WO1985001294A1 - High-frequency heatable plastics - Google Patents

High-frequency heatable plastics Download PDF

Info

Publication number
WO1985001294A1
WO1985001294A1 PCT/US1984/001422 US8401422W WO8501294A1 WO 1985001294 A1 WO1985001294 A1 WO 1985001294A1 US 8401422 W US8401422 W US 8401422W WO 8501294 A1 WO8501294 A1 WO 8501294A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon monoxide
percent
acid
ethylene
polymer
Prior art date
Application number
PCT/US1984/001422
Other languages
French (fr)
Inventor
Gerald M. Lancaster
James A. Allen
Original Assignee
The Dow Chemical Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Dow Chemical Company filed Critical The Dow Chemical Company
Priority to KR1019850700034A priority Critical patent/KR890003626B1/en
Priority to KR1019870700356A priority patent/KR900005837B1/en
Priority to BR8407067A priority patent/BR8407067A/en
Publication of WO1985001294A1 publication Critical patent/WO1985001294A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1425Microwave radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/04Dielectric heating, e.g. high-frequency welding, i.e. radio frequency welding of plastic materials having dielectric properties, e.g. PVC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • C08G67/02Copolymers of carbon monoxide and aliphatic unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/124Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives using adhesives based on a macromolecular component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J173/00Adhesives based on macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C09J159/00 - C09J171/00; Adhesives based on derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7375General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured
    • B29C66/73755General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being fully cured, i.e. fully cross-linked, fully vulcanized
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7128Bags, sacks, sachets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7162Boxes, cartons, cases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2435/00Closures, end caps, stoppers
    • B32B2435/02Closures, end caps, stoppers for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/913Material designed to be responsive to temperature, light, moisture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1345Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1397Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable
    • Y10T428/2817Heat sealable
    • Y10T428/2826Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31645Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood

Definitions

  • olefin polymers e.g., polymers and copolymers of ethylene, propylene, styrene or other ⁇ -olefinically unsaturated hydrocarbons having 2 to 10 carbon atoms.
  • Some of these olefin polymers may contain polar or polarizable groups, from incorporation of, e.g., acrylic or methacrylic acid or their alkyl esters as comonomers with the olefins. These groups may at high levels impart a modicum of high-frequency heatability to the polymer, but the efficacy is so slight that it is infeasible on a commercial basis.
  • Some polymers having polar groups e.g. chlorinated PE, ethylene/vinyl acetate copolymer, PVC, polyvinylidene chloride, and polyamide, are heatable with certain frequencies of electromagnetic radiation.
  • Polyethylene is particularly known in the art to be substantially unsuitable for high-frequency heating unless sensitizers are added to the polymer. This is true whether it is linear or branched, or of low, medium, or high density (see, e.g., U.S. Patent Nos. 3,336,173, 3,640,913, and 3,810,799).
  • High-frequency heatability (e.g., for sealing, bonding, extrusion, molding or melting) is imparted to olefin polymers by polymerizing carbon monoxide into the polymer structure, thus providing novel capabilities for high-frequency heating of polymers which otherwise are unsuited, or ill-suited, for high-frequency heating operations.
  • Novel high-frequency heated articles are prepared and novel high-frequency heating operations are provided as a result of the carbon monoxide inclusion in the polymer.
  • novel terpolymers of ethylene/CO/carboxylic acids, such as acrylic acid, and salts thereof are prepared which, in addition to being heatable by high-frequency electromagnetic energy, are found to have better adhesion to various substrates than copolymers of ethylene/carboxylic acids and salts thereof.
  • olefin polymers, copolymers, and terpolymers are well known are well known to practitioners of the relevent polymer art.
  • the olefin copolymers and terpolymers of interest in the present invention are prepared by the high pressure, high temperature, free-radical initiated, polymerization method such as the historically-popular ICI process or as disclosed in U.S. Patent No. 2,497,323.
  • polymerization processes which employ certain coordination catalysts or metal catalysts (e.g., the Ziegler-type, Natta-type, or Phillips-type) may be used by selecting a catalyst (such as in U.S. Patent No. 3,083,184) which is not easily poisoned or deactivated by carbon monoxide or other oxygen-containing monomer and is highly reactive with many metal-carbon bonds.
  • Olefin polymers within the purview of this invention which are rendered heatable by high-frequency electromagnetic radiation by incorporating carbon monoxide groups into the polymer chain, are polymers formed by polymerizing monomers having ethylenic (olefinic) unsaturation.
  • a sole olefin or a plurality of olefins may be used along with the carbon monoxide in preparing the polymers.
  • the olefin monomer is ethylene, sometimes including a small proportion of a C 3 -C 8 aliphatic olefin for property modification.
  • the olefin monomer can also include an unsaturated organic acid having 3 to 8 carbon atoms, such as acrylic acid, methacrylic acid, and 1-butenoic acid; alkyl esters or metal salts of these acids may also be used, such as ethyl acrylate, methyl methacrylate, 2-ethyihexyl acrylate, sodium acrylate, and potassium methacrylate.
  • unsaturated organic acid having 3 to 8 carbon atoms
  • alkyl esters or metal salts of these acids may also be used, such as ethyl acrylate, methyl methacrylate, 2-ethyihexyl acrylate, sodium acrylate, and potassium methacrylate.
  • olefins e.g. ethylene, ai ⁇ d carbon monoxide
  • olefins can be copolymerized or terpolymerized.
  • hydrogenated CO containing olefin polymers (which contain C-OH groups along the polymer chain) are included here, such as hydrogenated ethylene/carbon monoxide copolymers prepared by the process of U.S. Patent No. 2,495,292.
  • the following U.S. patents are representative of the art pertaining to interpolymers of carbon monoxide and monoolefins: 2,495,286; 2,497,323; 3,248,359; 3,780,140; and 4,143,096.
  • the amount of CO groups in the ethylene interpolymers should be in the range of 0.1 to 50 percent by weight, preferably 1 to 40 percent by weight, most preferably 5 to 30 percent by weight.
  • sensitizers which can be blended into a polymer, such as polyethylene to render it heatable by electromagnetic high-frequency energy, such as talc, ZnCl 2 , carbon black, nylon, and iron oxide.
  • electromagnetic high-frequency energy such as talc, ZnCl 2 , carbon black, nylon, and iron oxide.
  • Such additives usually have a pronounced visual, physical, or chemical effect which, in some applications, is undesirable.
  • uniform distribution of the sensitizers is essential to avoid "hot-spots" which can give irregular results and may even damage the polymer. It is within the purview of the present invention to create high-frequency sensitizer groups along the polymer chain in polymers which otherwise would be ill-suited for high-frequency heating.
  • the present invention provides polymers which are heatable by the action of microwave (MW) energy, a portion of the high-frequency energy range where there is a sparsity of suitable polymers.
  • MW microwave
  • high-frequency sealability refers to the bonding of the sea ⁇ able polymer to a portion of itself or to another material using electromagnetic energy frequencies of 0.1-30,000 MHz.
  • This high-frequency range includes electromagnetic waves over a broad frequency range (0.1 to 30,000 MHz) and covers the ultrasonic frequency range (18 KHz-1000 KHz), the radio frequency (RF) range (1 MHz-300 MHz), and the microwave (MW) frequency range (300 MHz-10,000 MHz).
  • the RF and MW ranges are of particular interest with special interest in the MW range due to the increasing use of MW as a processing device.
  • polymers suitable for use in RF extruders including continuous extruders or batch extruders, used to apply wire and cable coatings.
  • this invention relates to an improved method of rendering a polymer such as polyethylene, polypropylene or polystyrene, which is not heatable or sealable utilizing high-frequency (HF) electromagnetic radiation (0.1-30,000 MHz).
  • HF-sealable by either incorporation of carbon monoxide by copolymerization or by blending or grafting a carbon monoxide copolymer or terpolymer into the polymer matrix. Hydrogenated forms of the above can also be used.
  • ethylene/carbon monoxide copolymer (E/QO) and interpolymers containing CO can be used for microwave sealing applications.
  • ECO copolymers and interpolymers convert high-frequency electromagnetic radiation into heat for sealing, welding or fusing over a broad frequency range (0.1-30,000 MHz).
  • ethylene copolymers may be heatable to some extent at low RF frequencies of 1-50 MHz (radio frequency range is typically considered to be from 1-300 MHz; microwave frequency range is 300-30,000 MHz) such as ethylene/vinyl acetate copolymer (EVA), but none have been found which efficiently heat at the higher frequencies.
  • EVA ethylene/vinyl acetate copolymer
  • Other examples of polymers heatable at low frequencies, but which do not efficiently heat at the higher frequencies are polyvinyl chloride (PVC), polyvinylidene chloride, chlorinated polyethylene (CPE), and Nylon 6.
  • sealing polymers with high-frequency electromagnetic waves include faster and more efficient sealing, sealing through poor heatconductors, e.g., paper or cardboard exteriors, stronger seals or bonds, improved economics based on efficient use of energy input, the ability to seal, bond, or laminate larger surface areas, sealing of thicker or more complex film laminates and specific sealing.
