WO1991015998A1 - Apparatus for monitoring the motion of the lumbar spine - Google Patents

Apparatus for monitoring the motion of the lumbar spine Download PDF

Info

Publication number
WO1991015998A1
WO1991015998A1 PCT/US1991/002610 US9102610W WO9115998A1 WO 1991015998 A1 WO1991015998 A1 WO 1991015998A1 US 9102610 W US9102610 W US 9102610W WO 9115998 A1 WO9115998 A1 WO 9115998A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
platform
frame member
upper body
horizontal axis
Prior art date
Application number
PCT/US1991/002610
Other languages
French (fr)
Inventor
William S. Marras
Robert J. Miller
Shelby W. Davis
Gary A. Mirka
Original Assignee
Marras William S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marras William S filed Critical Marras William S
Publication of WO1991015998A1 publication Critical patent/WO1991015998A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • A61B5/224Measuring muscular strength
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1107Measuring contraction of parts of the body, e.g. organ, muscle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/09Rehabilitation or training
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/70Means for positioning the patient in relation to the detecting, measuring or recording means
    • A61B5/702Posture restraints

Definitions

  • the present invention relates to an apparatus for monitoring the movement and force production of the lumbar spine during flexion and extension of the trunk of a patient in each of several sagittal-frontal planes of the body, and during trunk twisting.
  • the apparatus is useful in the design of ergono ically suitable workplaces, and in the analysis and rehabilitation of low back disorders.
  • Occupationally related low back disorders have become a problem of epidemic proportion in the industrialized world in recent years, and has been recognized as a major problem in the industrial environment. It is widely known that the majority of low back disorders associated with the workplace involve muscular over-exertion injuries. These injuries occur frequently and are quite acute initially but may progress to a more chronic state with repetitive strains.
  • One of the basic concepts in the ergono ic control of the workplace is to design manual materials handling tasks so that the strength required by the task does not exceed most workers capabilities.
  • Machines are also available for assessing movement in the transverse (i.e. twisting) plane, and a machine of this general type is manufactured by Cybex, as the Cybex TEF unit. Note also the U.S. Patent to Skowronski, No. 4,732,381. Here again, however, these machines are of limited utility in that they are unable to assess commonly encountered motions which include components in addition to twisting.
  • Isotechnologies Inc. of Hillsboro, North Carolina, currently markets a low back testing and rehabilitation machine under the designation Iso Station ® B-200, which includes a fixed platform upon which the patient stands, and a stabilizing belt system for locking the legs in a fixed upright position while the patient stands on the platform.
  • the upper body is attached to a harness arrangement, which permits the upper body to move in three planes while the legs are fixed, namely the flexion/extension plane, the transverse (twisting) plane, and the lateral flexion plane.
  • the apparatus also permits bending outside of the sagittal plane during flexion/extension movement. The movements in each of these planes are monitored, with the apparatus operated either dynamically or isometrically.
  • an apparatus which comprises a main frame, and a horizontal platform which is rotatably mounted to the main frame for rotation about a vertical axis and which is adapted to support a patient in a standing position thereupon.
  • the platform may be locked to the main frame in each of several predetermined rotational positions with respect to the main frame, and pelvic stabilization means is mounted to the platform for releasable connection to the pelvic region of the trunk of a patient standing upon the platform so as to support the pelvic region of the trunk in a fixed position with respect to the platform.
  • a frame member is mounted to the main frame for rotation about a horizontal axis which is positioned to pass approximately through the lumbro- sacral junction of a patient while the patient is standing upon the platform and supported by the pelvic stabilization means, and upper body engaging means is mounted to the frame member for engaging the upper body portion of a patient standing upon the platform and so that flexion and extension of the trunk of the patient causes the frame member to pivot about the horizontal axis in at least one direction.
  • Dynamometer means is operatively connected to the frame member for control ⁇ ling the pivotal movement thereof in each pivotal direction.
  • the platform may be selectively moved to each of the predetermined rotational positions and the patient permitted to perform flexion and extension of the trunk about the horizontal axis while the platform is in each of the positions, and while the dynamometer means controls the pivotal movement of the frame member.
  • the apparatus is further capable of monitoring the movement of the lumbar spine during movement about the transverse, or twisting plane.
  • the above described frame member comprises an overhead member of generally U-shaped outline which comprises a horizontal beam and two depending legs.
  • an upper body yoke is provided which is mounted to the hori ⁇ zontal beam of the overhead frame member for rotation about a twisting axis which is generally vertical and perpendicular to the horizontal axis.
  • means is provided for selectively converting the apparatus to a first configuration wherein the upper body yoke is locked against rotation about the twisting axis, while the overhead frame member is free to rotate about the horizontal axis.
  • the overhead frame member In a second configuration, the overhead frame member is locked against rotation about the horizontal axis, while the yoke is free to rotate about the twisting axis.
  • the dynamometer means controls pivotal movement of the overhead frame member when in the first configuration, and controls twisting movement of the upper body yoke when in the second configuration.
  • the first configuration the patient is permitted to perform flexion and exten ⁇ sion of the trunk about the horizontal axis
  • the dynamometer means controls the pivotal movement of the overhead frame member
  • the second configuration the patient is permitted to perform twisting of the trunk, while the dynamometer means controls the twisting movement of the upper body yoke.
  • the trunk may be positioned in a symmetric or asymmetric position, by rotation of the platform to a selected rotational position.
  • the dynamometer means of the apparatus preferably also comprises a first force transducer for measuring the force applied between the overhead frame member and the patient when the apparatus is in the first configuration, and a second force transducer for measuring the twisting force applied between the upper body yoke and the patient when the apparatus is in the second configuration.
  • a first potentiometer is provided for monitoring the angular position of the overhead frame member when the apparatus is in the first configuration
  • a second potentiometer is provided for monitoring the angular position of the yoke when the apparatus is in the second configuration.
  • the dynamometer means further comprises a reversible drive motor, and a computer control system which includes a predetermined program for monitoring the output signals from the two transducers and the two potentiometers, and for controlling the operation of the drive motor in accordance with the program when the apparatus is in each of the first and second configurations.
  • Figure 1 is a front elevation view of an apparatus for monitoring the motion of the lumbar spine which embodies the present invention, and with the apparatus configured for flexion and extension movement of the patient in the sagittal plane;
  • Figure 2 is a fragmentary plan view of a portion of the drive system of the apparatus, and taken substantially along the line 2-2 of Figure 1;
  • Figures 3-5 are side elevation views of the apparatus, shown in the fully upright, forwardly inclined, and rearwardly inclined positions respectively;
  • Figures 6 and 7 are fragmentary sectional views taken along the line 6-6 of Figure 2, and illustrating the maximum forward position and maximum rearward position, respectively;
  • Figure 8 is a perspective view of the pelvic stabilization assembly of the apparatus;
  • Figure 9 is a fragmentary plan view illus ⁇ trating the upper body engaging member used in the flexion/extension mode; and taken substantially along the line 9-9 of Figure 1;
  • Figure 10 is a fragmentary plan view of the base for the foot engaging platform of the apparatus, and taken substantially along the line 10-10 of Figure i;
