Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberWO1990000888 A1
Publication typeApplication
Application numberPCT/US1988/002526
Publication date8 Feb 1990
Filing date28 Jul 1988
Priority date28 Jul 1988
Publication numberPCT/1988/2526, PCT/US/1988/002526, PCT/US/1988/02526, PCT/US/88/002526, PCT/US/88/02526, PCT/US1988/002526, PCT/US1988/02526, PCT/US1988002526, PCT/US198802526, PCT/US88/002526, PCT/US88/02526, PCT/US88002526, PCT/US8802526, WO 1990/000888 A1, WO 1990000888 A1, WO 1990000888A1, WO 9000888 A1, WO 9000888A1, WO-A1-1990000888, WO-A1-9000888, WO1990/000888A1, WO1990000888 A1, WO1990000888A1, WO9000888 A1, WO9000888A1
InventorsHarold A. Markham
ApplicantThe Cooper Companies, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: Patentscope, Espacenet
Implants with a cover which resists formation of firm spherical encapsulation
WO 1990000888 A1
A transition layer (24) for an implant to be placed in the human body. The implant has a core (21) and the transition surface surrounds the core. The transition layer (24) is an open celled foam with cut surfaces. An adhesive (23) adheres one surface to the core (21) and penetrates the transition layer (24) a limited distance so as to leave over the entire surface, microstructures of cell fragments providing for tissue attachment without formation of a firm encapsulation.
Claims  (OCR text may contain errors)
1. A method of forming a surgical implant which resists the formation of firm spherical encapsu- lation comprising the steps of: providing a silicone substrate implant, providing first and second sheets of open-cell foam, physically bonding said first and second sheets, with an adhesive layer, to adjacent portions of the outer surface of said silicone substrate implant, and thereafter, heat sealing adjacent edges of said first and second sheets together.
2. The method of Claim 1 including, said heat sealing including thereby forming a continuous, thin, flexible feathered edge at the junc- tion of said first and second sheets.
3. The method of Claim 1 including, said first and second sheets covering the entire outer surface of said implant with a single sheet layer.
4. The method of Claim 1 including, said bonding step including applying the adhe- sive layer to said outer surface of said silicone sub- strate implant and then laying said first sheet on said adhesive layer while the adhesive is still liquid.
5. The method of Claim 4 including, said applying including brush coating said adhesive layer to said outer surface.
6. The method of Claim 4 including, said applying including knife coating said adhesive layer to said outer surface.
7. The method of Claim 4 including, after said laying, smoothing said first sheet on said adhesive layer.
8. The method of Claim 1 including, before said bonding, forming said silicone substrate implant in a mold comprising first and second mold parts.
9. The method of Claim 8 including, at least a portion of said bonding step being done with said silicone substrate implant positioned in said first mold part.
10. The method of Claim 1 including, before said bonding, laser cutting said first and second sheets from a block of foam.
11. The method of Claim 1 including, said bonding including said adhesive layer not penetrating through said first and second sheets so that uncoated and unoccluded cells and fibers remain at the outer surfaces of said sheets to a substantially uniform depth sufficient for surrounding tissue to become structurally congruent over the entire surface which is contiguous to tissue and to a depth insuffi- σient to permit invasive ingrowth which would result in the formation of a grossly palpable, rigid, and fibrous encapsulation of the implant.
12. The method of Claim 1 including, said foam being polyurethane foam and said adhesive layer comprising silicone adhesive.
13. The method of Claim 1 including, said heat sealing including applying a heat sealing iron to the edges of said first and second sheets.
14. The method of Claim 1 including, said bonding including applying said first sheet to one portion of said implant and said second sheet to an opposite portion of said implant so that the juncture of said first and second sheets encircles said implant and said implant thereby is covered by a single sheet layer.
15. The method of Claim 1 including, before said bonding, cutting said first sheet so as to open some of the cells on its inner and outer surfaces, and at least on said outer surface thereby forming a substantial number of cell wall fragments to form fibers for tissue contiguity.
16. The method of Claim 1 including, before said bonding, forming said implant of a gel-sealant combination.
17. The method of Claim 1 including, said implant having a generally flat portion, a rounded portion and a radius where said flay portion stops and said rounded portion starts, and said heat sealing being generally at said radius.
18. The method of Claim 1 including, forming said implant of a single chain, co- polymer polyurethane.
19. The method of Claim 1 including, forming said implant of a gelled medical grade dimethyl polysiloxane.
20. A surgical implant formed by the method of Claim 1.
21. For an implant implantable in a human body and having a core with an outer boundary layer, a tissue interface comprising: an external transition interface layer com- prising a sheet of open-cell foam, said sheet being of generally uniform thick- ness and having an inner sheet surface and an opposite outer sheet surface, said outer sheet surface being interfaceable with cellular tissue when said implant is implanted in a human body, said sheet of open-cell foam being cut so as to open some of the cells thereof to said inner and outer sheet surfaces, and forming a substantial number of cell wall fragments on said outer sheet surface to form fibers for tissue contiguity, an adhesive layer bonding said inner sheet surface to the outer boundary layer, said adhesive layer penetrating only part way into the dimension of thickness of said transition interface layer and leaving uncoated and unoccluded cells and fibers at said outer sheet surface to sub- stantially uniform depth sufficient for surrounding tissue to become structurally congruent over substan- tially the entire surface which is contiguous to tissue and to a depth insufficient to permit invasive ingrowth which would result in the formation of a grossly palp- able, rigid, and fibrous encapsulation of said implant, and said adhesive layer closing the cells closest to said outer boundary layer.
22. The interface of Claim 21 wherein the depth of penetration of the adhesive of said adhesive layer is substantially uniform over substantially the entire area of the outer boundary layer.
Description  (OCR text may contain errors)


