WO1991007261A1 - Drying method for wood or the like - Google Patents

Drying method for wood or the like Download PDF

Info

Publication number
WO1991007261A1
WO1991007261A1 PCT/JP1990/001473 JP9001473W WO9107261A1 WO 1991007261 A1 WO1991007261 A1 WO 1991007261A1 JP 9001473 W JP9001473 W JP 9001473W WO 9107261 A1 WO9107261 A1 WO 9107261A1
Authority
WO
WIPO (PCT)
Prior art keywords
wood
drying
cracks
signal
temperature
Prior art date
Application number
PCT/JP1990/001473
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Takahashi
Kinji Tamakawa
Kiyoshi Sato
Isao Suzuki
Satoshi Yunome
Katsumi Honma
Yasuo Suzuki
Original Assignee
Miyagiken
Kyogyokumiai Sendai Fanichia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyagiken, Kyogyokumiai Sendai Fanichia filed Critical Miyagiken
Publication of WO1991007261A1 publication Critical patent/WO1991007261A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/34Organic impregnating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/001Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/04Combined bleaching or impregnating and drying of wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply

Definitions

  • the present invention relates to a method for heat-drying various plant-based processed materials (hereinafter, referred to as “wood and the like”) such as logs, processed wood, and bamboo so as not to cause cracking.
  • wood and the like plant-based processed materials
  • Wood is usually dried to prevent it from becoming messed up when used, and to improve workability, paintability and adhesion.
  • This drying method can be roughly classified into two types: natural drying and artificial drying.
  • natural drying In recent years, there has been a demand for a large amount of drying treatment in a short period of time, uniform drying to a low moisture content, which is difficult to obtain with natural drying, etc. In most cases, the artificial drying method is adopted.
  • the present inventors have conducted research with the hints as a hint to prevent cracks in the drying treatment of wood and the like, and have completed the present invention.
  • the causes of cracks in wood, etc. when heat-treated wood, etc. can be broadly attributed to water movement during the heating and drying process and tissue shrinkage.
  • the water contained in wood usually includes free water and bound water, but during drying, only free water is first eliminated and removed from the surface layer, and then the bound water is removed as drying progresses become.
  • the movement of free water in the former is dominated by capillary action, and the movement of bound water in the latter is by diffusion.
  • the present inventors use a known technique (for example, Japanese Patent Publication No. 63-7311) to predict the dry cracking of wood using AE detection technology and control the temperature and humidity around the wood to prevent cracking.
  • a known technique for example, Japanese Patent Publication No. 63-7311
  • the known literature only describes that the initial cracks in the drying treatment are predicted based on the AE accumulation number and the AE occurrence rate. In other words, even in the case of the drying treatment, it is a prediction of the initial crack of the drying, and the crack in the later stage of the drying treatment is not recalled.
  • the method of predicting initial cracking is only to know the cumulative number of AEs and the AE occurrence rate immediately before the cracking of the wood, and when the AE occurrence rate reaches the limit value, actuate the control equipment to relax the drying conditions and prevent cracking. It is.
  • the correlation between the cumulative number of AEs and the It can be used to some extent in early drying cracks, but it does not necessarily show a correlation in the middle and late drying stages. It turns out that there are defects such as,.
  • the inventor observed and analyzed the occurrence of AE signals and cracks in the wood, and noticed that cracks in the wood had a close correlation with the amplitude of the AE signal. Attention should be paid to discriminate and detect effective signals directly linked to cracking.If even one AE signal has a large amplitude, it is considered a danger signal for cracking, and the cumulative number of AE events and the AE occurrence rate with a large amplitude are online.
  • Wood impregnation technology is widely used, but there is no known example of using an impregnating agent in advance to prevent cracking during drying or heat treatment.
  • the inventor has reported that when a specific organic solvent is impregnated into wood or the like from among various impregnating agents and then heat-treated, a chemical reaction occurs inside and plasticization occurs internally, giving the material heat fluidity.
  • the inventor of the present invention has obtained the knowledge and thought that if this knowledge is applied, it may be possible to prevent cracking due to heat fluidization inside wood during heat treatment. That is, by impregnating with a specific organic solvent and performing a hydrothermal chemical reaction, the interior of the wood is plasticized. With this, it is intended to prevent cracking even if artificial drying is performed under severe heat treatment conditions. Disclosure of the invention
  • the invention of the present application is a technique for preventing cracking during the drying process as described above.
  • the technical problem is solved by combining the following technical means.
  • the inventor of the present invention has studied cracks caused by heat drying of wood and the like, and has found that the cracks are caused by moisture movement, tissue shrinkage, and decomposition of cellulose by high heat. Also, dry cracking of wood is one of the forms of solid destruction, and it is thought that acoustic emission (AE) should occur, and this is detected and its frequency and signal are detected. We thought that if we could know the strength, we could process this information and predict cracks in advance. As a result of the research, we noticed that wood cracking has a close correlation with the amplitude of the AE signal as well as the amplitude of the AE signal. Detected by discrimination.
  • AE acoustic emission
  • the organic impregnating agent is impregnated in advance, and if this is put into high-temperature water of 100 ° C or less, the wood part becomes thermoplastic (thermofluidity) due to hydrothermal chemical reaction (hydrolysis) No chemical cracking occurs even in the heat-drying process because the material is deformed corresponding to the difference in tensile stress and compressive stress between the surface layer and the inner layer caused by heating. It was found that the wood part chemically changed into a state of thermoplasticity (thermofluidity) by the impregnation with the organic impregnating agent.
  • the first invention for which a patent is sought is, first, various kinds of processed plant materials such as logs, processed wood, bamboo, etc. (wood, etc.), oxyethers such as polyethylene glycol and methylcellulose sorb, and polyvalent. It is impregnated with an organic impregnating agent such as alcohols, phenols, natural rubber or synthetic rubber, or a combination of these, and undergoes a hydrothermal chemical reaction (hydrolysis).
  • an organic impregnating agent such as alcohols, phenols, natural rubber or synthetic rubber, or a combination of these, and undergoes a hydrothermal chemical reaction (hydrolysis).
  • the processing range of the present invention is wood and the like, which includes all kinds of plant-processed materials such as logs, processed wood, and bamboo regardless of the type of plant.
  • organic impregnants to be impregnated include oxyethers such as polyethylene glycol and methyl sorb, polyhydric alcohols such as 1,4-butanediol, phenols such as phenol, natural rubber and synthetic rubber. Any material can be used as long as it relates to rubber or a combination thereof.
  • wood is a 40-50% amount of cellulose, 15- Consists of 25% hemicellulose, 20-30% lignin and other minor components.
  • a bundle of cellulosic molecular chains passes through a sponge-like network, and the components are combined in such a way that the gap between the two is filled with hemicellulose. Have been done.
  • the bundle of the aggregate of the cellulose molecular chains is regularly arranged to form crystals. This is a linear macromolecule with a regular configuration, which has a large number of hydroxyl groups (1OH), so that regular hydrogen bonds between hydroxyl groups are likely to occur between adjacent molecules. Moreover, this accounts for 70% of the total cellulose.
  • This cellulose has a high melting temperature of the crystals, and even if heated, it undergoes thermal decomposition before flowing, so that it does not eventually flow. It is considered that such properties of wood and the like facilitate cracking due to water movement, tissue shrinkage, and thermal decomposition of cellulose.
  • chemical modification is performed to replace the hydroxyl group (-1 OH) of cellulose with an acetyl group (-1 C 0 CH 3 ), nitro group, benzyl group, lauroyl group, etc.
  • internal plasticization occurs in wood, resulting in thermal fluidization. Gender.
  • cellulose would be converted to a derivative, and the degree of hydrogen bonding would be reduced, resulting in a material with thermal fluidity in timber.
  • shrinkage cracks and moisture transfer cracks do not occur.
  • thermo-fluid thermo-fluid
  • the raw wood is impregnated with a specific organic impregnating agent, and this is placed in high-temperature water of 100 eC or less to cause a hydrothermal chemical reaction (hydrolysis).
  • hydrolysis hydrothermal chemical reaction
  • the state where the wood part has thermo-fluidity (thermoplasticity) It was in a state.
  • an AE sensor is attached to the impregnated wood, etc., and the AE generated by the wood, etc. accompanying the change in the wood structure is detected as a signal, and the signal is processed to predict cracking of the wood, etc. while cracking wood or the like is so controlled atmosphere so as not to cause the base Hazuki temperature and humidity prediction information as the operation factors performed 1 0 0 e C following heat treatment at atmospheric pressure makes the drying process.
  • the mounting position of the wave guide was at the tip of the test piece.
  • the AE generated by the change in the structure of the wood is detected as an electrical signal, and the information is analyzed to predict cracks in the wood.
  • the signal sent from a sensor attached to wood, etc. is amplified by a preamplifier, and the signal below the set value is cut by a cracking monitor.After amplification, an AE event with a specific amplitude is detected, and this specific amplitude AE event data Is recorded (Fig. 14). Fig. 15 shows this as the cumulative AE energy. If a large number of cases are collected through such experiments and statistically processed, a standard AE pattern in the wood drying process as shown in Fig. 3 can be obtained.
  • the first stage (I) is considered to be a stage in which steam penetrates to the center of wood and the like, and the temperature and moisture content are made uniform, and drying proceeds gradually.
  • the water content in the first and second stages is 25%, which corresponds to the fiber saturation point (about 30 to 25%). Above the fiber saturation point, there is liquid water in the wood. Care must be taken at this stage as cracks can easily occur.
  • the second stage ( ⁇ ) is considered to be the stage in which the absorbed water force, in the form of bound water in the fiber, breaks the bond and begins to evaporate. Therefore, the energy required to lower the water content is higher than in the first stage. At this stage, the tensile strength of the timber will increase sharply and it will be possible to end the harsh drying conditions from the first stage. Therefore, stricter drying conditions can be provided than in the first stage. In other words, in the second stage, severe drying conditions are applied, thereby shortening the drying time.
  • the boundary between the second and third stages corresponds to a water content of about 15%. This water content of about 15% is considered to correspond to the equilibrium water content, and corresponds to the air-dry state.
  • the third stage there are many small-amplitude AEs, so it is considered that the hydration s inside the cells and the detachment from the cells decrease.
  • this small amplitude AE has nothing to do with dry cracking, drying conditions can be set regardless of the number of AE events. Therefore, in the third stage, it is possible to set more strict drying conditions than in the second stage, and here it is possible to further shorten the drying time. In this way, when the drying state progresses and the water content falls below 10%, the AE with small amplitude also decreases.
  • the method of predicting “cracking” in the drying process is to identify which drying stage is currently in progress while monitoring the AE occurrence rate and the cumulative number of AE events of a specific amplitude online. At the same time, it predicts cracking during the treatment process by comparing it with the standard AE occurrence situation (the AE occurrence rate and the cumulative number of AE events) determined empirically and the crack warning standard value. You.
  • the temperature condition and the humidity condition were manipulated based on the optimal control pattern at that stage empirically determined based on the crack prediction information to relax the atmospheric conditions so that cracks did not occur in wood and the like. Control and strict temperature and humidity conditions to avoid loss of processing efficiency. In this way, cracks are predicted by analysis of the AE signal, and drying is performed while controlling the atmosphere using temperature and humidity as operating factors, until the moisture content of wood and the like becomes 10% or less.
  • impregnation processing is performed, and AE is predicted based on a signal based on a signal to detect cracks in wood, and the atmosphere is controlled based on the prediction information so that cracks do not occur in wood and the like using temperature and humidity as operating factors. Drying is performed while drying.
  • FIG. 1 is a flowchart of the drying control when the drying process is performed while controlling the atmosphere
  • FIG. 2 is a standard AE when the temperature and the humidity are controlled in the drying process. This is a schematic diagram of the occurrence pattern.
  • the second invention for which a patent is sought is that wood or the like, oxyethers such as polyethylene glycol / methyl sorbate, polyhydric alcohols, phenols, natural rubber or synthetic rubber, or an organic compound obtained by combining these.
