WO1991000935A1 - Porous fiber and production thereof - Google Patents

Porous fiber and production thereof Download PDF

Info

Publication number
WO1991000935A1
WO1991000935A1 PCT/JP1990/000890 JP9000890W WO9100935A1 WO 1991000935 A1 WO1991000935 A1 WO 1991000935A1 JP 9000890 W JP9000890 W JP 9000890W WO 9100935 A1 WO9100935 A1 WO 9100935A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
porous
unit
hydrophilic copolymer
range
Prior art date
Application number
PCT/JP1990/000890
Other languages
French (fr)
Japanese (ja)
Inventor
Toshinobu Koshoji
Hironari Honda
Kiyonobu Okamura
Kunio Misoo
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Publication of WO1991000935A1 publication Critical patent/WO1991000935A1/en
Priority to KR1019930700329A priority Critical patent/KR930701265A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/30Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising olefins as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins

Definitions

  • the present invention relates to a porous polyolefin-based fiber. Background technology
  • a method for making the fibers porous for example, a method in which a blowing agent is blended into a thermoplastic polymer, melt-spun, and the foaming agent is decomposed at the spinning stage to cause foaming to make the fibers porous.
  • a blowing agent is blended into a thermoplastic polymer, melt-spun, and the foaming agent is decomposed at the spinning stage to cause foaming to make the fibers porous.
  • the additives for pore formation inorganic salts, organic low molecular weight compounds, etc.
  • hydrophilic fibers Various materials are used as materials for hydrophilic fibers, but attention has been paid to the development of polyolefin steel fibers, which are superior in terms of strength and the like, to applications that require hydrophilicity.
  • hydrophilization treatment is required to develop polyrefin fibers for applications requiring hydrophilicity.
  • a hydrophilizing agent such as a surfactant
  • the obtained hydrophilic fibers are not liable to fall off due to contact with water. Therefore, there is a problem of losing hydrophilicity.
  • good performance fibers cannot be obtained due to poor affinity between the hydrophilic substance and polyolefin. There's a problem. Disclosure of the invention
  • the inventors of the present invention have conducted intensive studies in view of the above-mentioned situation, and as a result, it has been found that excellent results are obtained by melt-spinning and drawing a blend of a hydrophilic copolymer having specific performance in a polyolefin.
  • the present inventors have found that a porous fiber having a porous structure and permanent hydrophilicity and which can simultaneously satisfy various properties such as lightness, soft feel, and water absorption can be obtained. .
  • the porous fiber of the present invention that can achieve these objects has the following formula: One one
  • R 1 and R 2 independently represent a hydrogen or a methyl group, and n is 1 to 9.
  • This porous fiber is obtained by melt-spinning a blend of a hydrophilic copolymer mainly composed of a monomer unit A and an ethylene unit B represented by the above formula, and a polyolefin Y, and is not drawn.
  • a method comprising the steps of:
  • the porous polyolefin-based fiber of the present invention is entirely surrounded by lamellas and a number of longitudinally arranged fibrils connecting the lamellas from the fiber surface to the fiber center.
  • the space has a communicating pore structure It has a large surface area, is very lightweight, has a soft feel, has a clear white appearance without a sense of transparency, and exhibits excellent mechanical properties despite its high porosity.
  • the porous fiber of the present invention since the undrawn fiber obtained by melt-spinning a blend having a specific composition is made porous, the porous fiber is extracted by the extraction method. It does not contain a solvent such as the obtained porous fiber or an additive for forming pores. Therefore, the porous fiber of the present invention is a sanitary material and has a permanent hydrophilic property, so that it is used as a material for clothing that directly touches the skin, such as underwear, which is required to have excellent sweat absorption properties. Or as a medical fabric material. Further, the porous fiber of the present invention can be used as a material for various industrial materials including wipers and adsorption materials by utilizing its large water content and water absorption in pores. is there. BEST MODE FOR CARRYING OUT THE INVENTION
  • the porous fiber of the present invention comprises a hydrophilic copolymer X having a monomer unit A and an ethylene unit B represented by the above-mentioned formula as main components, and a polyolefin Y, And a number of longitudinal arrangements connecting the lamellas. It has a pore structure in which the space surrounded by the fibrils communicates.
  • polystyrene resin examples include polyethylene, polypropylene, poly (3-methylbutene-11), poly (4-methylpentene-11) and the like. be able to.
  • the polyolefin Y it is preferable to use one having a high degree of crystallinity, and it is preferable to use a crystal of an undrawn fiber obtained by melt-spinning a blend obtained by blending a hydrophilic copolymer X described later with a blend. It is preferable to select a polymer having a degree of crystallinity of 40% or more, preferably 50% or more, and a crystal orientation degree of 50% or more, preferably 60% or more. Yes.
  • n in the above formula representing the unit A represents the average degree of polymerization of the alkylene glycol units in the unit A (average of the number of oxyalkylene groups), and is in the range of 1 to 9.
  • polyalkylene glycol (meta) acrylate as a component for introducing unit A becomes a viscous substance, and ethylene as a component for introducing unit B is obtained. This makes it difficult to make a homogeneous reaction between and, making it impossible to obtain hydrophilic copolymer X.
  • n 1 to 2
  • high reactivity is obtained in the reaction between the component for introducing unit A and the component for introducing unit B.
  • units A differing in the degree of polymerization of the alkylene glycol units of the unit A and the types of R 1 and R 2 may be mixed.
  • oxetylene and oxypropylene may be mixed. It may be mixed in the unit of work.
  • the hydrophilic copolymer X tends to contain a large amount of a low molecular weight substance, and the hydrophilic copolymer X is easily eluted from the porous fiber blended with the low molecular weight substance and the polyolefin Y.
  • the ratio of the unit A is more preferably 70 to 15% by weight, and more preferably 70 to 40% by weight. Especially preferred
  • the molecular weight of the hydrophilic copolymer X is not particularly limited, but it is necessary for the porous fiber to exhibit permanent hydrophilicity. Is preferably a high molecular weight substance, and the intrinsic viscosity [7?] In xylene at 75 ° C. is preferably about 0.07 to 0.40 d £ / g. If [?] Is smaller than this range, the hydrophilic copolymer tends to bleed out during use, while if [ry] is larger than this range, Since the flowability of the hydrophilic copolymer is low, the proportion of the hydrophilic copolymer on the surface of the porous steel including the pore surface tends to be low.
  • the hydrophilic copolymer X basically consists of units A and B, but other units other than these units may be contained as long as the hydrophilic properties of the porous fiber are not impaired. Good.
  • an ethylenically unsaturated carboxylic acid ester an ethylenically unsaturated monomer, an ethylenically unsaturated monomer unit which can be introduced with an ethylenically unsaturated carboxylic acid, or the like.
  • the unit C can be contained in an amount of about 1 to 40 parts by weight, preferably about 1 to 10 parts by weight, based on 100 parts by weight of the total amount of the units A and B.
  • the content of the hydrophilic copolymer X and the polyolefin Y in the porous fiber of the present invention is not particularly limited, and may be arbitrarily selected depending on the required degree of hydrophilicity and ease of production. good.
  • the unit A in the hydrophilic copolymer is The ratio of X and Y can be determined according to the content of unit B and the like.
  • the porous fiber shows sufficient hydrophilicity even if the content of X in the porous fiber is small.
  • the content of the unit A is small, it is necessary to increase the content of X in the porous fiber in order for the porous fiber to exhibit sufficient hydrophilicity.
  • this porous fiber is obtained by a melt spinning or drawing method, if a large amount of the hydrophilic copolymer X containing a large amount of the unit A is blended in the raw material polymer, the unstretched fiber spun out Inversely, the growth of lamellar crystals is hindered.On the contrary, if the hydrophilic copolymer X has a small content of unit A, it is not stretched even if the amount of X in the raw polymer is increased.
  • the blend amounts of X and Y can be determined in consideration of the fact that the growth of lamellar crystals in the fiber is not easily inhibited.
