WO1991008293A1 - DNA PROBES SPECIFIC FOR $i(PLASMODIUM VIVAX) - Google Patents

DNA PROBES SPECIFIC FOR $i(PLASMODIUM VIVAX) Download PDF

Info

Publication number
WO1991008293A1
WO1991008293A1 PCT/SE1990/000801 SE9000801W WO9108293A1 WO 1991008293 A1 WO1991008293 A1 WO 1991008293A1 SE 9000801 W SE9000801 W SE 9000801W WO 9108293 A1 WO9108293 A1 WO 9108293A1
Authority
WO
WIPO (PCT)
Prior art keywords
ttt
att
taa
cat
ttg
Prior art date
Application number
PCT/SE1990/000801
Other languages
French (fr)
Inventor
K. Ayyanathan
P. Bhat
S. Datta
V. S. N. K. Francis
G. Padmanaban
H. Srinivasa
Original Assignee
Aktiebolaget Astra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aktiebolaget Astra filed Critical Aktiebolaget Astra
Priority to BR909007895A priority Critical patent/BR9007895A/en
Publication of WO1991008293A1 publication Critical patent/WO1991008293A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6893Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for protozoa
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/44Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from protozoa
    • C07K14/445Plasmodium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • Malaria is caused by protozoan parasites belonging to the genus Plasmodium.
  • the life cycle of the parasite occurs in two phases - the asexual phase in vertebrates and the sexual phase in the mosquito (usually of the genus Anopheles).
  • the four species of Plasmodium responsible for human malaria are P. falciparum, P.vivax, P.malariae and P.ovale.
  • P. falciparum causes the most severe form of malaria which in some instances is fatal. Further, this parasite also develops resistance to commonly used antimalarial drugs.
  • the frequency of the cases caused by P.vivax varies between different countries and is about 50-80%. The occurence of P.malariae and P.ovale is rare.
  • the current method of diagnosis of malaria is by blood smear examination. This method is laborious and also requires expertise. Further, a skilled microscopist is allowed to examine a maximum of sixty slides a day. Diagnosis by serology may also be done but because of the persistence of antibodies current infections cannot be distinguished from past infections.
  • the search for a new generation of diagnostic tests has included the possibility of detecting parasite nucleic acids as indicative of the presence of the parasite. Such a test requires very little blood (5-50 ul) that can be obtained from a finger prick, is sensitive and rapid. As few as 50 parasites in 10 ul of blood can be detected by nucleic acid hybridization (1). Hundreds of samples can be analyzed in a day with some initial training. The sensitivity of the assay enables the test to be used in blood banks for the screening of blood to be used for transfusion.
  • Nucleic acid hybridization could also be performed on insect tissue samples in order to identify the vector species as a carrier. Such information would help to intensify vector control measures in order to limit the geographic spread of malaria. Alternatively, chemoprophylaxis may be adopted in such areas and evaluation of this strategy may be accomplished using nucleic acid hybridization.
  • Double stranded DNA is of complementary nature. Under certain conditions of temperature and salt concentration, the complementary strands of DNA may be denatured or dissociated and reproducibly reassociated. The reassociation , may also occur between DNA and complementary RNA. The reassociating
  • DNA and RNA may be tagged with detection devices (isotopic or non isotopic) and appropriate detection methods maybe employed.
  • detection devices isotopic or non isotopic
  • detection methods maybe employed.
  • P.vivax there is no report of any potential DNA probe sequences.
  • the development of specific nucleic acid sequences to detect P.vivax would be important in order to determine the incidence of P.vivax in a geographically defined area.
  • the term 'probe' is used to denote a set of DNA sequences obtained biologically or synthetically.
  • Nucleic acid hybridization may be performed on any biological sample suspected of harbouring the parasite. Blood, for example, may be taken directly, solubilized in alkali and spotted on nitrocellulose or similar solid supports by standard methods (2). The DNA is immobilized on the supports and is brought in contact with the specific probe under appropriate conditions of temperature, ionic strength etc (3) which would favour specific reannealing of the probe and target nucleic acids. If the probe carries an isotopic tag (usually 32 P), radioautogrsphy is performed to detect positive samples from negative ones. If the probe carries a non-isotopic tag e.g. biotin (4), an enzyme system e.g. avidin -alkaline phosphatase is employed and after a cascade of events colour develops in samples that are positive for the test.
  • an enzyme system e.g. avidin -alkaline phosphatase is employed and after a cascade of events colour develops in samples that are positive for the test.
  • blood or the tissue sample to be analyzed may be collected directly in a chaotropic agent such as 4M guanidine thiocyanate.
  • a chaotropic agent such as 4M guanidine thiocyanate.
  • the hybridization process is performed in solution and the mixture is then filtered through a solid support under conditions which facilitate the binding of target-probe hybrids only while excess of probe does not bind to the matrix. Radioautography or colorimetric detection may be performed on this matrix.