Field of the Invention

This invention relates to implants for implan¬ tation in the human body which resist the formation of firm spherical encapsulation.

Background of the Invention

Implants are widely used in the human body to substitute for missing tissue or structure, thereby emulating more natural, or creating more pleasing, external body contours. An example is the mammary prosthesis, which is used for cosmetic augmentation, and for tissue replacement in reconstructive proce¬ dures. Other shapes exist to augment or replace other tissues or types of tissues, for example testicular prostheses to simulate a missing testicle. Other types of devices are implanted, often for a medical or a physiological objective, rather than for cosmetic advantage. One such implant is the pacemaker, which is a device which is subcutaneously implanted at the ster- num, and which delivers electrical currents to a heart which does not reliably generate its own currents. Newer variants of such devices sense fibrillation in the heart, and deliver corrective currents. Still other examples are porous bodies which contain pharma- ceuticals to be released gradually into the body.

The selection of materials from which such implants can be made is very limited, because the mate¬ rial when in contact with tissue must be tissue- compatible to avoid rejection, must not be carcino- genic, and for mammary implantation, its body must have physical properties such as density, deformability in the sense of pliability, shape, memory, and the like, that enable it reasonably to simulate the tissue which otherwise would normally be there. The foregoing objectives when first contem¬ plated appear to be readily attainable, and to the extent they have been described, they are. However, a prosthesis does not merely reside in its region of implantation as an independent entity. Instead, the surrounding tissues have their own properties. These properties are not only their inherent ones of normal pliability and the like, but also those which relate to their interaction with foreign bodies that are implanted in them. At this point the matter becomes very much more complicated, because surrounding tissues and fluids have their own interactive properties, and these can cause abrupt interface conditions that can result in hard spherical encapsulations or in poor fix- ation. Hard encapsulations are scarcely to be desired around a mammary prosthesis, because the illusion of original tissue is entirely lost. Neither is a "float¬ ing" situation, where the prosthesis becomes in effect a palpable and separately noticeable and uncomfortable structure lacking adjoining tissue congruity just beneath the skin. There is supposed to be only one detectable tissue body in each breast, for example, and a loose prosthesis is detected as a separate body.

Still another problem can result from exces- sive penetration of surrounding tissues and fluids into the prosthesis. Then the prosthesis as a gross body takes on different properties to a greater depth than that of a mere encapsulation. Again, the undesirable result is a palpably distinguishable and often quite firm or even hard structure.

Soft tissue replacement or augmentation pros- theses are not the only types which are affected by this tissue reaction. There are many types of quite rigid implants, for example pacemakers, which can be felt without cosmetic dismay, but which when encapsu¬ lated by a firm encapsulation become very uncomfortable to the user. The perceived effect is one of a con¬ striction of the tissue around the body, which is very uncomfortable.

Thus, prosthesis design involves several sets of problems. The easiest to attend to is the approxi¬ mation of gross properties, such as palpability, spe¬ cific gravity, total weight, suitable shapes, and the like, when these are appropriate. This is because these gross properties can readily be achieved by suit- able modification of readily available materials. But at the interface or transition surface, where the implanted body interacts with the surrounding tissues and fluids, the problem becomes much more complicated, and unless the problem is fully solved, there is a high risk of formation of a too firm or even a hard encapsu¬ lation which ultimately may require surgical interven¬ tion.