  • the content of the polyolefin Y is preferably about 95 to 50% by weight (No .- / Z. 50, weight ratio). If the content of the polyrefin is less than this range, it is difficult to grow lamellar crystals sufficiently in the undrawn fiber, and it tends to be difficult to obtain a fiber having an excellent porous structure. .
  • the porous fiber of the present invention preferably has a porosity of 30 to 80% and a tensile strength of 0.5 to 8 gZ. d.
  • the tensile elongation is preferably 1 to 300%. If the porosity is less than the above lower limit, the lightness and texture tend to be insufficient, and if the porosity exceeds the upper limit, the strength tends to be insufficient.
  • the strength and elongation are preferably in the above ranges in consideration of clothing use.
  • the above-mentioned hydrophilic copolymer X and polyolefin Y are sufficiently uniformly blended.
  • the blending method include a method of blending these polymers with a blender such as a V-type blender, a method of blending them in a melt extruder and then pelletizing them. No.
  • the blend polymer is melt-spun with a normal spinning machine and wound as an undrawn fiber.
  • the spinning temperature is preferably 20 " ⁇ higher than the melting point of polyolefin Y (hereinafter referred to as Tm) and 80 ° C higher than the melting point. If the fiber is spun at a temperature lower than the lower limit of the temperature range, the obtained undrawn fiber is highly oriented, but the maximum drawing amount when the drawing is made porous in a subsequent drawing step can be increased. On the other hand, spinning at a temperature higher than the upper limit of the above temperature range is not preferable because it is difficult to obtain a material having a sufficiently high porosity. In order to perform stable spinning and increase the crystallinity of the spun undrawn fiber, a slow cooling section with a length of about 1 to 3 m and an ambient temperature of about 50 to 100 ° C is provided immediately below the spinneret. This is preferred.
  • the length of the slow cooling section is less than 1 m or the ambient temperature is less than 50 ° C, thread breakage immediately below the spinneret frequently occurs, and the process stability tends to decrease, which is not preferable. Conversely, if the length of the slow cooling section is longer than 3 m or the ambient temperature is higher than 100 ° C, the cooling of the yarn will be insufficient and substantial draft will occur. However, this is not preferable from the viewpoint of the crystal orientation of the obtained undrawn fiber.
  • the spinning draft employs slightly lower conditions compared to the case of the polyolefin alone system, but is preferably about 50 to 2000, more preferably about 100 to 2000. It is about 1000.
  • the undrawn fiber obtained in this way is heated at a temperature of Tm or less, preferably (Tm ⁇ 10 ° C) to (Tm ⁇ 30 ° C), in order to increase its crystallinity.
  • Heat treatment anneal treatment for one hour or more in a fixed or relaxed state. The longer the processing time, the better, but considering the economy, it is set to about 48 hours or less, and more preferably about 3 to 48 hours.
  • the heat-treated product is made porous by stretching, but a stretching method combining cold stretching and hot stretching is usually employed. That is, first, approximately (Tm ⁇ 220 ° C) to (Tm ⁇ 80 ° C), or more preferably (Tm ⁇ 160 ° C) to (Tm ⁇ 90 ° C). )) And then hot stretched at a temperature in the range of approximately (Tm-60 ° C) to (Tm-5.C).
  • These cold stretching and hot stretching may be multi-stage stretching of two or more stages.
  • Cold drawing is an important step in producing the fiber of the present invention.
  • microcracks are generated in the amorphous portion between the lamellar crystals of the highly oriented crystalline undrawn fiber. It is expanded by the subsequent thermoplastic stretching in the hot stretching step, and the above-mentioned specific porous structure is obtained.
  • the stretching amount in the cold stretching is preferably 5 to 100%, and the hot stretching amount is set so that the total stretching amount of the cold stretching and the hot stretching is 100 to 700%. It is preferable to set If the heat stretching temperature is higher than Tm-5 ° C, the fiber becomes transparent and the desired porous structure cannot be obtained. If the hot stretching temperature is lower than the above lower limit, the lower the temperature, the lower the porosity, which is not preferable. No.
  • one or more stages of heat or wet heat treatment may be heat set in a tensioned or relaxed state. Further, in order to further increase the hydrophilicity of the fiber, the fiber may be treated with heated water or steam at about 50 to 120 ° C as necessary.
  • the crystallinity of the blend polymer was obtained by integrating the omnidirectional diffraction intensities using a wide-angle X-ray diffractometer. I asked for it.
  • Crystallinity Xc (Integrated value of total diffraction intensity-Integral value of diffraction intensity of amorphous portion) Integral value of total diffraction intensity The degree of crystal orientation was determined using a wide-angle X-ray diffractometer (110). ) The half-width of the distribution of the diffraction intensity of the surface in the fiber axis direction was calculated, and calculated by the following formula.
  • the content of the units A and B in the hydrophilic polymer X was determined by measuring the oxygen atoms in the hydrophilic polymer X with an elemental analyzer. It was calculated by quantification.
  • the average degree of polymerization (n) of the alkylene glycol units in the unit A was calculated from the degree of polymerization of the alkylene glycol units in the unit A measured by gel permeation chromatography (GPC). .
  • GPC gel permeation chromatography
  • this pellet was supplied to a spinning machine, and a spinning temperature of 15.5 was established with a spinning cylinder having a length of 2 m immediately below the spinneret, a hole diameter of 1.0 mm ⁇ , and a number of holes of 4 mm. It was spun from a spinneret of No. 0 and wound on a pobin at a spinning draft of 314 at a spinning speed of 250 m / min.
  • the undrawn fiber thus obtained was heat-treated at 115 ° C under a nitrogen atmosphere for 24 hours under a constant length. This unextended The crystallinity of the drawn fiber was 62% and the degree of crystal orientation was 75%.
  • the undrawn fiber is subjected to cold drawing at 25% by 80%, and then, in a 2 m long heating box heated to 115 ° C, the total drawing amount becomes 5200%. Heat stretching was carried out until this time. Furthermore, a relaxation heat set was performed in a 2 m long heating box heated to the same temperature so that the total elongation was 400%.
  • the obtained porous fiber is a slit-shaped space surrounded by lamellas and a number of longitudinally arranged fibrils connecting the lamellas, from the fiber surface to the center.
  • this porous fiber lg was immersed in 200 cc of ion-exchanged water for 1 hour, dehydrated with a centrifugal separator at 1000 rpm for 5 minutes, and the weight gain was measured. The water content was determined to be 135%. Examples 2 and 3
  • Example 1 Consisting of 50% by weight of hydroxyxethyl monomethacrylate unit as unit A and 50% by weight of ethylene unit as unit B, the intrinsic viscosity in xylene at 75 ° C [ 7?] Is 0.19 d £ g and the hydrophilic copolymer X used in Example 1 is Mitsubishi Polyjet JX—20, which is 15:85 (weight ratio, 2) or 2 0: 8 0 (Weight ratio, Example 3) was blended, and a porous fiber was obtained in the same manner as in Example 1.
  • porous fibers had slit-like pores similar to those of Example 1, and had the performance shown in Table 1.
  • Example 4 Weight ratio, Example 4 or 20:80 (weight ratio, Example 5) was blended, and a porous fiber was obtained in the same manner as in Example 1.
  • porous fibers had the same thread and soot pores as those of Example 1, and had the performance shown in Table 1.
  • the average degree of polymerization (n) of polyethylene glycol is 45 wt% of poly (ethylene glycol) monomethacrylate units of 6 and 55 wt% of ethylene units. ?] Is 0.15 dZg and the Mitsubishi copolymer used in Example 1 JX-20 was blended at a ratio of 20:80 (weight ratio), and a porous fiber was obtained in the same manner as in Example 1.
  • porous fibers had the same slit-like pores as those of Example 1 and had the performance shown in Table 1.
  • Example 1 It consists of 35 parts by weight of ethylene glycol monomer having an average degree of polymerization (n) of polyethylene glycol of 6 and 65 parts by weight of ethylene unit.
  • the hydrophilic copolymer X having an intrinsic viscosity [77] of 0.15 d ⁇ g and the Mitsubishi Polytech JX—20 used in Example 1 were mixed in a ratio of 20:80 (weight The blend was blended at a ratio of Example 7) or 25:75 (weight ratio, Example 8), and a porous fiber was obtained in the same manner as in Example 1.
  • porous fibers had slit-like pores similar to those of Example 1, and had the performance shown in Table 1.
  • a porous polyethylene fiber was produced in the same manner as in Example 1 using only Mitsubishi Polyethylene JX-20, which is a high-density polyethylene, as a polymer, and the water content was measured to be 6%.
  • Table 1 Porosity Tensile strength Tensile elongation Water content No U No No No Example 1 3 38 50 5 135 Non 2 3 24 53 6 11 q Non 3 58 5 3 4 48 3 151 Nog 4 • 61 8 3.33 50 5 108 Nono 5 58. 0 3.36 46.7 139 Noso 6 59.8 3.18 48.5 5 115 Nono 7 61.5 3.05 50.2 76 Nono 8 56.5 3.33 46.8 125

