WO1990010518A1 - A fluxless soldering process - Google Patents

A fluxless soldering process Download PDF

Info

Publication number
WO1990010518A1
WO1990010518A1 PCT/US1990/001404 US9001404W WO9010518A1 WO 1990010518 A1 WO1990010518 A1 WO 1990010518A1 US 9001404 W US9001404 W US 9001404W WO 9010518 A1 WO9010518 A1 WO 9010518A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
fluorine
reflowing
soldering
plasma excitation
Prior art date
Application number
PCT/US1990/001404
Other languages
French (fr)
Inventor
Giora Dishon
Stephen Michael Bobbio
Original Assignee
Mcnc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23262749&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1990010518(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mcnc filed Critical Mcnc
Priority to AT90905786T priority Critical patent/ATE98147T1/en
Priority to DE69005104T priority patent/DE69005104T2/en
Publication of WO1990010518A1 publication Critical patent/WO1990010518A1/en
Priority to HK45894A priority patent/HK45894A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/206Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Definitions

  • the present invention relates to a method for soldering, and more particularly to a fluxless soldering method which eliminates the need for post-soldering cleaning.
  • microelectronic devices In the area of electronic circuit fabrication, it is necessary to bring discrete devices into electrical contact. For example, integrated circuits (or "chips") are often mounted on printed wiring boards, or other such devices, which may be generally referred to as substrates. The contact between the chip and substrate must have physical, chemical and electrical integrity and stability.
  • One method for physically and electrically connecting microelectronic devices employs the fabrication of metal pads on the top or exposed surface of various substrates. These metal pads are often formed with a top layer of solder; i.e., a low melting point alloy, usually of the lead-tin type, used for joining metals at temperatures around 450"F.
  • solder pads are brought into contact with a metal structural element often referred to as a "metallurgy” — typically a metal pad — that will wet with liquid solder when heat is applied to join the solder and the metal pad and thereby form the electrical connection.
  • a metal structural element often referred to as a "metallurgy” — typically a metal pad — that will wet with liquid solder when heat is applied to join the solder and the metal pad and thereby form the electrical connection.
  • soldering processes comprise three basic steps: (1) pre-cleaning and deoxidation of surface oxides; (2) solder reflow and/or reflow joining; and (3) post-soldering cleaning.
  • the pre-cleaning step is performed with different flux materials to prepare the surfaces for the soldering step by removal of contaminants and metal oxides from the solder surface.
  • the solder joining step can occur only after the oxide coating is removed because the high melting point oxides will prevent the wetting of the two surfaces to be joined by reflow of the solder. Solder reflows into its characteristic spherical shape when heated, and joins the surfaces in contact with the solder.
  • the third step, post-soldering cleaning removes any flux residue remaining from the first step.
  • the post-soldering step has become more difficult to perform effectively as the size of electronic components shrink, making it much more difficult for the post-soldering cleaning agents to penetrate the smaller gaps between the components and the substrate.
  • the post-soldering step becomes even more difficult when Surface Mount Technology (SMT) is employed.
  • SMT Surface Mount Technology
  • a dry or fluxless soldering process can replace the pre-cleaning step and totally eliminate the post-soldering cleaning step. Since the main reason for using flux while reflowing solder joints is to break the high melting point and rigid oxide that covers the solder, a gas phase reaction that will remove this layer can replace the commonly used liquid fluxes that necessitate the post-soldering cleaning step.
  • Various attempts at fluxless soldering have been made; however, these attempts have suffered from limitations that made them applicable only to a small number and very specific applications. For example, Moskowitz and Yeh in "Thermal
  • These and other objects of the present invention are accomplished by supplying the activation energy for the removal of the solder surface oxides through a plasma process.
  • a plasma process using fluorinated gases (e.g., SF 6 , CF 4 , or other fluorinated gases)
  • the tin oxide may be converted to tin fluoride. It has been found that tin fluoride does not prevent the wetting of the two surfaces to be joined during the solder reflow step as does tin oxide.
  • One or more surfaces to be joined by the solder can be coated with solder to aid in the wetting of the solder.
  • solder is then treated with a plasma- assisted reaction to form the tin fluoride, which may be stored and reflowed later in an inert atmosphere or vacuum.
  • This method has the advantages of improved wetting of the surfaces to the solder without the need for a fluxing agent during the solder reflow, and/or reflow joining step.
  • converting the tin oxide to tin fluoride through a plasma process occurs at a low temperature.
  • the temperature is about 34 ⁇ C to 50 ⁇ C.
  • the plasma treatment time is short (i.e., approximately 1/2-3 minutes) and can occur at low or high pressures (i.e., 5m Torr to 1 Torr) .
  • the solder reflow occurs in a non-oxidizing atmosphere.
  • the plasma treatment and reflow and/or reflow joining occur in an unbroken vacuum, to encourage the formation of higher quality solder wetting.
  • a high throughput, reliable soldering process is thus provided, which does not damage the chip or substrate to be soldered.
  • Figures 1A-E show a fluxless plasma pretreatment and solder reflow joining method of the invention.