  • the general heating rate for the interaction of an electromagnetic wave can be used to determine sealing rates utilizing the following equation:
  • G is the heating rate in cal/cm 3 .sec
  • f is the frequency in Hz of the electromagnetic wave
  • F 2 is the field strength or power in volts/cm
  • E' is the dielectric constant of the polymer
  • tan ⁇ is the dielectric loss tangent (measure of the heating property of the material when exposed to HF electromagnetic waves).
  • E/CO is like conventional low density polyethylenes in physical properties and film appearance, i.e., higher melting point, low film blockage, easy processability, can be used for film, extrusion coating and molding resin. Furthermore, the need for plasticizers is obviated.
  • CO can be copolymerized with ethylene and vinyl acetate to produce a CO-modified EVA polymer to render it more sealable and broadens the sealing frequency range.
  • CO can also be copolymerized into an EAA or EMAA polymer allowing an EAA-like or EMAA-like terpolymer to be RF and microwave sealable (EAA and EMAA are not RF or microwave sealable). This includes the metal salts or "ionomer-type" embodiments of these polymers.
  • CO containing copolymers or interpolymers have higher dielectric constants than EVA copolymers, allowing higher field strengths to be used without the fear of arcing.
  • Novel adhesives comprising terpolymers of ethylene/carbon monoxide/carboxylic acid are prepared as embodiments in accordance with the present invention.
  • the carboxylic acid moiety of the terpolymer may be any of the unsaturated carboxylic acids which are polymerizable through the double-bond, such as acrylic acid, methacrylic acid, crotonic acid, and 1-butenoic acid, especially acrylic acid or methacrylic acid, most especially acrylic acid, including salts of these acids, such as metal salts, especially Na or K salts, commonly known as "ionomer" salts.
  • the preparation of these E/CO/acid terpolymers may be done in the same manner as the E/acid copolymers as disclosed in U.S.
  • E/AA copolymers are generally regarded as having good adhesive properties with many substrates, as compared to polyethylene, there are some substrates where improved adhesion is desirable.
  • polyamides e.g. nylons
  • polyolefins e.g. LDPE, HDPE, LLDPE, PP, OPP, polyisoprene
  • fluoropolymers e.g. PTFE
  • PET polyethylene terephthalate
  • metals e.g. steel and aluminum foil
  • some paper-type products e.g. glassine, kraft paper, etc.
  • cured epoxy resins ethylene/vinyl alcohol copolymers
  • cured novolac resins polyurethanes
  • polycarbonates e.g.
  • E/CO copolymers exhibit a modicum of heat-activated or heat-induced adhesive properties to some substrates, it has been determined that the present E/CO/acid terpolymers exhibit greater adhesiveness in such instances, especially to such substrates as SARAN polymer and polycarbonate (where ECO has some adhesiveness) and to ethylene/vinyl alcohol copolymers, nylon, and aluminum (where E/CO exhibits little or no adhesiveness).
  • E/CO/acid terpolymers may be utilized by any convenient method, such as by hot-melt application, by post-heating of the adhesive in-situ on the substrate, by application of the adhesive in a carrier, such as in a solvent or as a dispersion in an aqueous carrier or in a non-solvent.
  • the adhesive may be used in joining substrates of similar or dissimilar materials.
  • these terpolymers are also suitable for use as films or as other materials and have the beneficial pxoperty of being high-frequency heatable, expecially at those frequencies which are in, or near, the microwave range.
  • E/CO/acid terpolymers are quite similar in optics and physical properties to EAA copolymers made by the same process.
  • ranges of the comonomer ingredients are as follows: Weight % of Terpolymer
  • melt index also called melt flow rate, as measured in accordance with ASTM D-1238, is preferably in the range of 0.5 to 2500, most preferably in the range of 1 to 60, even more preferably in the range of 1 to 20.
  • E/CO/acid terpolymers are thermoplastic and can be thermoformed into films, sheets, tubes, or other articles. Powders of these terpolymers can be compression molded into sintered forms or the powders can be applied to the surface of a substrate where it can be heat-plastified to provide an adhesive layer or coating on the substrate or between two substrates. A film, strip, or sheet of these terpolymers can be placed between two substrates and heat-plastified to serve as an adhesive or laminate layer to hold the substrates together.
  • Table I shows the time required to melt a polymer in a microwave oven (Sears Microclassic microwave oven) at maximum power (brought 275 ml of water to boil in 2.48 minutes).
  • MI melt index in accordance with ASTM D-1238.
  • useful articles are prepared which utilize the high- -frequency electromagnetic radiation heatability and sealability of the above described CO containing olefin polymers.
  • Layers or plies of these polymers are used as a means for sealing or bonding materials which are not, themselves, efficiently suitable for high-frequency electromagnetic radiation sealing or bonding.
  • multiple articles sealable by high-frequency electromagnetic radiation can be prepared from layers of paper, cloth, fabric, metal, ceramic, glass, wood, resin and other polymers alternating with layers of the HF-sealable E/CO polymer.
  • a ring of the HF-sealable E/CO polymer can be applied inside a container lid and then the lid tightly sealed to the container by exposure to a microwave radiation source.
  • Various substrates including particles, films, sheets, blocks, rods, and spheres can be coated, at least in the area desired to be bonded, with these polymers and then sealed or bonded together using high-frequency electromagnetic radiation, especially those frequencies in the microwave range.
  • these polymers in the form of powders or particles, may be extruded into useful shapes, or as coatings onto other materials (e.g. wire and cable coatings), using high-frequency electromagnetic radiation as the heating means.
  • the examples in Table III are produced by compression molding at pressures and temperatures conducive to heat fusion.
  • the resin samples to be tested for adhesion are first compression molded into 0.51 mm plaques and then laminated to the substrate (a film or plaque) to test for adhesion to the substrate.
  • the adhesive of ethylene/carbon monoxide/acrylic acid terpolymers E/CO/AA is shown in comparision to low density polyethylene, (LDPE); ethylene/acrylic acid copolymer (E/AA); ethylene/vinylacetate copolymer, (E/VA); ethylene/carbon monoxide copolymer, (E/CO); and ethylene/ carbon monoxide/vinyl acetate terpolymer, (E/CO/VA).
  • LDPE low density polyethylene
  • E/AA ethylene/acrylic acid copolymer
  • E/VA ethylene/vinylacetate copolymer
  • E/CO ethylene/carbon monoxide copolymer
  • E/CO/VA ethylene/
  • PDVC polyvinylidene chloride
  • PET polyethylene terephthalate
  • OPP oriented polypropylene
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • the packaging industry utilizes a number of barrier resins, such as in Table V below, and the E/CO/acid terpolymers are found to make good adhesives for making laminates which contain one or more barrier layers.
  • E/CO/acid terpolymers are useful as heat-plastified adhesives between layers of similar plastics or resins, layers of dissimilar plastics or resins, and/or between layers of plastics or resins and completely different substrates, such as paper, cloth, metal, glass, vitreous material, wood, leather.