  • This hybridization format is especially useful when single stranded RNA probes are used.
  • the present invention describes the identification of specific DNA sequences for P.vivax and the nucleotide sequences of these probes for P.vivax. Based on these characterizations, a diagnostic procedure for the specific detection of P.vivax has been developed employing nucleic acid hybridization. The test is rapid, sensitive and can be used on a large scale for purposes of epidemiological surveys.
  • the present invention relates to :
  • E. coli RR1 M15 is a standard laboratory strain, available under no. 35 102 from the American Type Culture Collection, ATCC, Rockville, Maryland, USA.
  • a suitable medium for the transformed E. coli strains is LB (Luria Bertani) medium, which is the standard medium for growing E. coli cells. LB medium contains Bacto Tryptone 10 g/litre, yeast extract 5 g/litre, sodium chloride 10 g/litre.
  • a DNA probe for detection of P.vivax consisting of the nucelotide sequence identified below fpr pARC 117.
  • a DNA probe for detection of P.vivax consisting of the nucleotide sequence identified below for pARC 145.
  • a DNA probe for detection of P.vivax consisting of the nucleotide sequence identified below for pARC 1153.
  • the present invention is exemplified by but not limited to the diagnosis of diseases. Epidemiological screening, forensic investigations, determination of food contamination, public health surveys, preventive medicine, veterinary and agricultural applications with regard to diagnosis of infectious agents may be covered by this disclosure. Identification of DNA sequences specific for P.vivax:
  • genomic DNA from this parasite was obtained from the blood of an infected patient. After removing as much of the buffy coat as possible, the genomic DNA was prepared by standard methods (6), digested with the enzyme Sau 3 ⁇ and cloned into the Bam HI site of the known plasmid vector, pUC 18. Species specific DNA sequences were identified by screening duplicate filters with nick-translated P.vivax DNA and nick-translated normal human DNA in a differential screening format.
  • pARC 117 Three specific probes of P.vivax designated pARC 117, pARC 145 and pARC 1153 were obtained and they were subcloned into the M13 vectors and their DNA sequence determined by di-deoxy chain termination method (7). None of them had any characteristic repetitive elements within the region sequenced.
  • nucleic acid hybridization There are two main procedures for nucleic acid hybridization. In one method, the sample nucleic acid is immobilized on a solid support while the probe sequence is in solution (2). In the other method, both the sample nucleic acid and the probe sequence and are in solution (5).
  • one nucleic acid hybridization assay involves spotting of the blood or tissue sample on a solid support e.g. nitrocellulose which is then hybridized with the probe
  • tissue sample has to be processed for parasite DNA extraction and then used in the dot blot assay. This is not desirable in the design of a diagnostic assay that is to be used for mass screening.
  • direct spotting of infected blood on the matrix was not satisfactory. Erythrocyte membrane proteins and other plasma components in the blood, presumably proteins, and other tissues when used sterically hinder the binding of parasite DNA to the matrix. Consequently, during the hybridization process the spotted sample detaches from the matrix leading to a loss of specific signal. The problem may be overcome by prior washing of the samples to remove the interfering plasma constituents which will make the test laborious or by spotting very small amounts of the blood which would contribute to loss of sensitivity of detection.
  • the inventors have therefore, resorted to a solution hybridization format which requires no sample processing and is more rapid to perform than the filter hybridization format.
  • the test utilises the following steps : a) Tissue sample is collected directly in a solution of a chaotropic salt or a denaturing agent eg. 25 ul of blood in 50 ul of 6 M guanidine thiocyanate. If the probe has an isotopic tag, guanidine thiocyanate at a concentration of 4 M can be used as the chaotropic salt.
  • guanidine thiocyanate cannot be used since it binds to nitrocellulose, polyvinylidene difluoride (PVDF) filters and other similar matrices and denatures the enzyme conjugate subsequently used in the reaction. Guanidine thiocyanate can however, be used with non-isotopic probes provided the matrices are pretreated.
  • PVDF polyvinylidene difluoride
  • guanidine hydrochloride when used as a solubilizing agent, it is found to be as effective as guanidine thiocyanate. It has the added advantage that it does not bind to the solid matrix and can therefore be used for non-isotopic probes.
  • the probe (1 ng) is added.
  • the probe added is preferably a single stranded nucleic acid, DNA or RNA which may be obtained biologically or synthetically by methods well documented in the art. RNA is the preferred probe.
  • the sampe is heated at 85o C for five minutes and allowed allowed to cool at room temperature (about 28-35o C) for two hours.
  • d) The sample is then diluted at least ten fold with a salt solution containing RNAseA and incubated for a further fifteen minutes. When single stranded DNA is used as the probe, unhybridized probe may be removed by hydroxylapatite chromatography.
  • e) The sample is then filtered through the matrix eg. nitrocellulose or polyvinylidene fluoride filters and the filters are rinsed twice in salt solution containing RNAse A for fifteen minutes each time.
