WO1991003729A1 - Apparatus for measuring the refractive index of gaseous media - Google Patents

Apparatus for measuring the refractive index of gaseous media Download PDF

Info

Publication number
WO1991003729A1
WO1991003729A1 PCT/GB1990/001393 GB9001393W WO9103729A1 WO 1991003729 A1 WO1991003729 A1 WO 1991003729A1 GB 9001393 W GB9001393 W GB 9001393W WO 9103729 A1 WO9103729 A1 WO 9103729A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
chamber
radiation
component beams
measuring
Prior art date
Application number
PCT/GB1990/001393
Other languages
French (fr)
Inventor
Michael John Downs
Keith Patrick Birch
Original Assignee
Michael John Downs
Keith Patrick Birch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michael John Downs, Keith Patrick Birch filed Critical Michael John Downs
Publication of WO1991003729A1 publication Critical patent/WO1991003729A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods

Definitions

  • This invention relates to optical measuring instruments and, in particular, to apparatus for measuring the refractive index of gases.
  • optical apparatus for measuring the refractive index of gaseous media including radiation source means to produce a beam of polychromatic radiation, beam splitter means to produce a pair of component beams from said beam of polychromatic radiation, dual chamber cell means have first and second chambers, deflector means to direct a first of said pair of component beams through said first chamber and said second of said pair of component beams through said second chamber, recombining means to recombine said first and said second component beams after passage through said chamber, dispersion means differentially to deflect radiation of different wavelengths in said first and second component beams after recombination and sensing means disposed to received radiation deflected by said dispersion means.
  • Figure 1 depicts an optical measuring instrument which uses several laser wavelengths.
  • Laser light from a source L is reflected by a mirror M ⁇ and is then incident on a fused silica beam splitter BS which has a semi-reflecting front surface and a fully reflecting back surface.
  • the reflected beam 1 from the front surface travels down the outer arm 3 of a dual compartment cell 5 and is returned by a corner cube reflector 7 along a parallel path to the beam splitter.
  • the transmitted beam 9 through the beam splitter is reflected by the fully aluminised back surface and travels down the inner arm 11 of the instrument before being returned by the cube corner reflector 7 to the beam splitter BS where it is reco bined with the beam that has travelled along the outer arm.
  • This configuration of refractometer is used to determine the change in optical path length between the two arms by using the measurement of the fringe fractions at each of the wavelengths used. For example, when a dual wavelength laser is used emitting wavelengths X x and ⁇ 2 any change in optical path length (dl) in either of the arms of the instrument is given by (if air dispersion is ignored):
  • x and 2 are the integer numbers of the interference orders and ⁇ x and ⁇ 2 are the fringe fractions for each wavelength.
  • This sequence of fringe fractions will be repeated every time the optical path length changes by ⁇ 1 ⁇ 2 /( ⁇ 1 - ⁇ 2 ) .
  • a third fringe fraction from an additional wavelength can be used or an approximate value of dl is employed which is determined by other means. Hence any change in optical path length can be obtained in this way without using continuous fringe counting.
  • the inner chamber of the cell has a known constant optical path length whilst the outer chamber contains the air requiring refractive index measurement. From both the measurement of the fringe fractions under these conditions and also when the refractometer has an identical optical path length in both arms, a value for the refractive index of air [n 1 ( ⁇ >] at wavelength ⁇ can be precisely determined from the simple equation:
  • n x (X) n 2 ( ⁇ ) + dl( ⁇ ) + ⁇ (2)
  • n 2 ( ⁇ ) is the refractive index of the medium contained in the inner cell chamber at wavelength ⁇
  • dl( ⁇ ) is the induced path length change
  • is a correction for any additional optical path length changes induced during the measurement procedure.
  • the second of these alternatives is preferable since dual wavelength lasers are readily available with the same common wavelength (633nm) as that used in length measuring interferometers which, for the highest accuracy length measurements in air, would require correspondingly accurate air refractive index values.
  • a suitable value of dl( ⁇ ) can be easily obtained using inexpensive and rugged pressure and temperature sensors with respective accuracies of ⁇ 500 Pa and ⁇ 1°C.
  • the above embodiment of the invention uses a gas cell that has an inner chamber with a known constant optical path length and this must be maintained to within about 3nm over the ambient ranges of atmospheric pressure and air temperature in order to achieve a measurement accuracy of 1 x 10 ⁇ 8 in air refractive index.
