ester sulfonates wherein R is C - C alkyl.
  • Alkyl sulfate surfactants are another type of anionic surfactant of importance for use herein.
  • dissolution of alkyl sulfates can be obtained, as well as improved formulability in liquid detergent formulations are water soluble salts or acids of the formula ROSO,M wherein R preferably is a C ⁇ -C,,, hydrocarbyl, preferably an alky hydroxyalkyl having a C ⁇ -C-- alkyl component, more preferably a C -G ⁇ .. alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal ca
  • alkyl chains of C, . . are preferred for lower wash temperatures (e.g., below about 50"C) and C_. - n knowledgeable alkyl chains are preferred for higher wash temperatures (e.g., above about 50 ⁇ C) .
  • Alkyl alkoxylated sulfate surfactants are another category of use anionic surfactant. These surfactants are water soluble salts or acids typically of the formula R0(A) S0,M wherein R is an unsubstituted C_. 0 -C Dock, alkyl or hydroxyalkyl group having a C_. Q -C Dock, alkyl component, preferably
  • Alkyl ethoxylated sulfates as w as alkyl propoxylated sulfates are contemplated herein.
  • substituted ammonium cations include methyl-, dimethyl-, trimethyl- ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines, e.g. monoethanolamine, diethanolamine, and triethanolamine, and mixtures thereo
  • alkanolamines e.g. monoethanolamine, diethanolamine, and triethanolamine
  • exemplary surfactants are C_._-C_,_ alkyl polyethoxylate (1.0) sulfate, C-_-
  • anionic surfactants useful for detersive purposes can also be included in the composi .ons hereof. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, C q -C Intel n linear alkylbenzenesulphonates, C Clear-C Computed ammonium salts such as mono-, di- and triethanolamine salts)
  • N-acyl sarcosinates N-acyl sarcosinates, sulfates alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described below) , branched primary alkyl sulfates, alkyl polyethoxy carboxylates such as those of the formu R0(CH diligentCH 2 0) CH 2 C00-M wherein R is a C 8 -C 2 plausible alkyl, k is an integer from 0
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch) . A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
  • Nonionic Detergent Surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
  • Suitable nonionic detergent surfactants are generally disclosed in U.S. Patent 3,929,678, Laughlin et al. , issued December 30, 1975, at colum 13, line 14 through column 16, line 6, incorporated herein by reference. Exemplary, non-limiting classes of useful nonionic surfactants are listed below.
  • the polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 12 carbon atoms in either a straight chain or branched chain configuration with the alkylene oxide.
  • the ethylene oxide is present in an amount equal to from about 5 to about 25 moles of ethylene oxide per mole of alkyl phenol.
  • TM nonionic surfactants of this type include Igepal CO-630, marketed by the TM GAF Corporation; and Triton X-45, X-114, X-100, and X-102, all markete the Rohm & Haas Company. These compounds are commonly referred to as al phenol alkoxylates, (e.g., alkyl phenol ethoxylates) .
  • the condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide can either be straight or branched, primary or second and generally contains from about 8 to about 22 carbon atoms.
  • TM available nonionic surfactants of this type include Tergitol 15-S-9
  • Neodol 23-6.5 the condensation product of C_. tenu-C_._ lin
  • Neodol 45-7 the condensatio product of C-.-C..,. linear alcohol with 7 moles of ethylene oxide
  • TM Neodol 45-4 (the condensation product of C-.-C.,. linear alcohol with
  • EOB the condensation product of C. ⁇ -C.,. alcohol with 9 moles ethylene oxide
  • This category of nonionic surfactant is referred to generally as "alkyl ethoxylates.”
  • the condensation products of ethylene oxide with a hydrophob base formed by the condensation of propylene oxide with propylene glycol preferably has a molecular weig of from about 1500 to about 1800 and exhibits water insolubility.
  • the addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensati product, which corresponds to condensation with up to about 40 moles of ethylene oxide.
  • Examples of compounds of this type include certain of t
  • Pluronic surfactants commercially-available Pluronic surfactants, marketed by BASF.
  • the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine consist of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
  • This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has molecular weight of from about 5,000 to about 11,000.
  • this ty of nonionic surfactant include certain of the commercially available
  • TM Tetronic compounds marketed by BASF.
  • Semi-polar nonionic surfactants are a special category nonionic surfactants which include water-soluble amine oxides containing on alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of from about 10 to about 18 carbon atom and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms.
  • Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula
  • R is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures
  • R is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof; x is from 0 to about 3; and each R is an alkyl or hydroxyalkyl group containing from about 1 to about carbon atoms or a polyethylene oxide group containing from about 1 to about
  • the R groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
  • amine oxide surfactants in particular include C ⁇ n -C 10 alkyl iU lo dimethyl amine oxides and C Manual-C.. regularly alkoxy ethyl dihydroxy ethyl amine oxides.
  • Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties.
  • the hydrophobic group is attached at the 3-, 4-, etc. positions thus giving a glucose or galactose as opposed t glucoside or galactoside.
  • the intersaccharide bonds can be, e.g., betwe the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • a polyalkylene-oxide chain joining the hydrophobic moiety and the polysaccharide moiety.
  • the preferred alkyleneoxide is ethylene oxide.
  • Typical hydrophobic groups include alkyl groups, either saturated or unsaturated, branched or unbranched containing from about 8 to about 18, preferably from about 10 about 16, carbon atoms.
  • the alkyl group is a straight chain saturated alkyl group.
  • the alkyl group can contain up to about 3 hydroxy groups and/or the polyalkyleneoxide chain can contain up to about 10, preferably less than 5, alkyleneoxide moieties.
  • Suitable alkyl polysaccharides are octyl, nonyldecyl, undecyldodecyl, tridecyl, tetradec pentadecyl, hexadecyl, heptadecyl, and octadecyl, di-, tri-, tetra-, pent and hexaglucosides, galactosides, lactosides, glucoses, fructosides, fructoses and/or galactoses.
  • Suitable mixtures include coconut alkyl, di- tri-, tetra-, and pentaglucosides and tallow alkyl tetra-, penta-, and hex glucosides.
  • the preferred alkylpolyglycosides have the formula R 2 0(C n H 2n 0) t (glycosyl) ⁇
  • R is selected from the group consisting of alkyl, alkyl-phenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from about 10 to about 18, preferably from about 12 to abo
  • glycosyl is pre- ferably derived from glucose.
  • the alcoh or alkylpolyethoxy alcohol is formed first and then reacted with glucos or a source of glucose, to form the glucoside (attachment at the 1- position) .
  • the additional glycosyl units can then be attached between th 1-position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2-position.
  • R is an alkyl group containing from about 7 to about 21 (preferab from about 9 to about 17) carbon atoms and each R is selected from the group consisting of hydrogen, C--C, alkyl, C ⁇ -C, hydroxyalkyl, and -
  • Preferred amides are C_-C Intel n ammonia amides, monoethanol- amides, diethanolamides, and isopropanolamides.
  • Cationic detersive surfactants can also be included in detergent compositions of the present invention.
  • Cationic surfactants include the ammonium surfactants such as alkyldimethylammonium halogenides, and those surfactants having the formula:
  • R is an alkyl or alkyl benzyl group having from about 8 to abou
  • each R is selected from the group consisting of -CH-CH- , -CH 2 CH(CH_)- , -CH 2 CH(CH 2 0H)- , -
  • each R is selected from the group consisting of C. -C, alkyl, C- -C, hydroxyalkyl, benzyl, ring structures formed by joining the two R groups, -CH ⁇ CHOH-CHOHCOR CHOHCH ⁇ OH wherein R is any hexose or hexose polymer having a molecular weight less than about
  • R is the same as R or is an alkyl
  • Ampholytic surfactants can be incorporated into the detergent compositions hereof. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight chain or branched.
  • One of the aliphati substituents contains at least about 8 carbon atoms, typically from abou to about 18 carbon atoms, and at least one contains an anionic water- solubilizing group, e.g., carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 Laughlin et al. , issued December 30, 1975 at column 19, lines 18-35 (her incorporated by reference) for examples of ampholytic surfactants.
  • Zwitterionic surfactants can also be incorporated into the deterge compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. See U.S. Patent 3,929,678 tc Laughlin et al., issued December 30, 1975 at column 19, line through column 22, line 48 (herein incorporated by reference) for examples of zwitterionic surfactants.
  • Ampholytic and zwitterionic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
  • the liquid detergent compositions hereof preferably contain an "enzyme performance-enhancing amount" of polyhydroxy fatty acid amide surfactant.
  • enzyme-enhancing is meant that the formulator of the composition can select an amount of polyhydroxy fatty acid amide to be incorporated into the composition that will improve enzyme cleaning performance of the detergent composition. In general, for conventional levels of enzyme, the incorporation of about 1%, by weight, polyhydroxy fatty acid amide will enhance enzyme performance.
  • the detergent compositions hereof will typically comprise at least about 1 weight % polyhydroxy fatty acid amide surfactant and preferably wi comprise from about 3% to 50%, most preferably from about 3% to 30%, of the polyhydroxy fatty acid amide.
  • the polyhydroxy fatty acid amide surfactant component comprises compounds of the structural formula:
  • R is H, C. -C, hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, a mixture thereof, preferably C -C, alkyl, more preferably C. or C Pain alkyl,
  • R is a C t- -C_ 1 hydrocarbyl, preferably straight chain C 7 -C- c . alkyl or alkenyl, more preferably straig chain C
  • C.-, -C_. al or alkenyl most preferably straight chain C.-, -C_. al or alkenyl, or mixtures thereof
  • Z is a polyhydroxyhydrocarbyl having linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
  • Z preferably will be derived from a reducing sug in a reductive amination reaction; more preferably Z will be a glycityl.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose.
  • raw materials high dextrose corn syru high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
  • Z preferably will be selected from the group consisting of -CH 2 -(CH0H) -CH 2 0H, -CH(CH 2 0H)-
  • n is 4, particularly -CH--(CHOH), -CH ? 0H.
  • R' can be, for example, N-methyl, N-ethyl, N-propyl N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
  • R2-C0-N can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide, etc.
  • Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1- deoxylactityl, 1-deoxygalactityl, 1-deoxymannityl, 1-deoxymalto-triotityl, etc.
  • polyhydroxy fatty acid amides are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine w a fatty aliphatic ester or triglyceride in a condensation/amidation step form the N-alkyl, N-polyhydroxy fatty acid amide product.
  • Processes for making compositions containing polyhydroxy fatty acid amides are disclos for example, in G.B. Patent Specification 809,060, published February 18,
  • weight % detergency builder can be included herein.
  • Inorganic as well as organic builders can be used.
  • Inorganic detergency builders include, but are not limited to, t alkali metal, ammonium and alkanolammonium salts of polyphosphates
  • borate builders can also be used.
  • non-borate builders are used in the compositions of the invention intended for use at wash conditions less than about 50°C, especially less than about 40°C.
  • silicate builders are the alkali metal silicates, particularly those having a SiOfact:Nafug0 ratio in the range 1.6:1 to 3.2:1 an layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck, incorporated herein reference.
  • layered silicates such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck, incorporated herein reference.
  • other silicates may also be useful such as for exampl magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a compone of suds control systems.
  • Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently markete heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula:
  • aluminosilicat are zeolite builders which have the formula:
  • z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
  • aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al., issued October 12, 1976, incorporated herein by reference. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under t designations Zeolite A, Zeolite P (B) , and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange materia has the formula:
  • x is from about 20 to about 30, especially about 27.
  • This material is known as Zeolite A.
  • the aluminosilicate has a particle s z of about 0.1-10 microns in diameter.
  • polyphosphates are the alkali metal tripolyphosphates. sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphat sodium polymeta phosphate in which the degree of polymerization ranges f about 6 to about 21, and salts of phytic acid.
  • Examples of phosphonate builder salts are the water-soluble salts ethan. 1-hydroxy-l, 1-diphosphonate particularly the sodium and potassiu salts, the water-soluble salts of methylene diphosphonic acid e.g. the trisodium and tripotassium salts and the water-soluble salts of substituted methylene diphosphonic acids, such as the trisodium and tripotassium ethylidene, isopyropylidene benzylmethylidene and halo methylidene phosphonates.
  • Phosphonate builder salts of the aforemention types are disclosed in U.S. Patent Nos.
  • Organic detergent builders preferred for the purposes of the prese invention include a wide variety of polycarboxylate compounds.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate builder can generally be added to the composition acid form, but can also be added in the form of a neutralized salt.
  • alkali metals such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • polycarboxylate builders include a variety of categories of useful materials.
  • One important category of polycarboxylate builders encompasses the ether polycarboxylates.
  • a number of ether polycarboxylates have been disclosed for use as detergent builders.
  • Examples of useful ether polycarboxylates include oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and La berti et al., U.S. Patent 3,635,830, issued January 18, 1972, both of which are incorporated herein by reference.
  • a specific type of ether polycarboxylates useful as builders in th present invention also include those having the general formula:
  • A is H or OH; B is H or -0-CH(C00X)-CH 2 (C00X) ; and X is H or a salt-forming cation.
  • a and B are both H, then the compound is oxydissuccinic acid and its water-solubl salts.
  • A is OH and B is H, then the compound is tartrate monosuccinic acid (TMS) and its water-soluble salts.
  • TMS monosuccinic acid
  • A is H and B is -O-CH(COOX)- CH-(COOX)
  • TDS tartrate disuccinic acid
  • Mixtures of these builders are especially preferred for use herein. Particularly preferred are mixtures of TMS and TDS in weight ratio of TMS to TDS of from about 97:3 to about 20:80.
  • Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903, all of which ar incorporated herein by reference.
  • ether hydroxypolycarboxylates represented by the structure:
  • n is from about 2 to about 15 (preferably n is from about 2 to about 10, more preferably n averages from about 2 to about 4) and each R i the same or different and selected from hydrogen, C. , alkyl or C- , substituted alkyl (preferably R is hydrogen) .
  • Still other ether polycarboxylates include copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid.
  • Organic polycarboxylate builders also include the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids. Examples include the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylenediamine tetraacetic acid, and nitrilotriacetic acid.
  • polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene
  • 1,3,5-tricarboxylic acid and carboxymethyloxysuccinic acid, and soluble salts thereof.
  • Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt)
  • citric acid and soluble salts thereof are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations, but can also used in granular compositions.
  • carboxylate builders include the carboxylated carbohydrates disclosed in U.S. Patent 3,723,322, Diehl, issued March 28, 1973, incorporated herein by reference.
  • Also suitable in the detergent compositions of the present invent are the 3,3-dicarboxy-4-oxa-l,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986, incorporated herein by reference.
  • Useful succinic acid builders included the C,.-C Intel n alkyl succinic acids and salts thereof.
  • a particularly prefe compound of this type is dodecenylsuccinic acid.
  • Alkyl succinic acids typically are of the general formula R-CH(C00H)CH 2 (C00H) i.e., derivative of succinic acid, wherein R is hydrocarbon, e.g., C_._-C 20 alkyl or alken preferably C_. 2 -C.,. or wherein R may be substituted with hydroxyl, sulfo, sulfoxy or sulfone substituents, all as described in the above-mentioned patents.
  • the succinate builders are preferably used in the form of their water-soluble salts, including the sodium, potassium, ammonium and alkanolammonium salts.
  • succinate builders include: laurylsuc-cinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2 pentadecenylsuccinate, and the like. Laurylsuc-cinates are the preferred builders of this group, and are described in European Patent Applicatio
  • useful builders also include sodium and potassium carboxymethyloxymalonate, carboxyme hyloxysuccinate, cis-cyclo-hexane- hexacarboxylate, cis-cyclopentane-tetracarboxylate, water-soluble polyacrylates (these polyacrylates having molecular weights to above about
  • polyacetal car-boxylates are the polyacetal car-boxylates disclosed in U.S. Patent 4,144,226, Crutchfield et al., issued March 13, 1979, incorporated herein by reference.
  • These polyacetal carboxylates can be prepared by bringing together, under polymerization conditions, an este of glyoxylic acid and a polymerization initiator. The resulting polyaceta carboxylate ester is then attached to chemically stable end groups to stabilize the polyacetal carboxylate against rapid depolymeriza- tion in alkaline solution, converted to the corresponding salt, and added to a surfactant.
  • Polycarboxylate builders are also disclosed in U.S. Patent 3,308,06 Diehl, issued March 7, 1967, incorporated herein by reference. Such materials include the water-soluble salts of homo- and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylenemalonic acid.
  • the hydrocarbyls can be saturated or unsaturated.
  • Soil Release Agent
  • Preferred polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylo and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
  • polymeric soil release agents in any of the detergent compositions hereof, especially those compositions utilized for laundry or other applications wherein removal of grease and oil from hydrophobic surfaces is needed
  • the presence of polyhydroxy fatty acid amide in detergent compositions also containing anionic surfactants can enhance performance of many of the more commonly utilized types of polymeric soil release agents.
  • Anionic surf ctants interfere with the ability of certain soil release agents to deposit upon and adhere to hydrophobic surfaces.
  • These polymeric soil release agents have nonionic hydrophile segments or hydrophobe segments which are anionic surfactant-interactive.
  • One type of preferred soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate. More specifically, these polymers are comprised of repeatin units of ethylene terephthalate and PEO terephthalate in a mole ratio of ethylene terephthalate units to PEO terephthalate units of from about 2 to about 35:65, said PEO terephthalate units containing polyethylene ox having molecular weights of from about 300 to about 2000.
  • the molecular weight of this polymeric soil release agent is in the range of from ab 25,000 to about 55,000. See U.S. Patent 3,959,230 to Hays, issued May 2 1976, which is incorporated by reference. See also U.S. Patent 3,893, to Basadur issued July 8, 1975 (incorporated by reference) which disclos similar copolymers.
  • Another preferred polymeric soil release agent is a polyester wit repeat units of ethylene terephthalate units containing 10-15% by weight ethylene terephthalate units together with 90-80% by weight of polyoxyethlyene terephthalate units, derived from a polyoxyethylene glyco of average molecular weight 300-5,000, and the mole ratio of ethylene terephthalate.units to polyoxyethylene terephthalate units in the polymer compound is between 2:1 and 6:1.
  • this polymer include the commercially available material ZelconR 5126 (from Dupont) and Milease R (from ICI) . These polymers and methods of their preparation are more ful described in U.S. Patent 4,702,857, issued October 27, 1987, to Gosselink which is incorporated herein.
  • Suitable polymeric soil release agents include the ethyl o methyl-capped 1,2-propylene terephthalate-polyoxy- ethylene terephthalat polyesters of U.S. Patent 4,711,730, issued December 8, 1987, to Gossel et al., the anionic end-capped oligomeric esters of U.S. Patent 4,721,580, issued January 26, 1988, to Gosselink, wherein the anionic end-caps comprise sulfo-polyethoxy groups derived from polyethylene glycol (PEG) , block polyester oligomeric compounds of U.S.
  • PEG polyethylene glycol
  • Patent 4,702,857 issued October 27, 1987 to Gosselink, having polyethoxy end-caps of the formula X- 0CH2CH2) n - wherein n is from 12 to about 43 and X is a C1-C alkyl, o preferably methyl, all of these patents being incorporated herein by reference.
  • Additional polymeric soil release agents include the soil release agents of U.S. Patent 4,877,896, issued October 31, 1989 to Maldonado et al., which discloses anionic especially sulfo- aroyl, end-capped terepthalate esters, said patent being incor- porated herein by reference
  • the terephthalate esters contain unsymmetrically substituted oxy-1,2- alkyleneoxy units. Included among the soil release polymers of U.S. Paten 4,877.896 are materials with polyoxyethylene hydrophile components or C3 oxyalkylene terephthalate (propylene terephthalate) repeat units within th scope of the hydrophobe components of (b)(i) above. It is the polymeric soil release agents characterized by either, or both, of these criteria th particularly benefit from the inclusion of the polyhydroxy fatty acid amides hereof, in the presence of anionic surfactants.
  • soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to abou 3.0%.
  • soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent composi-tions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to abou 3.0%.
  • the detergent compositions herein may also optionally contain one o more iron and manganese chelating agents as a builder adjunct material.
  • chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof, all as hereinafter defined. Withou intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
  • Amino carboxylates useful as optional chelating agents in compositions of the invention can have one or more, preferably at least two units of the substructure
  • t amino carboxylates do not contain alkyl or alkenyl groups with more tha about 6 carbon atoms.
  • Operable amine carboxylates include ethylenediaminetetraacetates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraaminehexa-acetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts thereof and mixtures thereof.
  • Amino phosphonates are also suitable for use as chelating agents i the compositions of the invention when at least low levels of total phosphorus are permitted in detergent composi- tions.
  • Compounds with one more, preferably at least two, units of the substructure are also suitable for use as chelating agents i the compositions of the invention when at least low levels of total phosphorus are permitted in detergent composi- tions.
  • M is hydrogen, alkali metal, ammonium or substituted ammonium and is from 1 to about 3, preferably 1, are useful and include ethylenediaminetetrakis (methylenephosphonates) , nitrilotris (methylenephosphonates) and diethylenetriaminepentakis (methylenephosphonates).
  • these amino phosphonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
  • Alkylene groups can be shared by substructures.
  • Polyfunctionally - substituted aromatic chelating agents are also useful in the compositions herein. These materials can comprise compounds having the general formula
  • R is -S0_H or -C00H or soluble salts thereof and mixtures thereof.
  • Alkaline detergent compositions can contain these materials in the form of alkali metal, ammonium or substituted ammonium (e.g. mono-or triethanol-amine) salts.
  • these chelating agents will generally comprise from about 0.1% to about 10% by weight of the detergent composi-tions herein. More preferably chelating agents will comprise from about 0.1% to about 3. by weight of such compositions.
  • Clay Soil Removal/Anti-redeposition Agents will generally comprise from about 0.1% to about 10% by weight of the detergent composi-tions herein. More preferably chelating agents will comprise from about 0.1% to about 3. by weight of such compositions.
  • compositions of the present invention can also optionally conta water-soluble ethoxylated amines having clay soil removal and anti- redeposition properties.
  • Liquid detergent compositions which contain thes compounds typically contain from about 0.01% to 5%.
  • the most preferred soil release and anti-redeposition agent is ethoxylated tetraethylenepentamine.
  • Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986, incorporated herein by reference.
  • Another group of preferred clay soil removal/anti-redeposition agents are the cationic compounds disclose in European Patent Application 111,965, Oh and Gosselink, published June 2 1984, incorporated herein by reference.
  • clay soil removal/anti- redeposition agents which can be used include the ethoxylated amine polyme disclosed in European Patent Application 111,984, Gosselink, published Jun 27, 1984; the zwitterionic polymers disclosed in European Patent Applicati 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S. Patent 4,548,744, Connor, issued October 22, 1985, all of which ar incorporated herein by reference.
  • CMC carboxymethylcellulose
  • Polymeric dispersing agents can advantageously be utilized in the compositions hereof. These materials can aid in calcium and magnesium hardness control. Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used.
  • Suitable polymeric dispersing agents for use herein are described in U.S. Patent 3,308,067, Diehl, issued March 7, 1967, and European Patent Application No. 66915, published December 15, 1982, both incorporated he by reference.
  • optical brighteners or other brightening or whitenin agents known in the art can be incorporated into the detergent compositi hereof.
  • optical brighteners which may be useful in the present invention can be classified into subgroups which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiphene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents. Exampl of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons, New York (1982), the disclosure of which is incorporated herein by reference. Suds Suppressors
  • compositions hereof will generally comprise from 0% to about 5% of suds suppressor.
  • compositions hereof A wide variety of other ingredients useful in detergent composition can be included in the compositions hereof, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, bleaches, bleach activators, etc.
  • Liquid detergent compositions can contain water and other solvents carriers.
  • Low molecular weight primary or secondary alcohols exemplified methanol, ethanol, propanol, and isopropanol are suitable.
  • Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups (e.g., propylene glycol, ethylene glycol, glycerine, and 1,2-propanediol) can also be used.
  • Preferred heavy duty liquid laundry detergent compositions hereof will preferably be formulated such that during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and 11.0, preferably between about 7.0 and 9.0, most preferably between 7.5 and 8.0.
  • the compositions herein preferably have a pH in a 10% solution in water at 20°C of between about 7.0 to 11.0, preferably 7.0 to 8.5.
  • Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
  • This invention further provides a method for cleaning substrate, su as fibers, fabrics, hard surfaces, skin, etc., by contacting said substrat with a liquid detergent composition comprising detersive surfactant, proteolytic enzyme, a detergent-compatible second enzyme, and the aryl boronic acids described above.
  • a liquid detergent composition comprising detersive surfactant, proteolytic enzyme, a detergent-compatible second enzyme, and the aryl boronic acids described above.
  • Agitation is preferably provided for enhancing cleaning.
  • Suitable means for providing agitation include rubbing by hand or preferably with use of a brush, sponge, cloth, mop, or other cleaning device, automatic laundry washing machines, automatic dishwashers etc.
  • concentrated liquid detergent compositions Preferred herein are concentrated liquid detergent compositions. By “concentrated” is meant that these compositions will deliver to the wash th same amount of active detersive ingredients at a reduced dosage.
  • Typical regular dosage of heavy duty liquids is 118 milliliters in the U.S. (about 1/2 cup) and 180 milliliters in Europe.
  • Concentrated heavy duty liquids herein contain about 10 to 100 weight % more active detersive ingredients than regular heavy duty liquids, and are dosed at less than 1/2 cup depending upon their active levels. Thi invention becomes even more useful in concentrated formulations because there are more actives to interfere with enzyme performance. Preferred are heavy duty liquid laundry detergent compositions with from about 30 to 90 preferably 40 to 80, most preferably 50 to 60, weight % of active detersive ingredients.

