WO1984000761A1 - Process for purifying and condensing high-molecular polysaccharide extract obtained from sea weed - Google Patents

Process for purifying and condensing high-molecular polysaccharide extract obtained from sea weed Download PDF

Info

Publication number
WO1984000761A1
WO1984000761A1 PCT/JP1983/000261 JP8300261W WO8400761A1 WO 1984000761 A1 WO1984000761 A1 WO 1984000761A1 JP 8300261 W JP8300261 W JP 8300261W WO 8400761 A1 WO8400761 A1 WO 8400761A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
polysaccharide
weight
molecular
high molecular
Prior art date
Application number
PCT/JP1983/000261
Other languages
French (fr)
Japanese (ja)
Inventor
Masami Kosaka
Kimihiko Takeo
Original Assignee
Asahi Chemical Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Ind filed Critical Asahi Chemical Ind
Priority to DK82684A priority Critical patent/DK82684A/en
Publication of WO1984000761A1 publication Critical patent/WO1984000761A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0036Galactans; Derivatives thereof
    • C08B37/0039Agar; Agarose, i.e. D-galactose, 3,6-anhydro-D-galactose, methylated, sulfated, e.g. from the red algae Gelidium and Gracilaria; Agaropectin; Derivatives thereof, e.g. Sepharose, i.e. crosslinked agarose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates

Definitions

  • the present invention relates to a method for efficiently purifying and concentrating a high-molecular-weight polysaccharide extract from seaweed by an over-treatment with an ultrafiltration membrane. More specifically, the present invention relates to an aqueous solution of high molecular polysaccharides such as carrageenan, agar, farceran, and alginic acid derivatives, which are extracts of seaweed forces. , Hollow fibers such as hollow fiber or thin groove type, by flowing under pressure and at a high shear rate into the hollow part of a hollow ultrafiltration membrane] ?, and regarding the method of refinement shrinkage with high water permeability. To do.
  • Seaweeds include red algae, brown algae, green algae, and cyanobacteria. It is the former two types of red algae and brown algae whose extracts are put to practical use in the food and pharmaceutical industry.
  • high-molecular polysaccharides obtained from red algae include, but are not limited to, carrageenan, agar, and faceralan, and those obtained from brown algae.
  • Alginic acid salts such as sodium alginate, potassium, and ammonium-, and prolonged alcoholic alginate. 3 ⁇ 4 Alginic acid ester is known. These high molecular polysaccharides have the following common characteristics.
  • Extracts from red algae are lamda-type colorants containing about 40 weight% of sulfur dioxide.
  • red algae carrageenan, faceraran, agar
  • guanines it has water-gelling properties and forms gels with a gel strength of hundreds or even more when 1 weight of water is added.
  • the above-mentioned lamda-type collagen has no water-gelling property, it has a high viscosity and is useful as a thickener.
  • Products are advantageously used in the fields of food, cosmetics, pharmaceuticals, etc.
  • Karagian is a seaweed of the red algae, for example, the genus Chondrus Crispus.
  • Gigar t ina Stellata, Gigarti na Badula It is a high-molecular-weight polysaccharide containing ester sulfate, which is obtained by aging the solution or boiling it in hot water or an aqueous alkaline solution.
  • ⁇ -auxiliary material such as diatomaceous earth
  • ⁇ -auxiliary material such as diatomaceous earth
  • filter or centrifuge Separate the aqueous solution of carrageenan as a greed from the seaweed residue using the ⁇ .
  • This liquid contains impurities such as coloring components in an amount of about 10% by weight based on the solid content, together with the pressure ring.
  • the liquid is dark brown or dark brown.
  • activated carbon or A purification method such as adsorption with an ion-exchange resin is carried out, and then the solution is reduced to the highest concentration possible in a vacuum evaporator, but the aqueous solution of potassium nitrate has a high viscosity even at a low concentration. It is said that there is a limit to the amount of agricultural contraction before and after.
  • a thin film dryer is brought into contact with a heated dryer or stainless steel belt to dry the condensed liquid, and the hardened material is pulverized.
  • the feature of this method is that the product can be obtained with relatively simple equipment, but it contains a large amount of impurities depending on the degree of purification, and the drum or stainless steel surface. It is not easy to separate the dried thin film carrageen attached to the base. Inadequate separation and adhesion of the drum surface to the drum surface, and the long-time-heated power magnesium turns yellow, reducing the quality of the product. In addition, there is a method to add tarfine squeeze and high-grade fatty acid monohydrate to prevent sticking, but this will further reduce the product quality.
  • the concentrated solution which has been contracted back and forth and cooled, is also described in JP-A No. 5 6-9 5 90 1 ⁇ Gellification manufacturing method of force magnesium with aqueous salt solution ''.
  • an alkali metal salt for example, an aqueous solution of potassium chloride
  • uhondrus Crispus was the representative red seaweed seaweed that is the raw material for carrageenan, but the carrageenan obtained from the seaweed was simply coagulated and precipitated in cold water. Since the gel strength is low and it is not suitable for high-level dehydration by pressure, the alcohol precipitation method was often used. Recently, the force magnesium produced from Eucheuma Cottonii, which has been cultivated in the sea near the Philippines, has a high gel strength, and especially, it is ion-exchanged with calcium salt. Gels that have been pre-treated, then coagulated and precipitated have the great advantage that they can be pre-dehydrated by more than 15 weight (wet weight basis) depending on the press.
  • a purification S-condensation step is required before gelling, but the extract of carrageenan has a low viscosity and a low viscosity.
  • the efficiency is extremely poor when an aqueous solution extracted with about 1 to 2 weight is added, for example, by adding diatomaceous earth as a super-assistant hao, and the efficiency is extremely low. It was not easy because of the liquid.
  • adsorption purification using ion-exchange resin has a high cost and has not reached the level of practical application.
  • the shrinkage due to the vacuum evaporator is about 3 weight at the industrial scale at most, and the energy cost is also large.
  • the aqueous solution of keratin honey extracted from seaweed which has a weak gelling ability, has high strength. Even when concentrating up to about 4 weight, which is easy to form a fine gel, it has a drawback that it is economically difficult to put into practical use due to its low water permeability.
  • an aqueous solution of a high-molecular polysaccharide such as carrageenan has a high viscosity as described above, and an aqueous solution of such a high-viscosity is a normal target to be treated by ultrafiltration. Since the viscosity is higher than that of the liquid, the absolute amount of is too small, and at the same time, it is expected that clogging will occur in a short time and the: (F liquid amount will be rapidly decreased. Purification and concentration by ultrafiltration are not considered to be appropriate methods from a practical point of view.In fact, the purification method disclosed in U.S. Pat.
  • the present invention utilizes an ultrapermeability membrane and a simple apparatus to produce a high-molecular-weight polysaccharide aqueous solution extracted from seaweed at a high cost and a high ⁇ pressure pressure. To provide an efficient method for refining and condensing.
  • seaweed is extracted with an aqueous solvent to obtain a high-molecular-weight polysaccharide aqueous solution, which has openings on one end and on the other.
  • the ultra-hollow hollow body that has an ultrafiltration membrane in its peripheral portion extending in the longitudinal direction is to flow the polymer aqueous solution at a shear rate of 5 000 Sec " 1 or more in the hollow flow channel.
  • a method of purifying and contracting the high-polysaccharide aqueous solution into 1 of the ultra-I hypermembrane with high water permeability is provided.
  • an aqueous solution of a polycondensate polymer is squeezed into the hollow channel of the ultra-hollow body at a shear rate of 5 000 Sec " 1 or more.
  • the specifications and dimensions of the Amicon's thin-groove ultra ⁇ super-modules described in the examples of No. 3, 8 5 6, 5 6 9 specifications are the same as those of the same company. Then, the overpressure, the aqueous solution viscosity, and the liquid O viscosity used in the examples were obtained, and then the magnitude of the pressure drop and the circulating fluid flow rate were calculated from the length of the flow path.
  • the shear rate is about 1,00 0 to about 4,00 0 Sec- 1 .
  • the aqueous solution of the high molecular polysaccharide was subjected to the medium ultra-extinction at a shear rate of 500 Sec- 1 or higher.
  • the aqueous solution of high molecular polysaccharides is flowed at a shearing speed S of 500 0 S ee -1 or more, so that the high molecular polysaccharides are subjected to intense shearing stirring to
  • the water and impurities bound by the polymer are squeezed out and released without destroying the chain structure of the polymer, achieving high water permeability. It's surprisingly good that it's not been .50 at all.
  • seaweeds used in the method of the present invention preferred are red algae and brown algae as described above, and preferred high molecular weight polysaccharides are carrageenan, agar, and agar.
  • the aqueous solution of high molecular polysaccharide to be treated in the present invention is prepared by extracting seaweed with water or an aqueous solvent such as KOH'NaOH, Ca (0H) 2 , NH 4 OH, Na 2 C0 3 and the like. Obtained. Specifically, although it varies slightly depending on the type of alkaline, generally about 0.1 to 4 weight of dilute aqueous alkaline solution is used, and about 20 to 5 to seaweed (dry weight) is used. Boil it for about 3 to 30 hours at about 85 to 98 X in a bath ratio of 0 times the weight, and then extract it.
  • an aqueous solvent such as KOH'NaOH, Ca (0H) 2 , NH 4 OH, Na 2 C0 3 and the like. Obtained. Specifically, although it varies slightly depending on the type of alkaline, generally about 0.1 to 4 weight of dilute aqueous alkaline solution is used, and about 20 to 5 to seaweed (dry weight) is used
  • an alkaline treatment with caustic soda containing a reduction ⁇ such as sulfite or hydrous ⁇ -phosphite can be performed.
  • a reduction ⁇ such as sulfite or hydrous ⁇ -phosphite
  • the concentration of the high-polysaccharide extract from sea drought treated by the method of the present invention depends on the type or concentration of seaweed or high-molecular-weight polysaccharide, or when using an enzyme. Although different, the concentration of the high-molecular-weight polyaqueous solution obtained by extraction is about 8 to 3 weight. This is usually added to a filter group by adding an'over aid such as diatomaceous earth. During a filtration or a preparative filtration, the seaweed residue that is contaminated with the extract and the fine solids suspended in the liquid are removed. Furthermore, the liquid thus obtained can be subjected to a treatment for removing coloring components or fine low-molecular impurities through a layer filled with activated carbon.
  • a continuous reading type or semi-continuous type filter press drum filter, centrifuge, etc. that are usually used This is used.
  • a microfilter can be used. These may be used alone or in combination with a microfilter, and after-passing the excess residue liquid with a further filter press.
  • the high-molecular-weight polysaccharide aqueous solution is applied to the ultrafiltration.
  • the above-mentioned aqueous solution of high molecular polysaccharide is used to form an ultrafiltration membrane at the periphery of which one end and the other end each have an opening. Flow under pressure into the hollow flow path of the ultra-hollow body.
  • the shear rate of the aqueous solution of high-polysaccharides in the hollow hollow channel of the ultrafiltration membrane is not less than 5,000 Sec -1 , preferably.
  • the upper limit of the shear rate is about 450 0 Sec _1 , preferably about 40 000, considering practical overpressure and desired effect.