  • Figure 11 is a fragmentary plan view of the means for mounting the upper body yoke for rotation about the twisting axis, and taken substantially along the line 11-11 of Figure 1;
  • Figures 12-13 are views similar to Figure 10, but illustrating the platform rotated and locked in the maximum left hand and right hand positions respectively;
  • Figure 14 is a fragmentary view similar to Figure 1, but illustrating the apparatus configured for the twisting mode.
  • Figures 15 and 16 are plan views of the upper body yoke taken substantially along the line 15-15 of Figure 14, and illustrating the yoke rotated to the maximum left hand and right hand positions, respectively.
  • Figures 15 and 16 are plan views of the upper body yoke taken substantially along the line 15-15 of Figure 14, and illustrating the yoke rotated to the maximum left hand and right hand positions, respectively.
  • an apparatus which embodies the features of the present invention is indicated generally at 10.
  • the overall apparatus 10 is best seen in Figure 1, and it comprises a main frame 12, which is composed of a pair of generally U-shaped base members 13, 14, and with each base member comprising a horizontal ground engaging leg 13a, 14a and a pair of laterally spaced apart upright legs 13b, 13c, 14b, 14c. Also, a pair of intermediate upright legs 13d, 14d extends upwardly from the two ground engaging legs.
  • a platform assembly 16 is mounted to the lower portion of the main frame and generally between the two ground engaging legs 13a, 14a of the two U- shaped base members 13, 14.
  • the platform assembly 16 includes a base plate 17 which is fixed between the two ground engaging legs 13a, 14a, and as best seen in Figure 10, the base plate 17 mounts a vertical pivot pin 18, and it includes a number of openings 20 positioned on an arc centered at the pivot pin, for the purpose described below.
  • a bearing plate 21 is mounted immediately above the base plate 17, and a pivot plate 22 is positioned to rest upon the bearing plate 21 so as to permit rotation about the axis of the pivot pin 18.
  • the pivot plate 22 includes an opening which mounts a removable detent 24, which is designed to be received in a selected one of the openings 20 of the base plate, to rotatably lock the pivot plate in a selected rotational position.
  • the platform assembly 16 further includes a vertical post 26 which extends upwardly from the pivot plate 22.
  • the base plate 17 includes a total of five spaced-apart openings 20 which are adapted to be selectively aligned with the opening in the pivot plate 22 when the pivot plate and platform are pivoted about the axis of the pin 18.
  • the openings 20 are positioned so that the central opening defines symmetric movement along the sagittal plane in the manner further described below, whereas the outside openings permit asymmetric movement at either 15° or 30° on each side of the central opening, note Figures 12 and 13.
  • the upper end of the post 26 mounts a pelvic stabilizing assembly 30 as best seen in Figure 8, which comprises a slide rod 31 positioned within the post 26, and a threaded pin 32 for locking the slide rod at a selected elevation with respect to the platform.
  • the pelvic stabilization assembly 30 also includes a lower back pad 34 which is mounted to the slide rod 31, and a releasable waist band 35 which is adapted to firmly surround and support the pelvic region of the patient.
  • a leg engaging assembly 36 which includes a rod 37 which is slidably mounted on the post 26 and which is adapted to extend between the legs of the patient.
  • a pair of padded front thigh pads 38 are mounted to the rod 37 for engaging each leg immediately above the knee and so as to press the same rearwardly against a pair of rear thigh pads 39.
  • the legs are thereby firmly locked in the extended position in the illustrated embodiment of the apparatus.
  • the apparatus may be designed to permit monitoring with the legs in a locked fully flexed position.
  • the apparatus of the present invention also includes an overhead frame member 40 having a generally inverted U-shaped outline, which is composed of a pair of forward and rear frame members 40a, 40b of corresponding outline.
  • the two frame members 40a, 40b collectively define a horizontal beam 42 and two depending legs 43.
  • Means are provide for mounting the overhead frame member to the main frame for movement about a horizontal axis 45 which is positioned to extend through both of the depending legs 43, and with the horizontal beam 42 being parallel to and above the horizontal axis 45.
  • An upper body yoke 47 is also provided, and which has a U-shaped outline and which is also composed of a pair of forward and rear frame members 47a, 47b of corresponding outline.
  • the two frame members 47a, 47b collectively define a horizontal arm 48 and two depending arms 49, and the yoke is sized so as to permit the yoke to fit within the outline of the overhead frame member 40.
  • the upper body yoke 47 is mounted to the horizontal beam 42 of the overhead frame member for rotation about a twisting axis 50 which is generally vertical and perpendicular to the horizontal axis.
  • the mounting structure for the yoke 47 comprises a plate 52 which is fixed to the horizontal arm 48 of the yoke 47, and a shaft 54 which extends perpendicularly through the horizontal arm and the plate 52, and which defines the twisting axis 50.
  • the shaft 54 is rotatably mounted to the overhead frame member 40 and to the plate 52 by means of bearings 55, and the torque is transmitted from the shaft 54 to the yoke 47 via a transmission assembly which includes a bracket 56 which is keyed to the shaft so as to be locked against rotation with respect to the shaft.
  • a second bracket 57 is fixed to the arm 48 of the yoke, and a load cell 58 is mounted between the two brackets 56, 57 so as to measure the torque imparted between the overhead frame member and the yoke.
  • the upper end of the shaft 54 mounts a drive pulley 60, such that rotation of the pulley 60 causes a corresponding rotation of the yoke about the twisting axis 50.
  • a yoke stop 62 is fixed to the overhead frame member 40, and a second plate 63 is fixed to the yoke below the stop.
  • the plate 63 includes a pair of pins 64 which are mounted along an arc centered at the shaft 54, and the pins 64 are each adapted to engage the stop 62 and thereby physically limit the twisting rotation of the yoke with respect to the overhead frame member to about 45° in each direction.
  • the plate 63 also includes a pair of openings 65 which are aligned on the same rotational arc, and which are adapted to selectively receive a removable detent (not shown) so as to physically engage the stop and limit rotation to about 20° in one or both directions.
  • the apparatus 10 further includes dynamometer means which is mounted to the frame 12 for controlling pivotal movement of the overhead frame member 40 and twisting movement of the upper body yoke 47, in the manner described in more detail below.
  • the dynamometer means includes a conventional permanent magnet reversible DC servo motor 68, which is operable at a variable speed, and which includes a built-in reduction gear box.
  • a motor of this type is manufactured by PMI Motion Technologies of Commack, New York, as Model No. JR16M4CH.
  • the output shaft 69 of the motor is coaxial to the horizontal axis 45, and it is connected to a potentiometer 70 via a belt drive 71, which registers the rotational position of the motor.
  • the output shaft 69 is also connected to a clutch 72, and to a 90° gear box 74.
  • the output of the clutch is fixed to a box-like frame member 75 which is connected to the housing of the 90° gear box 74 and to a second output shaft 76, which is coaxial with the horizontal axis 45, and which in turn is fixedly connected to one of the legs 43 of the overhead frame member 40.
  • the output of the 90° gear box 74 is connected to an upwardly directed drive shaft 78 through a universal joint 79, and the opposite end of the drive shaft 78 is connected to a pulley 80 through a second universal joint 81.
  • the pulley 80 is rota- tably mounted to the overhead frame member 40, and a drive belt 83 is entrained about the pulley 80 and the pulley 60 which is connected to the twisting shaft 54.
  • the second output shaft 76 is rotatably mounted to a plate 84 which is fixed to the upper ends of the intermediate legs 13d, 14d of the frame, and a potentiometer 86 is operatively connected to the shaft 76 via a belt drive 87 to register the rotational position of the shaft 76 and thus the overhead frame member 40.
  • a disc 90 is fixedly mounted to the shaft 76, so as to overlie the plate 84.
  • the plate 84 mounts a stop 91, and the disc 90 mounts a pair of pins 93 which contact the stop 91 to physically limit the rotation of the overhead frame member 40 in each rotational direction from its upright or overhead position.