Abstract

Included are liquid detergent compositions comprising anionic and/or nonionic surfactant, proteolytic enzyme, second enzyme, and an aromatic borate ester.

Description

LIQUID DETERGENTS WITH AROMATIC BORATE ESTER TO INHIBIT PROTEOLYTIC ENZYME
Field of the Invention
This invention relates to liquid detergent compositions comprising anionic or nonionic surfactant, proteolytic enzyme, second enzyme, and an aromatic borate ester.
Background of the invention
A commonly encountered problem with protease-containing liquid detergents i the degradation of second enzymes in the composition by the proteolytic enzyme. The stability of the second enzyme upon storage in product and its effect on cleaning are impaired by the proteolytic enzyme.
Boric acid and boronic acids are known to reversibly inhibit proteolytic enzymes. A discussion of the inhibition of one serine protease, subtilisin by boronic acid is provided in Philipp, M. and Bender, M.L. , "Kinetics of Subtilisin and Thiosubtilisin" , Molecular & Cellular Biochemistry, vol. 51, pp. 5-32 (1983).
One type of boronic acid, peptide boronic acid, is discussed as an inhibito of trypsin-like serine proteases, especially in pharmaceuticals, in Europea Patent Application 0 293 881, Kettner et al., published December 7, 1988.
German Patent 3 918 761, published June 28, 1990 discloses liquid enzyme concentrate which is said to be usable as a raw material solution for makin liquid detergents and the like. The concentrate contains hydrolase, propylene glycol and boric acid or its salt.
U.S. Patent 4,537,707, issued August 27, 1985 describes heavy duty liqui detergents containing anionic surfactants, fatty acid, builder, proteoly enzyme, boric acid, calcium ions and sodium formate. The combination of boric acid and sodium formate is claimed to provide improved proteolytic enzyme stability in this composition, especially in the presence of a polyol. These compositions are free of lipase.
European Patent Application 0080 223, published June 1, 1983 describes detergent compositions containing a polyfunctional amino compound or a polyol together with a reducing alkali metal salt.
Similarly in GB 2 079 305, published January 20, 1982, it is disclosed th enhanced enzyme stability can be obtained in a built liquid detergent by inclusion of boric acid, a polyol in the ratio of polyol to boric acid mo than 1:1, and a cross-linked polyacrylate polymer. These compositions contain no lipase.
In European Application 0 381262, Aronson et al. , published August 8, 19 mixtures of proteolytic and lipolytic enzymes in a liquid medium have bee disclosed. The stability of lipase is claimed to be improved by the addition of boron compound and a polyol having vicinal hydroxyl groups.
It has now been found that certain aromatic borate esters are especially effective in reversibly inhibiting protease, in a HDL which also comprises detergency ingredients and a second enzyme.
Upon dilution, such as under typical wash conditions, the proteolytic enzy is no longer inhibited and can function (e.g. to remove protease-sensitive stains from fabrics in the wash) . Summary of the invention
The present invention relates to a liquid detergent composition containin a. an aromatic borate ester formed by the complexation of boric acid with an aromatic reagent of the structure:
Figure imgf000005_0001
Wherein:
-X is OH, SH, or NH2.
_Y is CO2H, substituted or unsubstituted CH2OH,
CH SH, CH2NH2 or C-NH2)
0 -each Z is H or a substituted or unsubstituted C^-
Cg alkyl, alkenyl, alkynyl or an aryl chain, OH or -0-R, wherein R is a C^-Cg alkyl chain, or an electron withdrawing group such as CN, N02
CHO, SO3H, COOR wherein R is H or a C^-C alkyl chain; -i is an integer of from 1 to 4, b. from about 0.0001 to 1 % of active proteolytic enzyme; c. a performance-enhancing amount of a detergent-compatible second enzyme; d. from about 1 to 80 weight % of anionic or nonionic surfactant.
Description of the invention
The present liquid detergent compositions contain certain essential ingredients : (a) an aromatic borate ester formed by the complexation of a aromatic reagent described herein after with boric acid or its derivatives; (b) proteolytic enzyme; (c) detergent-compatible second enzyme; (d) anioni and/or nonionic detersive surfactant. These compositions will most commonly be used for cleaning of laundry, fabrics, textiles, fibers, and hard surf ces. Heavy duty liquid laundry detergents are the preferred liquid detergent compositions herein.
(a) Aromatic borate ester
The present liquid detergent compositions contain an aromatic borate est formed by the complexation of an aromatic reagent such as described herei after with boric acid or its derivatives.
The aromatic borate ester can either be formed prior to incorporation in detergent composition, or it can be formed in situ, by simply adding bori acid and the aromatic reagent in the detergent composition at any stage i its manufacturing process, or on top of the finished product.
From about 0.1 to 20 %, preferably about 0.2 to 10% weight % of the aroma borate ester can be used in the liquid detergent composition. The molar ratio of boric acid or its derivatives to aromatic reagent is preferably between about 20:1 and 1:20, more preferably between about 10:1 and 1:10, most preferably between 5:1 and 1:5.
The aromatic reagent
The aromatic reagent has the following structure:
Figure imgf000006_0001
Z
Wherein:
-X is OH, SH, or NH2; _Y is C02H, substituted or unsubstituted CH 0H. CH2SH,
CH2NH2 or C-NH2;
0 -each Z is H or a substituted or unsubstituted C^-
Cg alkyl, alkenyl, alkynyl or an aryl chain, OH or -0-R wherein R is a C^-Cg alkyl chain, or an electron withdrawing group such as CN, CHO, SO3H, N02 or COOR wherein R is H or a C^-Cg .alkyl chain,
-i is an integer of from 1 to 4; i.e there can be up to four substituents per aromatic ring.
Preferably, there will be one substituent per aromatic ring (i.e. i=l) ; preferably, this substituent will be an electron withdrawing group, as defined hereinabove; preferably this electron withdrawing group will be in para position vs the X substituent.
Preferred aromatic reagents according to the invention are substituted or unsubstituted 2-hydroxybenzylalcohol or 2-hydroxybenzoic acid, more preferably 2-hydroxybenzylalcohol, 2,6-dihydroxybenzylalcohol, 2- hydroxybenzoic acid, 2,6- dihydroxybenzoic acid.
From about 0.05 to about 20%, most preferably about 0.2 to 10% weight % o aromatic reagent is preferred in the present liquid detergent compositions
Boric Acid
The boric acid or its derivatives used in the mixture can be boric acid, borax, boric oxide, polyborates, orthoborates, pyroborates, metaborates, mixtures thereof. Boric acid salts are of course included.
In the present liquid detergent compositions, from about 0.001 to 20, more preferably about 0.02 to 10, most preferably 0.05 to 5, weight % of boric acid or derivatives is incorporated.
B. Proteolytic Enzyme
A second essential ingredient in the present liquid detergent compositions is from about 0.0001 to 1.0, preferably about 0.0005 to 0.5, most preferably about 0.002 to 0.1, weight % of active proteolytic enzyme. Mixtures of proteolytic enzyme are also included. The proteolyti enzyme can be of animal, vegetable or microorganism (preferred) origin. More preferred is serine proteolytic enzyme of bacterial origin. Purified or nonpurified forms of this enzyme may be used. Proteolytic enzymes produced by chemically or genetically modified mutants are included. Particularly preferred is bacterial serine proteolytic enzyme obtained f Bacillus Subtillis and/or Bacillus Licheniformis.
Suitable proteolytic enzymes include Alcalase^-, Esperase^ , Savin (preferred); Maxatase^-, Maxacal^- (preferred) , and Maxapem 15^- (protein engineered Maxacal^-) ; and subtilisin BPN and BPN' (preferred) ; which are commercially available. Preferred proteolytic enzymes are also modified bacterial serine proteases, such as those described in European Patent Application Serial Number 87303761.8, published April 28, 1987(particular pages 19, 24 and 98), and which is called herein "Protease B", and in European Patent Application 199,404, Venegas, published October 29, 1986, which refers to a modified bacterial serine proteolytic enzyme which is called "Protease A" herein. Preferred proteolytic enzymes, then, are selected from the group consisting of Savinase^-, Maxacal*-, BPN' , Protease and Protease B, and mixtures thereof. Protease B is most preferred. C. Second Enzyme
The third essential ingredient in the present- liquid compositions a performance-enhancing amount of a detergent-compatible second enzyme. "detergent-compatible" is meant compatibility with the other ingredients a liquid detergent composition, such as detersive surfactant and detergen builder.
These second enzymes are preferably selected from the group consisting of lipase, amylase, cellulase, and mixtures thereof.
The term "second enzyme" excludes the proteolytic enzymes discussed abo so each composition herein contains at least two kinds of enzyme, includi at least one proteolytic enzyme.
The amount of second enzyme used in the composition varies accordin to the type of enzyme and the use intended. In general, from about 0.0001 to 1.0, more preferably 0.001 to 0.5, weight % on an active basis of the second enzymes are preferably used.
Mixtures of enzymes from the same class (e.g. lipase) or two or mor classes (e.g. cellulase and lipase) may be used. Purified or non-purified forms of the enzyme may be used.
Any lipase suitable for use in a liquid detergent composition can b used herein. Suitable lipases for use herein include those of bacterial a fungal origin. Second enzymes from chemically or genetically modified mutants are included.
Suitable bacterial lipases include those produced by Pseudomonas. such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034, incorporated herein by reference. Suitable lipases include tho which show a positive immunological cross-reaction with the antibody of th lipase produced by the microorganism Pseudomonas fluorescens IAM 1057. Th lipase and a method for its purification have been described in Japanese Patent Application 53-20487, laid open on February 24, 1978, which is incorporated herein by reference. This lipase is available under the trad name Lipase P "Amano," hereinafter referred to as "Amano-P." Such lipases should show a positive immunological cross reaction with the Amano-P antibody, using the standard and well-known immunodiffusion procedure according to Ouchterlony (Acta. Med. Scan., 133, pages 76-79 (1950)). These lipases, and a method for their immunological cross-reaction with Amano-P, are also described in U.S. Patent 4,707,291, Thorn et al. , issued November 17, 1987, incorporated herein by reference. Typical examples thereof are the Amano-P lipase, the lipase ex Pseudomonas fragi FERM P 133 (available under the trade name Amano-B) , lipase ex Psuedomonas nitroreducens var. lipolvticum FERM P 1338 (available under the trade na Amano-CES) , lipases ex Chromobacter viscosum. e.g. Chromobacter viscosum var. lipolvticum NRRLB 3673, and further Chromobacter viscosum lipases, an lipases ex Pseudomonas gladioli. Other lipases of interest are Amano AKG and Bacillis Sp lipase (ex. Solvay enzyme).
Suitable fungal lipases include those producible by Humicola lanuginosa and Thermomvces lanuginosus. Most preferred is lipase obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus orvzae as described in European Patent Application 0 258 068, incorporated herein by reference, commercially available under the trade name Lipolase^.
From about 2 to 20,000, preferably about 10 to 6,000, lipase units lipase per gram (LU/g) of product can be used in these compositions. A lipase unit is that amount of lipase which produces 1 μmol of titratable butyric acid per minute in a pH stat, where pH is 9.0, temperature is 30°C, and substrate is an emulsion of 3.3wt % of tributyrin and 3.3% of gum arabic, in the presence of 2.2 μmol/1 Ca and 50μmol/l NaCl in 5μmol/l phosphate.
Any cellulase suitable for use in a liquid detergent composition can be used in these compositions. Suitable cellulase enzymes for use herein include those of bacterial and fungal origins. Preferably, they will have pH optimum of between 5 and 9.5. From about 0.0001 to 1.0, preferably 0.00 to 0.5, weight % on an active enzyme basis of cellulase can be used. Suitable cellulases are disclosed in U.S. Patent 4,435,307,
Barbesgaard et al., issued March 6, 1984, incorporated herein by referen which discloses fungal cellulase produced from Humicola insolens. Suita cellulases are also disclosed in GB-A-2.075.028, GB-A-2.095.275 and DE-0S
2.247.832.
Examples of such cellulases are cellulases produced by a strain o
Humicola insolens (Humicola grisea var. thermoidea) , particularly the
Humicola strain DSM 1800, and cellulases produced by a fungus of Bacillus or a cellulase 212-producing fungus belonging to the genus Aeromonas. and cellulase extracted from the hepatopancreas of a marine mollusc (Dolabell
Auricula Solander) .
Any am lase .suitable for use in a liquid detergent composition c be used in these compositions. Amylases include, for example, amylases obtained from a special strain of B.licheniforms. described in more detai in British Patent Specification No. 1,296,839. Amylolytic proteins inclu for example, Rapidase , Maxamyl and Termamyl
From about 0.0001% to 1.0, preferably 0.0005 to 0.5, weight % on a active enz me basis of amylase can be used.
D. Detersive Surfactant
From about 1 to 80, preferably about 5 to 50, most preferably abou
10 to 30, weight % of detersive surfactant is the fourth essential ingredient in the present invention. The detersive surfactant can be selected from the group consisting of anionics, nonionics, cationics, ampholytics, zwitterionics, and mixtures thereof. Anionic and nonionic surfactants are preferred.
Heavy duty liquid laundry detergents are the preferred liquid detergent compositions herein. The particular surfactants used can vary widely depending upon the particular end-use envisioned. These compositio will most commonly be used for cleaning of laundry, fabrics, textiles, fibers, and hard surfaces.
The benefits of the present invention are especially pronounced in compositions containing ingredients that are harsh to enzymes such as certain detergency builders and surfactants. Preferably the anionic surfactant comprises C_,„to C_n alkyl ether sulfate and C- to C__ linear alkylbenzene sulfonate. Suitable surfactants are described below. Anionic Surfactants
One type of anionic surfactant which can be utilized is alkyl ester sulfonates. These are desirable because they can be made with renewable, non-petroleum resources. Preparation of the alkyl ester sulfonate surfactant component is according to known methods disclosed in the technical literature. For instance, linear esters of C„-C n carboxylic acids can be sulfonated with gaseous S0„ according to "The Journal of th
American Oil Chemists Society," 52 (1975), pp. 323-329. Suitable starti materials would include natural fatty substances as derived from tallow, palm, and coconut oils, etc.
The preferred alkyl ester sulfonate surfactant, especially for laundry applications, comprises alkyl ester sulfonate surfactants of the structural formula:
0
II _,„4 CH - C OR
S03M
3 wherein R is a C„-C__ hydrocarbyl, preferably an alkyl, or combination
4 thereof, R is a C.-C, hydrocarbyl, preferably an alkyl, or combination thereof, and M is a soluble salt-forming cation. Suitable salts include metal salts such as sodium, potassium, and lithium salts, and substituted unsubstituted ammonium salts, such as methyl-, dimethyl, -trimethyl, and quaternary ammonium cations, e.g. tetramethyl-ammonium and dimethyl piperydinium, and cations derived from alkanolamines, e.g. monoethanolamin diethanolamine, and triethanolamine.
3 4
Preferably, R is C1fi-Clg alkyl, and R is methyl, ethyl or isopropyl.
3 Especially preferred are the methyl ester sulfonates wherein R is C - C alkyl.
Alkyl sulfate surfactants are another type of anionic surfactant of importance for use herein. In addition to providing excellent overall cleaning ability when used in combination with polyhydroxy fatty acid amid (see below) , including good grease/oil cleaning over a wide range of temperatures, wash concentrations, and wash times, dissolution of alkyl sulfates can be obtained, as well as improved formulability in liquid detergent formulations are water soluble salts or acids of the formula ROSO,M wherein R preferably is a C^-C,,, hydrocarbyl, preferably an alky hydroxyalkyl having a C^-C-- alkyl component, more preferably a C -G^.. alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal ca
(e.g., sodium, potassium, lithium), substituted or unsubstituted ammoniu cations such as methyl-, dimethyl-, and trimethyl ammonium and quaternar ammonium cations, e.g., tetramethyl-ammonium and dimethyl piperdinium, a cations derived from alkanolamines such as ethanolamine, diethanolamine, triethanolamine, and mixtures thereof, and the like. Typically, alkyl chains of C,. . , are preferred for lower wash temperatures (e.g., below about 50"C) and C_. - n„ alkyl chains are preferred for higher wash temperatures (e.g., above about 50βC) .
Alkyl alkoxylated sulfate surfactants are another category of use anionic surfactant. These surfactants are water soluble salts or acids typically of the formula R0(A) S0,M wherein R is an unsubstituted C_.0-C„, alkyl or hydroxyalkyl group having a C_.Q-C„, alkyl component, preferably
C.--C-- alkyl or hydroxyalkyl, more preferably ci2~ci8 alky! or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0. and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation. Alkyl ethoxylated sulfates as w as alkyl propoxylated sulfates are contemplated herein. Specific example of substituted ammonium cations include methyl-, dimethyl-, trimethyl- ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines, e.g. monoethanolamine, diethanolamine, and triethanolamine, and mixtures thereo Exemplary surfactants are C_._-C_,_ alkyl polyethoxylate (1.0) sulfate, C-_-
C_._ alkyl polyethoxylate (2.25) sulfate, C_.--C_._ alkyl polyethoxylate (3.0 sulfate, and C_.„-C_,_ alkyl polyethoxylate (4.0) sulfate wherein M is conveniently selected from sodium and potassium.
Other Anionic Surfactants
Other anionic surfactants useful for detersive purposes can also be included in the composi .ons hereof. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, Cq-C„n linear alkylbenzenesulphonates, C„-C„„ primary or secondary alkanesulphonates, C„
C-, olefinsulphonates, sulphonated polycarboxylic acids prepared by sulphonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British Patent Specification No. 1,082,179, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulf tes, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C- -C_.0 monoesters) diesters of sulfosuccinate (especially
LΔ It- saturated and unsaturated C c -C- , diesters), N-acyl sarcosinates, sulfates alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described below) , branched primary alkyl sulfates, alkyl polyethoxy carboxylates such as those of the formu R0(CH„CH20) CH2C00-M wherein R is a C8-C2„ alkyl, k is an integer from 0
10, and M is a soluble salt-forming cation, and fatty acids esterified wi isethionic acid and neutralized with sodium hydroxide. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch) . A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference). Nonionic Detergent Surfactants
Suitable nonionic detergent surfactants are generally disclosed in U.S. Patent 3,929,678, Laughlin et al. , issued December 30, 1975, at colum 13, line 14 through column 16, line 6, incorporated herein by reference. Exemplary, non-limiting classes of useful nonionic surfactants are listed below.
1. The polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols. In general, the polyethylene oxide condensates are preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 12 carbon atoms in either a straight chain or branched chain configuration with the alkylene oxide. In a preferred embodiment, the ethylene oxide is present in an amount equal to from about 5 to about 25 moles of ethylene oxide per mole of alkyl phenol. Commercially available
TM nonionic surfactants of this type include Igepal CO-630, marketed by the TM GAF Corporation; and Triton X-45, X-114, X-100, and X-102, all markete the Rohm & Haas Company. These compounds are commonly referred to as al phenol alkoxylates, (e.g., alkyl phenol ethoxylates) .
2. The condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide. The alkyl chain of the aliphatic alcoh l can either be straight or branched, primary or second and generally contains from about 8 to about 22 carbon atoms. Particul preferred are the condensation products of alcohols having an alkyl group containing from about 10 to about 20 carbon atoms with from about 2 to ab
18 moles of ethylene oxide per mole of alcohol. Examples of commercially
TM available nonionic surfactants of this type include Tergitol 15-S-9
(the condensation product of C.-.-C..,. linear secondary alcohol with 9 mol
TM ethylene oxide), Tergitol 24-L-6 NMW (the condensation product of C_.„-C primary alcohol with 6 moles ethylene oxide with a narrow molecular weigh
TM distribution) , both marketed by Union Carbide Corporation; Neodol 45-9
(the conden-sation product of C-.-C.,. linear alcohol with 9 moles of
TM ethylene oxide), Neodol 23-6.5 (the condensation product of C_.„-C_._ lin
TM alcohol with 6.5 moles of ethylene oxide), Neodol 45-7 (the condensatio product of C-.-C..,. linear alcohol with 7 moles of ethylene oxide),
TM Neodol 45-4 (the condensation product of C-.-C.,. linear alcohol with
T moles of ethylene oxide), marketed by Shell Chemical Company, and Kyro
EOB (the condensation product of C.^-C.,. alcohol with 9 moles ethylene oxide) , marketed by The Procter & Gamble Company. This category of nonionic surfactant is referred to generally as "alkyl ethoxylates."
3. The condensation products of ethylene oxide with a hydrophob base formed by the condensation of propylene oxide with propylene glycol The hydrophobic portion of these compounds preferably has a molecular weig of from about 1500 to about 1800 and exhibits water insolubility. The addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensati product, which corresponds to condensation with up to about 40 moles of ethylene oxide. Examples of compounds of this type include certain of t
TM commercially-available Pluronic surfactants, marketed by BASF.
4. The condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine. The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000. This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has molecular weight of from about 5,000 to about 11,000. Examples of this ty of nonionic surfactant include certain of the commercially available
TM Tetronic compounds, marketed by BASF.
5. Semi-polar nonionic surfactants are a special category nonionic surfactants which include water-soluble amine oxides containing on alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of from about 10 to about 18 carbon atom and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms.
Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula
0
Figure imgf000015_0001
3 wherein R is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures
4 thereof containing from about 8 to about 22 carbon atoms; R is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof; x is from 0 to about 3; and each R is an alkyl or hydroxyalkyl group containing from about 1 to about carbon atoms or a polyethylene oxide group containing from about 1 to about
3 ethylene oxide groups. The R groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
These amine oxide surfactants in particular include Cιn-C10 alkyl iU lo dimethyl amine oxides and C„-C..„ alkoxy ethyl dihydroxy ethyl amine oxides. 6. Alkylpolysaccharides disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic gr containing from about 1.3 to about 10, preferably from about 1.3 to ab 3, most preferably from about 1.3 to about 2.7 saccharide units. Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties. (Optionally the hydrophobic group is attached at the 3-, 4-, etc. positions thus giving a glucose or galactose as opposed t glucoside or galactoside.) The intersaccharide bonds can be, e.g., betwe the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
Optionally, and less desirably, there can be a polyalkylene-oxide chain joining the hydrophobic moiety and the polysaccharide moiety. The preferred alkyleneoxide is ethylene oxide. Typical hydrophobic groups include alkyl groups, either saturated or unsaturated, branched or unbranched containing from about 8 to about 18, preferably from about 10 about 16, carbon atoms. Preferably, the alkyl group is a straight chain saturated alkyl group. The alkyl group can contain up to about 3 hydroxy groups and/or the polyalkyleneoxide chain can contain up to about 10, preferably less than 5, alkyleneoxide moieties. Suitable alkyl polysaccharides are octyl, nonyldecyl, undecyldodecyl, tridecyl, tetradec pentadecyl, hexadecyl, heptadecyl, and octadecyl, di-, tri-, tetra-, pent and hexaglucosides, galactosides, lactosides, glucoses, fructosides, fructoses and/or galactoses. Suitable mixtures include coconut alkyl, di- tri-, tetra-, and pentaglucosides and tallow alkyl tetra-, penta-, and hex glucosides.
The preferred alkylpolyglycosides have the formula R20(CnH2n0)t(glycosyl)χ
2 wherein R is selected from the group consisting of alkyl, alkyl-phenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from about 10 to about 18, preferably from about 12 to abo
14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from about 1.3 to about 10, preferably from about 1 to about 3, most preferably from about 1.3 to about 2.7. The glycosyl is pre- ferably derived from glucose. To prepare these compounds, the alcoh or alkylpolyethoxy alcohol is formed first and then reacted with glucos or a source of glucose, to form the glucoside (attachment at the 1- position) . The additional glycosyl units can then be attached between th 1-position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2-position.
7. Fatty acid amide surfactants having the formula:
Figure imgf000017_0001
wherein R is an alkyl group containing from about 7 to about 21 (preferab from about 9 to about 17) carbon atoms and each R is selected from the group consisting of hydrogen, C--C, alkyl, C^ -C, hydroxyalkyl, and -
(C-H.0) H where x varies from about 1 to about 3. 2 4 x
Preferred amides are C_-C„n ammonia amides, monoethanol- amides, diethanolamides, and isopropanolamides. Cationic Surfactants
Cationic detersive surfactants can also be included in detergent compositions of the present invention. Cationic surfactants include the ammonium surfactants such as alkyldimethylammonium halogenides, and those surfactants having the formula:
[R2(OR3)y][R4(OR3)y]2R5N+ -
2 wherein R is an alkyl or alkyl benzyl group having from about 8 to abou
3 18 carbon atoms in the alkyl chain, each R is selected from the group consisting of -CH-CH- , -CH2CH(CH_)- , -CH2CH(CH20H)- , -
4 CH CH CH„-, and mixtures thereof; each R is selected from the group consisting of C. -C, alkyl, C- -C, hydroxyalkyl, benzyl, ring structures formed by joining the two R groups, -CH^CHOH-CHOHCOR CHOHCH^OH wherein R is any hexose or hexose polymer having a molecular weight less than about
5 4
1000, and hydrogen when y is not 0; R is the same as R or is an alkyl
2 5 chain wherein the total number of carbon atoms of R plus R is not more than about 18; each y is from 0 to about 10 and the sum of the y values is from 0 to about 15; and X is any compatible anion. Other cationic surfactants useful herein are also described in Patent 4,228,044, Cambre, issued October 14, 1980, incorporated herein b reference. Other Surfactants
Ampholytic surfactants can be incorporated into the detergent compositions hereof. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight chain or branched. One of the aliphati substituents contains at least about 8 carbon atoms, typically from abou to about 18 carbon atoms, and at least one contains an anionic water- solubilizing group, e.g., carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 Laughlin et al. , issued December 30, 1975 at column 19, lines 18-35 (her incorporated by reference) for examples of ampholytic surfactants.
Zwitterionic surfactants can also be incorporated into the deterge compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. See U.S. Patent 3,929,678 tc Laughlin et al., issued December 30, 1975 at column 19, line through column 22, line 48 (herein incorporated by reference) for examples of zwitterionic surfactants.
Ampholytic and zwitterionic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants. Polyhydroxy Fatty Acid Amide Surfactant
The liquid detergent compositions hereof preferably contain an "enzyme performance-enhancing amount" of polyhydroxy fatty acid amide surfactant. By "enzyme-enhancing" is meant that the formulator of the composition can select an amount of polyhydroxy fatty acid amide to be incorporated into the composition that will improve enzyme cleaning performance of the detergent composition. In general, for conventional levels of enzyme, the incorporation of about 1%, by weight, polyhydroxy fatty acid amide will enhance enzyme performance.
The detergent compositions hereof will typically comprise at least about 1 weight % polyhydroxy fatty acid amide surfactant and preferably wi comprise from about 3% to 50%, most preferably from about 3% to 30%, of the polyhydroxy fatty acid amide. The polyhydroxy fatty acid amide surfactant component comprises compounds of the structural formula:
0 R1
2 'I '
(I) R - C - N - Z
wherein: R is H, C. -C, hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, a mixture thereof, preferably C -C, alkyl, more preferably C. or C„ alkyl,
2 most preferably C. alkyl (i.e., methyl); and R is a Ct--C_1 hydrocarbyl, preferably straight chain C7-C-c. alkyl or alkenyl, more preferably straig chain C„-C.7 alkyl or alkenyl, most preferably straight chain C.-, -C_. al or alkenyl, or mixtures thereof; and Z is a polyhydroxyhydrocarbyl having linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sug in a reductive amination reaction; more preferably Z will be a glycityl.
Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose. As raw materials, high dextrose corn syru high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials. Z preferably will be selected from the group consisting of -CH2-(CH0H) -CH20H, -CH(CH20H)-
(CHOH)n.1- CH20H, -CH2-(CH0H)2(CH0R')(CH0H)-CH20H, and alkoxylated derivatives thereof, where n is an integer from 3 to 5, inclusive, and R'
H or a cyclic or aliphatic monosaccharide. Most preferred are glycityls wherein n is 4, particularly -CH--(CHOH), -CH?0H.
In Formula (I), R' can be, for example, N-methyl, N-ethyl, N-propyl N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
R2-C0-N can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide, etc.
Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1- deoxylactityl, 1-deoxygalactityl, 1-deoxymannityl, 1-deoxymalto-triotityl, etc.
Methods for making polyhydroxy fatty acid amides are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine w a fatty aliphatic ester or triglyceride in a condensation/amidation step form the N-alkyl, N-polyhydroxy fatty acid amide product. Processes for making compositions containing polyhydroxy fatty acid amides are disclos for example, in G.B. Patent Specification 809,060, published February 18,
1959, U.S. Patent 2,965,576, issued December 20, 1960 to E. R. Wilson,
U.S. Patent 2,703,798, Anthony M. Schwartz, issued March 8, 1955, and U.S
Patent 1,985,424, issued December 25, 1934 to Piggott, each of which is incorporated herein by reference.
E. Optional Ingredients
Detergency Builders
From 0 to about 50, preferably about 3 to 30, more preferably abou to 20, weight % detergency builder can be included herein. Inorganic as well as organic builders can be used.
Inorganic detergency builders include, but are not limited to, t alkali metal, ammonium and alkanolammonium salts of polyphosphates
(exemplified by the tripolyphosphates, pyrophosphates, and glassy polymer meta-phosphates) , phosphonates, phy ic acid, silicates, carbonates
(including bicarbonates and sesquicarbonates) , sulphates, and aluminosili- cates. Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditio
(hereinaf er, collectively "borate builders"), can also be used.
Preferably, non-borate builders are used in the compositions of the invention intended for use at wash conditions less than about 50°C, especially less than about 40°C.
Examples of silicate builders are the alkali metal silicates, particularly those having a SiO„:Na„0 ratio in the range 1.6:1 to 3.2:1 an layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck, incorporated herein reference. However, other silicates may also be useful such as for exampl magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a compone of suds control systems.
Examples of carbonate builders are the alkaline earth and alkali aetal carbonates, including sodium carbonate and sesquicarbonate and mixtures thereof with ultra-fine calcium carbonate as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973, the disclosure of which is incorporated herein by reference. Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently markete heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula:
z(zA102-.ySi02)
wherein M is sodium, potassium, ammonium or substituted ammonium, z is fro about 0.5 to about 2; and y is 1; this material having a magnesium ion exchange capacity of at least about 50 milligram equivalents of CaCO, hardness per gram of anhydrous aluminosilicate. Preferred aluminosilicat are zeolite builders which have the formula:
Naz[ A102)z (Si02) ].χH20
wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al., issued October 12, 1976, incorporated herein by reference. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under t designations Zeolite A, Zeolite P (B) , and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange materia has the formula:
Na12[( l02)12(Si02)12J H20
wherein x is from about 20 to about 30, especially about 27. This material is known as Zeolite A. Preferably, the aluminosilicate has a particle s z of about 0.1-10 microns in diameter.
Specific examples of polyphosphates are the alkali metal tripolyphosphates. sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphat sodium polymeta phosphate in which the degree of polymerization ranges f about 6 to about 21, and salts of phytic acid.
Examples of phosphonate builder salts are the water-soluble salts ethan. 1-hydroxy-l, 1-diphosphonate particularly the sodium and potassiu salts, the water-soluble salts of methylene diphosphonic acid e.g. the trisodium and tripotassium salts and the water-soluble salts of substituted methylene diphosphonic acids, such as the trisodium and tripotassium ethylidene, isopyropylidene benzylmethylidene and halo methylidene phosphonates. Phosphonate builder salts of the aforemention types are disclosed in U.S. Patent Nos. 3,159,581 and 3,213,030 issued December 1, 1964 and October 19, 1965, to Diehl; U.S. Patent No. 3,422, issued January 14, 1969, to Roy; and U.S. Patent Nos. 3,400,148 and 3,422,137 issued September 3, 1968, and January 14, 1969 to Quimby, said disclosures being incorporated herein by reference.
Organic detergent builders preferred for the purposes of the prese invention include a wide variety of polycarboxylate compounds. As used herein, "polycarboxylate" refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
Polycarboxylate builder can generally be added to the composition acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
Included among the polycarboxylate builders are a variety of categories of useful materials. One important category of polycarboxylate builders encompasses the ether polycarboxylates. A number of ether polycarboxylates have been disclosed for use as detergent builders. Examples of useful ether polycarboxylates include oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and La berti et al., U.S. Patent 3,635,830, issued January 18, 1972, both of which are incorporated herein by reference.
A specific type of ether polycarboxylates useful as builders in th present invention also include those having the general formula:
CH(A)(C00X)-CH(COOX)-O-CH(COOX)-CH(COOX)(B)
wherein A is H or OH; B is H or -0-CH(C00X)-CH2(C00X) ; and X is H or a salt-forming cation. For example, if in the above general formula A and B are both H, then the compound is oxydissuccinic acid and its water-solubl salts. If A is OH and B is H, then the compound is tartrate monosuccinic acid (TMS) and its water-soluble salts. If A is H and B is -O-CH(COOX)- CH-(COOX), then the compound is tartrate disuccinic acid (TDS) and its water-soluble salts. Mixtures of these builders are especially preferred for use herein. Particularly preferred are mixtures of TMS and TDS in weight ratio of TMS to TDS of from about 97:3 to about 20:80. These builders are disclosed in U.S. Patent 4,663,071, issued to Bush et al., on May 5, 1987.
Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903, all of which ar incorporated herein by reference.
Other useful detergency builders include the ether hydroxypolycarboxylates represented by the structure:
HO-[C(R)(C0OM)-C(R)(COOM)-O] -H wherein M is hydrogen or a cation wherein the resultant salt is water- soluble, preferably an alkali metal, ammonium or substituted ammonium cation, n is from about 2 to about 15 (preferably n is from about 2 to about 10, more preferably n averages from about 2 to about 4) and each R i the same or different and selected from hydrogen, C. , alkyl or C- , substituted alkyl (preferably R is hydrogen) .
Still other ether polycarboxylates include copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid.
Organic polycarboxylate builders also include the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids. Examples include the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylenediamine tetraacetic acid, and nitrilotriacetic acid.
Also included are polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene
1,3,5-tricarboxylic acid, and carboxymethyloxysuccinic acid, and soluble salts thereof.
Citrate builders, e.g., citric acid and soluble salts thereof (particularly sodium salt) , are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations, but can also used in granular compositions.
Other carboxylate builders include the carboxylated carbohydrates disclosed in U.S. Patent 3,723,322, Diehl, issued March 28, 1973, incorporated herein by reference.
Also suitable in the detergent compositions of the present invent are the 3,3-dicarboxy-4-oxa-l,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986, incorporated herein by reference. Useful succinic acid builders includ the C,.-C„n alkyl succinic acids and salts thereof. A particularly prefe compound of this type is dodecenylsuccinic acid. Alkyl succinic acids typically are of the general formula R-CH(C00H)CH2(C00H) i.e., derivative of succinic acid, wherein R is hydrocarbon, e.g., C_._-C20 alkyl or alken preferably C_.2-C.,. or wherein R may be substituted with hydroxyl, sulfo, sulfoxy or sulfone substituents, all as described in the above-mentioned patents.
The succinate builders are preferably used in the form of their water-soluble salts, including the sodium, potassium, ammonium and alkanolammonium salts.
Specific examples of succinate builders include: laurylsuc-cinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2 pentadecenylsuccinate, and the like. Laurylsuc-cinates are the preferred builders of this group, and are described in European Patent Applicatio
86200690.5/0,200,263, published November 5, 1986.
Examples of useful builders also include sodium and potassium carboxymethyloxymalonate, carboxyme hyloxysuccinate, cis-cyclo-hexane- hexacarboxylate, cis-cyclopentane-tetracarboxylate, water-soluble polyacrylates (these polyacrylates having molecular weights to above about
2,000 can also be effectively utilized as dispersants) , and the copolymers of maleic anhydride with vinyl methyl ether or ethylene.
Other suitable polycarboxylates are the polyacetal car-boxylates disclosed in U.S. Patent 4,144,226, Crutchfield et al., issued March 13, 1979, incorporated herein by reference. These polyacetal carboxylates can be prepared by bringing together, under polymerization conditions, an este of glyoxylic acid and a polymerization initiator. The resulting polyaceta carboxylate ester is then attached to chemically stable end groups to stabilize the polyacetal carboxylate against rapid depolymeriza- tion in alkaline solution, converted to the corresponding salt, and added to a surfactant.
Polycarboxylate builders are also disclosed in U.S. Patent 3,308,06 Diehl, issued March 7, 1967, incorporated herein by reference. Such materials include the water-soluble salts of homo- and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylenemalonic acid.
Other organic builders known in the art can also be used. For example, monocarboxylic acids, and soluble salts thereof, having long chai hydrocarbyls can be utilized. These would include materials generally referred to as "soaps." Chain lengths of C_._-C2f) are typically utilized.
The hydrocarbyls can be saturated or unsaturated. Soil Release Agent
Any soil release agents known to those skilled in the art can be employed in the practice of this invention. Preferred polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylo and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
Whereas it can be beneficial to utilize polymeric soil release agents in any of the detergent compositions hereof, especially those compositions utilized for laundry or other applications wherein removal of grease and oil from hydrophobic surfaces is needed, the presence of polyhydroxy fatty acid amide in detergent compositions also containing anionic surfactants can enhance performance of many of the more commonly utilized types of polymeric soil release agents. Anionic surf ctants interfere with the ability of certain soil release agents to deposit upon and adhere to hydrophobic surfaces. These polymeric soil release agents have nonionic hydrophile segments or hydrophobe segments which are anionic surfactant-interactive.
One type of preferred soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate. More specifically, these polymers are comprised of repeatin units of ethylene terephthalate and PEO terephthalate in a mole ratio of ethylene terephthalate units to PEO terephthalate units of from about 2 to about 35:65, said PEO terephthalate units containing polyethylene ox having molecular weights of from about 300 to about 2000. The molecular weight of this polymeric soil release agent is in the range of from ab 25,000 to about 55,000. See U.S. Patent 3,959,230 to Hays, issued May 2 1976, which is incorporated by reference. See also U.S. Patent 3,893, to Basadur issued July 8, 1975 (incorporated by reference) which disclos similar copolymers.
Another preferred polymeric soil release agent is a polyester wit repeat units of ethylene terephthalate units containing 10-15% by weight ethylene terephthalate units together with 90-80% by weight of polyoxyethlyene terephthalate units, derived from a polyoxyethylene glyco of average molecular weight 300-5,000, and the mole ratio of ethylene terephthalate.units to polyoxyethylene terephthalate units in the polymer compound is between 2:1 and 6:1. Examples of this polymer include the commercially available material ZelconR 5126 (from Dupont) and Milease R (from ICI) . These polymers and methods of their preparation are more ful described in U.S. Patent 4,702,857, issued October 27, 1987, to Gosselink which is incorporated herein.
Other suitable polymeric soil release agents include the ethyl o methyl-capped 1,2-propylene terephthalate-polyoxy- ethylene terephthalat polyesters of U.S. Patent 4,711,730, issued December 8, 1987, to Gossel et al., the anionic end-capped oligomeric esters of U.S. Patent 4,721,580, issued January 26, 1988, to Gosselink, wherein the anionic end-caps comprise sulfo-polyethoxy groups derived from polyethylene glycol (PEG) , block polyester oligomeric compounds of U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink, having polyethoxy end-caps of the formula X- 0CH2CH2)n- wherein n is from 12 to about 43 and X is a C1-C alkyl, o preferably methyl, all of these patents being incorporated herein by reference.
Additional polymeric soil release agents include the soil release agents of U.S. Patent 4,877,896, issued October 31, 1989 to Maldonado et al., which discloses anionic especially sulfo- aroyl, end-capped terepthalate esters, said patent being incor- porated herein by reference
The terephthalate esters contain unsymmetrically substituted oxy-1,2- alkyleneoxy units. Included among the soil release polymers of U.S. Paten 4,877.896 are materials with polyoxyethylene hydrophile components or C3 oxyalkylene terephthalate (propylene terephthalate) repeat units within th scope of the hydrophobe components of (b)(i) above. It is the polymeric soil release agents characterized by either, or both, of these criteria th particularly benefit from the inclusion of the polyhydroxy fatty acid amides hereof, in the presence of anionic surfactants.
If utilized, soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to abou 3.0%.
Useful soil release polymers are described in U.S. Patent 4,000,093 issued December 28, 1976 to Nicol et al., European Patent Application 0 21 048, published April 22, 1987 by Kud et al. U.S. Patent 3,959,230 to Hays issued May 25, 1976, U.S. Patent 3,893,929 to Basadur issued July 8, 1975, U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink, U.S. Patent 4,711,730, issued December 8, 1987 to Gosselink et al., U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink, U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink, U.S. Patent 4,877,896, issued October 31, 1989 to Maldonado et al. All of these patents are incorporate herein by reference.
If utilized, soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent composi-tions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to abou 3.0%. Chelating Agents
The detergent compositions herein may also optionally contain one o more iron and manganese chelating agents as a builder adjunct material. Such chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof, all as hereinafter defined. Withou intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
Amino carboxylates useful as optional chelating agents in compositions of the invention can have one or more, preferably at least two units of the substructure
CH
2.
"^N - (CH ) - COOM / wherein M is hydrogen, alkali metal, ammonium or substituted ammonium (e ethan mine) and x is from 1 to about 3, pref- erably 1. Preferably, t amino carboxylates do not contain alkyl or alkenyl groups with more tha about 6 carbon atoms. Operable amine carboxylates include ethylenediaminetetraacetates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraaminehexa-acetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts thereof and mixtures thereof.
Amino phosphonates are also suitable for use as chelating agents i the compositions of the invention when at least low levels of total phosphorus are permitted in detergent composi- tions. Compounds with one more, preferably at least two, units of the substructure
CH2
/* (CH2)χ P03 2,
wherein M is hydrogen, alkali metal, ammonium or substituted ammonium and is from 1 to about 3, preferably 1, are useful and include ethylenediaminetetrakis (methylenephosphonates) , nitrilotris (methylenephosphonates) and diethylenetriaminepentakis (methylenephosphonates). Preferably, these amino phosphonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
Alkylene groups can be shared by substructures.
Polyfunctionally - substituted aromatic chelating agents are also useful in the compositions herein. These materials can comprise compounds having the general formula
Figure imgf000028_0001
wherein at least one R is -S0_H or -C00H or soluble salts thereof and mixtures thereof. U.S. Patent 3,812,044, issued May 21, 1974, to Connor e al., incorporated herein by reference, discloses polyfunctionally - substituted aromatic chelating and sequestering agents. Preferred compoun of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydro -3,5-disulfo- benzene. Alkaline detergent compositions can contain these materials in the form of alkali metal, ammonium or substituted ammonium (e.g. mono-or triethanol-amine) salts.
If utilized, these chelating agents will generally comprise from about 0.1% to about 10% by weight of the detergent composi-tions herein. More preferably chelating agents will comprise from about 0.1% to about 3. by weight of such compositions. Clay Soil Removal/Anti-redeposition Agents
The compositions of the present invention can also optionally conta water-soluble ethoxylated amines having clay soil removal and anti- redeposition properties. Liquid detergent compositions which contain thes compounds typically contain from about 0.01% to 5%.
The most preferred soil release and anti-redeposition agent is ethoxylated tetraethylenepentamine. Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986, incorporated herein by reference. Another group of preferred clay soil removal/anti-redeposition agents are the cationic compounds disclose in European Patent Application 111,965, Oh and Gosselink, published June 2 1984, incorporated herein by reference. Other clay soil removal/anti- redeposition agents which can be used include the ethoxylated amine polyme disclosed in European Patent Application 111,984, Gosselink, published Jun 27, 1984; the zwitterionic polymers disclosed in European Patent Applicati 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S. Patent 4,548,744, Connor, issued October 22, 1985, all of which ar incorporated herein by reference.
Other clay soil removal and/or anti redeposition agents known in th art can also be utilized in the compositions hereof. Another type of preferred anti-redeposition agent includes the carboxymethylcellulose (CMC) materials. These materials are well known in the art. Polymeric Dispersing Agents
Polymeric dispersing agents can advantageously be utilized in the compositions hereof. These materials can aid in calcium and magnesium hardness control. Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used.
Suitable polymeric dispersing agents for use herein are described in U.S. Patent 3,308,067, Diehl, issued March 7, 1967, and European Patent Application No. 66915, published December 15, 1982, both incorporated he by reference.
Brightener
Any suitable optical brighteners or other brightening or whitenin agents known in the art can be incorporated into the detergent compositi hereof.
Commercial optical brighteners which may be useful in the present invention can be classified into subgroups which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiphene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents. Exampl of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons, New York (1982), the disclosure of which is incorporated herein by reference. Suds Suppressors
Compounds known, or which become known, for reducing or suppressin the formation of suds can be incorporated into the compositions of the present invention. Suitable suds suppressors are described in Kirk Othme Encyclopedia of Chemical Technology, Third Edition, Volume 7, pages 430-4 (John Wiley & Sons, Inc., 1979), U.S. Patent 2,954,347, issued September 1960 to St. John, U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo al., U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al. an European Patent Application No. 89307851.9, published February 7, 1990, U. Patent 3,455,839, German Patent Application DOS 2,124,526, U.S. Patent 3,933,672, Bartolotta et al., and U.S. Patent 4,652,392, Baginski et al., issued March 24, 1987. All are incorporated herein by reference.
The compositions hereof will generally comprise from 0% to about 5% of suds suppressor. Other Ingredients
A wide variety of other ingredients useful in detergent composition can be included in the compositions hereof, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, bleaches, bleach activators, etc.
Liquid detergent compositions can contain water and other solvents carriers. Low molecular weight primary or secondary alcohols exemplified methanol, ethanol, propanol, and isopropanol are suitable. Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups (e.g., propylene glycol, ethylene glycol, glycerine, and 1,2-propanediol) can also be used. Liquid Compositions
Preferred heavy duty liquid laundry detergent compositions hereof will preferably be formulated such that during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and 11.0, preferably between about 7.0 and 9.0, most preferably between 7.5 and 8.0. The compositions herein preferably have a pH in a 10% solution in water at 20°C of between about 7.0 to 11.0, preferably 7.0 to 8.5. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
This invention further provides a method for cleaning substrate, su as fibers, fabrics, hard surfaces, skin, etc., by contacting said substrat with a liquid detergent composition comprising detersive surfactant, proteolytic enzyme, a detergent-compatible second enzyme, and the aryl boronic acids described above. Agitation is preferably provided for enhancing cleaning. Suitable means for providing agitation include rubbing by hand or preferably with use of a brush, sponge, cloth, mop, or other cleaning device, automatic laundry washing machines, automatic dishwashers etc.
Preferred herein are concentrated liquid detergent compositions. By "concentrated" is meant that these compositions will deliver to the wash th same amount of active detersive ingredients at a reduced dosage. Typical regular dosage of heavy duty liquids is 118 milliliters in the U.S. (about 1/2 cup) and 180 milliliters in Europe.
Concentrated heavy duty liquids herein contain about 10 to 100 weight % more active detersive ingredients than regular heavy duty liquids, and are dosed at less than 1/2 cup depending upon their active levels. Thi invention becomes even more useful in concentrated formulations because there are more actives to interfere with enzyme performance. Preferred are heavy duty liquid laundry detergent compositions with from about 30 to 90 preferably 40 to 80, most preferably 50 to 60, weight % of active detersive ingredients.
The following examples illustrate the compositions of the present invention. All parts, percentages and ratios used herein are by weight unless otherwise specified. 3o
EXAMPLES
II III
Linear alkyl benzene sulfonate
Sodium C12-15 alkyl sulfate
C14-15 alkyl 2.5 times ethoxylated sulfate
C12 glucose amide
C12-15 alcohol 7 times ethoxylated
C12-15 alcohol 5 times ethoxylated
Oleic acid
Citric acid
C12-14 alkenyl substituted succinic acid
Ethanol
1,2-propanediol
NaOH diethylene triamine penta
(methylene phosphonic acid)
Amylase (143KNU/g)
LipolaseR(100KLU/g commercial solution)
Protease B (34mg/g commercial solution)
Soil release polymer
2,6-dihydroxybenzylalcohol
CaC12
Na metaborate
Figure imgf000032_0001
Water and Minors Balance to 100%
IV VI
Linear alkyl benzene sulfonate
Sodium C12-15 alkyl sulfate
C14-15 alkyl 2.5 times ethoxylated sulfate
C12 glucose amide
C12-15 alcohol 7 times ethoxylated
C12-15 alcohol 5 times echoxylated
Oleic acid
Citric acid
C12-14 alkenyl substituted succinic acid
Ethanol
1,2-propanediol
NaOH diethylene triamine penta
(methylene phosphonic acid)
Amylase (143KNU/g)
LipolaseR(100KLU/g commercial solution)
Protease B (34mg/g commercial solution)
Soil release polymer
2-hvdroxvbenzylalcohol
ZaCΪl
"a metaborate
Figure imgf000032_0002
Vater and Minors Balance to 100% Linear alkyl benzene sulfonate
Sodium C12-15 alkyl sulfate
C14-15 alkyl 2.5 times ethoxylated sulfate
C12 glucose amide
C12-15 alcohol 7 times ethoxylated
C12-15 alcohol 5 times ethoxylated
Oleic acid
Citric acid
C12-14 alkenyl substituted succinic acid
Ethanol
1,2-propanediol
NaOH diethylene triamine penta
(methylene phosphonic acid)
Amylase (143KNU/g)
LipolaseR(100KLU/g commercial solution)
Protease B (34mg/g commercial solution)
Soil release polymer
2-hydroxybenzoic acid
CaC12
Na metaborate
Figure imgf000033_0001
Water and Minors Balance to 100%
XI XII
Linear alkyl benzene sulfonate
Sodium C12-15 alkyl sulfate
C14-15 alkyl 2.5 times ethoxylated sulfate
C12 glucose amide
C12-15 alcohol 7 times ethoxylated
C12-15 alcohol 5 times ethoxylated
Oleic acid
Citric acid
C12-14 alkenyl substituted succinic acid
Ethanol
1,2-propanediol
NaOH diethylene triamine penta
(methylene phosphonic acid)
Amylase (143KNU/g)
LipolaseR(100KLU/g commercial solution)
Protease B (34mg/g commercial solution)
Soil release polymer
2,6-dihydroxybenzoic acid
CaC12
Na metaborate
Water and Minors
Figure imgf000033_0002