  • the term "ultra-passing” is used to apply pressure to a solution to block high-molecular substances or colloidal substances with a semipermeable membrane, and to dissolve water and low-molecular substances dissolved in water. Is permeated through a myriad of micropores present on the membrane surface of a semipermeable membrane, and separation, concentration and purification can be achieved at the same time] ?, existing separation methods such as distillation. Method, decompression constriction method, ultracentrifugation method, pressure flotation method, electrolytic flotation method, coagulation sedimentation method, fractional crystallization method, adsorption method, dialysis method, etc. It is said to be effective for shortening.
  • the pore size of the membrane surface is 10 to 100, preferably 20 to 500.
  • boron resin, boron resin, or polyacrylic resin can be used.
  • Polyvinyl chloride resin, vinylidene fluoride resin, vinyl chloride resin, etc. are used.
  • U.S. Pat. Nos. 3,871,950 and 4,286,015. there are openings at one end and the other end, respectively.
  • An ultra-hollow body having the above-mentioned ultra-permeable membrane is used in the peripheral portion extending in the longitudinal direction, and a specific example thereof is as follows. Immediately, the inner diameter is 0.8 to 1.4 ⁇ 0 and the film thickness is 0.1 to 0.5.
  • -OREA ⁇ WAT It is made into hollow fibers, and the length is adjusted to 0.2 to lm, and several dozen to several thousand fibers are moved to the east to form a multi-pipe type in a plastic or other casing. It is used as a hollow fiber type ultra-super module with a shape like a heat exchanger (C Shell and Tube Heat Exchanger).
  • Etc. are on the market.
  • the diameter is about 1.24 cm and the length is about 1 mm.
  • the surface of the rod-shaped ceramic or plastic core has a depth of about 0.3 to 8 and a width of about 6 ra .
  • Six grooves are provided, and an ultrafiltration membrane is wound around the surface of the core material having a hexagonal shape to form a thin groove-like flow path that is long in the vertical direction.
  • a thin-groove type ultra-low-temperature unit composed of dozens of molds formed by pouring the solution to the side and allowing the solution to permeate to the outside of the membrane.
  • the shape of the outer ⁇ peritoneum is not limited to the above.
  • the shear rate as used in the present invention is expressed by the following equation when the hollow fiber type and the thin groove type are regarded as a cylindrical tube and the thin groove type as a parallel groove, for example.
  • the shape of the groove cross section is about depth. 0.3-0.8 «and a width of about 6 m are preferably used.
  • the appropriate over pressure is ultra-low: It depends on the material of the transmembrane membrane, but it is about 2 .5 to 5 kg / n 2 G, and the outflow pressure is preferably in the range of 0 to 1.0 kg / cm 2 G.
  • the temperature of the aqueous solution of the high molecular polysaccharide is 60 to 95 t :, preferably in the range of 70 to 90
  • a high molecular polysaccharide extract solution is circulated through a module containing an ultrapermeabilized membrane, and the solution is circulated through the same module repeatedly. It may be a patch-type condensing method for concentrating the high molecular polysaccharide extract, or it may be a continuous concentrating method in which the condensate is successively passed through a plurality of modules.
  • the expression ft can also be reduced.
  • the high molecular weight polysaccharide aqueous solution can be easily added to about 3 to 5 parts by weight, preferably about 4 to 4.5 parts by weight. It is possible to squeeze.
  • water is removed with a high water permeability, and the coloring components and other low-molecular impurities are removed accordingly, so that the purification can be performed efficiently.
  • Higher degree of dehydration operation gives a high degree of purity of about 92% in terms of purity such as pressure dehydration and electropenetration.
  • the product density obtained by the conventional drum drying method is low by 90 1o, and the purity obtained by the alcohol precipitation method is 93-95.
  • the equipment cost and energy recovery energy are large, and the cost is high, while there are drawbacks, whereas the method of the present invention is due to its high water permeability.
  • the aqueous solution of high molecular polysaccharides extracted from seaweed contains coloring components and various contaminants.
  • diatomaceous earth and other super-auxiliary agents are added to remove them. I put it on a filter press! ), It is separated by a centrifuge, but the viscosity of the high molecular polysaccharide extract is high, even if it is about 1 weight, and it causes clogging, for example. Since the EE loss is easy and the EE loss is large, frequent disassembly and cleaning are required, and the efficiency of separation remains low in centrifugal separation, which leaves a problem in terms of efficiency.
  • the aqueous solution of high-f polysaccharides extracted from seaweed can be diluted with warm water to reduce the viscosity of the aqueous solution, and the above-mentioned filter press ⁇ efficiency and centrifugal separation can be used. Consistency efficiency or decolorization efficiency by activated carbon is significantly increased.
  • OMPI Rukoto can be ⁇ .
  • a high-molecular polysaccharide extraction method can be used by cooling the aqueous solution of high-molecular polysaccharide extraction to form a solid gel and then depressurizing it with a press or the like.
  • the alcohol precipitation method in which the aqueous solution is condensed with a vacuum evaporator and then added with alcohol to separate the solution, the higher the degree of extraction solution, the higher the degree of gelation and alcohol.
  • the above-mentioned filter press filtration efficiency, centrifugal separation efficiency, and decolorization efficiency by activated carbon, such as preliminary efficiency, are further improved, and the amount of water permeation is increased. Therefore, a large amount of coloring components and low-molecular impurities that are removed along with it are obtained, and a product with high purity is obtained. It is.
  • the product purity obtained by this dilution method is as high as about 95 to 96% or more, and it surpasses that of the alcohol precipitation method, which gives the highest purity among the conventional methods.
  • this dilution method has the following advantages, that is, when the filter-press method in which an auxiliary agent is used in combination is used as the preparatory method, the combination method is used.
  • the liquor super-assistant that is collected is collected by the rubble cloth and discarded, but at this time, the extract that is adsorbed and retained on the ⁇ -super-helper agent particle surface or in the particle gap is also discarded. R.
  • the high-molecular-weight polysaccharide diffuseness in the extract is low due to the dilution, the amount of useful high-molecular-weight polysaccharide that is discarded along with the vinegar aid is reduced. , Its loss can be reduced.
  • the degree of dilution is such that the concentration of the high-molecular-weight polysaccharide aqueous solution after dilution is about 0.:! ⁇ 1.5 wt%, preferably about 0.15-0.6 wt.
  • the power to dilute At a weight of 1.5 or more, there is no great difference from the commonly extracted a-degree row cattle, and it is difficult to expect the effect of the dilution method.
  • the amount is 0.1% by weight or less, the amount of liquid is extremely large and a large device is required for handling, which is preferable. It may be possible to extract high-polysaccharides to this extent during the final extraction, but it required a large can due to the large amount of liquid, or a large amount. It requires all resources and is disadvantageous in terms of economic efficiency.
  • the temperature of the hot water used is high
  • the non-oxidizing temperature is good, generally 60 to 85, and preferably 70 to 851C.
  • a carrageenan is used as an example of a high molecular weight polysaccharide, and a method for purifying an aqueous solution of a high molecular weight polysaccharide by the above-mentioned dilution method, which is a further preferred embodiment of the present invention, is described. I will explain in detail.
  • the aqueous solution of carrageenan extracted with a concentrated amount of carrageenan contains 10% by weight of impurities with respect to the solid content, it should be diluted with warm water to a solids concentration of 0.5% in advance.
  • the filter press was used to make a filtration, and when the concentration was increased to 4 weight by ultrafiltration, the residual impurities were reduced to, and the product obtained by drying it reached a purity of 96.
  • impurities together with water are used as a liquid to permeate the outer membrane, and high molecular weight collagen is blocked on the side of the contracted liquid in the ultra ⁇ membrane. It is performed at the same time as the work.
  • the conventional triple-layered sardine using a vacuum evaporator was considered to be the triple limit on an industrial scale, but the operation according to the present invention requires much energy for condensation. To consume
  • OMPI IPO It can be concentrated efficiently, efficiently and easily to a calorific value of 4 weight ⁇ . If the concentration can be up to 4 weights, gelling can be easily carried out even with the use of sodium hydroxide extracted from seaweed, which has a weak gelling ability, so that it can be handled very easily in the subsequent dehydration step.
  • the high-molecular-weight polysaccharide extract from seaweed or the high-molecular-weight polysaccharide refined concentrate in the high-molecular-weight polysaccharide purified concentrate, and the high-molecular-weight polysaccharide extract in the present invention, including Examples, are described.
  • the solid content standard purity of the high molecular polysaccharide in the purified solution of high molecular polysaccharide was measured as follows.
  • W represents the dry weight of the precipitate.
  • C (B, ⁇ represents the high molecular polysaccharide ii Si form ⁇ standard purity; C and D respectively represent the solid content weight and the polymer slag weight.
  • FIG. 1 shows the flow chart of the apparatus used for carrying out the ultrafiltration of the polymeric polysaccharide extract from seaweed in this example. The following is a description of the method of the ultrafiltration performed in this example, with reference to FIG.
  • Undiluted solution tank 1 is a high-molecular-weight polysaccharide extract from seaweed
  • the high-molecular polysaccharide extract from seaweed and the low-molecular-weight impurities in the extract of high-molecular-weight polysaccharides along with water, together with water, are ultra ⁇ It is discharged through the liquid membrane 1 1 as liquid through the membrane.
  • the high-molecular-weight polysaccharide extract from seaweed is purified and crimped.
  • the high molecular polysaccharide extract from the purified and concentrated seaweed is the high molecular polysaccharide extract from the purified and concentrated seaweed.
  • Cottoni) -based seaweed is mixed with 1% by weight aqueous solution of calcium hydroxide so that the weight ratio of aqueous solution of calcium hydroxide to the weight of seaweed (dry basis) is 1:20.
  • the potassium-analan extract had a potassium-analan concentration of 1.67 weight and a viscosity of 21 centigrade (72).
  • OMPI o Put the obtained collagen extract into the stock solution tank 1 of the experimental device shown in Fig. 1, open the circulation switching valve 12 and close the concentration switching valve 13 to close the concentrated liquid. It also circulates in the raw material tank 1 along with the liquid and ⁇ , and the shear rate (Sec- 1 :) and permeability
  • Table 2 shows (Sec _1 ).
  • the permeability at each shear rate [Sec- 1 ] was obtained by measuring the ⁇ amount (for 30 seconds) from the circulating pipe 14. The obtained knots are shown in Table 2 (Experiment I).
  • Force is the arithmetic mean of goose pressure and outflow pressure. Forest and pressure are f uniform' / ⁇ 'excess force.
  • Fig. 4 shows the relationship between the concentration and the viscosity of the aqueous solution of potassium lanthanum in the refining process of the aqueous solution of potassium lanthanum described above, as shown in curve IV and The relationship between aqueous solution viscosity and water permeability is shown in curve III in Fig. 4.
  • the obtained force-refining strength of the condensed liquid was 4%.
  • the purity of the purified concentrated liquid based on the solid content of potassium was 92%.
  • the dilute aqueous solution of potassium quinanine was purified and contracted to a porosity of 4% by the same method as in Example 2 at the same temperature, inflow pressure, outflow pressure and shear rate as above.
  • the purified raffinate obtained had a purity of 96 in terms of solid content.
  • agar extract aqueous solution
  • the agar extract had an agar concentration of 1.5 weight and a rotation of 20 centibodies (72X:).