  • Figures 2A-E show another fluxless plasma reflow joining method of the present invention.
  • Figures 3A-E show a fluxless plasma pretreatment and solder reflow method of the invention.
  • FIGS. 4A-E show another fluxless plasma reflow method of the invention. Detailed Description of the Invention
  • Figures 1A-E and 2A-E show a fluxless plasma pretreatment and reflow joining of the present invention.
  • Figures 3A-E and 4A-E show a fluxless plasma pretreatment and solder reflow of the present invention. Similar numbers represent similar elements.
  • Surface 10 may be a substrate, for example, a printed circuit, SMT board, or surface 10 maybe another solder bump.
  • solder 20 is deposited on the first surface 10.
  • the solder 20 can be of any appropriate soldering material such as tin, lead tin, and lead-tin based alloys. Applicants used the eutectic 63% lead, 37% tin material (melting point 183°C).
  • Surface oxides 25 form on the exposed portion 40 of the solder 20 through exposure to oxygen in the ambient. The presence of surface oxides prevents the solder reflow or the wetting of the surfaces to be solder joined and must therefore be removed.
  • the first surface 10 and solder 20 with surface oxides 25 are placed in a reaction chamber 30.
  • the plasma solder treatment process is performed.
  • the plasma excitation is of a fluorinated gas (i.e., SF 6 , CF A ) .
  • the plasma treatment may occur at room temperature (34° - 50°C) .
  • the plasma process is preferably very short in duration (i.e., 1/2 - 3 minutes) .
  • the treatment may occur in relatively high pressure (for example, 1 Torr) or low pressure (for example, 5m Torr) . Power level, gas flow, gas mixture and other typical plasma process conditions may vary according to the reactor configuration and the nature of the assembly to be treated.
  • the activation energy needed for converting the oxides is supplied by excited fluorine radicals in the plasma which diffuse and hit the surface oxide 25, resulting in formation of a fluorine compound 45 on the solder surface.
  • the fluorine plasma process is performed until the surface oxide 25 is substantially removed from the solder surface and a compound of the solder material 20 and fluorine forms on the solder surface.
  • the compound 45 formed during the plasma process is shown on the exposed, surface 40 of solder bump 20.
  • the plasma is a fluorinated gas (for example, SF 6 or CF 4 ) , resulting in a tin fluoride compound 45.
  • Figure ID illustrates the removal of the surface oxide layer 25 from the surface and the formation of a tin fluoride compound on the solder surface.
  • the substrate and solder are removed from the plasma pretreatment reaction chamber 30.
  • the solder is then reflowed in a non-oxidizing ambient to form either a solder bump 60 or to reflow and join the second 50 surfaces.
  • Second surface 50 may be a component or another solder bump.
  • the reflow or reflow joining conditions are the same typical conditions used with conventional wet flux methods. While applicants do not wish to be bound to a particular theory, it is believed that during reflow, the surface fluoride in the compound 45 either dissolves into the solder 20 or breaks up into colloidal-type particles.
  • Figures 3A-E illustrate the same process except no joining of the solder to another object occurs; only solder reflow occurs.
  • FIG. 2A a first substrate 10 is shown.
  • Figure 2B shows a first surface 10 having a solder 20 deposited thereon.
  • Surface oxides 25 form on the exposed surface 40 of the solder 20. The oxides 25 prevent the solder reflow or the wetting by the solder of the two surfaces to be joined.
  • solder bump 20 now has a surface compound 45 consisting of solder and fluorine in such quantities sufficient to allow solder reflow or wetting of the solder bump 20 to a second surface to occur.
  • solder bump 20 on the first surface 10 is reflowed or reflow joined to surface 50.
  • the performance of the plasma treatment and reflow in a continuous mode within the reaction chamber creates a much higher quality solder surface because risk of re- oxidation is eliminated by not exposing the solder surface to the ambient.
  • Figures 4A-E illustrate the same process, except no joining of the solder to another object occurs; only solder reflow occurs.
  • the plasma process treatment and the reflow process may occur simultaneously and/or the second surface 50 may be brought in contact with the solder 20 during reflow.
  • either or both of the surfaces 10 and 50 to be joined by the solder can be coated with a layer of the solder material or other known materials (i.e., gold) which improve the wetting of the solder to the surfaces to be joined. Both solder surfaces are then treated in a pressure-assisted reaction to form the tin fluoride and then reflowed with even higher bond integrity.
  • an oxygen plasma treatment prior to the fluorine plasma treatment, an oxygen plasma treatment, as commonly known in the industry, can be performed prior to the fluorine plasma treatment.
  • the oxygen plasma treatment will remove — by oxidation — any organic residue from . the surface and eliminates any need for pre-solder cleaning. Organic residue can prevent complete removal of the surface oxides and replacement by fluorides through the fluorine plasma treatment.
  • the oxygen plasma treatment occurs at similar conditions to the fluorine plasma treatment as described earlier.
  • the oxygen plasma treatment may, however, occur at higher pressures. This step can replace the pre-soldering cleaning and will further improve solder reflow or wetting.

Abstract

A method of soldering without the need for fluxing agents, high temperature, hydrogen, laser excitation or sputtering techniques. The method uses plasma excitation to remove surface oxides from solder surfaces, thereby eliminating the need for post-soldering cleaning in an accurate and efficient manner, resulting in a higher quality and long term reliability solder joint. In addition, serious environmental problems caused by cleaning solvents are avoided.