  • the appropriate detection method is then carried out.
  • the hybridization probes may be prepared by cloning the genomic elements in suitable vectors. These vectors may be plasmids (E.coli plasmids), filamentous phages (M13), lamboid bacteriophage, cosmids, salmonella phages and yeast. Any vectors documented in the art may be employed. Hybridization probes may be labelled radioactively by nicktranslation with 32 P using DNA Polymerase and [ ⁇ - 32 P] dNTP.
  • Bio-dUTP can be used in nicktranslation reactions.
  • Short oligonucleotide probes can be end-labelled with [ ⁇ - 32 P] or [ ⁇ - 32 P] dNTP at their 5' or 3' termini respectively.
  • Single stranded DNA probes labelled with 32 P can be obtained using the M 13 vector system (9).
  • DNA probes can be labelled with biocin by the polymerase chain reaction in presence of Bio-dUTP, other deoxyribonucleotides and Taq DNA polymerase (10).
  • RNA hybridization labelled RNA complementary to DNA is prepared. Methods for the construction of such systems are well documented in the art (11).
  • the present invention includes also such assays.
  • the present invention thus includes the use of double-stranded DNA, single-stranded DNA, and RNA as probes for detecting the P.vivax genome.
  • EXAMPLE 1 This example illustrates the method by which species specific probes for P.vivax were obtained. 1. Total DNA from P. vivax infected blood was isolated, digested with the enzyme Sau 3A and cloned in the Bam H1 site of plasmid vector, pUC 18.
  • Clones were replica spotted on two filters of nitro- cellulose. One filter was screened with nick-translated radioactive human DNA and the other filter was screened with nick-translated radioactive P.vivax DNA.
  • This example illustrates the preparation of specific hybridization probes.
  • Hybridization probes were made by labelling the insert DNA in pARC 117, pARC 145 and pARC 1153 by nick translation in the presence of E.coli DNA polymerase or T4 DNA polymerase and
  • [ ⁇ - 32 P] dNTPs yielding a specific activity of 10 7 cpm to 5 x 10 7 cpm ug DNA.
  • Single stranded or synthetically derived DNA may be end labelled at the 5' ends using polynucleotide kinase and [ ⁇ - 32 P] ATP. They may also be labelled at the 3' ends using terminal transferase and [ ⁇ - 32 P] dNTPs.
  • Biotinylated single stranded DNA may be synthesised by the polymerase chain reaction employing Taq DNA polymerase and
  • Bio-dUTP Single or double stranded nucleic acids may be biotinylated by photoactivable biotin. Chemical biotinylation of nucleic acid may also be done.
  • Single stranded RNA may be generated by fusing the DNA of interest to a fragment of the Salmonella phage SP6 promoter in a suitable vector.
  • the vector may be propagated in
  • DNA of this vector can be transcribed in vitro using the SP6 RNA polymerase. During this process radioactive RNA of high specific activity may be obtained using [ ⁇ - 32 P] UTP.
  • This example illustrates the species specificity of the three P.vivax clones described in example 1, viz., pARC 117, pARC 145 and pARC 1153. Genomic DNAs of nine different isolates of P.vivax were prepared and spotted on nitrocellulose filter. The filter was probed with the respective P . vivax specific probes which were radioactive. The probes reacted only with P.vivax samples and not with P. falciparum nor human DNA (Fig.1). EXAMPLE 4
  • This example illustrates the assay for Plasmodium vivax using a solution hybridization format.
  • Infected blood (20 ul) or tissue is taken directly into 50 ul of guanidine thiocyanate containing 1 ng of pARC 117 RNA probe radiolabelled as described in Example 2. The sample is heated at 85o C for five minutes and left at room temperature for two hours.
  • the sample is then diluted ten fold in 2 x SSC containing 10 ng RNAse A and incubated at room temperature for a further 15 minutes.
  • the sample is then filtered through a nitrocellulose or PVDF filter matrix and the filter rinsed in 2 x SSC containing RNAse A buffer twice for 15 minutes each.
  • the filter is dried and autoradiographed to film for hybridization signals to develop.
  • the assay described is easy to perform and requires very little laboratory equipment such as is likely to be present in peripheral field conditions during mass surveys.
  • EXAMPLE 5 This example illustrates the solution hybridization procedure employing guanidine hydrochloride instead of guanidine thiocyanate as described in Example 4.
  • 4M guanidine thiocyanate as the chaotrope and non-radioactive probes that are detected by protein conjugates are in- compatible.
  • the chaotropic salt binds to nitrocellulose and PVDF filters and denatures the protein conjugates that are used for colour development.
  • Guanidine hydrochloride when used as a solubilising agent is as effective as guanidine thiocyanate. Since it does not bind to the matrix (nitrocellulose or PVDF filters), it enables the use of non-radioactive probes that are detected by protein conjugates. Guanidine thiocyanate may be used in conjunction with non radioactive probes as described earlier only if the filter is pretreated, eg. with 3% BSA before the guanidine thiocyanate solution is filtered through it.
  • Fig. 1 Specificity of the P.vivax probes pARC 117 (A), pARC 145 (B) and pARC 1153 (C). Double stranded inserts isolated from the three clones were tested as probes.
  • Pv1 to Pv9 represent DNA preparations from nine P.vivax infected blood samples.
  • FCK 2 and T 9 represent P.falciparum DNA preparations.
  • NH represent Normal human DNA.