  • the obtained agar extract was fed at the same feed temperature and inflow pressure as in Example 2, and the shear rate of the feed in the hollow fiber passage in the ultra ⁇ supermodule 7 was approximately 1.
  • the curve V in Fig. 4 shows the relationship between the agar solution viscosity and the water permeability in the above-mentioned refining of the agar solution.
  • the agar extract can be purified and concentrated with a high water permeability as in the case of the Karan-nan extract. ..
  • Seaweed belonging to the genus Laminaria of brown algae was immersed in 0.3 weight of hydrochloric acid at room temperature for about 12 hours to be sufficiently swollen.
  • the swollen seaweed is removed from the hydrochloric acid bath and washed lightly with water, and the ratio of the weight of the aqueous sodium carbonate solution to the weight of the seaweed (dry basis) is 1:40.
  • diatomaceous earth was used as a mobilizing agent, and pressurization was carried out with a phenol press.
  • a non-sodium alginate extract solution (aqueous solution) was obtained.
  • the sodium alginate extraction solution had an alkalinity level of 0.85 weight ⁇ and a viscosity of 70 centigrade (60). After heating the obtained solution of alginic acid oxide to 85 C, the same inflow pressure and outflow pressure as in Example 2 was applied to the inside of the ultrahigh pressure module. From the state where the shear rate of the feeding liquid in the empty fiber channel is about 300 0 0 Sec ' 1 , it is about 500 0 0.
  • the sodium alginate extract can also be purified and condensed at a high water permeability as with the carrageenan extract and the agar extract. There is a sudden change.
  • Fig. 1 shows the feet of the device used in this example.
  • Figure 2 is a graph showing the relationship between the shear rate (Se ⁇ T 1 ) and the permeability per unit pressure (Z 2 ⁇ / ⁇ 2 ).
  • Figure 3 is Ru Da La off der showing the relationship between shear rate (Sec) water permeability and (1 ⁇ 4 2 'Hr).
  • Figure 4 shows the relationship between the viscosity (cp) of the aqueous solution of potassium nitrate and the water permeability (Z 2 'Hr) [curve]]!), And the viscosity of the aqueous solution of potassium nitrate (cp). It is a graph showing the relationship between the concentration (weight) (curve IV and the relationship between the viscosity of the agar solution (cp) and the permeability (Zm 2 -Hr) (curve V)).
  • the method of the present invention is capable of efficiently and simply compressing a high-viscosity high-molecular-weight polysaccharide aqueous solution extracted from seaweed to about 3.0 to 4.5 weight, and at the same time 92 to 9 Since it can be purified to a purity of 6 or higher, it has many uses in the food and pharmaceutical industry, for example, karagi-mono-agar, ferreralan, and algi. High-purity products of high molecular weight polysaccharides such as acid derivatives can be provided at low cost, and their industrial value is high.

Abstract

An aqueous solution of a high-molecular polysaccharide such as carrageenin, agar-agar or alginic acid derivatives is effectively purified and concentrated with a high water permeation rate to a concentration of about 3.0 to about 4.5 wt % by allowing the solution to flow through ultrafiltration hollow body at a shearing speed of 5000 sec-1 or more. Dilution of the aqueous solution with warm water before allowing to flow through the hollow body serves to effectively conduct preliminary filtration usually conducted for removal of sea weed residue in the extract and for removal of colorants due to decrease in viscosity, and the colorants and low-molecular impurities are effectively removed through entrainment by a large amount of water upon ultrafiltration. Thus, a highly pure product which has never been obtained by conventional process is obtained.

Description

明 細 書 ,  Specification ,
海藻か ら の高分子多糖類抽出物の  Of high molecular polysaccharide extract from seaweed
精製'濃縮方法  Purification 'Concentration method
技術分野  Technical field
本発明は、 海藻か らの 高分子多糖類抽出物を限外 萨過膜に よ る ^過処理にかけ、 効率 よ く 精製濃縮を 行る う 方法に関する 。 更に詳細には、 本発明は、 海 藻力 らの抽出物であ る カ ラ ギー ナ ン 、 寒天、 フ ァ ー セ ラ ラ ン 、 ア ル ギ ン酸誘導体の よ う 高分子多糖類 水溶液を、 中空糸又は薄溝型の よ う ¾ 中空限外 過 膜の中空部に加圧下に且つ高い剪断速度で流すこ と に よ ]? 、 高い透水率の も と に精製饞縮する 方法に関 する 。  TECHNICAL FIELD The present invention relates to a method for efficiently purifying and concentrating a high-molecular-weight polysaccharide extract from seaweed by an over-treatment with an ultrafiltration membrane. More specifically, the present invention relates to an aqueous solution of high molecular polysaccharides such as carrageenan, agar, farceran, and alginic acid derivatives, which are extracts of seaweed forces. , Hollow fibers such as hollow fiber or thin groove type, by flowing under pressure and at a high shear rate into the hollow part of a hollow ultrafiltration membrane] ?, and regarding the method of refinement shrinkage with high water permeability. To do.
背景技術 Background technology
海藻には紅藻類、 褐藻類、 緑藻類、 藍藻 類等があ j? 、 その抽出物が食品、 医薬品工業界で実用に供さ れている のは、 前二者即 ち紅藻類、 褐藻類であ る 。  Seaweeds include red algae, brown algae, green algae, and cyanobacteria. It is the former two types of red algae and brown algae whose extracts are put to practical use in the food and pharmaceutical industry.
紅藻類か ら得 られる 高分子多糖類の種類 と しては カ ラ ギ ー ナ ン 、 寒天、 フ ァ ー セ ラ ラ ン 等があ ]? 、 褐 藻類か ら得 られる も の と してはア ル ギ ン 酸 ナ 卜 リ ゥ ム 、 カ リ ウ ム 及びア ン モ - ゥ ム の よ う ¾ ア ル ギ ン 酸 塩、 及びア ル ギ ン 酸プ ロ ビ レ ン グ リ コ ー ルの よ う ¾ ア ル ギ ン酸 エ ス テ ルが知 ら れてい る 。 これ らの 高分 子多糖類には次の よ う ¾共通の特徴があ る 。  The types of high-molecular polysaccharides obtained from red algae include, but are not limited to, carrageenan, agar, and faceralan, and those obtained from brown algae. Alginic acid salts such as sodium alginate, potassium, and ammonium-, and prolonged alcoholic alginate. ¾ Alginic acid ester is known. These high molecular polysaccharides have the following common characteristics.
O PI WIPO (1) 海藻か ら抽出 した これ ら の物質は、 濃度約 1 〜 約 3 重量 の水溶液であ っ て も 、 数十〜数百 cp に も 達する高い粘性を有 し、 こ の粘性は温度依存 性が大き い。 O PI WIPO (1) These substances extracted from seaweed have high viscosities of several tens to several hundreds of cp even in an aqueous solution with a concentration of about 1 to about 3 weight, and the viscosity depends on the temperature. It has a great nature.
(2) いずれも 巨大分子量物質であ 、 例えば市販の 通常の カ ラ ギーナ ン の平均分子量は 1 5 〜 2 5 万程 度 で ¾> る  (2) All of them are macromolecular substances, for example, the average molecular weight of ordinary commercially available carrageenan is about 15 to 250000.
(3) 非 - ユ ー ト ン流体の 流動特性を有する 。  (3) It has the flow characteristics of a non-youth fluid.
(4) 紅藻類か らの抽出物 ( カ ラ ギ ー ナ ン 、 フ ァ ー セ ラ ラ ン 、 寒天 ) は、 硫羧エ ス テ ルを約 4 0 重量 も 含有する ラ ム ダ型 カ ラ ギ ー ナ ンを例外 と して、 水ゲ ル化性を有 し、 1 重量 程度を水に添加 して も 数百 も し く はそれ以上のゲ ル強度のゲ ル を形成する 。 又、 上記の ラ ム ダ型カ ラ ギ一ナ ンは 水ゲル化性は ないが、 粘度が高 く 、 増粘剤 と して 有用であ る 。  (4) Extracts from red algae (carrageenan, faceraran, agar) are lamda-type colorants containing about 40 weight% of sulfur dioxide. With the exception of guanines, it has water-gelling properties and forms gels with a gel strength of hundreds or even more when 1 weight of water is added. Moreover, although the above-mentioned lamda-type collagen has no water-gelling property, it has a high viscosity and is useful as a thickener.
(5) 製品は食品、 化粧品、 医薬品等の 分野で有利に 使用 される 。  (5) Products are advantageously used in the fields of food, cosmetics, pharmaceuticals, etc.
こ の様に 多 く の類似 した性質を有 し、 海藻か ら 抽 出 した約 1 〜 3 重量 の稀薄水溶筏で も 高粘性を呈 するの で、 これ らの高分 子多糖類水溶液に共通 して 利用 出来る簡便で経済的 効率の よ い精製、 濃縮方 法が強 く 求め られていた。  It has many similar properties like this, and even about 1 to 3 weight of diluted water raft extracted from seaweed shows high viscosity, so it is common to these high molecular polysaccharide aqueous solutions. There was a strong demand for a simple and economically efficient refining / concentrating method that can be used.
以下、 従来行 ¾ われて き た海藻か らの高分子多糖 類抽出物の蘧縮法につ き 、 紅藻類か ら抽出 され近年 特にその需要量が増加 してい る 力 ラ ギーナ ン を例に と つ て説明する 。 Below, high molecular weight polysaccharides from seaweed that have been traditionally used The contraction method of the extract will be explained by taking an example of a force laginan, which has been extracted from red algae and whose demand has been increasing in recent years.
カ ラ ギ一 ナ ン とは、 海藻の う ち紅藻類例えば ッ ノ マ タ 属 ( Chondrus Crispus )  Karagian is a seaweed of the red algae, for example, the genus Chondrus Crispus.
ス ギ ノ リ 属 Gigar t ina Stellata, Gigart i na Badula キリ ンサイ 属 ( Euc euma Co t ton i i , Eucheuma Sp i no sum) 等を原料と し、 該海藻に ア ル カ リ 水溶液で化学的前 処理を した後、 又はそのま ま で、 熱水あ るいはア ル 力 リ 水溶液で煮熟 して得 ら れる硫酸エ ス テ ル含有高 分子多糖類であ る 。  Gigar t ina Stellata, Gigarti na Badula It is a high-molecular-weight polysaccharide containing ester sulfate, which is obtained by aging the solution or boiling it in hot water or an aqueous alkaline solution.
海藻か ら抽出 した も のは低漫度の カ ラ ギ一 ナ ン水 溶液であ っ て、 それか ら粉末状の製品にする 為には 多 く の方法が行 われてい る が、 通常の製造法は次 の通 であ る 。  What was extracted from seaweed was an aqueous solution of carrageenan with a low degree of dampness, and many methods have been used to make powdery products from it. The manufacturing method is as follows.