This invention is not the first attempt to meet the stated objectives, and indeed there have been some innovative and resourceful efforts made to meet them. Still, until this invention was made, some ulti¬ mate properties and the suitability of previous pros- theses were often unpredictable, or undesirable, or both, and the user was frequently subjected to discom- fort, inconvenience, and embarrassment. It should be recognized at this point that in the instant invention a capsule is indeed formed. However, it is a soft and sponge-like capsule which is not separately palpable, and a good fixation is still attained. Additional problems arise as the consequence of the gross properties of a material. Often enough a gross prosthesis made entirely from one material will not function effectively. For this reason there exists the well-known practice of making prostheses from a plurality of materials - one for the inner mass of the prosthesis, and another for the external wall or sur- face. The purpose in soft tissue replacement or aug¬ mentation is to provide the most biologically and structurally compatible properties for the external interface between the prosthesis and the contiguous tissue, thereby acting as a delivery system so that the implant's "filling" can achieve the gross tissue- emulating objectives. The raw filling material could not have made a suitable interface. Such prostheses involve the additional requisite that, even though the filling such as a gel or liquid is usually contained in an envelope of some kind, the contained material still must not be harmful to the patient in case the envelope is violated such as by being pierced, or if it somehow leaks, or is otherwise permeable. Other types of pros- theses, for example pacemakers, are their own "fill¬ ing," i.e., a rigid case. They are not expected to leak, but neither is it desirable for firm spherical encapsulation to grow around them. It is even possible for the body to expel any type of encapsulated prosthe- sis through the skin, much as a piece of shrapnel is expelled if a hard encapsulation is formed. The course of such an event is troubling and uncomfortable, and calls for surgical intervention which it is best to avoid if possible. Implantable prostheses (other than metallic prostheses) , especially mammary prostheses, have had an interesting and relatively brief career, in part because tissue-compatible materials such as medical grade silicone elastomer and medical grade polyurethane are themselves of relatively recent origin. Earlier prostheses tended to utilize a total core or block of a sponge-like foam material, because of all of the then available useful materials, its physical properties were closest to those of tissue cells. Also, any desired shape could readily be carved from a block of such material. An example of such a prosthesis is shown in Pangman, U.S. Patent No. 2,842,775. Such prostheses often, even usually, suffered from an unde¬ sirable hard encapsulation which developed after implantation, not only from tissue reactions at and just beneath the interface with the tissue, but also from deep penetration of collagen fibers into the foam. These led to undesirable hardness and the product was generally regarded as much less than optimum. Never¬ theless, these prostheses were extensively used for a long time, because they were the best available, but their inherent shortcomings naturally led to further improvements.

Whatever the "core" of a prosthesis is, such as a silicone body silicone sac filled with fluid or gel gel body with a sealed surface, or a plastic or metal case, the core should be able to be made proof against leakage of fluid into it or out of it unless leakage out of it is desired, as will later be dis¬ closed. Although this invention relates primarily to soft tissue prostheses, and the principal embodiments refer to that use, the principal thrust of this inven¬ tion is not to the core itself, but to its covering, which is the interface with tissues and fluids, and which is intended to resist the formation of firm spherical encapsulations, and thereby to make any kind of implant more acceptable to the human body, still attaining a good fixation. In fact, the covering for the core can even be loose from it, such being provided as a sac or a sleeve, in which the core is placed, the sac carrying the interface material on its surface.

As to the problem of fixation or connection at the implantation site, it is highly undesirable in many applications, for example in mammary prostheses, for there to be any relative shear motion between the pros- thesis and the surrounding tissue. This would result in a movable, rather than a pliable, prosthesis, and reflect a failure to incorporate the prosthesis into the tissue system. Attempts have been made to provide porous surfaces into which tissue could grow to prevent segregation of the surface structure of the prosthesis from the surrounding tissue. Such efforts have custom¬ arily involved the use of various kinds of foam layers, both open cell and closed cell, these layers, in turn, have created problems of their own. For example, because of the combined porosity and thickness of the layers, the tissue often tended either to migrate into it to fill the layer, or to create a heavy surrounding layer of firm fibrous tissue. Both of these results are highly undesirable, because in one case the gross properties of the foam are undesirable altered, and in the other, the foam becomes encapsulated by a structure which obscures the gross properties, or prevents them from being utilized, and adds a texture or rigidity of its own.

By now it is generally agreed that to achieve fixation and structural congruity to a foreign body, tissue needs a means of "recognition" so as to "be sat¬ isfied" that necessary regrowth is attained and that healing is in close approximation to the normal cellu¬ lar environment. Attempts have been made in the implant art to utilize woven fabrics such as velours, and foam or sponge covers to function as an outer layer for a prosthesis for the purpose of providing a con¬ trolled environment into which tissue can grow and then stop growing. However, in general such materials as utilized have not improved much over the results of smooth surfaces which provide no structural terminal for the connecting cells and all to frequently are encapsulated by a firm or hard capsule. This appar¬ ently is because their denseness encourages too much growth, which leads to excessive firmness. Some rough¬ ness of the surface of the layer is believed to be nee- essary, but not an excessive degree of roughness or density. Also, excessive porosity has led to undesir¬ able results. Furthermore, it appears that prostheses made utilizing the prior knowledge of the art probably have surface properties which vary from area to area over the total surface of the prosthesis.

Stated another way, previously no one has really known exactly how to make the structure uni¬ formly and correctly over its entire surface. Besides, there was insufficient knowledge about what was

"right." This compounded the difficulty of manufactur¬ ing suitable and uniform products, especially if the "model" is simply one that "worked" without an aware¬ ness of what aspect it was that was successful and which made it work.

It appears that tissue reacts unfavorably to smooth surfaces in the path of regrowth. The efforts to provide fixation by means of tissue ingrowth by pro¬ viding roughened or porous surfaces for ingrowth have fortuitously also tended to improve the tissue regener¬ ation itself. However, this has been a fortuitous mat¬ ter, and prior to the instant invention, the inventor does not believe there was a total or even a sufficient awareness of the problems to be solved, and certainly there was not a solution developed in which a prosthe¬ sis could reliably be manufactured in production proc¬ esses with uniform desirable surface properties.