  • This can be realised by using a cell which has either a permanently evacuated central chamber which incorporates a getter pump for maintaining and monitoring the vacuum or a central chamber that is filled with dry gas at atmospheric pressure.
  • Both of these approaches require an initial measurement of the length (1) of each cell to an accuracy of about ⁇ l ⁇ m (equivalent to an uncertainty of 1 x 10 ⁇ 9 in refractive index measurement using a cell of length 31cm) followed by the insertion of the cell into the refractometer and the evacuation of both cell chambers to determine the dual wavelength "zero" fringe fractions which should be identical since both optical paths are exactly equal. This ensures that there are no anomalous dispersion effects which could lead to measurement errors.
  • the inner chamber is sealed with the vacuum being maintained and monitored by a getter pump and air is leaked into the outer chamber following which the dual wavelength fringe fractions are determined.
  • Atmospheric pressure and air temperature are also measured and these values are used to calculate an approximate air refractive index value from Edlen's equation which, with the measurement of the cell length, allows the change in optical path length Cdl( ⁇ )] to be calculated to within a few fringes.
  • the refractometer is now ready for the continuous measurement of refractive index with the requirement for weekly or monthly repeat determinations of the "zero" fringe fractions.
  • the inner chamber is filled with dry air from a gas cylinder following which this chamber is sealed at atmospheric pressure.
  • the dual wavelength fringe fractions together with the pressure and temperature of the air in the cell are similarly determined.
  • n2( ⁇ ) n3( ⁇ ) + dl( ⁇ ) + ⁇ ( 3)
  • the refractometer is now ready for the continuous measurement of air refractive indices with similar measurement requirements for the "zero" fringe fractions as those discussed previously.
  • fused silica is used to fabricate the cell. This results is an insignificant refractive index correction due to variations in the cell volume induced by ambient temperature changes.
  • the first type of cell has the advantage that the refractive index of the medium is exactly 1.000 and.
  • a refractometer can be operated in two modes to produce refractive index data.
  • the first version shown in Figure 1, allows the optical path in the inner arm to be varied by a few interferometer fringes in order to determine the fringe fractions.
  • This path length variation which is illustrated in Figure 2, is produced by uniformly varying the pressure in the single compartment cell and monitoring the induced change in optical path as a function of time.
  • Figure 2 shows two amplified interferometer signals produced by the photodetectors located in the output beams of the refractometer with each photodetector monitoring the interfering output from each wavelength as, in the illustration, the optical path length is varied.
  • a clock which generates equally spaced pulses is reset.
  • fringe fractions at each wavelength may now be easily determined as the simple fractions ⁇ N j /N j and ⁇ N 2 /N 2 for and ⁇ 2 respectively. In this way fringe fraction data is obtained from which the air refractive index can be determined using those techniques described earlier.
  • the second embodiment of the invention is shown in Figure 3 which illustrates the required change in the arrangement for dual wavelength operation.
  • the plane of polarisation of the light emitted by the laser is required to have an angle of 45° to the plane of the diagram.
  • a quarter-wave plate 15 designed for use at the two wavelengths is inserted into one of the arms of the refractometer and this introduces a 90° phase delay between the 's' and 'p' polarised components of the laser light.
  • the normal interfering 17 and non-interfering 19 output beams are used which are separated into their discrete wavelength components by a dispersive prism.
  • the non-interfering output beams are incident on photodetectors P ⁇ and P 2 whilst the interfering output is separated into 's' and 'p' polarised components by a polarising beam splitter.
  • the intensity of these polarised components is monitored by photodetectors P 3 to P 6 .
  • This arrangement provides phase quadrature fringe detection and using the techniques described by PLM Heydemann in Applied Optics 20, 3382 (1981).
  • the technique relies on calibrating the fringe detection electronics by modulating the optical path length in the refractometer in the same manner as that described previously. If a third wavelength is available an additional three photodetectors are required to measure the intensity of the non-interfering and interfering components.
  • path length modulation is carried out every time fringe fraction data is required and in this way drift in the detection electronics is eliminated, whilst in the second embodiment an initial calibration of the interferometer signals allows fringe fractions to be determined for several hours without recalibration provided the laser intensity and the photodetector electronics are sufficiently stable.