(1) ド ラ ム乾燥法  (1) Drum drying method
1 〜 2 重量 の カ ラ ギ一 ナ ン '濃度で抽 出 した カ ラ ギー ナ ン水溶液に硅藻土な どの ^過助材を添加 し、 フ ィ ル タ ー プ レ ス ま たは遠心分離璣を用い、 海藻残 渣 よ の萨 '欲 と して カ ラ ギ一 ナ ン 水溶液を 分離する。 こ の 液中には 力 ラ ギ一 ナ ン と 共に着色成分等の不 純物が固形分に対 して約 1 0 重量 含ま れてお ]? 、 Add ^ -auxiliary material, such as diatomaceous earth, to the extracted aqueous solution of carrageenan at a concentration of 1 to 2 weights of carrageenan, and filter or centrifuge. Separate the aqueous solution of carrageenan as a greed from the seaweed residue using the 璣. This liquid contains impurities such as coloring components in an amount of about 10% by weight based on the solid content, together with the pressure ring.],
^液は茶褐色ま たは黒褐色を呈 している 。 ^ The liquid is dark brown or dark brown.
これ ら の不純物を除 く 為に、 活性炭あ る いは ィ 才 ン交換樹脂に よ る吸着 ¾ どの精製方法が行なわれる 次いで真空蒸発缶に よ 出来る だけ高濃度に漫縮 するが、 カ ラ ギ一ナ ン水溶液は低濃度で も 粘度が高 いので、 4 重量 前後ま での '農縮が限度であ る と さ れている 。 In order to remove these impurities, activated carbon or A purification method such as adsorption with an ion-exchange resin is carried out, and then the solution is reduced to the highest concentration possible in a vacuum evaporator, but the aqueous solution of potassium nitrate has a high viscosity even at a low concentration. It is said that there is a limit to the amount of agricultural contraction before and after.
こ の饞縮液を加熱 した ド ラ ム 乾燥機ま たは ス チ ー ル ベ ル ト 上に薄膜状で接触させて乾燥 し、 剝難 した も の を粉末化する 。  A thin film dryer is brought into contact with a heated dryer or stainless steel belt to dry the condensed liquid, and the hardened material is pulverized.
この方法の特徴は比較的簡単 設備で製品が得 ら れる こ と に ある が、 精製の程度に よ っ ては不純物が 多 く 、 ま た ド ラ ム あ るいはス チ ー ノレ ぺ ノレ ト 表面に附 着 して乾燥 した薄膜状の カ ラ ギーナ ン の剝離が容易 でない。 剝離が不充分で ド ラ ム表面 附着 し、 長時 間加熱された 力 ラ ギーナ ンは黄色に変色 し、 製品の 品質を低下さ せる 。 尚、 附着を防 ぐ為に タ ラ フ ィ ン ヮ ッ ク スや高級脂肪黎の モ ノ ダ リ セ ラ イ ド等 添 口 する方法 も あ るが、 これは製品钝度 更に低下させ る 。  The feature of this method is that the product can be obtained with relatively simple equipment, but it contains a large amount of impurities depending on the degree of purification, and the drum or stainless steel surface. It is not easy to separate the dried thin film carrageen attached to the base. Inadequate separation and adhesion of the drum surface to the drum surface, and the long-time-heated power magnesium turns yellow, reducing the quality of the product. In addition, there is a method to add tarfine squeeze and high-grade fatty acid monohydrate to prevent sticking, but this will further reduce the product quality.
こ の方法で製造された 力 ラ ギ 一 ナ ンは一般に低純 度品が多い。  In general, most of the pressure rings produced by this method are low purity products.
(2) ア ル コ ー ル沈澱法  (2) Alcohol precipitation method
ド ラ ム 乾燥法 と 同 じ工程で抽出 、 ^過 した ^液 精製操作を行なわずに真空蒸発缶で 3 重量 前後ま で饞縮 し、 こ の濃縮液を U S P 3 1 ' 6 0 0 3 " S e l ec t i ve  Extraction was performed in the same process as the Drum Drying method, and the concentrated liquid was condensed to USP 3 1 '6 0 0 3 "without subjecting the ^ liquid refining operation to shrinking in a vacuum evaporator to about 3 parts by weight. S el ec ti ve
OMPI WIPO E traction of Hydro co lloid Fractions From Sea Plants " あ るいは GLICKSMAN 著 " Gum Technology in the FoodOMPI WIPO E traction of Hydrocolloid Fractions From Sea Plants "Aruha GLICKSMAN" Gum Technology in the Food
Industry " ACADEMIC PRESS ( New York ) ( 1 9 6 9 ) Industry "ACADEMIC PRESS (New York) (1 9 6 9)
2 1 4〜 2 1 6 頁に も記載 のあ る よ う に、 8 5 重量 程 度の ィ ン プ ロ ヒ。一 ル ア ル コ ー ル約 2〜 2.5倍量の 中に 噴出 して カ ラ ギ一ナ ン を析出 させて分離する 。 こ の 際、 着色成分及び不純物の大部分はア ル コ ー ル に溶 解する が、 一部分は カ ラ ギ 一 ナ ン に も 包含される の で、 製品の純度は 9 3〜 9 5 重量 程度の も のが得 ら れる 。 ま たゲ ル化性が比較的弱い成分を 多 く 含む海 藻、 例えば Chondrus Crispus 等に も 適 して お ]) 、 海 藻の種類に制約さ れ ¾い長所を有する が、 設備費及 びア ル コ ー ル回収の エ ネ ル ギ ー ;^大 き く 、 コ ス ト カ ί 高い。  Approximately 85 weighted engine as described on pages 2-14 to 2-16. Single-alcohol is sprayed in about 2-2.5 times the volume to precipitate and separate the carrageenan. At this time, most of the coloring components and impurities are dissolved in the alcohol, but some of them are also contained in the keratin, so the purity of the product is about 9 3 to 95 5 wt. You can get the thing. It is also suitable for seaweeds containing a large number of components with relatively weak gelling properties, such as Chondrus Crispus]), and has the advantage that it is not restricted by the type of seaweed, but the equipment costs and Energy recovery for alcohol; large and costly.
(3) ゲ、 ノレ ° レ ス法  (3) Gae-Noreless method
海藻か ら 抽出、 ^過 した ^液を活性 ,荧ま たは 多量 の硅藻土を用い て精製 した後、 真空蒸発缶で 3 重量  Extracted from seaweed, purified the extracted ^ liquid using active or large amount of diatomaceous earth, and then 3 wt.
前後に漫縮 し、 冷却 した濃縮液を、 特開沼 5 6 - 9 5 90 1 号公報 「 塩類水溶液に よ る 力 ラ ギ 一 ナ ン の ゲ ル化製造法 」 に も 記載の あ る よ う に、 ア ル カ リ 金 属塩水溶液 ( 例えば塩化 カ リ ゥ ム 水溶液 ) 中に噴出 して強固 ¾ ゲ ル を形成せ しめ、 充分水洗 して塩分を 除ま した後、 プ レ ス機等で加圧脱水 し、 乾燥 して製 •品 とする 。  The concentrated solution, which has been contracted back and forth and cooled, is also described in JP-A No. 5 6-9 5 90 1 `` Gellification manufacturing method of force magnesium with aqueous salt solution ''. In order to form a strong gel by ejecting it into an aqueous solution of an alkali metal salt (for example, an aqueous solution of potassium chloride), wash it thoroughly with water to remove the salt, and then press the machine. Depressurize with and dry.
Ο ΡΙ この方法は設備費、 エ ネ ル ギ ー コ ス ト が安いが、 原料がゲ ル化能の高い海藻、 例えば Eucheunia Ο ΡΙ This method is low in equipment cost and energy cost, but the raw material is seaweed with high gelling ability, such as Eucheunia.
Cottonii 等に制限される と い う 問題があ る 。 There is a problem that it is limited to Cottonii etc.
従来 カ ラ ギーナ ンの原料であ る紅藻類の海藻と し 一しは uhondrus Crispus が代表と されていたが、 问海 藻 よ 得 られた カ ラ ギーナ ンは単に冷水中 で凝固、 沈澱させたの ではゲ ル強度が小さ く 、 プレ ス に よ る 高度 ¾脱水には不適当、な為に 、 ア ル コ ー ル沈澱法が 多 く 採用さ れていた。 近時、 フ ィ リ ビ ン近海で栽培 さ れる Eucheuma Cottonii を原料と して製造される 力 ラ ギ ー ナ ンはゲ ル強度が大 き く 、 特に カ リ ゥ ム塩で イ オ ン交換の前 ¾理を施 こ したの ち凝固、 沈澱させ たゲ ルは、 プ レ ス に よ り 1 5 重量 ( 湿量基準 ) 以 上に迄予備脱水出来る 大 き ¾利点を有する 。  Conventionally, uhondrus Crispus was the representative red seaweed seaweed that is the raw material for carrageenan, but the carrageenan obtained from the seaweed was simply coagulated and precipitated in cold water. Since the gel strength is low and it is not suitable for high-level dehydration by pressure, the alcohol precipitation method was often used. Recently, the force magnesium produced from Eucheuma Cottonii, which has been cultivated in the sea near the Philippines, has a high gel strength, and especially, it is ion-exchanged with calcium salt. Gels that have been pre-treated, then coagulated and precipitated have the great advantage that they can be pre-dehydrated by more than 15 weight (wet weight basis) depending on the press.
レか しいずれの場合に して も 、 ゲ ル化さ せる前に 精製 S縮の工程が必要であ る が、 カ ラ ギー ナ ン の抽 出液は低饞度であ っ て も 粘度が高い為に、 約 1 〜 2 重量 で抽出 した水溶液を例えば硅藻土を 過助ハオ と して添加 して精製 過する際、 能率が極めて悪 く . 活性炭吸着に よ る, 製 も 高粘 s液の為に容易では ¾ か っ た。 ま た イ オ ン交換樹脂に よ る 吸着精製 も - ス ト が高 く 実用化の域に達 してい ¾い。 更に真空蒸発 缶に よ る漫縮 も 工業的規模ではせいぜい 3 重量 程 度が 目 途と され、 且つエ ネ ル ギ ー コ ス ト も 大 き か つ  In either case, a purification S-condensation step is required before gelling, but the extract of carrageenan has a low viscosity and a low viscosity. The efficiency is extremely poor when an aqueous solution extracted with about 1 to 2 weight is added, for example, by adding diatomaceous earth as a super-assistant hao, and the efficiency is extremely low. It was not easy because of the liquid. In addition, adsorption purification using ion-exchange resin has a high cost and has not reached the level of practical application. In addition, the shrinkage due to the vacuum evaporator is about 3 weight at the industrial scale at most, and the energy cost is also large.
OMPI た OMPI Was
前述の製造方法 と は別に限外^過法に よ 低漫度 の カ ラ ギー ナ ン抽出液を精製と 同時に 高 '濃度に '濃縮 する方法が提案されている ( 米国特許第 3, 8 5 6,5 6 9 号明細窨 ) 。 この方法は、 具体的には、 薄溝型限外 萨過膜に よ ]? 、 液側に水 と 共に カ ラ ギ一 ナ ン抽出 液中の着色成分及び低分子量物質等の不純物を透過 せ しめ、 濃縮液側に高分子量の 溶質を诅止 して精製 濃縮を 同時に行な う も の であ る 。 しか しなが ら、 こ の方法では、 高温度且つ高萨過圧力での操作に も か かわ らず、 ゲ ル化能の弱い海藻か ら抽出 した カ ラ ギ 一ナ ン水溶液が強度の大 き いゲ ルを形成 し易 く ¾ る 4 重量 程度迄の濃縮に おいてさ え も 、 透水率が小 さ く て、 経済的に実用化 し難い欠点があ る 。  In addition to the above-mentioned manufacturing method, a method of purifying a low-dose carrageenan extract by ultrafiltration and simultaneously concentrating it to a high'concentration 'has been proposed (US Pat. No. 3, 8 5 No. 6,5 6 9 No.). Specifically, this method uses a thin groove type ultrafiltration membrane] ?, and the liquid side is allowed to permeate water and water along with impurities such as color components and low molecular weight substances in the potassium extract. As a result, it is possible to purify and concentrate at the same time by blocking high molecular weight solute on the side of the concentrate. However, according to this method, despite the operation at high temperature and high overpressure, the aqueous solution of keratin honey extracted from seaweed, which has a weak gelling ability, has high strength. Even when concentrating up to about 4 weight, which is easy to form a fine gel, it has a drawback that it is economically difficult to put into practical use due to its low water permeability.