  • the pins 93 typically are positioned so that the overhead frame member 40 is able to rotate about 60° in the forward (flexion) direction from the upright position, and about 20° in the rearward (extension) direction.
  • the disc 90 may, if desired, also include openings for receiving a removable pin, which can shorten the rotational limits in each direction.
  • An electric brake 95 is also mounted to the main frame 12 along the horizontal axis, and on the opposite side of the overhead frame member 40.
  • the brake is fixedly connected to the member 40 via a shaft 96 so as to be adapted to hold the frame member rigid in a vertical position, or at any other selected rotational position.
  • a gas spring 98 is mounted between the main frame 12 and the overhead frame member 40, which serves to counterbalance and dampen the movement of the overhead frame member in each direction.
  • the output shaft 69 operates through the 90° gear box 74 to rotate the drive shaft 78 and pulleys 80, 60, and thus pivot the yoke 47 about the twisting axis 50.
  • the brake 95 may be actuated in this mode to hold the overhead frame member against rotation about the horizontal axis 45.
  • the clutch is closed and the brake is released, the frame member 75, the 90° gear box 74, and the output shaft 76 all rotate about the horizontal axis 45 to pivot the overhead frame member 40 and the yoke about the axis 45.
  • the apparatus 10 al ⁇ o includes two separately usable upper body engaging members 100 and 102 for engaging the upper body portion of the patient standing upon the platform, with each body engaging member being usable in one of the two primary modes of operation.
  • Each of the two body engaging members 100, 102 is mounted to one of the depending arms 49 of the yoke.
  • the selected depending arm 49 includes a vertical mounting plate 104, and a slide 105 which is mounted to the plate 104 for slidable movement along the direction of the arm.
  • a threaded pin 106 ( Figure 9) is provided for locking the slide at a selected elevation.
  • the slide 105 in turn mounts a generally horizontal utility rod 108, which extends along a direction extending perpendicularly to the horizontal axis 45 and generally between the back and front of the patient standing upon the platform 27.
  • the first body engaging member 100 is best seen in Figure 9, and is used when the apparatus is configured for operation in the flexion/extension mode.
  • the first member 100 comprises a pair of elongate pads 110, 112 which are mounted together for limited sliding movement on a cross arm 113.
  • the cross arm 113 is fixed to a support arm 114, and each pad 110, 112 mounts a pin 115 which are positioned to engage a load cell 116 which indicates the force applied laterally between either one of the pads 110, 112 and the support arm 114.
  • the support arm 114 includes a sleeve 118 at the remote end thereof for slidably mounting to the utility rod 108.
  • the member 100 when the patient is to undergo flexion ( Figures 1-4) , the member 100 is mounted to the forward end of the utility rod 108, and so that one of the elongate pads 110, 112 engages the chest of the patient.
  • the member 100 When the patient is to undergo extension testing ( Figure 5) , the member 100 is mounted to the rear end of the utility rod 108, and so that the other of the elongate pads 110, 112 engages the upper back of the patient.
  • the second body engaging member 102 is used when the apparatus is configured for operation in the twisting mode ( Figures 14-16) .
  • the second member 102 comprises a back pad 120 which is mounted to a support arm 121, and the free end of the arm 121 includes a mounting sleeve 122 and so that the member may be slidably mounted to the rear end of the utility rod.
  • a chest harness 124 is fixed to the back pad 120, so that the upper body portion of the patient may be tightly held against the back pad 120 when the patient is standing upon the platform 27.
  • the dynamometer means of the present inven ⁇ tion also includes a computer control system, which includes a predetermined program for monitoring the output signals from the operative load cells and potentiometers, and for controlling the operation of the drive motor 68 in accordance with the program.
  • the program may be designed for testing under isokinetic, isotonic, isometric conditions, or any other protocol.
  • protocols may be employed which require the patient to perform an interactive task by monitoring the computer screen of the computer that controls and records the action of the drive motor.
  • the computer terminal 125 may be conveniently positioned on a stand 127 which is pivotally mounted to the main frame of the apparatus as seen in Figure 1, and so as to pivot about a vertical axis 128 and be movable to a position in front of the patient and thus readily visible.
  • Flexion/Extension Operation When the apparatus 10 is to be operated in the flexion/extension mode as seen in Figures 1-9, the yoke 47 is rotated about the twisting axis 50 by the drive motor 68 so as to be positioned in the plane of the overhead frame member 40.
  • the yoke 47 is inherently locked against rotation about the twisting axis by pushing against the yoke, since the gear box 74 prevents backwards rotation therethrough.
  • the clutch 72 is engaged to lock the frame member 75 to the output shaft 69, and thus any rotation of the output shaft 69 of the drive motor will not be transmitted through the gear box since the gear box itself rotates..
  • the patient is then positioned to stand upon the platform 27, and the elevation thereof is adjusted by the operation of the linear actuator 28 until the juncture between the fixed vertebrae and moveable vertebrae of the spine (i.e. the lumbro-sacral junction at L5-S1) is approximately aligned with the horizontal axis 45.
  • the pelvic stabilization assembly 30 is then adjusted in elevation and attached to the pelvic region of the patient, and the leg engaging assembly 36 is positioned to engage the legs.
  • the upper body engaging member 100 is mounted to either the front or rear end of the utility rod 108. More particularly, where flexion is to be monitored, the member 100 is mounted to the forward end of the rod and so that the pad 110 engages the chest of the patient.
  • the elevation of the member 100 with respect to the chest may be adjusted by sliding the slide 105 along the plate 104.
  • the member 100 is mounted to the rear end of the rod 108, and so that the pad 112 engages the upper back of the patient at the selected elevation.
  • the apparatus 10 is then ready to be set into operation in accordance with the operating program provided by the computer control system. While in operation, the load cell 116 of the body engaging member 100 interfaces with the patient, and its output signal is fed to the computer control, along with a signal from the potentiometers 70, 86 which are indicative of the angular position of the drive motor 68 and the overhead frame member 40 respectively.
  • the platform 27 In order to operate in planes outside of the sagittal plane, the platform 27 is rotated and locked into one of the predetermined angular orientations as determined by the location of the openings 20 in the plate 17, and as illustrated in Figures 12 and 13. Twisting Operation In the twisting mode ( Figures 14 ⁇ l6) , the patient is positioned to stand upon the platform 27, with the pelvic region and legs being stabilized by means of the pelvic stabilization assembly 30 and leg assembly 36 in the manner described above.
  • the body engaging member 102 is mounted to the rear end of the utility rod 108, and the upper body of the patient is positioned so that the back of the patient is against the back pad 120 and the upper body is firmly pressed against the pad by the harness 124.
  • the patient is preferably positioned so that the twisting axis 50 is aligned along the lumbro-sacral axis of the patient.
  • the overhead frame member 40 is initially positioned in its fully upright position, although the frame member may be inclined from the fully upright position, if desired.
  • the clutch 72 is disengaged, so that the output of the drive motor passes through the stationary gear box 74 to the drive shaft 78, the timing belt 83, the twist shaft 54, and thus to the yoke 47.
  • the brake 95 is also operated, to firmly lock the overhead frame member in its fully upright, or other selected operating orientation.
  • the start and stop twist angles are recorded by signals from the potentiometer 70, and during operation, the load cell 58 measures the torque the patient applies to the yoke 47, or the torque being applied to the patient, depending upon the programmed protocol. Also, the potentiometer 70 reads the angular position of the drive motor 68, as well as the twisting angle of the yoke 47 with respect to the overhead frame member, and the signals from the load cell and the potentiometer are fed to the computer control system.