Description

A FLUXLESS SOLDERING PROCESS Field of the Invention The present invention relates to a method for soldering, and more particularly to a fluxless soldering method which eliminates the need for post-soldering cleaning.
Background of the Invention In the area of electronic circuit fabrication, it is necessary to bring discrete devices into electrical contact. For example, integrated circuits (or "chips") are often mounted on printed wiring boards, or other such devices, which may be generally referred to as substrates. The contact between the chip and substrate must have physical, chemical and electrical integrity and stability. One method for physically and electrically connecting microelectronic devices employs the fabrication of metal pads on the top or exposed surface of various substrates. These metal pads are often formed with a top layer of solder; i.e., a low melting point alloy, usually of the lead-tin type, used for joining metals at temperatures around 450"F. The solder pads are brought into contact with a metal structural element often referred to as a "metallurgy" — typically a metal pad — that will wet with liquid solder when heat is applied to join the solder and the metal pad and thereby form the electrical connection.
At present, most soldering processes comprise three basic steps: (1) pre-cleaning and deoxidation of surface oxides; (2) solder reflow and/or reflow joining; and (3) post-soldering cleaning. The pre-cleaning step . is performed with different flux materials to prepare the surfaces for the soldering step by removal of contaminants and metal oxides from the solder surface. The solder joining step can occur only after the oxide coating is removed because the high melting point oxides will prevent the wetting of the two surfaces to be joined by reflow of the solder. Solder reflows into its characteristic spherical shape when heated, and joins the surfaces in contact with the solder. The third step, post-soldering cleaning, removes any flux residue remaining from the first step.
The post-soldering step has become more difficult to perform effectively as the size of electronic components shrink, making it much more difficult for the post-soldering cleaning agents to penetrate the smaller gaps between the components and the substrate. The post-soldering step becomes even more difficult when Surface Mount Technology (SMT) is employed.
Inefficient fluxing will result in defective bonding and inefficient post-soldering cleaning will reduce the long term reliability of the whole assembly. A high investment in cleaning equipment, materials, and processes can solve some of the problems, but undesired effects on the environment caused by cleaning solvents are generated.
A dry or fluxless soldering process can replace the pre-cleaning step and totally eliminate the post-soldering cleaning step. Since the main reason for using flux while reflowing solder joints is to break the high melting point and rigid oxide that covers the solder, a gas phase reaction that will remove this layer can replace the commonly used liquid fluxes that necessitate the post-soldering cleaning step. Various attempts at fluxless soldering have been made; however, these attempts have suffered from limitations that made them applicable only to a small number and very specific applications. For example, Moskowitz and Yeh in "Thermal
Dry Process Soldering," J.VAC.SCI.TECHNOL.A, Vol. 4, No. 3, May/June 1986, describe a dry soldering process for solder reflow and bonding of Pb/Sn solder. This process uses halogen containing gases, CF2, CL2, CF4, and SF6 for the reduction of the surface oxide to enable solder reflow at temperature above the solder melting point. The activation energy needed for the oxide reduction by these gases is lowered by the use of a catalyst (Pt mesh) in a vacuum chamber. Yet the temperature needed for successful reflow bonding is 350°C. This temperature is well above the typical soldering temperature for most electronic applications, i.e., 220βC, and can damage the components, the substrate, and generate defects due to thermal mismatch between different materials. Another attempt at fluxless soldering is disclosed in IBM Technical Disclosure Bulletin Vol. 27, No. 11, April, 1985, entitled, "Dry Soldering Process Using Halogenated Gas." The IBM bulletin discloses the use of halogenated gases in an inert carrier gas at elevated temperature to produce a reduction of solder oxide by the reactive gas and to allow solder reflow. Again, for the more common low temperature applications, thermal damage may result. Moskowitz and Davidson in "Summary Abstract: Laser-Assisted Dry Process Soldering," J. VAC.SCI.TECHNOL.A. , Vol. 3, No. 3, May/June, 1985, describe a laser-assisted fluxless soldering technique for solder reflow. This technique uses laser radiation to excite an otherwise non-reactive gas in the presence of pre-heated solder surface. This technique requires direct access of the laser radiation to the solder surface, thus limiting the applications as well as resulting in a low throughput process. Other attempts to remove surface oxides have employed sputtering. The sputtering methods, however, are extremely inaccurate and can damage the substrates and components while removing oxides, and are very limited in penetration distances, making sputtering unsuitable to applications like solder reflow.
In summary, the use of high temperatures in the available fluxless soldering methods may often have deleterious effects on the printed circuit boards and the components being joined. Laser assisted soldering methods have also proven inadequate for commercial use, because laser beams do not penetrate to unexposed areas, and thus cannot be applied to solder joining. In addition, being based on a localized beam, it is a time consuming process.
Summary of the Invention It is therefore an object of the present invention to provide an improved soldering process.
It is another object of the present invention to provide an improved fluxless soldering process.
It is yet another object of the present invention to provide a soldering process without the need for the post-soldering cleaning step.
It is yet another object of the present invention to provide a pre-soldering process for improved solder reflow.
It is yet another object of the present invention to provide an improved fluxless soldering reflow process without the need for laser or thermal excitation.
It is yet another object of the present invention to provide an improved fluxless soldering process which occurs at a low temperature.
It is still another object of the present invention to provide an improved removal of surface compounds such as oxides from the solder surface. These and other objects of the present invention are accomplished by supplying the activation energy for the removal of the solder surface oxides through a plasma process. For example, in a plasma treatment using fluorinated gases (e.g., SF6, CF4, or other fluorinated gases) , the tin oxide may be converted to tin fluoride. It has been found that tin fluoride does not prevent the wetting of the two surfaces to be joined during the solder reflow step as does tin oxide. One or more surfaces to be joined by the solder can be coated with solder to aid in the wetting of the solder. The solder is then treated with a plasma- assisted reaction to form the tin fluoride, which may be stored and reflowed later in an inert atmosphere or vacuum. This method has the advantages of improved wetting of the surfaces to the solder without the need for a fluxing agent during the solder reflow, and/or reflow joining step.
According to the present invention, converting the tin oxide to tin fluoride through a plasma process occurs at a low temperature. Typically, the temperature is about 34βC to 50βC. The plasma treatment time is short (i.e., approximately 1/2-3 minutes) and can occur at low or high pressures (i.e., 5m Torr to 1 Torr) . The solder reflow occurs in a non-oxidizing atmosphere.