本来、 カ ラ ギ ー ナ ン の よ う な 高分子多糖 煩の水溶 液は前述 した よ う に高粘度であ 、 その よ う ¾ 高粘 度水溶液は、 限外 ^過で処理する 通常の 対象液に比 ベて粘度が高過 ぎる ために、 の絶対 量が小 さ過 ぎる と 同時に、 短時間で 目 詰 を起こ し て急速に :(F 液量を低下させる こ と が予想 さ れ、 限外 ^過に よ る 精製濃縮は実用的 面か らは適切 ¾ 方法 と は考え ら れてい い。 事実、 米国特許第 3, 8 5 6, 5 6 9 号明細書 に開示された 力 ラ ギ 一 ナ ン 水溶液を精製濃縮する 方 法では、 液温度約 8 5 X 及び流入圧力 5. 6 kg/cm2 Gの IPO 条件下にお て も 、 透水率は 4 5 ( / 2 'Hr )、 単位 圧力当 の透水率は 1 6 (
Figure imgf000012_0001
) で しか な く 、 実用的には極めて不十分 も のであ る 。
Originally, an aqueous solution of a high-molecular polysaccharide such as carrageenan has a high viscosity as described above, and an aqueous solution of such a high-viscosity is a normal target to be treated by ultrafiltration. Since the viscosity is higher than that of the liquid, the absolute amount of is too small, and at the same time, it is expected that clogging will occur in a short time and the: (F liquid amount will be rapidly decreased. Purification and concentration by ultrafiltration are not considered to be appropriate methods from a practical point of view.In fact, the purification method disclosed in U.S. Pat. In the method of purifying and concentrating the aqueous solution of germanium, IPO with a liquid temperature of about 85 X and an inlet pressure of 5.6 kg / cm 2 G Even us to conditions, permeation rate of 4 5 (/ 2 'Hr) , the water permeability unit pressure equivalent is 1 6 (
Figure imgf000012_0001
), But it is extremely insufficient for practical use.
この よ う に、 海藻か ら 抽出 される 高分子多糖類水 溶液の精製滠縮について従来提案されて き た どの方 法 も 、 製品の純度、 経済性、 簡便性、 劫率な どの全 ての点では満足で き る も のは る く 、 実用 上不十分な も ので あ つ た  As described above, all of the methods conventionally proposed for the purification and condensation of an aqueous solution of a high molecular polysaccharide extracted from seaweed include all methods such as product purity, economic efficiency, convenience, and reliability. Some are satisfactory, but some are not practically sufficient.
発明の開示 Disclosure of the invention
本発明は、 限外 ^過膜を利用 し、 簡単な装置で っ泜 コ ス ト で、 海藻か ら抽出 される 高分子多糖類水 溶液を、 高い透水率及び高い ^位圧当 の透水率を も っ て、 効率 よ く 精製滠縮する 方法を提供せんとす る も ので る  INDUSTRIAL APPLICABILITY The present invention utilizes an ultrapermeability membrane and a simple apparatus to produce a high-molecular-weight polysaccharide aqueous solution extracted from seaweed at a high cost and a high ^ pressure pressure. To provide an efficient method for refining and condensing.
即 ち、 本発明に よれば、 海藻を 水 !生溶媒で抽出 し て高 分子多糖類水溶液を得、 1 端及び他 ¾にそれぞ れ開口 部があ ? 、 長手方向に延びる その周辺部に限 外 過膜を有する 限外^過中空体の中 空流路内に該 高分子多 水溶液を 5 0 0 0 Sec"1 以上の剪断速度 で流すこ と に よ ]? 、 高い透水率の も と に該高分 多 糖類水溶液を該限外 I 過膜の内 1 に精製漫縮する 方 法が提供さ れる 0 Immediately, according to the present invention, seaweed is extracted with an aqueous solvent to obtain a high-molecular-weight polysaccharide aqueous solution, which has openings on one end and on the other. , The ultra-hollow hollow body that has an ultrafiltration membrane in its peripheral portion extending in the longitudinal direction is to flow the polymer aqueous solution at a shear rate of 5 000 Sec " 1 or more in the hollow flow channel. , A method of purifying and contracting the high-polysaccharide aqueous solution into 1 of the ultra-I hypermembrane with high water permeability is provided.
本発明の方法において、 限外^過中空体の中空流 路内に高分子多搪類水溶液を 5 0 0 0 Sec"1 以上の剪 In the method of the present invention, an aqueous solution of a polycondensate polymer is squeezed into the hollow channel of the ultra-hollow body at a shear rate of 5 000 Sec " 1 or more.
O PI 断速度で流す こ と に よ っ て、 該高分子多糖類の鎖状 高分子を ち切 る こ と ¾ く ( ゲル化能を保持 し ¾力 ら)、 高い透水率での限外萨過を可能に し、 効率 よ 精製 饞縮が達成 し得る こ と は意外な こ と であ る 。 O PI By flowing at a breaking speed, the chain polymer of the high molecular polysaccharide is broken (by maintaining the gelling ability), and the ultrafiltration at a high water permeability is achieved. It is surprising that the refinement and shrinkage can be achieved efficiently and efficiently.
その理由は明確では な いが、 次の よ う に考え られ る 。 即ち、 海藻か ら抽出 して得 られる 高分子多糖類 水溶液に おい ては、 鎖状の高分子が糸ま 状あ る い は蔓巻状に複雑に絡み合い、 その中に水分を抱 き 込 んで全体 と して高粘度を呈 し、 巨大分子に複雑に抱 き 込まれた水は極め て遊離 し難い状態に あ る と 考え られる 。 遊離 した状態に あ る水分ま たは不純物で - い と 、 た と え限外萨過の膜面に接 してい て も 液 と して系外に排出 され い。 それ故、 高い ^過 E力 を 加えて も 、 5 0 0 0 Se ( 1 未満の低剪新速度では低い 透水銮 しか得 られる い。 因みに、 米国特許第 The reason for this is not clear, but it can be considered as follows. That is, in an aqueous solution of a high molecular polysaccharide obtained by extraction from seaweed, chain polymers are intricately entangled in a string or coil shape, and water is entrapped in them. As a whole, it has a high viscosity, and it is considered that water that is complicatedly entrapped by macromolecules is extremely difficult to release. Moisture or impurities in the released state will not be discharged out of the system as a liquid even if it is in contact with the membrane surface of the ultrafiltration. Therefore, even if a high ^ -E force is applied, at low shear rate of less than 500 Se (less than 1 ), only low permeation slag is obtained.
3, 8 5 6, 5 6 9号明細書の実施例に記載さ れたァ ミ コ ン 社の薄溝型の限外 ^過モ ノ ユ ー ル の仕様、 寸法を 同 社の型録 よ 調べ、 実施例で用い られた 過圧 力及 び水溶液饞度 よ 液 O粘度を得、 次に流路の長さ か ら圧力降下の大 き さ及び循環液流量を算出 した結果、 流路におけ る 剪断速度は約 1, 0 0 0〜約 4, 0 0 0 Sec—1 で ¾> る 。 The specifications and dimensions of the Amicon's thin-groove ultra ^ super-modules described in the examples of No. 3, 8 5 6, 5 6 9 specifications are the same as those of the same company. Then, the overpressure, the aqueous solution viscosity, and the liquid O viscosity used in the examples were obtained, and then the magnitude of the pressure drop and the circulating fluid flow rate were calculated from the length of the flow path. The shear rate is about 1,00 0 to about 4,00 0 Sec- 1 .
これに対 し、 本発明の方法では、 5 0 0 0 Sec— 1 以 上の剪断速度で高分子多糖類水溶液を 中 空限外 ^過 On the other hand, in the method of the present invention, the aqueous solution of the high molecular polysaccharide was subjected to the medium ultra-extinction at a shear rate of 500 Sec- 1 or higher.
O PI WIPO 膜の中空流路を流す こ と に よ ]? 、 高分子多糖類が抱 き 込んでいた水分及び不純物が高分子物質の表面に 絞!) 出 されて遊離状態と な っ て、 比較的低い ^過圧 力で も 大量の ^液が限外 ^過膜を通 して拂出され、 高い透水率を得るに至っ たと 考え られる 。 しか し、 単に剪新力を加える こ と に よ っ ては本発明の効果は 得 られず、 例えば限外 過を行る う 前に高速で回転 する羽根を持っ たホ モ ヅナ イ ザー等を通す こ と も 考 え られる が、 高速回転の攪拌では鎖状の高分子が細 カゝ く ち切れて しま っ てゲ ル化能を低下 して しま う 。 O PI WIPO When flowing through the hollow channel of the membrane] ?, the water and impurities that were entrapped by the high molecular polysaccharide were squeezed to the surface of the high molecular substance! ) It is considered that, after being released, it was released and a large amount of ^ liquid was expelled through the ultra ^ permeabilizer even at a relatively low ^ overpressure force, resulting in high permeability. However, the effect of the present invention cannot be obtained by simply applying a shearing force.For example, a homogenizer having a blade that rotates at a high speed before performing an extreme pass is used. It can be considered that it is passed through, but when stirring at high speed, the chain-like polymer is broken into small pieces and the gelling ability is reduced.
この よ う に、 高分子多糖類の水溶液.を 5 0 0 0 S e e- 1 以上の剪断速 Sで流す こ と に よ っ て、 高分子多糖類 に激 しい剪断 ¾拌を加え、 高分子の鎖状構造を壊す こ と な く 、 高分子が抱合する 水分及び不純物を絞 出 して遊離し、 高い透水率が達成さ れる こ と は、 従 来の限外'戸過技術に おいて全 く .50 られて らず、 驚 く べ き こ と であ る 。 In this way, the aqueous solution of high molecular polysaccharides is flowed at a shearing speed S of 500 0 S ee -1 or more, so that the high molecular polysaccharides are subjected to intense shearing stirring to The water and impurities bound by the polymer are squeezed out and released without destroying the chain structure of the polymer, achieving high water permeability. It's surprisingly good that it's not been .50 at all.