Claims

A liquid detergent composition comprising : a. an aromatic borate ester formed by the complexation of boric a with an aromatic reagent of the structure:
Figure imgf000034_0001
wherein:
-X is OH, SH, or NH2;
_Y is C02H, substituted or unsubstituted CH2OH,
CH2SH, CH2NH2 or C-NH2;
0
-each Z is H or a substituted or unsubstituted Cl-
C6 alkyl, alkenyl, alkynyl or an aryl chain, OH or -0-R wherein R is a Cχ-Cg alkyl chain, or an electron withdrawing group such as CN, NO2
CHO, SO3H, COOR wherein R is H or a Cχ-Cg alkyl chain; -i is an integer of from 1 to 4, b. from about 0.0001 to 1 % of active proteolytic enzyme; c. a performance-enhancing amount of a detergent-compatible second enzyme; d. from about 1 to 80 weight % of anionic or nonionic surfactant;
2. A liquid detergent composition according to claim 1, wherein i is and Z is CN, N02, CHO, S03H or COOR, wherein R is H or a Cχ-Cg alk chain; in para position vs X;
3. A liquid detergent composition according to claim 1, wherein X is OH.
4. A liquid detergent composition according to the preceding claims, wherein the aromatic reagent is a substituted or unsubstituted 2- hydroxybenzylalcohol or 2-hydroxybenzoic acid.
5. A liquid detergent composition according to claim 4, wherein the aromatic reagent is selected from the group of 2- hydroxybenzylalcohol, 2,6-dihydroxybenzylalcohol, 2-hydroxybenzoic acid, 2,6-dihydroxybenzoic acid.
6 . A liquid detergent composition according to the preceding claims which comprises from 0.1 to 20%, preferably from 0.2 to 10% to of said aromatic borate ester.
7. A liquid detergent composition according to the preceding claims wherein the molar ratio of boric acid or its equivalent derivative to aromatic reagent is between 20:1 and 1:20, preferably 10:1 to 1:10, most preferably 5:1 to 1:5.
8. A liquid detergent composition according to the preceding claims wherein the proteolytic enzyme is a serine protease, preferably Savinase R, Maxacal R Maxapem 15 R, Protease A, ProteaseB, any chemically or genetically modified mutant thereof, and mixtures thereof.
9. A liquid detergent composition according to the preceding claims which comprises from about 0.0005 to 0.5% by weight of active proteolytic enzyme, preferably from 0.002 to 0.1% by weight.
10. A liquid detergent composition according to the preceding claims wherein said second enzyme is selected from the group consisting of lipase, amylase, cellulase, and mixtures thereof.
11. A liquid detergent composition according to claim 10 wherein said second enzyme is a lipase.
12. A liquid detergent composition according to claim 11 comprising fro about 2 to 20000, preferably 10 to 6000 lipase units per gram of detergent of said lipase product obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus orvzae.
13. A liquid detergent composition according to the preceding claims wherein said surfactant comprises an enzyme performance-enhancing amount of polyhydroxy fatty acid amine surfactant.
PCT/US1992/003373 1991-04-30 1992-04-24 Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme WO1992019708A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/137,206 US5422030A (en) 1991-04-30 1992-04-24 Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
JP4511920A JPH06507199A (en) 1991-04-30 1992-04-24 Liquid detergent containing proteolytic enzyme inhibiting aromatic borate ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP91870072.5 1991-04-30
EP91870072A EP0511456A1 (en) 1991-04-30 1991-04-30 Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme

Publications (1)

Publication Number Publication Date
WO1992019708A1 true WO1992019708A1 (en) 1992-11-12

Family

ID=8209019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/003373 WO1992019708A1 (en) 1991-04-30 1992-04-24 Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme

Country Status (10)

Country Link
EP (1) EP0511456A1 (en)
JP (1) JPH06507199A (en)
CN (1) CN1067264A (en)
AU (1) AU2004392A (en)
CA (1) CA2109525C (en)
MX (1) MX9202071A (en)
NZ (1) NZ242538A (en)
PH (1) PH31243A (en)
TW (1) TW237477B (en)
WO (1) WO1992019708A1 (en)

Cited By (430)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060058A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
WO2000071688A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 126 and 127
WO2000071691A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 125 and 126
WO2000071689A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 127 and 128
WO2000071687A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 129 and 130
WO2000071685A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 132 and 133
WO2000071690A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 128 and 129
WO2002016547A2 (en) 2000-08-21 2002-02-28 Novozymes A/S Subtilase enzymes
WO2002031133A1 (en) 2000-10-13 2002-04-18 Novozymes A/S Subtilase variants
WO2002092797A2 (en) 2001-05-15 2002-11-21 Novozymes A/S Alpha-amylase variant with altered properties
WO2003000941A2 (en) 2001-06-26 2003-01-03 Novozymes A/S Polypeptides having cellobiohydrolase i activity and polynucleotides encoding same
WO2003006602A2 (en) 2001-07-12 2003-01-23 Novozymes A/S Subtilase variants
WO2003080827A2 (en) 2002-03-27 2003-10-02 Novozymes A/S Granules with filamentous coatings
WO2004067739A2 (en) 2003-01-27 2004-08-12 Novozymes A/S Stabilization of granules
WO2005001064A2 (en) 2003-06-25 2005-01-06 Novozymes A/S Polypeptides having alpha-amylase activity and polypeptides encoding same
WO2005040372A1 (en) 2003-10-23 2005-05-06 Novozymes A/S Protease with improved stability in detergents
WO2005047499A1 (en) 2003-10-28 2005-05-26 Novozymes Inc. Polypeptides having beta-glucosidase activity and polynucleotides encoding same
WO2005066339A2 (en) 2004-01-06 2005-07-21 Novozymes A/S Polypeptides of alicyclobacillus sp.
WO2005074647A2 (en) 2004-01-30 2005-08-18 Novozymes Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2005123911A2 (en) 2004-06-21 2005-12-29 Novozymes A/S Proteases
WO2006002643A2 (en) 2004-07-05 2006-01-12 Novozymes A/S Alpha-amylase variants with altered properties
EP1632557A2 (en) 1994-03-08 2006-03-08 Novozymes A/S Novel alkaline cellulases
EP1637596A1 (en) 1994-03-29 2006-03-22 Novozymes A/S Alkaline bacillus amylase
WO2006032277A1 (en) 2004-09-21 2006-03-30 Novozymes A/S Subtilases
WO2006032278A1 (en) 2004-09-21 2006-03-30 Novozymes A/S Subtilases
WO2006032279A1 (en) 2004-09-21 2006-03-30 Novozymes A/S Subtilases
WO2006039541A2 (en) 2004-09-30 2006-04-13 Novozymes, Inc. Polypeptides having lipase activity and polynucleotides encoding same
EP1683860A2 (en) 1995-03-17 2006-07-26 Novozymes A/S Novel endoglucanases
WO2006116682A2 (en) 2005-04-27 2006-11-02 Novozymes, Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
WO2007006305A1 (en) 2005-07-08 2007-01-18 Novozymes A/S Subtilase variants
WO2007019858A2 (en) 2005-08-16 2007-02-22 Novozymes A/S Subtilases
EP1803817A1 (en) 1998-12-18 2007-07-04 Novozymes A/S Subtilase enzymes of the I-S1 and I-S2 sub-groups having an additional amino acid residue in an active site loop region
WO2007107573A1 (en) 2006-03-22 2007-09-27 Novozymes A/S Use of polypeptides having antimicrobial activity
WO2008021761A2 (en) 2006-08-11 2008-02-21 Novozymes Biologicals, Inc. Bacteria cultures and compositions comprising bacteria cultures
WO2008040818A1 (en) 2006-10-06 2008-04-10 Novozymes A/S Detergent compositions and the use of enzyme combinations therein
WO2008057637A2 (en) 2006-07-21 2008-05-15 Novozymes, Inc. Methods of increasing secretion of polypeptides having biological activity
EP1923455A2 (en) 2003-02-18 2008-05-21 Novozymes A/S Detergent compositions
WO2008101958A1 (en) 2007-02-20 2008-08-28 Novozymes A/S Enzyme foam treatment for laundry
EP1967584A1 (en) 2005-08-16 2008-09-10 Novozymes A/S Polypeptides of strain bacillus SP. P203
EP1975229A2 (en) 2000-10-13 2008-10-01 Novozymes A/S Alpha-amylase variant with altered properties
EP2011864A1 (en) 1999-03-31 2009-01-07 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
US7511005B2 (en) 2003-05-12 2009-03-31 Danisco Us Inc., Genencor Division Lipolytic enzyme elip
EP2113563A2 (en) 1998-11-27 2009-11-04 Novozymes A/S Lipolytic enzyme variants
EP2128247A1 (en) 2002-12-20 2009-12-02 Novozymes A/S Polypeptides having cellobiohydrolase II activity and polynucleotides encoding same
EP2135934A1 (en) 2008-06-16 2009-12-23 Unilever PLC Use of a laundry detergent composition
EP2138574A2 (en) 2002-11-06 2009-12-30 Novozymes A/S Subtilase variants
EP2149786A1 (en) 2008-08-01 2010-02-03 Unilever PLC Improvements relating to detergent analysis
US20100120649A1 (en) * 2007-03-27 2010-05-13 Novozymes A/S Stable Enzyme Solutions and Method of Manufacturing
WO2010065830A1 (en) 2008-12-04 2010-06-10 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2010068650A1 (en) 2008-12-12 2010-06-17 Novozymes, Inc. Polypeptides having lipase activity and polynucleotides encoding same
EP2199386A1 (en) 1993-10-08 2010-06-23 Novozymes A/S Amylase variants
EP2202290A1 (en) 2008-12-23 2010-06-30 Unilever PLC A flowable laundry composition and packaging therefor
EP2228440A1 (en) 2003-05-02 2010-09-15 Novozymes Inc. Variants of beta-glucosidases
WO2010104675A1 (en) 2009-03-10 2010-09-16 Danisco Us Inc. Bacillus megaterium strain dsm90-related alpha-amylases, and methods of use, thereof
WO2010115028A2 (en) 2009-04-01 2010-10-07 Danisco Us Inc. Cleaning system comprising an alpha-amylase and a protease
WO2010117511A1 (en) 2009-04-08 2010-10-14 Danisco Us Inc. Halomonas strain wdg195-related alpha-amylases, and methods of use, thereof
WO2010127919A1 (en) 2009-05-05 2010-11-11 Unilever Plc Shading composition
EP2267002A2 (en) 2004-05-04 2010-12-29 Novozymes Adenium Biotech A/S Antimicrobial polypeptides
EP2284259A2 (en) 2003-10-10 2011-02-16 Novozymes A/S Protease variants
WO2011035027A2 (en) 2009-09-17 2011-03-24 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
EP2302046A1 (en) 2002-10-01 2011-03-30 Novozymes A/S Family GH 61 polypeptides
WO2011036263A1 (en) 2009-09-25 2011-03-31 Novozymes A/S Subtilase variants
WO2011036264A1 (en) 2009-09-25 2011-03-31 Novozymes A/S Use of protease variants
EP2305821A2 (en) 2004-02-13 2011-04-06 Novozymes A/S Protease variants
WO2011041504A1 (en) 2009-09-30 2011-04-07 Novozymes, Inc. Polypeptides derived from thermoascus crustaceus having cellulolytic enhancing activity and polynucleotides encoding same
WO2011041397A1 (en) 2009-09-29 2011-04-07 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2011039319A1 (en) 2009-09-30 2011-04-07 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2011042372A1 (en) 2009-10-08 2011-04-14 Unilever Plc Shading composition
WO2011045195A1 (en) 2009-10-13 2011-04-21 Unilever Plc Dye polymers
WO2011049945A2 (en) 2009-10-23 2011-04-28 Danisco Us Inc. Methods for reducing blue saccharide
WO2011047987A1 (en) 2009-10-23 2011-04-28 Unilever Plc Dye polymers
EP2336331A1 (en) 1999-08-31 2011-06-22 Novozymes A/S Novel proteases and variants thereof
WO2011076897A1 (en) 2009-12-22 2011-06-30 Novozymes A/S Use of amylase variants at low temperature
WO2011080354A1 (en) 2010-01-04 2011-07-07 Novozymes A/S Alpha-amylases
WO2011082889A1 (en) 2010-01-07 2011-07-14 Unilever Plc Natural shading agents
WO2011089561A1 (en) 2010-01-22 2011-07-28 Danisco A/S Methods for producing amino-substituted glycolipid compounds
EP2357220A1 (en) 2010-02-10 2011-08-17 The Procter & Gamble Company Cleaning composition comprising amylase variants with high stability in the presence of a chelating agent
WO2011098356A1 (en) 2010-02-12 2011-08-18 Unilever Plc Laundry treatment composition comprising bis-azo shading dyes
WO2011100667A1 (en) 2010-02-14 2011-08-18 Ls9, Inc. Surfactant and cleaning compositions comprising microbially produced branched fatty alcohols
WO2011098531A1 (en) 2010-02-10 2011-08-18 Novozymes A/S Variants and compositions comprising variants with high stability in presence of a chelating agent
WO2011098355A1 (en) 2010-02-09 2011-08-18 Unilever Plc Dye polymers
WO2011102933A1 (en) 2010-02-18 2011-08-25 Danisco Us Inc. Amylase from nesterenkonia and methods of use, thereof
WO2011107397A1 (en) 2010-03-02 2011-09-09 Unilever Nv Laundry detergent compositions comprising amino silicone antifoam agent
WO2011134685A1 (en) 2010-04-29 2011-11-03 Unilever Plc Bis-heterocyclic azo dyes
EP2385110A2 (en) 2005-09-30 2011-11-09 Novozymes, Inc. Methods for enhancing the degradation or conversion of cellulosic material
US8084240B2 (en) 2008-06-06 2011-12-27 Danisco Us Inc. Geobacillus stearothermophilus α-amylase (AmyS) variants with improved properties
DE212009000119U1 (en) 2008-09-12 2011-12-30 Unilever N.V. Dispenser and pretreatment agent for viscous liquids
US8097444B2 (en) 2006-12-21 2012-01-17 Danisco Us Inc. Compositions and uses for an alpha-amylase polypeptide of bacillus species 195
EP2428572A2 (en) 2007-03-09 2012-03-14 Danisco US, Inc., Genencor Division Alkaliphilic Bacillus species alpha-amylase variants, compositions comprising alpha-amylase variants, and methods of use
WO2012038144A1 (en) 2010-09-20 2012-03-29 Unilever Plc Fabric treatment compositions comprising target benefit agents
WO2012044836A1 (en) 2010-09-30 2012-04-05 Novozymes, Inc. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2012044835A1 (en) 2010-09-30 2012-04-05 Novozymes, Inc. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US8153412B2 (en) 2007-11-05 2012-04-10 Danisco Us Inc. Variants of Bacillus sp. TS-23 alpha-amylase with altered properties
EP2441820A1 (en) 2010-10-14 2012-04-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Laundry detergent particles
EP2441823A1 (en) 2010-10-14 2012-04-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Particulate detergent compositions comprising surfactant, carbonate, and hydroxamate
EP2441825A1 (en) 2010-10-14 2012-04-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Process for preparing laundry detergent particles
EP2441822A1 (en) 2010-10-14 2012-04-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Laundry detergent particles
WO2012049033A1 (en) 2010-10-14 2012-04-19 Unilever Plc Top-loading laundry vessel method
WO2012048945A1 (en) 2010-10-14 2012-04-19 Unilever Plc Particulate detergent compositions comprising fluorescer
WO2012049178A1 (en) 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
WO2012048910A1 (en) 2010-10-14 2012-04-19 Unilever Plc Packaged particulate detergent composition
WO2012048956A1 (en) 2010-10-14 2012-04-19 Unilever Plc Packaged concentrated particulate detergent composition
WO2012048950A1 (en) 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
WO2012049053A1 (en) 2010-10-14 2012-04-19 Unilever Plc Package comprising a laundry composition, dispenser for said package and method for washing using said dispenser and said package
WO2012049055A1 (en) 2010-10-14 2012-04-19 Unilever Plc Transparent packaging of detergent compositions
WO2012048949A1 (en) 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particle
WO2012048955A1 (en) 2010-10-14 2012-04-19 Unilever Plc Packaging and dispensing of detergent compositions
WO2012048947A1 (en) 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
WO2012048948A1 (en) 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
WO2012048909A1 (en) 2010-10-14 2012-04-19 Unilever Plc Packaged particulate detergent composition
WO2012049032A1 (en) 2010-10-14 2012-04-19 Unilever Plc Refill and refillable packages of concentrated particulate detergent compositions
WO2012048951A1 (en) 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
WO2012049034A1 (en) 2010-10-14 2012-04-19 Unilever Plc Packaging and dispensing of detergent compositions
WO2012052306A1 (en) 2010-10-22 2012-04-26 Unilever Plc Externally structured aqueous detergent liquid
WO2012059363A1 (en) 2010-11-01 2012-05-10 Unilever Nv A detergent composition having shading dyes and lipase
DE102010043934A1 (en) 2010-11-15 2012-05-16 Henkel Ag & Co. Kgaa Stabilized liquid enzyme-containing surfactant preparation
EP2455468A2 (en) 1995-02-03 2012-05-23 Novozymes A/S Amylase variants
WO2012068509A1 (en) 2010-11-18 2012-05-24 Novozymes, Inc. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
US8206966B2 (en) 2007-11-05 2012-06-26 Danisco Us Inc. Alpha-amylase variants with altered properties
EP2468852A1 (en) 2007-03-30 2012-06-27 Novozymes A/S Fungal peroxygenases and methods of application
EP2476743A1 (en) 2011-04-04 2012-07-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Method of laundering fabric
WO2012098046A1 (en) 2011-01-17 2012-07-26 Unilever Plc Dye polymer for laundry treatment
US8236545B2 (en) 2008-02-04 2012-08-07 Danisco Us Inc., Genencor Division TS23 alpha-amylase variants with altered properties
WO2012104159A1 (en) 2011-01-31 2012-08-09 Unilever Plc Alkaline liquid detergent compositions
WO2012110563A1 (en) 2011-02-16 2012-08-23 Novozymes A/S Detergent compositions comprising metalloproteases
WO2012110562A2 (en) 2011-02-16 2012-08-23 Novozymes A/S Detergent compositions comprising metalloproteases
WO2012112718A1 (en) 2011-02-15 2012-08-23 Novozymes Biologicals, Inc. Mitigation of odor in cleaning machines and cleaning processes
WO2012110564A1 (en) 2011-02-16 2012-08-23 Novozymes A/S Detergent compositions comprising m7 or m35 metalloproteases
WO2012113340A1 (en) 2011-02-23 2012-08-30 Novozymes Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2012119859A1 (en) 2011-03-10 2012-09-13 Unilever Plc Dye polymer
WO2012135659A2 (en) 2011-03-31 2012-10-04 Novozymes A/S Methods for enhancing the degradation or conversion of cellulosic material
WO2012130492A1 (en) 2011-03-25 2012-10-04 Unilever Plc Dye polymer
WO2012137147A1 (en) 2011-04-08 2012-10-11 Danisco Us, Inc. Compositions
WO2012149344A1 (en) 2011-04-29 2012-11-01 Novozymes, Inc. Methods for enhancing the degradation or conversion of cellulosic material
EP2522715A1 (en) 2011-05-13 2012-11-14 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Aqueous concentrated laundry detergent compositions
EP2522714A1 (en) 2011-05-13 2012-11-14 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Aqueous concentrated laundry detergent compositions
WO2012156250A1 (en) 2011-05-13 2012-11-22 Unilever Plc Aqueous concentrated laundry detergent compositions
WO2012159778A1 (en) 2011-05-26 2012-11-29 Unilever Plc Liquid laundry composition
US8323945B2 (en) 2008-06-06 2012-12-04 Danisco Us Inc. Variant alpha-amylases from Bacillus subtilis and methods of uses, thereof
WO2012175708A2 (en) 2011-06-24 2012-12-27 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
EP2540824A1 (en) 2011-06-30 2013-01-02 The Procter & Gamble Company Cleaning compositions comprising amylase variants reference to a sequence listing
WO2013001087A2 (en) 2011-06-30 2013-01-03 Novozymes A/S Method for screening alpha-amylases
WO2013011071A1 (en) 2011-07-21 2013-01-24 Unilever Plc Liquid laundry composition
WO2013024021A1 (en) 2011-08-15 2013-02-21 Novozymes A/S Polypeptides having cellulase activity and polynucleotides encoding same
WO2013026796A1 (en) 2011-08-19 2013-02-28 Novozymes A/S Polypeptides having protease activity
WO2013041689A1 (en) 2011-09-22 2013-03-28 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2013057143A2 (en) 2011-10-17 2013-04-25 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2013057141A2 (en) 2011-10-17 2013-04-25 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2013063460A2 (en) 2011-10-28 2013-05-02 Danisco Us Inc. Variant maltohexaose-forming alpha-amylase variants
WO2013076269A1 (en) 2011-11-25 2013-05-30 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2013087027A1 (en) 2011-12-16 2013-06-20 Novozymes, Inc. Polypeptides having laccase activity and polynucleotides encoding same
EP2607468A1 (en) 2011-12-20 2013-06-26 Henkel AG & Co. KGaA Detergent compositions comprising subtilase variants
WO2013096305A1 (en) 2011-12-22 2013-06-27 Danisco Us Inc. Variant alpha-amylases and methods of use, thereof
WO2013092052A1 (en) 2011-12-20 2013-06-27 Unilever Plc Isotropic liquid detergents comprising soil release polymer
WO2013096653A1 (en) 2011-12-22 2013-06-27 Danisco Us Inc. Compositions and methods comprising a lipolytic enzyme variant
WO2013092635A1 (en) 2011-12-20 2013-06-27 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2013098205A2 (en) 2011-12-29 2013-07-04 Novozymes A/S Detergent compositions
WO2013098185A1 (en) 2011-12-28 2013-07-04 Novozymes A/S Polypeptides having protease activity
WO2013110766A1 (en) 2012-01-26 2013-08-01 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
US8507243B2 (en) 2008-09-25 2013-08-13 Danisco Us Inc. Alpha-amylase blends and methods for using said blends
WO2013119302A2 (en) 2011-11-21 2013-08-15 Novozymes, Inc. Gh61 polypeptide variants and polynucleotides encoding same
EP2628785A1 (en) 2012-02-17 2013-08-21 Henkel AG & Co. KGaA Detergent compositions comprising subtilase variants
WO2013120948A1 (en) 2012-02-17 2013-08-22 Novozymes A/S Subtilisin variants and polynucleotides encoding same
WO2013131964A1 (en) 2012-03-07 2013-09-12 Novozymes A/S Detergent composition and substitution of optical brighteners in detergent compositions
EP2639291A1 (en) 2012-03-13 2013-09-18 Unilever PLC Packaged particulate detergent composition
WO2013139702A1 (en) 2012-03-21 2013-09-26 Unilever Plc Laundry detergent particles
WO2013149755A1 (en) 2012-04-03 2013-10-10 Unilever Plc Laundry detergent particles
WO2013149753A1 (en) 2012-04-03 2013-10-10 Unilever Plc Laundry detergent particles
WO2013149752A1 (en) 2012-04-03 2013-10-10 Unilever Plc Laundry detergent particles
WO2013149754A1 (en) 2012-04-03 2013-10-10 Unilever Plc Laundry detergent particle
WO2013163590A2 (en) 2012-04-27 2013-10-31 Novozymes, Inc. Gh61 polypeptide variants and polynucleotides encoding same
WO2013160025A1 (en) 2012-04-23 2013-10-31 Unilever Plc Structured aqueous liquid detergent
WO2013169645A1 (en) 2012-05-11 2013-11-14 Danisco Us Inc. Use of alpha-amylase from aspergillus clavatus for saccharification
WO2013167581A1 (en) 2012-05-07 2013-11-14 Novozymes A/S Polypeptides having xanthan degrading activity and polynucleotides encoding same
WO2013171241A1 (en) 2012-05-16 2013-11-21 Novozymes A/S Compositions comprising lipase and methods of use thereof
WO2013171210A1 (en) 2012-05-16 2013-11-21 Unilever Plc Laundry detergent compositions comprising polyalkoxylated polyethyleneimine
WO2013184577A1 (en) 2012-06-08 2013-12-12 Danisco Us Inc. Alpha-amylase variants derived from the alpha amylase of cytophaga sp.amylase|(cspamy2).
WO2013189972A2 (en) 2012-06-20 2013-12-27 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
WO2013189802A1 (en) 2012-06-19 2013-12-27 Novozymes A/S Enzymatic reduction of hydroperoxides
WO2014028434A2 (en) 2012-08-16 2014-02-20 Danisco Us Inc. Method of using alpha-amylase from aspergillus clavatus and pullulanase for saccharification
WO2014029820A1 (en) 2012-08-22 2014-02-27 Novozymes A/S Detergent compositions comprising metalloproteases
WO2014029819A1 (en) 2012-08-22 2014-02-27 Novozymes A/S Metalloprotease from exiguobacterium
WO2014029821A1 (en) 2012-08-22 2014-02-27 Novozymes A/S Metalloproteases from alicyclobacillus sp.
WO2014048857A1 (en) 2012-09-25 2014-04-03 Unilever Plc Laundry detergent particles
WO2014081622A1 (en) 2012-11-20 2014-05-30 Danisco Us Inc. Amylase with maltogenic properties
US8753852B2 (en) 2003-05-12 2014-06-17 Danisco Us Inc. Lipolytic enzyme LIP1
WO2014092960A1 (en) 2012-12-11 2014-06-19 Danisco Us Inc. Trichoderma reesei host cells expressing a glucoamylase from aspergillus fumigatus and methods of use thereof
WO2014093125A1 (en) 2012-12-14 2014-06-19 Danisco Us Inc. Method of using alpha-amylase from aspergillus fumigatus and isoamylase for saccharification
WO2014090940A1 (en) 2012-12-14 2014-06-19 Novozymes A/S Removal of skin-derived body soils
WO2014099523A1 (en) 2012-12-21 2014-06-26 Danisco Us Inc. Alpha-amylase variants
WO2014096259A1 (en) 2012-12-21 2014-06-26 Novozymes A/S Polypeptides having protease activiy and polynucleotides encoding same
WO2014099525A1 (en) 2012-12-21 2014-06-26 Danisco Us Inc. Paenibacillus curdlanolyticus amylase, and methods of use, thereof
WO2014099415A1 (en) 2012-12-20 2014-06-26 Danisco Us Inc. Method of using alpha-amylase from aspergillus terreus and pullulanase for saccharification
WO2014114570A1 (en) 2013-01-23 2014-07-31 Unilever Plc An uncoloured laundry additive material for promotion of anti redeposition of particulate soil
EP2770044A1 (en) 2013-02-20 2014-08-27 Unilever PLC Lamellar gel with amine oxide
WO2014147127A1 (en) 2013-03-21 2014-09-25 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
WO2014164800A1 (en) 2013-03-11 2014-10-09 Danisco Us Inc. Alpha-amylase combinatorial variants
WO2014184164A1 (en) 2013-05-14 2014-11-20 Novozymes A/S Detergent compositions
WO2014183921A1 (en) 2013-05-17 2014-11-20 Novozymes A/S Polypeptides having alpha amylase activity
WO2014200657A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from streptomyces xiamenensis
WO2014198840A1 (en) 2013-06-12 2014-12-18 Earth Alive Clean Technologies Inc. Dust suppressant
WO2014200658A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from promicromonospora vindobonensis
WO2014200656A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from streptomyces umbrinus
WO2014204596A1 (en) 2013-06-17 2014-12-24 Danisco Us Inc. Alpha-amylase from bacillaceae family member
US8921295B2 (en) 2010-07-23 2014-12-30 American Sterilizer Company Biodegradable concentrated neutral detergent composition
WO2014207224A1 (en) 2013-06-27 2014-12-31 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2014207227A1 (en) 2013-06-27 2014-12-31 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2015001017A2 (en) 2013-07-04 2015-01-08 Novozymes A/S Polypeptides having anti-redeposition effect and polynucleotides encoding same
WO2015004102A1 (en) 2013-07-09 2015-01-15 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
EP2832853A1 (en) 2013-07-29 2015-02-04 Henkel AG&Co. KGAA Detergent composition comprising protease variants
EP2857515A2 (en) 2008-11-20 2015-04-08 Novozymes Inc. Polypeptides having amylolytic enhancing activity and polynucleotides encoding same
WO2015050723A1 (en) 2013-10-03 2015-04-09 Danisco Us Inc. Alpha-amylases from exiguobacterium, and methods of use, thereof
WO2015050724A1 (en) 2013-10-03 2015-04-09 Danisco Us Inc. Alpha-amylases from a subset of exiguobacterium, and methods of use, thereof
US9029310B2 (en) 2008-07-07 2015-05-12 Basf Se Enzyme composition comprising enzyme containing polymer particles
US9040279B2 (en) 2008-06-06 2015-05-26 Danisco Us Inc. Saccharification enzyme composition and method of saccharification thereof
US9040278B2 (en) 2008-06-06 2015-05-26 Danisco Us Inc. Production of glucose from starch using alpha-amylases from Bacillus subtilis
WO2015077126A1 (en) 2013-11-20 2015-05-28 Danisco Us Inc. Variant alpha-amylases having reduced susceptibility to protease cleavage, and methods of use, thereof
WO2015094809A1 (en) 2013-12-19 2015-06-25 Danisco Us Inc. Chimeric fungal alpha-amylases comprising carbohydrate binding module and the use thereof
WO2015109972A1 (en) 2014-01-22 2015-07-30 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
WO2015134729A1 (en) 2014-03-05 2015-09-11 Novozymes A/S Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase
WO2015134737A1 (en) 2014-03-05 2015-09-11 Novozymes A/S Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase
WO2015150457A1 (en) 2014-04-01 2015-10-08 Novozymes A/S Polypeptides having alpha amylase activity
WO2015158237A1 (en) 2014-04-15 2015-10-22 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
EP2947100A1 (en) 2009-01-06 2015-11-25 Curelon LLC Oral compositions for the treatment or the prevention of infections by E. Coli
WO2015181119A2 (en) 2014-05-27 2015-12-03 Novozymes A/S Lipase variants and polynucleotides encoding same
WO2015189371A1 (en) 2014-06-12 2015-12-17 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
EP2987857A1 (en) 2003-08-25 2016-02-24 Novozymes, Inc. Variants of glycoside hydrolases
WO2016041676A1 (en) 2014-09-18 2016-03-24 Unilever Plc Whitening composition
WO2016079305A1 (en) 2014-11-20 2016-05-26 Novozymes A/S Alicyclobacillus variants and polynucleotides encoding same
WO2016087401A1 (en) 2014-12-05 2016-06-09 Novozymes A/S Lipase variants and polynucleotides encoding same
WO2016110378A1 (en) 2015-01-09 2016-07-14 Unilever Plc Laundry treatment composition comprising a dye
WO2016128466A1 (en) 2015-02-13 2016-08-18 Unilever Plc Laundry liquid composition
WO2016135351A1 (en) 2015-06-30 2016-09-01 Novozymes A/S Laundry detergent composition, method for washing and use of composition
US9434932B2 (en) 2011-06-30 2016-09-06 Novozymes A/S Alpha-amylase variants
EP3064217A1 (en) 2009-01-06 2016-09-07 Curelon LLC Compositions comprising protease, amylase and lipase for use in the treatment of staphylococcus aureus infections
WO2016155993A1 (en) 2015-04-02 2016-10-06 Unilever Plc Composition
WO2016162558A1 (en) 2015-04-10 2016-10-13 Novozymes A/S Detergent composition
WO2016180792A1 (en) 2015-05-08 2016-11-17 Novozymes A/S Alpha-amylase variants having improved performance and stability
WO2016180749A1 (en) 2015-05-08 2016-11-17 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2016180748A1 (en) 2015-05-08 2016-11-17 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2016184944A1 (en) 2015-05-19 2016-11-24 Novozymes A/S Odor reduction
WO2016188693A1 (en) 2015-05-27 2016-12-01 Unilever Plc Laundry detergent composition
WO2016192905A1 (en) 2015-06-02 2016-12-08 Unilever Plc Laundry detergent composition
EP3106508A1 (en) 2015-06-18 2016-12-21 Henkel AG & Co. KGaA Detergent composition comprising subtilase variants
WO2016202739A1 (en) 2015-06-16 2016-12-22 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
WO2017046260A1 (en) 2015-09-17 2017-03-23 Novozymes A/S Polypeptides having xanthan degrading activity and polynucleotides encoding same
WO2017046232A1 (en) 2015-09-17 2017-03-23 Henkel Ag & Co. Kgaa Detergent compositions comprising polypeptides having xanthan degrading activity
WO2017055205A1 (en) 2015-10-01 2017-04-06 Unilever Plc Powder laundry detergent composition
WO2017060505A1 (en) 2015-10-07 2017-04-13 Novozymes A/S Polypeptides
WO2017064253A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2017089093A1 (en) 2015-11-25 2017-06-01 Unilever N.V. A liquid detergent composition
WO2017089366A1 (en) 2015-11-24 2017-06-01 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2017093318A1 (en) 2015-12-01 2017-06-08 Novozymes A/S Methods for producing lipases
WO2017100720A1 (en) 2015-12-09 2017-06-15 Danisco Us Inc. Alpha-amylase combinatorial variants
EP3190167A1 (en) 2016-01-07 2017-07-12 Unilever PLC Bitter pill
WO2017121714A1 (en) 2016-01-15 2017-07-20 Unilever Plc Dye
WO2017129754A1 (en) 2016-01-29 2017-08-03 Novozymes A/S Beta-glucanase variants and polynucleotides encoding same
WO2017133879A1 (en) 2016-02-04 2017-08-10 Unilever Plc Detergent liquid
WO2017140391A1 (en) 2016-02-17 2017-08-24 Unilever Plc Whitening composition
WO2017140392A1 (en) 2016-02-17 2017-08-24 Unilever Plc Whitening composition
WO2017162378A1 (en) 2016-03-21 2017-09-28 Unilever Plc Laundry detergent composition
WO2017173324A2 (en) 2016-04-01 2017-10-05 Danisco Us Inc. Alpha-amylases, compositions & methods
WO2017173190A2 (en) 2016-04-01 2017-10-05 Danisco Us Inc. Alpha-amylases, compositions & methods
WO2017174251A1 (en) 2016-04-08 2017-10-12 Unilever Plc Laundry detergent composition
WO2017191160A1 (en) 2016-05-03 2017-11-09 Novozymes A/S Alpha-amylase variants and polynucleotides encoding the same
WO2017194487A1 (en) 2016-05-09 2017-11-16 Novozymes A/S Variant polypeptides with improved performance and use of the same
WO2017198438A1 (en) 2016-05-17 2017-11-23 Unilever Plc Liquid laundry detergent compositions
WO2017198574A1 (en) 2016-05-17 2017-11-23 Unilever Plc Liquid laundry detergent compositions
WO2017202923A1 (en) 2016-05-27 2017-11-30 Unilever Plc Laundry composition
WO2017207762A1 (en) 2016-06-03 2017-12-07 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2018002261A1 (en) 2016-07-01 2018-01-04 Novozymes A/S Detergent compositions
WO2018007573A1 (en) 2016-07-08 2018-01-11 Novozymes A/S Detergent compositions with galactanase
WO2018015295A1 (en) 2016-07-18 2018-01-25 Novozymes A/S Lipase variants, polynucleotides encoding same and the use thereof
WO2018037064A1 (en) 2016-08-24 2018-03-01 Henkel Ag & Co. Kgaa Detergent compositions comprising xanthan lyase variants i
WO2018037065A1 (en) 2016-08-24 2018-03-01 Henkel Ag & Co. Kgaa Detergent composition comprising gh9 endoglucanase variants i
WO2018037062A1 (en) 2016-08-24 2018-03-01 Novozymes A/S Gh9 endoglucanase variants and polynucleotides encoding same
WO2018037061A1 (en) 2016-08-24 2018-03-01 Novozymes A/S Xanthan lyase variants and polynucleotides encoding same
WO2018060139A1 (en) 2016-09-27 2018-04-05 Unilever Plc Domestic laundering method
EP3309249A1 (en) 2013-07-29 2018-04-18 Novozymes A/S Protease variants and polynucleotides encoding same
WO2018072979A1 (en) 2016-10-18 2018-04-26 Unilever Plc Whitening composition
WO2018077938A1 (en) 2016-10-25 2018-05-03 Novozymes A/S Detergent compositions
EP3321360A2 (en) 2013-01-03 2018-05-16 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2018108865A1 (en) 2016-12-12 2018-06-21 Novozymes A/S Use of polypeptides
WO2018108382A1 (en) 2016-12-15 2018-06-21 Unilever Plc Laundry detergent composition
EP2767579B1 (en) 2013-02-19 2018-07-18 The Procter and Gamble Company Method of laundering a fabric
EP3354792A1 (en) 2011-06-01 2018-08-01 Unilever PLC, a company registered in England and Wales under company no. 41424 of Liquid detergent composition containing dye polymer
WO2018184004A1 (en) 2017-03-31 2018-10-04 Danisco Us Inc Alpha-amylase combinatorial variants
EP3385361A1 (en) 2017-04-05 2018-10-10 Henkel AG & Co. KGaA Detergent compositions comprising bacterial mannanases
EP3385362A1 (en) 2017-04-05 2018-10-10 Henkel AG & Co. KGaA Detergent compositions comprising fungal mannanases
EP3401385A1 (en) 2017-05-08 2018-11-14 Henkel AG & Co. KGaA Detergent composition comprising polypeptide comprising carbohydrate-binding domain
WO2018206300A1 (en) 2017-05-08 2018-11-15 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2018206302A1 (en) 2017-05-08 2018-11-15 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2018206535A1 (en) 2017-05-08 2018-11-15 Novozymes A/S Carbohydrate-binding domain and polynucleotides encoding the same
WO2018224544A1 (en) 2017-06-08 2018-12-13 Novozymes A/S Compositions comprising polypeptides having cellulase activity and amylase activity, and uses thereof in cleaning and detergent compositions
WO2018234056A1 (en) 2017-06-20 2018-12-27 Unilever N.V. Particulate detergent composition comprising perfume
WO2018234003A1 (en) 2017-06-21 2018-12-27 Unilever Plc Packaging and dispensing of detergent compositions
WO2019008036A1 (en) 2017-07-07 2019-01-10 Unilever Plc Whitening composition
WO2019008035A1 (en) 2017-07-07 2019-01-10 Unilever Plc Laundry cleaning composition
WO2019036721A2 (en) 2017-08-18 2019-02-21 Danisco Us Inc Alpha-amylase variants
WO2019038059A1 (en) 2017-08-24 2019-02-28 Henkel Ag & Co. Kgaa Detergent compositions comprising gh9 endoglucanase variants ii
WO2019038186A1 (en) 2017-08-24 2019-02-28 Unilever Plc Improvements relating to fabric cleaning
WO2019038187A1 (en) 2017-08-24 2019-02-28 Unilever Plc Improvements relating to fabric cleaning
WO2019038057A1 (en) 2017-08-24 2019-02-28 Novozymes A/S Xanthan lyase variants and polynucleotides encoding same
WO2019038060A1 (en) 2017-08-24 2019-02-28 Henkel Ag & Co. Kgaa Detergent composition comprising xanthan lyase variants ii
WO2019038058A1 (en) 2017-08-24 2019-02-28 Novozymes A/S Gh9 endoglucanase variants and polynucleotides encoding same
EP3453757A1 (en) 2013-12-20 2019-03-13 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2019057758A1 (en) 2017-09-20 2019-03-28 Novozymes A/S Use of enzymes for improving water absorption and/or whiteness
EP3461881A1 (en) 2013-05-03 2019-04-03 Novozymes A/S Microencapsulation of detergent enzymes
WO2019063499A1 (en) 2017-09-27 2019-04-04 Novozymes A/S Lipase variants and microcapsule compositions comprising such lipase variants
WO2019068715A1 (en) 2017-10-02 2019-04-11 Novozymes A/S Polypeptides having mannanase activity and polynucleotides encoding same
WO2019068713A1 (en) 2017-10-02 2019-04-11 Novozymes A/S Polypeptides having mannanase activity and polynucleotides encoding same
WO2019081515A1 (en) 2017-10-24 2019-05-02 Novozymes A/S Compositions comprising polypeptides having mannanase activity
WO2019105675A1 (en) 2017-11-30 2019-06-06 Unilever Plc Detergent composition comprising protease
WO2019110462A1 (en) 2017-12-04 2019-06-13 Novozymes A/S Lipase variants and polynucleotides encoding same
EP3521434A1 (en) 2014-03-12 2019-08-07 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
WO2019154954A1 (en) 2018-02-08 2019-08-15 Novozymes A/S Lipase variants and compositions thereof
WO2019154951A1 (en) 2018-02-08 2019-08-15 Novozymes A/S Lipases, lipase variants and compositions thereof
WO2019162000A1 (en) 2018-02-23 2019-08-29 Henkel Ag & Co. Kgaa Detergent composition comprising xanthan lyase and endoglucanase variants
WO2019175240A1 (en) 2018-03-13 2019-09-19 Novozymes A/S Microencapsulation using amino sugar oligomers
WO2019180111A1 (en) 2018-03-23 2019-09-26 Novozymes A/S Subtilase variants and compositions comprising same
WO2019185726A1 (en) 2018-03-29 2019-10-03 Novozymes A/S Mannanase variants and polynucleotides encoding same
EP3550015A1 (en) 2014-04-10 2019-10-09 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2019192813A1 (en) 2018-04-03 2019-10-10 Unilever N.V. Dye granule
WO2019201785A1 (en) 2018-04-19 2019-10-24 Novozymes A/S Stabilized cellulase variants
WO2019201783A1 (en) 2018-04-19 2019-10-24 Novozymes A/S Stabilized cellulase variants
WO2019219302A1 (en) 2018-05-17 2019-11-21 Unilever Plc Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants
WO2019219531A1 (en) 2018-05-17 2019-11-21 Unilever Plc Cleaning composition
WO2020002255A1 (en) 2018-06-29 2020-01-02 Novozymes A/S Subtilase variants and compositions comprising same
WO2020016097A1 (en) 2018-07-17 2020-01-23 Unilever Plc Use of a rhamnolipid in a surfactant system
WO2020020703A1 (en) 2018-07-27 2020-01-30 Unilever N.V. Laundry detergent
EP3608403A2 (en) 2014-12-15 2020-02-12 Henkel AG & Co. KGaA Detergent composition comprising subtilase variants
WO2020058024A1 (en) 2018-09-17 2020-03-26 Unilever Plc Detergent composition
WO2020070199A1 (en) 2018-10-03 2020-04-09 Novozymes A/S Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same
WO2020074302A1 (en) 2018-10-12 2020-04-16 Unilever N.V. Cleaning composition comprising foam boosting silicone
WO2020104158A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104157A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104156A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104155A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104159A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020114968A1 (en) 2018-12-03 2020-06-11 Novozymes A/S Powder detergent compositions
WO2020114965A1 (en) 2018-12-03 2020-06-11 Novozymes A/S LOW pH POWDER DETERGENT COMPOSITION
WO2020127775A1 (en) 2018-12-21 2020-06-25 Novozymes A/S Detergent pouch comprising metalloproteases
WO2020151959A1 (en) 2019-01-22 2020-07-30 Unilever N.V. Laundry detergent
WO2020151992A1 (en) 2019-01-22 2020-07-30 Unilever N.V. Laundry detergent
EP3690037A1 (en) 2014-12-04 2020-08-05 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3696264A1 (en) 2013-07-19 2020-08-19 Danisco US Inc. Compositions and methods comprising a lipolytic enzyme variant
EP3702452A1 (en) 2019-03-01 2020-09-02 Novozymes A/S Detergent compositions comprising two proteases
WO2020188095A1 (en) 2019-03-21 2020-09-24 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2020201403A1 (en) 2019-04-03 2020-10-08 Novozymes A/S Polypeptides having beta-glucanase activity, polynucleotides encoding same and uses thereof in cleaning and detergent compositions
EP3722406A1 (en) 2014-04-11 2020-10-14 Novozymes A/S Detergent composition
WO2020208056A1 (en) 2019-04-12 2020-10-15 Novozymes A/S Stabilized glycoside hydrolase variants
EP3739029A1 (en) 2014-07-04 2020-11-18 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2020229535A1 (en) 2019-05-16 2020-11-19 Unilever Plc Laundry composition
EP3750978A1 (en) 2019-06-12 2020-12-16 Unilever N.V. Laundry detergent composition
EP3750979A1 (en) 2019-06-12 2020-12-16 Unilever N.V. Use of laundry detergent composition
WO2020259949A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020259947A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020260006A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent compositions
WO2020259948A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020260040A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020260038A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2021001400A1 (en) 2019-07-02 2021-01-07 Novozymes A/S Lipase variants and compositions thereof
EP3786269A1 (en) 2013-06-06 2021-03-03 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2021037878A1 (en) 2019-08-27 2021-03-04 Novozymes A/S Composition comprising a lipase
US10940187B2 (en) 2011-04-21 2021-03-09 Curemark, Llc Method of treatment of schizophreniform disorder
WO2021043764A1 (en) 2019-09-02 2021-03-11 Unilever Global Ip Limited Detergent composition
WO2021053122A1 (en) 2019-09-19 2021-03-25 Unilever Ip Holdings B.V. Detergent compositions
WO2021069516A1 (en) 2019-10-07 2021-04-15 Unilever Ip Holdings B.V. Detergent composition
US11016104B2 (en) 2008-07-01 2021-05-25 Curemark, Llc Methods and compositions for the treatment of symptoms of neurological and mental health disorders
US11033563B2 (en) 2005-08-30 2021-06-15 Curemark, Llc Use of lactulose in the treatment of autism
US11045527B2 (en) 2008-03-13 2021-06-29 Curemark, Llc Method of diagnosing preeclampsia or pregnancy-induced hypertension
WO2021152120A1 (en) 2020-01-31 2021-08-05 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2021151640A1 (en) 2020-01-29 2021-08-05 Unilever Ip Holdings B.V. Laundry detergent product
WO2021152123A1 (en) 2020-01-31 2021-08-05 Novozymes A/S Mannanase variants and polynucleotides encoding same
EP3872175A1 (en) 2015-06-18 2021-09-01 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3878960A1 (en) 2014-07-04 2021-09-15 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3878957A1 (en) 2014-05-27 2021-09-15 Novozymes A/S Methods for producing lipases
WO2021185956A1 (en) 2020-03-19 2021-09-23 Unilever Ip Holdings B.V. Detergent composition
WO2021185870A1 (en) 2020-03-19 2021-09-23 Unilever Ip Holdings B.V. Detergent composition
WO2021204636A1 (en) 2020-04-09 2021-10-14 Unilever Ip Holdings B.V. Laundry detergent composition
WO2021204838A1 (en) 2020-04-08 2021-10-14 Novozymes A/S Carbohydrate binding module variants
CN113698998A (en) * 2021-09-26 2021-11-26 广州立白企业集团有限公司 Stable detergent composition with antibacterial effect
WO2021239818A1 (en) 2020-05-26 2021-12-02 Novozymes A/S Subtilase variants and compositions comprising same
WO2021249927A1 (en) 2020-06-08 2021-12-16 Unilever Ip Holdings B.V. Method of improving protease activity
EP3929285A2 (en) 2015-07-01 2021-12-29 Novozymes A/S Methods of reducing odor
WO2021259099A1 (en) 2020-06-24 2021-12-30 Novozymes A/S Use of cellulases for removing dust mite from textile
US11235038B2 (en) 2008-04-18 2022-02-01 Curemark, Llc Pharmaceutical preparation for the treatment of the symptoms of addiction and method of diagnosing same
WO2022023250A1 (en) 2020-07-27 2022-02-03 Unilever Ip Holdings B.V. Use of an enzyme and surfactant for inhibiting microorganisms
WO2022043547A1 (en) 2020-08-28 2022-03-03 Novozymes A/S Protease variants with improved solubility
WO2022043138A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Surfactant and detergent composition
WO2022043042A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022042977A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022043321A2 (en) 2020-08-25 2022-03-03 Novozymes A/S Variants of a family 44 xyloglucanase
WO2022043045A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022042989A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Surfactant and detergent composition
WO2022060942A1 (en) 2020-09-16 2022-03-24 Danisco Us Inc Esterase and methods of use, thereof
WO2022074037A2 (en) 2020-10-07 2022-04-14 Novozymes A/S Alpha-amylase variants
WO2022090320A1 (en) 2020-10-28 2022-05-05 Novozymes A/S Use of lipoxygenase
WO2022090361A2 (en) 2020-10-29 2022-05-05 Novozymes A/S Lipase variants and compositions comprising such lipase variants
WO2022103725A1 (en) 2020-11-13 2022-05-19 Novozymes A/S Detergent composition comprising a lipase
WO2022106404A1 (en) 2020-11-18 2022-05-27 Novozymes A/S Combination of proteases
WO2022106400A1 (en) 2020-11-18 2022-05-27 Novozymes A/S Combination of immunochemically different proteases
WO2022122481A1 (en) 2020-12-07 2022-06-16 Unilever Ip Holdings B.V. Detergent compositions
WO2022122480A1 (en) 2020-12-07 2022-06-16 Unilever Ip Holdings B.V. Detergent compositions
US11364287B2 (en) 2012-05-30 2022-06-21 Curemark, Llc Methods of treating celiac disease
WO2022128786A1 (en) 2020-12-17 2022-06-23 Unilever Ip Holdings B.V. Use and cleaning composition
WO2022128781A1 (en) 2020-12-17 2022-06-23 Unilever Ip Holdings B.V. Cleaning composition
WO2022162043A1 (en) 2021-01-28 2022-08-04 Novozymes A/S Lipase with low malodor generation
EP4039806A1 (en) 2021-02-04 2022-08-10 Henkel AG & Co. KGaA Detergent composition comprising xanthan lyase and endoglucanase variants with im-proved stability
WO2022171780A2 (en) 2021-02-12 2022-08-18 Novozymes A/S Alpha-amylase variants
US11419821B2 (en) 2009-04-13 2022-08-23 Curemark, Llc Enzyme delivery systems and methods of preparation and use
US11441140B2 (en) 2015-12-07 2022-09-13 Henkel Ag & Co. Kgaa Dishwashing compositions comprising polypeptides having beta-glucanase activity and uses thereof
WO2022189521A1 (en) 2021-03-12 2022-09-15 Novozymes A/S Polypeptide variants
WO2022197634A1 (en) 2021-03-15 2022-09-22 Gen-Probe Incorporated Compositions and methods for biological sample processing
WO2022199418A1 (en) 2021-03-26 2022-09-29 Novozymes A/S Detergent composition with reduced polymer content
WO2022268885A1 (en) 2021-06-23 2022-12-29 Novozymes A/S Alpha-amylase polypeptides
US11541009B2 (en) 2020-09-10 2023-01-03 Curemark, Llc Methods of prophylaxis of coronavirus infection and treatment of coronaviruses
WO2023006382A1 (en) 2021-07-26 2023-02-02 Unilever Ip Holdings B.V. Laundry detergent product
WO2023031328A1 (en) 2021-09-01 2023-03-09 Unilever Ip Holdings B.V. Bleach catalysts, bleach systems and cleaning compositions
WO2023030951A1 (en) 2021-09-01 2023-03-09 Unilever Ip Holdings B.V. Bleach catalysts, bleach systems and cleaning compositions
WO2023041694A1 (en) 2021-09-20 2023-03-23 Unilever Ip Holdings B.V. Detergent composition
WO2023116569A1 (en) 2021-12-21 2023-06-29 Novozymes A/S Composition comprising a lipase and a booster
EP4219702A2 (en) 2015-12-30 2023-08-02 Novozymes A/S Enzyme variants and polynucleotides encoding the same
WO2023165507A1 (en) 2022-03-02 2023-09-07 Novozymes A/S Use of xyloglucanase for improvement of sustainability of detergents
WO2023227358A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Premix and composition and method of preparing the same
WO2023227357A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Composition
WO2023227356A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Composition containing enzyme
WO2023233028A1 (en) 2022-06-03 2023-12-07 Unilever Ip Holdings B.V. Laundry detergent product
WO2023247664A2 (en) 2022-06-24 2023-12-28 Novozymes A/S Lipase variants and compositions comprising such lipase variants
EP4339282A2 (en) 2014-12-04 2024-03-20 Novozymes A/S Liquid cleaning compositions comprising protease variants