  • oxyethers such as polyethylene glycol / methyl sorbate, polyhydric alcohols, phenols, natural rubber or synthetic rubber, or an organic compound obtained by combining these.
  • the raw wood is impregnated with a specific organic impregnating agent, thereby converting cellulose into a derivative and reducing the degree of hydrogen bonding. It will be fluid. As described above, when the cellulose crystals are caused to flow, even if they are heated and dried under quite severe conditions, shrinkage cracks and moisture transfer cracks do not occur. Based on this principle, it is a method for drying wood and other materials that does not crack even when heated and dried. As a specific method, wood is made to have a thermofluidity (thermoplasticity) by a hydrothermal chemical reaction.
  • the heating and drying treatment method is not particularly limited, and the heating and drying cracks do not occur in most cases under the conventionally performed heating and drying conditions.
  • the heating and drying cracks do not occur in most cases under the conventionally performed heating and drying conditions.
  • the AE signal with the above amplitude is regarded as a danger signal for cracking, and furthermore, while monitoring the cumulative number of AE events and the AE occurrence rate online, it is always possible to identify whether the dry state is in the initial, middle or late stages. While the pre-set cumulative AE event for each identified processing step The number of AEs and the reference value of the AE occurrence rate are compared with the reference value of the crack warning, and the crack is predicted, and the temperature condition is determined based on the optimal control pattern at that stage empirically determined based on the prediction information.
  • This is a method for drying wood and the like, characterized in that the atmosphere is controlled so that cracks do not occur in the wood and the like by manipulating the temperature and humidity conditions.
  • an AE signal is obtained, cracks are predicted by analyzing the AE signals, and the temperature and humidity are used as operating factors based on the crack prediction information, and the drying process is performed while controlling the atmosphere. In order to minimize dry cracking.
  • the working steps characteristic of the wood drying method of the present invention are as follows.
  • An A / E sensor is attached to wood, etc., and the detected A / E signal is focused on its amplitude, and only specific signals that are effective for crack prediction are discriminated and extracted.
  • the specific method of attaching the AE sensor and the method of recording the AE signal are the same as those described in the first invention.
  • the cumulative number of AE events and the AE occurrence rate are processed and monitored to recognize the progress of drying in real time, and the dry state is in the early, middle, and late stages. Identify the stage of the
  • Figure 3 Predict and judge cracking by comparing the preset number of accumulated AE events and the standard value of the AE occurrence rate with the standard value of the crack warning level at each processing stage identified from the real-time AE occurrence information.
  • Figure 3 shows the standardized temperature and moisture content during wood drying treatment, the cumulative AE energy at that time, and the model pattern of the AE generation rate.
  • Temperature and humidity conditions are manipulated based on crack prediction information and operating conditions based on the optimal control pattern determined at that stage. Atmosphere is controlled so that cracks do not occur.
  • FIG. 1 is a flowchart of the drying control when the drying process is performed while controlling the atmosphere
  • FIG. 2 is a standard AE when the temperature and the humidity are controlled in the drying process. It is a schematic drawing of the occurrence pattern.
  • Crack detection was performed with an AE measuring device, and the measurement system used in this experiment captured signs of cracking with the total number of AE events of 0.5 V or more, and dried so that this total number did not exceed a certain value.
  • Control conditions Drying conditions are basically controlled by temperature and relative humidity.
  • the first, second and third steps are distinguished by the rate of increase of the cumulative AE energy.
  • the specific control method is as shown in the flow chart of the drying control shown in FIG. Set the steam amount that is considered to be almost appropriate, and start drying at the expected temperature.
  • Nc for each Z
  • ⁇ ⁇ ⁇ T u2 and control is performed as in the first stage. Furthermore, if it can be determined from the third stage and the increase rate of the accumulated AE energy ⁇ , control is performed using the temperature control parameters ATu3 and Td3. It is expected that ⁇ ⁇ 2 ⁇ T u3, and the drying conditions will be more severe than in the second stage.
  • the temperature control parameters ⁇ T ul, ⁇ T d1, ⁇ T u2, ⁇ T d2, ⁇ ⁇ u3, and ⁇ ⁇ d3 need to be determined for each tree species.
  • FIG. 1 is a flow chart of a drying control in the case where the drying process is performed while controlling the atmosphere using the AE according to the first and third inventions of the present application
  • FIG. 2 is a diagram showing the temperature and humidity control in the drying process.
  • Fig. 3 is a schematic diagram of AE generation
  • Fig. 3 is an AE generation model pattern during wood heating and drying
  • Fig. 4 is a graph recording the temperature change of the high temperature heating in Example 1
  • Fig. 5 is
  • Fig. 6 is a graph showing the number of AE events (occurrence rate) for each amplitude class of untreated wood in Example 1.
  • Fig. 6 shows the number of AE events (occurrence rate) for each amplitude class of impregnated wood in Example 1.
  • Fig. 3 is a schematic diagram of AE generation
  • Fig. 3 is an AE generation model pattern during wood heating and drying
  • Fig. 4 is a graph recording the temperature change of the high temperature heating in Example 1
  • Fig. 5 is Fig
  • Fig. 7 is a graph that records the AE generation rate of the untreated material of Example 1 with an amplitude of 1 V or more
  • Fig. 8 is the graph that records the AE of the impregnated material of Example 1 with an amplitude of 1 V or more
  • Fig. 9 shows the cumulative AE energy of the untreated material of Example 1 with an amplitude of 1 V or more
  • Fig. 10 is a graph in which the accumulated AE energy of the impregnated material of Example 1 with an amplitude of 1 V or more was recorded
  • Fig. 11 is an AE generation during the high-temperature heat treatment of Example 1.
  • Fig. 12 is a graph showing the crack limit control criterion based on the model pattern and the cumulative AE.
  • FIG. 14 is a graph that records the number of AE events (occurrence rate) for each amplitude class of the treated material.
  • Fig. 14 is a graph that records the temperature of the drying process and the AE occurrence rate with an amplitude of 1 V or more in Example 2.
  • FIG. 15 is a graph in which the accumulated AE energy with an amplitude of 1 V or more in the drying treatment in Example 2 is recorded.
  • FIG. 16 shows the change in the water content and the change in weight in the drying treatment in Example 2.
  • An AE sensor was attached to the camera, and it was connected to a preamplifier, cracking monitor, and personal computer located nearby.
  • air is degassed from the heat treatment chamber and nitrogen gas is injected from the non-flammable gas injection part to make a 97% non-flammable gas atmosphere.
  • steam is injected from the steam injection section to adjust the internal humidity.
  • FIG 4 is raised to stretch 1 5 0 e C, heated at a high temperature of 2 2 hours Hopo 1 5 0 ⁇ 1 6 0 ° C , about lowered then the temperature to room temperature in about 2 hours Processing was completed in 24 hours. During this time, we observed the occurrence of AE.
  • Fig. 5 shows the AE event status for each amplitude class of unimpregnated treated material at that time.
  • Fig. 6 is a record showing the AE event occurrence status for each amplitude of the impregnated material. Since it is not possible to identify at which point the cracks occurred in these figures, an AE with an amplitude of 1 V or more was specified and recorded with an amplification factor of 80 dB within one minute. The situation is shown in Fig. 7, and the occurrence of AE events in the impregnated material is shown in Fig. 8. The AE signal related to cracking can be recognized quite clearly.
  • both the untreated material and the impregnated material generate a large amount of AE in the early stage when the temperature in the heat treatment chamber rises, and almost no AE is generated in the intermediate stage, and the temperature decreases.
  • AE events tend to occur again.
  • the state of occurrence is quite different between the untreated material and the impregnated material, and the impregnated material is in a state where almost no AE is generated.
  • the untreated material cracked at the early stage of heating
  • the force impregnated material clearly shows that it did not crack. This can be more clearly recognized by comparing Fig. 9 (untreated material) and Fig. 10 (impregnated material) showing the accumulated AE energy.
  • Fig. 11 shows the control model. That is, AE is detected as an electrical signal, and this data is recorded and analyzed by a personal computer, and information processing is performed. Cracks in wood and the like are predicted by comparing them with reference values that are set empirically in advance. For example, if an AE with an amplitude of 1 V or more was recorded within one minute with an amplification factor of 80 dB, and the cumulative number of events exceeded the reference value or the amplitude exceeded the reference value, it was said that a crack warning area was reached.
  • the steam injection unit is activated to inject a large amount of steam into the heat treatment room in a short time, and the humidity in the heat treatment room is adjusted, and the operation of the heating unit is controlled to control the inside of the heat treatment room (heat treatment room).
  • the temperature is adjusted to control the atmosphere so that no AE is generated from wood, etc., or the AE signal is maintained at a level below a predetermined standard, and the heating unit is operated while controlling such atmosphere
  • the temperature in the heat treatment room was gradually increased, and high-temperature heating and drying without cracks in wood and the like was realized.
  • FIG. 12 A piece of rice hiba wood, 493 x 101 x 3 Omm, was raised to 55 ° C at a stretch, heated and dried at 55 to 65 ° C for 105 hours, and then heated. The temperature was lowered to room temperature to complete the process (Fig. 12). During this time, we observed the occurrence of AE.
  • Fig. 13 shows the AE event status for each amplitude class of untreated material at that time. As a result, it was dried from a water content of 45.5% to 13.2% (Fig. 16). No cracks were observed during this drying treatment.
  • the drying treatment conditions in the present embodiment become stricter in the latter half of drying.
  • the number of AE events shows a sharp increase after 100 hours (Figs. 14 and 15). However, when classified by level, they are as shown in Fig. 13, and when an AE of 0.5 V or more is applied, they are reduced as shown in Fig. 14. Therefore, it is considered that the AE signal of 0.5 V or less does not contribute to the occurrence of cracks. From the following graphs, it can be seen that the drying conditions may be stricter in the latter half of drying, but it is not clear from which point the latter half is indicated.
  • drying can be divided into three stages in terms of the accumulated AE energy.
  • the gradient of the cumulative AE energy clearly changes in about 45 hours and about 95 hours, so the first stage is up to 45 hours and from 45 to 95 hours. Can be classified as the second stage, and after 95 hours as the third stage.
  • the first invention of the present application is to impregnate wood or the like with a specific organic impregnating material, and to perform a hydrothermal chemical reaction (hydrolysis), and then heat and dry the impregnated wood or the like.
  • a hydrothermal chemical reaction hydrolysis
  • wood and other materials are detected as acoustic emission generated by the change in the structure of the wood as a signal to predict cracking of the wood, etc., and cracks occur in the wood and the like using temperature and humidity as operating factors.
  • This is a method for drying wood and the like, in which the drying process is performed while controlling the atmosphere so that there is no drying.
  • wood By impregnating the organic impregnant, wood can be made thermoplastic, and during heat drying, AE is used as a signal and temperature and humidity are used as operating factors to control the atmosphere. By doing so, cracking during processing can be almost completely prevented even when processing raw wood with a high moisture content, and efficient drying can be performed with the processing time reduced as much as possible. Became. As a result, we were able to overcome the conflicting technical demands of preventing the yield from lowering in the conventional drying process and short-time drying process.
  • the second invention of the present application is a wood drying method in which wood or the like is impregnated with a specific organic impregnating material, subjected to a hydrothermal chemical reaction (hydrolysis), and then heated and dried.
  • the heating and drying treatment here is not particularly limited as long as it is a conventional general heating and drying treatment method. It is not always necessary to detect the AE signal and grasp the dry state in real time.
  • Wood is plasticized by impregnation, so that even if the wood layer shrinks or is pulled by heating, it deforms in response to the stress and prevents cracking. For this reason, cracking does not occur in most cases if the conventional general heat drying treatment method is adopted. In other words, although the crack prevention rate is not as reliable as the first invention, the cracks in the drying treatment can be prevented with much higher probability than the conventional drying method.
  • the third invention of the present application does not perform impregnation processing, but performs heat drying processing while detecting and analyzing AE as a signal in the drying step, predicting cracks, controlling the atmosphere, and preventing cracks. This has made it possible to industrially and efficiently mass-produce high-yield, crack-free, high-quality dry wood with good yield.