Abstract

An apparatus (10) is disclosed for monitoring the movement and force production of the lumbar spine during flexion and extension in each of several sagittal-frontal planes of the body, as well as during movement in the transverse (twisting) plane. The apparatus includes a rotatable platform (27) upon which the patient is adapted to stand, and the platform (27) is pivotable about a vertical axis so that the platform (27) may be pivoted to a selected angle and locked in position. A pelvic stabilization belt (30) is mounted to the platform (27), and a frame member (40) is provided for rotation about a horizontal axis which is adapted to pass through the lumbro-sacral juction of the patient. The frame member (40) includes an upper body yoke (47) which is mounted for rotation about a generally vertical axis which is perpendicular to the horizontal axis. A first upper body engaging member (100) and a second upper body engaging member (102) are adapted to be mounted to the yoke (47), and a control system is provided whereby the apparatus (10) may be operated in a flexion/extension mode, or in a twisting mode, and with the foot platform (27) in a selected angular position.

Description

APPARATUS FOR MONITORING THE MOTION OF THE LUMBAR SPINE
Background of the Invention
The present invention relates to an apparatus for monitoring the movement and force production of the lumbar spine during flexion and extension of the trunk of a patient in each of several sagittal-frontal planes of the body, and during trunk twisting. The apparatus is useful in the design of ergono ically suitable workplaces, and in the analysis and rehabilitation of low back disorders. Occupationally related low back disorders have become a problem of epidemic proportion in the industrialized world in recent years, and has been recognized as a major problem in the industrial environment. It is widely known that the majority of low back disorders associated with the workplace involve muscular over-exertion injuries. These injuries occur frequently and are quite acute initially but may progress to a more chronic state with repetitive strains. One of the basic concepts in the ergono ic control of the workplace is to design manual materials handling tasks so that the strength required by the task does not exceed most workers capabilities.
Worker strength has traditionally been evaluated using isometric strength tests of workers in the sagittal plane, i.e. the extension/flexion plane.
The machines which are currently marketed for measuring movement in the sagittal plane are of limited utility, however, since they can not assess motion components that are commonly found in the workplace or everyday life, and which are asymmetric. Machines of this general type are illustrated, for example, in U.S. Patents to Smidt et al, No. 4,462,252 and Boethcher, No. 4,565,368. Also, a similar machine is sold by Cybex, a division of Lumex, Inc. of Bay Shore, New York, as the Cybex TR unit.
Machines are also available for assessing movement in the transverse (i.e. twisting) plane, and a machine of this general type is manufactured by Cybex, as the Cybex TEF unit. Note also the U.S. Patent to Skowronski, No. 4,732,381. Here again, however, these machines are of limited utility in that they are unable to assess commonly encountered motions which include components in addition to twisting.
Isotechnologies Inc. , of Hillsboro, North Carolina, currently markets a low back testing and rehabilitation machine under the designation Iso Station® B-200, which includes a fixed platform upon which the patient stands, and a stabilizing belt system for locking the legs in a fixed upright position while the patient stands on the platform. The upper body is attached to a harness arrangement, which permits the upper body to move in three planes while the legs are fixed, namely the flexion/extension plane, the transverse (twisting) plane, and the lateral flexion plane. The apparatus also permits bending outside of the sagittal plane during flexion/extension movement. The movements in each of these planes are monitored, with the apparatus operated either dynamically or isometrically.
While the above described Iso Station® machine is better able to assess complex motion as compared to the above described single function machines, it does not permit the assessment of the lumbar movement of the spine in any specifically seleσ ed plane or combination of planes, since there is no control of the path of movement of the upper trunk. Thus there is an inherent inability to interpret the results accurately with respect to workplace determined demands, since patients produce different motions.
It is accordingly an object of the present invention to provide an apparatus for monitoring the movement of the lumbar spine which permits movement in a number of motion planes, and with the path of movement of the patient in each selected plane, or combination of planes, being controlled by the machine. It is a more particular object of the present invention to provide an apparatus which is able to monitor the movement of the lumbar spine during trunk bending in the flexion/extension plane, both symmetrically, i.e. within the sagittal plane, and asymmetrically, i.e. outside of the sagittal plane.
It is a further object of the present invention to provide an apparatus for monitoring the movement of the lumbar spine and which may be selectively configured to monitor the motion components during bending in the flexion/extension plane, or during movement in the transverse plane, and while assuming a symmetric or asymmetric trunk position. Summary of the Invention
The above and other objects and advantages of the present invention are achieved in the embodiment illustrated herein by the provision of an apparatus which comprises a main frame, and a horizontal platform which is rotatably mounted to the main frame for rotation about a vertical axis and which is adapted to support a patient in a standing position thereupon. The platform may be locked to the main frame in each of several predetermined rotational positions with respect to the main frame, and pelvic stabilization means is mounted to the platform for releasable connection to the pelvic region of the trunk of a patient standing upon the platform so as to support the pelvic region of the trunk in a fixed position with respect to the platform.
A frame member is mounted to the main frame for rotation about a horizontal axis which is positioned to pass approximately through the lumbro- sacral junction of a patient while the patient is standing upon the platform and supported by the pelvic stabilization means, and upper body engaging means is mounted to the frame member for engaging the upper body portion of a patient standing upon the platform and so that flexion and extension of the trunk of the patient causes the frame member to pivot about the horizontal axis in at least one direction. Dynamometer means is operatively connected to the frame member for control¬ ling the pivotal movement thereof in each pivotal direction. In use, the platform may be selectively moved to each of the predetermined rotational positions and the patient permitted to perform flexion and extension of the trunk about the horizontal axis while the platform is in each of the positions, and while the dynamometer means controls the pivotal movement of the frame member.
In the illustrated and preferred embodiment, the apparatus is further capable of monitoring the movement of the lumbar spine during movement about the transverse, or twisting plane. For this purpose, the above described frame member comprises an overhead member of generally U-shaped outline which comprises a horizontal beam and two depending legs. Also, an upper body yoke is provided which is mounted to the hori¬ zontal beam of the overhead frame member for rotation about a twisting axis which is generally vertical and perpendicular to the horizontal axis. In addition, means is provided for selectively converting the apparatus to a first configuration wherein the upper body yoke is locked against rotation about the twisting axis, while the overhead frame member is free to rotate about the horizontal axis. In a second configuration, the overhead frame member is locked against rotation about the horizontal axis, while the yoke is free to rotate about the twisting axis. The dynamometer means controls pivotal movement of the overhead frame member when in the first configuration, and controls twisting movement of the upper body yoke when in the second configuration. Thus when in the first configuration, the patient is permitted to perform flexion and exten¬ sion of the trunk about the horizontal axis, while the dynamometer means controls the pivotal movement of the overhead frame member, and in the second configuration, the patient is permitted to perform twisting of the trunk, while the dynamometer means controls the twisting movement of the upper body yoke. In either mode, the trunk may be positioned in a symmetric or asymmetric position, by rotation of the platform to a selected rotational position. The dynamometer means of the apparatus preferably also comprises a first force transducer for measuring the force applied between the overhead frame member and the patient when the apparatus is in the first configuration, and a second force transducer for measuring the twisting force applied between the upper body yoke and the patient when the apparatus is in the second configuration. Further, a first potentiometer is provided for monitoring the angular position of the overhead frame member when the apparatus is in the first configuration, and a second potentiometer is provided for monitoring the angular position of the yoke when the apparatus is in the second configuration. The dynamometer means further comprises a reversible drive motor, and a computer control system which includes a predetermined program for monitoring the output signals from the two transducers and the two potentiometers, and for controlling the operation of the drive motor in accordance with the program when the apparatus is in each of the first and second configurations.