Preferably, the plasma treatment and reflow and/or reflow joining occur in an unbroken vacuum, to encourage the formation of higher quality solder wetting. A high throughput, reliable soldering process is thus provided, which does not damage the chip or substrate to be soldered.
Description of the Drawings Other objects and advantages of the invention and the manner in which same are accomplished will be more completely understood with reference to the detailed description and to the drawings in which: Figures 1A-E show a fluxless plasma pretreatment and solder reflow joining method of the invention.
Figures 2A-E show another fluxless plasma reflow joining method of the present invention.
Figures 3A-E show a fluxless plasma pretreatment and solder reflow method of the invention.
Figures 4A-E show another fluxless plasma reflow method of the invention. Detailed Description of the Invention
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which a preferred embodiment of the invention is shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiment set forth herein; rather, applicants provide this embodiment so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Like characters refer to like elements throughout. For greater clarity, the thickness of layers has been exaggerated.
Figures 1A-E and 2A-E show a fluxless plasma pretreatment and reflow joining of the present invention. Figures 3A-E and 4A-E show a fluxless plasma pretreatment and solder reflow of the present invention. Similar numbers represent similar elements.
Referring now to both Figures 1 and 3, in Figure 1A, the first surface 10 to be soldered is shown. Surface 10 may be a substrate, for example, a printed circuit, SMT board, or surface 10 maybe another solder bump.
Referring now to Figure IB, solder 20 is deposited on the first surface 10. The solder 20 can be of any appropriate soldering material such as tin, lead tin, and lead-tin based alloys. Applicants used the eutectic 63% lead, 37% tin material (melting point 183°C). Surface oxides 25 form on the exposed portion 40 of the solder 20 through exposure to oxygen in the ambient. The presence of surface oxides prevents the solder reflow or the wetting of the surfaces to be solder joined and must therefore be removed.
Referring now to Figure 1C, the first surface 10 and solder 20 with surface oxides 25 are placed in a reaction chamber 30. Within the vacuum of the reaction chamber, the plasma solder treatment process is performed. The plasma excitation is of a fluorinated gas (i.e., SF6, CFA) . The plasma treatment may occur at room temperature (34° - 50°C) . The plasma process is preferably very short in duration (i.e., 1/2 - 3 minutes) . The treatment may occur in relatively high pressure (for example, 1 Torr) or low pressure (for example, 5m Torr) . Power level, gas flow, gas mixture and other typical plasma process conditions may vary according to the reactor configuration and the nature of the assembly to be treated.
Surface oxides prevent wetting of the surfaces to be soldered and must therefore be removed. Applicants believe that fluorinated gases will remove the surface oxides during the plasma process because of the higher electronegativity of fluorine or due to instability in the fluorine structure.
While applicants do not wish to be bound to a particular theory, it is believed that the activation energy needed for converting the oxides is supplied by excited fluorine radicals in the plasma which diffuse and hit the surface oxide 25, resulting in formation of a fluorine compound 45 on the solder surface. The fluorine plasma process is performed until the surface oxide 25 is substantially removed from the solder surface and a compound of the solder material 20 and fluorine forms on the solder surface. Referring to Figure ID, the compound 45 formed during the plasma process is shown on the exposed, surface 40 of solder bump 20. The plasma is a fluorinated gas (for example, SF6 or CF4) , resulting in a tin fluoride compound 45. Figure ID illustrates the removal of the surface oxide layer 25 from the surface and the formation of a tin fluoride compound on the solder surface.
Referring now to Figure IE, in the first embodiment of the method of the present invention, the substrate and solder are removed from the plasma pretreatment reaction chamber 30. The solder is then reflowed in a non-oxidizing ambient to form either a solder bump 60 or to reflow and join the second 50 surfaces. Second surface 50 may be a component or another solder bump. The reflow or reflow joining conditions are the same typical conditions used with conventional wet flux methods. While applicants do not wish to be bound to a particular theory, it is believed that during reflow, the surface fluoride in the compound 45 either dissolves into the solder 20 or breaks up into colloidal-type particles. Figures 3A-E illustrate the same process except no joining of the solder to another object occurs; only solder reflow occurs. Referring now to Figures 2A-E and 4A-E, a preferred embodiment of the present invention is shown. In this embodiment, reflow or reflow joining of the solder occurs in the vacuum of the reaction chamber 30 in a continuous mode with the plasma treatment, thereby creating a higher quality joint since exposure to the ambient is prevented. In Figure 2A, a first substrate 10 is shown. As in Figure IB, Figure 2B shows a first surface 10 having a solder 20 deposited thereon. Surface oxides 25 form on the exposed surface 40 of the solder 20. The oxides 25 prevent the solder reflow or the wetting by the solder of the two surfaces to be joined. Referring now to Figure 2C, the structure of Figure 2B is placed within a reaction chamber 30 whereupon the same plasma process as described in connection with Figure 1C is performed. Referring now to Figure 2D, the post-plasma treatment structure devoid of surface oxides is shown. Solder bump 20 now has a surface compound 45 consisting of solder and fluorine in such quantities sufficient to allow solder reflow or wetting of the solder bump 20 to a second surface to occur.
Referring now to Figure 2E, in the continuous mode of operation, the solder bump 20 on the first surface 10 is reflowed or reflow joined to surface 50. The performance of the plasma treatment and reflow in a continuous mode within the reaction chamber creates a much higher quality solder surface because risk of re- oxidation is eliminated by not exposing the solder surface to the ambient. Figures 4A-E illustrate the same process, except no joining of the solder to another object occurs; only solder reflow occurs.
In another alternative embodiment of this invention, the plasma process treatment and the reflow process may occur simultaneously and/or the second surface 50 may be brought in contact with the solder 20 during reflow. In yet another alternative embodiment of the invention, either or both of the surfaces 10 and 50 to be joined by the solder can be coated with a layer of the solder material or other known materials (i.e., gold) which improve the wetting of the solder to the surfaces to be joined. Both solder surfaces are then treated in a pressure-assisted reaction to form the tin fluoride and then reflowed with even higher bond integrity.
In another alternative embodiment of this invention, prior to the fluorine plasma treatment, an oxygen plasma treatment, as commonly known in the industry, can be performed. The oxygen plasma treatment will remove — by oxidation — any organic residue from . the surface and eliminates any need for pre-solder cleaning. Organic residue can prevent complete removal of the surface oxides and replacement by fluorides through the fluorine plasma treatment. The oxygen plasma treatment occurs at similar conditions to the fluorine plasma treatment as described earlier. The oxygen plasma treatment may, however, occur at higher pressures. This step can replace the pre-soldering cleaning and will further improve solder reflow or wetting.
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims

THAT WHICH IS CLAIMED IS:
1. A method of soldering without the need . for fluxing agents, comprising the steps of: a. depositing solder on a first surface, said solder having a surface oxide layer; b. performing fluorine-containing plasma excitation on said solder; and c. reflowing said solder on said first surface.
2. The method of Claim 1 wherein said reflowing step comprises placing said solder in contact with a second surface, to thereby solder join together said first and second surfaces without the need for post- soldering cleaning.
3. The method of Claim 2 wherein said placing step is preceded by the step of coating both of said first and second surfaces with solder.
4. The method of Claim 1 wherein said reflowing step occurs in a vacuum.
5. The method of Claim 1 wherein said performing and reflowing steps occur in a continuous vacuum.
6. The method of Claim 1 wherein said performing a fluorine plasma excitation step occurs at a temperature of approximately 34° - 50°C.
7. The method of Claim 1 wherein said performing a fluorine plasma excitation step comprises performing said fluorine plasma excitation for approximately one-half to three minutes.
8. The method of Claim 1 wherein said performing a fluorine-containing plasma excitation step comprises the use of fluorine radicals as a reactive species.
9. The method of Claim 1 wherein said performing and said reflowing steps occur simultaneously.
10. The method of Claim 1 wherein said reflowing step occurs at a temperature of approximately 200βC.
11. The method of Claim 1 wherein said performing step converts at least some of the surface oxides to a compound of the solder and fluorine.
12. The method of Claim 1 wherein said performing step is preceded by an oxygen plasma treatment.
13. A method of soldering without the need for fluxing agents, comprising the steps of: a. depositing a layer of solder on a first surface, said solder having a surface oxide layer; b. performing a fluorine-containing plasma excitation at room temperature on said solder to convert said surface oxides to a compound of solder and fluorine; and c. reflowing said solder on said first surface in a non-oxidizing ambient.
14. The method of Claim 13 wherein said reflowing step comprises placing said solder in contact with a second surface to form a solder bond between said first and second surfaces.
15. The method of Claim 13 wherein said reflowing step occurs at a temperature of approximately 200°C.
16. The method of Claim 13 wherein said reflowing step occurs in a vacuum.
17. The method of Claim 13 wherein said performing a fluorine-containing plasma treatment and reflowing steps occur in a continuous vacuum.
18. The method of Claim 13 wherein said performing a fluorine-containing plasma excitation step comprises performing said fluorine plasma excitation for approximately one-half to three minutes.
19. The method of Claim 13 wherein said performing a fluorine-containing plasma excitation step comprises the use of fluorine radicals as a reactive species.
20. The method of Claim 13 wherein said performing a fluorine-containing plasma excitation and said reflowing steps occur simultaneously.
21. The method of Claim 13 wherein said performing step is preceded by an oxygen plasma treatment.
PCT/US1990/001404 1989-03-15 1990-03-14 A fluxless soldering process WO1990010518A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT90905786T ATE98147T1 (en) 1989-03-15 1990-03-14 METHOD OF SOLDERING WITHOUT FLUX.
DE69005104T DE69005104T2 (en) 1989-03-15 1990-03-14 METHOD FOR SOLDERING WITHOUT FLUID.
HK45894A HK45894A (en) 1989-03-15 1994-05-12 A fluxless soldering process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/324,247 US4921157A (en) 1989-03-15 1989-03-15 Fluxless soldering process
US324,247 1989-03-15

Publications (1)

Publication Number Publication Date
WO1990010518A1 true WO1990010518A1 (en) 1990-09-20