Abstract

This invention relates to a drying method for wood and the like which comprises conducting impregnation treatment by allowing a plant manufactured lumber to be impregnated with an organic impregnant and subjected to a hydrothermal reaction (hydrolysis), fitting an acoustic emission sensor to the lumber or the like thus subjected to the impregnation treatment, detecting an acoustic emission which the lumber or the like generates with the change of their wood structure as a signal, forecasting cracks in the lumber or the like by data-processing the signal and carrying out heat treatment while controlling the atmosphere using temperature and humidity as operation factors on the basis of the forecast data so that no cracks occur in the lumber or the like. The present invention relates also to a drying method of lumber or the like which is characterized in that heating and drying are carried out after the lumber or the like is impregnation treated with an organic impregnant.

Description

曰月 糸田 »  Saying Moon Itoda »
木材等の乾燥法  Drying method for wood etc.
技術分野  Technical field
本発明は、 丸太、 加工木材、 竹材等の各種の植物性加工材 (以下 「木材等」 という) について、 割れを起こさないように加熱乾燥処 理する方法に関する。 背景技術  The present invention relates to a method for heat-drying various plant-based processed materials (hereinafter, referred to as “wood and the like”) such as logs, processed wood, and bamboo so as not to cause cracking. Background art
木材は、 これを利用する場合の狂いを防ぎ、 加工性、 塗装性、 接 着性を向上させるため、 乾燥処理をするのが普通である。 この乾燥 法には、 大別すると、 天然乾燥と人工乾燥の二種類がある。 近年は 、 短期間に大量の乾燥処理を行なうこと、 天然乾燥では得るのが困 難な低い含水率にまで均一に乾燥できるようにすること、 などとい つた要請があるため、 加熱処理による強制的な人工乾燥方式を採つ ているのがほとんどである。  Wood is usually dried to prevent it from becoming messed up when used, and to improve workability, paintability and adhesion. This drying method can be roughly classified into two types: natural drying and artificial drying. In recent years, there has been a demand for a large amount of drying treatment in a short period of time, uniform drying to a low moisture content, which is difficult to obtain with natural drying, etc. In most cases, the artificial drying method is adopted.
このような、 木材乾燥処理において、 最も問題になるのは、 割れ を起こさないようにすることである。 とくに、 強制的に加熱乾燥処 理する、 いわゆる人工乾燥方式の場合には、 乾燥条件が厳しいだけ 割れが起こ りやすい。 割れが起こってしまうと、 極端に品質が低下 したり、 商品価値が失なわれてしまうことになるし、 割れないよう に慎重に長い日数をかけていたのでは、 処理能率が悪すぎて、 なか なか業としては成り立たない。  The most important issue in such a wood drying process is to avoid cracking. In particular, in the case of the so-called artificial drying method in which the heat drying treatment is forcibly performed, cracks are likely to occur as the drying conditions are severe. If cracking occurs, the quality will be extremely deteriorated or the product value will be lost, and if you take long days carefully so as not to crack, the processing efficiency will be too bad, It is not a feasible business.
このため、 木材乾燥処理において、 割れを防止しつつ、 乾燥時間 を短縮する技術については、 各方面で研究されているが、 決め手に なる方法はいまだ開発されていない。  For this reason, techniques for shortening the drying time while preventing cracking in wood drying treatment have been studied in various fields, but no definitive method has yet been developed.
そこで、 熱処理中における木材等の 『割れ』 について、 その原因 を探究し、 これを防止する方法を研究しているうち、 乾燥による割 れは、 固体破壊の一種であるから、 アコースティ ックェミ ッショ ン (以下、 A Eという。 ) が出ているはずであると考え、 この A Eを 観測することにより 『割れ』 を検知したり、 乾燥による 『割れ』 を 予知する技術について研究を始めた。 同時に木材の 『割れ』 と A E との関係についての技術文献を調査したところ、 「木材の乾燥割れ 予知および防止装置」 (特公昭 6 3— 7 3 1 7号) という公知技術 のあることに気が付いた。 Therefore, while investigating the causes of cracks in wood and other materials during heat treatment and studying ways to prevent them, cracking due to drying is a type of solid destruction. (Hereinafter, referred to as AE). We have begun research on techniques for detecting cracks by observing them and predicting cracks due to drying. At the same time, we investigated the technical literature on the relationship between cracking and the AE of wood, and noticed that there was a well-known technology called “a device for predicting and preventing dry cracking of wood” (Japanese Patent Publication No. 63-73117). Was.
また、 最近木材を簡単な化学反応で、 プラスチックと同様な可塑 性をもつた材料に変えることができるとの知見を得た。  Also, I recently learned that wood can be converted into a material with the same plasticity as plastic by a simple chemical reaction.
本発明者らは、 これらをヒントとして木材等の乾燥処理における 割れ防止を目的に研究を行ない、 本願発明を完成したものである。 木材等を熱処理すると木材等に割れが生ずる原因は、 大きく分け て加熱乾燥過程での水分移動と、 組織の収縮とにあると思われる。 先ず最初に、 乾燥過程での水分移動と組織の収縮に伴なう木材等 の割れについて、 次のようなことが解った。 木材中に含まれる水分 には普通自由水と結合水があるが、 乾燥中には、 表面層ではまず自 由水のみが消失除去され、 ついで乾燥がすすむにつれて結合水も除 去されてく るようになる。 前者の自由水の移動は毛管現象が支配的 で、 後者の結合水の移動は拡散によるものである。 このようにして 木材の表面層の自由水および結合水が移動して乾燥するが、 内層は なお高い含水率を有する状態になる。 すると乾燥部分は、 収縮しよ う とし、 含水部分は収縮に抵抗する。 この結果、 乾燥前半では表面 層は引張応力、 内層は圧縮応力が作用する。 さらに、 乾燥が進むに したがってこれらの応力は大となり、 また収縮も内部に広がってく るが、 表面層は常に大きな引っ張り応力を受けているため、 正規の 収縮をしないまま永久変形が生じる。 その後、 内部が乾燥するにつ れて、 表面層は正規の収縮を起こそうとする結果、 正負の応力は逆 転し、 後半では表層は圧縮応力、 内層は引張応力をうけることにな る。 このため、 引張応力が木質部の引張強さ以上となると、 乾燥前 半では木口割れ或は表面繊維に沿った表面割れを起こし、 乾燥後半 では内部割れが発生する。 その他、 乾燥にともなって表面硬化、 落 ち込みといわれる欠陥も生ずるが、 これらは、 いずれも木材内部の 含水率分布の勾配の大小に直接関連するものであることも解った。 加熱乾燥においては、 上記のような各種の割れ等の欠陥が発生しな いで、 しかもできるだけ木材内部の含水率分布の勾配を大にして乾 燥時間を短縮することが要請されるが、 このためには木材の内部の 時々刻々の含水率分布を把握することが重要であり、 この乾燥中の 木材の含水率に応じて温度や湿度を調整しながら乾燥する必要があ る。 しかし、 木材組織が複雑であるうえ、 熱的諸性質も湿度、 含水 率に影響を受けるほか、 木材の樹種によっても異なるので、 理論的 に木材の内部の時々刻々の含水率分布を把握するこ とは困難であ る。 その他、 乾燥にともなって発生する割れの発生には材質の機械 的強度や厚さも関与するので、 異方性の大きい複雑な木材組織では いかなる条件のもとで欠陥が発生するかを解明するのは極めて難し い。 The present inventors have conducted research with the hints as a hint to prevent cracks in the drying treatment of wood and the like, and have completed the present invention. The causes of cracks in wood, etc. when heat-treated wood, etc., can be broadly attributed to water movement during the heating and drying process and tissue shrinkage. First, the following facts were found regarding cracking of wood and other materials due to moisture movement and tissue shrinkage during the drying process. The water contained in wood usually includes free water and bound water, but during drying, only free water is first eliminated and removed from the surface layer, and then the bound water is removed as drying progresses become. The movement of free water in the former is dominated by capillary action, and the movement of bound water in the latter is by diffusion. In this way, the free and bound water of the surface layer of the wood migrates and dries, but the inner layer still has a high moisture content. The dry area then tries to shrink, and the wet areas resist shrinkage. As a result, in the first half of drying, tensile stress acts on the surface layer and compressive stress acts on the inner layer. Furthermore, as the drying proceeds, these stresses increase and the shrinkage also spreads inward, but the surface layer is constantly subjected to a large tensile stress, so that permanent deformation occurs without regular shrinkage. After that, as the inside dries, the surface layer tries to shrink normally, and the positive and negative stresses are reversed. In the latter half, the surface layer receives compressive stress and the inner layer receives tensile stress. For this reason, if the tensile stress exceeds the tensile strength of the wooden part, cracks in the mouth or surface cracks along the surface fibers occur in the first half of drying, and internal cracks occur in the second half of drying. In addition, surface hardening and drying Defects called creaking also occur, but it was also found that these were all directly related to the magnitude of the gradient of the water content distribution inside the wood. In heating and drying, it is required that the above-mentioned various cracks and other defects do not occur, and that the drying time be shortened by increasing the gradient of the water content distribution inside the wood as much as possible. For this purpose, it is important to grasp the distribution of moisture content in the wood from time to time, and it is necessary to dry the wood while adjusting the temperature and humidity according to the moisture content of the wood during drying. However, since the wood structure is complicated and the thermal properties are affected by humidity and moisture content, and also differ depending on the wood species, it is theoretically necessary to grasp the momentary water content distribution inside the wood. Is difficult. In addition, since the mechanical strength and thickness of the material are also involved in the occurrence of cracks caused by drying, it is necessary to clarify under what conditions defects occur in complex wood structures with large anisotropy. Is extremely difficult.
従って、 従来の乾燥処理においては乾燥途中で室内に入り、 目視 によつて割れを確認し、 室内の雰囲気を再調整するのが現状であ る。 しかし、 この方法は、 割れが発生する前に予知することはでき ないし、 内部に発生する割れを見つけることができない。  Therefore, in the conventional drying process, it is the current practice to enter the room during drying, check for cracks visually, and readjust the atmosphere in the room. However, this method cannot predict before cracks occur and cannot find cracks that occur inside.
そこで、 本発明者らは、 木材の乾燥割れの予知を A Eの検知技術 によって行ない、 木材の周囲の温度と湿度とを制御して割れを防止 するという公知技術 (特公昭 6 3— 7 3 1 7 ) に着目した。 しか し、 当該公知文献には、 乾燥処理における初期割れを A E累積数と A E発生率に基づき予知することが記載されているだけである。 つ ま り、 当該乾燥処理の場合でも、 乾燥の初期割れの予知であって、 乾燥処理後期の割れについては想起されていない。 また、 初期割れ の予知方法も木材の割れる直前の A E累積数と A E発生率を知り、 A E発生率が限界値に達したら制御機器を作動させて乾燥条件を緩 和させて割れを防ぐというだけである。  Therefore, the present inventors use a known technique (for example, Japanese Patent Publication No. 63-7311) to predict the dry cracking of wood using AE detection technology and control the temperature and humidity around the wood to prevent cracking. We focused on 7). However, the known literature only describes that the initial cracks in the drying treatment are predicted based on the AE accumulation number and the AE occurrence rate. In other words, even in the case of the drying treatment, it is a prediction of the initial crack of the drying, and the crack in the later stage of the drying treatment is not recalled. In addition, the method of predicting initial cracking is only to know the cumulative number of AEs and the AE occurrence rate immediately before the cracking of the wood, and when the AE occurrence rate reaches the limit value, actuate the control equipment to relax the drying conditions and prevent cracking. It is.
この従来技術は、 A E累積数や A E発生率と割れとの相関関係は 乾燥初期割れにはある程度通用するが、 乾燥中期、 乾燥後期には必 ずしも相関関係を示さないこと、 処理対象木材の個別状況によって は、 発生する A Eに雑音が多くなり判断を誤り易いこと、 などの欠 点があることが解った。 発明者は、 木材の割れと A E信号の発生状 況を観察し分析するうち、 木材の割れは当該 A E信号の振幅と密接 な相関関係を有していることに気が付き、 当該電気信号の振幅に注 目して、 割れに直接結び付く有効な信号を弁別して検知し、 一個の A E信号でも振幅が大きい場合は、 割れに対する危険信号と考え、 この振幅が大きい累積 A Eィベント数と A E発生率をオンライ ンで モニタリ ングしながら常に乾燥状態が初期、 中期、 後期のどの段階 にあるのかを識別しつつ、 識別された各処理段階におけるあらかじ め設定されている基準値と比較しながら総合的に判断して処理過程 中の割れを予知するようにせんとするものである。 そして、 このよ うにして得た予知情報に基づき温度と湿度とを操作して、 木材等に 割れが生じないように雰囲気を制御せんとするものである。 According to this conventional technology, the correlation between the cumulative number of AEs and the It can be used to some extent in early drying cracks, but it does not necessarily show a correlation in the middle and late drying stages. It turns out that there are defects such as,. The inventor observed and analyzed the occurrence of AE signals and cracks in the wood, and noticed that cracks in the wood had a close correlation with the amplitude of the AE signal. Attention should be paid to discriminate and detect effective signals directly linked to cracking.If even one AE signal has a large amplitude, it is considered a danger signal for cracking, and the cumulative number of AE events and the AE occurrence rate with a large amplitude are online. While monitoring with a computer, it is always possible to identify whether the dry state is in the initial, middle or late stages, and make a comprehensive judgment by comparing with the reference values set in advance in each of the identified processing stages. In order to predict cracks during the treatment process. Then, based on the prediction information obtained in this way, the temperature and humidity are manipulated to control the atmosphere so that cracks do not occur in wood and the like.