Brief Description of the Drawings Some of the objects and advantages of the present invention having been stated, others will appear as the description proceeds, when taken in conjunction with the accompanying drawings, in which Figure 1 is a front elevation view of an apparatus for monitoring the motion of the lumbar spine which embodies the present invention, and with the apparatus configured for flexion and extension movement of the patient in the sagittal plane;
Figure 2 is a fragmentary plan view of a portion of the drive system of the apparatus, and taken substantially along the line 2-2 of Figure 1;
Figures 3-5 are side elevation views of the apparatus, shown in the fully upright, forwardly inclined, and rearwardly inclined positions respectively;
Figures 6 and 7 are fragmentary sectional views taken along the line 6-6 of Figure 2, and illustrating the maximum forward position and maximum rearward position, respectively; Figure 8 is a perspective view of the pelvic stabilization assembly of the apparatus;
Figure 9 is a fragmentary plan view illus¬ trating the upper body engaging member used in the flexion/extension mode; and taken substantially along the line 9-9 of Figure 1;
Figure 10 is a fragmentary plan view of the base for the foot engaging platform of the apparatus, and taken substantially along the line 10-10 of Figure i; Figure 11 is a fragmentary plan view of the means for mounting the upper body yoke for rotation about the twisting axis, and taken substantially along the line 11-11 of Figure 1; Figures 12-13 are views similar to Figure 10, but illustrating the platform rotated and locked in the maximum left hand and right hand positions respectively;
Figure 14 is a fragmentary view similar to Figure 1, but illustrating the apparatus configured for the twisting mode; and
Figures 15 and 16 are plan views of the upper body yoke taken substantially along the line 15-15 of Figure 14, and illustrating the yoke rotated to the maximum left hand and right hand positions, respectively. Detailed Description of the Preferred Embodiments
Referring more particularly to the drawings, an apparatus which embodies the features of the present invention is indicated generally at 10. The overall apparatus 10 is best seen in Figure 1, and it comprises a main frame 12, which is composed of a pair of generally U-shaped base members 13, 14, and with each base member comprising a horizontal ground engaging leg 13a, 14a and a pair of laterally spaced apart upright legs 13b, 13c, 14b, 14c. Also, a pair of intermediate upright legs 13d, 14d extends upwardly from the two ground engaging legs.
A platform assembly 16 is mounted to the lower portion of the main frame and generally between the two ground engaging legs 13a, 14a of the two U- shaped base members 13, 14. The platform assembly 16 includes a base plate 17 which is fixed between the two ground engaging legs 13a, 14a, and as best seen in Figure 10, the base plate 17 mounts a vertical pivot pin 18, and it includes a number of openings 20 positioned on an arc centered at the pivot pin, for the purpose described below.
A bearing plate 21 is mounted immediately above the base plate 17, and a pivot plate 22 is positioned to rest upon the bearing plate 21 so as to permit rotation about the axis of the pivot pin 18. The pivot plate 22 includes an opening which mounts a removable detent 24, which is designed to be received in a selected one of the openings 20 of the base plate, to rotatably lock the pivot plate in a selected rotational position.
The platform assembly 16 further includes a vertical post 26 which extends upwardly from the pivot plate 22. A horizontal platform 27, which is adapted to support a patient in a standing position thereupon, is mounted for sliding movement along the vertical post 26, and the elevation of the platform on the post is controlled by an electric linear actuator 28 so as to permit the apparatus to accommodate patients of varying height.
In the illustrated embodiment, the base plate 17 includes a total of five spaced-apart openings 20 which are adapted to be selectively aligned with the opening in the pivot plate 22 when the pivot plate and platform are pivoted about the axis of the pin 18. Typically, the openings 20 are positioned so that the central opening defines symmetric movement along the sagittal plane in the manner further described below, whereas the outside openings permit asymmetric movement at either 15° or 30° on each side of the central opening, note Figures 12 and 13.
The upper end of the post 26 mounts a pelvic stabilizing assembly 30 as best seen in Figure 8, which comprises a slide rod 31 positioned within the post 26, and a threaded pin 32 for locking the slide rod at a selected elevation with respect to the platform. The pelvic stabilization assembly 30 also includes a lower back pad 34 which is mounted to the slide rod 31, and a releasable waist band 35 which is adapted to firmly surround and support the pelvic region of the patient. Also, there is provided a leg engaging assembly 36 which includes a rod 37 which is slidably mounted on the post 26 and which is adapted to extend between the legs of the patient. A pair of padded front thigh pads 38 are mounted to the rod 37 for engaging each leg immediately above the knee and so as to press the same rearwardly against a pair of rear thigh pads 39. The legs are thereby firmly locked in the extended position in the illustrated embodiment of the apparatus. As opposed to the illustrated locked fully extended position of the legs, it will be understood that the apparatus may be designed to permit monitoring with the legs in a locked fully flexed position.
The apparatus of the present invention also includes an overhead frame member 40 having a generally inverted U-shaped outline, which is composed of a pair of forward and rear frame members 40a, 40b of corresponding outline. The two frame members 40a, 40b collectively define a horizontal beam 42 and two depending legs 43. Means are provide for mounting the overhead frame member to the main frame for movement about a horizontal axis 45 which is positioned to extend through both of the depending legs 43, and with the horizontal beam 42 being parallel to and above the horizontal axis 45. An upper body yoke 47 is also provided, and which has a U-shaped outline and which is also composed of a pair of forward and rear frame members 47a, 47b of corresponding outline. The two frame members 47a, 47b collectively define a horizontal arm 48 and two depending arms 49, and the yoke is sized so as to permit the yoke to fit within the outline of the overhead frame member 40. The upper body yoke 47 is mounted to the horizontal beam 42 of the overhead frame member for rotation about a twisting axis 50 which is generally vertical and perpendicular to the horizontal axis. As best seen in Figure 11, the mounting structure for the yoke 47 comprises a plate 52 which is fixed to the horizontal arm 48 of the yoke 47, and a shaft 54 which extends perpendicularly through the horizontal arm and the plate 52, and which defines the twisting axis 50. The shaft 54 is rotatably mounted to the overhead frame member 40 and to the plate 52 by means of bearings 55, and the torque is transmitted from the shaft 54 to the yoke 47 via a transmission assembly which includes a bracket 56 which is keyed to the shaft so as to be locked against rotation with respect to the shaft. A second bracket 57 is fixed to the arm 48 of the yoke, and a load cell 58 is mounted between the two brackets 56, 57 so as to measure the torque imparted between the overhead frame member and the yoke. Also, the upper end of the shaft 54 mounts a drive pulley 60, such that rotation of the pulley 60 causes a corresponding rotation of the yoke about the twisting axis 50.
Referring again to Figure 11, a yoke stop 62 is fixed to the overhead frame member 40, and a second plate 63 is fixed to the yoke below the stop. Also, the plate 63 includes a pair of pins 64 which are mounted along an arc centered at the shaft 54, and the pins 64 are each adapted to engage the stop 62 and thereby physically limit the twisting rotation of the yoke with respect to the overhead frame member to about 45° in each direction. The plate 63 also includes a pair of openings 65 which are aligned on the same rotational arc, and which are adapted to selectively receive a removable detent (not shown) so as to physically engage the stop and limit rotation to about 20° in one or both directions. The apparatus 10 further includes dynamometer means which is mounted to the frame 12 for controlling pivotal movement of the overhead frame member 40 and twisting movement of the upper body yoke 47, in the manner described in more detail below. The dynamometer means includes a conventional permanent magnet reversible DC servo motor 68, which is operable at a variable speed, and which includes a built-in reduction gear box. A motor of this type is manufactured by PMI Motion Technologies of Commack, New York, as Model No. JR16M4CH.
As best seen in Figure 2, the output shaft 69 of the motor is coaxial to the horizontal axis 45, and it is connected to a potentiometer 70 via a belt drive 71, which registers the rotational position of the motor. The output shaft 69 is also connected to a clutch 72, and to a 90° gear box 74. The output of the clutch is fixed to a box-like frame member 75 which is connected to the housing of the 90° gear box 74 and to a second output shaft 76, which is coaxial with the horizontal axis 45, and which in turn is fixedly connected to one of the legs 43 of the overhead frame member 40. The output of the 90° gear box 74 is connected to an upwardly directed drive shaft 78 through a universal joint 79, and the opposite end of the drive shaft 78 is connected to a pulley 80 through a second universal joint 81. The pulley 80 is rota- tably mounted to the overhead frame member 40, and a drive belt 83 is entrained about the pulley 80 and the pulley 60 which is connected to the twisting shaft 54.