Family

ID=23262749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1990/001404 WO1990010518A1 (en) 1989-03-15 1990-03-14 A fluxless soldering process

Country Status (11)

Country Link
US (1) US4921157A (en)
EP (1) EP0463098B1 (en)
JP (1) JP2527278B2 (en)
KR (1) KR0181951B1 (en)
AU (1) AU634441B2 (en)
CA (1) CA2011888C (en)
DE (1) DE69005104T2 (en)
ES (1) ES2049471T3 (en)
HK (1) HK45894A (en)
MY (1) MY106703A (en)
WO (1) WO1990010518A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0447677A2 (en) * 1989-12-26 1991-09-25 Praxair Technology, Inc. Fluxless solder coating and joining process
EP0546443A1 (en) * 1991-12-12 1993-06-16 Motorola, Inc. Soldering by conduction of heat from a plasma
EP0517430B1 (en) * 1991-06-03 1995-09-06 Motorola, Inc. Plasma based soldering

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4032328A1 (en) * 1989-11-06 1991-09-19 Wls Karl Heinz Grasmann Weichl METHOD AND DEVICE FOR PROCESSING JOINT PARTNERS TO BE SOLDERED
JP2730645B2 (en) 1989-12-13 1998-03-25 松下電器産業株式会社 Manufacturing method of cream solder
US5255840A (en) * 1989-12-26 1993-10-26 Praxair Technology, Inc. Fluxless solder coating and joining
US5341980A (en) * 1990-02-19 1994-08-30 Hitachi, Ltd. Method of fabricating electronic circuit device and apparatus for performing the same method
US6471115B1 (en) 1990-02-19 2002-10-29 Hitachi, Ltd. Process for manufacturing electronic circuit devices
US6227436B1 (en) * 1990-02-19 2001-05-08 Hitachi, Ltd. Method of fabricating an electronic circuit device and apparatus for performing the method
US5145104A (en) * 1991-03-21 1992-09-08 International Business Machines Corporation Substrate soldering in a reducing atmosphere
GB9123336D0 (en) * 1991-11-04 1991-12-18 Marconi Gec Ltd Methods of joining components
FR2688727B1 (en) * 1992-03-19 1996-03-15 Fujitsu Ltd METHODS FOR MAKING A METAL PARTICLE SPHERICAL AND FOR REMOVING AN OXIDE FILM, SOLDERING PASTE AND WELDING METHOD.
GB2287206B (en) * 1992-03-19 1996-04-03 Fujitsu Ltd Soldering method
DE4225378A1 (en) * 1992-03-20 1993-09-23 Linde Ag METHOD FOR SOLDERING PCBS UNDER LOW PRESSURE
JP2848960B2 (en) * 1992-07-31 1999-01-20 リンデ アクチエンゲゼルシヤフト Soldering method of printed wiring board under low pressure
WO1994022628A1 (en) * 1993-04-05 1994-10-13 Seiko Epson Corporation Combining method and apparatus using solder
TW268913B (en) * 1993-08-30 1996-01-21 Mitsubishi Gas Chemical Co
US5499754A (en) * 1993-11-19 1996-03-19 Mcnc Fluxless soldering sample pretreating system
US5407121A (en) * 1993-11-19 1995-04-18 Mcnc Fluxless soldering of copper
WO1995015832A1 (en) * 1993-12-09 1995-06-15 Seiko Epson Corporation Combining method and apparatus using solder
JP3700177B2 (en) 1993-12-24 2005-09-28 セイコーエプソン株式会社 Atmospheric pressure plasma surface treatment equipment
JP3136390B2 (en) * 1994-12-16 2001-02-19 株式会社日立製作所 Solder joining method and power semiconductor device
US6006763A (en) * 1995-01-11 1999-12-28 Seiko Epson Corporation Surface treatment method
JPH08279495A (en) * 1995-02-07 1996-10-22 Seiko Epson Corp Method and system for plasma processing
JP3521587B2 (en) * 1995-02-07 2004-04-19 セイコーエプソン株式会社 Method and apparatus for removing unnecessary substances from the periphery of substrate and coating method using the same
JP3959745B2 (en) * 1995-04-07 2007-08-15 セイコーエプソン株式会社 Surface treatment equipment
US5609290A (en) * 1995-04-20 1997-03-11 The University Of North Carolina At Charlotte Fluxless soldering method
US5615825A (en) * 1995-05-12 1997-04-01 Mcnc Fluorinated fluxless soldering
US5985692A (en) * 1995-06-07 1999-11-16 Microunit Systems Engineering, Inc. Process for flip-chip bonding a semiconductor die having gold bump electrodes
US5823416A (en) * 1995-07-28 1998-10-20 Matsushita Electric Industrial Co., Ltd. Apparatus and method for surface treatment, and apparatus and method for wire bonding using the surface treatment apparatus
JP3598602B2 (en) * 1995-08-07 2004-12-08 セイコーエプソン株式会社 Plasma etching method, liquid crystal display panel manufacturing method, and plasma etching apparatus
JPH09233862A (en) * 1995-12-18 1997-09-05 Seiko Epson Corp Method and device for generating power using piezoelectric body, and electronic equipment
US5918794A (en) * 1995-12-28 1999-07-06 Lucent Technologies Inc. Solder bonding of dense arrays of microminiature contact pads
JPH09312545A (en) 1996-03-18 1997-12-02 Seiko Epson Corp Piezoelectric element, its producing method and mount device of piezoelectric oscillator bar
US5918354A (en) * 1996-04-02 1999-07-06 Seiko Epson Corporation Method of making a piezoelectric element
US5899737A (en) * 1996-09-20 1999-05-04 Lsi Logic Corporation Fluxless solder ball attachment process
US5992729A (en) * 1996-10-02 1999-11-30 Mcnc Tacking processes and systems for soldering
SE508596C2 (en) * 1996-11-13 1998-10-19 Aga Ab Method of brazing by plasma
US5902686A (en) * 1996-11-21 1999-05-11 Mcnc Methods for forming an intermetallic region between a solder bump and an under bump metallurgy layer and related structures