また、 木材への含浸技術は広く採用されているが、 乾燥や加熱処 理に際して割れを防止する目的のために、 事前に含浸剤を使用する 例は知られていない。 発明者は、 種々の含浸剤のなかから特定の有 機溶剤を木材等に含浸させたうえ熱処理すると、 内部で化学反応を 起こして内部可塑化が生じ、 材質に熱流動性が与えられるとの知見 を得、 この知見を応用すれば熱処理に際して木材内部の熱流動化が 割れを防止することができるのではないかと考え、 本願発明を開発 した。 すなわち、 特定の有機溶剤を含浸させ、 水熱化学反応させる 含浸処理をすることによって、 木材内部を可塑化させる。 これに よって、 厳しい熱処理条件による人工乾燥処理をおこなっても割れ ることがないようにせんとするものである。 発明の開示  Wood impregnation technology is widely used, but there is no known example of using an impregnating agent in advance to prevent cracking during drying or heat treatment. The inventor has reported that when a specific organic solvent is impregnated into wood or the like from among various impregnating agents and then heat-treated, a chemical reaction occurs inside and plasticization occurs internally, giving the material heat fluidity. The inventor of the present invention has obtained the knowledge and thought that if this knowledge is applied, it may be possible to prevent cracking due to heat fluidization inside wood during heat treatment. That is, by impregnating with a specific organic solvent and performing a hydrothermal chemical reaction, the interior of the wood is plasticized. With this, it is intended to prevent cracking even if artificial drying is performed under severe heat treatment conditions. Disclosure of the invention
本願発明は、 叙上のように乾燥処理中の割れを防止するという技 術課題を、 次の技術手段を組み合わせることにより解消するもので ある。 The invention of the present application is a technique for preventing cracking during the drying process as described above. The technical problem is solved by combining the following technical means.
発明者は、 木材等の加熱乾燥処理をした場合の割れについて研究 した結果、 水分移動と、 組織の収縮と、 高熱によるセルロースの分 解とによって発生するとの知見を得た。 また、 木材の乾燥割れは固 体の破壊形態の一つであ り 、 アコースティ ッ クェミ ッ シ ョ ン ( A E ) が発生されるはずであると考え、 これを検出してその周波 数と信号強度を知ることができれば、 これらの情報を処理して割れ を事前に予知できると考えた。 研究の結果、 木材の割れは A E信号 の発生率とともに、 振幅と密接な相関関係を有していることに気が 付き、 当該電気信号の振幅に注目して、 割れに直接結び付く有効な 信号を弁別して検知するようにした。 その結果、 一個の A E信号で も振幅が大きい場合は、 割れに対する危険信号と理解できるように なった。 しかも、 この割れ予知に有効な振幅の累積 A Eイベン ト数 と A E発生率をオンラインでモニタリ ングして乾燥状態が初期、 中 期、 後期のどの段階にあるのかを識別しつつ、 識別された各処理段 階における経験的にあらかじめ定められた基準値と比較しながら検 知した A E信号の意味を分析、 検討して処理過程中の割れを予知判 断し、 この予知情報に基づき温度と湿度とを操作して木材等に割れ が生じないように雰囲気条件を緩和して制御するようにしたもので ある。 木材等の割れは、 乾燥処理、 加熱処理にともなう水分の移動 と熱による材質の変性に原因があるところから、 温度と湿度を操作 因子として調整してやれば、 充分に割れを防止できることが解つ た。  The inventor of the present invention has studied cracks caused by heat drying of wood and the like, and has found that the cracks are caused by moisture movement, tissue shrinkage, and decomposition of cellulose by high heat. Also, dry cracking of wood is one of the forms of solid destruction, and it is thought that acoustic emission (AE) should occur, and this is detected and its frequency and signal are detected. We thought that if we could know the strength, we could process this information and predict cracks in advance. As a result of the research, we noticed that wood cracking has a close correlation with the amplitude of the AE signal as well as the amplitude of the AE signal. Detected by discrimination. As a result, if the amplitude of even a single AE signal was large, it could be understood as a danger signal for cracking. In addition, online monitoring of the number of accumulated AE events and the AE occurrence rate of the amplitude that is effective in predicting this crack is used to identify whether the dry state is in the initial, middle, or late stages. The meaning of the detected AE signal is analyzed and examined by comparing it with the empirically predetermined reference value in the processing stage to predict and judge cracking during the processing process, and the temperature, humidity and By manipulating the atmosphere, the atmospheric conditions are controlled so that cracks do not occur in the wood and the like. Cracks in wood and the like are caused by the movement of moisture during drying and heat treatment and the denaturation of the material due to heat.It was found that cracking can be sufficiently prevented by adjusting temperature and humidity as operating factors. .
さらに、 乾燥処理の前にあらかじめ有機含浸剤を含浸させたう え、 これを 1 0 0 °C以下の高温水中に入れると水熱化学反応 (加水 分解) で、 木質部が熱可塑性 (熱流動性) を有する状態に化学変化 し、 加熱乾燥処理においても、 加熱によって起こる表面層と内層と の引張応力と圧縮応力の差異に対応変形するので、 割れは発生しな いこと、 および有機含浸剤の含浸により木質部が熱可塑性 (熱流動 性) を有する状態に化学変化することが解った。 Furthermore, prior to the drying treatment, the organic impregnating agent is impregnated in advance, and if this is put into high-temperature water of 100 ° C or less, the wood part becomes thermoplastic (thermofluidity) due to hydrothermal chemical reaction (hydrolysis) No chemical cracking occurs even in the heat-drying process because the material is deformed corresponding to the difference in tensile stress and compressive stress between the surface layer and the inner layer caused by heating. It was found that the wood part chemically changed into a state of thermoplasticity (thermofluidity) by the impregnation with the organic impregnating agent.
そこで、 これら三つの着想、 すなわち、 So, these three ideas:
第一に、 有機含浸剤の含浸処理により化学修飾木材化することに よって乾燥割れを防止すること、  First, to prevent dry cracking by chemically converting wood into wood by impregnation with an organic impregnating agent;
第二に、 A E信号を検知し、 その情報処理により木材等の割れを 予知すること、  Second, detecting the A / E signal and predicting cracks in wood and the like by its information processing;
第三に、 この予知情報に基づく温度と湿度を操作因子とする雰囲 気制御により割れを防止すること、  Third, to prevent cracking by controlling the atmosphere using temperature and humidity as operating factors based on the prediction information.
以上を適宜組み合わせることによ り、 木材等を効率良く乾燥さ せ、 均一な乾燥木材を大量に処理し提供しょうとするものである。 以下、 特許を受けようとする発明について詳細に説明する。  By combining the above as appropriate, it is intended to efficiently dry wood, etc., and to process and provide a large amount of uniformly dried wood. Hereinafter, the invention for which a patent is sought will be described in detail.
特許を受けよう とする第一発明は、 先ず最初に、 丸太、 加工木 材、 竹材などの各種植物性加工材木材等 (木材等) にポリエチレン グリ コールゃメチルセ口ソルブ等のォキシエーテル類、 多価アル コール類、 フヱノール類、 天然ゴムもしくは合成ゴムまたはこれら を組み合わせにかかる有機含浸剤を含浸させ水熱化学反応 (加水分 解) させるのである。  The first invention for which a patent is sought is, first, various kinds of processed plant materials such as logs, processed wood, bamboo, etc. (wood, etc.), oxyethers such as polyethylene glycol and methylcellulose sorb, and polyvalent. It is impregnated with an organic impregnating agent such as alcohols, phenols, natural rubber or synthetic rubber, or a combination of these, and undergoes a hydrothermal chemical reaction (hydrolysis).
当該発明の処理対象範囲は、 木材等であるが、 これは丸太、 加工 木材、 竹材などの各種植物性加工材であれば植物の種類を問わず全 てを含んでいる。  The processing range of the present invention is wood and the like, which includes all kinds of plant-processed materials such as logs, processed wood, and bamboo regardless of the type of plant.
また、 含浸させる特定の有機含浸剤というのは、 ポリエチレング リ コールゃメチルセ口ソルブなどのォキシエーテル類、 1, 4ーブ タンジオールなどの多価アルコール類、 フエノールなどのフエノー ル類、 天然ゴムもしくは合成ゴムまたはこれらの組み合わせにかか るものであればよい。  Specific organic impregnants to be impregnated include oxyethers such as polyethylene glycol and methyl sorb, polyhydric alcohols such as 1,4-butanediol, phenols such as phenol, natural rubber and synthetic rubber. Any material can be used as long as it relates to rubber or a combination thereof.
次に、 当該含浸処理によって起こる木質の変化について説明す る。  Next, the change in wood quality caused by the impregnation process will be described.
化学的には、 木材は、 4 0〜 5 0 %量のセルロース、 1 5〜 2 5 %のへミセルロース、 2 0〜3 0 %のリグニンおよびその他の 副成分から成り立つ。 しかも、 木材を構成する細胞壁中ではセル ロース分子鎖の集合体の束がスポンジ状に存在する網目をかいく ぐって通り、 両者の間隙をへミセルロースが充填する形で成分の複 合化が行われている。 更に、 当該セルロース分子鎖の集合体の束 は、 規則正しく並んで結晶を作っている。 これは規則性のある立体 配置をもつ線状高分子で、 水酸基 (一 O H ) を数多く持っているた め、 隣接する分子間で水酸基どうしの規則正しい水素結合が生じや すい状態にある。 しかもこれはセルロース全体の 7 0 %にも達して いる。 このセルロースは結晶の溶融温度が高く、 加熱しても流動を 起こす前に熱分解を起こすので、 結局は熱流動を起こさない。 この ような木材等の性状が、 水分移動と組織収縮とセルロースの熱分解 とによって割れを起こしやすく していると考えられる。 ところが、 セルロースの水酸基 (一 O H ) をァセチル基 (一 C 0 C H 3 ) や ニトロ基、 ベンジル基、 ラウロイル基等に置換する化学修飾を起こ させれば、 木材に内部可塑化が起こり、 熱流動性が与えられる。 す なわち、 セルロースを誘導体に変え、 水素結合の度合いを弱めてや れぱ材木中で熱流動性を備えたものになると考えた。 このように、 当該セルロースの結晶に流動を起こさせる状態にすれば、 これをか なり厳しい条件で加熱乾燥処理しても収縮割れや水分移動割れを起 こさない。 Chemically, wood is a 40-50% amount of cellulose, 15- Consists of 25% hemicellulose, 20-30% lignin and other minor components. In addition, in the cell wall constituting wood, a bundle of cellulosic molecular chains passes through a sponge-like network, and the components are combined in such a way that the gap between the two is filled with hemicellulose. Have been done. Further, the bundle of the aggregate of the cellulose molecular chains is regularly arranged to form crystals. This is a linear macromolecule with a regular configuration, which has a large number of hydroxyl groups (1OH), so that regular hydrogen bonds between hydroxyl groups are likely to occur between adjacent molecules. Moreover, this accounts for 70% of the total cellulose. This cellulose has a high melting temperature of the crystals, and even if heated, it undergoes thermal decomposition before flowing, so that it does not eventually flow. It is considered that such properties of wood and the like facilitate cracking due to water movement, tissue shrinkage, and thermal decomposition of cellulose. However, if chemical modification is performed to replace the hydroxyl group (-1 OH) of cellulose with an acetyl group (-1 C 0 CH 3 ), nitro group, benzyl group, lauroyl group, etc., internal plasticization occurs in wood, resulting in thermal fluidization. Gender. In other words, it was thought that cellulose would be converted to a derivative, and the degree of hydrogen bonding would be reduced, resulting in a material with thermal fluidity in timber. As described above, if the cellulose crystals are caused to flow, even if they are heated and dried under quite severe conditions, shrinkage cracks and moisture transfer cracks do not occur.
その具体的方法として、 水熱化学反応により木材が熱流動性 (熱 可塑性) を有する状態となることを利用することを想起した。 すな わち、 前処理工程として、 原料木材に特定の有機含浸剤を含浸さ せ、 これを 1 0 0 eC以下の高温水中に入れて水熱化学反応 (加水分 解) を起こさせ、 木質中のセルロースやリグニン等の一部を溶解し ていくつかの化学結合を部分的に開裂したり、 樹脂類中のエステル をアルコール化したり、 リグニン芳香核のハロゲン置換をして塩化 リグニンにする等して、 木質部が熱流動性 (熱可塑性) を有する状 態としたのである。 As a specific method, he recalled using the fact that wood becomes thermo-fluid (thermoplastic) due to hydrothermal chemical reaction. In other words, as a pretreatment step, the raw wood is impregnated with a specific organic impregnating agent, and this is placed in high-temperature water of 100 eC or less to cause a hydrothermal chemical reaction (hydrolysis). Dissolves some of the cellulose and lignin in wood to partially cleave some chemical bonds, alcoholizes esters in resins, and halogenates lignin aromatic nuclei to lignin chloride The state where the wood part has thermo-fluidity (thermoplasticity) It was in a state.
次に、 この含浸処理した木材等に A Eセンサーを取り付け、 木材 等がその木材構造の変化に伴ない発生する A Eを信号として検知 し、 その信号を情報処理して木材等の割れを予知し、 予知情報に基 づき温度と湿度とを操作因子として木材等に割れが生じないように 雰囲気制御しながら常圧にて 1 0 0 eC以下の加熱処理を行なって乾 燥処理をなす。 Next, an AE sensor is attached to the impregnated wood, etc., and the AE generated by the wood, etc. accompanying the change in the wood structure is detected as a signal, and the signal is processed to predict cracking of the wood, etc. while cracking wood or the like is so controlled atmosphere so as not to cause the base Hazuki temperature and humidity prediction information as the operation factors performed 1 0 0 e C following heat treatment at atmospheric pressure makes the drying process.
A Eセンサーの取り付けは、 温度と湿度を考慮してウェーブ · ガ ィ ドを介して行う。 当該ウェーブ · ガイ ドの取り付け位置は試験片 木口とした。  A Attach the E-sensor through the wave guide considering the temperature and humidity. The mounting position of the wave guide was at the tip of the test piece.
それから、 木材等がその木材構造の変化に伴ない発生する A Eを 電気信号として検知し、 その情報を分析して木材等の割れを予知す る。  Then, the AE generated by the change in the structure of the wood is detected as an electrical signal, and the information is analyzed to predict cracks in the wood.