後で述べる実施例 1 の第 2 表、 あ る は これを グ ラ フ化 した第 2 図、 第 3 ϋで示す よ う に 、 カ ラ ギ一 ナ ン水溶液の限外;戸過膜の流铬に於け る剪新速 .が 5 0 0 0 S e c" 1 以上の領域に於いて、 単位圧力当 の 透水率 ( 第 2 図 ) あ る いは透水率 〔 第 3 図 ) が著 し く 高 く な つ ている こ と が分る 。 As shown in Table 2 of Example 1, which will be described later, or as a graph of this in Fig. 2 and 3 ϋ, as shown in Fig. 3 and ϋ, the flow rate of the aqueous solution of calagen; In the region where the shearing velocity .. is greater than 500 0 S ec " 1 , the permeability per unit pressure (Fig. 2) or the permeability (Fig. 3) is remarkable. You can see that it is expensive.
本発明の方法に関する具体的説明を次に行 ¾ う 。  A detailed description of the method of the present invention is given below.
ΟΜΡΙΟΜΡΙ
WIPO 本発明の方法に用いる海藻の中 で好ま しい も のは、 前述 した通 、 紅藻類、 褐藻類であ っ て、 好ま しい 高分子多糖類と しては、 カ ラ ギ ー ナ ン 、 寒天、 フ ァ 一 セ ラ ラ ン及び前記の ア ル ギ ン酸 の ナ ト リ ゥ ム塩、 カ リ ウ ム塩、 ア ン モ ニ ゥ ム塩の よ う ¾塩及びア ル ギ ン酸プ ロ ヒ。 レ ン グ リ コ 一 ノレ エ ス テ ル ¾ どの エ ス テ ノレ を含むア ル ギ ン酸誘導体が挙げ られる 。 WIPO Among the seaweeds used in the method of the present invention, preferred are red algae and brown algae as described above, and preferred high molecular weight polysaccharides are carrageenan, agar, and agar. Phosphorus and sodium salts of alginic acid as described above, sodium salts, sodium salts such as ammonium salts, and alginic acid polyprohate. .. Examples include alginic acid derivatives containing ethylene glycol such as glycol monoester.
本発明で処理する高分子多糖類水溶液は、 海藻を 水又は例えば KOH'NaOH, Ca(0H)2 ,NH4OH,Na2C03 ど の ア ル カ リ 水溶液る どの水性溶媒で抽 出 して得 られ る 。 具体的には、 ア ル カ リ の種類に よ っ て 多少異る が一般に約 0. 1 〜 4 重量 の稀薄ア ル 力 リ 水溶液を 用い、 海藻 ( 乾燥重量 ) に対 し約 2 0〜 5 0 重量倍の 浴比に て約 85〜 98 X で約 3 〜 3 0 時間加熱する こ と に よ っ て煮熟 し、 抽 出する 。 又、. 前処理 と して、 例えば亜硫酸塩、 ヒ ド α 亜 ¾酸塩の よ う る還元 ^ を 含む苛性 ソ ー ダに よ る ア ル 力 リ 処理を行な う こ と も で き る ( 日 本国特公昭 4 5 - 3 9 0 9 7 ) 。 The aqueous solution of high molecular polysaccharide to be treated in the present invention is prepared by extracting seaweed with water or an aqueous solvent such as KOH'NaOH, Ca (0H) 2 , NH 4 OH, Na 2 C0 3 and the like. Obtained. Specifically, although it varies slightly depending on the type of alkaline, generally about 0.1 to 4 weight of dilute aqueous alkaline solution is used, and about 20 to 5 to seaweed (dry weight) is used. Boil it for about 3 to 30 hours at about 85 to 98 X in a bath ratio of 0 times the weight, and then extract it. Further, as the pretreatment, for example, an alkaline treatment with caustic soda containing a reduction ^ such as sulfite or hydrous α-phosphite can be performed. (Japanese Patent Special Publication 4 5-3 9 0 9 7).
本発明の 方法で処理する 海溱か ら の 高分 多糖類 抽出物の濃度は、 海藻乃至高分子多糖類の種類あ る いはア ル 力 リ を用いる場合はその種類や濃度に よ つ て異な るが、 抽出に よ っ て得 られる 高 分子多搪 ^水 溶液の濃度は約 8 〜 3 重量 であ る 。 これを、 通 常、 硅藻土な どの ' 過助剤を 加えて、 フ ィ ル タ ー プ レ ス にかけた 又は遠心分離 した する予備^過に かけて、 抽出液に夾雑する海藻残渣ゃ液中に浮遊す る微細な固形分を除去する 。 更に、 この よ う に して 得た液を活性炭を充塡 した層を通 して着色成分ある いは微細な低分子不純物を除去する処理にかける こ とがで き る 。 こ こで行 う 予備萨過には通常用い ら れる連読式あ るいは半連続式の フ ィ ル タ ー プ レ ス 、 ド ラ ム フ ィ ル タ ー 、 遠心分離機等の ^過機な どが用 い ら れる 。 又、 ミ ク ロ フ ィ ル タ ー も 用い る こ と がで き る 。 これ らは、 それぞれ単独あ るいは ミ ク ロ フ ィ ル タ ー で ^過後^過残渣液を更に フ ィ ル タ ー プ レ ス で^過する 等の組合せを用いて も よ い。 The concentration of the high-polysaccharide extract from sea drought treated by the method of the present invention depends on the type or concentration of seaweed or high-molecular-weight polysaccharide, or when using an enzyme. Although different, the concentration of the high-molecular-weight polyaqueous solution obtained by extraction is about 8 to 3 weight. This is usually added to a filter group by adding an'over aid such as diatomaceous earth. During a filtration or a preparative filtration, the seaweed residue that is contaminated with the extract and the fine solids suspended in the liquid are removed. Furthermore, the liquid thus obtained can be subjected to a treatment for removing coloring components or fine low-molecular impurities through a layer filled with activated carbon. For preparatory filtration performed here, a continuous reading type or semi-continuous type filter press, drum filter, centrifuge, etc. that are usually used This is used. Also, a microfilter can be used. These may be used alone or in combination with a microfilter, and after-passing the excess residue liquid with a further filter press.
その後、 高分子多糖類水溶液を限外^過にかける。 本発明に おける 限外萨過を実施するには、 上記の 高分子多糖類水溶液を、 1 端及び他端にそれぞれ開 口部があ j? 長手方向に延びるその周辺部に限外萨 o 膜を有する限外^過中空体の中空流路内に加圧下に 流す。 こ の限外 ^過膜に よ る処理の際に 、 高分チ多 糖類水溶液の該限外^過中 空 の中空流路内に おけ る剪断速度を 5 0 0 0 Sec-1 以上、 好ま し く は 800 0 Sec-1 以上、 更に好ま し く は 1 0 0 0 0 Sec 1 以上に 保つ こ と が本発明の方法に おけ る必須の要件であ る。 剪断速度の上限は、 実用的 ^過圧及び望ま れる 効 果か らみて、 約 4 5 0 0 0 Sec_1 、 好ま し くは約 40000 Then, the high-molecular-weight polysaccharide aqueous solution is applied to the ultrafiltration. In order to carry out the ultrafiltration in the present invention, the above-mentioned aqueous solution of high molecular polysaccharide is used to form an ultrafiltration membrane at the periphery of which one end and the other end each have an opening. Flow under pressure into the hollow flow path of the ultra-hollow body. During the treatment with the ultrafiltration membrane, the shear rate of the aqueous solution of high-polysaccharides in the hollow hollow channel of the ultrafiltration membrane is not less than 5,000 Sec -1 , preferably. and rather is 800 0 Sec -1 or more, rather than further favored Ru essential requirement der that put the process of this and is the invention to keep the 1 0 0 0 0 Sec 1 or more. The upper limit of the shear rate is about 450 0 Sec _1 , preferably about 40 000, considering practical overpressure and desired effect.
ΟΜΗ WIPO Se c" 1 であ る 。 ΟΜΗ WIPO Se c " 1 .
こ こ でい う 「 限外 過 」 と は溶液に圧力 をかけ、 高分子物質ゃ コ ロ イ ド状物質を半透膜に よ っ て阻止 し、 水及び水に溶解 してい る低分子物質を半透膜の 膜面に無数に存在する微細 ¾孔を通 して透過させる も のであ っ て、 分離、 濃縮及び精製が同時に達成出 来る 方法であ ]? 、 既存の分離法、 例えば蒸留法、 減 圧饞縮法、 超遠心分離法、 加圧浮上法、 電解浮上法、 凝集沈澱法、 分別結晶法、 吸着法、 透析法等に比べ 消費エ ネ ル ギ ーが小さ く 、 工程の短縮等に有効と さ れてい る 。 膜面の孔径は 1 0〜1 0 0 0 、 好ま し く は 2 0〜 5 0 0 である。 膜を形成させる材料 と しては対 象と す る 溶液の種類、 温度、 使用圧力、 pH等に応 じ て ボ リ ス ル ホ ン樹脂、 ボ リ ァ ミ ド樹脂、 ポ リ ア ク リ ル 二 ト リ ル樹脂、 フ ッ 化 ビ ニ リ デ ン 樹 ¾ 、 塩化 ビ 二 ル樹脂等が使用 さ れる 。 限外 過膜の製法 な どの一 般的技術につい ては、 米国特許第 3, 8 7 1, 9 5 0 号及び 同第 4, 2 8 6, 0 1 5 号明細書 ¾ ど ¾参照する こ と がで き 本発明の方法に おいては、 1 端及び他端にそれぞ れ開 口部があ !) 長手方向に延び る その周辺部に上記 の限外^過膜を有する限外 ^過中空体が用い られる が、 その具体的 な例 と しては の よ う な も のがあ る。 即 ち、 内径 0. 8〜 1. 4 0、 膜厚 0. 1〜 0. 5舰の 円管状の The term "ultra-passing" is used to apply pressure to a solution to block high-molecular substances or colloidal substances with a semipermeable membrane, and to dissolve water and low-molecular substances dissolved in water. Is permeated through a myriad of micropores present on the membrane surface of a semipermeable membrane, and separation, concentration and purification can be achieved at the same time] ?, existing separation methods such as distillation. Method, decompression constriction method, ultracentrifugation method, pressure flotation method, electrolytic flotation method, coagulation sedimentation method, fractional crystallization method, adsorption method, dialysis method, etc. It is said to be effective for shortening. The pore size of the membrane surface is 10 to 100, preferably 20 to 500. Depending on the type of solution, temperature, operating pressure, pH, etc., of the material used to form the film, boron resin, boron resin, or polyacrylic resin can be used. Polyvinyl chloride resin, vinylidene fluoride resin, vinyl chloride resin, etc. are used. For general techniques such as a method for producing an ultrafiltration membrane, refer to U.S. Pat. Nos. 3,871,950 and 4,286,015. In the method of the present invention, there are openings at one end and the other end, respectively. ) An ultra-hollow body having the above-mentioned ultra-permeable membrane is used in the peripheral portion extending in the longitudinal direction, and a specific example thereof is as follows. Immediately, the inner diameter is 0.8 to 1.4 0 and the film thickness is 0.1 to 0.5.
- OREA ΟΜΠ WAT 中空糸に成形 し、 これを 0. 2 〜 l m程度の長さ に揃 え、 数十〜数千本を東に して プ ラ ス チ ッ ク 等のケー シ ン グの中に 多管式熱交換器 C Shell and Tube Heat Exchanger ) の よ う る形状に構成 した中空糸型限外萨 過モ ゾ ユ ー ル と して使用 し、 日 本国では旭化成工業 -OREA ΟΜΠ WAT It is made into hollow fibers, and the length is adjusted to 0.2 to lm, and several dozen to several thousand fibers are moved to the east to form a multi-pipe type in a plastic or other casing. It is used as a hollow fiber type ultra-super module with a shape like a heat exchanger (C Shell and Tube Heat Exchanger).