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733473A (en) * 1990-11-14 1998-03-31 The Procter & Gamble Company Liquid detergent composition containing lipase and protease
US5422030A (en) * 1991-04-30 1995-06-06 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
ES2098484T3 (en) * 1992-08-14 1997-05-01 Procter & Gamble LIQUID DETERGENTS CONTAINING AN ALPHA-AMINO-BORONIC ACID.
US5691295A (en) * 1995-01-17 1997-11-25 Cognis Gesellschaft Fuer Biotechnologie Mbh Detergent compositions
US5693617A (en) * 1994-03-15 1997-12-02 Proscript, Inc. Inhibitors of the 26s proteolytic complex and the 20s proteasome contained therein
US6083903A (en) 1994-10-28 2000-07-04 Leukosite, Inc. Boronic ester and acid compounds, synthesis and uses
DE19515072A1 (en) * 1995-04-28 1996-10-31 Cognis Bio Umwelt Detergent containing cellulase
DE19605688A1 (en) * 1996-02-16 1997-08-21 Henkel Kgaa Transition metal complexes as activators for peroxygen compounds
CN1113088C (en) * 1996-09-24 2003-07-02 普罗格特-甘布尔公司 Liquid detergents containing proteolytic enzyme and protease inhibitors
CA2266525A1 (en) 1996-09-24 1998-04-02 Charles Winston Saunders Liquid laundry detergent compositions containing proteolytic enzyme and protease inhibitors
US6165966A (en) * 1996-09-24 2000-12-26 The Procter & Gamble Company Liquid detergents containing proteolytic enzyme and protease inhibitors
EP1438346A1 (en) 2001-10-22 2004-07-21 Henkel Kommanditgesellschaft auf Aktien Cotton active, dirt removing urethane-based polymers
DE102007011236A1 (en) 2007-03-06 2008-09-11 Henkel Ag & Co. Kgaa Carboxyl-bearing benzophenone or benzoic acid anilide derivatives as enzyme stabilizers
DE102007041754A1 (en) 2007-09-04 2009-03-05 Henkel Ag & Co. Kgaa Polycyclic compounds as enzyme stabilizers
DE102008010429A1 (en) 2008-02-21 2009-08-27 Henkel Ag & Co. Kgaa Detergent or cleaning agent, useful for washing and/or cleaning textiles, and/or hard surfaces, comprises a protease, preferably serine-protease, and one urea- or thiourea- derivative, as an enzyme stabilizer
DE102008014760A1 (en) 2008-03-18 2009-09-24 Henkel Ag & Co. Kgaa Imidazolium salts as enzyme stabilizers
GB2477914B (en) 2010-02-12 2012-01-04 Univ Newcastle Compounds and methods for biofilm disruption and prevention
DE102010038497A1 (en) 2010-07-27 2012-02-02 Henkel Ag & Co. Kgaa Stabilized liquid enzyme-containing surfactant preparation
DE102010038498A1 (en) 2010-07-27 2012-02-02 Henkel Ag & Co. Kgaa Stabilized liquid enzyme-containing surfactant preparation
DE102010038502A1 (en) 2010-07-27 2012-02-02 Henkel Ag & Co. Kgaa Stabilized liquid enzyme-containing surfactant preparation
DE102010038501A1 (en) 2010-07-27 2012-02-02 Henkel Ag & Co. Kgaa Stabilized liquid enzyme-containing surfactant preparation
DE102010038496A1 (en) 2010-07-27 2012-02-02 Henkel Ag & Co. Kgaa Stabilized liquid enzyme-containing surfactant preparation
DE102010038499A1 (en) 2010-07-27 2012-02-02 Henkel Ag & Co. Kgaa Stabilized liquid enzyme-containing surfactant preparation
EP2551335A1 (en) * 2011-07-25 2013-01-30 The Procter & Gamble Company Enzyme stabilized liquid detergent composition
DE102011118027A1 (en) 2011-09-12 2013-03-14 Henkel Ag & Co. Kgaa A method of adapting a hydrolytic enzyme to a hydrolytic enzyme stabilizing component
EP3556836A1 (en) 2012-12-07 2019-10-23 Novozymes A/S Preventing adhesion of bacteria
WO2014109380A1 (en) * 2013-01-11 2014-07-17 ライオン株式会社 Liquid detergent
CN106701350B (en) * 2017-02-20 2018-08-14 国莓生物科技河北股份有限公司 A kind of multi-functional blueberry ferment laundry dew

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261868A (en) * 1979-08-08 1981-04-14 Lever Brothers Company Stabilized enzymatic liquid detergent composition containing a polyalkanolamine and a boron compound
US4401155A (en) * 1981-02-13 1983-08-30 Union Carbide Corporation Heat exchanger with extruded flow channels
US4537706A (en) * 1984-05-14 1985-08-27 The Procter & Gamble Company Liquid detergents containing boric acid to stabilize enzymes
US4670179A (en) * 1986-05-29 1987-06-02 Colgate Palmolive Company Stabilized built single phase liquid detergent composition containing enzymes
US4711739A (en) * 1986-12-18 1987-12-08 S. C. Johnson & Son, Inc. Enzyme prespotter composition stabilized with water insoluble polyester or polyether polyol
US4842796A (en) * 1985-12-11 1989-06-27 Teijin Limited Process for producing high strength polymetaphenylene isophthalamide fiber
US4900475A (en) * 1985-07-26 1990-02-13 Colgate-Palmolive Co. Stabilized built liquid detergent composition containing enzyme
US4959179A (en) * 1989-01-30 1990-09-25 Lever Brothers Company Stabilized enzymes liquid detergent composition containing lipase and protease
US5030378A (en) * 1990-01-02 1991-07-09 The Procter & Gamble Company Liquid detergents containing anionic surfactant, builder and proteolytic enzyme
US5039446A (en) * 1988-07-01 1991-08-13 Genencor International, Inc. Liquid detergent with stabilized enzyme
US5124066A (en) * 1989-02-27 1992-06-23 Lever Brothers Company, Division Of Conopco, Inc. Storage-stable enzymatic liquid detergent composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1352739A (en) * 1971-09-01 1974-05-08 Aspro Nicholas Ltd Polymer-enzyme complexes

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261868A (en) * 1979-08-08 1981-04-14 Lever Brothers Company Stabilized enzymatic liquid detergent composition containing a polyalkanolamine and a boron compound
US4401155A (en) * 1981-02-13 1983-08-30 Union Carbide Corporation Heat exchanger with extruded flow channels
US4537706A (en) * 1984-05-14 1985-08-27 The Procter & Gamble Company Liquid detergents containing boric acid to stabilize enzymes
US4900475A (en) * 1985-07-26 1990-02-13 Colgate-Palmolive Co. Stabilized built liquid detergent composition containing enzyme
US4842796A (en) * 1985-12-11 1989-06-27 Teijin Limited Process for producing high strength polymetaphenylene isophthalamide fiber
US4670179A (en) * 1986-05-29 1987-06-02 Colgate Palmolive Company Stabilized built single phase liquid detergent composition containing enzymes
US4711739A (en) * 1986-12-18 1987-12-08 S. C. Johnson & Son, Inc. Enzyme prespotter composition stabilized with water insoluble polyester or polyether polyol
US5039446A (en) * 1988-07-01 1991-08-13 Genencor International, Inc. Liquid detergent with stabilized enzyme
US4959179A (en) * 1989-01-30 1990-09-25 Lever Brothers Company Stabilized enzymes liquid detergent composition containing lipase and protease
US5124066A (en) * 1989-02-27 1992-06-23 Lever Brothers Company, Division Of Conopco, Inc. Storage-stable enzymatic liquid detergent composition
US5030378A (en) * 1990-01-02 1991-07-09 The Procter & Gamble Company Liquid detergents containing anionic surfactant, builder and proteolytic enzyme