このように乾燥処理工程においても、 A E信号を観測することに よって、 木材等の乾燥途中の進行状況を常に把握することができ る。  As described above, even in the drying process, the progress of the drying of wood or the like can be always grasped by observing the AE signal.
木材等に取り付けたセンサーから送られた信号は、 プリアンプで 増幅された後、 クラッキングモニターで設定値以下の信号はカツ ト され、 増幅後に特定振幅の A Eイベントが検出され、 この特定振幅 A Eイベン トデータが記録される (第 1 4図) 。 また、 これを累積 A Eエネルギーに図示すると第 1 5図となる。 このような実験をし て事例を多数集め、 統計処理すると、 第 3図のような木材乾燥処理 工程における標準的 A Eパターンを得ることができる。  The signal sent from a sensor attached to wood, etc. is amplified by a preamplifier, and the signal below the set value is cut by a cracking monitor.After amplification, an AE event with a specific amplitude is detected, and this specific amplitude AE event data Is recorded (Fig. 14). Fig. 15 shows this as the cumulative AE energy. If a large number of cases are collected through such experiments and statistically processed, a standard AE pattern in the wood drying process as shown in Fig. 3 can be obtained.
この乾燥処理における標準的 A Eパターンから次のような木材等 の割れを予知するための経験則を得ることができた。  Based on the standard AE pattern in this drying process, the following empirical rules for predicting cracks in wood and the like were obtained.
①経験的に定めた一定振幅以上の A E信号が表れた場合に、 割れの 前兆と考える。 (1) If an AE signal with a certain amplitude or more that is empirically determined appears, it is considered as a precursor to cracking.
②乾燥工程には、 初期、 中期、 後期の 3段階があり、 段階ごとに判 断基準を変えることが大切である。 第一段階 ( I ) は、 木材等の中心部まで蒸気が浸透し、 温度と含 水率とが均一化して、 序々に乾燥が進行する段階と考えられる。 第 —段階と第二段階の区分時の含水率は 2 5 %で、 繊維飽和点 (約 3 0〜2 5 % ) に対応している。 繊維飽和点以上では、 木材の中に 液体の状態の水分が存在する。 この段階では、 割れが容易に発生す るので、 十分に注意する必要がある。 (2) There are three stages in the drying process: early, middle and late. It is important to change the judgment standards for each stage. The first stage (I) is considered to be a stage in which steam penetrates to the center of wood and the like, and the temperature and moisture content are made uniform, and drying proceeds gradually. The water content in the first and second stages is 25%, which corresponds to the fiber saturation point (about 30 to 25%). Above the fiber saturation point, there is liquid water in the wood. Care must be taken at this stage as cracks can easily occur.
第二段階 ( Π ) は、 繊維中に結合水の形で、 吸収された、 水分 力 結合を断ち切り、 蒸発を始める段階と考えられる。 従って、 第 —段階より、 含水率を下げるために要するエネルギーは大きく な る。 この段階では、 木材の引っ張り強度は急増し、 第一段階より、 厳しい乾燥条件に絶えられると考えられる。 したがって、 第一段階 より、 厳しい乾燥条件を与えることができる。 つまり、 第二段階で は、 厳しい乾燥条件を適用それによつて乾燥時間の短縮が可能であ る。 第二段階と第三段階との境界は、 含水率約 1 5 %に対応してい る。 この含水率約 1 5 %というのは、 平衡含水率に対応していると 考えられ、 気乾状態に対応している。  The second stage (Π) is considered to be the stage in which the absorbed water force, in the form of bound water in the fiber, breaks the bond and begins to evaporate. Therefore, the energy required to lower the water content is higher than in the first stage. At this stage, the tensile strength of the timber will increase sharply and it will be possible to end the harsh drying conditions from the first stage. Therefore, stricter drying conditions can be provided than in the first stage. In other words, in the second stage, severe drying conditions are applied, thereby shortening the drying time. The boundary between the second and third stages corresponds to a water content of about 15%. This water content of about 15% is considered to correspond to the equilibrium water content, and corresponds to the air-dry state.
第三段階では小振幅の A Eが多いことから、 細胞内部の結晶水 力 s、 細胞から離脱する減少が起こっていると考えられる。 しかしな がら、 この小振幅の A Eは、 乾燥割れには全く関係がないので、 A Eイ ベン ト数とは無関係に乾燥条件を設定して良い。 したが つて、 第三段階では第二段階よりさらに厳しい乾燥条件設定が可能 であり、 ここではさらに乾燥時間の短縮が可能である。 このように して、 乾燥状態が進み、 含水率が 1 0 %以下になると、 小振幅の A Eも減少してく る。 In the third stage, there are many small-amplitude AEs, so it is considered that the hydration s inside the cells and the detachment from the cells decrease. However, since this small amplitude AE has nothing to do with dry cracking, drying conditions can be set regardless of the number of AE events. Therefore, in the third stage, it is possible to set more strict drying conditions than in the second stage, and here it is possible to further shorten the drying time. In this way, when the drying state progresses and the water content falls below 10%, the AE with small amplitude also decreases.
従って、 乾燥工程での 『割れ』 の予知方法は、 特定振幅の A E発 生率と累積 A Eイベン ト数とをオンライ ンでモニタ リ ングしなが ら、 現在どの乾燥段階にあるかを識別するとともに、 経験的に定め た標準的な A E発生状況 (A E発生率と A E累積イベン ト数) 、 お よび割れ警戒基準値と比較して、 処理過程中の割れを予知判断す る。 Therefore, the method of predicting “cracking” in the drying process is to identify which drying stage is currently in progress while monitoring the AE occurrence rate and the cumulative number of AE events of a specific amplitude online. At the same time, it predicts cracking during the treatment process by comparing it with the standard AE occurrence situation (the AE occurrence rate and the cumulative number of AE events) determined empirically and the crack warning standard value. You.
次に、 この割れ予知情報に基づき経験的に定めたその段階におけ る最適制御パターンを基準として温度条件と湿度条件とを操作して 木材等に割れが生じないように雰囲気条件を緩和して制御したり、 処理効率のロスがないように温度条件と湿度条件を厳しく したりす る。 このように割れを A E信号の解析によって予知し、 温度と湿度 とを操作因子として、 雰囲気制御しながら乾燥処理を行ない、 木材 等の含水率が 1 0 %以下になるまで、 乾燥させる。  Next, the temperature condition and the humidity condition were manipulated based on the optimal control pattern at that stage empirically determined based on the crack prediction information to relax the atmospheric conditions so that cracks did not occur in wood and the like. Control and strict temperature and humidity conditions to avoid loss of processing efficiency. In this way, cracks are predicted by analysis of the AE signal, and drying is performed while controlling the atmosphere using temperature and humidity as operating factors, until the moisture content of wood and the like becomes 10% or less.
すなわち、 本願発明は、 まず含浸処理し、 A Eを信号に基づき木 材等の割れを予知し、 予知情報に基づき温度と湿度とを操作因子と して木材等に割れが生じないように雰囲気制御しながら乾燥を行な うようにするものである。  That is, in the present invention, first, impregnation processing is performed, and AE is predicted based on a signal based on a signal to detect cracks in wood, and the atmosphere is controlled based on the prediction information so that cracks do not occur in wood and the like using temperature and humidity as operating factors. Drying is performed while drying.
なお、 第 1図は、 このような雰囲気制御をしながら乾燥処理を行 う場合の乾燥制御流れ図であり、 第 2図は、 乾燥処理において温度 と湿度制御を行った場合の、 標準的な A E発生パターンを模式図化 したものである。  FIG. 1 is a flowchart of the drying control when the drying process is performed while controlling the atmosphere, and FIG. 2 is a standard AE when the temperature and the humidity are controlled in the drying process. This is a schematic diagram of the occurrence pattern.
特許を受けようとする第二発明は、 木材等に、 ポリエチレングリ コールゃメチルセ口ソルブ等のォキシエーテル類、 多価アルコール 類、 フエノール類、 天然ゴムもしくは合成ゴム類またはこれらを組 み合わせにかかる有機含浸剤を含浸させ水熱化学反応 (加水分解) させる含浸処理をなした後、 加熱乾燥させるようにしたことを特徴 とする木材等の乾燥法である。  The second invention for which a patent is sought is that wood or the like, oxyethers such as polyethylene glycol / methyl sorbate, polyhydric alcohols, phenols, natural rubber or synthetic rubber, or an organic compound obtained by combining these. This is a method for drying wood and the like, characterized by impregnating with an impregnating agent and performing a hydrothermal chemical reaction (hydrolysis), followed by heating and drying.
本発明は、 第一発明と同様に、 原料木材に特定の有機含浸剤を含 浸させ、 これによつて、 セルロースを誘導体に変え、 水素結合の度 合いを弱めてやれば、 材木中で熱流動性を備えたものになる。 この ように、 当該セルロースの結晶に流動を起こさせる状態にすれば、 これをかなり厳しい条件で加熱乾燥処理しても収縮割れや水分移動 割れを起こさない。 このような、 原理にもとづいて、 加熱乾燥処理 しても割れを起こさないようにする木材等の乾燥法である。 その具体的方法として、 水熱化学反応により木材が熱流動性 (熱 可塑性) を有する状態としたものである。 すなわち、 前処理工程と して、 原料木材に特定の有機含浸剤を含浸させ、 これを 1 0 0 eC以 下の高温水中に入れて水熱化学反応 (加水分解) を起こさせ、 木質 中のセルロースゃリグニン等の一部を溶解していくつかの化学結合 を部分的に開裂したり、 樹脂類中のエステルをアルコール化した り、 リグニン芳香核のハロゲン置換をして塩化リグニンにする等し て、 木質部が熱流動性 (熱可塑性) を有する状態としたものであ る。 In the present invention, as in the first invention, the raw wood is impregnated with a specific organic impregnating agent, thereby converting cellulose into a derivative and reducing the degree of hydrogen bonding. It will be fluid. As described above, when the cellulose crystals are caused to flow, even if they are heated and dried under quite severe conditions, shrinkage cracks and moisture transfer cracks do not occur. Based on this principle, it is a method for drying wood and other materials that does not crack even when heated and dried. As a specific method, wood is made to have a thermofluidity (thermoplasticity) by a hydrothermal chemical reaction. That is, prior to the processing steps, is impregnated with the specific organic impregnant material timber causes which put in hot water of 1 0 0 e C hereinafter undergo hydrothermal chemical reaction (hydrolysis), in the wood Dissolve a part of the cellulose lignin, etc., in order to partially cleave some chemical bonds, alcoholize the esters in the resins, halogenate the lignin aromatic nucleus to make lignin chloride, etc. Then, the wood part is in a state of having thermo-fluidity (thermoplasticity).
本発明は、 このように含浸処理しておけば、 加熱乾燥処理の仕方 はと く に限定しなく とも、 従来行われてきた加熱乾燥条件のまま で、 殆どの場合加熱乾燥割れは生じない。 もちろん、 処理対象木材 の個別的特性や、 特別な加熱条件によっては、 割れる場合がないと はいえないが、 例えば、 実施例 1 . によると、 もはや通常の乾燥処 理といえない 1 5 O eC程度まで高温加熱して乾燥度を高めるような 場合 (必要に応じて不燃性雰囲気にする必要がある。 ) でも、 割れ ることは殆どなかった。 (第 4図、 第 6図、 第 8図、 第 1 0図) 従 つて、 加熱条件の緩い標準的な加熱乾燥温度 ( 3 0〜 1 0 0 °C ) で 行われている一般的な乾燥処理であれば、 これによつて、 割れが生 じるようなことはない。 つまり、 前処理として、 含浸処理さえすれ ば、 あとは従来の常識的な加熱条件で乾燥処理を行なうかぎり、 少 なく とも飛躍的に乾燥処理の際の割れを低減できるものである。 特許を受けよう とする第三発明は、 木材等に A Eセンサ一を取り 付け、 木材等がその木材構造の変化に伴い発生する A Eを信号と して検知し、 その信号の振幅を弁別して所定以上の振幅をもった A E信号をもって割れに対する危険信号とし、 更に累積 A Eィベン 卜数と A E発生率をオンラインでモニタリ ングしながら常に乾燥状 態が初期、 中期、 後期のどの段階にあるのかを識別しつつ、 識別さ れた各処理段階におけるあらかじめ設定されている累積 A Eィベン ト数と A E発生率の基準値と、 割れ警戒基準値とを比較しながら割 れを予知し、 当該予知情報に基づき経験的に定めたその段階におけ る最適制御パターンを基準として、 温度条件と湿度条件とを操作し て木材等に割れが生じないように雰囲気制御するようにしたことを 特徴とする木材等の乾燥法である。 In the present invention, if the impregnation treatment is performed in this manner, the heating and drying treatment method is not particularly limited, and the heating and drying cracks do not occur in most cases under the conventionally performed heating and drying conditions. Of course, and individual characteristics of the processed wood, by special heating conditions, but there is no high-end and no case of break, for example, according to Example 1., No longer be said conventional drying processing 1 5 O e Even in the case of increasing the degree of drying by heating to a high temperature of about C (it is necessary to set a nonflammable atmosphere as necessary), there was almost no cracking. (Fig. 4, Fig. 6, Fig. 8, Fig. 10) Therefore, general drying performed at a standard heating and drying temperature (30 to 100 ° C) with mild heating conditions If processing, this will not cause cracking. In other words, as long as the impregnation treatment is performed as the pretreatment, cracking during the drying treatment can be reduced at least dramatically as long as the drying treatment is performed under conventional common-sense heating conditions. In the third invention to be patented, an AE sensor is attached to wood, etc., and the AE generated by the wood, etc. due to a change in the structure of the wood is detected as a signal, and the amplitude of the signal is discriminated to a predetermined value. The AE signal with the above amplitude is regarded as a danger signal for cracking, and furthermore, while monitoring the cumulative number of AE events and the AE occurrence rate online, it is always possible to identify whether the dry state is in the initial, middle or late stages. While the pre-set cumulative AE event for each identified processing step The number of AEs and the reference value of the AE occurrence rate are compared with the reference value of the crack warning, and the crack is predicted, and the temperature condition is determined based on the optimal control pattern at that stage empirically determined based on the prediction information. This is a method for drying wood and the like, characterized in that the atmosphere is controlled so that cracks do not occur in the wood and the like by manipulating the temperature and humidity conditions.