等が上市 している 。 あ るいは、 直径約 1.2 4cm、 長 さ 1 程度の円棒状のセ ラ ミ ッ ク 製又はプ ラ ス チ ツ ク 製芯材の表面に深さ 約 0.3〜ひ.8 、 幅約 6 raの溝 を 6 本設け、 6 角形状と ¾ つ た芯材の表面に限外萨 過膜を巻 き 付け、 縦方向に長い薄溝状の流路を搆成 さ せ、 該流铬の芯材側に 溶液を流 し、 膜の外側に 液を透過させる構造に成形 した も のを数十本束ねて 多管式熱交換器钛に構成 させた薄瀵型限外' i 過モ -ゾ ユ ー ル 〔 米国ア ミ コ ン 社製 ) な どがあ る 。 しか し、 本発明に用 いる! ¾外 ^過膜の形状は上記の も のに限 定される も のではな い。 Etc. are on the market. The diameter is about 1.24 cm and the length is about 1 mm. The surface of the rod-shaped ceramic or plastic core has a depth of about 0.3 to 8 and a width of about 6 ra . Six grooves are provided, and an ultrafiltration membrane is wound around the surface of the core material having a hexagonal shape to form a thin groove-like flow path that is long in the vertical direction. A thin-groove type ultra-low-temperature unit composed of dozens of molds formed by pouring the solution to the side and allowing the solution to permeate to the outside of the membrane. There are various types of products (made by Amicon, USA). However, it is used in the present invention! ¾ The shape of the outer ^ peritoneum is not limited to the above.
本発明 でい う 剪断速度 と は、 例えば中空糸型及び 薄溝型の場合、 中空糸型を 円筒管、 薄溝型を 平行溝 と 見做す と、 次式で示さ れる 。  The shear rate as used in the present invention is expressed by the following equation when the hollow fiber type and the thin groove type are regarded as a cylindrical tube and the thin groove type as a parallel groove, for example.
. 40 .40
中空糸型 r =— ^  Hollow fiber type r = — ^
6Q 6Q
薄 * 型 r =  Thin * type r =
上式に於いて In the above formula
OMH WIPO r : 剪断速度 C Sec-1OMH WIPO r: Shear rate C Sec -1 ]
Q : 流 量 Tn /sec 3  Q: Flow rate Tn / sec 3
R : 中空糸内半径 ■〔 cm 〕  R: Inner radius of hollow fiber ■ [cm]
w : 薄溝の幅 C cm t : 薄溝の厚さ C cm  w: Thin groove width C cm t: Thin groove thickness C cm
流路に於ける 高分子多糖類水溶液の剪断速度を 高 く 取る ためには平膜の限外 ' 過膜に高い圧力をかけ て ^液を透過させる よ ]? は、 出 来る限 ]? 内径の小さ 中空糸型あ る いは溝厚の小 さ る薄溝型構造の限外 萨過膜の選定が望ま しい。 しか し内径あ るいは溝厚 を小 さ く する と 流路に於ける圧 力降下が増大 し、 流 入圧力は ^液の ^過圧力 と しては働 ら く が、 十分の 剪断速度が得 られ ¾ く ¾ る 。 そのため、 内径又は溝 厚を小さ く する と 共に、 設定 した内径又は濤厚に適 した流路の長さ を選ぶ こ と が必要であ る 。 一般に 、 中空糸型限外 ^過膜の場合には 2 約 0.8〜: L.4 m が好ま し く 用い られ、 薄溝型 ¾外萨過膜の場合には 溝断面の形状が深さ 約 0.3〜 0.8 «、 幅約 6 mが好ま し く 用い られる 。  In order to increase the shear rate of high-molecular-weight polysaccharide aqueous solution in the channel, it is the limit of the flat membrane 'high pressure is applied to the membrane to allow the liquid to permeate]? It is desirable to select an ultrafiltration membrane with a small hollow fiber structure or a thin groove structure with a small groove thickness. However, if the inner diameter or groove thickness is reduced, the pressure drop in the flow path increases, and the inlet pressure does not act as ^ overpressure of the liquid, but a sufficient shear rate is obtained. Not obtained. Therefore, it is necessary to reduce the inner diameter or groove thickness, and to select the flow path length that is suitable for the set inner diameter or groove thickness. Generally, in the case of the hollow fiber type ultra ^ permeation membrane, 2 about 0.8 to: L.4 m is preferably used, and in the case of the thin groove type ¾outer membrane, the shape of the groove cross section is about depth. 0.3-0.8 «and a width of about 6 m are preferably used.
本発明に基づ く 限外 ^過 ί乍を 行 な う 時 ·つ適当 ¾ ^過圧力は限外 :戸過膜の材質に よ っ て変るが、 流人 Ε力 と しては約 2. 5 〜 5 kg/ n2 G 、 流出 圧力は 約 0 〜 1.0 kg/cm2 G の範囲が望ま しい。 高分子多糖類水溶液 の温度は 6 0〜 9 5 t: 、 好ま し く は 7 0〜 9 0 の範囲 When performing ultra-high pressure based on the present invention, the appropriate over pressure is ultra-low: It depends on the material of the transmembrane membrane, but it is about 2 .5 to 5 kg / n 2 G, and the outflow pressure is preferably in the range of 0 to 1.0 kg / cm 2 G. The temperature of the aqueous solution of the high molecular polysaccharide is 60 to 95 t :, preferably in the range of 70 to 90
O PI WIPO が適 している 。 液温があま D 高い と 高分子多糖類が 熱劣化 し、 6 0 未満の低温度では水溶液が著 し く 増粘 し、 甚だ しい場合はゲ ル化する ので好ま し く な い o O PI WIPO Is suitable. If the liquid temperature is too high, the high molecular weight polysaccharides will be thermally deteriorated, and if the temperature is lower than 60, the aqueous solution will significantly thicken, and in extreme cases, it will gel, which is not preferable.
本発明を実施する には、 高分子多糖類抽出液を限 外 ^過膜を内 包 したモ ユ ー ルを通 して漫縮 した液 を循環 し何度 も 同 じモ ュ ー ルを通し高分子多糖類 抽出液を濃縮する パ ッ チ式滠縮法で も よ い し、 ま た は、 複数のモ ク ユ ー ルに順次饞縮液を通 し、 連続的 に濃縮 してい く 連続式 ft縮法で も よ 。  In order to carry out the present invention, a high molecular polysaccharide extract solution is circulated through a module containing an ultrapermeabilized membrane, and the solution is circulated through the same module repeatedly. It may be a patch-type condensing method for concentrating the high molecular polysaccharide extract, or it may be a continuous concentrating method in which the condensate is successively passed through a plurality of modules. The expression ft can also be reduced.
この よ う に本発明に よ る方法に よ っ て、 約 0. 8 〜 約 3 重量 の高分子多糖類水溶液を約 3 〜 5 重量 °h 好ま し く は約 4 〜 4. 5 重量 に容易に漫縮する こ と がで き る 。 本発明に よ れば、 この際、 高い透水 率で水が除去さ れ、 それに随泮 して着色成分及びそ の他低分子の不純物が除かれる の で効率 よ く 精製が 行るわれる 。 これ以上の高度の 脱水操 ί乍は、 例えば 加圧脱水 ¾及び電気滲透法な どに よ つ て行なわれる 純度 と しては、 約 9 2 % の高钝度が得 られる 。 因み に、 従来の ド ラ ム 乾燥法に よ る 製品钝度は 9 0 1o ヒ 低 ぐ 、 ア ル コ ー ル沈澱法では 9 3〜 9 5 の純度が達 成されるが、 前述 した通 設備費及びア ル コ ー ル回 収のエ ネ ル ギーが大 き く 、 コ ス ト が高い.欠点があ る それに対 し、 本発明の方法は、 その高い透水率の故  Thus, according to the method of the present invention, about 0.8 to about 3 parts by weight of the high molecular weight polysaccharide aqueous solution can be easily added to about 3 to 5 parts by weight, preferably about 4 to 4.5 parts by weight. It is possible to squeeze. According to the present invention, at this time, water is removed with a high water permeability, and the coloring components and other low-molecular impurities are removed accordingly, so that the purification can be performed efficiently. Higher degree of dehydration operation gives a high degree of purity of about 92% in terms of purity such as pressure dehydration and electropenetration. By the way, the product density obtained by the conventional drum drying method is low by 90 1o, and the purity obtained by the alcohol precipitation method is 93-95. The equipment cost and energy recovery energy are large, and the cost is high, while there are drawbacks, whereas the method of the present invention is due to its high water permeability.
Λτ, 誦 に、 簡単な装置で低コ ス ト で ア ル コ ー ル沈澱法に匹 敵する純度の製品を効率 よ く 得 る こ と がで き て有利 で あ る 。 Λτ, In addition, it is advantageous in that it is possible to efficiently obtain a product having a purity comparable to that of the alcohol precipitation method with a simple device and at a low cost.
本発明の他の態様に よれば、 前述の方法に おいて 該高分子多糖類水溶液を限外 過中空体に流す前に. 温水で稀釈する方法が提供される 。  According to another aspect of the present invention, there is provided a method of diluting the aqueous solution of high molecular polysaccharide with warm water before flowing into the ultrahollow body in the above method.
海藻か ら抽 出 さ れる高分子多糖類水溶液は、 前述 した通 、 着色成分や種 々 の夾雑物を含み、 通常そ れを :涂去するために硅藻土な どの萨過助剤を加えて フ ィ ル タ ー プ レ ス にかけた !) 、 遠心分離機に よ っ て 分離した する 予備 過にかける が、 高分子多糖類 抽 出液の讒度がた と え 1 重量 程度で も 粘度が高い の で、 例えば 目 詰ま ] を起 こ しやす く EE損が大 と な る の で頻繁に分解掃除を行 う 必要があ る し、 遠心分 離では分離効率が悪いの で能率の点で 題が残る 。  As described above, the aqueous solution of high molecular polysaccharides extracted from seaweed contains coloring components and various contaminants.Usually, diatomaceous earth and other super-auxiliary agents are added to remove them. I put it on a filter press! ), It is separated by a centrifuge, but the viscosity of the high molecular polysaccharide extract is high, even if it is about 1 weight, and it causes clogging, for example. Since the EE loss is easy and the EE loss is large, frequent disassembly and cleaning are required, and the efficiency of separation remains low in centrifugal separation, which leaves a problem in terms of efficiency.
又、 活性炭に よ る 着色成分あ る いは微 ¾不純物を 吸着除去する 方: も あ る が、 こ の操作 も 高粘度液の 為に円滑に行な われず、 特 再生使用が可能 ¾粒状 活性炭の場合は、 活性炭の 微細 ¾孔の内部迄液が浸 透 しな いので効果的で ¾ い。 In addition, there is also a method of adsorbing and removing coloring components or minute impurities from activated carbon: However, this operation is not performed smoothly due to the high viscosity liquid, and special regeneration can be used. In the case of activated carbon, it is not effective because the liquid does not penetrate to the inside of the fine pores of activated carbon.