Abstract

A porous fiber having a pore structure comprising interconnected spaces enclosed with lamellae and a number of longitudinally arranged fibrils that connect the lamellae with each other all over the fiber, which is produced by blending a polyolefin with a hydrophilic copolymer mainly comprising monomer units represented by formula (I) and ethylene units, melt spinning the blend, and stretching the resulting fiber; wherein R?1 and R2¿ represent each independently hydrogen or methyl, and n is 1 to 9. The obtained fiber has permanent hydrophilicity and a large surface area, is very lightweight and soft to the touch, has a fair white color without transparence, and is endowed with excellent mechanical properties in spite of its high void fraction.

Description

明 細 書 多孔質繊維及びその製法 技 術 分 野  Description Porous fiber and its manufacturing technology
本発明は多孔質ポリオレフ ィ ン系繊維に関する。 背 景 技 術  The present invention relates to a porous polyolefin-based fiber. Background technology
近年、 衣料用、 産業資材用繊維の多様化が進み、 そ の多様化の一環と して、 軽量であ り 、 ソフ トな風合い を有しながら適切な強度を有する繊維に対する要望が 強まっている。  In recent years, the diversification of textiles for clothing and industrial materials has progressed, and as part of the diversification, there has been an increasing demand for fibers that are lightweight, have a soft texture, and have appropriate strength. .
軽量化とソフ 卜な風合いを達成するための方法と し て繊維の多孔質化がある。  As a method for achieving a light weight and a soft hand, there is a method of making fibers porous.
繊維の多孔質化の方法と しては、 例えば、 発泡剤を 熱可塑性高分子にプレン ド して溶融紡糸して紡糸段階 で発泡剤を分解して発泡を起こ して多孔質化する方 法、 熱可塑性高分子に抽出可能な空孔形成用の添加物 (無機塩、 有機低分子化合物等) をブレン ド して紡糸 した後、 適切な溶剤で添加物を抽出して多孔質化する 方法等がある。  As a method for making the fibers porous, for example, a method in which a blowing agent is blended into a thermoplastic polymer, melt-spun, and the foaming agent is decomposed at the spinning stage to cause foaming to make the fibers porous. After blending and spinning additives for pore formation (inorganic salts, organic low molecular weight compounds, etc.) that can be extracted into thermoplastic polymers, the additives are extracted with an appropriate solvent to make them porous. Etc.
しかし、 発泡剤をブレン ドする方法では、 均一かつ 微細な多孔質構造を得る こ とが困難で、 安定した品質 のものが得られ難い。 即ち、 空孔率を高めよう とする と糸切れが多発したり、 強度が大幅に低下するため、 高空孔率の繊維が得られ難く 、 また、 紡糸工程におけ る工程安定性も低いという問題がある。 However, in the method of blending the blowing agent, it is difficult to obtain a uniform and fine porous structure, and it is difficult to obtain a stable quality. That is, to increase the porosity In addition, there is a problem that fibers with high porosity are difficult to obtain and the process stability in the spinning process is low, because the yarn breaks frequently and the strength is greatly reduced.
抽出法においては、 工程が複雑になる こ と、 抽出に よ り添加物を繊維から完全に除去することが困難で、 この添加物が製品である繊維に不純物と して残存し易 く 、 これが風合いにも影響を与え、 充分良好な風合い のものが得られ難いこ と、 空孔率を高めよう とする と 大幅な強度低下が生じる こ となどの問題があ り、 これ も充分満足できるものではないという状況にある。 一方、 鐡維の多様化の一つと して、 吸水性や吸汗性 に優れた繊維に対する要望も強く 、 これらの特性に優 れた繊維の閧発も盛んに行われつつある。  In the extraction method, the process becomes complicated, and it is difficult to completely remove the additive from the fiber by the extraction, and this additive easily remains as an impurity in the product fiber. This also affects the texture, making it difficult to obtain a sufficiently good texture, and trying to increase the porosity causes a significant decrease in strength. Not in a situation. On the other hand, as one of the diversification of iron and steel, there is a strong demand for fibers having excellent water absorption and sweat absorption properties, and fibers with excellent properties of these properties are being actively studied.
これらの特性は、 親水性を付与した繊維を用いる こ と によって得るこ とができる。  These properties can be obtained by using fibers imparted with hydrophilicity.
親水性繊維用の素材と して種々の素材が利用されて いるが、 強度等の点において優れたポリオレフ イ ン鐡 維の親水性を必要とする用途への展開が注目されてい る。  Various materials are used as materials for hydrophilic fibers, but attention has been paid to the development of polyolefin steel fibers, which are superior in terms of strength and the like, to applications that require hydrophilicity.
ポ リ オ レフ ィ ンは疎水性素材であるためポ リ オ レ フ ィ ン繊維を親水性を必要とする用途に展開するため には親水化処理が必要である。 しかしながら、 界面活 性剤等の親水化剤を用いた親水化方法では、 得られた 親水性繊維が、 水との接触による親水化剤の脱落に よって親水性を失う という問題がある。 また、 通常用 いられている親水性物質をプレン ド したものを溶融紡 糸しても、 親水性物質とポリ オレフ イ ンとの親和性が 悪いために良好な性能の繊維が得られないという 問題 がある。 発 明 の 開 示 Since polyrefin is a hydrophobic material, hydrophilization treatment is required to develop polyrefin fibers for applications requiring hydrophilicity. However, in the method of hydrophilization using a hydrophilizing agent such as a surfactant, the obtained hydrophilic fibers are not liable to fall off due to contact with water. Therefore, there is a problem of losing hydrophilicity. In addition, even if melt-spun a blend of a commonly used hydrophilic substance, good performance fibers cannot be obtained due to poor affinity between the hydrophilic substance and polyolefin. There's a problem. Disclosure of the invention
本発明者らは上述したよう な状況に鑑み鋭意検討し た結果、 ポ リ オレフ イ ンに特定の性能の親水性共重合 体をブレン ド したものを溶融紡糸、 延伸する こ と に よって優れた多孔質構造と恒久的な親水性を有し、 軽 量性、 ソフ トな風合い、 吸水性等の諸特性を同時に満 足でき る多孔質繊維が得られるこ とを見出し、 本発明 に到達した。  The inventors of the present invention have conducted intensive studies in view of the above-mentioned situation, and as a result, it has been found that excellent results are obtained by melt-spinning and drawing a blend of a hydrophilic copolymer having specific performance in a polyolefin. The present inventors have found that a porous fiber having a porous structure and permanent hydrophilicity and which can simultaneously satisfy various properties such as lightness, soft feel, and water absorption can be obtained. .
本発明の目的は、 本質的に親水性であって、 非常に 軽量でソフ トな風合いを有し、 高い空孔率であるにも 拘らず優れた力学的特性を示す多孔質繊維を提供する と にある。  It is an object of the present invention to provide a porous fiber which is hydrophilic in nature, has a very light and soft feel and exhibits excellent mechanical properties despite its high porosity. And.
本発明の他の目的は、 抽出法によって多孔質化した 繊維における溶剤ゃ空孔形成用添加物の残存の問題の ない多孔質繊維を提供するこ と にある。  It is another object of the present invention to provide a porous fiber which does not have a problem of the solvent and the pore-forming additive remaining in the fiber made porous by the extraction method.
これらの目的を達成し得る本発明の多孔質繊維は、 s記式 ; 一 一 The porous fiber of the present invention that can achieve these objects has the following formula: One one
R 1 R 1
-f C H 2 —C -f C H 2 —C
C 0 0 ( C H C H 0 ) H C 0 0 (C H C H 0) H
R 2 R 2
(上記式中、 R 1 及び R 2 は互いに独立に水素また はメチル基を表わし、 nは 1〜 9である。 ) で示されるモノ マー単位 Aとエチレン単位 B とを主成 分とする親水性共重合体 Xと、 ポリ オレフ イ ン Y とか らな り 、 ラメ ラ と該ラメラ間をつなぐ多数の長手方向 に配列したフ ィ ブリルとで囲まれた空間—が連通した細 孔構造を有する。 (In the above formula, R 1 and R 2 independently represent a hydrogen or a methyl group, and n is 1 to 9.) A hydrophilic unit mainly composed of a monomer unit A and an ethylene unit B represented by Having a pore structure composed of a functional copolymer X and a polyolefin Y, wherein a space surrounded by lamellae and a number of longitudinally arranged fibrils connecting the lamellae communicates with each other. .