本発明は、 木材の乾燥処理にあたって、 A E信号を得て、 その A E信号の解析によつて割れを予知し、 当該割れ予知情報によって 温度と湿度とを操作因子として、 雰囲気制御しながら乾燥処理工程 を進め、 乾燥割れをできるだけ少なくせんとするものである。  According to the present invention, in the drying process of wood, an AE signal is obtained, cracks are predicted by analyzing the AE signals, and the temperature and humidity are used as operating factors based on the crack prediction information, and the drying process is performed while controlling the atmosphere. In order to minimize dry cracking.
すなわち、 本発明における木材乾燥法の特徴とする作業工程は、 次の通りである。  That is, the working steps characteristic of the wood drying method of the present invention are as follows.
①木材等に A Eセンサーを取り付け、 検知した A E信号を、 その振 幅に着目して、 割れ予知に有効な特定の信号だけを弁別してこれ を取り出す。 具体的な A Eセンサーの取り付け方や、 A E信号の 記録方法は、 第 1発明にて説明したのと同じである。  (1) An A / E sensor is attached to wood, etc., and the detected A / E signal is focused on its amplitude, and only specific signals that are effective for crack prediction are discriminated and extracted. The specific method of attaching the AE sensor and the method of recording the AE signal are the same as those described in the first invention.
②その選別された特定振幅 A E信号に基づき、 累積 A Eイベン ト 数と A E発生率を情報処理してこれをモニタリングして乾燥の進 行状態をリアルタイムに認識し、 乾燥状態が初期、 中期、 後期の どの段階にあるのかを識別する。  (2) Based on the selected specific amplitude AE signal, the cumulative number of AE events and the AE occurrence rate are processed and monitored to recognize the progress of drying in real time, and the dry state is in the early, middle, and late stages. Identify the stage of the
乾燥工程には三段階があり、 段階ごとに判断基準を変えること が、 大切である。  There are three stages in the drying process, and it is important to change the criteria for each stage.
③リアルタイムな A E発生情報から識別された各処理段階における あらかじめ設定されている累積 A Eィベント数と A E発生率の基 準値と、 割れ警戒基準値とを比較しながら割れを予知判断する。 木材乾燥処理時の標準化された温度 ·含水率、 その際の累積 A E エネルギー、 A E発生率のモデルパターンは第 3図に示した通り である。  ③ Predict and judge cracking by comparing the preset number of accumulated AE events and the standard value of the AE occurrence rate with the standard value of the crack warning level at each processing stage identified from the real-time AE occurrence information. Figure 3 shows the standardized temperature and moisture content during wood drying treatment, the cumulative AE energy at that time, and the model pattern of the AE generation rate.
④割れ予知情報に基づき、 経験的に定めたその段階における最適制 御パターンを基準として、 温度条件と湿度条件とを操作して木材 等に割れが生じないように雰囲気制御する。 木材 Temperature and humidity conditions are manipulated based on crack prediction information and operating conditions based on the optimal control pattern determined at that stage. Atmosphere is controlled so that cracks do not occur.
なお、 第 1図は、 このような雰囲気制御をしながら乾燥処理を行 う場合の乾燥制御流れ図であり、 第 2図は、 乾燥処理において温度 と湿度制御を行なった場合の、 標準的な A E発生パターンを模式図 ィ匕したものである。  FIG. 1 is a flowchart of the drying control when the drying process is performed while controlling the atmosphere, and FIG. 2 is a standard AE when the temperature and the humidity are controlled in the drying process. It is a schematic drawing of the occurrence pattern.
しかも多くの実験結果から、 上記木材乾燥における最適作業工程 を検討すると、 以下の事を考慮すべきであることが解った。  Moreover, from the results of many experiments, it was found that the following should be considered when examining the optimal work process in the above wood drying.
①乾燥は三段階に分けて考える必要がある。  ①Drying must be considered in three stages.
②第一段階では十分な蒸気量が必要である。  (2) In the first stage, a sufficient amount of steam is required.
この段階では割れが発生し易いので十分な蒸気を使用し、 木材内 部で均一な含水率および温度分布が得られるように留意する。 また割れ発生は乾燥条件の変化には非常に敏感であるので、 乾燥 条件を厳しくする場合には徐々に行う必要がある。  At this stage, sufficient steam is used because cracks are likely to occur, and care should be taken to obtain a uniform moisture content and temperature distribution inside the wood. Cracking is very sensitive to changes in drying conditions, so it is necessary to gradually perform drying when strict drying conditions are used.
A Eによつて割れの前兆が判明した場合には多量蒸気導入が有効 である。  If AE indicates a sign of cracking, introduction of a large amount of steam is effective.
③第二段階では、 第一段階に比較して、 高温低湿度で乾燥条件を厳 しくすることが可能である。 従って乾燥速度をよりさらに加速す ることが可能である。  (3) In the second stage, it is possible to make the drying conditions stricter at high temperature and low humidity compared to the first stage. Therefore, it is possible to further accelerate the drying speed.
④第三段階では第二段階より更に厳しい乾燥条件が可能であり、 か なり厳しくても割れが発生しにくい。 従ってこの段階が乾燥時間 を最も短縮できる。  (4) In the third stage, more severe drying conditions are possible than in the second stage, and even if severe, cracks are unlikely to occur. Therefore, this step can minimize the drying time.
上述のように、 各段階毎に乾燥の様子が異なることを踏まえて、 もっとも効率的な乾燥スケジュールを考えてみると、 次のようにな る。  Considering the fact that the drying process differs in each stage as described above, the most efficient drying schedule is as follows.
割れの検知は A E測定装置で実施し、 本実験で用いた測定系では 割れの前兆を 0 . 5 V以上の A Eイベン ト総数でとらえ、 このィべ ント総数が一定値を越えないように乾燥条件を制御する。 乾燥条件 の制御は基本的に温度と相対湿度で行う。 第一、 二および三段階の 識別は累積 A Eエネルギーの増加率で行う。 具体的な制御の方法は第 1図に示した乾燥制御流れ図の通りであ る。 ほぼ適切と思われる蒸気量を設定し、 適切と予想される温度で 乾燥を開始する。 1分毎の 0. 5 V以上の AEイベン ト数が一定値 N c (個 Z分) を越えたら割れを防止するために一時的に多量の蒸 気を注入し、 同時に AT dl で温度設定を下げる。 もしその後一定 時間 ( 1 0分程度) 、 0. 5 V以上の A Εィベン ト数が N 0以下の 場合には乾燥条件を厳しくするため Δ T ul °Cだけ温度設定値を上 げる。 この繰り返しで温度は一定値 (T c) に落ち着く。 しかし、 木材乾燥に適する温度の上限は、 経験的に樹種に依存する。 また温 度が低過ぎる場合には、 乾燥効率が低下する。 このように T cが希 望する温度範囲にない場合には蒸気量を加減し、 T cが適切な温度 範囲に治まるように制御する。 累積 A Eエネルギーの増加率から 第二段階に移行したと判断された場合には、 第一段階と異なる Δ T u2 , Δ T d2 , を採用して温度を上昇 ·下降の制御を行う。 ここで ΔΤ ιιΙ < Δ T u2 であり、 第一段階と同様に制御を行う。 更に第三段階へ移行したものと累積 A Eエネルギーの増加率から 判断できた場合^は温度制御パラメータ AT u3 , T d3 を用いて 制御を行う。 ΔΤ ιι2 < Δ T u3 と予想され、 第二段階より更に厳 しい乾燥条件となる。 温度制御パラメータ Δ T ul , Δ T d 1 , Δ T u2 , Δ T d2 , Δ Τ u3 , Δ Τ d3 は樹種毎に決定する必要 がある。 Crack detection was performed with an AE measuring device, and the measurement system used in this experiment captured signs of cracking with the total number of AE events of 0.5 V or more, and dried so that this total number did not exceed a certain value. Control conditions. Drying conditions are basically controlled by temperature and relative humidity. The first, second and third steps are distinguished by the rate of increase of the cumulative AE energy. The specific control method is as shown in the flow chart of the drying control shown in FIG. Set the steam amount that is considered to be almost appropriate, and start drying at the expected temperature. When the number of AE events of 0.5 V or more per minute exceeds a certain value Nc (for each Z), temporarily inject a large amount of steam to prevent cracking, and at the same time set the temperature with AT dl Lower. If the number of A events at 0.5 V or more is N 0 or less for a certain period of time (about 10 minutes), raise the temperature set value by ΔT ul ° C to tighten the drying conditions. By this repetition, the temperature settles to a constant value (T c). However, the upper temperature limit for drying wood is empirically dependent on the species. If the temperature is too low, the drying efficiency will decrease. As described above, when Tc is not in the desired temperature range, the amount of steam is adjusted to control so that Tc falls within an appropriate temperature range. If it is determined from the increase rate of the accumulated AE energy that the process has shifted to the second stage, ΔT u2 and ΔT d2, which are different from the first stage, are used to control the temperature rise and fall. Here, ΔΤ ιιΙ <ΔT u2, and control is performed as in the first stage. Furthermore, if it can be determined from the third stage and the increase rate of the accumulated AE energy ^, control is performed using the temperature control parameters ATu3 and Td3. It is expected that ΔΤ ιι2 <ΔT u3, and the drying conditions will be more severe than in the second stage. The temperature control parameters ΔT ul, ΔT d1, ΔT u2, ΔT d2, Δ Τ u3, and Δ Τ d3 need to be determined for each tree species.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は本願第一発明、 第三発明にかかる A Eを利用して雰囲気制 御をしながら乾燥処理を行なう場合の乾燥制御流れ図で、 第 2図は乾 燥処理において、 温度と湿度制御と A E発生の模式図で、 第 3図は木 材加熱乾燥処理時の A E発生モデルパターンで、 第 4図は実施例 1に おける高温加熱処理の温度変化を記録したグラフで、 第 5図は実施例 1の未処理材の各振幅クラス毎の A Eイベント数 (発生率) を記録し たグラフで、 第 6図は実施例 1の含浸処理材の各振幅クラス毎の A Eイベント数 (発生率) を記録したグラフで、 第 7図は実施例 1の 未処理材の振幅 1 V以上の A E発生率を記録したグラフで、 第 8図は 実施例 1の含浸処理材の振幅 1 V以上の A E発生率を記録したグラフ で、 第 9図は実施例 1の未処理材の振幅 1 V以上の累積 A Eェネル ギーを記録したグラフで、 第 1 0図は実施例 1の含浸処理材の振幅 1 V以上の累積 A Eエネルギーを記録したグラフで、 第 1 1図は実施 例 1の高温加熱処理時の A E発生モデルパターンと累積 A Eによる割 れ限界制御基準を示すグラフで、 第 1 2図は実施例 2における高温加 熱処理の温度と相対湿度変化を記録したグラフで、 第 1 3図は実施例 2における未処理材の各振幅クラス毎の A Eイベント数 (発生率) を 記録したグラフで、 第 1 4図は実施例 2における乾燥処理の温度と振 幅 1 V以上の A E発生率を記録したグラフで、 第 1 5図は実施例 2に おける乾燥処理の振幅 1 V以上の累積 A Eエネルギーを記録したグラ フで、 第 1 6図は実施例 2における乾燥処理の含水率変化と重量変化 である。 発明を実施するための最良の形態  FIG. 1 is a flow chart of a drying control in the case where the drying process is performed while controlling the atmosphere using the AE according to the first and third inventions of the present application, and FIG. 2 is a diagram showing the temperature and humidity control in the drying process. Fig. 3 is a schematic diagram of AE generation, Fig. 3 is an AE generation model pattern during wood heating and drying, Fig. 4 is a graph recording the temperature change of the high temperature heating in Example 1, and Fig. 5 is Fig. 6 is a graph showing the number of AE events (occurrence rate) for each amplitude class of untreated wood in Example 1. Fig. 6 shows the number of AE events (occurrence rate) for each amplitude class of impregnated wood in Example 1. Fig. 7 is a graph that records the AE generation rate of the untreated material of Example 1 with an amplitude of 1 V or more, and Fig. 8 is the graph that records the AE of the impregnated material of Example 1 with an amplitude of 1 V or more. Fig. 9 shows the cumulative AE energy of the untreated material of Example 1 with an amplitude of 1 V or more. Fig. 10 is a graph in which the accumulated AE energy of the impregnated material of Example 1 with an amplitude of 1 V or more was recorded, and Fig. 11 is an AE generation during the high-temperature heat treatment of Example 1. Fig. 12 is a graph showing the crack limit control criterion based on the model pattern and the cumulative AE. Fig. 14 is a graph that records the number of AE events (occurrence rate) for each amplitude class of the treated material. Fig. 14 is a graph that records the temperature of the drying process and the AE occurrence rate with an amplitude of 1 V or more in Example 2. FIG. 15 is a graph in which the accumulated AE energy with an amplitude of 1 V or more in the drying treatment in Example 2 is recorded. FIG. 16 shows the change in the water content and the change in weight in the drying treatment in Example 2. BEST MODE FOR CARRYING OUT THE INVENTION
<実施例 1 > <Example 1>