US6013381A (en) * 1996-12-06 2000-01-11 Mcnc Fluorinated fluxless soldering
US5776551A (en) * 1996-12-23 1998-07-07 Lsi Logic Corporation Use of plasma activated NF3 to clean solder bumps on a device
JP3557845B2 (en) * 1997-04-15 2004-08-25 セイコーエプソン株式会社 Wax or solder material
JPH1112716A (en) 1997-06-19 1999-01-19 Seiko Epson Corp Material for brazing and its production
JP3420917B2 (en) * 1997-09-08 2003-06-30 富士通株式会社 Semiconductor device
US5961031A (en) * 1997-11-21 1999-10-05 The University Of North Carolina At Charlotte Method and apparatus for forming hydrogen fluoride
JP4497154B2 (en) * 1997-12-15 2010-07-07 セイコーエプソン株式会社 Solid bonding method
JP4029473B2 (en) 1997-12-15 2008-01-09 セイコーエプソン株式会社 Solid bonding method and apparatus, conductor bonding method, and packaging method
JPH11224981A (en) * 1998-02-06 1999-08-17 Matsushita Electric Ind Co Ltd Soldering method and formation of solder bump
US6056831A (en) 1998-07-10 2000-05-02 International Business Machines Corporation Process for chemically and mechanically enhancing solder surface properties
US6607613B2 (en) 1998-07-10 2003-08-19 International Business Machines Corporation Solder ball with chemically and mechanically enhanced surface properties
US6250540B1 (en) * 1999-04-30 2001-06-26 International Business Machines Corporation Fluxless joining process for enriched solders
FR2781706B1 (en) * 1998-07-30 2000-08-25 Air Liquide METHOD OF BRAZING BY REFUSION OF ELECTRONIC COMPONENTS AND BRAZING DEVICE FOR CARRYING OUT SUCH A METHOD
US6742701B2 (en) * 1998-09-17 2004-06-01 Kabushiki Kaisha Tamura Seisakusho Bump forming method, presoldering treatment method, soldering method, bump forming apparatus, presoldering treatment device and soldering apparatus
US6605175B1 (en) * 1999-02-19 2003-08-12 Unaxis Balzers Aktiengesellschaft Process for manufacturing component parts, use of same, with air bearing supported workpieces and vacuum processing chamber
US6219910B1 (en) * 1999-03-05 2001-04-24 Intel Corporation Method for cutting integrated circuit dies from a wafer which contains a plurality of solder bumps
US6092714A (en) * 1999-03-16 2000-07-25 Mcms, Inc. Method of utilizing a plasma gas mixture containing argon and CF4 to clean and coat a conductor
JP3514670B2 (en) * 1999-07-29 2004-03-31 松下電器産業株式会社 Soldering method
US6193135B1 (en) 1999-09-13 2001-02-27 Lucent Technologies Inc. System for providing back-lighting of components during fluxless soldering
US6196446B1 (en) 1999-09-13 2001-03-06 Lucent Technologies Inc. Automated fluxless soldering using inert gas
US6206276B1 (en) 1999-09-13 2001-03-27 Lucent Technologies Inc. Direct-placement fluxless soldering using inert gas environment
US6469394B1 (en) 2000-01-31 2002-10-22 Fujitsu Limited Conductive interconnect structures and methods for forming conductive interconnect structures
US6931723B1 (en) * 2000-09-19 2005-08-23 International Business Machines Corporation Organic dielectric electronic interconnect structures and method for making
US7098072B2 (en) * 2002-03-01 2006-08-29 Agng, Llc Fluxless assembly of chip size semiconductor packages
DE10210216A1 (en) * 2002-03-08 2003-10-16 Behr Gmbh & Co Method of brazing aluminum
US6926190B2 (en) * 2002-03-25 2005-08-09 Micron Technology, Inc. Integrated circuit assemblies and assembly methods
US6712260B1 (en) * 2002-04-18 2004-03-30 Taiwan Semiconductor Manufacturing Company Bump reflow method by inert gas plasma
US6936546B2 (en) * 2002-04-26 2005-08-30 Accretech Usa, Inc. Apparatus for shaping thin films in the near-edge regions of in-process semiconductor substrates
KR100521081B1 (en) * 2002-10-12 2005-10-14 삼성전자주식회사 Fabrication and installation method of flip chip
GB2411767B (en) * 2002-12-20 2006-11-01 Agere Systems Inc Structure and method for bonding to copper interconnect structures
US20050170609A1 (en) * 2003-12-15 2005-08-04 Alie Susan A. Conductive bond for through-wafer interconnect
US7012328B2 (en) * 2004-05-14 2006-03-14 Intevac, Inc. Semiconductor die attachment for high vacuum tubes
US7608534B2 (en) * 2004-06-02 2009-10-27 Analog Devices, Inc. Interconnection of through-wafer vias using bridge structures
JP2011023509A (en) * 2009-07-15 2011-02-03 Renesas Electronics Corp Method for manufacturing semiconductor device, and semiconductor manufacturing apparatus used in the same
JP2011124398A (en) * 2009-12-11 2011-06-23 Hitachi Ltd Junction structure and manufacturing method thereof
US8492242B2 (en) * 2010-05-25 2013-07-23 Micron Technology, Inc. Dry flux bonding device and method
US9038883B2 (en) 2013-09-11 2015-05-26 Princeton Optronics Inc. VCSEL packaging
US11217550B2 (en) * 2018-07-24 2022-01-04 Xilinx, Inc. Chip package assembly with enhanced interconnects and method for fabricating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3442538A1 (en) * 1983-12-21 1985-07-04 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Process for soldering semiconductor components