At last the inventor has, to his satisfaction, and to the satisfaction of extensive scientific and clinical trials, developed a prosthesis (implant) which has uniformly from component-to-component and uniformly over the entire critical surface of the prosthesis, been successfully functional. In so doing, the objec¬ tive has been to provide a prosthesis which can be surfaced with a layer of material that provides sub¬ stantial intercellular continuity without hard spherical encapsulation and contracture. It is another objective of this invention to enable other types of prostheses to successfully be used - for example, even previously undesirable envel¬ ope types, such as metal and plastic cases, or smooth surfaced bodies, by providing a cover for them which isolates from the surrounding tissue the parts of the prosthesis which would give rise to complications from the tissue, while also still providing means for tis¬ sue-to-material connection and fixation. An example of the closest prior art, which reflects many of the above problems, and in which the instant inventor participated, is described in "Further Studies on the Natural-Y Breast Prosthesis," Vol. 49, No. 4, copyright 1972. In this article, there is described an earlier prosthesis with a silicone bag that is filled with some suitable substance. Then a newer, more pertinent prosthesis is described which has a silicone sheath filled with a soft, viscous silicone gel that is covered by a one millimeter thick layer of "fine-cell" polyurethane. A "Natural-Y" web is dis¬ posed inside the sheath (envelope) . The prosthesis described in this article did produce a substantial improvement over its prior art, but also it had prob¬ lems of its own, such as producibility of a uniform product, not only from prosthesis-to-prosthesis, but from area-to-area of the individual prosthesis. Part of this problem seems to have arisen from a latent uncertainty about precisely what the problems were, and to the extent they were understood, how to make a cor- rect product, especially in quantity production.

Here it is fair to call attention to the fact that while prostheses have been made commercially in very substantial numbers, their manufacture is still very labor-intensive, and calls for considerable dex- terity and skill by the person who makes it. It is not unusual for an individual mammary prosthesis to be in the course of manufacture for several working days. Furthermore, there is a near-artistry involved in applying some layers just exactly as they should be, which even highly skilled artists and highly skilled manufacturing personnel find difficult to learn.

Although this invention does require considerable skill in manufacture, it has proven to be economically anu- facturable in high-grade clean room operations.

Brief Description of the Invention

This invention is used for implantation of a core, which core comprises a bulk in the sense of hav¬ ing a volume which occupies space and has an outer surface (sometimes called a boundary layer) which is unsuitable for an interface with surrounding tissues and fluids. In a pacemaker or other rigid articles, for example, this would be the smooth surface of its case. In a prosthetic type of implant, representing the presently preferred application of the invention, the core provides various gross properties such as pli¬ ability, specific gravity, and the like which will be desired for the prosthesis as a unit. Upon this bound¬ ary layer there is attached a transition layer having as its outermost surface a tissue-receptive region. When this invention is provided as a sac or a sleeve, the sac or sleeve will include a layer which is defined as the boundary layer that will abut and surround the remainder of the core.

The tissue-receptive region of the transition layer provides a volume of fine microfiber-like struc¬ tures as the outer surface of the prosthesis around which tissue will grow, and to which it will attach. Beneath a specific depth, the layer is closed to pene¬ tration by fluids and collagen and to tissue ingrowth by an adhesive that bonds the transition layer to the boundary layer. This adhesive penetrates into the transition layer toward its exposed surface far enough to seal its "cells" beneath that specific depth, but not so far as to seal the outer "cells." Thus, the tissue-receptive region permits controlled tissue ingrowth to the precise depth extent needed for accept¬ ance and fixation of the prosthesis, but inhibits pene¬ tration and ingrowth in excess of that amount, thereby avoiding the firm encapsulation so frequently experi¬ enced in the prior art. In fact, the result appears to be the formation of a multitude of individual encapsu¬ lations around the various rough structures, but these encapsulations do not join up to form a grossly firm or hard encapsulation.

According to an optional feature of this invention, when this invention is incorporated into a mammary prosthesis, the bulk medium is made of a gel which is substantially self-shape retaining at body temperatures. While it is supple and palpable, it has sufficient memory to return to its normal shape. It does not slump appreciably at body temperatures. The boundary layer is a coating of a resilient sealant which itself elastically and flexibly adapts to changes in the shape of gel core such as are caused by palpa¬ tion. No claim of originality is made to this form of core per se.

Optimally, the boundary layer could be a pre¬ formed envelope of more substantial thickness in which the gel is poured and cured. This envelope itself may provide some shape retention properties, and it might retain liquids instead of a gel. Again, no claim of originality is made to this form of core per se.