Abstract

A refractometer for gaseous media including a polychromatic laser source (L) to produce a beam of radiation, a beam splitter (BS) to separate the radiation into a pair of component beams from said beam of polychromatic radiation, a sample cell (5) having first and second chambers, one of which provides a known standard optical path and a dispersive component (P) to separate out the polychromatic components of the component beams prior to fringe measurement.

Description

APPARATUS FOR MEASURING THE REFRACTIVE INDEX OF GASEOUS MEDIA
This invention relates to optical measuring instruments and, in particular, to apparatus for measuring the refractive index of gases.
In British Patent No. 2120383B, there is described a portable optical instrument for precisely determining the refractive index of air using a laser source which emitted one wavelength together with a double path optical interferometer and a gas cell of known length in one of the paths. The measurement procedure required the cell to be initially evacuated following which the sample gas was leaked into the cell and the corresponding change in optical path length was determined by continuously counting interference fringes. From the knowledge of the cell length and the change induced in the optical path length, a value for the refractive index of the gas could be easily obtained. However, any further refractive index measurements normally required this complete measurement procedure to be repeated. We have now devised an interferometer which, while having similar refractive index measurement accuracy, has a number of significant improvements:
1) it uses multiwavelength laser technology which reduces the overall cost of the instrumentation. 2) it employs a dual chamber gas cell which contains a medium with a constant refractive index in the inner chamber. This, together with 1), eliminates the requirement for the regular evacuation of the cell which was necessary for the operation of the original refractometer.
3) it can be operated in two modes to produce refractive index measurements. According to the present invention there is provided optical apparatus for measuring the refractive index of gaseous media including radiation source means to produce a beam of polychromatic radiation, beam splitter means to produce a pair of component beams from said beam of polychromatic radiation, dual chamber cell means have first and second chambers, deflector means to direct a first of said pair of component beams through said first chamber and said second of said pair of component beams through said second chamber, recombining means to recombine said first and said second component beams after passage through said chamber, dispersion means differentially to deflect radiation of different wavelengths in said first and second component beams after recombination and sensing means disposed to received radiation deflected by said dispersion means.
The invention will be specifically described with reference to the accompanying drawings, in which:- Figure la and b depicts an optical measuring instrument in accordance with a specific embodiment of the invention; Figure 2 is an explanatory diagram showing various signals associated with the instrument of Figure 1; and Figure 3 depicts another embodiment of the invention.
Referring now to the drawings, Figure 1 depicts an optical measuring instrument which uses several laser wavelengths.
Laser light from a source L is reflected by a mirror Mχ and is then incident on a fused silica beam splitter BS which has a semi-reflecting front surface and a fully reflecting back surface. The reflected beam 1 from the front surface travels down the outer arm 3 of a dual compartment cell 5 and is returned by a corner cube reflector 7 along a parallel path to the beam splitter. The transmitted beam 9 through the beam splitter is reflected by the fully aluminised back surface and travels down the inner arm 11 of the instrument before being returned by the cube corner reflector 7 to the beam splitter BS where it is reco bined with the beam that has travelled along the outer arm. These superposed beams, which produce interference, are reflected by mirror M and separated into discrete wavelength components by a dispersive prism P. The intensity of the light at each wavelength, which is directly related to the phase of the interference, is incident upon separate photodetectors (labelled Pχ to Pa in the drawing) that produce electrical signals for processing from which interference fringe fractions are determined. The instrument also uses a single compartment gas cell 13 through which only the transmitted beam 9 passes.
This configuration of refractometer is used to determine the change in optical path length between the two arms by using the measurement of the fringe fractions at each of the wavelengths used. For example, when a dual wavelength laser is used emitting wavelengths Xx and λ2 any change in optical path length (dl) in either of the arms of the instrument is given by (if air dispersion is ignored):
dl = (m1 + Φi)}^ = (m2 + Φ22 (1)
where x and 2 are the integer numbers of the interference orders and φx and φ2 are the fringe fractions for each wavelength.