The second output shaft 76 is rotatably mounted to a plate 84 which is fixed to the upper ends of the intermediate legs 13d, 14d of the frame, and a potentiometer 86 is operatively connected to the shaft 76 via a belt drive 87 to register the rotational position of the shaft 76 and thus the overhead frame member 40. To physically limit the angular movement of the overhead frame member 40, a disc 90 is fixedly mounted to the shaft 76, so as to overlie the plate 84. The plate 84 mounts a stop 91, and the disc 90 mounts a pair of pins 93 which contact the stop 91 to physically limit the rotation of the overhead frame member 40 in each rotational direction from its upright or overhead position. As best seen in Figures 6 and 7, the pins 93 typically are positioned so that the overhead frame member 40 is able to rotate about 60° in the forward (flexion) direction from the upright position, and about 20° in the rearward (extension) direction. The disc 90 may, if desired, also include openings for receiving a removable pin, which can shorten the rotational limits in each direction.
An electric brake 95 is also mounted to the main frame 12 along the horizontal axis, and on the opposite side of the overhead frame member 40. The brake is fixedly connected to the member 40 via a shaft 96 so as to be adapted to hold the frame member rigid in a vertical position, or at any other selected rotational position. Also, a gas spring 98 is mounted between the main frame 12 and the overhead frame member 40, which serves to counterbalance and dampen the movement of the overhead frame member in each direction.
In operation, when the clutch 72 is open, the output shaft 69 operates through the 90° gear box 74 to rotate the drive shaft 78 and pulleys 80, 60, and thus pivot the yoke 47 about the twisting axis 50. The brake 95 may be actuated in this mode to hold the overhead frame member against rotation about the horizontal axis 45. When the clutch is closed and the brake is released, the frame member 75, the 90° gear box 74, and the output shaft 76 all rotate about the horizontal axis 45 to pivot the overhead frame member 40 and the yoke about the axis 45. The apparatus 10 al^o includes two separately usable upper body engaging members 100 and 102 for engaging the upper body portion of the patient standing upon the platform, with each body engaging member being usable in one of the two primary modes of operation. Each of the two body engaging members 100, 102 is mounted to one of the depending arms 49 of the yoke. In this regard, the selected depending arm 49 includes a vertical mounting plate 104, and a slide 105 which is mounted to the plate 104 for slidable movement along the direction of the arm. Also, a threaded pin 106 (Figure 9) is provided for locking the slide at a selected elevation. The slide 105 in turn mounts a generally horizontal utility rod 108, which extends along a direction extending perpendicularly to the horizontal axis 45 and generally between the back and front of the patient standing upon the platform 27.
The first body engaging member 100 is best seen in Figure 9, and is used when the apparatus is configured for operation in the flexion/extension mode. The first member 100 comprises a pair of elongate pads 110, 112 which are mounted together for limited sliding movement on a cross arm 113. The cross arm 113 is fixed to a support arm 114, and each pad 110, 112 mounts a pin 115 which are positioned to engage a load cell 116 which indicates the force applied laterally between either one of the pads 110, 112 and the support arm 114. The support arm 114 includes a sleeve 118 at the remote end thereof for slidably mounting to the utility rod 108. Thus when the patient is to undergo flexion (Figures 1-4) , the member 100 is mounted to the forward end of the utility rod 108, and so that one of the elongate pads 110, 112 engages the chest of the patient. When the patient is to undergo extension testing (Figure 5) , the member 100 is mounted to the rear end of the utility rod 108, and so that the other of the elongate pads 110, 112 engages the upper back of the patient.
The second body engaging member 102 is used when the apparatus is configured for operation in the twisting mode (Figures 14-16) . The second member 102 comprises a back pad 120 which is mounted to a support arm 121, and the free end of the arm 121 includes a mounting sleeve 122 and so that the member may be slidably mounted to the rear end of the utility rod. A chest harness 124 is fixed to the back pad 120, so that the upper body portion of the patient may be tightly held against the back pad 120 when the patient is standing upon the platform 27. The dynamometer means of the present inven¬ tion also includes a computer control system, which includes a predetermined program for monitoring the output signals from the operative load cells and potentiometers, and for controlling the operation of the drive motor 68 in accordance with the program. In this regard, the program may be designed for testing under isokinetic, isotonic, isometric conditions, or any other protocol. Also, in accordance with conventional technology, protocols may be employed which require the patient to perform an interactive task by monitoring the computer screen of the computer that controls and records the action of the drive motor. The computer terminal 125 may be conveniently positioned on a stand 127 which is pivotally mounted to the main frame of the apparatus as seen in Figure 1, and so as to pivot about a vertical axis 128 and be movable to a position in front of the patient and thus readily visible. Flexion/Extension Operation When the apparatus 10 is to be operated in the flexion/extension mode as seen in Figures 1-9, the yoke 47 is rotated about the twisting axis 50 by the drive motor 68 so as to be positioned in the plane of the overhead frame member 40. In this regard, it will be understood that the yoke 47 is inherently locked against rotation about the twisting axis by pushing against the yoke, since the gear box 74 prevents backwards rotation therethrough. Also, the clutch 72 is engaged to lock the frame member 75 to the output shaft 69, and thus any rotation of the output shaft 69 of the drive motor will not be transmitted through the gear box since the gear box itself rotates..
The patient is then positioned to stand upon the platform 27, and the elevation thereof is adjusted by the operation of the linear actuator 28 until the juncture between the fixed vertebrae and moveable vertebrae of the spine (i.e. the lumbro-sacral junction at L5-S1) is approximately aligned with the horizontal axis 45. The pelvic stabilization assembly 30 is then adjusted in elevation and attached to the pelvic region of the patient, and the leg engaging assembly 36 is positioned to engage the legs. Next, the upper body engaging member 100 is mounted to either the front or rear end of the utility rod 108. More particularly, where flexion is to be monitored, the member 100 is mounted to the forward end of the rod and so that the pad 110 engages the chest of the patient. The elevation of the member 100 with respect to the chest may be adjusted by sliding the slide 105 along the plate 104. Where extension is to be monitored, the member 100 is mounted to the rear end of the rod 108, and so that the pad 112 engages the upper back of the patient at the selected elevation.
The apparatus 10 is then ready to be set into operation in accordance with the operating program provided by the computer control system. While in operation, the load cell 116 of the body engaging member 100 interfaces with the patient, and its output signal is fed to the computer control, along with a signal from the potentiometers 70, 86 which are indicative of the angular position of the drive motor 68 and the overhead frame member 40 respectively.
In order to operate in planes outside of the sagittal plane, the platform 27 is rotated and locked into one of the predetermined angular orientations as determined by the location of the openings 20 in the plate 17, and as illustrated in Figures 12 and 13. Twisting Operation In the twisting mode (Figures 14τl6) , the patient is positioned to stand upon the platform 27, with the pelvic region and legs being stabilized by means of the pelvic stabilization assembly 30 and leg assembly 36 in the manner described above. In addition, the body engaging member 102 is mounted to the rear end of the utility rod 108, and the upper body of the patient is positioned so that the back of the patient is against the back pad 120 and the upper body is firmly pressed against the pad by the harness 124. Also, the patient is preferably positioned so that the twisting axis 50 is aligned along the lumbro-sacral axis of the patient.
The overhead frame member 40 is initially positioned in its fully upright position, although the frame member may be inclined from the fully upright position, if desired. The clutch 72 is disengaged, so that the output of the drive motor passes through the stationary gear box 74 to the drive shaft 78, the timing belt 83, the twist shaft 54, and thus to the yoke 47. The brake 95 is also operated, to firmly lock the overhead frame member in its fully upright, or other selected operating orientation.
Before initiating the operation, the start and stop twist angles are recorded by signals from the potentiometer 70, and during operation, the load cell 58 measures the torque the patient applies to the yoke 47, or the torque being applied to the patient, depending upon the programmed protocol. Also, the potentiometer 70 reads the angular position of the drive motor 68, as well as the twisting angle of the yoke 47 with respect to the overhead frame member, and the signals from the load cell and the potentiometer are fed to the computer control system.
In the drawings and specification, there has been set forth a preferred embodiment of the invention, and although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims

THAT WHICH IS CLAIMED IS:
1. An apparatus (10) for monitoring the movement of the lumbar spine during flexion and extension of the trunk of a patient in each of several sagittal-frontal planes of the body, and comprising a main frame (12) , a horizontal platform (27) adapted to support a patient in a standing position thereupon, pelvic stabilization means (30) mounted to said platform for releasable connection to the pelvic region of the trunk of a patient standing upon said platform so as to support the pelvic region of the trunk in a fixed position with respect to said platform, a frame member (40) mounted to said main frame for rotation about a horizontal axis (45) which is positioned to pass approximately through the lumbro-sacral junction of a patient while the patient is standing upon said platform and supported by said pelvic stabilization means, upper body engaging means (100) mounted to said frame member for engaging the upper body portion of a patient standing upon said platform and so that flexion and extension of the trunk of the patient causes said frame member to pivot about said horizontal axis in at least one direction, and dynamometer means (68) operatively connected to said frame member for controlling the pivotal movement thereof in each pivotal direction, the improvement further comprising means (18) mounting said horizontal platform to said main frame for rotation about a vertical axis, and means (24) for locking said platform to said main frame in a selected rotational position, whereby the platform may be moved to a selected rotational position and the patient permitted to perform flexion and extension of the trunk about said horizontal axis while the platform is in such position, and while said dynamometer means controls the pivotal movement of said frame member.
2. The apparatus as defined in Claim 1 further comprising means (28) mounting said platform to said main frame so as to permit vertical adjustment of the height thereof, and means (31, 32) mounting said pelvic stabilization means to said platform so as to permit vertical adjustment of said pelvic stabilization means with respect to said platform, whereby the apparatus may be configured to accommodate patients of varying height.
3. The apparatus as defined in Claim 2 wherein said pelvic stabilizing means further comprises a lower back pad (34) and a releasable waist band (35) .
4. The apparatus as defined in Claim 1 wherein said upper body engaging means (100) comprises an elongate pad assembly (110, 112) , and means (108) mounting said pad assembly to said frame member at an adjustable location along a line extending perpendicularly to said horizontal axis and generally between the back and front of the patient standing upon said platform, and whereby said elongate pad assembly may be positioned to engage either the chest or the upper back of the patient.
5. The apparatus as defined in Claim 1 further comprising means (91, 93) to physically limit the rotation of said frame member about said horizontal axis to a selected angular rotation in each direction from a fully upright position.
6. The apparatus as defined in Claim 1 wherein said dynamometer means comprises force transducer means (116) for measuring the force applied between said frame member and the patient during flexion and extension of the trunk, means (86) for monitoring the angular position of said frame member, a reversible drive motor (68) operatively connected to pivot said frame member about said horizontal axis, and computer control means (125) including a predetermined program for monitoring the output signals from said force transducer means and said potentiometer means, and for controlling the operation of said drive motor in accordance with said program.
7. The apparatus as defined in Claim 6 wherein said force transducer means comprises a load cell (116) mounted to said elongate pad assembly.
8. An apparatus (10) for monitoring the movement of the lumbar spine during flexion and extension of the trunk of a patient in each of several sagittal-frontal planes of the body, and comprising a main frame (12) , a horizontal platform (27) adapted to support a patient in a standing position thereupon, pelvic stabilization means (30) mounted to said platform for releasable connection to the pelvic region of the trunk of a patient standing upon said platform so as to support the pelvic region of the trunk in a fixed position with respect to said platform, a frame member (40) mounted to said main frame for rotation about a horizontal axis (45) which is positioned to pass approximately through the lumbro-sacral junction of a patient while the patient is standing upon said platform and supported by said pelvic stabilization means, upper body engaging means (100) mounted to said frame member for engaging the upper body portion of a patient standing upon said platform and so that flexion and extension of the trunk of the patient causes said frame member to pivot about said horizontal axis in at least one direction, and dynamometer means (68) operatively connected to said frame member for controlling the pivotal movement thereof in each pivotal direction, the improvement wherein said frame member (40) comprises an overhead frame member having a generally inverted U-shaped outline and comprising a horizontal beam (42) and two depending legs (43) , with said horizontal axis (45) extending through both of said depending legs and with said horizontal beam being parallel to and above said horizontal axis, and an upper body yoke (47) mounted to said horizontal beam for rotation about a twisting axis (50) which is generally vertical and perpendicular to said horizontal axis, and further comprising means (72,74) for selectively converting said apparatus to a first configuration wherein said upper body yoke is locked agεinst rotation about said twisting axis while said overhead frame member is free to rotate about said horizontal axis, or to a second configuration wherein said overhead frame member is locked against rotation about said horizontal axis while said yoke is free to rotate about said twisting axis, said upper body engaging means being mounted to said upper body yoke for engaging the upper body portion of a patient standing upon said platform and so that in said first configuration flexion and extension of the trunk of the patient causes said overhead frame member to pivot about said horizontal axis in at least one direction, and in said second configuration twisting of the trunk of the patient causes said upper body yoke to twist about said twisting axis, said dynamometer means being adapted for controlling pivotal movement of said overhead frame member when in said first configuration, and for controlling twisting movement of said upper body yoke in said second configuration, whereby in the first configuration the patient is permitted to perform flexion and extension of the trunk about said horizontal axis while said dynamometer means controls the pivotal movement of said overhead frame member, and in said second configuration the patient is permitted to perform twisting of the trunk and while said dynamometer means controls the twisting movement of said upper body yoke.
9. The apparatus as defined in Claim 8 further comprising means (28) mounting said platform to said main frame so as to permit vertical adjustment of the height thereof, and means (31, 32) mounting said pelvic stabilization means to said platform so as to permit vertical adjustment of said pelvic stabilization means with respect to said platform, whereby the apparatus may be configured to accommodate patients of varying height.
10. The apparatus as defined in Claim 9 wherein said pelvic stabilizing means further comprises a lower back pad (34) and a releasable waist band (35) .
11. The apparatus as defined in Claim 8 wherein said upper body engaging means comprises a first member (100) composed of an elongate pad assembly, and means (108) for releasably mounting said first member to said upper body yoke at an adjustable location along a line extending perpendicular to said horizontal axis and generally between the back and front of the patient standing upon said pedestal, and whereby said elongate pad assembly may be positioned to engage either the chest or the upper back of the patient when said apparatus is in said first configuration, and a second member (102) composed of a back pad (120) and a chest harness (124) mounted to said back pad, and means (121) for releasably mounting said second member to said upper body yoke, and whereby said second member is useable when said apparatus is in said second configuration so that the patient may impart twist to said upper body yoke.
12. The apparatus as defined in Claim 8 further comprising means (91,93) to physically limit the rotation of said overhead frame member about said horizontal axis to a selected angular rotation in each direction from a fully upright position, and means
(62,64) to physically limit the rotation of said yoke in each direction about said twisting axis.
13. The apparatus as defined in Claim 8 wherein said dynamometer means comprises first force transducer means (116) for measuring the force applied between said overhead frame member and the patient when said apparatus is in said first configuration, second force transducer means (58) for measuring the twisting force applied between said upper body yoke and the patient when said apparatus is in said second configuration, first potentiometer means (86) for monitoring the angular position of said overhead frame member when said apparatus is in said first configuration, second potentiometer means (70) for monitoring the angular position of said yoke when said apparatus is in said second configuration, a reversible drive motor (68) , clutch means (72) for operatively connecting said drive motor to pivot said overhead frame member about said horizontal axis in said first configuration, and for operatively connecting said drive motor to said yoke in said second configuration, and computer control means (125) including a predetermined program for monitoring the output signals from said first and second force transducer means and said first and second potentiometer means, and for controlling the operation of said drive motor in accordance with said program when said apparatus is in each of said first and second configurations.
14. The apparatus as defined in Claim 8 further comprising means (18) mounting said horizontal platform to said main frame for rotation about a vertical axis, and means (24) for locking said platform to said main frame in a selected rotational position.
PCT/US1991/002610 1990-04-16 1991-04-16 Apparatus for monitoring the motion of the lumbar spine WO1991015998A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50967990A 1990-04-16 1990-04-16
US509,679 1990-04-16