Abstract

Disclosed are the DNA sequences of probes specific for Plasmodium vivax and the methods by which they were obtained. These nucleic acid sequences proved useful in detection of malaria in man caused by P. vivax by nucleic acid hybridization assays. The high sensitivity of these assays and the ease with which they can be performed enables them to be used for analyses of blood and other tissues of vertebrates and the invertebrates.

Description

DNA PROBES SPECIFIC FOR PLASMODIUM VIVAX.
NEW ANALYSIS METHOD
Background of the the invention and Prior Act
Malaria is caused by protozoan parasites belonging to the genus Plasmodium. The life cycle of the parasite occurs in two phases - the asexual phase in vertebrates and the sexual phase in the mosquito (usually of the genus Anopheles). The four species of Plasmodium responsible for human malaria are P. falciparum, P.vivax, P.malariae and P.ovale.
Among these, the first two are the most common. P. falciparum causes the most severe form of malaria which in some instances is fatal. Further, this parasite also develops resistance to commonly used antimalarial drugs. The frequency of the cases caused by P.vivax varies between different countries and is about 50-80%. The occurence of P.malariae and P.ovale is rare.
The current method of diagnosis of malaria is by blood smear examination. This method is laborious and also requires expertise. Further, a skilled microscopist is allowed to examine a maximum of sixty slides a day. Diagnosis by serology may also be done but because of the persistence of antibodies current infections cannot be distinguished from past infections. The search for a new generation of diagnostic tests has included the possibility of detecting parasite nucleic acids as indicative of the presence of the parasite. Such a test requires very little blood (5-50 ul) that can be obtained from a finger prick, is sensitive and rapid. As few as 50 parasites in 10 ul of blood can be detected by nucleic acid hybridization (1). Hundreds of samples can be analyzed in a day with some initial training. The sensitivity of the assay enables the test to be used in blood banks for the screening of blood to be used for transfusion.
Nucleic acid hybridization could also be performed on insect tissue samples in order to identify the vector species as a carrier. Such information would help to intensify vector control measures in order to limit the geographic spread of malaria. Alternatively, chemoprophylaxis may be adopted in such areas and evaluation of this strategy may be accomplished using nucleic acid hybridization.
Double stranded DNA is of complementary nature. Under certain conditions of temperature and salt concentration, the complementary strands of DNA may be denatured or dissociated and reproducibly reassociated. The reassociation , may also occur between DNA and complementary RNA. The reassociating
DNA and RNA may be tagged with detection devices (isotopic or non isotopic) and appropriate detection methods maybe employed. In the case of P.vivax, there is no report of any potential DNA probe sequences. The development of specific nucleic acid sequences to detect P.vivax would be important in order to determine the incidence of P.vivax in a geographically defined area. The term 'probe' is used to denote a set of DNA sequences obtained biologically or synthetically.
Nucleic acid hybridization may be performed on any biological sample suspected of harbouring the parasite. Blood, for example, may be taken directly, solubilized in alkali and spotted on nitrocellulose or similar solid supports by standard methods (2). The DNA is immobilized on the supports and is brought in contact with the specific probe under appropriate conditions of temperature, ionic strength etc (3) which would favour specific reannealing of the probe and target nucleic acids. If the probe carries an isotopic tag (usually 32P), radioautogrsphy is performed to detect positive samples from negative ones. If the probe carries a non-isotopic tag e.g. biotin (4), an enzyme system e.g. avidin -alkaline phosphatase is employed and after a cascade of events colour develops in samples that are positive for the test.
In yet another technique (5), blood or the tissue sample to be analyzed may be collected directly in a chaotropic agent such as 4M guanidine thiocyanate. The hybridization process is performed in solution and the mixture is then filtered through a solid support under conditions which facilitate the binding of target-probe hybrids only while excess of probe does not bind to the matrix. Radioautography or colorimetric detection may be performed on this matrix. This hybridization format is especially useful when single stranded RNA probes are used.
DETAILS OF THE INVENTION
The present invention describes the identification of specific DNA sequences for P.vivax and the nucleotide sequences of these probes for P.vivax. Based on these characterizations, a diagnostic procedure for the specific detection of P.vivax has been developed employing nucleic acid hybridization. The test is rapid, sensitive and can be used on a large scale for purposes of epidemiological surveys.
The present invention relates to :
1. The new constructs or plasmids, pARC 117, pARC 145 and pARC 1153, deposited in the form of tzansformed E.coli at the National Collection of Industrial Bacteria, Torry Research
Station, Aberdeen (NCIB) on dates ana under deposition numbers as given below :
PARC 117 : NCIB 40114, E.Coli RR1 M15 pARC 117, Feb. 15, 1989 PARC 145 : NCIB 40110, E.Coli RR1 M15 pARC 145, Feb. 7, 1989 pARC 1153 : NCIB 40108 E.Coli RR1 M15 pARC 1153, Feb. 7, 1989 The E. coli strain used for transformation, E. coli RR1 M15, is a standard laboratory strain, available under no. 35 102 from the American Type Culture Collection, ATCC, Rockville, Maryland, USA. A suitable medium for the transformed E. coli strains is LB (Luria Bertani) medium, which is the standard medium for growing E. coli cells. LB medium contains Bacto Tryptone 10 g/litre, yeast extract 5 g/litre, sodium chloride 10 g/litre.
2. The DNA sequences of pARC 117, pARC 145 and pARC 1153 and substructures thereof comprising at least 20 consequtive nucleotides.
3. A DNA probe for detection of P.vivax, consisting of the nucelotide sequence identified below fpr pARC 117.
4. A DNA probe for detection of P.vivax, consisting of the nucleotide sequence identified below for pARC 145.
5. A DNA probe for detection of P.vivax, consisting of the nucleotide sequence identified below for pARC 1153.