Another optimal feature of the invention is to provide as the core a hard case, and apply the transi¬ tion layer to it as described. This embodiment is claimed to be original. According to yet another preferred but optional feature of the invention, the tissue-receptive layer is an open-cell icrofiber foam, laser-cut to a precise and uniform thickness so as to form those microfiber-like structures preferably without loose fragments, and so the depth of penetration can be pre¬ cisely determined and controlled. There are approxi¬ mately seven linear cross-linked fibers of less than about 0.01 mm thickness each per millimeter along the surface, totally free of friable pieces in the pre¬ ferred material.

According to another form of the invention, the core may be left unsealed against the egress of certain molecular sizes so that medicines may exude from the implant.

The above and other features of this invention will be fully understood from the following detailed description and the accompanying drawings in which:

Brief Description of the Drawings

Fig. 1 is a side view of a mammary prosthesis incorporating the presently preferred embodiment of the invention;

Fig. 2 is a top view of Fig. 1; Figs. 3 - 7 show successive steps in the manu¬ facture of the prosthesis of Fig. 1;

Fig. 8 is a bottom view of Fig. 1; Fig. 9 is a schematic showing of one form of optional shape support; Figs. 10 and 11 are respectively side fragmen¬ tary top views of another optional internal shape sup¬ port;

Fig. 12 is a plan view of pacemaker incorpo¬ rating the invention; Fig. 13 is a cross-section taken at line 13-13 in Fig. 12; Fig. 14 is a cross-section of another embodi¬ ment of the invention; and

Fig. 15 is a cross-section of still another embodiment of the invention.

Detailed Description of the Invention

Fig. 1 shows the general contours of a mammary prosthesis 20 which incorporates the invention. This prosthesis is used for augmentation. Such prostheses may have numerous shapes and purposes. This invention is not limited to the shapes shown or to mammary appli¬ cations. It is of general applicability.

A very common shape which is related to the external contour of the breast which can be for tissue replacement or augmentation is shown in Fig. 9. Other shapes can be made for other types of replacements, for example, in the neck or shoulder. For such other uses, the shape of the prosthesis will be made to conform to and fill the respective region of the body. The illus- trated shape in Fig. 1 is a useful one for breast aug¬ mentation and is a useful example for teaching how to manufacture any suitably shaped prosthesis according to the invention. Other types can be similarly manufac¬ tured and appropriately shaped for the intended use. With respect to the cross-section shown in

Fig. 7, wherein the various layers are shown dispropor¬ tionately thick for purposes of illustration, the pros¬ thesis 20 is shown having a core comprising a bulk medium 21 with an outer boundary layer 22. Layer 22 is a sealant contiguous to and adherent to the outer surface of the gel itself. Medium 21 and layer 22 comprise a "core." Layer 22 seals the bulk mediu from fluid migration into it, and is intended to make as good a seal to prevent outward bulk material migration as possible. Layer 22 in the example is a formed-in- place layer, applied to a gelled core. Alternatively, it may instead be a pre-formed envelope of similar material, into which core material is placed. This core material may remain fluid, or may be cured to a self-shape retaining condition as preferred. This layer is considered to be a portion of the core.

An adhesive layer 23 is applied to the bound¬ ary layer, and a transition layer 24 is adhesively bonded to the sealant layer by layer 23. The transi¬ tion layer is formed from two sheets 25 and 26, each laid upon a respective side of the core. The edges of the sheets are heat sealed together to form a continu¬ ous, thin and very flexible feathered edge 27, all as will be more fully described below.

The features and functions of the various por- tions of prosthesis 20 will now be described, princi¬ pally in connection with its method of manufacture.

In Fig. 3, a mold 30 is shown having a cavity 31 formed between two mold parts 32 and 33. A suitable vent 34 or vents will be provided for supply and vent- ing in accordance with conventional molding practice.

The materials which form the gel will be poured through the vent or other supply passage and the gel will be cured while in the mold, the cavity having been formed to the ultimately desired shape. The com- position of the gel and the chemical methods for form¬ ing it will be described later.

After the gel has been fully cured in the mold (the mold usually being heated to assist in the gela¬ tion process) , the gel will itself constitute a self- shape retaining body — a bulk medium. It is, however, sticky and difficult to handle. Furthermore, despite all efforts to remove unreacted materials, there some¬ times will be some present. For these reason, it is good practice and efficacious to encapsulate the gel core in an outer boundary layer, preferably a thin, flexible and elastic sealant layer. The outer boundary layer should be resilient and deformable so that its shape can readily change to conform to changes in the shape of the prosthesis caused by such actions as squeezing, and impermeate to the gel and its components unless for some reason per¬ meation is desired. It is a sealant, and will be adherent to, contiguous with, and continuous with the outer surface of the bulk medium. The combination of gel and sealant is an example of a suitable core for a prosthesis. As will later be evident, this is merely one example of a useful core.

The boundary layer is applied, preferably while the gel core is still in its mold, by brush coat¬ ing or knife coating the gel core with one part of the mold removed, then curing it, then turning the core over into the other mold part and coating and curing the other surface after removing the other mold part. This is a painstaking task, because the boundary layer when applied in this way is not intended to be more than approximately 0.002 inch thick, and complete coat¬ ing of the surface is desired without excessive build up of material anywhere. When the boundary layer is cured, the core can be handled as a unit. It is only slightly tacky. The gel will not appreciably penetrate the boundary layer.