Abstract

Olefin polymers which are unsuited, or ill-suited, for heating, sealing, or bonding by the action of high-frequency electromagnetic radiation, especiallly microwave radiation, are rendered heatable by such radiation by incorporating carbon monoxide, as a comonomer, into the polymer structure. Novel adhesives comprising terpolymers of ethylene/carbon monoxide/acids are disclosed, where the acid moiety of the terpolymer is at least one carboxylic acid polymerizable through carbon-to-carbon unsaturation, and salts thereof.

Description

HIGH-FREQUENCY HEATABLE PLASTICS
The use of high-frequency electromagnetic energy as a means of heating polymers is an advancing art which finds application in many fields, especially in fields in which conventional conductive, convective, or radiant heat energy is not suitable, practical, or possible. For instance, sealing of a polymer to itself or to some other substrate can be with appropriate polymer compositions an important commercial technique in producing a desired end-product.
There are some polymers which are not well-suited for high-frequency heating operations. In such ill-suited polymers, high-frequency heating does not occur, or occurs only after inefficiently prolonged time. In production assembly lines, a quick heat-seal operation is generally preferred.
Among polymers ill-suited for high-frequency heating are olefin polymers, e.g., polymers and copolymers of ethylene, propylene, styrene or other α-olefinically unsaturated hydrocarbons having 2 to 10 carbon atoms. Some of these olefin polymers may contain polar or polarizable groups, from incorporation of, e.g., acrylic or methacrylic acid or their alkyl esters as comonomers with the olefins. These groups may at high levels impart a modicum of high-frequency heatability to the polymer, but the efficacy is so slight that it is infeasible on a commercial basis.
Some polymers having polar groups, e.g. chlorinated PE, ethylene/vinyl acetate copolymer, PVC, polyvinylidene chloride, and polyamide, are heatable with certain frequencies of electromagnetic radiation.
Polyethylene is particularly known in the art to be substantially unsuitable for high-frequency heating unless sensitizers are added to the polymer. This is true whether it is linear or branched, or of low, medium, or high density (see, e.g., U.S. Patent Nos. 3,336,173, 3,640,913, and 3,810,799).
It is an object of the present invention to provide means for imparting improved high-frequency heatability to olefin polymers and copolymers which ordinarily are found to be ill-suited for such heating operations.
SUMMARY OF THE INVENTION
High-frequency heatability (e.g., for sealing, bonding, extrusion, molding or melting) is imparted to olefin polymers by polymerizing carbon monoxide into the polymer structure, thus providing novel capabilities for high-frequency heating of polymers which otherwise are unsuited, or ill-suited, for high-frequency heating operations. Novel high-frequency heated articles are prepared and novel high-frequency heating operations are provided as a result of the carbon monoxide inclusion in the polymer. Also novel terpolymers of ethylene/CO/carboxylic acids, such as acrylic acid, and salts thereof, are prepared which, in addition to being heatable by high-frequency electromagnetic energy, are found to have better adhesion to various substrates than copolymers of ethylene/carboxylic acids and salts thereof.
The preparation of olefin polymers, copolymers, and terpolymers is well known are well known to practitioners of the relevent polymer art. For the most part, the olefin copolymers and terpolymers of interest in the present invention are prepared by the high pressure, high temperature, free-radical initiated, polymerization method such as the historically-popular ICI process or as disclosed in U.S. Patent No. 2,497,323. However, polymerization processes which employ certain coordination catalysts or metal catalysts (e.g., the Ziegler-type, Natta-type, or Phillips-type) may be used by selecting a catalyst (such as in U.S. Patent No. 3,083,184) which is not easily poisoned or deactivated by carbon monoxide or other oxygen-containing monomer and is highly reactive with many metal-carbon bonds.
Olefin polymers within the purview of this invention, which are rendered heatable by high-frequency electromagnetic radiation by incorporating carbon monoxide groups into the polymer chain, are polymers formed by polymerizing monomers having ethylenic (olefinic) unsaturation. A sole olefin or a plurality of olefins may be used along with the carbon monoxide in preparing the polymers. Preferably the olefin monomer is ethylene, sometimes including a small proportion of a C3-C8 aliphatic olefin for property modification. The olefin monomer can also include an unsaturated organic acid having 3 to 8 carbon atoms, such as acrylic acid, methacrylic acid, and 1-butenoic acid; alkyl esters or metal salts of these acids may also be used, such as ethyl acrylate, methyl methacrylate, 2-ethyihexyl acrylate, sodium acrylate, and potassium methacrylate.
It has been known for many years that olefins, e.g. ethylene, aiϊd carbon monoxide, can be copolymerized or terpolymerized. Also, hydrogenated CO containing olefin polymers (which contain C-OH groups along the polymer chain) are included here, such as hydrogenated ethylene/carbon monoxide copolymers prepared by the process of U.S. Patent No. 2,495,292.
The following U.S. patents are representative of the art pertaining to interpolymers of carbon monoxide and monoolefins: 2,495,286; 2,497,323; 3,248,359; 3,780,140; and 4,143,096. The amount of CO groups in the ethylene interpolymers should be in the range of 0.1 to 50 percent by weight, preferably 1 to 40 percent by weight, most preferably 5 to 30 percent by weight.
It is also knowji that there are additives (sensitizers) which can be blended into a polymer, such as polyethylene to render it heatable by electromagnetic high-frequency energy, such as talc, ZnCl2, carbon black, nylon, and iron oxide. Such additives, however, usually have a pronounced visual, physical, or chemical effect which, in some applications, is undesirable. Furthermore, uniform distribution of the sensitizers is essential to avoid "hot-spots" which can give irregular results and may even damage the polymer. It is within the purview of the present invention to create high-frequency sensitizer groups along the polymer chain in polymers which otherwise would be ill-suited for high-frequency heating. Even when a polymer of the present invention is blended as a "masterbatch" with other polymer to sensitize the whole, the polymers are sufficiently compatible that little or no visual effects are encountered. Thus, clear films of olefin polymers can be prepared which are readily heat-sealed using high-frequency energy.
It is especially important that the present invention provides polymers which are heatable by the action of microwave (MW) energy, a portion of the high-frequency energy range where there is a sparsity of suitable polymers.
As used herein "high-frequency sealability" refers to the bonding of the seaϊable polymer to a portion of itself or to another material using electromagnetic energy frequencies of 0.1-30,000 MHz.. This high-frequency range includes electromagnetic waves over a broad frequency range (0.1 to 30,000 MHz) and covers the ultrasonic frequency range (18 KHz-1000 KHz), the radio frequency (RF) range (1 MHz-300 MHz), and the microwave (MW) frequency range (300 MHz-10,000 MHz). The RF and MW ranges are of particular interest with special interest in the MW range due to the increasing use of MW as a processing device.
Uses for this polymer or blend technology includes packaging applications where high speed seals are required, e.g., high-frequency activated adhesive films; extrusion coatings; moldings; hot melts in uses such as aseptic packaging, retort pouches, sandwich bags; lamination of foam, fabric, or film layers; and powder moldings. Furthermore, the present invention provides polymers suitable for use in RF extruders, including continuous extruders or batch extruders, used to apply wire and cable coatings.
In one aspect, this invention relates to an improved method of rendering a polymer such as polyethylene, polypropylene or polystyrene, which is not heatable or sealable utilizing high-frequency (HF) electromagnetic radiation (0.1-30,000 MHz). HF-sealable by either incorporation of carbon monoxide by copolymerization or by blending or grafting a carbon monoxide copolymer or terpolymer into the polymer matrix. Hydrogenated forms of the above can also be used. In addition, ethylene/carbon monoxide copolymer (E/QO) and interpolymers containing CO can be used for microwave sealing applications.
We have unexpectedly found that ECO copolymers and interpolymers convert high-frequency electromagnetic radiation into heat for sealing, welding or fusing over a broad frequency range (0.1-30,000 MHz). Typically, ethylene copolymers may be heatable to some extent at low RF frequencies of 1-50 MHz (radio frequency range is typically considered to be from 1-300 MHz; microwave frequency range is 300-30,000 MHz) such as ethylene/vinyl acetate copolymer (EVA), but none have been found which efficiently heat at the higher frequencies. Other examples of polymers heatable at low frequencies, but which do not efficiently heat at the higher frequencies are polyvinyl chloride (PVC), polyvinylidene chloride, chlorinated polyethylene (CPE), and Nylon 6. The advantages of sealing polymers with high-frequency electromagnetic waves include faster and more efficient sealing, sealing through poor heatconductors, e.g., paper or cardboard exteriors, stronger seals or bonds, improved economics based on efficient use of energy input, the ability to seal, bond, or laminate larger surface areas, sealing of thicker or more complex film laminates and specific sealing.
The general heating rate for the interaction of an electromagnetic wave can be used to determine sealing rates utilizing the following equation:
G = 13.3 x 10-14fF2(E'tan δ) (1)
where G is the heating rate in cal/cm3.sec, f is the frequency in Hz of the electromagnetic wave, F2 is the field strength or power in volts/cm, E' is the dielectric constant of the polymer and tan δ is the dielectric loss tangent (measure of the heating property of the material when exposed to HF electromagnetic waves). Thus, in general (since tan δ varies with frequency) the higher the frequency the higher the heating rate or the faster the sealing ability of the material. The carbon monoxide (CO) containing interpolymers can be sealed or heated over a broad frequency range which allows one to have the option of using microwave frequencies for optimum speed in heating or sealing. This feature (heating or sealing over such a broad frequency) appears to be unique to these interpolymers or copolymers containing CO. There are also advantages of CO copolymers or interpolymers over other polymers (e.g., PVC, PVCl2, CPE, EVA), that are sealable using radio frequency sealing methods which include, for example:
1. E/CO is like conventional low density polyethylenes in physical properties and film appearance, i.e., higher melting point, low film blockage, easy processability, can be used for film, extrusion coating and molding resin. Furthermore, the need for plasticizers is obviated.
2. CO can be copolymerized with ethylene and vinyl acetate to produce a CO-modified EVA polymer to render it more sealable and broadens the sealing frequency range. CO can also be copolymerized into an EAA or EMAA polymer allowing an EAA-like or EMAA-like terpolymer to be RF and microwave sealable (EAA and EMAA are not RF or microwave sealable). This includes the metal salts or "ionomer-type" embodiments of these polymers.
3. CO containing copolymers or interpolymers have higher dielectric constants than EVA copolymers, allowing higher field strengths to be used without the fear of arcing.
Novel adhesives comprising terpolymers of ethylene/carbon monoxide/carboxylic acid are prepared as embodiments in accordance with the present invention. The carboxylic acid moiety of the terpolymer may be any of the unsaturated carboxylic acids which are polymerizable through the double-bond, such as acrylic acid, methacrylic acid, crotonic acid, and 1-butenoic acid, especially acrylic acid or methacrylic acid, most especially acrylic acid, including salts of these acids, such as metal salts, especially Na or K salts, commonly known as "ionomer" salts. The preparation of these E/CO/acid terpolymers may be done in the same manner as the E/acid copolymers as disclosed in U.S. 3,520,861 and U.S. 4,351,931. These patents disclose the use of a high pressure stirred autoclave reactor, using a free-radical initiator, to prepare uniform, random ethylene/carboxylic acid copolymers. Whereas these terpolymers can also be made by grafting techniques, by block polymerization techniques, in batch reactors, or in long tube reactors, it is preferred that stirred autoclave reactors be used whereby substantially uniform, random terpolymers are made.
Even though E/AA copolymers are generally regarded as having good adhesive properties with many substrates, as compared to polyethylene, there are some substrates where improved adhesion is desirable.
Notable among these substrates where improved adhesion is desirable, are polyamides (e.g. nylons), polyolefins (e.g. LDPE, HDPE, LLDPE, PP, OPP, polyisoprene), fluoropolymers (e.g. PTFE), polyethylene terephthalate (PET), metals (e.g. steel and aluminum foil), some paper-type products (e.g. glassine, kraft paper, etc.), cured epoxy resins, ethylene/vinyl alcohol copolymers, cured novolac resins, polyurethanes, polycarbonates, chloropolymers (e.g. polychloroprene, PVC, polyvinylidene), and inorganic substrates (e.g. glass and porcelain). Conversely, whereas E/CO copolymers exhibit a modicum of heat-activated or heat-induced adhesive properties to some substrates, it has been determined that the present E/CO/acid terpolymers exhibit greater adhesiveness in such instances, especially to such substrates as SARAN polymer and polycarbonate (where ECO has some adhesiveness) and to ethylene/vinyl alcohol copolymers, nylon, and aluminum (where E/CO exhibits little or no adhesiveness).
The adhesive properties of these E/CO/acid terpolymers may be utilized by any convenient method, such as by hot-melt application, by post-heating of the adhesive in-situ on the substrate, by application of the adhesive in a carrier, such as in a solvent or as a dispersion in an aqueous carrier or in a non-solvent. The adhesive may be used in joining substrates of similar or dissimilar materials. As mentioned hereinbefore, these terpolymers are also suitable for use as films or as other materials and have the beneficial pxoperty of being high-frequency heatable, expecially at those frequencies which are in, or near, the microwave range.
These E/CO/acid terpolymers are quite similar in optics and physical properties to EAA copolymers made by the same process. Insofar as these novel adhesive terpolymers are concerned, the ranges of the comonomer ingredients are as follows: Weight % of Terpolymer
Most
Monomer Operable Preferred Preferre
Ethylene 20-98 40-98 60-96
Carbon Monoxide 1-40 1-30 2-20
Carboxylic Acid 1-40 1-30 2-20
The melt index (M.I.), also called melt flow rate, as measured in accordance with ASTM D-1238, is preferably in the range of 0.5 to 2500, most preferably in the range of 1 to 60, even more preferably in the range of 1 to 20.
These E/CO/acid terpolymers are thermoplastic and can be thermoformed into films, sheets, tubes, or other articles. Powders of these terpolymers can be compression molded into sintered forms or the powders can be applied to the surface of a substrate where it can be heat-plastified to provide an adhesive layer or coating on the substrate or between two substrates. A film, strip, or sheet of these terpolymers can be placed between two substrates and heat-plastified to serve as an adhesive or laminate layer to hold the substrates together.
The following examples illustrate certain embodiments of the E/CO/acid terpolymers, compared with other polymers, but the invention is not limited to the specific embodiments shown.
EXAMPLE 1
The following Table I shows the time required to melt a polymer in a microwave oven (Sears Microclassic microwave oven) at maximum power (brought 275 ml of water to boil in 2.48 minutes). E
E
E
E
E
E
E
E E E E
E
Figure imgf000014_0001
* Samples were 5.0 cm 2" discs of 1.52 mm thickness, positioned on a non-RF sensitive polycarbonate sheet. ** If no melting was evident in 10 minutes, the test was stopped and reported as >10 min.
*** MI is melt index in accordance with ASTM D-1238.
® Registered tradenames As can be seen from Table I, only ethylene interpolymers containing carbon monoxide melted in the microwave oven (2450 MHz).
EXAMPLE 2 To determine the RF-sealability of carbon monoxide containing copolymers, a Callanan 1-1/2 KW high-frequency electronic generator equipped with a 0.24 cm x 30.5 cm'brass sealing electrode and operating over a frequency range of 20-40 MHz (RF) was utilized in the following sealing experiment. Samples of 76 μm blown film of the copolymers shown in Table II were attempted to be sealed using the above RF sealer utilizing various dwell settings (sealing time) and power settings. The seals were examined and a seal was considered to have been made when the two sheets of material could not be separated at the seal point without tearing either piece of film. Table II also shows the improvement in minimum sealing time and resistance to arcing of CO containing copolymers in comparison to EVA copolymers.
E E E E
E
E
E
E
E
E
Figure imgf000016_0001
E E E
E
E
Figure imgf000017_0001
*Arc results in a hole burned through the film.
Within the purview of the present invention, useful articles are prepared which utilize the high- -frequency electromagnetic radiation heatability and sealability of the above described CO containing olefin polymers. Layers or plies of these polymers are used as a means for sealing or bonding materials which are not, themselves, efficiently suitable for high-frequency electromagnetic radiation sealing or bonding. Thus multiple articles sealable by high-frequency electromagnetic radiation can be prepared from layers of paper, cloth, fabric, metal, ceramic, glass, wood, resin and other polymers alternating with layers of the HF-sealable E/CO polymer. For example, a ring of the HF-sealable E/CO polymer can be applied inside a container lid and then the lid tightly sealed to the container by exposure to a microwave radiation source.
Various substrates, including particles, films, sheets, blocks, rods, and spheres can be coated, at least in the area desired to be bonded, with these polymers and then sealed or bonded together using high-frequency electromagnetic radiation, especially those frequencies in the microwave range. Alternately, these polymers, in the form of powders or particles, may be extruded into useful shapes, or as coatings onto other materials (e.g. wire and cable coatings), using high-frequency electromagnetic radiation as the heating means.
Example 3
The examples in Table III are produced by compression molding at pressures and temperatures conducive to heat fusion. The resin samples to be tested for adhesion are first compression molded into 0.51 mm plaques and then laminated to the substrate (a film or plaque) to test for adhesion to the substrate. The adhesive of ethylene/carbon monoxide/acrylic acid terpolymers E/CO/AA, is shown in comparision to low density polyethylene, (LDPE); ethylene/acrylic acid copolymer (E/AA); ethylene/vinylacetate copolymer, (E/VA); ethylene/carbon monoxide copolymer, (E/CO); and ethylene/ carbon monoxide/vinyl acetate terpolymer, (E/CO/VA). The good adhesiveness obtainable with E/CO/AA terpolymers to the various substrates is evident, especially with nylon (a polyamide) and with polycarbonate which generally do not form strong bonds with most heat-plastified adhesives. V ooooo T T Too
Figure imgf000019_0001
Figure imgf000020_0001
Example 4
To compare an ethylene/carbon monoxide copolymer (10% CO by weight, 18.7 M.I.) with an ethylene/ carbon monoxide/acrylic acid terpolymer (10% CO and 5% AA by weight, 12.8 M.I.), a 51 μm (2-mil) thick coating of each is extrusion-coated onto various substrates and adhesion (kg/cm) is measured by the T-Peel Test of ASTM D-1876. In Table IV below, Sample A is the E/CO copolymer extrusion-coated at 300°C and Sample B is the E/CO/AA terpolymer extrusion-coated at 290°C. The results illustrate the superior adhesiveness of E/CO/AA terpolymers as compared to E/CO copolymers.
Figure imgf000021_0001
*Film failure, not adhesive failure. PDVC - polyvinylidene chloride; PET - polyethylene terephthalate; OPP - oriented polypropylene; LDPE - low density polyethylene; LLDPE - linear low density polyethylene.
The packaging industry utilizes a number of barrier resins, such as in Table V below, and the E/CO/acid terpolymers are found to make good adhesives for making laminates which contain one or more barrier layers. E
E
E
Figure imgf000022_0001
Also E/CO/acid terpolymers are useful as heat-plastified adhesives between layers of similar plastics or resins, layers of dissimilar plastics or resins, and/or between layers of plastics or resins and completely different substrates, such as paper, cloth, metal, glass, vitreous material, wood, leather.