6. A method for the detection of P.vivax in a biological sample of vertebrates or invertebrates by hybridization of a probe comprising a nucleotide sequence as identified for either of pARC 117, pARC 145 and pARC1153, in radioactive or non-radio active labelled form with their respective homologous sequences in the P.vivax genome, and detecting the labelled probe which is bound tc the P.vivax genome. The present invention is exemplified by but not limited to the diagnosis of diseases. Epidemiological screening, forensic investigations, determination of food contamination, public health surveys, preventive medicine, veterinary and agricultural applications with regard to diagnosis of infectious agents may be covered by this disclosure. Identification of DNA sequences specific for P.vivax:
Since P.vivax has not yet been cultured in vitro, genomic DNA from this parasite was obtained from the blood of an infected patient. After removing as much of the buffy coat as possible, the genomic DNA was prepared by standard methods (6), digested with the enzyme Sau 3λ and cloned into the Bam HI site of the known plasmid vector, pUC 18. Species specific DNA sequences were identified by screening duplicate filters with nick-translated P.vivax DNA and nick-translated normal human DNA in a differential screening format. Three specific probes of P.vivax designated pARC 117, pARC 145 and pARC 1153 were obtained and they were subcloned into the M13 vectors and their DNA sequence determined by di-deoxy chain termination method (7). None of them had any characteristic repetitive elements within the region sequenced. A computer based homology search utilising updated databanks such as Genbank and EMBL revealed no significant homology with any published nucleotide sequences. The highest homology was obtained with pARC 117 and rat parvalbumin ( about 41%). This figure is insignificant for all practical purposes.
The said probes for P.vivax. were specific and did not cross react with isolates of P. falciparum (Fig 1). Description of the detection procedure using the specific P.vivax probes:
There are two main procedures for nucleic acid hybridization. In one method, the sample nucleic acid is immobilized on a solid support while the probe sequence is in solution (2). In the other method, both the sample nucleic acid and the probe sequence and are in solution (5).
Thus, one nucleic acid hybridization assay involves spotting of the blood or tissue sample on a solid support e.g. nitrocellulose which is then hybridized with the probe
(isotopically/non-isotopically tagged) under appropriate conditions of temperature etc (3). This method is well documented and in the context of malaria diagnosis has been used by many investigators (8). However, the tissue sample has to be processed for parasite DNA extraction and then used in the dot blot assay. This is not desirable in the design of a diagnostic assay that is to be used for mass screening. In the experience of the inventors, direct spotting of infected blood on the matrix was not satisfactory. Erythrocyte membrane proteins and other plasma components in the blood, presumably proteins, and other tissues when used sterically hinder the binding of parasite DNA to the matrix. Consequently, during the hybridization process the spotted sample detaches from the matrix leading to a loss of specific signal. The problem may be overcome by prior washing of the samples to remove the interfering plasma constituents which will make the test laborious or by spotting very small amounts of the blood which would contribute to loss of sensitivity of detection.
The inventors have therefore, resorted to a solution hybridization format which requires no sample processing and is more rapid to perform than the filter hybridization format. The test utilises the following steps : a) Tissue sample is collected directly in a solution of a chaotropic salt or a denaturing agent eg. 25 ul of blood in 50 ul of 6 M guanidine thiocyanate. If the probe has an isotopic tag, guanidine thiocyanate at a concentration of 4 M can be used as the chaotropic salt. If the probe is non- isotopic (eg.biotin) and has to be detected by an enzyme reaction, guanidine thiocyanate cannot be used since it binds to nitrocellulose, polyvinylidene difluoride (PVDF) filters and other similar matrices and denatures the enzyme conjugate subsequently used in the reaction. Guanidine thiocyanate can however, be used with non-isotopic probes provided the matrices are pretreated.
In the present invention, when guanidine hydrochloride is used as a solubilizing agent, it is found to be as effective as guanidine thiocyanate. It has the added advantage that it does not bind to the solid matrix and can therefore be used for non-isotopic probes. b) The probe (1 ng) is added. The probe added is preferably a single stranded nucleic acid, DNA or RNA which may be obtained biologically or synthetically by methods well documented in the art. RNA is the preferred probe. c) The sampe is heated at 85º C for five minutes and allowed allowed to cool at room temperature (about 28-35º C) for two hours. d) The sample is then diluted at least ten fold with a salt solution containing RNAseA and incubated for a further fifteen minutes. When single stranded DNA is used as the probe, unhybridized probe may be removed by hydroxylapatite chromatography. e) The sample is then filtered through the matrix eg. nitrocellulose or polyvinylidene fluoride filters and the filters are rinsed twice in salt solution containing RNAse A for fifteen minutes each time. f) The appropriate detection method is then carried out.
Preparation of hybridization probes
The hybridization probes may be prepared by cloning the genomic elements in suitable vectors. These vectors may be plasmids (E.coli plasmids), filamentous phages (M13), lamboid bacteriophage, cosmids, salmonella phages and yeast. Any vectors documented in the art may be employed. Hybridization probes may be labelled radioactively by nicktranslation with 32P using DNA Polymerase and [α- 32P] dNTP.
For non radioactive labelling Bio-dUTP can be used in nicktranslation reactions. Short oligonucleotide probes can be end-labelled with [α - 32P] or [α - 32P] dNTP at their 5' or 3' termini respectively. Single stranded DNA probes labelled with 32P can be obtained using the M 13 vector system (9). Single stranded
DNA probes can be labelled with biocin by the polymerase chain reaction in presence of Bio-dUTP, other deoxyribonucleotides and Taq DNA polymerase (10).
In hybridization assays utilising RNA hybridization labelled RNA, complementary to DNA is prepared. Methods for the construction of such systems are well documented in the art (11). The present invention includes also such assays. The present invention thus includes the use of double-stranded DNA, single-stranded DNA, and RNA as probes for detecting the P.vivax genome.
EXAMPLE 1 This example illustrates the method by which species specific probes for P.vivax were obtained. 1. Total DNA from P. vivax infected blood was isolated, digested with the enzyme Sau 3A and cloned in the Bam H1 site of plasmid vector, pUC 18.
2. Clones were replica spotted on two filters of nitro- cellulose. One filter was screened with nick-translated radioactive human DNA and the other filter was screened with nick-translated radioactive P.vivax DNA.