この多孔質繊維は、 上記式で示されるモノ マー単位 A とエチ レン単位 B とを主成分とする親水性共重合体 と、 ポ リオレフ イ ン Yとのブレン ド物を溶融紡糸し て未延伸繊維を得る過程と、 該未延伸繊維を真空中も し く は不活性ガス媒体中でポリ オレフ ィ ン Yの融点以 下の温度で 1 時間以上熱処理し、 次いで延伸処理して 多孔質化する過程とを含む方法によつて製造すること ができる。  This porous fiber is obtained by melt-spinning a blend of a hydrophilic copolymer mainly composed of a monomer unit A and an ethylene unit B represented by the above formula, and a polyolefin Y, and is not drawn. The process of obtaining the fiber and heat-treating the undrawn fiber in a vacuum or an inert gas medium at a temperature lower than the melting point of polyolefin Y for at least one hour, and then drawing to make it porous. And a method comprising the steps of:
本発明の多孔質ポリオレフ イ ン系繊維は、 繊維表面 から繊維中心部に至るまで全体にわたって、 ラメ ラ と 該ラメ ラ間をつなぐ多数の長手方向に配列したフ ィ ブ リ ルとで囲まれた空間が連通した細孔構造を有するの で、 表面積が大き く 、 非常に軽量でソフ トな風合いを 有し、 透明感のないきれいな白色となり、 しかも高い 空孔率であるにも拘らず優れた力学的特性を示す。 The porous polyolefin-based fiber of the present invention is entirely surrounded by lamellas and a number of longitudinally arranged fibrils connecting the lamellas from the fiber surface to the fiber center. The space has a communicating pore structure It has a large surface area, is very lightweight, has a soft feel, has a clear white appearance without a sense of transparency, and exhibits excellent mechanical properties despite its high porosity.
また、 前述のよう に抽出法によ り得られる多孔質繊 維では、 抽出用溶剤ゃ空孔形成用添加物などが繊維に 残存している場合が多い。 これに対し、 本発明の多孔 質繊維では、 特定の組成のブレン ド物を溶融紡糸して 得た未延伸繊維を延伸する こ と によって多孔質化され たものであるので、 抽出法によ り得られる多孔質繊維 のよ う な溶剤ゃ空孔形成用添加物などを含まない。 従って、 本発明の多孔質繊維は衛生的な素材であり、 しかも恒久的な親水性を有しているので、 肌着等の優 れた吸汗性が要求される直接肌に触れる衣料の素材と して、 あるいは医療用布帛素材と して最適である。 更に、 本発明の多孔質繊維は、 その大きな含水率お よび細孔内の吸水性を利用して、 ワイパー、 吸着用素 材を始めと して各種産業資材用の素材と して活用可能 である。 発明を実施するための最良の形態  In addition, as described above, in the porous fiber obtained by the extraction method, an extraction solvent, an additive for forming pores, and the like often remain in the fiber. On the other hand, in the porous fiber of the present invention, since the undrawn fiber obtained by melt-spinning a blend having a specific composition is made porous, the porous fiber is extracted by the extraction method. It does not contain a solvent such as the obtained porous fiber or an additive for forming pores. Therefore, the porous fiber of the present invention is a sanitary material and has a permanent hydrophilic property, so that it is used as a material for clothing that directly touches the skin, such as underwear, which is required to have excellent sweat absorption properties. Or as a medical fabric material. Further, the porous fiber of the present invention can be used as a material for various industrial materials including wipers and adsorption materials by utilizing its large water content and water absorption in pores. is there. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の多孔質繊維は、 先に挙げた式で示されるモ ノ マー単位 Aとエチレン単位 B とを主成分とする親水 性共重合体 Xと、 ポリ オレフ イ ン Y とからなり、 ラメ ラ と該ラ メ ラ間をつなぐ多数の長手方向に配列した フ ィ ブリルとで囲まれた空間が連通した細孔構造を有 する。 The porous fiber of the present invention comprises a hydrophilic copolymer X having a monomer unit A and an ethylene unit B represented by the above-mentioned formula as main components, and a polyolefin Y, And a number of longitudinal arrangements connecting the lamellas. It has a pore structure in which the space surrounded by the fibrils communicates.
本発明の多孔質繊維の一構成成分であるポ リ ォ レ フ ィ ン Yと しては、 例えば、 ポリエチレン、 ポ リプロ ピレン、 ポリ 3—メチルブテン一 1 、 ポリ 4一メチル ペンテン一 1等を挙げるこ とができる。  Examples of the polyolefin Y as one component of the porous fiber of the present invention include polyethylene, polypropylene, poly (3-methylbutene-11), poly (4-methylpentene-11) and the like. be able to.
また、 ポリオレフ イ ン Yと しては、 結晶化度の高い ものを用いるこ とが好ま しく 、 後述の親水性共重合体 X とブレン ド したものを溶融紡糸して得られる未延伸 繊維の結晶化度が 4 0 %以上、 好ましく は 5 0 %以上 であ り 、 結晶配列度が 5 0 %以上、 好ま しく は 6 0 % 以上 と な る よ う なポ リ マーを選択す る のが好ま し い。  As the polyolefin Y, it is preferable to use one having a high degree of crystallinity, and it is preferable to use a crystal of an undrawn fiber obtained by melt-spinning a blend obtained by blending a hydrophilic copolymer X described later with a blend. It is preferable to select a polymer having a degree of crystallinity of 40% or more, preferably 50% or more, and a crystal orientation degree of 50% or more, preferably 60% or more. Yes.
単位 Aを表わす前記式における nの値は、 単位 A中 のアルキレングリ コール単位の平均重合度 (ォキシァ ルキレン基の数の平均) を表わし、 1〜9の範囲とさ れる。  The value of n in the above formula representing the unit A represents the average degree of polymerization of the alkylene glycol units in the unit A (average of the number of oxyalkylene groups), and is in the range of 1 to 9.
nが 9 を超える場合、 単位 A導入用の成分と しての ポ リ アルキレングリ コール (メ タ) ァク リ レー 卜が粘 稠物とな り、 単位 B導入用の成分と してのエチレン と の均一反応が困難となり、 親水性共重合体 Xを得る こ とができなく なる。  When n exceeds 9, polyalkylene glycol (meta) acrylate as a component for introducing unit A becomes a viscous substance, and ethylene as a component for introducing unit B is obtained. This makes it difficult to make a homogeneous reaction between and, making it impossible to obtain hydrophilic copolymer X.
nが 1〜2の場合は、 単位 A導入用の成分と単位 B 導入用の成分との反応において高い反応性を得る こ と ができ、 工業的には品質のバラツキの少ない親水性共 重合体 Xの供給が可能であ り、 水中での溶出成分の少 ない親水性多孔質鐡維を提供するこ とができ る。 When n is 1 to 2, high reactivity is obtained in the reaction between the component for introducing unit A and the component for introducing unit B. Industrially, it is possible to industrially supply a hydrophilic copolymer X having a small variation in quality, and to provide a hydrophilic porous steel with a small amount of components eluted in water.
親水性共重合体 Xにおいては、 単位 Aのアルキレン グリ コール単位の重合度、 R 1 及び R 2 の種類が異な る単位 Aが混在していても良く 、 例えば、 ォキシェチ レン とォキシプロ ピレンがブロ ッ ク単位で混在してい てもよい。 In the hydrophilic copolymer X, units A differing in the degree of polymerization of the alkylene glycol units of the unit A and the types of R 1 and R 2 may be mixed.For example, oxetylene and oxypropylene may be mixed. It may be mixed in the unit of work.
親水性共重合体 Xにおいて、 A、 B両単位の組成比 は特に限定されないが、 以下に示す理由から単位 Aの 割合は 8 0〜 1 0重量% (単位 Aノ単位 B = 8 0 2 0〜 1 0 Z 9 0、 重量比) であるこ とが好ま しい。 即ち、 単位 Aの含有量が 1 0重量%未満では多孔質織 維が充分な親水性を示さず、 一方、 8 0重量%を超ぇ る場合はこの親水性共重合体き体が概して超低分子量 物を多量に含みがちであって、 これとポ リ オレフ イ ン Y とがブレン ドされた多孔質繊維から親水性共重合体 Xが溶出しやすく なる。  In the hydrophilic copolymer X, the composition ratio of both A and B units is not particularly limited, but the ratio of the unit A is 80 to 10% by weight (unit A / unit B = 800 ~ 10 Z90, weight ratio). That is, when the content of the unit A is less than 10% by weight, the porous fiber does not show sufficient hydrophilicity, whereas when the content exceeds 80% by weight, the hydrophilic copolymer is generally excessively high. The hydrophilic copolymer X tends to contain a large amount of a low molecular weight substance, and the hydrophilic copolymer X is easily eluted from the porous fiber blended with the low molecular weight substance and the polyolefin Y.