Claims

1. A method for imparting improved highfrequency electromagnetic radiation heatability to olefin polymers comprising interpolymerizing into the olefin polymer during the polymerization sufficient carbon monoxide as a comonomer to provide 0.1 percent to 50 percent of the final polymer weight.
2. The method of Claim 1 wherein the carbon monoxide comprises 1 percent to 40 percent of the polymer weight.
3. The method of Claim 1 wherein the carbon monoxide comprises 5 percent to 30 percent of the polymer weight.
4. The method of Claim 1 wherein the said final polymer comprises copolymerized ethylene, carbon monoxide and at least one other comonomer selected from the group consisting of olefinically unsaturated C3-C8 organic acids and the alkyl esters or metal salts of such acids.
5. The method of Claim 1 wherein the final polymer consists essentially of interpolymerized ethylene, acrylic or methacrylic acid, and carbon monoxide.
6. A high-frequency electromagnetic radiation sealable film comprising an olefin interpolymer which contains 0.1 percent to 50 percent by weight of interpolymerized carbon monoxide.
7. The film of Claim 6 wherein the said interpolymer comprises ethylene, carbon monoxide, and an acid selected from acrylic acid and methacrylic acid.
8. A high-frequency electromagnetic radiation sealable multi-ply article containing (a) at least one ply of an olefin polymer which consists essentially of an olefin/carbon monoxide terpolymer with a comonomer selected from the group consisting of olefinically unsaturated C3-C8 organic acids, lower alkyl esters of such acids, and the metal salts of such acids, in which 0.1 percent to 50 percent of the interpolymer weight is attributable to carbon monoxide, and (b) at least one ply of a material which is ill-suited as a high-frequencyelectromagnetic radiation sealable material.
9. A composition of matter consisting essentially of a terpolymer of ethylene/carbon monoxide/acid where the acid is a polymerizable ethylenically unsaturated organic carboxylic acid.
10. The terpolymer of Claim 9 consisting of 20-98 weight percent ethylene, 1-40 weight percent carbon monoxide and 1-40 weight percent of at least one of acrylic acid, methacrylic acid, crotonic acid, 1-butenoic acid, and maleic acid.
11. The terpolymer of Claim 9 when in the form of a layer on at least one substrate of the group comprising polyvinyl chloride, polyvinylidene chloride, polyethylene terephthalate, polyamide, polypropylene, oriented polypropylene, ethylene/vinyl alcohol copolymer, ethylene/vinyl acetate copolymer, polycarbonate, low density polyethylene, high density polyethylene, and linear low density polyethylene.
PCT/US1984/001422 1983-09-12 1984-09-07 High-frequency heatable plastics WO1985001294A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019850700034A KR890003626B1 (en) 1983-09-12 1984-09-07 Composition of ethylene/co/acid terpolymers
KR1019870700356A KR900005837B1 (en) 1983-09-12 1984-09-07 Product of high-frequency heatable plastics
BR8407067A BR8407067A (en) 1983-09-12 1984-09-07 PLASTICS FUNDIBLE TO HIGH FREQUENCY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/531,110 US4600614A (en) 1983-09-12 1983-09-12 High-frequency heatable plastics
US531,110 1983-09-12

Publications (1)

Publication Number Publication Date
WO1985001294A1 true WO1985001294A1 (en) 1985-03-28

Family

ID=24116276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1984/001422 WO1985001294A1 (en) 1983-09-12 1984-09-07 High-frequency heatable plastics

Country Status (12)