Transition layer 24, comprised of sheets 25 and 26, is laid upon the outer boundary for fixation and ingrowth of tissue. While other materials can be used instead, it has been found that very beneficial results are obtained when the transition layer is made from an open cell foam.

With this invention, encapsulation with gross properties approaching those of the surrounding tissues are obtained. The foam is made from any material which is compatible with body tissues and fluids. At the present time polyurethane foam is the best substance. However, as they become available, foams of Teflon, polypropylene and dacron will also be suitable. The foam is formed as a block, and sheets are cut from it to form a surface of microfiber structures, without friable particles. The cell size and population are such that a laser cut produces a surface with about seven linear cross-linked fibers of less than 0.01 mm thickness each per millimeter along the surface, free of friable pieces. In order to provide uniform tissue retention properties and tissue penetration properties over the entire surface of the prosthesis, a very uni¬ form thickness of sheets 25 and 26 is necessary. The most careful knife cut can provide such uniformity, but only with difficulty. It is much simpler, and far more accurate, to cut these sheets from a block of foam using a laser beam.

The foam is high density, so that the cells are quite small. The sheet thickness is about 1.0 mm. The uniformity of thickness is of nearly as great importance as the actual thickness. Sheets this thin of such material re readily penetrated by fluids. The purpose of these sheets is not to resist penetration by a fluid, but at one side to provide an innermost sur¬ face to be bonded to the boundary layer, and an outer- most roughened surface with a large number of micro thin fiber-like strands around which tissue can grow. Furthermore, it is desired that the depth of this pene¬ tration by tissues and fluids be limited. In this invention these results are obtained by laser cutting of the sheets, which enables the thickness to be very closely controlled, and by penetration of the adhesive into the layer to a specific depth, so as to close the foam to further penetration by tissues and fluids.

The depth of penetration is best controlled by choosing the appropriate viscosity of the adhesive, and the amount of liquid adhesive applied. Too much adhe- sive will soak through, and too little will either not make the bond to the boundary surface, or will not pen¬ etrate far enough. Uniform and accurate application of the adhesive is an acquired skill, but it is one that can be learned.

In the next step of manufacture as shown in Fig. 5, the layer of liquid adhesive 23 is applied to the surface of the sealant layer, usually by a brush or by a knife or trowel. Blotting the surface to remove excess sealant is also a useful technique. Then one of the sheets is laid carefully over the surface of adhesive, without minimum stretching or bunching. The prosthesis is turned over and the other sheet is applied in the same way. The sheets are carefully smoothed out, care being taken not to thin them out too much by excessive (or any) stretching. The adhesive, being liquid until it cures, penetrates into the foam. The viscosity and amount of the adhesive are carefully regulated such that it penetrates only as far as desired, so as to leave a correct volume of unoccluded microfiber struc¬ tures and open cells, while sealing the innermost cells and adhering the transition layer to the core. The edges 35 of the sheets are brought together as shown in Figs. 6 and 7, and a heat sealing iron is brought together as shown in them immediately adjacent to the core. This melts the polyurethane which projects beyond the core of the prosthesis and fuses the layers together to form a flexible and thin feathered edge, which neatly finishes the edge of the prosthesis without creating a hard, palpable structure. A hard edge structure has been a known disadvantage of some prior art prostheses. This edge can be used as additional attachment and orientation means. Fig. 9 shows an optional construction of a prosthesis 40 in which three webs 41, 42, 43 are joined together at a trihedral edge 44, and are embedded in a gel structure 45 which can then receive boundary layer 22 as before to form a core. Prosthesis 40 may be fin¬ ished with an adhesive layer and transition layer (not shown) as in Fig. 1. This is a prosthesis of the same type, but with internal reinforcement and a different shape.

Other means can also be provided to improve the shape retention of the device and one such means is shown in Figs. 10 and 11 where a reinforcement plate 50 is shown with a base 51 which can fit inside the bulk medium near one of its sides, and a honeycomb structure 52 with open ended cavities 53 rising from it. Gel poured into these cavities and around the structure will have a basic structure less subject to slump and deformation. Such internal reinforcements as shown in Figs. 9, 10, and 11 are optional and usually will not be required or used.

Any type of core can be finished with the transition layer as described. For example, a silicone sac or envelope adapted to hold a liquid can have the same adhesive layer and transition layer to form attachment means for the prosthesis, thus giving it additional and beneficial properties. In such event, the envelope would be pre-formed and then filled with fluid which may either remain fluid, or be cured to be self-shape retaining.

An extension of this concept, there is shown in Fig. 14 a pouch or sac 100 shown which has a pouch- like fluid-impermeable skin or envelope 101. A transi¬ tion layer 102 identical to the previously described transition layer is attached to it including the adhe¬ sive material 103 partially migrated into it over sub¬ stantially its entire surface. Any desired device, such as a pacemaker, can be inserted into the pouch through opening 105, and the opening will then be closed. All advantages of this invention are then attained.