なお、 多孔質繊維が充分な親水性を示すためには単 位 Aの割合は 7 0〜 1 5重量%であるこ とがよ り好ま し く 、 7 0 〜 4 0 重量%である こ と が特に好ま し い  In order for the porous fiber to exhibit sufficient hydrophilicity, the ratio of the unit A is more preferably 70 to 15% by weight, and more preferably 70 to 40% by weight. Especially preferred
また、 親水性共重合体 Xの分子量は特に限定されな いが、 多孔質繊維が恒久的な親水性を発揮するために は、 高分子量物であるこ とが好ま しく 、 7 5 °Cキシレ ン中での極限粘度 [ 7? ] が、 0 . 0 7〜0 . 4 0 d £ / g程度であるこ とが好ま しい。 [ ? ] がこの範囲の 値よ り も小さいと、 使用中にこの親水性共重合体がブ リー ド アウ ト し易い傾向にあり、 一方、 [ ry ] がこの 範囲の値よ り大きいとこの親水性共重合体の流動性が 低いため細孔表面を含めた多孔質鐡維の表面における 親水性共重合体の割合が低い多孔質繊維となる傾向に ある。 In addition, the molecular weight of the hydrophilic copolymer X is not particularly limited, but it is necessary for the porous fiber to exhibit permanent hydrophilicity. Is preferably a high molecular weight substance, and the intrinsic viscosity [7?] In xylene at 75 ° C. is preferably about 0.07 to 0.40 d £ / g. If [?] Is smaller than this range, the hydrophilic copolymer tends to bleed out during use, while if [ry] is larger than this range, Since the flowability of the hydrophilic copolymer is low, the proportion of the hydrophilic copolymer on the surface of the porous steel including the pore surface tends to be low.
親水性共重合体 Xは基本的には単位 Aと単位 B とか らなるが、 多孔質繊維の親水性等を阻害しない範囲で あれば、 これらの単位以外の他の単位が含まれていて もよい。  The hydrophilic copolymer X basically consists of units A and B, but other units other than these units may be contained as long as the hydrophilic properties of the porous fiber are not impaired. Good.
このよ う な第三の単位と しては、 エチレン性不飽和 カルボン酸エステル、 エチレン性不飽和ビュルエステ ルまたはエチレン性不飽和カルボン酸等によ り導入で きるエチレン性不飽和単量体単位 Cを挙げる こ とがで きる。 単位 Cは、 単位 Aと単位 Bの合計量 1 0 0重量 部に対して 1〜4 0重量部程度、 好ま しく は 1〜 1 0 重量部程度含有させるこ とができる。  As such a third unit, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated monomer, an ethylenically unsaturated monomer unit which can be introduced with an ethylenically unsaturated carboxylic acid, or the like. C can be mentioned. The unit C can be contained in an amount of about 1 to 40 parts by weight, preferably about 1 to 10 parts by weight, based on 100 parts by weight of the total amount of the units A and B.
. 本発明の多孔質繊維において親水性共重合体 Xとポ リ オレフ イ ン Yの含有割合は特に限定されず、 必要と する親水性の程度、 製造上の容易さによって任意に選 択すれば良い。 一般に、 親水性共重合体中の単位 Aと 単位 Bの含有量等に応じて X と Yの割合を定める こ と ができる。 一般に、 親水性共重合体 X中の親水性成分 と しての単位 Aの含有量が多い場合は多孔質繊維中に おける Xの含有量が少量でも多孔質繊維は充分な親水 性を示すが、 単位 Aの含有量が少ない場合は多孔質繊 維が充分な親水性を示すためには多孔質繊維中の Xの 含有量を多量にするこ とが必要となる。 The content of the hydrophilic copolymer X and the polyolefin Y in the porous fiber of the present invention is not particularly limited, and may be arbitrarily selected depending on the required degree of hydrophilicity and ease of production. good. Generally, the unit A in the hydrophilic copolymer is The ratio of X and Y can be determined according to the content of unit B and the like. In general, when the content of the unit A as a hydrophilic component in the hydrophilic copolymer X is large, the porous fiber shows sufficient hydrophilicity even if the content of X in the porous fiber is small. However, when the content of the unit A is small, it is necessary to increase the content of X in the porous fiber in order for the porous fiber to exhibit sufficient hydrophilicity.
溶融紡糸、 延伸法によってこの多孔質繊維を得る場 合、 原料ポリ マー中に単位 Aの含有量の多い親水性共 重合体 Xを多量にブレン ドする と紡出された未延伸織 維中のラメ ラ結晶の成長が阻害される こ と、 逆に、 単 位 Aの含有量の少ない親水性共重合体 Xであれば原料 ポ リ マー中の Xのプレン ド量を多く しても未延伸繊維 中のラメ ラ結晶の成長が阻害され難い点を考慮して X と Yのブレン ド量を定めるこ とができる。  When this porous fiber is obtained by a melt spinning or drawing method, if a large amount of the hydrophilic copolymer X containing a large amount of the unit A is blended in the raw material polymer, the unstretched fiber spun out Inversely, the growth of lamellar crystals is hindered.On the contrary, if the hydrophilic copolymer X has a small content of unit A, it is not stretched even if the amount of X in the raw polymer is increased. The blend amounts of X and Y can be determined in consideration of the fact that the growth of lamellar crystals in the fiber is not easily inhibited.
本発明の多孔質繊維において、 ポ リ オレフ イ ン Yの 含有量は 9 5〜 5 0重量% ( ノ丫 - ら / 〜ら 。 Z 5 0、 重量比) 程度である こ とが好ま しい。 ポ リオ レフ ィ ンの含有量がこの範囲未満である と未延伸繊維 においてラメ ラ結晶を充分に成長させる こ とが困難と な り 、 優れた多孔質構造の繊維が得られ難い傾向があ る。  In the porous fiber of the present invention, the content of the polyolefin Y is preferably about 95 to 50% by weight (No .- / Z. 50, weight ratio). If the content of the polyrefin is less than this range, it is difficult to grow lamellar crystals sufficiently in the undrawn fiber, and it tends to be difficult to obtain a fiber having an excellent porous structure. .
本発明の多孔質繊維と しては、 空孔率が 3 0〜 8 0 %である こ とが好ま しく 、 引張強度が 0 . 5〜 8 g Z d、 引張伸度が 1 〜 3 0 0 %であるこ とが好ま しい。 空孔率が上記下限未満では軽量性、 風合いがそれだけ 不充分となる傾向にあり、 上限を超える と強度が不充 分となる傾向にある。 強度、 伸度は衣料用途を考慮し た場合、 上記範囲にあるこ とが好ま しい。 The porous fiber of the present invention preferably has a porosity of 30 to 80% and a tensile strength of 0.5 to 8 gZ. d. The tensile elongation is preferably 1 to 300%. If the porosity is less than the above lower limit, the lightness and texture tend to be insufficient, and if the porosity exceeds the upper limit, the strength tends to be insufficient. The strength and elongation are preferably in the above ranges in consideration of clothing use.
以下に、 本発明の多孔質繊維の製造方法について説 明する。  Hereinafter, the method for producing the porous fiber of the present invention will be described.
まず、 上述の親水性共重合体 X とポリ オレフ イ ン Y は充分均一にブレン ドされる。 このプレン ド方法と し ては、 これらのポリマ一を V型ブレンダ一のよう なブ レンダ一でブレン ドする方法や、 溶融押出し機中で溶 融ブレン ド し、 次いでペレツ 卜化する方法等が挙げら れる。  First, the above-mentioned hydrophilic copolymer X and polyolefin Y are sufficiently uniformly blended. Examples of the blending method include a method of blending these polymers with a blender such as a V-type blender, a method of blending them in a melt extruder and then pelletizing them. No.
続いて、 このブレン ドポリマーは通常の紡糸機で溶 融紡糸され、 未延伸繊維と して巻き と られる。 紡糸温 度はポ リ オレフ イ ン Yの融点 (以下 T mという ) よ り 2 0 "Ό高い温度以上であって、 融点よ り 8 0 °C高い温 度以下であるこ とが好ま しい。 この温度範囲の下限よ り低い温度で紡糸する と、 得られる未延伸繊維は高度 に配向しているが、 後の延伸工程で延伸多孔質化を図 る時の最大延伸量を高める こ とができず、 充分高い空 孔率のものが得難いので好ま しく ない。 逆に、 上記温 度範囲の上限を超える温度で紡糸した場合も高い空孔 率のものが得難いので好ま しく ない。 安定した紡糸を行う ため及び紡糸した未延伸繊維の 結晶化度を高めるためには紡糸口金直下に長さ 1〜3 m程度、 雰囲気温度 5 0〜 1 0 0 °C程度の徐冷区間を 設ける こ とが好ま しい。 Subsequently, the blend polymer is melt-spun with a normal spinning machine and wound as an undrawn fiber. The spinning temperature is preferably 20 "Ό higher than the melting point of polyolefin Y (hereinafter referred to as Tm) and 80 ° C higher than the melting point. If the fiber is spun at a temperature lower than the lower limit of the temperature range, the obtained undrawn fiber is highly oriented, but the maximum drawing amount when the drawing is made porous in a subsequent drawing step can be increased. On the other hand, spinning at a temperature higher than the upper limit of the above temperature range is not preferable because it is difficult to obtain a material having a sufficiently high porosity. In order to perform stable spinning and increase the crystallinity of the spun undrawn fiber, a slow cooling section with a length of about 1 to 3 m and an ambient temperature of about 50 to 100 ° C is provided immediately below the spinneret. This is preferred.