Country Link
US (1) US4600614A (en)
EP (2) EP0137332B1 (en)
JP (2) JPS60501218A (en)
KR (1) KR890003626B1 (en)
AT (1) ATE71638T1 (en)
AU (1) AU560256B2 (en)
BR (1) BR8407067A (en)
DE (1) DE3485450D1 (en)
ES (1) ES8607998A1 (en)
MX (1) MX167797B (en)
SG (1) SG62292G (en)
WO (1) WO1985001294A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223838A1 (en) * 1985-05-28 1987-06-03 The Dow Chemical Company Rf-sealable packaging containers
US4731504A (en) * 1986-08-13 1988-03-15 The Dow Chemical Company Multi-layer film structure and electrical cable incorporating same
EP0390636A1 (en) * 1989-03-31 1990-10-03 Elf Atochem S.A. Composite material comprising a substrate and a polymer based coating and a process for preparing such a composite material
US5211929A (en) * 1989-10-06 1993-05-18 Ceca S.A. Process for the thermal activation of zeolites and resultant products
US5234760A (en) * 1989-03-31 1993-08-10 Elf Atochem, S.A. Composite material comprising a substrate and a polymeric based coating and process for the manufacture thereof
US5618845A (en) * 1994-10-06 1997-04-08 Cephalon, Inc. Acetamide derivative having defined particle size
WO2000069629A1 (en) * 1999-05-18 2000-11-23 The Dow Chemical Company Radio frequency (rf) weldable adhesive films
US8691340B2 (en) 2008-12-31 2014-04-08 Apinee, Inc. Preservation of wood, compositions and methods thereof
US9878464B1 (en) 2011-06-30 2018-01-30 Apinee, Inc. Preservation of cellulosic materials, compositions and methods thereof

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678713A (en) * 1984-08-31 1987-07-07 The Dow Chemical Company Co-extruded laminates containing carbon monoxide interpolymers
US4895457A (en) * 1983-09-12 1990-01-23 The Dow Chemical Company RF-sealable packaging containers
US4640865A (en) * 1984-08-31 1987-02-03 The Dow Chemical Company Barrier film structures
US4671992A (en) * 1983-09-12 1987-06-09 The Dow Chemical Company High frequency lamination of polymer foams
FR2577168B1 (en) * 1985-02-08 1987-02-27 Atochem VINYLIDENE-COPOLYMER POLYFLUORIDE COMPOSITE (CARBON ETHYLENE-OXIDE), TREATMENT OF VINYLIDENE POLYFLUORIDE WITH THIS COPOLYMER FOR ADHESION TO A SUBSTRATE
EP0240571B1 (en) * 1985-09-12 1991-06-05 Toppan Printing Co., Ltd. Microwave-heated cooked foods
NZ218234A (en) * 1985-11-12 1990-03-27 Dow Chemical Co Multilayer container for food products: inner-wall of container is halopolymer
IN168306B (en) * 1986-03-05 1991-03-09 Shell Int Research
EP0235866A3 (en) * 1986-03-05 1988-01-27 Shell Internationale Researchmaatschappij B.V. Catalyst compositions
IN168056B (en) * 1986-03-05 1991-01-26 Shell Int Research
US5089556A (en) * 1986-09-05 1992-02-18 The Dow Chemical Company Adhesive, RF heatable grafted polymers and blends
US4885315A (en) * 1987-05-04 1989-12-05 The Dow Chemical Company Foamable thermoplastic polymers and a method for foaming
US4902721A (en) * 1987-05-04 1990-02-20 The Dow Chemical Company Foamable thermoplastic polymers and a method for foaming
US4853420A (en) * 1987-05-04 1989-08-01 The Dow Chemical Company Foamable thermoplastic polymers and a method for foaming
CA1329858C (en) * 1987-11-04 1994-05-24 Eit Drent Preparation of polymers of carbon monoxide
US4874819A (en) * 1987-12-21 1989-10-17 Shell Oil Company Polymer blend
US4874801A (en) * 1987-12-21 1989-10-17 Shell Oil Company Polymer blend
US4954570A (en) * 1988-05-24 1990-09-04 Shell Oil Company Polyketone polymer blend
GB2214917A (en) * 1988-02-16 1989-09-13 Shell Int Research Containers for liquid hydrocarbons made of co or so2 copolymer
US4880908A (en) * 1988-04-11 1989-11-14 Shell Oil Company Polymer blend of carbon monoxide/olefin copolymer and polycarbonate
US4861675A (en) * 1988-04-25 1989-08-29 Shell Oil Company Coating process
US4904728A (en) * 1988-08-31 1990-02-27 Shell Oil Company Polymer blends
US5079316A (en) * 1990-02-22 1992-01-07 The Dow Chemical Company Graft copolymers of polymerizable monomers and olefin/carbon monoxide copolymers
AU1341892A (en) * 1991-01-16 1992-08-27 Dow Chemical Company, The Activation of ethylene/carbon monoxide polymers
US5530065A (en) * 1992-01-07 1996-06-25 Exxon Chemical Patents Inc. Heat sealable films and articles made therefrom
DE69312562T2 (en) * 1992-05-08 1997-12-04 Shell Int Research Two-part polymer composite part and process for its production
US5300338A (en) * 1992-05-08 1994-04-05 Shell Oil Company Coextruded laminates containing polyketone polymers
US5232786A (en) * 1992-05-08 1993-08-03 Shell Oil Company Multi-layer structures containing polyketone polymers
IL110356A (en) * 1993-07-29 1997-04-15 Int Paper Co Radio-frequency-sealable, non-foil packaging structures
GB9321251D0 (en) * 1993-10-14 1993-12-01 Du Pont Canada Bounding polyvinyl chloride to cellulosic material
AU6001996A (en) * 1995-05-30 1996-12-18 Shell Internationale Research Maatschappij B.V. A fuel tank and a process for producing the fuel tank
US6348679B1 (en) 1998-03-17 2002-02-19 Ameritherm, Inc. RF active compositions for use in adhesion, bonding and coating
US6649888B2 (en) 1999-09-23 2003-11-18 Codaco, Inc. Radio frequency (RF) heating system
WO2002006386A2 (en) * 2000-07-13 2002-01-24 Marrelli John C Foamed-thermoplastic films
MXPA04005271A (en) * 2001-12-14 2004-10-11 Procter & Gamble Disposable absorbent article including electromagnetic bond and method for producing it.
US6994469B2 (en) * 2002-01-25 2006-02-07 The Glad Products Company Shirred elastic sheet material
GB2439530B (en) * 2006-05-26 2011-07-13 Pera Innovation Ltd Method of and apparatus for producing thermoplastic materials
US7674300B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US20080156428A1 (en) * 2006-12-28 2008-07-03 Kimberly-Clark Worldwide, Inc. Process For Bonding Substrates With Improved Microwave Absorbing Compositions
US8182552B2 (en) 2006-12-28 2012-05-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7740666B2 (en) 2006-12-28 2010-06-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US20110118679A1 (en) * 2009-11-17 2011-05-19 Cryovac, Inc. Radio frequency sealable film
US8858525B2 (en) * 2009-11-20 2014-10-14 Cryovac, Inc. Noise dampening film
US9796154B2 (en) 2013-10-25 2017-10-24 Dow Global Technologies Llc Filmless backsheets with good barrier properties
CN114381808B (en) * 2021-12-27 2023-03-28 济南晶正电子科技有限公司 Method for preparing composite film by microwave heating, composite film and electronic component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157428A (en) * 1975-05-23 1979-06-05 E. I. Du Pont De Nemours And Company Ethylene carbon monoxide copolymers containing epoxy side groups
US4338227A (en) * 1980-09-05 1982-07-06 E. I. Du Pont De Nemours And Company Ethylene copolymer blends and adhesives based thereon