As to the materials of construction, the bulk medium is a gel preferably made of medical grade dimethyl polysiloxane of the type obtainable from Dow

Corning Corporation. It is a two component system, and the properties of the gel will be determined by the proportion of the cross-linker in the two component mixture. This material is usually mixed in a batch to make a number of gel structures in a plurality of molds at the same time. The proportions are selected such that a two inch diameter, one half inch thick, disk of the cured material when bent ninety degrees will be slightly wrinkled all over its inside surface. Such test disks can readily be made and cured on an accel¬ erated basis to make this test in order to adjust the relative proportions of the two components. When in the mold (and the mold may be an epoxy mold instead of metal if desired) curing will usually take about six- teen hours at approximately 150 degrees F.

The boundary layer 22 is also made of medical grade dimethyl polysiloxane from Dow Corning Corpora¬ tion and is also heat cured. Its thickness is prefera¬ bly about 0.002 inch when applied wet and cured. A preformed envelope will usually have a thickness between about 0.008 and 0.015 inches. The adhesive layer 23 is a room-temperature vulcanizing medical grade dimethyl polysiloxane obtainable from Dow Corning Corporation and also is applied as a very thin layer so as to penetrate only a small distance into the transi¬ tion tissue layer 24, usually to about one half of the thickness. Certainly too little is provided for the adhesive to soak all the way through the foam. The outer foam surface must be adhesive-free to such an extent that an adequate depth of exposed fibers and unsealed cells exists for retention and penetration and continuity of cells and fluids. Uniformity of penetra¬ tion over the entire surface is an objective.

The transition layer is preferably approxi¬ mately one millimeter thick and is made of high density polyurethane, open-cell material with cell size and population as specified elsewhere to give correct prop¬ erties. Because the outermost surface of the transi¬ tion layer is made by a straight cut across a block, the density of fibers is a function of the foam cell population and size. The fibers are, of course, the remnants of the foam cell walls, and are of random shape. This provides a desirable surface "roughness" in the sense of inconsistencies, but within acceptable size range. Just beneath this group of fibers there is a region of complete open cells. These permit cell and fluid penetration. However, the depth of this region is limited by the incursion of the adhesive, which fills the cells on the bottom side to the appropriate depth. °f course, the transition layer could be pro¬ vided as a pair of joined-together layers, for example, with an outer surface adapted for tissue ingrowth and fluid penetration, and another foam layer attached to it and to the boundary layer for structural reinforce- ment of the outer layer and attachment to the core, but this would be a difficult structure to make, especially in contrast to the easily manufactured layer described above. The inner layer would then be closed foam, or even an impermeable material. As should be evident from the foregoing, a core having a gel center is merely one embodiment. The surface treatment of the prosthesis can be applied to any type of core, and its utility is not limited to usage with a gel-filled or shape-retaining core. The utility and application of all types of cores can be remarkably improved - even the liquid-filled envelope type. The total thickness of the outer layer is not of importance except to the extent that it might adversely affect the gross properties of the prosthe¬ sis. What is important is the quality and depth of the surface which permits penetration and ingrowth, i.e., the region of open cells and fibers. This depth should be just sufficient to permit fixation, and should be insufficient to provide such depth for collagen and tissue incursion that a firm capsule can be contributed to.

It will be noted in Figs. 1 through 8 that the prosthesis has a relatively rounded side, and a frusto- conical side. In plan it is circular. This is a use¬ ful shape for augmentation. The frusto-conical side faces the rib cage. When the breast is brought down against it, the frusto-conical shape gives some lateral restraint, so the prosthesis does not tend to flatten and roll as a pillow. This is an example of the wide range of shapes and functions which are attainable with this invention.

Figs. 12 and 13 show a core 110 comprising an article 111 to be implanted, such as a pacemaker. Instead of being placed in a pouch as in Fig. 14, its own surface 112 is used to support the transition layer. The transition .layer 113 is adhered to the article by adhesive 114 which penetrates part way into the transition layer. It is all ways identical to the transition layers described above. A metal case requires no sealing. While the cores described this far have been described as sealed, it will be recognized by persons skilled in the art that silicone articles will over the years exude some of their material. A sufficient seal¬ ant thickness is provided to at least repress this effect, and this is defined as "sealed." Of equal con¬ cern is the tendency of some lower molecular weight materials to migrate into the core. Again the integ¬ rity and thickness of the sealant are intended to be such as to repress this tendency.

In fact, the use of a pre-formed envelope will often be preferred to the use of a sealant which is applied to the bulk material. This is because the envelope can be tested for flaws and leaks, while the applied sealant layer cannot be tested.

Fig. 15 shows an extension of the inventive concept. A rod 120 of a material that is infused with a medication is intended to be implanted in the body, and remain there for a considerable period of time, there are presently proposes such rods with a contra¬ ceptive pharmaceutical which are expected to remain implanted for up to five years. During this time a steady migration of the pharmaceutical is intended, and a hard encapsulation could frustrate this objective. In this situation, the invention provides for fixation and closure of the transition layer to incursion of tissue and fluids below a given depth, ζut the sealant is selected so as to accommodate migration of the phar¬ maceutical through it.