3. The hybridized replicas were autoradiographed to produce hybridization signals. 4. Clones that reacted with P. vivax DNA and not with human DNA were considered as species specific and were selected for use as hybridization probes for P.vivax.
5. In this way, three clones were identified. These clones are denoted pARC 117, pARC 145, and pARC 1153 respectively. The nucleotide sequence of each clone was determined by standard methods with the following result.
Nucleotide sequence of pARC 117 :
5'-----------AT GTA AGA GCA CAT
GAG ATT TTA TAA GGA TTT CAT TTT ACT CAG GGT GAA ATG AAG AAG CAC TAA AAG ATT TTG AGT AGA GTT TCA
T---------3'
Nucleotide sequence of pARC 145:
5'-------CC AAG TGA AGA AAG
GTG GAA GGG CCA GCA GGA GAG CTG GTC ACT GCA TTG TCT CTC TGA GGT CTG TAG GCC AGA AGC TCC CCA GGA CTT AGA CCC TAC TAA ATG GGG TAG AGA GTA AGG GGC AGC CAT CAC TTA TCA CTG GCT GTC CTG AGG GTT TGG TGT ACA GCA TGG CTT GTG GTC AGA GGC CTG TCA GCT GGG CTC CAA GAG TCC TAG TGA ATG TAA ACA GTG CAG ACC TTT TCT GGG GGG AAG G---------3'
Nucleotide sequence of pARC 1153:
5'------------TTT GTG TGA TTT TTG TGA TTT TTG ATG
GAA ACC TGA ATA TTT GGG GTA ATT ATG TGA TTA GAC TCA GGA TTT TAT TTA AAT CTT CTG TTT TAG CTA GCC TCC TCT GAC ACT AGC TTG GCA GGA ACG AGG GCA GGA GAG CAT TGC TGA TGC ATT CCT GCC TCT TTT CTT CCT TGT TAC TCC CAA GTG GGT GTA AAA ATC CAG GTT TCC CAC TGT TTC CTC CTT TAA ATT AAT TAA TTA ATT TTT AAT GTT GGC AAA TAA AAA TTA TAT ATT GTG TAT ATT TAT GGG GTA CAA CAT GAT ATT TTG ATA TAT GTA TAC ATT GCA GAA TGG CTA AAT TAA GCT AAT TAA CAT ACA TAT TAC CTC ACA TAA TCA ATT TTT TTG TGG TGA GAG CAC CTG CAA TCT ACT CTT TTA GCA ATT TTC AAG TAT ATA AAA CAT TGT TAT TAA CTA TGG TCA CCT CAT TGT ACA ATA TGT TTT TTG AAC TTA TTC CTC CTA AGT ATA ATT TTG TAC TCT TTG ACC AAC ATC TCC CCA GAC CCC TCA ATG CCC ACC CTC TGG TAA CCA ACA TTC TAC TCT TTG CTT TTC AAC TTT TAT" AGA TTC CAT ATG AAG TAG GAT CAT GCT GTA TTT GTC TTT GTG CCT GGC TTA TTT CCT TTA CAT ACT GTT CTC TAG GTG --------------3' EXAMPLE 2
This example illustrates the preparation of specific hybridization probes.
Hybridization probes were made by labelling the insert DNA in pARC 117, pARC 145 and pARC 1153 by nick translation in the presence of E.coli DNA polymerase or T4 DNA polymerase and
[α - 32P] dNTPs yielding a specific activity of 107 cpm to 5 x 107 cpm ug DNA. Single stranded or synthetically derived DNA may be end labelled at the 5' ends using polynucleotide kinase and [α - 32P] ATP. They may also be labelled at the 3' ends using terminal transferase and [α- 32P] dNTPs.
Biotinylated single stranded DNA may be synthesised by the polymerase chain reaction employing Taq DNA polymerase and
Bio-dUTP. Single or double stranded nucleic acids may be biotinylated by photoactivable biotin. Chemical biotinylation of nucleic acid may also be done.
Single stranded RNA may be generated by fusing the DNA of interest to a fragment of the Salmonella phage SP6 promoter in a suitable vector. The vector may be propagated in
E.coli. DNA of this vector can be transcribed in vitro using the SP6 RNA polymerase. During this process radioactive RNA of high specific activity may be obtained using [α - 32P] UTP.
Biotinylation of this RNA is also possible. EXAMPLE 3
This example illustrates the species specificity of the three P.vivax clones described in example 1, viz., pARC 117, pARC 145 and pARC 1153. Genomic DNAs of nine different isolates of P.vivax were prepared and spotted on nitrocellulose filter. The filter was probed with the respective P . vivax specific probes which were radioactive. The probes reacted only with P.vivax samples and not with P. falciparum nor human DNA (Fig.1). EXAMPLE 4
This example illustrates the assay for Plasmodium vivax using a solution hybridization format.
Infected blood (20 ul) or tissue is taken directly into 50 ul of guanidine thiocyanate containing 1 ng of pARC 117 RNA probe radiolabelled as described in Example 2. The sample is heated at 85º C for five minutes and left at room temperature for two hours.
The sample is then diluted ten fold in 2 x SSC containing 10 ng RNAse A and incubated at room temperature for a further 15 minutes. The sample is then filtered through a nitrocellulose or PVDF filter matrix and the filter rinsed in 2 x SSC containing RNAse A buffer twice for 15 minutes each.
The filter is dried and autoradiographed to film for hybridization signals to develop.
The assay described is easy to perform and requires very little laboratory equipment such as is likely to be present in peripheral field conditions during mass surveys.
EXAMPLE 5 This example illustrates the solution hybridization procedure employing guanidine hydrochloride instead of guanidine thiocyanate as described in Example 4.
4M guanidine thiocyanate as the chaotrope and non-radioactive probes that are detected by protein conjugates are in- compatible. The chaotropic salt binds to nitrocellulose and PVDF filters and denatures the protein conjugates that are used for colour development.
Guanidine hydrochloride when used as a solubilising agent is as effective as guanidine thiocyanate. Since it does not bind to the matrix (nitrocellulose or PVDF filters), it enables the use of non-radioactive probes that are detected by protein conjugates. Guanidine thiocyanate may be used in conjunction with non radioactive probes as described earlier only if the filter is pretreated, eg. with 3% BSA before the guanidine thiocyanate solution is filtered through it.
REFERENCES
1. Pollack, Y., Metzger, S., Shemer, R., Landau, D., Spira, D.T. and Golenser, J. (1985). Am. J.Trop.Med.Hyg. 34, 663.
2. Kafatos, F.C., Jones, C.W. and Efstratiadis, A. (1979) Nucl.Acids. Res 7, 1541.
3. Maniatis, T., Fritsch, E.F. and Sambrook, J., Molecular Cloning, A Laboratory Manual, Cold Spring Harbour, N.Y. 1982.
4. Langer, P.R., Waldorp, A.A. and Ward, D.C. (1981) Proc. Natl.Acad Sci. U.S.A. 78, 6633.
5. Thompson, J. and Gillespie, D. (1987) Anal.Biochem. 163, 281.
6. Panyim, S., Wilairat, P. and Yuthavong, Y. Application of Genetic Engineering to Research on Tropical Disease Pathogens with special reference to Plasmodia - WHO publication.
7. Sanger, F., Coulson, A.P., Barrell, B.G., Smith, A.G.H. and Roe , B .A. (1980) . J .Mol . Biol . 143 , 161 .
8. Holmberg, M., Bjorkmann, A., Franzen. L., Aslund, L. Lebbad, M., Pettersson U. and Wigzell, H. (1980), Bull, W.H.O. 64,579.
9. Burke, J.F., (1984) Gene 30, 63.
10. Saiki, R.K., et al (1988) Science 239, 487
11. Green, M.R., Maniatis, T. and Melton, D.A. (1983), Cell 32, 681. FIGURE LEGEND
Fig. 1 : Specificity of the P.vivax probes pARC 117 (A), pARC 145 (B) and pARC 1153 (C). Double stranded inserts isolated from the three clones were tested as probes. Pv1 to Pv9 represent DNA preparations from nine P.vivax infected blood samples. FCK 2 and T 9 represent P.falciparum DNA preparations. NH represent Normal human DNA.
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001