Cited By (569)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2199386A1 (en) 1993-10-08 2010-06-23 Novozymes A/S Amylase variants
EP1632557A2 (en) 1994-03-08 2006-03-08 Novozymes A/S Novel alkaline cellulases
EP1637596A1 (en) 1994-03-29 2006-03-22 Novozymes A/S Alkaline bacillus amylase
EP2455465A2 (en) 1995-02-03 2012-05-23 Novozymes A/S Amylase Variants
EP2455468A2 (en) 1995-02-03 2012-05-23 Novozymes A/S Amylase variants
EP2465930A2 (en) 1995-02-03 2012-06-20 Novozymes A/S Amylase variants
EP2431462A2 (en) 1995-03-17 2012-03-21 Novozymes A/S Novel endoglucanases
EP1683860A2 (en) 1995-03-17 2006-07-26 Novozymes A/S Novel endoglucanases
EP2290059A1 (en) 1998-11-27 2011-03-02 Novozymes A/S Lipolytic enzyme variants
EP2298873A1 (en) 1998-11-27 2011-03-23 Novozymes A/S Lipolytic enzyme variants
EP2302044A1 (en) 1998-11-27 2011-03-30 Novozymes A/S Lipolytic enzyme variants
EP2302043A2 (en) 1998-11-27 2011-03-30 Novozymes A/S Lipolytic enzyme variants
EP2290058A1 (en) 1998-11-27 2011-03-02 Novozymes A/S Lipolytic enzyme variants
EP2287297A1 (en) 1998-11-27 2011-02-23 Novozymes A/S Lipolytic enzyme variants
EP2113563A2 (en) 1998-11-27 2009-11-04 Novozymes A/S Lipolytic enzyme variants
EP2287298A1 (en) 1998-11-27 2011-02-23 Novozymes A/S Lipolytic enzyme variants
EP2716753A1 (en) 1998-11-27 2014-04-09 Novozymes A/S Lipolytic enzyme variants
EP2236602A1 (en) 1998-11-27 2010-10-06 Novozymes A/S Lipolytic enzyme variants
EP1803817A1 (en) 1998-12-18 2007-07-04 Novozymes A/S Subtilase enzymes of the I-S1 and I-S2 sub-groups having an additional amino acid residue in an active site loop region
EP2011864A1 (en) 1999-03-31 2009-01-07 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
WO2000060058A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
EP2889375A1 (en) 1999-03-31 2015-07-01 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
WO2000071688A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 126 and 127
WO2000071691A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 125 and 126
WO2000071689A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 127 and 128
WO2000071687A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 129 and 130
WO2000071685A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 132 and 133
WO2000071690A1 (en) 1999-05-20 2000-11-30 Novozymes A/S Subtilase enzymes of the i-s1 and i-s2 sub-groups having at least one additional amino acid residue between positions 128 and 129
EP2336331A1 (en) 1999-08-31 2011-06-22 Novozymes A/S Novel proteases and variants thereof
WO2002016547A2 (en) 2000-08-21 2002-02-28 Novozymes A/S Subtilase enzymes
EP2333055A1 (en) 2000-10-13 2011-06-15 Novozymes A/S Subtilase variants
WO2002031133A1 (en) 2000-10-13 2002-04-18 Novozymes A/S Subtilase variants
EP2360247A1 (en) 2000-10-13 2011-08-24 Novozymes A/S Subtilase variants
EP1975229A2 (en) 2000-10-13 2008-10-01 Novozymes A/S Alpha-amylase variant with altered properties
EP2264160A2 (en) 2001-05-15 2010-12-22 Novozymes A/S Alpha-amylase variant with altered properties
EP2159279A2 (en) 2001-05-15 2010-03-03 Novozymes A/S Alpha-amylase variant with altered properties
US9670471B2 (en) 2001-05-15 2017-06-06 Novozymes A/S Alpha-amylase variant with altered properties
WO2002092797A2 (en) 2001-05-15 2002-11-21 Novozymes A/S Alpha-amylase variant with altered properties
US8617837B2 (en) 2001-05-15 2013-12-31 Novozymes A/S Method of hydrolyzing soluble starch with an alpha-amylase variant
US9796968B2 (en) 2001-05-15 2017-10-24 Novozymes A/S Alpha-amylase variant with altered properties
US8486681B2 (en) 2001-05-15 2013-07-16 Novozymes A/S Alpha-amylase variant with altered properties
US8252573B2 (en) 2001-05-15 2012-08-28 Novozymes A/S Alpha-amylase variant with altered properties
EP3000881A2 (en) 2001-05-15 2016-03-30 Novozymes A/S Alpha-amylase variant with altered properties
US10612012B2 (en) 2001-05-15 2020-04-07 Novozymes A/S Alpha-amylase variant with altered properties
US9080137B2 (en) 2001-05-15 2015-07-14 Novozymes A/S Alpha-amylase variant with altered properties
EP2277997A2 (en) 2001-06-26 2011-01-26 Novozymes A/S Polypeptides having cellobiohydrolase I activity and polynucleotides encoding same
EP2298868A2 (en) 2001-06-26 2011-03-23 Novozymes A/S Polypeptides having cellobiohydrolase I activity and polynucleotides encoding same
WO2003000941A2 (en) 2001-06-26 2003-01-03 Novozymes A/S Polypeptides having cellobiohydrolase i activity and polynucleotides encoding same
EP2295544A2 (en) 2001-06-26 2011-03-16 Novozymes A/S Polypeptides having cellobiohydrolase I activity and polynucleotides encoding same
WO2003006602A2 (en) 2001-07-12 2003-01-23 Novozymes A/S Subtilase variants
WO2003080827A2 (en) 2002-03-27 2003-10-02 Novozymes A/S Granules with filamentous coatings
EP2302046A1 (en) 2002-10-01 2011-03-30 Novozymes A/S Family GH 61 polypeptides
EP2284258A2 (en) 2002-11-06 2011-02-16 Novozymes A/S Subtilase variants
EP2138574A2 (en) 2002-11-06 2009-12-30 Novozymes A/S Subtilase variants
EP2399992A2 (en) 2002-11-06 2011-12-28 Novozymes A/S Subtilase Variants
EP2128247A1 (en) 2002-12-20 2009-12-02 Novozymes A/S Polypeptides having cellobiohydrolase II activity and polynucleotides encoding same
WO2004067739A2 (en) 2003-01-27 2004-08-12 Novozymes A/S Stabilization of granules
EP1923455A2 (en) 2003-02-18 2008-05-21 Novozymes A/S Detergent compositions
EP2228440A1 (en) 2003-05-02 2010-09-15 Novozymes Inc. Variants of beta-glucosidases
US8329440B2 (en) 2003-05-12 2012-12-11 Danisco Us Inc. Lipolytic enzyme ELIP
US7754468B2 (en) 2003-05-12 2010-07-13 Danisco Us Inc. Lipolytic enzyme ELIP
US8753852B2 (en) 2003-05-12 2014-06-17 Danisco Us Inc. Lipolytic enzyme LIP1
US7511005B2 (en) 2003-05-12 2009-03-31 Danisco Us Inc., Genencor Division Lipolytic enzyme elip
WO2005001064A2 (en) 2003-06-25 2005-01-06 Novozymes A/S Polypeptides having alpha-amylase activity and polypeptides encoding same
EP2987857A1 (en) 2003-08-25 2016-02-24 Novozymes, Inc. Variants of glycoside hydrolases
EP2308966A1 (en) 2003-10-10 2011-04-13 Novozymes A/S Protease variants
EP2284259A2 (en) 2003-10-10 2011-02-16 Novozymes A/S Protease variants
WO2005040372A1 (en) 2003-10-23 2005-05-06 Novozymes A/S Protease with improved stability in detergents
WO2005047499A1 (en) 2003-10-28 2005-05-26 Novozymes Inc. Polypeptides having beta-glucosidase activity and polynucleotides encoding same
WO2005066339A2 (en) 2004-01-06 2005-07-21 Novozymes A/S Polypeptides of alicyclobacillus sp.
EP2308890A1 (en) 2004-01-30 2011-04-13 Novozymes Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
EP2314605A1 (en) 2004-01-30 2011-04-27 Novozymes Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
EP2305703A1 (en) 2004-01-30 2011-04-06 Novozymes Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
EP2305702A1 (en) 2004-01-30 2011-04-06 Novozymes Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
EP2301958A1 (en) 2004-01-30 2011-03-30 Novozymes Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2005074647A2 (en) 2004-01-30 2005-08-18 Novozymes Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
EP2325318A1 (en) 2004-02-13 2011-05-25 Novozymes A/S Protease variants
EP2305821A2 (en) 2004-02-13 2011-04-06 Novozymes A/S Protease variants
EP2267001A2 (en) 2004-05-04 2010-12-29 Novozymes Adenium Biotech A/S Antimicrobial polypeptides
EP2267000A2 (en) 2004-05-04 2010-12-29 Novozymes Adenium Biotech A/S Antimicrobial polypeptides
EP2267002A2 (en) 2004-05-04 2010-12-29 Novozymes Adenium Biotech A/S Antimicrobial polypeptides
WO2005123911A2 (en) 2004-06-21 2005-12-29 Novozymes A/S Proteases
EP2258839A1 (en) 2004-06-21 2010-12-08 Novozymes A/S Nocardiopsis proteases
EP2258838A1 (en) 2004-06-21 2010-12-08 Novozymes A/S Nocardiopsis proteases
EP3620523A2 (en) 2004-07-05 2020-03-11 Novozymes A/S Alpha-amylase variants with altered properties
EP4269684A2 (en) 2004-07-05 2023-11-01 Novozymes A/S Alpha-amylase variants with altered properties
WO2006002643A2 (en) 2004-07-05 2006-01-12 Novozymes A/S Alpha-amylase variants with altered properties
EP2261329A2 (en) 2004-09-21 2010-12-15 Novozymes A/S Subtilases
WO2006032277A1 (en) 2004-09-21 2006-03-30 Novozymes A/S Subtilases
WO2006032278A1 (en) 2004-09-21 2006-03-30 Novozymes A/S Subtilases
WO2006032279A1 (en) 2004-09-21 2006-03-30 Novozymes A/S Subtilases
WO2006039541A2 (en) 2004-09-30 2006-04-13 Novozymes, Inc. Polypeptides having lipase activity and polynucleotides encoding same
EP2298872A2 (en) 2004-09-30 2011-03-23 Novozymes A/S Polypeptides having lipase activity and polynucleotides encoding same
EP2302042A2 (en) 2004-09-30 2011-03-30 Novozymes A/S Polypeptides having lipase activity and polynucleotides encoding same
EP2295555A2 (en) 2004-09-30 2011-03-16 Novozymes, Inc. Polypeptides having lipase activity and polynucleotides encodig same
WO2006116682A2 (en) 2005-04-27 2006-11-02 Novozymes, Inc. Polypeptides having endoglucanase activity and polynucleotides encoding same
EP2290061A2 (en) 2005-07-08 2011-03-02 Novozymes A/S Subtilase variants
EP2385111A2 (en) 2005-07-08 2011-11-09 Novozymes A/S Subtilase variants
EP2385112A2 (en) 2005-07-08 2011-11-09 Novozymes A/S Subtilase variants
WO2007006305A1 (en) 2005-07-08 2007-01-18 Novozymes A/S Subtilase variants
EP2360246A1 (en) 2005-08-16 2011-08-24 Novozymes A/S Polypeptides of strain bacillus SP. P203
WO2007019858A2 (en) 2005-08-16 2007-02-22 Novozymes A/S Subtilases
EP1967584A1 (en) 2005-08-16 2008-09-10 Novozymes A/S Polypeptides of strain bacillus SP. P203
US11033563B2 (en) 2005-08-30 2021-06-15 Curemark, Llc Use of lactulose in the treatment of autism
EP2385110A2 (en) 2005-09-30 2011-11-09 Novozymes, Inc. Methods for enhancing the degradation or conversion of cellulosic material
WO2007107573A1 (en) 2006-03-22 2007-09-27 Novozymes A/S Use of polypeptides having antimicrobial activity
WO2008057637A2 (en) 2006-07-21 2008-05-15 Novozymes, Inc. Methods of increasing secretion of polypeptides having biological activity
WO2008021761A2 (en) 2006-08-11 2008-02-21 Novozymes Biologicals, Inc. Bacteria cultures and compositions comprising bacteria cultures
EP2272943A1 (en) 2006-10-06 2011-01-12 Novozymes A/S Detergent compositions and the use of enzyme combinations therein
WO2008040818A1 (en) 2006-10-06 2008-04-10 Novozymes A/S Detergent compositions and the use of enzyme combinations therein
US8470758B2 (en) 2006-12-21 2013-06-25 Danisco Us Inc. Detergent compositions and methods of use for an alpha-amylase polypeptide of bacillus species 195
US8097444B2 (en) 2006-12-21 2012-01-17 Danisco Us Inc. Compositions and uses for an alpha-amylase polypeptide of bacillus species 195
WO2008101958A1 (en) 2007-02-20 2008-08-28 Novozymes A/S Enzyme foam treatment for laundry
EP2428572A2 (en) 2007-03-09 2012-03-14 Danisco US, Inc., Genencor Division Alkaliphilic Bacillus species alpha-amylase variants, compositions comprising alpha-amylase variants, and methods of use
US10590368B2 (en) * 2007-03-27 2020-03-17 Novozymes A/S Stable enzyme solutions and method of manufacturing
US20100120649A1 (en) * 2007-03-27 2010-05-13 Novozymes A/S Stable Enzyme Solutions and Method of Manufacturing
US11827866B2 (en) 2007-03-27 2023-11-28 Novozymes A/S Stable enzyme solutions and method of manufacturing
EP2468852A1 (en) 2007-03-30 2012-06-27 Novozymes A/S Fungal peroxygenases and methods of application
EP2471911A2 (en) 2007-03-30 2012-07-04 Novozymes A/S Fungal peroxygenases and methods of application
US8153412B2 (en) 2007-11-05 2012-04-10 Danisco Us Inc. Variants of Bacillus sp. TS-23 alpha-amylase with altered properties
US8206966B2 (en) 2007-11-05 2012-06-26 Danisco Us Inc. Alpha-amylase variants with altered properties
US8460916B2 (en) 2008-02-04 2013-06-11 Danisco Us Inc. TS-23 alpha-amylase variants with altered properties
US8507244B2 (en) 2008-02-04 2013-08-13 Danisco Us Inc. Variants of bacillus sp. TS-23 alpha-amylase with altered properties
US8962283B2 (en) 2008-02-04 2015-02-24 Danisco Us Inc. TS-23 alpha-amylase variants with altered properties
US8236545B2 (en) 2008-02-04 2012-08-07 Danisco Us Inc., Genencor Division TS23 alpha-amylase variants with altered properties
US11045527B2 (en) 2008-03-13 2021-06-29 Curemark, Llc Method of diagnosing preeclampsia or pregnancy-induced hypertension
US11235038B2 (en) 2008-04-18 2022-02-01 Curemark, Llc Pharmaceutical preparation for the treatment of the symptoms of addiction and method of diagnosing same
US8084240B2 (en) 2008-06-06 2011-12-27 Danisco Us Inc. Geobacillus stearothermophilus α-amylase (AmyS) variants with improved properties
US9040279B2 (en) 2008-06-06 2015-05-26 Danisco Us Inc. Saccharification enzyme composition and method of saccharification thereof
US9090887B2 (en) 2008-06-06 2015-07-28 Danisco Us Inc. Variant alpha-amylases from Bacillus subtilis and methods of use, thereof
EP2447361A2 (en) 2008-06-06 2012-05-02 Danisco US Inc. Geobacillus stearothermophilus alpha-amylase (AMYS) variants with improved properties
US9040278B2 (en) 2008-06-06 2015-05-26 Danisco Us Inc. Production of glucose from starch using alpha-amylases from Bacillus subtilis
US8975056B2 (en) 2008-06-06 2015-03-10 Danisco Us Inc. Variant alpha-amylases from Bacillus subtilis and methods of uses, thereof
EP2623591A2 (en) 2008-06-06 2013-08-07 Danisco US Inc. Geobacillus stearothermophilus alpha-amylase (AMYS) variants with improved properties
US8323945B2 (en) 2008-06-06 2012-12-04 Danisco Us Inc. Variant alpha-amylases from Bacillus subtilis and methods of uses, thereof
EP2135934A1 (en) 2008-06-16 2009-12-23 Unilever PLC Use of a laundry detergent composition
US11016104B2 (en) 2008-07-01 2021-05-25 Curemark, Llc Methods and compositions for the treatment of symptoms of neurological and mental health disorders
US9029310B2 (en) 2008-07-07 2015-05-12 Basf Se Enzyme composition comprising enzyme containing polymer particles
EP2149786A1 (en) 2008-08-01 2010-02-03 Unilever PLC Improvements relating to detergent analysis
DE212009000119U1 (en) 2008-09-12 2011-12-30 Unilever N.V. Dispenser and pretreatment agent for viscous liquids
US8507243B2 (en) 2008-09-25 2013-08-13 Danisco Us Inc. Alpha-amylase blends and methods for using said blends
EP2857515A2 (en) 2008-11-20 2015-04-08 Novozymes Inc. Polypeptides having amylolytic enhancing activity and polynucleotides encoding same
WO2010065830A1 (en) 2008-12-04 2010-06-10 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2010068650A1 (en) 2008-12-12 2010-06-17 Novozymes, Inc. Polypeptides having lipase activity and polynucleotides encoding same
EP2202290A1 (en) 2008-12-23 2010-06-30 Unilever PLC A flowable laundry composition and packaging therefor
EP3064217A1 (en) 2009-01-06 2016-09-07 Curelon LLC Compositions comprising protease, amylase and lipase for use in the treatment of staphylococcus aureus infections
US11357835B2 (en) 2009-01-06 2022-06-14 Galenagen, Llc Compositions and methods for the treatment or the prevention of E. coli infections and for the eradication or reduction of E. coli surfaces
EP2947100A1 (en) 2009-01-06 2015-11-25 Curelon LLC Oral compositions for the treatment or the prevention of infections by E. Coli
EP3351264A1 (en) 2009-01-06 2018-07-25 Galenagen, LLC Composition comprising protease, amylase and lipase
WO2010104675A1 (en) 2009-03-10 2010-09-16 Danisco Us Inc. Bacillus megaterium strain dsm90-related alpha-amylases, and methods of use, thereof
WO2010115028A2 (en) 2009-04-01 2010-10-07 Danisco Us Inc. Cleaning system comprising an alpha-amylase and a protease
EP2902487A2 (en) 2009-04-01 2015-08-05 Danisco US Inc. Compositions and methods comprising alpha-amylase variants with altered properties
WO2010115021A2 (en) 2009-04-01 2010-10-07 Danisco Us Inc. Compositions and methods comprising alpha-amylase variants with altered properties
US8852912B2 (en) 2009-04-01 2014-10-07 Danisco Us Inc. Compositions and methods comprising alpha-amylase variants with altered properties
WO2010117511A1 (en) 2009-04-08 2010-10-14 Danisco Us Inc. Halomonas strain wdg195-related alpha-amylases, and methods of use, thereof
US8877479B2 (en) 2009-04-08 2014-11-04 Danisco Us Inc. Halomonas strain WDG195-related alpha-amylases, and methods of use, thereof
US11419821B2 (en) 2009-04-13 2022-08-23 Curemark, Llc Enzyme delivery systems and methods of preparation and use
WO2010127919A1 (en) 2009-05-05 2010-11-11 Unilever Plc Shading composition
EP3805348A2 (en) 2009-09-17 2021-04-14 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
EP3269804A1 (en) 2009-09-17 2018-01-17 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2011035027A2 (en) 2009-09-17 2011-03-24 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2011036264A1 (en) 2009-09-25 2011-03-31 Novozymes A/S Use of protease variants
WO2011036263A1 (en) 2009-09-25 2011-03-31 Novozymes A/S Subtilase variants
WO2011041397A1 (en) 2009-09-29 2011-04-07 Novozymes, Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2011041504A1 (en) 2009-09-30 2011-04-07 Novozymes, Inc. Polypeptides derived from thermoascus crustaceus having cellulolytic enhancing activity and polynucleotides encoding same
WO2011039319A1 (en) 2009-09-30 2011-04-07 Novozymes A/S Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
EP2977382A2 (en) 2009-09-30 2016-01-27 Novozymes Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2011042372A1 (en) 2009-10-08 2011-04-14 Unilever Plc Shading composition
WO2011045195A1 (en) 2009-10-13 2011-04-21 Unilever Plc Dye polymers
WO2011049945A2 (en) 2009-10-23 2011-04-28 Danisco Us Inc. Methods for reducing blue saccharide
WO2011047987A1 (en) 2009-10-23 2011-04-28 Unilever Plc Dye polymers
WO2011076897A1 (en) 2009-12-22 2011-06-30 Novozymes A/S Use of amylase variants at low temperature
EP3101127A1 (en) 2010-01-04 2016-12-07 Novozymes A/S Alpha-amylase variants with improved stability
WO2011080353A1 (en) 2010-01-04 2011-07-07 Novozymes A/S Stabilization of alpha-amylases towards calcium depletion and acidic ph
WO2011082425A2 (en) 2010-01-04 2011-07-07 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2011080354A1 (en) 2010-01-04 2011-07-07 Novozymes A/S Alpha-amylases
WO2011080352A1 (en) 2010-01-04 2011-07-07 Novozymes A/S Alpha-amylases
WO2011082429A1 (en) 2010-01-04 2011-07-07 Novozymes A/S Alpha-amylases
WO2011082889A1 (en) 2010-01-07 2011-07-14 Unilever Plc Natural shading agents
US9045514B2 (en) 2010-01-22 2015-06-02 Dupont Nutrition Biosciences Aps Methods for producing amino-substituted glycolipid compounds
WO2011089561A1 (en) 2010-01-22 2011-07-28 Danisco A/S Methods for producing amino-substituted glycolipid compounds
WO2011098355A1 (en) 2010-02-09 2011-08-18 Unilever Plc Dye polymers
WO2011100410A2 (en) 2010-02-10 2011-08-18 The Procter & Gamble Company Cleaning composition comprising amylase variants with high stability in the presence of a chelating agent
EP3404087A1 (en) 2010-02-10 2018-11-21 Novozymes A/S Alpha-amylase variants with high stability in presence of a chelating agent
EP2357220A1 (en) 2010-02-10 2011-08-17 The Procter & Gamble Company Cleaning composition comprising amylase variants with high stability in the presence of a chelating agent
EP3892709A2 (en) 2010-02-10 2021-10-13 Novozymes A/S Variants and compositions comprising variants with high stability in presence of a chelating agent
WO2011098531A1 (en) 2010-02-10 2011-08-18 Novozymes A/S Variants and compositions comprising variants with high stability in presence of a chelating agent
EP3730595A2 (en) 2010-02-10 2020-10-28 The Procter & Gamble Company Cleaning composition comprising amylase variants with high stability in the presence of a chelating agent
EP3428260A2 (en) 2010-02-10 2019-01-16 The Procter & Gamble Company Cleaning composition comprising amylase variants with high stability in the presence of a chelating agent
WO2011098356A1 (en) 2010-02-12 2011-08-18 Unilever Plc Laundry treatment composition comprising bis-azo shading dyes
WO2011100667A1 (en) 2010-02-14 2011-08-18 Ls9, Inc. Surfactant and cleaning compositions comprising microbially produced branched fatty alcohols
WO2011102933A1 (en) 2010-02-18 2011-08-25 Danisco Us Inc. Amylase from nesterenkonia and methods of use, thereof
US8815559B2 (en) 2010-02-18 2014-08-26 Danisco Us Inc. Amylase from nesterenkonia and methods of use, thereof
WO2011107397A1 (en) 2010-03-02 2011-09-09 Unilever Nv Laundry detergent compositions comprising amino silicone antifoam agent
WO2011134685A1 (en) 2010-04-29 2011-11-03 Unilever Plc Bis-heterocyclic azo dyes
US8921295B2 (en) 2010-07-23 2014-12-30 American Sterilizer Company Biodegradable concentrated neutral detergent composition
WO2012038144A1 (en) 2010-09-20 2012-03-29 Unilever Plc Fabric treatment compositions comprising target benefit agents
WO2012044836A1 (en) 2010-09-30 2012-04-05 Novozymes, Inc. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2012044835A1 (en) 2010-09-30 2012-04-05 Novozymes, Inc. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2012049033A1 (en) 2010-10-14 2012-04-19 Unilever Plc Top-loading laundry vessel method
WO2012048949A1 (en) 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particle
EP2441825A1 (en) 2010-10-14 2012-04-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Process for preparing laundry detergent particles
WO2012048951A1 (en) 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
EP2441823A1 (en) 2010-10-14 2012-04-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Particulate detergent compositions comprising surfactant, carbonate, and hydroxamate
WO2012048909A1 (en) 2010-10-14 2012-04-19 Unilever Plc Packaged particulate detergent composition
EP2441820A1 (en) 2010-10-14 2012-04-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Laundry detergent particles
WO2012048948A1 (en) 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
EP2441822A1 (en) 2010-10-14 2012-04-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Laundry detergent particles
WO2012048945A1 (en) 2010-10-14 2012-04-19 Unilever Plc Particulate detergent compositions comprising fluorescer
WO2012049178A1 (en) 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
WO2012049034A1 (en) 2010-10-14 2012-04-19 Unilever Plc Packaging and dispensing of detergent compositions
WO2012048947A1 (en) 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
WO2012048910A1 (en) 2010-10-14 2012-04-19 Unilever Plc Packaged particulate detergent composition
WO2012048956A1 (en) 2010-10-14 2012-04-19 Unilever Plc Packaged concentrated particulate detergent composition
WO2012048950A1 (en) 2010-10-14 2012-04-19 Unilever Plc Laundry detergent particles
WO2012049053A1 (en) 2010-10-14 2012-04-19 Unilever Plc Package comprising a laundry composition, dispenser for said package and method for washing using said dispenser and said package
WO2012049055A1 (en) 2010-10-14 2012-04-19 Unilever Plc Transparent packaging of detergent compositions
WO2012048955A1 (en) 2010-10-14 2012-04-19 Unilever Plc Packaging and dispensing of detergent compositions
WO2012049032A1 (en) 2010-10-14 2012-04-19 Unilever Plc Refill and refillable packages of concentrated particulate detergent compositions
WO2012052306A1 (en) 2010-10-22 2012-04-26 Unilever Plc Externally structured aqueous detergent liquid
WO2012059363A1 (en) 2010-11-01 2012-05-10 Unilever Nv A detergent composition having shading dyes and lipase
EP2787066A1 (en) 2010-11-01 2014-10-08 Unilever N.V. A detergent composition having shading dyes and lipase
DE102010043934A1 (en) 2010-11-15 2012-05-16 Henkel Ag & Co. Kgaa Stabilized liquid enzyme-containing surfactant preparation
WO2012065839A1 (en) 2010-11-15 2012-05-24 Henkel Ag & Co. Kgaa Stabilized, liquid, enzyme-containing surfactant preparation
WO2012068509A1 (en) 2010-11-18 2012-05-24 Novozymes, Inc. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2012098046A1 (en) 2011-01-17 2012-07-26 Unilever Plc Dye polymer for laundry treatment
WO2012104159A1 (en) 2011-01-31 2012-08-09 Unilever Plc Alkaline liquid detergent compositions
EP3431581A2 (en) 2011-02-15 2019-01-23 Novozymes Biologicals, Inc. Mitigation of odor in cleaning machines and cleaning processes
WO2012112718A1 (en) 2011-02-15 2012-08-23 Novozymes Biologicals, Inc. Mitigation of odor in cleaning machines and cleaning processes
WO2012110563A1 (en) 2011-02-16 2012-08-23 Novozymes A/S Detergent compositions comprising metalloproteases
WO2012110562A2 (en) 2011-02-16 2012-08-23 Novozymes A/S Detergent compositions comprising metalloproteases
WO2012110564A1 (en) 2011-02-16 2012-08-23 Novozymes A/S Detergent compositions comprising m7 or m35 metalloproteases
WO2012113340A1 (en) 2011-02-23 2012-08-30 Novozymes Inc. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same
WO2012119859A1 (en) 2011-03-10 2012-09-13 Unilever Plc Dye polymer
WO2012130492A1 (en) 2011-03-25 2012-10-04 Unilever Plc Dye polymer
WO2012135659A2 (en) 2011-03-31 2012-10-04 Novozymes A/S Methods for enhancing the degradation or conversion of cellulosic material
EP2476743A1 (en) 2011-04-04 2012-07-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Method of laundering fabric
WO2012136427A1 (en) 2011-04-04 2012-10-11 Unilever Plc Method of laundering fabric
WO2012137147A1 (en) 2011-04-08 2012-10-11 Danisco Us, Inc. Compositions
US10940187B2 (en) 2011-04-21 2021-03-09 Curemark, Llc Method of treatment of schizophreniform disorder
WO2012149344A1 (en) 2011-04-29 2012-11-01 Novozymes, Inc. Methods for enhancing the degradation or conversion of cellulosic material
EP2522715A1 (en) 2011-05-13 2012-11-14 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Aqueous concentrated laundry detergent compositions
EP2522714A1 (en) 2011-05-13 2012-11-14 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Aqueous concentrated laundry detergent compositions
WO2012156250A1 (en) 2011-05-13 2012-11-22 Unilever Plc Aqueous concentrated laundry detergent compositions
WO2012159778A1 (en) 2011-05-26 2012-11-29 Unilever Plc Liquid laundry composition
EP3354792A1 (en) 2011-06-01 2018-08-01 Unilever PLC, a company registered in England and Wales under company no. 41424 of Liquid detergent composition containing dye polymer
EP4134424A1 (en) 2011-06-01 2023-02-15 Unilever IP Holdings B.V. Liquid detergent composition containing dye polymer
WO2012175708A2 (en) 2011-06-24 2012-12-27 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
EP3543333A2 (en) 2011-06-30 2019-09-25 Novozymes A/S Method for screening alpha-amylases
EP4026901A2 (en) 2011-06-30 2022-07-13 Novozymes A/S Method for screening alpha-amylases
US10752889B2 (en) 2011-06-30 2020-08-25 Novozymes A/S Alpha-amylase variants
US10167458B2 (en) 2011-06-30 2019-01-01 Novozymes A/S Alpha-amylase variants
US9434932B2 (en) 2011-06-30 2016-09-06 Novozymes A/S Alpha-amylase variants
WO2013001087A2 (en) 2011-06-30 2013-01-03 Novozymes A/S Method for screening alpha-amylases
EP2540825A2 (en) 2011-06-30 2013-01-02 The Procter & Gamble Company Cleaning compositions comprising amylase variants reference to a sequence listing
EP3121270A2 (en) 2011-06-30 2017-01-25 The Procter & Gamble Company Cleaning compositions comprising amylase variants reference to a sequence listing
EP2540824A1 (en) 2011-06-30 2013-01-02 The Procter & Gamble Company Cleaning compositions comprising amylase variants reference to a sequence listing
US11091748B2 (en) 2011-06-30 2021-08-17 Novozymes A/S Alpha-amylase variants
WO2013011071A1 (en) 2011-07-21 2013-01-24 Unilever Plc Liquid laundry composition
WO2013024021A1 (en) 2011-08-15 2013-02-21 Novozymes A/S Polypeptides having cellulase activity and polynucleotides encoding same
WO2013026796A1 (en) 2011-08-19 2013-02-28 Novozymes A/S Polypeptides having protease activity
WO2013041689A1 (en) 2011-09-22 2013-03-28 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2013057141A2 (en) 2011-10-17 2013-04-25 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
EP3495479A1 (en) 2011-10-17 2019-06-12 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
EP4253534A2 (en) 2011-10-17 2023-10-04 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2013057143A2 (en) 2011-10-17 2013-04-25 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
EP3572505A2 (en) 2011-10-28 2019-11-27 Danisco US Inc. Variant maltohexaose-forming alpha-amylase variants
EP3845641A1 (en) 2011-10-28 2021-07-07 Danisco US Inc. Variant maltohexaose-forming alpha-amylase variants
WO2013063460A2 (en) 2011-10-28 2013-05-02 Danisco Us Inc. Variant maltohexaose-forming alpha-amylase variants
EP3246404A1 (en) 2011-10-28 2017-11-22 Danisco US Inc. Variant maltohexaose-forming alpha-amylase variants
EP4345161A2 (en) 2011-10-28 2024-04-03 Danisco Us Inc Variant maltohexaose-forming alpha-amylase variants
EP3219794A1 (en) 2011-11-21 2017-09-20 Novozymes A/S Gh61 polypeptide variants and polynucleotides encoding same
WO2013119302A2 (en) 2011-11-21 2013-08-15 Novozymes, Inc. Gh61 polypeptide variants and polynucleotides encoding same
EP3597736A1 (en) 2011-11-21 2020-01-22 Novozymes A/S Gh61 polypeptide variants and polynucleotides encoding same
WO2013076269A1 (en) 2011-11-25 2013-05-30 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2013087027A1 (en) 2011-12-16 2013-06-20 Novozymes, Inc. Polypeptides having laccase activity and polynucleotides encoding same
EP3272862A1 (en) 2011-12-16 2018-01-24 Novozymes, Inc. Polypeptides having laccase activity and polynucleotides encoding same
WO2013092052A1 (en) 2011-12-20 2013-06-27 Unilever Plc Isotropic liquid detergents comprising soil release polymer