In Fig 15, rod 120 is placed within a sleeve 121. The sleeve is crimped or otherwise sealed at both ends. It has a boundary layer 122 and a transition layer 123. The transition layer is adhered to the boundary layer by adhesive 124 as described in the other embodiments.

Thus, this invention provides a tissue- compatible interface for many types of implants and prostheses. It can be applied directly to the core article itself, as in Figs. 1-13, or can be applied to a cover as in Fig. 14. For definition purposes, the "cover" can be considered as a core or as part of a core. Test implants in animals have shown that pros- theses with a transition surface as described are well- received. There is no tendency to harden or to become firmly encapsulated or distorted, and the properties are remarkable consistent all over the surface.

This invention is not to be limited by the embodiments shown in the drawings and described in the descriptions, which are given by way of example and not of limitation, but only in accordance with the scope of the appended claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3559214 *17 Oct 19682 Feb 1971Pangman William JCompound prosthesis
US3683424 *30 Jan 197015 Aug 1972William J PangmanSurgically implantable compound breast prosthesis
US4307472 *3 Apr 198029 Dec 1981Glasrock Products, Inc.Prosthetic device with rigid implantable member having bonded porous coating
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
WO1992007525A1 *10 Oct 199114 May 1992Baxter International Inc.Close vascularization implant material
WO1996010966A1 *4 Oct 199518 Apr 1996Baxter International Inc.Porous microfabricated polymer membrane structures
WO2015020866A3 *31 Jul 201429 Oct 2015Techno Investments LlcHybrid breast implant and tissue expander, method of making and use of same
CN103040543A *11 Oct 201217 Apr 2013波里泰克健康和美学股份有限公司Process for the manufacture of implants or intermediate products of such implants as well as implants and intermediate products obtained by such process
EP0786969A1 *17 Oct 19956 Aug 1997William J. Seare, Jr.Methods and apparatus for establishing body pocket
EP0786969A4 *17 Oct 199529 Jul 1998William J Seare JrMethods and apparatus for establishing body pocket
EP2581193A1 *14 Oct 201117 Apr 2013Polytech Health&Aesthetics GmbHProcess for the manufacture of implants or intermediate products of such implants as well as implants and intermediate products obtained by such process
EP3002101A1 *14 Oct 20116 Apr 2016Polytech Health&Aesthetics GmbHProcess for the manufacture of implants or intermediate products of such implants as well as implants and intermediate products obtained by such process
US5314471 *1 Apr 199224 May 1994Baxter International Inc.Tissue inplant systems and methods for sustaining viable high cell densities within a host
US5344454 *1 Apr 19926 Sep 1994Baxter International Inc.Closed porous chambers for implanting tissue in a host
US5453278 *28 Jan 199426 Sep 1995Baxter International Inc.Laminated barriers for tissue implants
US5545223 *30 Mar 199513 Aug 1996Baxter International, Inc.Ported tissue implant systems and methods of using same
US5593440 *23 May 199414 Jan 1997Baxter International Inc.Tissue implant systems and methods for sustaining viable high cell densities within a host
US5733336 *30 Mar 199531 Mar 1998Baxter International, Inc.Ported tissue implant systems and methods of using same
US5741330 *7 Jun 199521 Apr 1998Baxter International, Inc.Close vascularization implant material
US5782912 *17 Mar 199421 Jul 1998Baxter International, Inc.Close vascularization implant material
US5800529 *7 Jun 19951 Sep 1998Baxter International, Inc.Close vascularization implant material
US5807406 *7 Oct 199415 Sep 1998Baxter International Inc.Porous microfabricated polymer membrane structures
US5882354 *7 Jun 199516 Mar 1999Baxter International Inc.Close vascularization implant material
US6060639 *4 Mar 19949 May 2000Mentor CorporationTesticular prosthesis and method of manufacturing and filling
US677345812 Dec 199410 Aug 2004Baxter International Inc.Angiogenic tissue implant systems and methods
US74762493 Aug 200513 Jan 2009Frank Robert EImplantable prosthesis for positioning and supporting a breast implant
US800753129 Nov 200630 Aug 2011Frank Robert EImplantable prosthesis for positioning and supporting a breast implant
International ClassificationA61L27/18, A61F2/00, A61L27/34, A61F2/30, A61F2/12
Cooperative ClassificationA61L27/34, A61L27/18, A61F2002/30911, A61F2/0077, A61F2/12
European ClassificationA61L27/18, A61L27/34, A61F2/00L, A61F2/12
Legal Events
8 Feb 1990AKDesignated states
Kind code of ref document: A1
Designated state(s): AU DK JP KR NO
8 Feb 1990ALDesignated countries for regional patents
Kind code of ref document: A1
Designated state(s): AT BE CH DE FR GB IT NL SE