かえでの天然生木丸太材料 (長さ 2 0 O mm X径 8 0 ) を自然乾燥 (含水率 3 0 % ) させたものを用意し、 これを室温でまず減圧して木 材中の脱気をし、 その後樹脂液ポリエチレングリコールを加圧ポンプ で 3〜5気圧で加圧注入した。 その後、 当該含浸木材を 1 0 0 °C以下 の高温水中に入れて、 水熱化学反応を起こさせる。 このように前処理 した丸太材料と、 前処理しなかった同じ丸太材料とを熱処理室中に入 れ、 これら材料にウェーブガイ ドを介して A Eセンサーを取り付け た。 具体的には、 ウェーブガイ ドの熱処理室内部側端子を試験木口に 木ネジで固定し、 熱処理室に設けた測定孔を通してウェーブガイ ドを 外部に延出させ、 そのウェーブガイ ドの延出外部に A Eセンサーを取 り付け、 近くに設置したプリアンプとクラッキングモニターおよびパ ソコンと接続した。 次に、 熱処理室内から空気を脱気するとともに不 燃性ガス注入部より窒素ガスを注入して 9 7 %の不燃性ガス雰囲気と する。 そうしておいて、 加熱部の熱電対を作動させて、 熱処理室内の 温度を高めていく とともに、 蒸気注入部より蒸気を注入して内部の湿 度を調整する。 第 4図に示すように、 一気に 1 5 0 eCに上昇させ、 2 2時間ほぽ 1 5 0〜 1 6 0 °Cの高温で加熱し、 それから約 2時間で 温度を常温まで降下させ約 2 4時間で処理を完了した。 その間の A Eの発生状況を観測してみた。 第 5図はその際の未含浸処理材の各 振幅クラス毎の A Eイベント状況を表したものである。 第 6図は、 含 浸処理材の各振幅ごとの A Eイベント発生状況を表した記録である。 これらの図ではどの時点で割れが生じたのか特定できないので、 1分 間内に増幅率 8 0 d Bとして振幅 1 V以上の A Eを特定して記録した ところ、 未処理材の A Eイベン ト発生状況は第 7図、 含浸処理材の A Eィベント発生状況は第 8図となり、 割れと関係のある A E信号が かなり明確に認識できるようになった。 これを読むと、 未処理材も含 浸処理材も共に、 熱処理室内の温度が高まっていく初期の段階で、 大 量に A Eが発生し、 中間段階は A E発生がほとんどなくなり、 温度降 下しはじめると再び A Eィベン卜が発生する傾向が見られる。 しか し、 その発生状況は、 未処理材と含浸処理材とではまるで異なってお り、 含浸処理材の方はほとんど A Eが発生しないといつた状況となつ ている。 すなわち、 未処理材の方は、 加熱初期の段階で割れが生じた 力 含浸材の方は割れを起こしていないことを明確に物語っている。 このことは、 累積 A Eエネルギーを表した第 9図 (未処理材) と第 1 0図 (含浸処理材) とを比較すると、 更に明確に認識できる。 Prepare a maple natural wood log material (length 20 O mm X diameter 80) that has been naturally dried (water content 30%), decompressed at room temperature first, and degassed the wood. And then pressurize the resin liquid polyethylene glycol with a pressure pump. At 3-5 atm. Thereafter, the impregnated wood is placed in high-temperature water of 100 ° C. or lower to cause a hydrothermal chemical reaction. The log material thus pre-treated and the same log material without pre-treatment were placed in a heat treatment room, and an AE sensor was attached to these materials via a wave guide. Specifically, the terminal of the wave guide inside the heat treatment chamber is fixed to the test opening with a wood screw, and the wave guide is extended outside through the measurement hole provided in the heat treatment chamber. An AE sensor was attached to the camera, and it was connected to a preamplifier, cracking monitor, and personal computer located nearby. Next, air is degassed from the heat treatment chamber and nitrogen gas is injected from the non-flammable gas injection part to make a 97% non-flammable gas atmosphere. Then, while operating the thermocouple in the heating section to raise the temperature inside the heat treatment chamber, steam is injected from the steam injection section to adjust the internal humidity. As shown in Figure 4, is raised to stretch 1 5 0 e C, heated at a high temperature of 2 2 hours Hopo 1 5 0~ 1 6 0 ° C , about lowered then the temperature to room temperature in about 2 hours Processing was completed in 24 hours. During this time, we observed the occurrence of AE. Fig. 5 shows the AE event status for each amplitude class of unimpregnated treated material at that time. Fig. 6 is a record showing the AE event occurrence status for each amplitude of the impregnated material. Since it is not possible to identify at which point the cracks occurred in these figures, an AE with an amplitude of 1 V or more was specified and recorded with an amplification factor of 80 dB within one minute. The situation is shown in Fig. 7, and the occurrence of AE events in the impregnated material is shown in Fig. 8. The AE signal related to cracking can be recognized quite clearly. According to this report, both the untreated material and the impregnated material generate a large amount of AE in the early stage when the temperature in the heat treatment chamber rises, and almost no AE is generated in the intermediate stage, and the temperature decreases. At the beginning, AE events tend to occur again. However, the state of occurrence is quite different between the untreated material and the impregnated material, and the impregnated material is in a state where almost no AE is generated. In other words, the untreated material cracked at the early stage of heating The force impregnated material clearly shows that it did not crack. This can be more clearly recognized by comparing Fig. 9 (untreated material) and Fig. 10 (impregnated material) showing the accumulated AE energy.
そこで、 次に未処理材のように割れ安い状態の木材を割れないよう に高温加熱する場合は、 割れを予知し雰囲気制御する必要がある。 そ の制御モデルをつくってみると、 第 1 1図のようになる。 すなわち、 A Eを電気信号として検知し、 このデータをパソコンで記録し分析す るなどの情報処理を行い、 あらかじめ経験則的に設定されていた基準 値と比較して木材等の割れを予知する。 例えば、 1分間内に増幅率 8 0 d Bとして振幅 1 V以上の A Eを記録し、 その累積イベント数が 基準値を越えるか、 振幅が基準を越えた場合、 割れの警戒域になった と判断して、 蒸気注入部を作動させて熱処理室内に蒸気を短時間に多 量に注入し、 熱処理室内の湿度を調整すると共に、 加熱部の作動を制 御して熱処理室 (熱処理室) 内の温度を調整して、 木材等から A Eが 発生しない状態かあるいは A E信号が所定の基準以下の発生状態に維 持するように雰囲気を制御し、 このような雰囲気制御をしながら加熱 部を作動させて熱処理室内の温度を次第に高めて木材等に割れが生じ ないような高温加熱乾燥が実現できた。  Therefore, when heating wood at a high temperature so that it is not easily cracked like untreated wood, it is necessary to predict cracking and control the atmosphere. Fig. 11 shows the control model. That is, AE is detected as an electrical signal, and this data is recorded and analyzed by a personal computer, and information processing is performed. Cracks in wood and the like are predicted by comparing them with reference values that are set empirically in advance. For example, if an AE with an amplitude of 1 V or more was recorded within one minute with an amplification factor of 80 dB, and the cumulative number of events exceeded the reference value or the amplitude exceeded the reference value, it was said that a crack warning area was reached. Judging, the steam injection unit is activated to inject a large amount of steam into the heat treatment room in a short time, and the humidity in the heat treatment room is adjusted, and the operation of the heating unit is controlled to control the inside of the heat treatment room (heat treatment room). The temperature is adjusted to control the atmosphere so that no AE is generated from wood, etc., or the AE signal is maintained at a level below a predetermined standard, and the heating unit is operated while controlling such atmosphere As a result, the temperature in the heat treatment room was gradually increased, and high-temperature heating and drying without cracks in wood and the like was realized.
その結果、 当該含浸高温加熱乾燥材は乾燥度約 2 %程度で全く割れ の出ないものであるのに対し、 未含浸高温加熱処理材は多数の放射状 割れが確認された。 ぐ実施例 2 >  As a result, the impregnated high-temperature heat-dried material had a dryness of about 2% and had no cracks, whereas the non-impregnated high-temperature heat-treated material had many radial cracks. Example 2>
米ヒバ材の試験片 4 9 3 X 1 0 1 X 3 O m mを、 一気に 5 5 °Cに上 昇させ、 5 5〜6 5 °Cで 1 0 5時間加熱乾燥処理を行い、 それから温 度を常温まで降下させて完了した (第 1 2図) 。 その間の A Eの発生 状況を観測してみた。 第 1 3図はその際の未処理材の各振幅クラス 毎の A Eイベン ト状況を表したものである。 その結果、 含水率が 4 5 . 5 %から 1 3 . 2 %まで乾燥させたものである (第 1 6図) 。 この乾燥処理において割れは、 全く観察されなかった。 A piece of rice hiba wood, 493 x 101 x 3 Omm, was raised to 55 ° C at a stretch, heated and dried at 55 to 65 ° C for 105 hours, and then heated. The temperature was lowered to room temperature to complete the process (Fig. 12). During this time, we observed the occurrence of AE. Fig. 13 shows the AE event status for each amplitude class of untreated material at that time. As a result, it was dried from a water content of 45.5% to 13.2% (Fig. 16). No cracks were observed during this drying treatment.
本実施例の乾燥処理条件は、 第 1 2図に示す通り、 乾燥後半になる に従って厳しくなつている。 A Eのイベント数は、 1 0 0時間以降に 急激な増加を示している (第 1 4図、 第 1 5図) 。 しかし、 レベル毎 に分類すると、 第 1 3図のようになり、 0 . 5 V以上の A Eを力 ト すると第 1 4図のように少なく整理されている。 従って、 0 . 5 V以 下の A E信号は、 割れの発生には関与していないと考えられる。 これ からのグラフからも乾燥後半は乾燥条件を厳しく してよいことが分る が、 後半とは、 どの時点から示すかは明らかではない。  As shown in FIG. 12, the drying treatment conditions in the present embodiment become stricter in the latter half of drying. The number of AE events shows a sharp increase after 100 hours (Figs. 14 and 15). However, when classified by level, they are as shown in Fig. 13, and when an AE of 0.5 V or more is applied, they are reduced as shown in Fig. 14. Therefore, it is considered that the AE signal of 0.5 V or less does not contribute to the occurrence of cracks. From the following graphs, it can be seen that the drying conditions may be stricter in the latter half of drying, but it is not clear from which point the latter half is indicated.
しかし、 第 1 5図に示すように、 累積 A Eエネルギーをみると乾燥 は三段階に分けることは可能である。 すなわち、 累積 A Eエネルギー を示した第 1 5図から約 4 5時間、 約 9 5時間で累積 A Eエネルギー の勾配が明らかに変わるので、 4 5時間までを第 1段階、 4 5〜9 5 時間までを第二段階、 9 5時間以降を第三段階と分類できる。  However, as shown in Fig. 15, drying can be divided into three stages in terms of the accumulated AE energy. In other words, from Fig. 15 showing the cumulative AE energy, the gradient of the cumulative AE energy clearly changes in about 45 hours and about 95 hours, so the first stage is up to 45 hours and from 45 to 95 hours. Can be classified as the second stage, and after 95 hours as the third stage.
このように、 木材乾燥においては、 A E信号を解析して、 乾燥段階 を把握することが重要で、 各段階に応じた乾燥条件を設定することに より、 割れないように乾燥すること、 および乾燥期間の短縮が可能で ある。 産業上の利用可能性  As described above, in wood drying, it is important to analyze the AE signal to understand the drying stage, and by setting the drying conditions according to each stage, it is possible to dry so as not to crack and dry. The period can be shortened. Industrial applicability
本願第一発明は、 木材等に特定の有機含浸材を含浸させ、 水熱化学 学反応 (加水分解) させたうえで、 この含浸処理した木材等を加熱乾 燥処理を行なうものであり、 その加熱乾燥処理に際して木材等がその 木材構造の変化に伴ない発生するァコースティ ックエミヅションを信 号として検知して木材等の割れを予知し、 温度と湿度とを操作因子と して木材等に割れが生じないように雰囲気制御しながら乾燥処理を行 なう木材等の乾燥法である。 有機含浸剤の含浸によって、 木質に熱可 塑性を与えられるとともに、 加熱乾燥処理中は A Eを信号とし、 温度 と湿度とを操作因子とした雰囲気制御を行なうので、 これらが組み合 わさることにより含水率の多い生木からの処理であっても処理中の割 れをほぼ完全に防ぐことができ、 しかも処理時間が可及的に短縮され た効率的な乾燥処理ができるようになった。 その結果、 従来の乾燥処 理における歩留まりの低下防止と、 短時間乾燥処理という二律背反す る技術的要請を克服することができた。 The first invention of the present application is to impregnate wood or the like with a specific organic impregnating material, and to perform a hydrothermal chemical reaction (hydrolysis), and then heat and dry the impregnated wood or the like. During heating and drying treatment, wood and other materials are detected as acoustic emission generated by the change in the structure of the wood as a signal to predict cracking of the wood, etc., and cracks occur in the wood and the like using temperature and humidity as operating factors. This is a method for drying wood and the like, in which the drying process is performed while controlling the atmosphere so that there is no drying. By impregnating the organic impregnant, wood can be made thermoplastic, and during heat drying, AE is used as a signal and temperature and humidity are used as operating factors to control the atmosphere. By doing so, cracking during processing can be almost completely prevented even when processing raw wood with a high moisture content, and efficient drying can be performed with the processing time reduced as much as possible. Became. As a result, we were able to overcome the conflicting technical demands of preventing the yield from lowering in the conventional drying process and short-time drying process.
本願第二発明は、 木材等に特定の有機含浸材を含浸させ、 水熱化学 学反応 (加水分解) させてから、 加熱乾燥処理を行なう木材乾燥法で ある。 ここでいう加熱乾燥処理は、 従来の一般的な加熱乾燥処理法で あれば何でもよいのであって、 特に限定はない。 必ずしも A Eを信号 を検知し、 乾燥状態をリアルタイムに把握しなくてもよい。  The second invention of the present application is a wood drying method in which wood or the like is impregnated with a specific organic impregnating material, subjected to a hydrothermal chemical reaction (hydrolysis), and then heated and dried. The heating and drying treatment here is not particularly limited as long as it is a conventional general heating and drying treatment method. It is not always necessary to detect the AE signal and grasp the dry state in real time.
木材等は含浸処理によって、 木材が可塑化するので、 加熱によつ て、 木質層が収縮したり、 引っ張られたりしてもその応力に順応して 変形し、 割れを防ぐのである。 このため、 従来の一般的な加熱乾燥処 理法を採っていれば、 ほとんどの場合、 割れを起こさない。 つまり、 第一発明ほど確実な割れ防止率ではないが、 従来の乾燥法よりは飛躍 的に確率よく乾燥処理割れを防止できる。  Wood is plasticized by impregnation, so that even if the wood layer shrinks or is pulled by heating, it deforms in response to the stress and prevents cracking. For this reason, cracking does not occur in most cases if the conventional general heat drying treatment method is adopted. In other words, although the crack prevention rate is not as reliable as the first invention, the cracks in the drying treatment can be prevented with much higher probability than the conventional drying method.
本願第三発明は、 含浸処理はしないが、 乾燥処理工程において、 A Eを信号として検知し、 分析し、 割れを予知し、 雰囲気制御をして 割れを防止しながら、 加熱乾燥処理を行うもので、 これによつて、 歩 留り良く、 割れのない高品質の乾燥木材等を工業的に、 かつ効率良く 大量生産することができるようになった。  The third invention of the present application does not perform impregnation processing, but performs heat drying processing while detecting and analyzing AE as a signal in the drying step, predicting cracks, controlling the atmosphere, and preventing cracks. This has made it possible to industrially and efficiently mass-produce high-yield, crack-free, high-quality dry wood with good yield.