徐冷区間の長さが 1 m未満あるいはその雰囲気温度 が 5 0 °C未満では紡糸口金直下での糸切れが多発して 工程安定性が低下する傾向にあ り、 好ま しく ない。 逆 に、 徐冷区間の長さが 3 mを超える長さであっ た り 、 雰囲気温度が 1 0 0 °Cを超える温度である場合は、 糸 の冷却が不充分となつて実質的な ドラフ 卜が低下する 傾向にあるので、 得られる未延伸繊維の結晶配向性の 点から好ま しく ない。  If the length of the slow cooling section is less than 1 m or the ambient temperature is less than 50 ° C, thread breakage immediately below the spinneret frequently occurs, and the process stability tends to decrease, which is not preferable. Conversely, if the length of the slow cooling section is longer than 3 m or the ambient temperature is higher than 100 ° C, the cooling of the yarn will be insufficient and substantial draft will occur. However, this is not preferable from the viewpoint of the crystal orientation of the obtained undrawn fiber.
また、 紡糸 ドラフ 卜はポリオレフ ィ ン単独系の場合 と比較する と、 やや低めの条件が採用されるが、 好ま し く は 5 0〜 2 0 0 0程度、 よ り好ま しく は 1 0 0〜 1 0 0 0程度である。  Also, the spinning draft employs slightly lower conditions compared to the case of the polyolefin alone system, but is preferably about 50 to 2000, more preferably about 100 to 2000. It is about 1000.
このよ う にして得られた未延伸繊維はその結晶化度 を高めるために、 T m以下の温度、 好ま しく は (Tm 一 1 0 °C ) 〜 (Tm— 3 0 °C) の温度で、 定長下ある いは弛緩状態で、 1時間以上熱処理 (ァニール処理) される。 この処理時間は長時間であればあるほど好ま しいが、 経済性を考慮する と 4 8時間以内程度と さ れ、 3〜 4 8時間程度であるこ とがよ り好ま しい。  The undrawn fiber obtained in this way is heated at a temperature of Tm or less, preferably (Tm−10 ° C) to (Tm−30 ° C), in order to increase its crystallinity. Heat treatment (anneal treatment) for one hour or more in a fixed or relaxed state. The longer the processing time, the better, but considering the economy, it is set to about 48 hours or less, and more preferably about 3 to 48 hours.
なお、 このよう な長時間の熱処理を空気中で行う と その間に親水性共重合体 Xが変質するため、 本発明で は不活性ガス中もしく は真空中で熱処理する方法が採 用される。 When such a long heat treatment is performed in air, In the meantime, since the hydrophilic copolymer X deteriorates, a method of performing heat treatment in an inert gas or in a vacuum is employed in the present invention.
熱処理物は、 延伸によって多孔質化されるが、 通常 は冷延伸と熱延伸を組み合わせた延伸法が採用され る。 即ち、 まず、 およそ (T m— 2 2 0。C) 〜 (Tm - 8 0 °C ) 、 よ り好ま し く は ( T m— 1 6 0 °C) 〜 ( T m— 9 0 °C) の範囲の温度で冷延伸し、 次いで、 およそ ( Tm— 6 0 °C) 〜 (Tm— 5。C) の範囲の温 度で熱延伸される。  The heat-treated product is made porous by stretching, but a stretching method combining cold stretching and hot stretching is usually employed. That is, first, approximately (Tm−220 ° C) to (Tm−80 ° C), or more preferably (Tm−160 ° C) to (Tm−90 ° C). )) And then hot stretched at a temperature in the range of approximately (Tm-60 ° C) to (Tm-5.C).
これらの冷延伸と熱延伸は 2段以上の多段延伸で あっても良い。  These cold stretching and hot stretching may be multi-stage stretching of two or more stages.
本発明の繊維を製造する う えで冷延伸は重要な工程 であ り、 この工程で高配向結晶性未延伸繊維のラメ ラ 結晶間の非晶質部分にミクロなクラ ッ クが発生し、 引 き続く 熱延伸工程での熱可塑化延伸でそれが拡大さ れ、 上記の特定の多孔質構造が得られる ものである。 冷延伸における延伸量は 5〜 1 0 0 %である こ とが好 ま し く 、 冷延伸と熱延伸とを合せた総延伸量が 1 0 0 〜 7 0 0 %になるよう に熱延伸量を設定するのが好ま しい。 なお、 熱延伸温度が T m— 5 °Cよ り高いと繊維 は透明化し、 目的とする多孔質構造が得られなく な る。 熱延伸温度が上記の下限値よ り 低い場合は温度 が低ければ低いほど空孔率が低下するので好ま しく な い。 また、 総延伸量が 7 0 0 %を超える と、 延伸時に 糸切れが多発するので好ま しく ない。 こ う して得られ た多孔質繊維は熱延伸によ り ほぼ形態の安定性が確保 さ れて い る が、 必要に応じて ( T m— 6 0 °C ) 〜Cold drawing is an important step in producing the fiber of the present invention. In this step, microcracks are generated in the amorphous portion between the lamellar crystals of the highly oriented crystalline undrawn fiber. It is expanded by the subsequent thermoplastic stretching in the hot stretching step, and the above-mentioned specific porous structure is obtained. The stretching amount in the cold stretching is preferably 5 to 100%, and the hot stretching amount is set so that the total stretching amount of the cold stretching and the hot stretching is 100 to 700%. It is preferable to set If the heat stretching temperature is higher than Tm-5 ° C, the fiber becomes transparent and the desired porous structure cannot be obtained. If the hot stretching temperature is lower than the above lower limit, the lower the temperature, the lower the porosity, which is not preferable. No. On the other hand, if the total drawing amount exceeds 700%, yarn breakage frequently occurs during drawing, which is not preferable. Although the morphological stability of the porous fiber obtained in this way is almost assured by hot drawing, it can be reduced to (Tm-60 ° C) if necessary.
( T m - 5 °C ) の温度で、 1段も しく は多段の感熱ま たは湿熱処理を緊張状態あるいは制限緩和状態で熱セ ッ 卜 しても良い。 さ らに、 繊維の親水性をよ り高める ために、 必要に応じて 5 0〜 1 2 0 °C程度の加熱水ま たは水蒸気によって処理しても良い。 At a temperature of (T m-5 ° C), one or more stages of heat or wet heat treatment may be heat set in a tensioned or relaxed state. Further, in order to further increase the hydrophilicity of the fiber, the fiber may be treated with heated water or steam at about 50 to 120 ° C as necessary.
(実施例)  (Example)
以下に実施例を用いて本発明を更に説明するが、 実 施例において、 プレン ドポ リ マーの結晶化度は広角 X 線回折装置を用いて全方位の回折強度を積算し、 下記 の式で求めた。  Hereinafter, the present invention will be further described with reference to Examples. In the Examples, the crystallinity of the blend polymer was obtained by integrating the omnidirectional diffraction intensities using a wide-angle X-ray diffractometer. I asked for it.
結晶化度 X c = (全回折強度の積分値 -非晶質部分 の回折強度の積分値) 全回折強度の積分値 ま た、 結晶配列度は広角 X線回折装置を用 いて ( 1 1 0 ) 面の回折強度の繊維軸方向への分布の半値 幅を求め、 下記の式よ り算出した。  Crystallinity Xc = (Integrated value of total diffraction intensity-Integral value of diffraction intensity of amorphous portion) Integral value of total diffraction intensity The degree of crystal orientation was determined using a wide-angle X-ray diffractometer (110). ) The half-width of the distribution of the diffraction intensity of the surface in the fiber axis direction was calculated, and calculated by the following formula.
結晶配列度 (% ) =  Crystallinity (%) =
H (no / ( 1 8 0 - H (no ) X 1 0 0  H (no / (1 8 0-H (no) X 1 0 0
[ H (110) : ( 1 1 0 ) 面の半値幅] [H (110) : Half-width at (1 1 0) plane]
更に、 親水性重合体 X中の単位 Aと単位 Bの含有量 は、 親水性重合体 X中の酸素原子を元素分析機によつ て定量するこ とによ り算出した。 Further, the content of the units A and B in the hydrophilic polymer X was determined by measuring the oxygen atoms in the hydrophilic polymer X with an elemental analyzer. It was calculated by quantification.
また、 単位 A中のアルキレングリ コール単位の平均 重合度 ( n ) は、 ゲル透過クロマ トグラフ ィ ー ( GPC: gel permeation chromatography ) で測定した単位 A 中のアルキレングリ コール単位の重合度から算出 し た。 実施例 1  The average degree of polymerization (n) of the alkylene glycol units in the unit A was calculated from the degree of polymerization of the alkylene glycol units in the unit A measured by gel permeation chromatography (GPC). . Example 1
単位 A と してのヒ ドロキシェチルモノ メ タク リ レー 卜単位 6 0重量% と、 単位 B と してのエチ レン単位 4 0重量%とからなり、 7 5 °Cキシレン中の極限粘度  Consists of 60% by weight of hydroxyxetyl monomethacrylate unit as unit A and 40% by weight of ethylene unit as unit B. Intrinsic viscosity in xylene at 75 ° C