Publications (1)

Publication Number Publication Date
WO1991015998A1 true WO1991015998A1 (en) 1991-10-31

Family

ID=24027652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1991/002610 WO1991015998A1 (en) 1990-04-16 1991-04-16 Apparatus for monitoring the motion of the lumbar spine

Country Status (2)

Country Link
AU (1) AU7691091A (en)
WO (1) WO1991015998A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732127A2 (en) * 1995-03-15 1996-09-18 Bavaria Patente und Lizenzen Verwertungsgesellschaft mbH Device for measuring and training of strength and/or mobility in humans or animals
WO2000015111A1 (en) * 1998-09-11 2000-03-23 Ville Kampman Method and apparatus for measurement of subject's sway
WO2017192888A1 (en) * 2016-05-04 2017-11-09 Styku Llc Method and system for body scanning and display of biometric data
US10628666B2 (en) 2010-06-08 2020-04-21 Styku, LLC Cloud server body scan data system
US10628729B2 (en) 2010-06-08 2020-04-21 Styku, LLC System and method for body scanning and avatar creation
US11244223B2 (en) 2010-06-08 2022-02-08 Iva Sareen Online garment design and collaboration system and method
US20220215224A1 (en) * 2017-06-22 2022-07-07 Iva Sareen Online garment design and collaboration system and method
US11640672B2 (en) 2010-06-08 2023-05-02 Styku Llc Method and system for wireless ultra-low footprint body scanning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462252A (en) * 1982-09-23 1984-07-31 The United States Of America As Represented By The Department Of Health And Human Services Trunk dynamometer
US4565368A (en) * 1983-08-11 1986-01-21 Gunderson Clinic Isokinetic exercise and monitoring machine
US4702108A (en) * 1985-06-24 1987-10-27 Regents Of The Univ. Of Minnesota Method and apparatus for measuring the isometric muscle strength of multiple muscle groups in the human body
US4725056A (en) * 1985-11-27 1988-02-16 Lumex, Inc. Leg stabilization for a trunk extension/flexion test, rehabilitation and exercise machine
US4732381A (en) * 1985-11-27 1988-03-22 Lumex, Inc. Upper body rotation assembly for a back test, rehabilitation and exercise machin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462252A (en) * 1982-09-23 1984-07-31 The United States Of America As Represented By The Department Of Health And Human Services Trunk dynamometer
US4565368A (en) * 1983-08-11 1986-01-21 Gunderson Clinic Isokinetic exercise and monitoring machine
US4702108A (en) * 1985-06-24 1987-10-27 Regents Of The Univ. Of Minnesota Method and apparatus for measuring the isometric muscle strength of multiple muscle groups in the human body
US4725056A (en) * 1985-11-27 1988-02-16 Lumex, Inc. Leg stabilization for a trunk extension/flexion test, rehabilitation and exercise machine
US4732381A (en) * 1985-11-27 1988-03-22 Lumex, Inc. Upper body rotation assembly for a back test, rehabilitation and exercise machin

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732127A2 (en) * 1995-03-15 1996-09-18 Bavaria Patente und Lizenzen Verwertungsgesellschaft mbH Device for measuring and training of strength and/or mobility in humans or animals
EP0732127A3 (en) * 1995-03-15 1998-08-05 Bavaria Patente und Lizenzen Verwertungsgesellschaft mbH Device for measuring and training of strength and/or mobility in humans or animals
WO2000015111A1 (en) * 1998-09-11 2000-03-23 Ville Kampman Method and apparatus for measurement of subject's sway
US6461313B1 (en) 1998-09-11 2002-10-08 Ville Kampman Method and apparatus for measurement of subject's sway
US10628666B2 (en) 2010-06-08 2020-04-21 Styku, LLC Cloud server body scan data system
US10628729B2 (en) 2010-06-08 2020-04-21 Styku, LLC System and method for body scanning and avatar creation
US11244223B2 (en) 2010-06-08 2022-02-08 Iva Sareen Online garment design and collaboration system and method
US11640672B2 (en) 2010-06-08 2023-05-02 Styku Llc Method and system for wireless ultra-low footprint body scanning
WO2017192888A1 (en) * 2016-05-04 2017-11-09 Styku Llc Method and system for body scanning and display of biometric data
US20220215224A1 (en) * 2017-06-22 2022-07-07 Iva Sareen Online garment design and collaboration system and method
US11948057B2 (en) * 2017-06-22 2024-04-02 Iva Sareen Online garment design and collaboration system and method

Also Published As

Publication number Publication date
AU7691091A (en) 1991-11-11

Similar Documents

Publication Publication Date Title
US5094249A (en) Apparatus for monitoring the motion of the lumbar spine
US5474086A (en) Apparatus for monitoring the motion of the lumbar spine
US4893808A (en) Exercise apparatus for the neck
US4768779A (en) Back exercise apparatus with a neck exercise attachment
US4733859A (en) Exercise apparatus
US5662591A (en) Apparatus for exercising and measuring strength of a patient's limb and an adjustable pivot clamp
US5360383A (en) Apparatus and method for testing and exercising cevical muscles
US4650183A (en) Exercise apparatus for certain foot and ankle joints
CN108144264B (en) Rehabilitation training mechanical arm and rehabilitation robot
US4632393A (en) Multi-purpose exercising apparatus
US4569519A (en) Shoulder exercising apparatus
EP1045722B1 (en) Apparatus for exercise and rehabilitation of the muscles around the cervical spine and/or the motional pattern of the cervical spine via rotatory training motion of the head
EP2349500B1 (en) Exercise device and system
US5860899A (en) Back manipulating apparatus
US4727860A (en) Exercise apparatus for the knee
US5830160A (en) Movement guiding system for quantifying diagnosing and treating impaired movement performance
US4023796A (en) Varying force resisting type exercising device
US4565368A (en) Isokinetic exercise and monitoring machine
US9999561B2 (en) Shoulder and/or knee physical therapy and range of motion device
CA2235650A1 (en) Exercise machine press arm
JP3524091B2 (en) Training device for simulated practice of dental treatment work
US9943725B2 (en) Exercise balance trainer
WO1991015998A1 (en) Apparatus for monitoring the motion of the lumbar spine
US5928112A (en) Machine for exercising and/or testing muscles of the human body
JP2002315759A (en) Frame, especially for surgical microscope

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA FI JP NO

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

NENP Non-entry into the national phase

Ref country code: CA