EP2607468A1 (en) 2011-12-20 2013-06-26 Henkel AG & Co. KGaA Detergent compositions comprising subtilase variants
EP3323875A1 (en) 2011-12-20 2018-05-23 Henkel AG & Co. KGaA Detergent compositions comprising subtilase variants
WO2013092635A1 (en) 2011-12-20 2013-06-27 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2013096305A1 (en) 2011-12-22 2013-06-27 Danisco Us Inc. Variant alpha-amylases and methods of use, thereof
WO2013096653A1 (en) 2011-12-22 2013-06-27 Danisco Us Inc. Compositions and methods comprising a lipolytic enzyme variant
WO2013098185A1 (en) 2011-12-28 2013-07-04 Novozymes A/S Polypeptides having protease activity
WO2013098205A2 (en) 2011-12-29 2013-07-04 Novozymes A/S Detergent compositions
EP3382003A1 (en) 2011-12-29 2018-10-03 Novozymes A/S Detergent compositions with lipase variants
WO2013110766A1 (en) 2012-01-26 2013-08-01 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
WO2013120948A1 (en) 2012-02-17 2013-08-22 Novozymes A/S Subtilisin variants and polynucleotides encoding same
EP2628785A1 (en) 2012-02-17 2013-08-21 Henkel AG & Co. KGaA Detergent compositions comprising subtilase variants
WO2013120952A2 (en) 2012-02-17 2013-08-22 Henkel Ag & Co. Kgaa Detergent compositions comprising subtilase variants
WO2013131964A1 (en) 2012-03-07 2013-09-12 Novozymes A/S Detergent composition and substitution of optical brighteners in detergent compositions
EP2639291A1 (en) 2012-03-13 2013-09-18 Unilever PLC Packaged particulate detergent composition
WO2013139702A1 (en) 2012-03-21 2013-09-26 Unilever Plc Laundry detergent particles
WO2013149753A1 (en) 2012-04-03 2013-10-10 Unilever Plc Laundry detergent particles
WO2013149752A1 (en) 2012-04-03 2013-10-10 Unilever Plc Laundry detergent particles
WO2013149754A1 (en) 2012-04-03 2013-10-10 Unilever Plc Laundry detergent particle
WO2013149755A1 (en) 2012-04-03 2013-10-10 Unilever Plc Laundry detergent particles
WO2013160025A1 (en) 2012-04-23 2013-10-31 Unilever Plc Structured aqueous liquid detergent
WO2013163590A2 (en) 2012-04-27 2013-10-31 Novozymes, Inc. Gh61 polypeptide variants and polynucleotides encoding same
EP3279320A2 (en) 2012-04-27 2018-02-07 Novozymes A/S Gh61 polypeptide variants and polynucleotides encoding same
WO2013167581A1 (en) 2012-05-07 2013-11-14 Novozymes A/S Polypeptides having xanthan degrading activity and polynucleotides encoding same
US8945889B2 (en) 2012-05-11 2015-02-03 Danisco Us Inc. Method of using alpha-amylase from Aspergillus clavatus for saccharification
WO2013169645A1 (en) 2012-05-11 2013-11-14 Danisco Us Inc. Use of alpha-amylase from aspergillus clavatus for saccharification
WO2013171241A1 (en) 2012-05-16 2013-11-21 Novozymes A/S Compositions comprising lipase and methods of use thereof
WO2013171210A1 (en) 2012-05-16 2013-11-21 Unilever Plc Laundry detergent compositions comprising polyalkoxylated polyethyleneimine
US11364287B2 (en) 2012-05-30 2022-06-21 Curemark, Llc Methods of treating celiac disease
WO2013184577A1 (en) 2012-06-08 2013-12-12 Danisco Us Inc. Alpha-amylase variants derived from the alpha amylase of cytophaga sp.amylase|(cspamy2).
EP3967757A1 (en) 2012-06-08 2022-03-16 Danisco US Inc. Alpha-amylase variants derived from the alpha amylase of cytophaga sp. amylase (cspamy2).
WO2013189802A1 (en) 2012-06-19 2013-12-27 Novozymes A/S Enzymatic reduction of hydroperoxides
WO2013189972A2 (en) 2012-06-20 2013-12-27 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
WO2014028434A2 (en) 2012-08-16 2014-02-20 Danisco Us Inc. Method of using alpha-amylase from aspergillus clavatus and pullulanase for saccharification
WO2014029820A1 (en) 2012-08-22 2014-02-27 Novozymes A/S Detergent compositions comprising metalloproteases
WO2014029819A1 (en) 2012-08-22 2014-02-27 Novozymes A/S Metalloprotease from exiguobacterium
WO2014029821A1 (en) 2012-08-22 2014-02-27 Novozymes A/S Metalloproteases from alicyclobacillus sp.
WO2014048857A1 (en) 2012-09-25 2014-04-03 Unilever Plc Laundry detergent particles
WO2014081622A1 (en) 2012-11-20 2014-05-30 Danisco Us Inc. Amylase with maltogenic properties
EP3321353A1 (en) 2012-12-11 2018-05-16 Danisco US Inc. Yeast host cells epxressing a glucoamylase from aspergillus fumigatus and methods of use thereof
WO2014092960A1 (en) 2012-12-11 2014-06-19 Danisco Us Inc. Trichoderma reesei host cells expressing a glucoamylase from aspergillus fumigatus and methods of use thereof
WO2014090940A1 (en) 2012-12-14 2014-06-19 Novozymes A/S Removal of skin-derived body soils
WO2014093125A1 (en) 2012-12-14 2014-06-19 Danisco Us Inc. Method of using alpha-amylase from aspergillus fumigatus and isoamylase for saccharification
WO2014099415A1 (en) 2012-12-20 2014-06-26 Danisco Us Inc. Method of using alpha-amylase from aspergillus terreus and pullulanase for saccharification
WO2014096259A1 (en) 2012-12-21 2014-06-26 Novozymes A/S Polypeptides having protease activiy and polynucleotides encoding same
EP3354728A1 (en) 2012-12-21 2018-08-01 Danisco US Inc. Alpha-amylase variants
WO2014099525A1 (en) 2012-12-21 2014-06-26 Danisco Us Inc. Paenibacillus curdlanolyticus amylase, and methods of use, thereof
WO2014099523A1 (en) 2012-12-21 2014-06-26 Danisco Us Inc. Alpha-amylase variants
EP3321360A2 (en) 2013-01-03 2018-05-16 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2014114570A1 (en) 2013-01-23 2014-07-31 Unilever Plc An uncoloured laundry additive material for promotion of anti redeposition of particulate soil
EP2767579B1 (en) 2013-02-19 2018-07-18 The Procter and Gamble Company Method of laundering a fabric
EP2770044A1 (en) 2013-02-20 2014-08-27 Unilever PLC Lamellar gel with amine oxide
EP3336183A1 (en) 2013-03-11 2018-06-20 Danisco US Inc. Alpha-amylase conbinatorial variants
WO2014164777A1 (en) 2013-03-11 2014-10-09 Danisco Us Inc. Alpha-amylase combinatorial variants
EP3978604A1 (en) 2013-03-11 2022-04-06 Danisco US Inc. Alpha-amylase combinatorial variants
WO2014164800A1 (en) 2013-03-11 2014-10-09 Danisco Us Inc. Alpha-amylase combinatorial variants
WO2014147127A1 (en) 2013-03-21 2014-09-25 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
EP3461881A1 (en) 2013-05-03 2019-04-03 Novozymes A/S Microencapsulation of detergent enzymes
WO2014184164A1 (en) 2013-05-14 2014-11-20 Novozymes A/S Detergent compositions
WO2014183921A1 (en) 2013-05-17 2014-11-20 Novozymes A/S Polypeptides having alpha amylase activity
EP3786269A1 (en) 2013-06-06 2021-03-03 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2014198840A1 (en) 2013-06-12 2014-12-18 Earth Alive Clean Technologies Inc. Dust suppressant
WO2014200657A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from streptomyces xiamenensis
WO2014200658A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from promicromonospora vindobonensis
WO2014200656A1 (en) 2013-06-13 2014-12-18 Danisco Us Inc. Alpha-amylase from streptomyces umbrinus
WO2014204596A1 (en) 2013-06-17 2014-12-24 Danisco Us Inc. Alpha-amylase from bacillaceae family member
WO2014207227A1 (en) 2013-06-27 2014-12-31 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2014207224A1 (en) 2013-06-27 2014-12-31 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2015001017A2 (en) 2013-07-04 2015-01-08 Novozymes A/S Polypeptides having anti-redeposition effect and polynucleotides encoding same
WO2015004102A1 (en) 2013-07-09 2015-01-15 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
EP3696264A1 (en) 2013-07-19 2020-08-19 Danisco US Inc. Compositions and methods comprising a lipolytic enzyme variant
EP2832853A1 (en) 2013-07-29 2015-02-04 Henkel AG&Co. KGAA Detergent composition comprising protease variants
EP3309249A1 (en) 2013-07-29 2018-04-18 Novozymes A/S Protease variants and polynucleotides encoding same
EP3613853A1 (en) 2013-07-29 2020-02-26 Novozymes A/S Protease variants and polynucleotides encoding same
EP3339436A1 (en) 2013-07-29 2018-06-27 Henkel AG & Co. KGaA Detergent composition comprising protease variants
WO2015050724A1 (en) 2013-10-03 2015-04-09 Danisco Us Inc. Alpha-amylases from a subset of exiguobacterium, and methods of use, thereof
WO2015050723A1 (en) 2013-10-03 2015-04-09 Danisco Us Inc. Alpha-amylases from exiguobacterium, and methods of use, thereof
WO2015077126A1 (en) 2013-11-20 2015-05-28 Danisco Us Inc. Variant alpha-amylases having reduced susceptibility to protease cleavage, and methods of use, thereof
WO2015094809A1 (en) 2013-12-19 2015-06-25 Danisco Us Inc. Chimeric fungal alpha-amylases comprising carbohydrate binding module and the use thereof
EP3453757A1 (en) 2013-12-20 2019-03-13 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2015109972A1 (en) 2014-01-22 2015-07-30 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
WO2015134729A1 (en) 2014-03-05 2015-09-11 Novozymes A/S Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase
WO2015134737A1 (en) 2014-03-05 2015-09-11 Novozymes A/S Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase
EP3521434A1 (en) 2014-03-12 2019-08-07 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
WO2015150457A1 (en) 2014-04-01 2015-10-08 Novozymes A/S Polypeptides having alpha amylase activity
EP3550015A1 (en) 2014-04-10 2019-10-09 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
EP3722406A1 (en) 2014-04-11 2020-10-14 Novozymes A/S Detergent composition
WO2015158237A1 (en) 2014-04-15 2015-10-22 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
EP3760713A2 (en) 2014-05-27 2021-01-06 Novozymes A/S Lipase variants and polynucleotides encoding same
WO2015181119A2 (en) 2014-05-27 2015-12-03 Novozymes A/S Lipase variants and polynucleotides encoding same
EP3878957A1 (en) 2014-05-27 2021-09-15 Novozymes A/S Methods for producing lipases
WO2015189371A1 (en) 2014-06-12 2015-12-17 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
EP3739029A1 (en) 2014-07-04 2020-11-18 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3878960A1 (en) 2014-07-04 2021-09-15 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2016041676A1 (en) 2014-09-18 2016-03-24 Unilever Plc Whitening composition
WO2016079305A1 (en) 2014-11-20 2016-05-26 Novozymes A/S Alicyclobacillus variants and polynucleotides encoding same
EP4339282A2 (en) 2014-12-04 2024-03-20 Novozymes A/S Liquid cleaning compositions comprising protease variants
EP3690037A1 (en) 2014-12-04 2020-08-05 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP4067485A2 (en) 2014-12-05 2022-10-05 Novozymes A/S Lipase variants and polynucleotides encoding same
WO2016087401A1 (en) 2014-12-05 2016-06-09 Novozymes A/S Lipase variants and polynucleotides encoding same
US10760036B2 (en) 2014-12-15 2020-09-01 Henkel Ag & Co. Kgaa Detergent composition comprising subtilase variants
EP3608403A2 (en) 2014-12-15 2020-02-12 Henkel AG & Co. KGaA Detergent composition comprising subtilase variants
WO2016110378A1 (en) 2015-01-09 2016-07-14 Unilever Plc Laundry treatment composition comprising a dye
WO2016128466A1 (en) 2015-02-13 2016-08-18 Unilever Plc Laundry liquid composition
WO2016155993A1 (en) 2015-04-02 2016-10-06 Unilever Plc Composition
WO2016162558A1 (en) 2015-04-10 2016-10-13 Novozymes A/S Detergent composition
WO2016180749A1 (en) 2015-05-08 2016-11-17 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2016180748A1 (en) 2015-05-08 2016-11-17 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
EP3964575A2 (en) 2015-05-08 2022-03-09 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2016180792A1 (en) 2015-05-08 2016-11-17 Novozymes A/S Alpha-amylase variants having improved performance and stability
EP4212609A1 (en) 2015-05-08 2023-07-19 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2016184944A1 (en) 2015-05-19 2016-11-24 Novozymes A/S Odor reduction
WO2016188693A1 (en) 2015-05-27 2016-12-01 Unilever Plc Laundry detergent composition
WO2016192905A1 (en) 2015-06-02 2016-12-08 Unilever Plc Laundry detergent composition
WO2016202739A1 (en) 2015-06-16 2016-12-22 Novozymes A/S Polypeptides with lipase activity and polynucleotides encoding same
EP4071244A1 (en) 2015-06-18 2022-10-12 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3872175A1 (en) 2015-06-18 2021-09-01 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3106508A1 (en) 2015-06-18 2016-12-21 Henkel AG & Co. KGaA Detergent composition comprising subtilase variants
WO2016135351A1 (en) 2015-06-30 2016-09-01 Novozymes A/S Laundry detergent composition, method for washing and use of composition
EP3929285A2 (en) 2015-07-01 2021-12-29 Novozymes A/S Methods of reducing odor
WO2017046260A1 (en) 2015-09-17 2017-03-23 Novozymes A/S Polypeptides having xanthan degrading activity and polynucleotides encoding same
WO2017046232A1 (en) 2015-09-17 2017-03-23 Henkel Ag & Co. Kgaa Detergent compositions comprising polypeptides having xanthan degrading activity
WO2017055205A1 (en) 2015-10-01 2017-04-06 Unilever Plc Powder laundry detergent composition
WO2017060505A1 (en) 2015-10-07 2017-04-13 Novozymes A/S Polypeptides
EP3708660A2 (en) 2015-10-07 2020-09-16 Novozymes A/S Polypeptides
WO2017064253A1 (en) 2015-10-14 2017-04-20 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2017089366A1 (en) 2015-11-24 2017-06-01 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
WO2017089093A1 (en) 2015-11-25 2017-06-01 Unilever N.V. A liquid detergent composition
WO2017093318A1 (en) 2015-12-01 2017-06-08 Novozymes A/S Methods for producing lipases
US11441140B2 (en) 2015-12-07 2022-09-13 Henkel Ag & Co. Kgaa Dishwashing compositions comprising polypeptides having beta-glucanase activity and uses thereof
EP3901257A1 (en) 2015-12-09 2021-10-27 Danisco US Inc. Alpha-amylase combinatorial variants
WO2017100720A1 (en) 2015-12-09 2017-06-15 Danisco Us Inc. Alpha-amylase combinatorial variants
US11920170B2 (en) 2015-12-09 2024-03-05 Danisco Us Inc. Alpha-amylase combinatorial variants
EP4219702A2 (en) 2015-12-30 2023-08-02 Novozymes A/S Enzyme variants and polynucleotides encoding the same
EP3190167A1 (en) 2016-01-07 2017-07-12 Unilever PLC Bitter pill
WO2017121714A1 (en) 2016-01-15 2017-07-20 Unilever Plc Dye
WO2017129754A1 (en) 2016-01-29 2017-08-03 Novozymes A/S Beta-glucanase variants and polynucleotides encoding same
WO2017133879A1 (en) 2016-02-04 2017-08-10 Unilever Plc Detergent liquid
WO2017140392A1 (en) 2016-02-17 2017-08-24 Unilever Plc Whitening composition
WO2017140391A1 (en) 2016-02-17 2017-08-24 Unilever Plc Whitening composition
WO2017162378A1 (en) 2016-03-21 2017-09-28 Unilever Plc Laundry detergent composition
WO2017173190A2 (en) 2016-04-01 2017-10-05 Danisco Us Inc. Alpha-amylases, compositions & methods
WO2017173324A2 (en) 2016-04-01 2017-10-05 Danisco Us Inc. Alpha-amylases, compositions & methods
WO2017174251A1 (en) 2016-04-08 2017-10-12 Unilever Plc Laundry detergent composition
WO2017191160A1 (en) 2016-05-03 2017-11-09 Novozymes A/S Alpha-amylase variants and polynucleotides encoding the same
WO2017194487A1 (en) 2016-05-09 2017-11-16 Novozymes A/S Variant polypeptides with improved performance and use of the same
WO2017198574A1 (en) 2016-05-17 2017-11-23 Unilever Plc Liquid laundry detergent compositions
WO2017198438A1 (en) 2016-05-17 2017-11-23 Unilever Plc Liquid laundry detergent compositions
WO2017202923A1 (en) 2016-05-27 2017-11-30 Unilever Plc Laundry composition
WO2017207762A1 (en) 2016-06-03 2017-12-07 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2018002261A1 (en) 2016-07-01 2018-01-04 Novozymes A/S Detergent compositions
WO2018007573A1 (en) 2016-07-08 2018-01-11 Novozymes A/S Detergent compositions with galactanase
WO2018015295A1 (en) 2016-07-18 2018-01-25 Novozymes A/S Lipase variants, polynucleotides encoding same and the use thereof
WO2018037064A1 (en) 2016-08-24 2018-03-01 Henkel Ag & Co. Kgaa Detergent compositions comprising xanthan lyase variants i
WO2018037065A1 (en) 2016-08-24 2018-03-01 Henkel Ag & Co. Kgaa Detergent composition comprising gh9 endoglucanase variants i
WO2018037061A1 (en) 2016-08-24 2018-03-01 Novozymes A/S Xanthan lyase variants and polynucleotides encoding same
WO2018037062A1 (en) 2016-08-24 2018-03-01 Novozymes A/S Gh9 endoglucanase variants and polynucleotides encoding same
WO2018060139A1 (en) 2016-09-27 2018-04-05 Unilever Plc Domestic laundering method
WO2018072979A1 (en) 2016-10-18 2018-04-26 Unilever Plc Whitening composition
WO2018077938A1 (en) 2016-10-25 2018-05-03 Novozymes A/S Detergent compositions
WO2018108865A1 (en) 2016-12-12 2018-06-21 Novozymes A/S Use of polypeptides
WO2018108382A1 (en) 2016-12-15 2018-06-21 Unilever Plc Laundry detergent composition
WO2018184004A1 (en) 2017-03-31 2018-10-04 Danisco Us Inc Alpha-amylase combinatorial variants
EP3385361A1 (en) 2017-04-05 2018-10-10 Henkel AG & Co. KGaA Detergent compositions comprising bacterial mannanases
EP3385362A1 (en) 2017-04-05 2018-10-10 Henkel AG & Co. KGaA Detergent compositions comprising fungal mannanases
WO2018184767A1 (en) 2017-04-05 2018-10-11 Henkel Ag & Co. Kgaa Detergent compositions comprising bacterial mannanases
EP3401385A1 (en) 2017-05-08 2018-11-14 Henkel AG & Co. KGaA Detergent composition comprising polypeptide comprising carbohydrate-binding domain
WO2018206300A1 (en) 2017-05-08 2018-11-15 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2018206178A1 (en) 2017-05-08 2018-11-15 Henkel Ag & Co. Kgaa Detergent composition comprising polypeptide comprising carbohydrate-binding domain
WO2018206535A1 (en) 2017-05-08 2018-11-15 Novozymes A/S Carbohydrate-binding domain and polynucleotides encoding the same
WO2018206302A1 (en) 2017-05-08 2018-11-15 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2018224544A1 (en) 2017-06-08 2018-12-13 Novozymes A/S Compositions comprising polypeptides having cellulase activity and amylase activity, and uses thereof in cleaning and detergent compositions
WO2018234056A1 (en) 2017-06-20 2018-12-27 Unilever N.V. Particulate detergent composition comprising perfume
WO2018234003A1 (en) 2017-06-21 2018-12-27 Unilever Plc Packaging and dispensing of detergent compositions
WO2019008036A1 (en) 2017-07-07 2019-01-10 Unilever Plc Whitening composition
WO2019008035A1 (en) 2017-07-07 2019-01-10 Unilever Plc Laundry cleaning composition
WO2019036721A2 (en) 2017-08-18 2019-02-21 Danisco Us Inc Alpha-amylase variants
WO2019038186A1 (en) 2017-08-24 2019-02-28 Unilever Plc Improvements relating to fabric cleaning
WO2019038059A1 (en) 2017-08-24 2019-02-28 Henkel Ag & Co. Kgaa Detergent compositions comprising gh9 endoglucanase variants ii
WO2019038187A1 (en) 2017-08-24 2019-02-28 Unilever Plc Improvements relating to fabric cleaning
WO2019038057A1 (en) 2017-08-24 2019-02-28 Novozymes A/S Xanthan lyase variants and polynucleotides encoding same
WO2019038060A1 (en) 2017-08-24 2019-02-28 Henkel Ag & Co. Kgaa Detergent composition comprising xanthan lyase variants ii
WO2019038058A1 (en) 2017-08-24 2019-02-28 Novozymes A/S Gh9 endoglucanase variants and polynucleotides encoding same
WO2019057758A1 (en) 2017-09-20 2019-03-28 Novozymes A/S Use of enzymes for improving water absorption and/or whiteness
WO2019063499A1 (en) 2017-09-27 2019-04-04 Novozymes A/S Lipase variants and microcapsule compositions comprising such lipase variants
WO2019068713A1 (en) 2017-10-02 2019-04-11 Novozymes A/S Polypeptides having mannanase activity and polynucleotides encoding same
WO2019068715A1 (en) 2017-10-02 2019-04-11 Novozymes A/S Polypeptides having mannanase activity and polynucleotides encoding same
WO2019081515A1 (en) 2017-10-24 2019-05-02 Novozymes A/S Compositions comprising polypeptides having mannanase activity
WO2019105675A1 (en) 2017-11-30 2019-06-06 Unilever Plc Detergent composition comprising protease
WO2019110462A1 (en) 2017-12-04 2019-06-13 Novozymes A/S Lipase variants and polynucleotides encoding same
WO2019154951A1 (en) 2018-02-08 2019-08-15 Novozymes A/S Lipases, lipase variants and compositions thereof
WO2019154954A1 (en) 2018-02-08 2019-08-15 Novozymes A/S Lipase variants and compositions thereof
WO2019154952A1 (en) 2018-02-08 2019-08-15 Novozymes A/S Lipase variants and compositions thereof
WO2019154955A1 (en) 2018-02-08 2019-08-15 Novozymes A/S Lipase variants and compositions thereof
WO2019162000A1 (en) 2018-02-23 2019-08-29 Henkel Ag & Co. Kgaa Detergent composition comprising xanthan lyase and endoglucanase variants
WO2019175240A1 (en) 2018-03-13 2019-09-19 Novozymes A/S Microencapsulation using amino sugar oligomers
WO2019180111A1 (en) 2018-03-23 2019-09-26 Novozymes A/S Subtilase variants and compositions comprising same
WO2019185726A1 (en) 2018-03-29 2019-10-03 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2019192813A1 (en) 2018-04-03 2019-10-10 Unilever N.V. Dye granule
WO2019201783A1 (en) 2018-04-19 2019-10-24 Novozymes A/S Stabilized cellulase variants
WO2019201785A1 (en) 2018-04-19 2019-10-24 Novozymes A/S Stabilized cellulase variants
WO2019219302A1 (en) 2018-05-17 2019-11-21 Unilever Plc Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants
WO2019219531A1 (en) 2018-05-17 2019-11-21 Unilever Plc Cleaning composition
WO2020002255A1 (en) 2018-06-29 2020-01-02 Novozymes A/S Subtilase variants and compositions comprising same
WO2020016097A1 (en) 2018-07-17 2020-01-23 Unilever Plc Use of a rhamnolipid in a surfactant system
WO2020020703A1 (en) 2018-07-27 2020-01-30 Unilever N.V. Laundry detergent
WO2020058024A1 (en) 2018-09-17 2020-03-26 Unilever Plc Detergent composition
WO2020070199A1 (en) 2018-10-03 2020-04-09 Novozymes A/S Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same
WO2020074302A1 (en) 2018-10-12 2020-04-16 Unilever N.V. Cleaning composition comprising foam boosting silicone
WO2020104156A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104157A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104155A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104159A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020104158A1 (en) 2018-11-20 2020-05-28 Unilever Plc Detergent composition
WO2020114968A1 (en) 2018-12-03 2020-06-11 Novozymes A/S Powder detergent compositions
WO2020114965A1 (en) 2018-12-03 2020-06-11 Novozymes A/S LOW pH POWDER DETERGENT COMPOSITION
WO2020127775A1 (en) 2018-12-21 2020-06-25 Novozymes A/S Detergent pouch comprising metalloproteases
WO2020151992A1 (en) 2019-01-22 2020-07-30 Unilever N.V. Laundry detergent
WO2020151959A1 (en) 2019-01-22 2020-07-30 Unilever N.V. Laundry detergent
WO2020178102A1 (en) 2019-03-01 2020-09-10 Novozymes A/S Detergent compositions comprising two proteases
EP3702452A1 (en) 2019-03-01 2020-09-02 Novozymes A/S Detergent compositions comprising two proteases
WO2020188095A1 (en) 2019-03-21 2020-09-24 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2020201403A1 (en) 2019-04-03 2020-10-08 Novozymes A/S Polypeptides having beta-glucanase activity, polynucleotides encoding same and uses thereof in cleaning and detergent compositions
WO2020208056A1 (en) 2019-04-12 2020-10-15 Novozymes A/S Stabilized glycoside hydrolase variants
WO2020229535A1 (en) 2019-05-16 2020-11-19 Unilever Plc Laundry composition
EP3750979A1 (en) 2019-06-12 2020-12-16 Unilever N.V. Use of laundry detergent composition
EP3750978A1 (en) 2019-06-12 2020-12-16 Unilever N.V. Laundry detergent composition
WO2020260038A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020259949A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020259947A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020260006A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent compositions
WO2020259948A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2020260040A1 (en) 2019-06-28 2020-12-30 Unilever Plc Detergent composition
WO2021001400A1 (en) 2019-07-02 2021-01-07 Novozymes A/S Lipase variants and compositions thereof
WO2021037878A1 (en) 2019-08-27 2021-03-04 Novozymes A/S Composition comprising a lipase
WO2021043764A1 (en) 2019-09-02 2021-03-11 Unilever Global Ip Limited Detergent composition
WO2021053122A1 (en) 2019-09-19 2021-03-25 Unilever Ip Holdings B.V. Detergent compositions
DE112020004477T5 (en) 2019-09-19 2022-06-30 Unilever Global Ip Limited DETERGENT COMPOSITIONS
WO2021069516A1 (en) 2019-10-07 2021-04-15 Unilever Ip Holdings B.V. Detergent composition
WO2021151536A1 (en) 2020-01-29 2021-08-05 Unilever Ip Holdings B.V. Laundry detergent product
WO2021151640A1 (en) 2020-01-29 2021-08-05 Unilever Ip Holdings B.V. Laundry detergent product
WO2021152120A1 (en) 2020-01-31 2021-08-05 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2021152123A1 (en) 2020-01-31 2021-08-05 Novozymes A/S Mannanase variants and polynucleotides encoding same
WO2021185956A1 (en) 2020-03-19 2021-09-23 Unilever Ip Holdings B.V. Detergent composition
WO2021185870A1 (en) 2020-03-19 2021-09-23 Unilever Ip Holdings B.V. Detergent composition
WO2021204838A1 (en) 2020-04-08 2021-10-14 Novozymes A/S Carbohydrate binding module variants
WO2021204636A1 (en) 2020-04-09 2021-10-14 Unilever Ip Holdings B.V. Laundry detergent composition
WO2021239818A1 (en) 2020-05-26 2021-12-02 Novozymes A/S Subtilase variants and compositions comprising same
WO2021249927A1 (en) 2020-06-08 2021-12-16 Unilever Ip Holdings B.V. Method of improving protease activity
WO2021259099A1 (en) 2020-06-24 2021-12-30 Novozymes A/S Use of cellulases for removing dust mite from textile
WO2022023250A1 (en) 2020-07-27 2022-02-03 Unilever Ip Holdings B.V. Use of an enzyme and surfactant for inhibiting microorganisms
WO2022043321A2 (en) 2020-08-25 2022-03-03 Novozymes A/S Variants of a family 44 xyloglucanase
WO2022043045A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022043042A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022042977A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Detergent composition
WO2022043563A1 (en) 2020-08-28 2022-03-03 Novozymes A/S Polyester degrading protease variants
WO2022043547A1 (en) 2020-08-28 2022-03-03 Novozymes A/S Protease variants with improved solubility
WO2022043138A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Surfactant and detergent composition
WO2022042989A1 (en) 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Surfactant and detergent composition
US11541009B2 (en) 2020-09-10 2023-01-03 Curemark, Llc Methods of prophylaxis of coronavirus infection and treatment of coronaviruses
WO2022060942A1 (en) 2020-09-16 2022-03-24 Danisco Us Inc Esterase and methods of use, thereof
WO2022074037A2 (en) 2020-10-07 2022-04-14 Novozymes A/S Alpha-amylase variants
WO2022090320A1 (en) 2020-10-28 2022-05-05 Novozymes A/S Use of lipoxygenase
WO2022090361A2 (en) 2020-10-29 2022-05-05 Novozymes A/S Lipase variants and compositions comprising such lipase variants
WO2022103725A1 (en) 2020-11-13 2022-05-19 Novozymes A/S Detergent composition comprising a lipase
WO2022106404A1 (en) 2020-11-18 2022-05-27 Novozymes A/S Combination of proteases
WO2022106400A1 (en) 2020-11-18 2022-05-27 Novozymes A/S Combination of immunochemically different proteases
WO2022122481A1 (en) 2020-12-07 2022-06-16 Unilever Ip Holdings B.V. Detergent compositions
WO2022122480A1 (en) 2020-12-07 2022-06-16 Unilever Ip Holdings B.V. Detergent compositions
WO2022128781A1 (en) 2020-12-17 2022-06-23 Unilever Ip Holdings B.V. Cleaning composition
WO2022128786A1 (en) 2020-12-17 2022-06-23 Unilever Ip Holdings B.V. Use and cleaning composition
WO2022162043A1 (en) 2021-01-28 2022-08-04 Novozymes A/S Lipase with low malodor generation
WO2022167251A1 (en) 2021-02-04 2022-08-11 Henkel Ag & Co. Kgaa Detergent composition comprising xanthan lyase and endoglucanase variants with improved stability
EP4039806A1 (en) 2021-02-04 2022-08-10 Henkel AG & Co. KGaA Detergent composition comprising xanthan lyase and endoglucanase variants with im-proved stability
WO2022171780A2 (en) 2021-02-12 2022-08-18 Novozymes A/S Alpha-amylase variants
WO2022189521A1 (en) 2021-03-12 2022-09-15 Novozymes A/S Polypeptide variants
WO2022197634A1 (en) 2021-03-15 2022-09-22 Gen-Probe Incorporated Compositions and methods for biological sample processing
WO2022199418A1 (en) 2021-03-26 2022-09-29 Novozymes A/S Detergent composition with reduced polymer content
WO2022268885A1 (en) 2021-06-23 2022-12-29 Novozymes A/S Alpha-amylase polypeptides
WO2023006382A1 (en) 2021-07-26 2023-02-02 Unilever Ip Holdings B.V. Laundry detergent product
WO2023030951A1 (en) 2021-09-01 2023-03-09 Unilever Ip Holdings B.V. Bleach catalysts, bleach systems and cleaning compositions
WO2023031328A1 (en) 2021-09-01 2023-03-09 Unilever Ip Holdings B.V. Bleach catalysts, bleach systems and cleaning compositions
WO2023041694A1 (en) 2021-09-20 2023-03-23 Unilever Ip Holdings B.V. Detergent composition
CN113698998B (en) * 2021-09-26 2023-10-13 广州立白企业集团有限公司 Stable detergent composition with antibacterial effect
CN113698998A (en) * 2021-09-26 2021-11-26 广州立白企业集团有限公司 Stable detergent composition with antibacterial effect
WO2023116569A1 (en) 2021-12-21 2023-06-29 Novozymes A/S Composition comprising a lipase and a booster
WO2023165507A1 (en) 2022-03-02 2023-09-07 Novozymes A/S Use of xyloglucanase for improvement of sustainability of detergents
WO2023227358A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Premix and composition and method of preparing the same
WO2023227357A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Composition
WO2023227356A1 (en) 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Composition containing enzyme
WO2023233028A1 (en) 2022-06-03 2023-12-07 Unilever Ip Holdings B.V. Laundry detergent product
WO2023247664A2 (en) 2022-06-24 2023-12-28 Novozymes A/S Lipase variants and compositions comprising such lipase variants