[ 7? ] が 0 . 1 9 d £ノ gである親水性共重合体 X と、 密度 0 . 9 6 5 g Z c m 3 の高密度ポリエチレン[7?] Is a hydrophilic copolymer X with 0.19 d £ g and high density polyethylene with a density of 0.965 g Z cm 3
( T m = 1 3 3。C、 三菱油化㈱製、 三菱ポ リエチ J X 一 2 0 ) とを 1 5 : 8 5 (重量比) の割合でブレン ド して溶融押出機内で溶融混練してペレツ 卜化し、 さ ら に乾燥した。 (Tm = 133.C, manufactured by Mitsubishi Yuka Co., Ltd., Mitsubishi Polytec JX120) at a ratio of 15:85 (weight ratio) and melt-kneaded in a melt extruder. Pelletized and dried further.
次いで、 このペレツ 卜を紡糸機に供給し、 紡糸口金 直下に長さ 2 mの紡糸筒を設けた状態で、 紡糸温度を 1 5 5でと して、 孔径 1 . 0 m m Φ、 孔数 4 0の紡糸 口金から紡出させ紡糸 ドラフ 卜 3 1 4、 紡速 2 5 0 m /分でポビンに巻取つた。  Next, this pellet was supplied to a spinning machine, and a spinning temperature of 15.5 was established with a spinning cylinder having a length of 2 m immediately below the spinneret, a hole diameter of 1.0 mmΦ, and a number of holes of 4 mm. It was spun from a spinneret of No. 0 and wound on a pobin at a spinning draft of 314 at a spinning speed of 250 m / min.
このよ う にして得られた未延伸繊維を窒素雰囲気下 で 1 1 5 °Cで定長下 2 4時間で熱処理した。 この未延 伸繊維の結晶化度は 6 2 %、 結晶配列度は 7 5 %で あっ た。 The undrawn fiber thus obtained was heat-treated at 115 ° C under a nitrogen atmosphere for 24 hours under a constant length. This unextended The crystallinity of the drawn fiber was 62% and the degree of crystal orientation was 75%.
この未延伸繊維に次に 2 5でで 8 0 %の冷延伸を行 い、 次いで、 1 1 5 °Cに加熱した長さ 2 mの加熱函中 で全延伸量が 5 2 0 %になるまで熱延伸を行っ た。 さ らに、 同じ温度に加熱した長さ 2 mの加熱函中で総延 伸量が 4 0 0 %になるよう緩和熱セッ 卜を行っ た。  Next, the undrawn fiber is subjected to cold drawing at 25% by 80%, and then, in a 2 m long heating box heated to 115 ° C, the total drawing amount becomes 5200%. Heat stretching was carried out until this time. Furthermore, a relaxation heat set was performed in a 2 m long heating box heated to the same temperature so that the total elongation was 400%.
得られた多孔質繊維は繊維表面から中心部まで全体 にわたつてラメ ラ と該ラメ ラ間をつなぐ多数の長手方 向に配列したフ ィ ブリルとで囲まれたス リ ッ 卜状の空 間が連通した細孔構造を有してお り 、 非常にソフ ト な風合いを有し、 空孔率は 6 2 . 3 %、 引張強度は 3 . 3 8 g / d , 引張伸度は 5 0 . 5 %であっ た。 次いで、 この多孔質繊維 l gを 2 0 0 c cのイオン 交換水に 1 時間浸漬し た後、 これを遠心分離機で 1 0 0 0 r P mで 5分間脱水した後、 重量増加率を測 定して含水率を求めたと ころ、 1 3 5 %であっ た。 実施例 2及び 3  The obtained porous fiber is a slit-shaped space surrounded by lamellas and a number of longitudinally arranged fibrils connecting the lamellas, from the fiber surface to the center. Have a very soft touch, a porosity of 62.3%, a tensile strength of 3.38 g / d, and a tensile elongation of 50%. It was 5%. Next, this porous fiber lg was immersed in 200 cc of ion-exchanged water for 1 hour, dehydrated with a centrifugal separator at 1000 rpm for 5 minutes, and the weight gain was measured. The water content was determined to be 135%. Examples 2 and 3
単位 A と してのヒ ドロキシェチルモノ メ タク リ レー ト単位 5 0重量% と、 単位 B と してのエチ レン単位 5 0重量%とからなり、 7 5 °Cキシレン中の極限粘度 [ 7? ] が 0 . 1 9 d £ノ gである親水性共重合体 X と、 実施例 1 で用いた三菱ポ リ ェチ J X — 2 0 と を 1 5 : 8 5 (重量比、 実施例 2 ) ま たは 2 0 : 8 0 (重量比、 実施例 3 ) の割合でブレン ド し、 実施例 1 と同様にして多孔質繊維を得た。 Consisting of 50% by weight of hydroxyxethyl monomethacrylate unit as unit A and 50% by weight of ethylene unit as unit B, the intrinsic viscosity in xylene at 75 ° C [ 7?] Is 0.19 d £ g and the hydrophilic copolymer X used in Example 1 is Mitsubishi Polyjet JX—20, which is 15:85 (weight ratio, 2) or 2 0: 8 0 (Weight ratio, Example 3) was blended, and a porous fiber was obtained in the same manner as in Example 1.
これらの多孔質繊維は実施例 1 のもの と 同様のス リ ッ ト状の細孔を有しており、 第 1 表に示す性能を有 していた。  These porous fibers had slit-like pores similar to those of Example 1, and had the performance shown in Table 1.
実施例 4及 5 Examples 4 and 5
単位 A と してのヒ ドロキシェチルモノ メ タク リ レー 卜単位 4 8重量部と、 単位 B と してのエチ レン単位 5 2重量部と、 単位 C と しての酢酸ビニル 2重量部と か ら な り 、 7 5 °Cキシ レン中の極限粘度 [ 7? ] が 0 . 1 9 d £ gである親水性共重合体 Xと、 実施例 1 で用いた三菱ポ リ ェチ J X— 2 0 と を 1 5 : 8 5 Hydroxylethyl monomethacrylate unit as unit A 48 parts by weight, ethylene unit as unit B 52 parts by weight, and vinyl acetate as unit C 2 parts by weight Thus, a hydrophilic copolymer X having an intrinsic viscosity [7?] In xylene of 75 ° C. of 0.19 d £ g and the Mitsubishi PolyJC JX— 2 0 and 1 5: 8 5
(重量比、 実施例 4 ) または 2 0 : 8 0 (重量比、 実 施例 5 ) の割合でプレン ド し、 実施例 1 と同様にして 多孔質繊維を得た。 (Weight ratio, Example 4) or 20:80 (weight ratio, Example 5) was blended, and a porous fiber was obtained in the same manner as in Example 1.
これらの多孔質繊維は実施例 1 のもの と同様のス リ 、ソ ト状の細孔を有しており、 第 1 表に示す性能を有 していた。  These porous fibers had the same thread and soot pores as those of Example 1, and had the performance shown in Table 1.
実施例 6 Example 6
ポ リエチレングリ コールの平均重合度 ( n ) が 6の ポ リエチレングリ コールモノメタク リ レー ト単位 4 5 重量% とエチレン単位 5 5重量%とからなり 、 7 5で キシレン中の極限粘度 [ 7? ] が 0 . 1 5 d Z gであ る親水性共重合体 Xと、 実施例 1 で用いた三菱ポリェ チ J X— 2 0 とを、 2 0 : 8 0 (重量比) の割合でブ レ ン ド し 、 実施例 1 と 同様に して多孔質繊維を得 た。 The average degree of polymerization (n) of polyethylene glycol is 45 wt% of poly (ethylene glycol) monomethacrylate units of 6 and 55 wt% of ethylene units. ?] Is 0.15 dZg and the Mitsubishi copolymer used in Example 1 JX-20 was blended at a ratio of 20:80 (weight ratio), and a porous fiber was obtained in the same manner as in Example 1.
これらの多孔質繊維は実施例 1 のもの と 同様のス リ ッ ト状の細孔を有してお り 、 第 1表に示す性能を有 していた。  These porous fibers had the same slit-like pores as those of Example 1 and had the performance shown in Table 1.
実施例 7及び実施例 8 Example 7 and Example 8
ポ リ エチレングリ コールの平均重合度 ( n ) が 6の ポ リ エチレングリ コールモノ メ 夕ク リ レー 卜単位 3 5 重量部とエチレン単位 6 5重量部とからな り 、 7 5 °C キシレン中の極限粘度 [ 77 ] が 0. 1 5 d £ノ gであ る親水性共重合体 Xと、 実施例 1 で用いた三菱ポ リェ チ J X— 2 0 とを、 2 0 : 8 0 (重量比、 実施例 7 ) または 2 5 : 7 5 (重量比、 実施例 8 ) の割合でブレ ン ド し、 実施例 1 と同様にして多孔質繊維を得た。  It consists of 35 parts by weight of ethylene glycol monomer having an average degree of polymerization (n) of polyethylene glycol of 6 and 65 parts by weight of ethylene unit. The hydrophilic copolymer X having an intrinsic viscosity [77] of 0.15 d ノ g and the Mitsubishi Polytech JX—20 used in Example 1 were mixed in a ratio of 20:80 (weight The blend was blended at a ratio of Example 7) or 25:75 (weight ratio, Example 8), and a porous fiber was obtained in the same manner as in Example 1.
これらの多孔質繊維は実施例 1 のものと 同様のス リ ツ ト状の細孔を有してお り 、 第 1表に示す性能を有 していた。  These porous fibers had slit-like pores similar to those of Example 1, and had the performance shown in Table 1.
比較例 1 Comparative Example 1
ポ リ マーと して高密度ポリエチレンである三菱ポリ ェチ J X - 2 0のみを用い実施例 1 と同様にして多孔 質ポ リエチレン繊維を製造し、 含水率を測定したと こ ろ 6 %であった。 第 1 表 空孔率 引張強度 引張伸度 含水率 ノ Uノ ノ ノ 実施例 1 3 38 50 5 135 ノノ 2 3 24 53 6 11 q ノノ 3 58 5 3 4 48 3 151 ノグ 4 • 61 8 3.33 50. 5 108 ノノ 5 58. 0 3.36 46.7 139 ノゾ 6 59.8 3. 18 48. 5 115 ノノ 7 61.5 3. 05 50.2 76 ノノ 8 56.5 3.33 46.8 125 A porous polyethylene fiber was produced in the same manner as in Example 1 using only Mitsubishi Polyethylene JX-20, which is a high-density polyethylene, as a polymer, and the water content was measured to be 6%. Was. Table 1 Porosity Tensile strength Tensile elongation Water content No U No No No Example 1 3 38 50 5 135 Non 2 3 24 53 6 11 q Non 3 58 5 3 4 48 3 151 Nog 4 • 61 8 3.33 50 5 108 Nono 5 58. 0 3.36 46.7 139 Noso 6 59.8 3.18 48.5 5 115 Nono 7 61.5 3.05 50.2 76 Nono 8 56.5 3.33 46.8 125