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2294014A1 (en) * 1974-12-13 1976-07-09 Cerca HOT ASSEMBLY PROCESS
US4328044A (en) * 1978-02-02 1982-05-04 University Of Dayton Method for cleaning metal parts
US4405379A (en) * 1980-02-06 1983-09-20 University Of Dayton Method for cleaning metal parts
US4504007A (en) * 1982-09-14 1985-03-12 International Business Machines Corporation Solder and braze fluxes and processes for using the same
US4498046A (en) * 1982-10-18 1985-02-05 International Business Machines Corporation Room temperature cryogenic test interface
US4577398A (en) * 1984-09-07 1986-03-25 Trilogy Computer Development Partners, Ltd. Method for mounting a semiconductor chip
US5048746A (en) * 1989-12-08 1991-09-17 Electrovert Ltd. Tunnel for fluxless soldering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3442538A1 (en) * 1983-12-21 1985-07-04 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Process for soldering semiconductor components

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICAL DISCLOSURE BULLETIN. vol. 27, no. 11, 11 April 1985, NEW YORK US page 6513 "DRY SOLDERING PROCESS USING HALOGENATED GAS" see the whole document (cited in the application) *
JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART A. vol. 3, no. 3, June 1985, NEW YORK US pages 780 - 781; P.A. MOSKOWITZ ET AL.: "Summery Abstract: Laser-assisted dry process soldering" see the whole document (cited in the application) *
JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART A. vol. 4, no. 3, June 1986, NEW YORK US pages 838 - 840; P.A. MOSKOWITZ ET AL.: "Thermal dry process soldering" see the whole document (cited in the application) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0447677A2 (en) * 1989-12-26 1991-09-25 Praxair Technology, Inc. Fluxless solder coating and joining process
EP0447677A3 (en) * 1989-12-26 1991-12-11 Union Carbide Industrial Gases Technology Corporation Fluxless solder coating and joining process
EP0517430B1 (en) * 1991-06-03 1995-09-06 Motorola, Inc. Plasma based soldering
EP0546443A1 (en) * 1991-12-12 1993-06-16 Motorola, Inc. Soldering by conduction of heat from a plasma

Also Published As

Publication number Publication date
EP0463098B1 (en) 1993-12-08
AU5349890A (en) 1990-10-09
JPH05500026A (en) 1993-01-14
DE69005104T2 (en) 1994-07-07
DE69005104D1 (en) 1994-01-20
JP2527278B2 (en) 1996-08-21
CA2011888A1 (en) 1990-09-15
MY106703A (en) 1995-07-31
CA2011888C (en) 1995-06-13
KR0181951B1 (en) 1999-05-01
AU634441B2 (en) 1993-02-18
HK45894A (en) 1994-05-20
EP0463098A1 (en) 1992-01-02
ES2049471T3 (en) 1994-04-16
US4921157A (en) 1990-05-01

Similar Documents

Publication Publication Date Title
US4921157A (en) Fluxless soldering process
US5499754A (en) Fluxless soldering sample pretreating system
US5164566A (en) Method and apparatus for fluxless solder reflow
US5407121A (en) Fluxless soldering of copper
US5345056A (en) Plasma based soldering by indirect heating
JP3215008B2 (en) Electronic circuit manufacturing method
US6935553B2 (en) Reflow soldering method
US5152451A (en) Controlled solder oxidation process
KR100322823B1 (en) Method for manufacturing electronic circuit device
Koopman et al. Fluxless soldering in air and nitrogen
US6092714A (en) Method of utilizing a plasma gas mixture containing argon and CF4 to clean and coat a conductor
US5615825A (en) Fluorinated fluxless soldering
JP3400408B2 (en) Flip chip mounting method
US6013381A (en) Fluorinated fluxless soldering
KR100411144B1 (en) Reflow Method of fluxless solder bump using Ar-H2 Plasma
KR100292295B1 (en) Apparatus and method for fluxless solder joining of wafer level using laser
JP2527278C (en)
JP2004006818A (en) Reflow method and solder paste
JPH06326448A (en) Fluxless solder joint method and device of electronic circuit
JPH0955581A (en) Flux soldering method
JPH0679772B2 (en) Coating coating / bonding method using atmosphere with controlled oxidation capacity
VIANCO Solder Mounting Technologies for Electronic Packaging
Hosking REDUCTION OF SOLVENT USE THROUGH
JP2000061628A (en) Melting and joining method and mounting method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990905786

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990905786

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990905786

Country of ref document: EP