Claims

Claims :
1. The construct pARC 117, deposit no. NCIB 40114.
2. The construct pARC 145, deposit no. NCIB 40110.
3. The construct pARC 1153, deposit no. NCIB 40108
4. A DNA fragment having the sequence
5'-----------AT GTA AGA GCA CAT
GAG ATT TTA TAA GGA TTT CAT TTT
ACT CAG GGT GAA ATG AAG AAG CAC TAA AAG ATT TTC AGT AGA GTT TCA
T--------3'
5. A DNA fragment having the sequence :
5'---------CC AAC TGλ ACA AAG
GTG GAA GGG CCA GCA GGA GAG CTG GTC ACT GCA TTG TCT CTC TGA GGT CTG TAG GCC AGA AGC TGC CCA GCA CTT ACA CCC TAC TAA ATG GGG TAG AGA GTA AGG GGC AGC CAT CAC TTA TCA CTG GCT GTC CTG AGG GTT TGG TGT ACA GCA TGG CTT GTG GTC AGA GGC CTG TCA GCT GGG CTC CAA GAG TCC TAG TGA ATG TAA ACA GTC GAG ACC TTT TCT GGG GGG AAG G------- 3'
6. A DNA fragment having the sequence :
5"-----------TTT GTG TGA TTT TTG TGA TTT TTG ATG
GAA ACC TGA ATA TTT GGG GTA ATT ATG TGA TTA GAC TCA GGA TTT TAT TTA AAT CTT CTG TTT TAG CTA GCC TCC TCT GAC ACT AGC TTG GCA GGA ACG AGG GCA GGA GAG CAT TGC TGA TGC ATT CCT GCC TCT TTT CTT CCT TGT TAC TCC CAA GTG GGT GTA AAA ATC CAG GTT TCC CAC TGT TTC CTC CTT TAA ATT AAT TAA TTA ATT TTT AAT GTT GGC AAA TAA AAA TTΛ TAT ATT GTG TAT ATT TAT GGG GTA CAA CAT GAT ATT TTG ATA TAT GTA TAC ATT GCA GAA TGG CTA AAT TAA GCT AAT TAA CAT ACA TAT TAC CTC ACA TAA TCA ATT TTT TTG TGG TGA GAG CAC CTG CAA TCT ACT CTT TTA GCA ATT TTC AAG TAT ATA AAA CAT TGT TAT TAA CTA TGG TCA CCT CAT TGT ACA ATA TGT TTT TTG AAC TTA TTC CTC CTA AGT ATA ATT TTG TAC TCT TTG ACC AAC ATC TCC CCA GAC CCC TCA ATG CCC ACC CTC TGG TAA CCA ACA TTC TAC TCT TTG CTT TTC AAC TTT TAT AGA TTC CAT ATG AAG TAG GAT CAT GCT GTA TTT GTC TTT GTG CCT GGC TTA TTT CCT TTA CAT ACT GTT CTC TAG GTG -------------3'
7. A hybridization probe comprising a nucleotide sequence as defined in claims 4,5 and 6 or a contiguous segment thereof which will specifically hybridize to P.vivax genome.
8. A hybridization probe according to claim 7 in an appropriate vector.
9. A hybridization probe according to claim 8, wherein the said vector is selected from E.coli plasmids, filamentous phages (M13), lamboid bacteriophages, cosmids, Salmonella phages and yeast.
10. A hybridization probe according to claim 9 wherein the said vector is an E.coli plasmid.
11. A hybridization probe according to claim 11 wherein the said E.coli plasmid is pUC 18 or pUC 19.
12. A hybridization probe according to claims 9-11 wherein the said vector contains a salmonella SP 6 phage promoter or a T7 phage promoter.
13. A hybridization probe according to claims 7-12, which probe is labelled with 32P, 125l, a chromophoric group or a reporter group.
14. A hybridization probe according to claim 13 wherein the said reporter group is biotin.
15. A method for detecting P.vivax in a biological sample of vertebrates or invertebrates, by hybridization of a probe according to claims 7-14 with the respective homologous sequences in the P.vivax genome, and detecting the probe which is bound to the P.vivax genome.
16. A method according to claim 15 wherein the said hybridization probe comprises a vector containing the said sequence of DNA, complementary DNA (single stranded) or RNA.
17. A method for the preparation of a hybridization probe comprising the nucleotide sequence according to any of claims 4, 5, and 6, or a contiguous segment thereof which specifically hybridizes to P. vivax genome, by cloning said sequence in a vector.
18. A process according to claim 17 for preparing a
hybridization probe, characterized in that the said vector is selected from E. coli plasmids, filamentous phages (M13), lamboid bacteriophages, cosmids. Salmonella phages and yeast.
19. A process according to claim 18, characterized in that the said vector is as specified in any of claims 10 - 14.
PCT/SE1990/000801 1989-12-05 1990-12-04 DNA PROBES SPECIFIC FOR $i(PLASMODIUM VIVAX) WO1991008293A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR909007895A BR9007895A (en) 1989-12-05 1990-12-04 CONSTRUCTION PARC 117, CONSTRUCTION PARC 145, CONSTRUCTION PARC 1153, DNA FRAGMENT, HYBRIDIZATION PROBE, PROCESS TO DETECT P.VIVAX IN A BIOLOGICAL SAMPLE OF VERTEBRATES OR INVERTEBRATES, AND PROCESS FOR THE PREPARATION OF A HYBRIDIZATION PROBE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8904100-8 1989-12-05
SE8904100A SE8904100D0 (en) 1989-12-05 1989-12-05 NEW ANALYSIS METHOD

Publications (1)

Publication Number Publication Date
WO1991008293A1 true WO1991008293A1 (en) 1991-06-13

Family

ID=20377694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1990/000801 WO1991008293A1 (en) 1989-12-05 1990-12-04 DNA PROBES SPECIFIC FOR $i(PLASMODIUM VIVAX)

Country Status (12)

Country Link
US (1) US5250411A (en)
EP (1) EP0504253A1 (en)
JP (1) JPH05502582A (en)
CN (1) CN1054618A (en)
AU (1) AU6955691A (en)
BR (1) BR9007895A (en)
IL (1) IL96431A0 (en)
JO (1) JO1656B1 (en)
PT (1) PT96081A (en)
SE (1) SE8904100D0 (en)
WO (1) WO1991008293A1 (en)
ZA (1) ZA909109B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694612A1 (en) * 1993-03-12 1996-01-31 Wakunaga Pharmaceutical Co., Ltd. Detection of malaria
KR20020028385A (en) * 2000-10-09 2002-04-17 박제철 Detect method of plasmodium vivax infected in mosquito by gene markers

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770368A (en) * 1996-05-09 1998-06-23 Metropolitan Water District Of Southern California Cryptosporidium detection method
US6436638B1 (en) 1996-05-09 2002-08-20 Metropolitan Water District Of Southern California Cryptosporidium detection method
KR20020024958A (en) * 2000-09-27 2002-04-03 임채승 DBP gene of Plasmodium viviax and the detection method of malaria using that
WO2013159293A1 (en) * 2012-04-25 2013-10-31 Institute Of Basic Medical Sciences Chinese Academy Of Medical Sciences Method, composition and kit for high throughput detection of genus plasmodium
CN103965320A (en) * 2013-01-29 2014-08-06 苏州偲聚生物材料有限公司 Polypeptide, detection device and detection kit containing the polypeptide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003725A1 (en) * 1984-02-20 1985-08-29 Biogen N.V. Dna sequences, recombinant dna and processes for producing antigens of plasmodium falciparum
WO1987000533A1 (en) * 1985-07-12 1987-01-29 New York University Immunogenic peptide antigen corresponding to plasmodium vivax circumsporozoite protein
EP0223711A2 (en) * 1985-11-19 1987-05-27 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Protective synthetic peptide against malaria and encoding gene
WO1988007546A1 (en) * 1987-03-30 1988-10-06 New York University Immunogenic polypeptide and method for purifying it