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA471169A (en) * 1951-01-30 Martin Brubaker Merlin Carbon monoxide copolymers
CH497492A (en) * 1968-04-18 1970-10-15 Ethylene Plastique Sa Process for preparing rapidly degrading packaging and films
US3780140A (en) * 1971-08-06 1973-12-18 Du Pont Ethylene/carbon monoxide polymer compositions
US3775320A (en) * 1971-10-05 1973-11-27 Mobil Oil Corp Organic compositions containing salts of amines and substituted acetic acids as corrosion inhibitors
US3948832A (en) * 1974-09-25 1976-04-06 Atlantic Richfield Company Stabilized ethylene-carbon monoxide copolymers containing an epoxy compound
US3948873A (en) * 1974-10-10 1976-04-06 Atlantic Richfield Company Process for preparing carbon monoxide-ethylene copolymers
JPS591301B2 (en) * 1975-07-30 1984-01-11 株式会社クラレ Ethylene monovinyl acetate copolymer composition with excellent heat generation properties by high frequency
DE3018588A1 (en) * 1980-05-14 1981-11-19 Siemens AG, 1000 Berlin und 8000 München MIRROR REFLECTING CAMERA WITH OPTOELECTRONIC DISTANCE METER
JPS5778436A (en) * 1980-09-05 1982-05-17 Du Pont Ethylene copolymer blend and adhesive based thereon
JPS5871156A (en) * 1981-10-23 1983-04-27 三菱油化株式会社 Tarpaulin
JPS5939468B2 (en) * 1981-12-15 1984-09-22 徳山積水工業株式会社 Transparent and highly flexible resin composition for manufacturing molded objects

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157428A (en) * 1975-05-23 1979-06-05 E. I. Du Pont De Nemours And Company Ethylene carbon monoxide copolymers containing epoxy side groups
US4338227A (en) * 1980-09-05 1982-07-06 E. I. Du Pont De Nemours And Company Ethylene copolymer blends and adhesives based thereon

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223838A1 (en) * 1985-05-28 1987-06-03 The Dow Chemical Company Rf-sealable packaging containers
EP0223838A4 (en) * 1985-05-28 1988-08-23 Dow Chemical Co Rf-sealable packaging containers.
US4731504A (en) * 1986-08-13 1988-03-15 The Dow Chemical Company Multi-layer film structure and electrical cable incorporating same
US5234760A (en) * 1989-03-31 1993-08-10 Elf Atochem, S.A. Composite material comprising a substrate and a polymeric based coating and process for the manufacture thereof
FR2645161A1 (en) * 1989-03-31 1990-10-05 Atochem COMPOSITE MATERIAL COMPRISING A SUBSTRATE AND A COATING BASED ON A POLYMERIC COMPOSITION, PROCESS FOR PRODUCING THE COMPOSITE MATERIAL
EP0390636A1 (en) * 1989-03-31 1990-10-03 Elf Atochem S.A. Composite material comprising a substrate and a polymer based coating and a process for preparing such a composite material
US5211929A (en) * 1989-10-06 1993-05-18 Ceca S.A. Process for the thermal activation of zeolites and resultant products
US5618845A (en) * 1994-10-06 1997-04-08 Cephalon, Inc. Acetamide derivative having defined particle size
WO2000069629A1 (en) * 1999-05-18 2000-11-23 The Dow Chemical Company Radio frequency (rf) weldable adhesive films
US6558809B1 (en) 1999-05-18 2003-05-06 The Dow Chemical Company Flexible, halogen-free, radio-frequency sealable films
US8691340B2 (en) 2008-12-31 2014-04-08 Apinee, Inc. Preservation of wood, compositions and methods thereof
US9314938B2 (en) 2008-12-31 2016-04-19 Apinee, Inc. Preservation of wood, compositions and methods thereof
US9878464B1 (en) 2011-06-30 2018-01-30 Apinee, Inc. Preservation of cellulosic materials, compositions and methods thereof

Also Published As

Publication number Publication date
EP0137332A2 (en) 1985-04-17
EP0137332B1 (en) 1992-01-15
AU3290884A (en) 1985-03-21
SG62292G (en) 1992-09-04
BR8407067A (en) 1985-08-13
JPH0412291B2 (en) 1992-03-04
ES8607998A1 (en) 1986-03-16
ES535814A0 (en) 1986-03-16
KR850700034A (en) 1985-10-21
ATE71638T1 (en) 1992-02-15
JPH075771B2 (en) 1995-01-25
DE3485450D1 (en) 1992-02-27
EP0455265A2 (en) 1991-11-06
JPH06122774A (en) 1994-05-06
JPS60501218A (en) 1985-08-01
US4600614A (en) 1986-07-15
EP0137332A3 (en) 1986-02-05
EP0455265A3 (en) 1992-03-18
MX167797B (en) 1993-04-12
AU560256B2 (en) 1987-04-02
KR890003626B1 (en) 1989-09-28

Similar Documents

Publication Publication Date Title
US4600614A (en) High-frequency heatable plastics
US4601948A (en) High-frequency heatable plastics
AU582868B2 (en) Co-extruded laminates containing carbon monoxide interpolymers
AU582870B2 (en) Rf-sealable barrier film
AU582869B2 (en) Rf-sealable packaging containers
US4671992A (en) High frequency lamination of polymer foams
US4728566A (en) High-frequency lamination of polymer foams
US4895457A (en) RF-sealable packaging containers
US4787194A (en) RF-sealable packaging containers
US4766035A (en) Barrier film structures
US4847155A (en) Barrier film structures
US4762731A (en) Barrier film structures using carbon monoxide-containing polymers

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): BR JP KR