This sequence of fringe fractions will be repeated every time the optical path length changes by λ1λ2/(λ12) . To remove this ambiguity either a third fringe fraction from an additional wavelength can be used or an approximate value of dl is employed which is determined by other means. Hence any change in optical path length can be obtained in this way without using continuous fringe counting.
For the specific case of the refractometer, a dual compartment gas cell is used which has an approximate length of 1=31.64 cm. This length is chosen so that one fringe of optical path length change is approximately equal to a change of 1 x 10~6 in refractive index. The inner chamber of the cell has a known constant optical path length whilst the outer chamber contains the air requiring refractive index measurement. From both the measurement of the fringe fractions under these conditions and also when the refractometer has an identical optical path length in both arms, a value for the refractive index of air [n1(λ>] at wavelength λ can be precisely determined from the simple equation:
nx(X) = n2(λ) + dl(λ) + σ (2)
1
where n2(λ) is the refractive index of the medium contained in the inner cell chamber at wavelength λ, dl(λ) is the induced path length change and σ is a correction for any additional optical path length changes induced during the measurement procedure. The multiwavelength requirements discussed in the previous section ideally require a single laser source that continuously emits three separate wavelengths for the unambiguous determination of optical path length changes. However, a simple source of this type does not currently exist but can be simulated by using:
1) different laser sources to illuminate separate optical fibres which have a common output for illuminating the refractometer.
2) both a single laser source which emits two wavelengths and, to eliminate ambiguities, a sufficiently accurate value of dl(λ) derived from the known length 1 of the cell together with a value of air refractive index which may be calculated from Edlen's equation CB. Edlen "The refractive index of air" Metrologia 2, 71 (1966)3 using the measurement of atmospheric pressure and air temperature; or
3) both a single laser source which emits one wavelength together with an improved value of dl(λ), derived in the same manner as 2) above, but using higher accuracy atmospheric pressure and air temperature measurements. This is only possible if it is known that any variations in the air constituents do not cause the measured and calculated optical path differences to vary by >0.5 fringe. The second of these alternatives is preferable since dual wavelength lasers are readily available with the same common wavelength (633nm) as that used in length measuring interferometers which, for the highest accuracy length measurements in air, would require correspondingly accurate air refractive index values. In addition a suitable value of dl(λ) can be easily obtained using inexpensive and rugged pressure and temperature sensors with respective accuracies of ±500 Pa and ±1°C.
The above embodiment of the invention uses a gas cell that has an inner chamber with a known constant optical path length and this must be maintained to within about 3nm over the ambient ranges of atmospheric pressure and air temperature in order to achieve a measurement accuracy of 1 x 10~8 in air refractive index. This can be realised by using a cell which has either a permanently evacuated central chamber which incorporates a getter pump for maintaining and monitoring the vacuum or a central chamber that is filled with dry gas at atmospheric pressure. Both of these approaches require an initial measurement of the length (1) of each cell to an accuracy of about ±lμm (equivalent to an uncertainty of 1 x 10~9 in refractive index measurement using a cell of length 31cm) followed by the insertion of the cell into the refractometer and the evacuation of both cell chambers to determine the dual wavelength "zero" fringe fractions which should be identical since both optical paths are exactly equal. This ensures that there are no anomalous dispersion effects which could lead to measurement errors.
For the first type of cell, the inner chamber is sealed with the vacuum being maintained and monitored by a getter pump and air is leaked into the outer chamber following which the dual wavelength fringe fractions are determined. Atmospheric pressure and air temperature are also measured and these values are used to calculate an approximate air refractive index value from Edlen's equation which, with the measurement of the cell length, allows the change in optical path length Cdl(λ)] to be calculated to within a few fringes. Finally the dual wavelength fringe fractions, with this approximate value of air refractive index, enables the exact optical path difference to be determined and hence the refractive index of the ambient air is now readily given by equation (2) since n2(λ) = 1.000. The refractometer is now ready for the continuous measurement of refractive index with the requirement for weekly or monthly repeat determinations of the "zero" fringe fractions.