Claims

請求 の範 囲 The scope of the claims
1 . 丸太、 加工木材、 竹材等の各種の植物性加工材 (以下 「木材 等」 という) に、 ポリエチレングリコールゃメチルセ口ソルブ等の ォキシエーテル類、 多価アルコール類、 フヱノール類、 天然ゴムも しくは合成ゴム類またはこれらを組み合わせにかかる有機含浸剤を 含浸させ水熱化学反応 (加水分解) させる含浸処理をなし、  1. Various kinds of plant-based processed materials such as logs, processed wood, bamboo, etc. (hereinafter referred to as “wood, etc.”), oxyethers such as polyethylene glycol and methyl sorb, polyhydric alcohols, phenols, natural rubber or natural rubber. Impregnated with an organic impregnant for synthetic rubbers or a combination of these, and subjected to hydrothermal reaction (hydrolysis),
この含浸処理した木材等にァコーステックエミヅションセンサー を取り付け、 木材等がその木材構造の変化に伴い発生するァコース テックエミッショ ンを信号として検知し、 その信号を情報処理して 木材等の割れを予知し、 予知情報に基づき温度と湿度とを操作因子 として木材等に割れが生じないように雰囲気制御しながら常圧にて 1 0 0で以下の加熱処理を行なうようにしたことを特徴とする木材 等の乾燥法。  An acoustic emission sensor is attached to the impregnated wood, etc., and the wood, etc. detects the acoustic emission generated as a result of the change in the structure of the wood as a signal, and processes the signal to process cracks in the wood, etc. The temperature and humidity are used as operating factors based on the prediction information, and the following heat treatment is performed at 100 at normal pressure while controlling the atmosphere so that cracks do not occur in wood and the like. Method for drying wood.
2 . 木材等に、 ポリエチレングリコールゃメチルセ口ソルブ等のォ キシエーテル類、 多価アルコール類、 フ ノール類、 天然ゴムもし くは合成ゴム類またはこれらを組み合わせにかかる有機含浸剤を含 浸させ水熱化学反応 (加水分解) させる含浸処理をなした後、 加熱 乾燥させるようにしたことを特徴とする木材等の乾燥法。 2. Impregnate wood or the like with an organic impregnating agent such as polyethylene glycol-methyl sorbate, etc., polyhydric alcohols, phenols, natural rubber or synthetic rubber, or a combination of these to hydrothermally. A method for drying wood or the like, characterized in that it is impregnated with a chemical reaction (hydrolysis) and then heated and dried.
3 . 木材等にァコーステックェミッショ ンセンサーを取り付け、 木 材等がその木材構造の変化に伴い発生するァコーステックェミ ツ ショ ンを信号として検知し、 その信号の振幅を弁別して所定以上の 振幅をもったァコーステックエミヅショ ン信号をもって割れに対す る危険信号とし、 更に累積ァコーステックェミ ッショ ンイベン ト数 とァコーステックエミ ヅ ショ ン発生率をオンラインでモニタ リ ング しながら常に乾燥状態が初期、 中期、 後期のどの段階にあるのかを 識別しつつ、 識別された各処理段階におけるあらかじめ経験的に設 定されている累積アコ一ステックエミ ヅシヨ ンイベン ト数とアコ一 ステックエミ ヅ ショ ン発生率の基準値、 および割れ警戒基準値とを 比較しながら処理過程中の割れを予知し、 当該予知情報に基づき経 験的に定めたその段階における最適制御パターンを基準として、 温 度条件と湿度条件とを操作して木材等に割れが生じないように雰囲 気制御するようにしたことを特徴とする木材等の乾燥法。 3. Attach an acoustic emission sensor to the wood, etc., detect the acoustic emission generated by the timber, etc. as the wood structure changes, and discriminate the amplitude of the signal to determine The acoustic emission signal with the above amplitude is used as a danger signal for cracking, and the number of accumulated acoustic emission events and the incidence of acoustic emission are monitored online. While identifying the initial, middle, and late stages of the dry state, the number of accumulated acoustic emission events and acoustics that have been set empirically in each of the identified processing stages is determined. Predicting cracking during the treatment process by comparing the standard value of the stick emission rate and the crack warning standard value, and based on the optimal control pattern at that stage determined empirically based on the prediction information, A method for drying wood and the like, characterized by controlling the atmosphere so that cracks do not occur in the wood and the like by manipulating temperature and humidity conditions.
PCT/JP1990/001473 1989-11-13 1990-11-13 Drying method for wood or the like WO1991007261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1/294732 1989-11-13
JP1294732A JP2779962B2 (en) 1989-11-13 1989-11-13 Drying method for wood etc.

Publications (1)

Publication Number Publication Date
WO1991007261A1 true WO1991007261A1 (en) 1991-05-30

Family

ID=17811590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/001473 WO1991007261A1 (en) 1989-11-13 1990-11-13 Drying method for wood or the like

Country Status (2)

Country Link
JP (1) JP2779962B2 (en)
WO (1) WO1991007261A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001056A1 (en) * 1999-06-25 2001-01-04 The Regents Of The University Of California Special sticker and procedure for detecting acoustic emission (ae) or ultrasonic transmission during drying of lumber
US7814799B2 (en) 2005-09-09 2010-10-19 Korwensuun Konetehdas Oy Method for the determination of the stresses occurring in wood when drying
US8104190B2 (en) * 2006-12-29 2012-01-31 Signature Control Systems, Inc. Wood kiln moisture measurement calibration and metering methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4300555C2 (en) * 1993-01-12 1995-09-14 Alexander Schmidmeier Process for the production of dried, crack-free bamboo tubes with a closed cross-section
CN104325533B (en) * 2014-09-05 2016-08-17 汪加林 A kind of crack resistence method of bamboo carving
CN111397356A (en) * 2020-03-13 2020-07-10 湖北三盟机械制造有限公司 Variable-temperature drying method for grains
CN116852468A (en) * 2022-11-14 2023-10-10 千年舟新材科技集团股份有限公司 Light high-strength plate structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859801A (en) * 1981-10-06 1983-04-09 青森 佳穂 Crack arrester for wood
JPS637317B2 (en) * 1983-06-10 1988-02-16 Masami Noguchi

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136803A (en) * 1975-05-16 1976-11-26 Seisan Kaihatsu Kagaku Kenkyus Method of producing reformed woods
JPS58156176A (en) * 1982-03-10 1983-09-17 松下電工株式会社 Method of drying woody veneer
JPH0629451B2 (en) * 1986-06-27 1994-04-20 株式会社神戸製鋼所 Continuous operation method of arc heating and Ca treatment of molten steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859801A (en) * 1981-10-06 1983-04-09 青森 佳穂 Crack arrester for wood
JPS637317B2 (en) * 1983-06-10 1988-02-16 Masami Noguchi

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001056A1 (en) * 1999-06-25 2001-01-04 The Regents Of The University Of California Special sticker and procedure for detecting acoustic emission (ae) or ultrasonic transmission during drying of lumber
US7814799B2 (en) 2005-09-09 2010-10-19 Korwensuun Konetehdas Oy Method for the determination of the stresses occurring in wood when drying
US8104190B2 (en) * 2006-12-29 2012-01-31 Signature Control Systems, Inc. Wood kiln moisture measurement calibration and metering methods

Also Published As

Publication number Publication date
JP2779962B2 (en) 1998-07-23
JPH03156281A (en) 1991-07-04

Similar Documents

Publication Publication Date Title
Barile et al. Application of different acoustic emission descriptors in damage assessment of fiber reinforced plastics: A comprehensive review
Li et al. Long-term service evaluation of a pultruded carbon/glass hybrid rod exposed to elevated temperature, hydraulic pressure and fatigue load coupling
JP2717713B2 (en) Modification treatment method for wood, etc.
Karimi et al. Effect of the drilling process on the compression behavior of glass/epoxy laminates
WO1991007261A1 (en) Drying method for wood or the like
Park et al. Interfacial evaluation of single Ramie and Kenaf fiber/epoxy resin composites using micromechanical test and nondestructive acoustic emission
Barbulée et al. Damage to flax fibre slivers under monotonic uniaxial tensile loading
US4806292A (en) System for stabilizing dimensional properties of cured composite structures
Hannah et al. Bending creep performance of modified timber
Landis et al. Acoustic emissions in wood
Zhao et al. Bending properties and design strength of reconstituted bamboo at different temperatures
Rosner Waveform features of acoustic emission provide information about reversible and irreversible processes during spruce sapwood drying
Bertolin et al. Acoustic Emission NDT for monitoring hygro-mechanical reactions of coated pine wood: a methodological approach
CN112857987A (en) Machine learning algorithm for judging microscopic cracking mode based on acoustic emission characteristics
Sippola et al. In situ longitudinal tensile tests of pine wood in an environmental scanning electron microscope
Rice et al. Acoustic emission patterns from the surfaces of red oak wafers under transverse bending stress
DSouza et al. Hygrothermal interfacial degradation of flax fibre micro-composites using micro-droplet test
Malolan et al. Comparison of acoustic emission parameters for fiber breakage and de-lamination failure mechanisms in carbon epoxy composites
Xu et al. Effect of UV‐water weathering on the mechanical properties of flax‐fiber‐reinforced polymer composites
Karthik et al. AE based failure load prediction of GFRP composite laminates using multivariate statistical analysis
Ghosh Microstructural analysis to understand the strength of teak wood using experimental methods
Houts et al. Viscoelastic behaviour of wood fibres during the hot pressing of medium density fibreboard
Tittmann et al. Acoustic emission technique for monitoring the pyrolysis of composites for process control
Pan et al. Damage Mode Identification of CFRP-Strengthened Beam Based on Acoustic Emission Technique
Buxton et al. Predicting the behaviour of the carbon-fibre/epoxy interface under different service conditions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

NENP Non-entry into the national phase

Ref country code: CA