Claims

1 . 下記式 ; 1. The following formula:
R  R
-( C Η 2 — C - -(C Η 2 — C-
C 0 0 ( C H C H 0 ) H 口冑 R 2 C 0 0 (CHCH 0) H Mouth R 2
(上記式中、 R 1 及び R 2 は互いに独立に水素また はメ チル基を表わし、 nは 1 ~9である。 ) で示されるモノマー単位 Aと ί車エチレン単位 B とを主成 分とする親水性共重合体 Xと、 ポリ オレフ イ ン Yとか 囲 (In the above formula, R 1 and R 2 independently represent hydrogen or a methyl group, and n is 1 to 9.) The monomer unit A and the carboethylene unit B represented by Hydrophilic copolymer X and polyolefin Y
らな り 、 ラメ ラ と該ラメ ラ間をつなぐ多数の長手方向 に配列したフ ィ ブリルとで囲まれた空間が連通した細 孔構造を有する多孔質繊維。 A porous fiber having a pore structure in which a space surrounded by lamellas and a number of longitudinally arranged fibrils connecting the lamellas communicates with each other.
2 . 親水性共重合体 Xとポ リ オ レフ イ ン Yとの重量組 成比 ( X/Y) が、 5 Z9 5 ~5 0 /5 0の範囲にあ る請求項 1 に記載の多孔質繊維。  2. The porous material according to claim 1, wherein the weight composition ratio (X / Y) of the hydrophilic copolymer X and the polyolefin Y is in the range of 5Z95 to 50/50. Quality fiber.
3 . 親水性共重合体 X中の単位 Aと単位 Bの重量組成 比 ( A/B ) が、 8 0 Z 2 0〜 1 0ノ 9 0の範囲にあ る請求項 1 または 2に記載の多孔質繊維。  3. The method according to claim 1, wherein the weight composition ratio (A / B) of the unit A and the unit B in the hydrophilic copolymer X is in the range of 80Z20 to 100/90. Porous fiber.
4. 親水性共重合体 Xの 7 5 °Cキシレン中での極限粘 度 [ 77 ] が 0. 0 7〜0. 4 0 d £ノ gの範囲にある 請求顧 3に記載の多孔質繊維。  4. The porous fiber according to claim 3, wherein the intrinsic viscosity [77] of the hydrophilic copolymer X in xylene at 75 ° C is in the range of 0.07 to 0.40 d £ g. .
5. ポ リ オレフ イ ン Yがポリエチレンである請求項 1 〜4のいずれかに記載の多孔質繊維。 5. The polyolefin Y is polyethylene. 5. The porous fiber according to any one of items 1 to 4.
6. 空孔率が 3 0〜8 0 %、 引張強度が 0. 5〜8 g / d、 引張伸度が 1〜 3 0 0 %の範囲にある請求項 1 〜 5のいずれかに記載の多孔質繊維。  6. The porosity according to any one of claims 1 to 5, wherein the porosity is in the range of 30 to 80%, the tensile strength is in the range of 0.5 to 8 g / d, and the tensile elongation is in the range of 1 to 300%. Porous fiber.
7. 下記式で示されるモノ マー単位 Aとエチレン単位  7. Monomer unit A and ethylene unit represented by the following formula
B と を主成分とする親水性共重合体 Xと、 ポ リ オ レ フ ィ ン Yとのプレン ド物を溶融紡糸して未延伸鐡維を 得る過程と ; 該未延伸繊維を真空中も しく は不活性ガ ス媒体中でポ リ オレフ ィ ン Yの融点以下の温度で 1時 間以上熱処理し、 次いで延伸処理して多孔質化する過 程とを含む多孔質繊維の製法。 A process of melt-spinning a blend of a hydrophilic copolymer X mainly containing B and a polyrefin Y to obtain an undrawn iron fiber; Or a heat treatment at a temperature not higher than the melting point of polyolefin Y in an inert gas medium for at least one hour, followed by a drawing process to make the fibers porous.
R 1 R 1
I  I
- C H 2 —C  -C H 2 —C
C 0 0 ( C H 2 ♦ C H 0 ) n H C 0 0 (CH 2 ♦ CH 0) n H
I  I
R 2 R 2
(上記式中、 R 1 及び R 2 は互いに独立に水素また はメチル基を表わし、 nは 1〜9である。 )(In the above formula, R 1 and R 2 independently represent a hydrogen or a methyl group, and n is 1 to 9.)
8. 親水性共重合体 Xとポリオレフ イ ン Yとの重量組 成比 ( Xノ Y) が、 5 Z9 5〜5 0 Z5 0の範囲にあ る請求項 7に記載の多孔質繊維の製法。 8. The method for producing a porous fiber according to claim 7, wherein the weight composition ratio (X / Y) of the hydrophilic copolymer X and the polyolefin Y is in the range of 5Z95 to 50Z50. .
9. 親水性共重合体 X中の単位 Aと単位 Bの重量組成 比 ( A B ) が、 8 0/2 0〜 : 1 0 9 0の範囲にあ る請求項 7または 8に記載の多孔質繊維の製法。 9. The porous material according to claim 7 or 8, wherein the weight composition ratio (AB) of the unit A and the unit B in the hydrophilic copolymer X is in the range of 80/20 to 1/90. Fiber manufacturing method.
1 0 . 親水性共重合体 Xの 7 5でキシレン中での極限 粘度 [ 77 ] が 0. 0 7〜0. 4 0 d jG / gの範囲にあ る請求項 9に記載の多孔質繊維の製法。 10. The porous fiber according to claim 9, wherein the intrinsic viscosity [77] of the hydrophilic copolymer X in xylene at 75 is in the range of 0.07 to 0.4 djG / g. Recipe.
1 1 . ポ リ オ レフ イ ン ' ' がポ リ エチレンである請求項 7〜 1 0のいずれかに記載の多孔質繊維の製法。  11. The method for producing a porous fiber according to any one of claims 7 to 10, wherein the polyolefin '' is polyethylene.
PCT/JP1990/000890 1989-07-13 1990-07-11 Porous fiber and production thereof WO1991000935A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930700329A KR930701265A (en) 1990-07-11 1992-07-10 Animation drawing method in NC system for multi system lathe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1/181557 1989-07-13
JP18155789 1989-07-13

Publications (1)

Publication Number Publication Date
WO1991000935A1 true WO1991000935A1 (en) 1991-01-24

Family

ID=16102870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000890 WO1991000935A1 (en) 1989-07-13 1990-07-11 Porous fiber and production thereof

Country Status (2)

Country Link
EP (1) EP0438598A4 (en)
WO (1) WO1991000935A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951964A (en) * 1993-06-04 1999-09-14 Diatide, Inc. Technetium-99m labeled peptides for imaging

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014783A1 (en) * 1991-02-13 1992-09-03 Mitsubishi Rayon Co., Ltd. Hydrophilic polymer alloy, fiber and porous film produced therefrom, and production of the same
US5677360A (en) * 1991-02-13 1997-10-14 Mitsubishi Rayon Co., Ltd. Hydrophilic polymer alloy, fiber and porous membrane comprising this polymer alloy, and methods for preparing them
FI92337C (en) * 1993-03-12 1994-10-25 Neste Oy Polyolefin-based fibrous material
FR2715294B1 (en) 1994-01-26 1996-03-22 Oreal Anhydrous cosmetic or dermatological composition containing the combination of a silicone oil and a wax of an ethylene homo- or copolymer.
US6255386B1 (en) 1996-12-31 2001-07-03 Kimberly-Clark Worldwide, Inc. Blends of polyolefin and poly(ethylene oxide) and process for making the blends
US6063866A (en) * 1996-12-31 2000-05-16 Kimberly-Clark Worldwide, Inc. Blends of polyolefin and poly(ethylene oxide) and process for making the blends
US5912076A (en) 1996-12-31 1999-06-15 Kimberly-Clark Worldwide, Inc. Blends of polyethylene and peo having inverse phase morphology and method of making the blends
AU2016899A (en) 1997-12-31 1999-07-19 Kimberley-Clark Worldwide, Inc. Flushable fiber compositions comprising modified polypropylene and modified poly(ethylene oxide) and process for making the same
US6444761B1 (en) 1999-12-28 2002-09-03 Kimberly-Clark Worldwide, Inc. Water-soluble adhesive compositions
US6576576B1 (en) 1999-12-29 2003-06-10 Kimberly-Clark Worldwide, Inc. Multicomponent fibers
US6500897B2 (en) 2000-12-29 2002-12-31 Kimberly-Clark Worldwide, Inc. Modified biodegradable compositions and a reactive-extrusion process to make the same
US6552124B2 (en) 2000-12-29 2003-04-22 Kimberly-Clark Worldwide, Inc. Method of making a polymer blend composition by reactive extrusion
US6579934B1 (en) 2000-12-29 2003-06-17 Kimberly-Clark Worldwide, Inc. Reactive extrusion process for making modifiied biodegradable compositions
US7053151B2 (en) 2000-12-29 2006-05-30 Kimberly-Clark Worldwide, Inc. Grafted biodegradable polymer blend compositions
US6890989B2 (en) 2001-03-12 2005-05-10 Kimberly-Clark Worldwide, Inc. Water-responsive biodegradable polymer compositions and method of making same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120610B1 (en) * 1971-01-14 1976-06-26
JPS6183305A (en) * 1984-09-25 1986-04-26 Mitsui Petrochem Ind Ltd Extremely thin yarn bundle and its production
JPH02133607A (en) * 1988-11-14 1990-05-22 Mitsubishi Rayon Co Ltd Porous polyolefin fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120610B1 (en) * 1971-01-14 1976-06-26
JPS6183305A (en) * 1984-09-25 1986-04-26 Mitsui Petrochem Ind Ltd Extremely thin yarn bundle and its production
JPH02133607A (en) * 1988-11-14 1990-05-22 Mitsubishi Rayon Co Ltd Porous polyolefin fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951964A (en) * 1993-06-04 1999-09-14 Diatide, Inc. Technetium-99m labeled peptides for imaging

Also Published As

Publication number Publication date
EP0438598A4 (en) 1992-06-10
EP0438598A1 (en) 1991-07-31

Similar Documents

Publication Publication Date Title
WO1991000935A1 (en) Porous fiber and production thereof
US5677360A (en) Hydrophilic polymer alloy, fiber and porous membrane comprising this polymer alloy, and methods for preparing them
JPH0214011A (en) Porous polyethylene fiber
US3814739A (en) Method of manufacturing fibers and films from an acrylonitrile copolymer
US4377648A (en) Cellulose-polyacrylonitrile-DMSO-formaldehyde solutions, articles, and methods of making same
JPS648083B2 (en)
US3322611A (en) Porous fibers and processes of preparing same
US5869183A (en) Polymer blend fibers having phase separation structure and method for producing the same
US5057218A (en) Porous membrane and production process thereof
Eashoo et al. Fibers from a low dielectric constant fluorinated polyimide: solution spinning and morphology control
JPH02133607A (en) Porous polyolefin fiber
JPH08113829A (en) New polymer blend fiber and its production
JP2566871B2 (en) Vinylidene fluoride resin composition fiber and method for producing the same
KR0123041B1 (en) Manufacturing method of soluble polyester fiber
JPH03249217A (en) Light-weight sheath-core conjugate hollow polyester fiber
KR100402761B1 (en) Multi-component microporous membrane and method for preparing the same
JP4434442B2 (en) Polyester filament
JP3281014B2 (en) Method for producing hydrophilic polymer alloy and method for producing porous membrane comprising hydrophilic polymer alloy
JP2584494B2 (en) High elasticity polypropylene fiber and method for producing the same
JPH03249216A (en) Light-weight polyester fiber
JPS6094613A (en) Production of high-strength and high-modulus fiber
JPH04343710A (en) Production of aromatic polyetherketone monofilament
JP2003193329A (en) Polyvinyl chloride-based fiber
JPS6065109A (en) Porous acrylonitrile synthetic fiber
JP2007126794A (en) Method for producing porous acrylic fiber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990910940

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990910940

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990910940

Country of ref document: EP