Also Published As

Publication number Publication date
NZ242538A (en) 1995-06-27
JPH06507199A (en) 1994-08-11
TW237477B (en) 1995-01-01
AU2004392A (en) 1992-12-21
PH31243A (en) 1998-06-18
CA2109525C (en) 1997-10-28
MX9202071A (en) 1992-11-01
EP0511456A1 (en) 1992-11-04
CN1067264A (en) 1992-12-23

Similar Documents

Publication Publication Date Title
WO1992019708A1 (en) Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
US5468414A (en) Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
US5472628A (en) Liquid detergents with an aryl acid for inhibition of proteolytic enzyme
US5580486A (en) Liquid detergents containing an α-amino boronic acid
US5422030A (en) Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
US6162783A (en) Liquid detergents containing proteolytic enzyme and protease inhibitors
CA2142297C (en) Liquid detergents containing a peptide aldehyde
US6180586B1 (en) Liquid laundry detergent compositions containing proteolytic enzyme and protease inhibitors
EP0929639B1 (en) Liquid detergents containing proteolytic enzyme, peptide aldehyde and calcium ions
WO1998013458A1 (en) Liquid detergents containing proteolytic enzyme and protease inhibitors
US6165966A (en) Liquid detergents containing proteolytic enzyme and protease inhibitors
WO1994004654A1 (en) LIQUID DETERGENT COMPOSITIONS CONTAINING PROTEASE AND CERTAIN β-AMINOALKYLBORONIC ACIDS AND ESTERS
EP0583535A1 (en) Liquid detergents containing a peptide trifluoromethyl ketone
US5840678A (en) Liquid detergents containing a peptide trifluoromethyl ketone

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR CA CS FI HU JP KP KR LK MG MN MW NO PL RO RU SD US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BF BJ CF CG CI CM GA GN ML MR SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 08137206

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2109525

Country of ref document: CA