In the second case, after the evacuation of both cell chambers and the determination of the dual wavelength "zero" fringe fractions, the inner chamber is filled with dry air from a gas cylinder following which this chamber is sealed at atmospheric pressure. The dual wavelength fringe fractions together with the pressure and temperature of the air in the cell are similarly determined. Using a similar technique as that described in the first case the refractive index [n2(λ)] of the air contained in the cell can now be determined precisely from the following equation since n3(λ) = 1.000:
n2(λ) = n3(λ) + dl(λ) + σ (3)
1
Ambient air is admitted into the outer chamber and again the fringe fractions, atmospheric pressure and air temperature are determined from which the refractive index of the air is obtained from equation (2) in the manner previously described. The refractometer is now ready for the continuous measurement of air refractive indices with similar measurement requirements for the "zero" fringe fractions as those discussed previously. In order to ensure that the refractive index in the inner chamber remains constant fused silica is used to fabricate the cell. This results is an insignificant refractive index correction due to variations in the cell volume induced by ambient temperature changes. In summary the first type of cell has the advantage that the refractive index of the medium is exactly 1.000 and. therefore, does not require the additional measurement stage of using equation (3) whilst the second cell is both easier to fabricate and maintain in a lead-free condition. The dispersion of air must also be considered which for the two wavelengths proposed (612 and 633nm) introduces a difference of about 3 x 10~7 in refractive index at NPT for which a correction must be applied. However if the cell is used which has an air filled central chamber this correction will be reduced by the factor pχ/p2 where pχ is the original pressure of the air in the central chamber and p2 is the ambient atmospheric pressure. This factor can be easily determined since pχ and p2 will already be routinely measured with a sufficient accuracy.
A refractometer can be operated in two modes to produce refractive index data. The first version, shown in Figure 1, allows the optical path in the inner arm to be varied by a few interferometer fringes in order to determine the fringe fractions. This path length variation, which is illustrated in Figure 2, is produced by uniformly varying the pressure in the single compartment cell and monitoring the induced change in optical path as a function of time.
Figure 2 shows two amplified interferometer signals produced by the photodetectors located in the output beams of the refractometer with each photodetector monitoring the interfering output from each wavelength as, in the illustration, the optical path length is varied. Prior to modulation, at time t=0, a clock which generates equally spaced pulses is reset. The number of pulses is counted for the time each fringe signal takes to cross the zero volt line as the optical path length is changed in a given direction - these are at times t=a, b, c and d in the drawing. In addition the number of pulses per fringe is counted and these are determined in the illustration between times t=a and c and t=b and d for λj and λ2 respectively. The fringe fractions at each wavelength may now be easily determined as the simple fractions ΔNj/Nj and ΔN2/N2 for and λ2 respectively. In this way fringe fraction data is obtained from which the air refractive index can be determined using those techniques described earlier.
The second embodiment of the invention is shown in Figure 3 which illustrates the required change in the arrangement for dual wavelength operation. The plane of polarisation of the light emitted by the laser is required to have an angle of 45° to the plane of the diagram. A quarter-wave plate 15 designed for use at the two wavelengths is inserted into one of the arms of the refractometer and this introduces a 90° phase delay between the 's' and 'p' polarised components of the laser light. The normal interfering 17 and non-interfering 19 output beams are used which are separated into their discrete wavelength components by a dispersive prism. The non-interfering output beams are incident on photodetectors Pχ and P2 whilst the interfering output is separated into 's' and 'p' polarised components by a polarising beam splitter. The intensity of these polarised components is monitored by photodetectors P3 to P6. This arrangement provides phase quadrature fringe detection and using the techniques described by PLM Heydemann in Applied Optics 20, 3382 (1981). The technique relies on calibrating the fringe detection electronics by modulating the optical path length in the refractometer in the same manner as that described previously. If a third wavelength is available an additional three photodetectors are required to measure the intensity of the non-interfering and interfering components.
In the first embodiment, path length modulation is carried out every time fringe fraction data is required and in this way drift in the detection electronics is eliminated, whilst in the second embodiment an initial calibration of the interferometer signals allows fringe fractions to be determined for several hours without recalibration provided the laser intensity and the photodetector electronics are sufficiently stable.