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878836A (en) * 1973-08-23 1975-04-22 Products Int Marketing Disposable speculum for tympanic thermometer
DE2953811A1 (en) * 1979-09-12 1982-02-11 M Jacobs HAND HERO DIGITAL TEMPERATURE MEASURING INSTRUMENT
US4358535A (en) * 1980-12-08 1982-11-09 Board Of Regents Of The University Of Washington Specific DNA probes in diagnostic microbiology
EP0135108A3 (en) * 1983-08-12 1988-07-13 Rockefeller University Nucleotide hybridization assay for protozoan parasites
US4602642A (en) * 1984-10-23 1986-07-29 Intelligent Medical Systems, Inc. Method and apparatus for measuring internal body temperature utilizing infrared emissions
US4957869A (en) * 1985-07-12 1990-09-18 New York University Immunogenic peptide corresponding to P. vivax CS protein
US5101017A (en) * 1987-04-06 1992-03-31 New York Blood Center, Inc. Antibodies for providing protection against P. vivax malaria infection
EP0309746A1 (en) * 1987-09-08 1989-04-05 F. Hoffmann-La Roche Ag Antimalaria vaccines
US5112749A (en) * 1987-10-02 1992-05-12 Praxis Biologics, Inc. Vaccines for the malaria circumsporozoite protein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003725A1 (en) * 1984-02-20 1985-08-29 Biogen N.V. Dna sequences, recombinant dna and processes for producing antigens of plasmodium falciparum
WO1987000533A1 (en) * 1985-07-12 1987-01-29 New York University Immunogenic peptide antigen corresponding to plasmodium vivax circumsporozoite protein
EP0223711A2 (en) * 1985-11-19 1987-05-27 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Protective synthetic peptide against malaria and encoding gene
WO1988007546A1 (en) * 1987-03-30 1988-10-06 New York University Immunogenic polypeptide and method for purifying it

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVID E. ARNOT et al. "Circumsporozoite Protein of Plasmodium vivax", 1985, Science Vol., see page 815. *
RONALD ROSENBERG et al. "Circumsporozoite Protein Heterogeneity in the Human......", 1989, Reports, see page 973. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694612A1 (en) * 1993-03-12 1996-01-31 Wakunaga Pharmaceutical Co., Ltd. Detection of malaria
EP0694612A4 (en) * 1993-03-12 1997-07-30 Wakunaga Pharma Co Ltd Detection of malaria
US5792609A (en) * 1993-03-12 1998-08-11 Wakunaga Pharmaceutical Co., Ltd. Detection of malaria
KR20020028385A (en) * 2000-10-09 2002-04-17 박제철 Detect method of plasmodium vivax infected in mosquito by gene markers

Also Published As

Publication number Publication date
BR9007895A (en) 1992-09-29
ZA909109B (en) 1991-08-28
US5250411A (en) 1993-10-05
JO1656B1 (en) 1991-11-27
SE8904100D0 (en) 1989-12-05
JPH05502582A (en) 1993-05-13
IL96431A0 (en) 1991-08-16
AU6955691A (en) 1991-06-26
EP0504253A1 (en) 1992-09-23
PT96081A (en) 1991-09-30
CN1054618A (en) 1991-09-18

Similar Documents

Publication Publication Date Title
Mathis et al. PCR and in vitro cultivation for detection of Leishmania spp. in diagnostic samples from humans and dogs
Amann Fluorescently labelled, rRNA‐targeted oligonucleotide probes in the study of microbial ecology
Majiwa et al. A repetitive deoxyribonucleic acid sequence distinguishes Trypanosoma simiae from T. congolense
JP2010511384A (en) Nucleic acid probes and methods for detecting Plasmodium parasites
Hill et al. DNA-based methods for the identification of insect vectors
US5250411A (en) Nucleic acid probes specific for Plasmodium vivax and methods of using the same
AU642140B2 (en) DNA hybridization probes for identification of mycobacteria
US5792609A (en) Detection of malaria
Shah et al. Diversity of host species and strains of Pneumocystis carinii is based on rRNA sequences
EP0495075A1 (en) A novel procedure for the detection of pathogens using dna probes
GB2228008A (en) DNA probes for Plasmodium vivax
US6110665A (en) Sarcocystis neuronadiagnostic primer and its use in methods of equine protozoal myeloencephalitis diagnosis
US6855522B2 (en) Species-specific PCR assay for detection of Leishmania donovani in clinical samples of kala-azar and post kala-azar dermal leishmaniasis
Smits et al. PCR amplification reactions in parasitology
AU5671190A (en) Nucleic acid based diagnostic system and process for the detection of (pneumocystis carinii) in blood products
Harris et al. Detection of Trypanosoma brucei spp. in human blood by a nonradioactive branched DNA-based technique
EP1877584B1 (en) Feline hemoplasma isolate
EP0850249B1 (en) Novel detection methods for cryptosporidium
WO1997036007A1 (en) Specific dna probes for the identification of the taenia solium and taenia saginata species
WO1995001453A1 (en) A heteroduplex mobility assay for the analysis of nucleic acid sequence diversity
WO1999060009A1 (en) Improved methods for detecting a target nucleic acid fragment
Ndiritu et al. Use of genomic DNA probes for the diagnosis of acute sarcocystosis in experimentally infected cattle
JP3828022B2 (en) Plasmodium vivax and its diagnosis
EP0420635A2 (en) Diagnostic reagents for leishmaniasis
GB2242904A (en) Detection of pathogens using DNA probes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH DE DK ES FI GB HU JP KP KR LK LU MC MG MW NL NO RO SD SE SU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB GR IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1991900983

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1991900983

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1991900983

Country of ref document: EP