Claims

Claims
1. Optical apparatus for measuring the refractive index of gaseous media including radiation source means (L) to produce a beam of radiation, beam splitter (BS) means to produce a pair of component beams from said beam of polychromatic radiation, dual chamber cell means (5) having first and second chambers, deflector means to direct a first of said pair of component beams through said first chamber and said second chamber and said second of said pair of component beams through said second chamber, reco bining means (BS) to reco bine said first and said second component beams after passage through said chambers, characterised in that said radiation source means is adapted to produce a beam of polychromatic radiation and dispersion means (P) is provided differentially to deflect radiation of different wavelengths in said first and second component beams after recombination and sensing means Pi_Pa disposed to received radiation deflected by said dispersion means.
2. Optical apparatus for measuring the refractive index of gaseous media as claimed in claim 1 characterised in that a further chamber (13) is provided through which chamber only one of said pair of component beams passes.
3. Optical apparatus for measuring the refractive index of gaseous media as claimed in claim 1 character sed in that said radiation source means (L) comprises a laser adapted simultaneously to emit radiation of at least three different wavelengths.
4. Optical apparatus for measuring the refractive index of gaseous media as claimed in claim 1 characterised in that said radiation source means (L) comprises a a plurality of lasers adapted simultaneously to emit into optical fibres which fibres have a common output.
5. Optical apparatus for measuring the refractive index of gaseous media as claimed in claim 1 characterised in that it further includes phase delay means (15) together with phase quadrature detection means (M3,P3-P6).
6. A method of measuring the refractive index of a gaseous medium characterised in that it comprises splitting a polychromatic beam of radiation into a pair of component beams, passing one of said component beams through one chamber of a dual chamber cell so that it traverses a predetermined, known optical path, passing the second of said pair of component beams through the second chamber of said dual chamber cell, recombining said component beams, separating the chromatic components of the recombined beam and measuring changes in interference fringes as said gaseous medium is allowed to enter said second chamber.
PCT/GB1990/001393 1989-09-08 1990-09-07 Apparatus for measuring the refractive index of gaseous media WO1991003729A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8920366.5 1989-09-08
GB898920366A GB8920366D0 (en) 1989-09-08 1989-09-08 Optical measuring instruments

Publications (1)

Publication Number Publication Date
WO1991003729A1 true WO1991003729A1 (en) 1991-03-21

Family

ID=10662775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1990/001393 WO1991003729A1 (en) 1989-09-08 1990-09-07 Apparatus for measuring the refractive index of gaseous media

Country Status (4)

Country Link
EP (1) EP0490957A1 (en)
JP (1) JPH05500419A (en)
GB (2) GB8920366D0 (en)
WO (1) WO1991003729A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018424A1 (en) * 1997-10-02 1999-04-15 Zygo Corporation Interferometric method and apparatus
US6124931A (en) * 1997-10-02 2000-09-26 Zygo Corporation Apparatus and methods for measuring intrinsic optical properties of a gas
WO2000065303A1 (en) * 1999-04-28 2000-11-02 Zygo Corporation Gas insensitive interferometric apparatus and methods
US6219144B1 (en) 1997-10-02 2001-04-17 Zygo Corporation Apparatus and method for measuring the refractive index and optical path length effects of air using multiple-pass interferometry

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351527B2 (en) * 1991-11-08 2002-11-25 ブリテイッシュ・テクノロジー・グループ・リミテッド Measuring device
EP1058810B1 (en) * 1998-02-23 2013-07-03 Zygo Corporation Apparatus and methods for measuring intrinsic optical properties of a gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455271A1 (en) * 1979-04-24 1980-11-21 Electricite De France Measuring leakage from pressurised container - is determined by calculator from change in refractive index of contents
EP0094836A1 (en) * 1982-05-18 1983-11-23 National Research Development Corporation Apparatus and method for measuring refractive index
DE3306709A1 (en) * 1983-02-22 1984-08-30 Stanislav Konstantinovič Lytkarino Moskovskaja oblast' Štandel Method for measuring the optical length of a light path, and laser interferometer for carrying out this method
EP0163847A2 (en) * 1984-04-14 1985-12-11 Firma Carl Zeiss Interferential refractometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455271A1 (en) * 1979-04-24 1980-11-21 Electricite De France Measuring leakage from pressurised container - is determined by calculator from change in refractive index of contents
EP0094836A1 (en) * 1982-05-18 1983-11-23 National Research Development Corporation Apparatus and method for measuring refractive index
DE3306709A1 (en) * 1983-02-22 1984-08-30 Stanislav Konstantinovič Lytkarino Moskovskaja oblast' Štandel Method for measuring the optical length of a light path, and laser interferometer for carrying out this method
EP0163847A2 (en) * 1984-04-14 1985-12-11 Firma Carl Zeiss Interferential refractometer

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J. Phys. E., Volume 21, No. 7, July 1988 K.P. BIRCH et al.: " The Results of a Comparison Between Calculated and Measured Values of the Refractive Index of Air", pages 694-695 *
Optics Communications, Volume 44, No. 1, December 1982, (North.Holland, NL) H. MATSUMOTO: " Measurement of the Group Refractive Index of Air by Two-Wavelength Interferometry.", pages 5-7 *
PATENT ABSTRACTS OF JAPAN, Volume 11, No. 341 (E-554)(2788), 7 November 1987, & JP, A, 62120090 (Nec Corp.) 6 January 1987 *
PATENT ABSTRACTS OF JAPAN, Volume 2. 13 March 1978 & JP, A, 53003356 (Mitsubishi) 13 January 1978 *
Rev. Sci. Instrum, Volume 59, No. 8 August 1988 T. LEHECKA et al.: "Two-Color Interferometry for Fusion Plasma Diagnostics", pages 1580-1581 see figure 1; page 1581, left-hand column, lines 16-20 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018424A1 (en) * 1997-10-02 1999-04-15 Zygo Corporation Interferometric method and apparatus
US6124931A (en) * 1997-10-02 2000-09-26 Zygo Corporation Apparatus and methods for measuring intrinsic optical properties of a gas
US6219144B1 (en) 1997-10-02 2001-04-17 Zygo Corporation Apparatus and method for measuring the refractive index and optical path length effects of air using multiple-pass interferometry
US6330065B1 (en) 1997-10-02 2001-12-11 Zygo Corporation Gas insensitive interferometric apparatus and methods
WO2000065303A1 (en) * 1999-04-28 2000-11-02 Zygo Corporation Gas insensitive interferometric apparatus and methods

Also Published As

Publication number Publication date
GB2236181B (en) 1993-07-28
EP0490957A1 (en) 1992-06-24
GB2236181A (en) 1991-03-27
GB8920366D0 (en) 1989-10-25
GB9019648D0 (en) 1990-10-24
JPH05500419A (en) 1993-01-28

Similar Documents

Publication Publication Date Title
US4685803A (en) Method and apparatus for the measurement of the refractive index of a gas
KR100328007B1 (en) Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry
EP0281385B1 (en) Plane mirror interferometer
US6795188B2 (en) High-accuracy wavemeter
US5838485A (en) Superheterodyne interferometer and method for compensating the refractive index of air using electronic frequency multiplication
US5757489A (en) Interferometric apparatus for measuring a physical value
US4974961A (en) Optical fibre measuring system
Downs et al. Bi-directional fringe counting interference refractometer
GB2261299A (en) Optical interferometer
US5517022A (en) Apparatus for measuring an ambient isotropic parameter applied to a highly birefringent sensing fiber using interference pattern detection
JPH03180704A (en) Laser interference gauge
US3424531A (en) Distance measuring instrument using a pair of modulated light waves
WO1991003729A1 (en) Apparatus for measuring the refractive index of gaseous media
US5483344A (en) Process and apparatus for performing differential refractive index measurements using interference of modulated light beams passing through reference and test samples
US4611915A (en) Absolute distance sensor
US3625616A (en) Interferometric pressure sensor
CN108627084A (en) A kind of laser wavelength calibration system based on static Michelson's interferometer
EP0920600B1 (en) Superheterodyne interferometer and method for compensating the refractive index of air using electronic frequency multiplication
EP0920599B1 (en) Measuring the effects of the refractive index of a gas using different multiple path interferometry ( superhetrodyne )
US6654124B2 (en) Signal modulation compensation for wavelength meter
WO1999018424A1 (en) Interferometric method and apparatus
JPH01210850A (en) Refractive index fluctuation measuring instrument
SU363022A1 (en) ALL-UNION * TENT1SH.HEHN | 11GGN | (d ^ ;,
EP1058810B1 (en) Apparatus and methods for measuring intrinsic optical properties of a gas
JPS60104236A (en) Method and device for measuring mode double refractive index of polarized wave maintaining optical fiber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990913515

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990913515

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990913515

Country of ref document: EP