そ こ で、 海藻か ら 抽出 される 高分 f 多糖項水溶液 を温水で稀釈すれば該水溶液の粘度を 下げる こ と が で き 、 上記の フ ィ ル タ ー プ レ ス ^過効率、 遠心分錐 効率、 あ る いは活性炭に よ る 脱色効率を 著 し く 高め  The aqueous solution of high-f polysaccharides extracted from seaweed can be diluted with warm water to reduce the viscosity of the aqueous solution, and the above-mentioned filter press ^ efficiency and centrifugal separation can be used. Consistency efficiency or decolorization efficiency by activated carbon is significantly increased.
OMPI る こ と;^で き る 。 OMPI Rukoto; can be ^.
従来、 高分子多糖類抽出水溶液を冷却する こ と に よ つ て固 ゲ ルを形成後それをプ レ ス機等で加圧脱 水する ゲ ル プ レ ス法に しろ、 高分子多糖類抽出水溶 液を真空蒸発缶で滠縮後ア ル コ ー ルを加えて分離す る ア ル コ ー ル 澱法に しろ、 抽出液饞度が高ければ 高いほ どゲ ル化やア ル コ ー ルに よ る 分雞が容易に る と い う こ と を考える時、 も し く は、 低 '農度に い て も 高度に粘稠 ¾ 高分子多糖類抽出液を効率 よ く 濃 縮する 方法が ¾ と い う こ と を考える 時、 海藻か ら 抽出 した高分子多糖頌水溶液を積極的に稀釈する こ と は一見意味のな い よ う に 見え、 又、 稀釈に よ っ て 液量が増える こ と を考えれば、 一見不利の よ う に も 思える 。 しか し、 前述 した よ う に、 限外' 過中空体 の中空流路を 5 0 0 0 S e c—1 以上の剪断速度で高分子 多糖類水溶液を流す と 極め て高い透水 ^が得 られる と い う 本発明の基本的 ¾効果 と 関連 して、 限外^過 に付す前に抽出液を稀釈する こ と に よ 本 明に更 に大 き な利点が付加される 。 Conventionally, a high-molecular polysaccharide extraction method can be used by cooling the aqueous solution of high-molecular polysaccharide extraction to form a solid gel and then depressurizing it with a press or the like. The alcohol precipitation method, in which the aqueous solution is condensed with a vacuum evaporator and then added with alcohol to separate the solution, the higher the degree of extraction solution, the higher the degree of gelation and alcohol. When considering that it is easy to divide by using the method, it is possible to efficiently concentrate highly viscous high molecular weight polysaccharide extracts even at low farming levels. When we think about ¾, it seems seemingly meaningless to positively dilute the aqueous solution of high molecular weight polysaccharides extracted from seaweed, and the volume of the solution depends on the dilution. Considering the increase, it may seem like a disadvantage. However, as described above, when a polymeric polysaccharide aqueous solution is flown through the hollow channel of an ultra-hollow body at a shear rate of 500 0 S ec — 1 or more, extremely high water permeability ^ is obtained. In connection with the basic effects of the present invention, the fact that the extract is diluted before being subjected to the ultrafiltration adds an even greater advantage.
即 ち、 前述の フ ィ ル タ ー プ レ ス萨過効率、 遠心分 離効率、 あ る は活性炭 よ る 脱色効率 ¾ どの 予備 ^過効率が一段 と 向上する ほか、 透水量が多 く な る ためにそれに随伴 して除去される着色成分及び低分 子の不純物の量 も 多 く 、 高い純度の製品が得 ら れる 。 こ の稀釈法に よ っ て得 られる製品純度は約 9 5〜 9 6 % 以上に ま で高 く な 、 従来法の う ち最高 の純度を与えるア ル コ ー ル沈澱法のそれを凌駕する 又、 こ の稀釈法に よれば、 次の よ う な利点 も あ る 即ち、 予備 過方法 と して例えば 過助剤を併用す る フ ィ ル タ 一 プ レ ス法 を用いた場合、 併用 される萨 過助剤は萨布に て捕集され廃棄さ れる が、 こ の際 ^ 過助剤粒子表面あ るいは粒子間隙に吸着保持さ れた 抽出液 も 一緒に廃棄される わけであ る 。 こ の際、 稀 釈する こ と に よ 抽 出液中 の高分子多糖類漫度が薄 く ¾ る ので、 萨過助剤に随伴 して廃棄さ れる 有用 ¾ 高分子多糖類の量が減 、 その損失が低減で き る 。 Immediately, the above-mentioned filter press filtration efficiency, centrifugal separation efficiency, and decolorization efficiency by activated carbon, such as preliminary efficiency, are further improved, and the amount of water permeation is increased. Therefore, a large amount of coloring components and low-molecular impurities that are removed along with it are obtained, and a product with high purity is obtained. It is. The product purity obtained by this dilution method is as high as about 95 to 96% or more, and it surpasses that of the alcohol precipitation method, which gives the highest purity among the conventional methods. In addition, this dilution method has the following advantages, that is, when the filter-press method in which an auxiliary agent is used in combination is used as the preparatory method, the combination method is used. The liquor super-assistant that is collected is collected by the rubble cloth and discarded, but at this time, the extract that is adsorbed and retained on the ^ -super-helper agent particle surface or in the particle gap is also discarded. R. At this time, since the high-molecular-weight polysaccharide diffuseness in the extract is low due to the dilution, the amount of useful high-molecular-weight polysaccharide that is discarded along with the vinegar aid is reduced. , Its loss can be reduced.
稀釈の程度は、 稀釈後の高分子多糖類水溶液の濃 度が約 0.:!〜 1. 5 重 ¾ % 、 好ま し く は約 0. 1 5〜0. 6 重 量 と な る よ う に稀釈する の力; よ い。 1. 5 重量 以 上では、 通常抽出 される a度条 ί牛 と 大差が な く 、 稀 釈法の効果が期待され難い。 又、 0. 1 重 1 % 以下で は、 液量が極端に 多 く ¾ つ て取扱いに 大型の装置が 必要 と る る の で好ま し く る い 。 最 ^の抽 出 時に こ の 程度の饞度に 高分 ^多糖類を 抽出.する こ と も 考え ら れる が、 液量が 多 く な つ て大型の缶を必要 と した 、 やは 大量の ア ル 力 リ を必要 と する の で経済性の点 力 ら不利であ る 。  The degree of dilution is such that the concentration of the high-molecular-weight polysaccharide aqueous solution after dilution is about 0.:! ~ 1.5 wt%, preferably about 0.15-0.6 wt. The power to dilute; At a weight of 1.5 or more, there is no great difference from the commonly extracted a-degree row cattle, and it is difficult to expect the effect of the dilution method. Also, when the amount is 0.1% by weight or less, the amount of liquid is extremely large and a large device is required for handling, which is preferable. It may be possible to extract high-polysaccharides to this extent during the final extraction, but it required a large can due to the large amount of liquid, or a large amount. It requires all resources and is disadvantageous in terms of economic efficiency.
用いる温水の温度は、 高分子多糖類抽出液がゲ ル  The temperature of the hot water used is high
OMPI WIPO 化 しない温度が よ く 、 一般には 6 0 〜 8 5 で 、 好ま し く は 7 0〜 8 5 1C であ る 。 OMPI WIPO The non-oxidizing temperature is good, generally 60 to 85, and preferably 70 to 851C.
次に、 高分子多糖類の例と して カ ラ ギー ナ ンを と ]? 、 本発明の更に好ま しい態様であ る上述の稀釈法 に よ る 高分子多糖類水溶液の精製澳縮方法について 具体的に説明する 。  Next, a carrageenan is used as an example of a high molecular weight polysaccharide, and a method for purifying an aqueous solution of a high molecular weight polysaccharide by the above-mentioned dilution method, which is a further preferred embodiment of the present invention, is described. I will explain in detail.
カ ラ ギーナ ン濃 重量 で抽出 した カ ラ ギ一ナ ン水溶液が固形分に対 して 1 0 重量 の不純物を含 む場合、 予め固形分漫度 0. 5 重量 に温水で稀釈 し て フ ィ ル タ ー プ レ ス で一 :欠 過を行な い、 限外 ^過 で 4 重量 迄濃縮する と 残存する不純物は に減少 し、 これを乾镍して得 られる製品は純度 9 6 に達 し、 低廉な設備、 低エ ネ ル ギ ー コ ス ト で ア ル コ ー ル 沈澱法 と 同等も し く はそれ以上の品 貫の製品を 得る こ と カ 出来る 。  If the aqueous solution of carrageenan extracted with a concentrated amount of carrageenan contains 10% by weight of impurities with respect to the solid content, it should be diluted with warm water to a solids concentration of 0.5% in advance. When the filter press was used to make a filtration, and when the concentration was increased to 4 weight by ultrafiltration, the residual impurities were reduced to, and the product obtained by drying it reached a purity of 96. However, it is possible to obtain a product that is as good as or better than the alcohol precipitation method with inexpensive equipment and low energy cost.
^液 と して排出 された稀釈 ·'Κの熟 回 ^ し、 'Χ の稀釈温水に再利用する 。  ^ Dilution discharged as liquid · Κ is matured and reused as Χ diluted hot water.
濃縮操作は水分 と 共に不純物を 液 と して ¾外 過膜を透過させ、 高分子量の カ ラ ギ ー ナ ン を限外 ^ 過膜内の晨縮液側に阻 する こ と に よ 製 ¾作と 同時に行 ¾ われる 。  In the concentration operation, impurities together with water are used as a liquid to permeate the outer membrane, and high molecular weight collagen is blocked on the side of the contracted liquid in the ultra ^ membrane. It is performed at the same time as the work.
従来の真空蒸発缶に よ る濃篛は 3 重 鼈 が工業的 規模での限界 と 見做さ れていたが、 本発明に よ る操 作では滠縮の 為の エ ネ ル ギ ー をそれ程消費する こ  The conventional triple-layered sardine using a vacuum evaporator was considered to be the triple limit on an industrial scale, but the operation according to the present invention requires much energy for condensation. To consume
OMPI IPO く 、 効率良 く 且つ容易に カ ラ ギ一 ナ ン漫度 4 重量 ^ 程度迄濃縮出来る 。 濃縮が 4 重量 迄出来る と ゲ ル化能の弱い海藻か ら抽出 した 力 ラ ギ一ナ ン で も 容 易にゲ ル化する ので、 以後の脱水工程での取扱いが 極めて容易 と ¾ る 。 OMPI IPO It can be concentrated efficiently, efficiently and easily to a calorific value of 4 weight ^. If the concentration can be up to 4 weights, gelling can be easily carried out even with the use of sodium hydroxide extracted from seaweed, which has a weak gelling ability, so that it can be handled very easily in the subsequent dehydration step.
本発明に おいては、 実施例を含め、 海藻か ら の高 分子多糖類抽出液 あ る いは高分子多糖類精製濃縮液 中 の高分子多糖類饞度、 及び高分子多糖類抽出液あ るいは 高分子多糖類精製讒縮液の高分子多糖類の固 形分基準純度は次の よ う に して測定 した。  In the present invention, the high-molecular-weight polysaccharide extract from seaweed or the high-molecular-weight polysaccharide refined concentrate in the high-molecular-weight polysaccharide purified concentrate, and the high-molecular-weight polysaccharide extract in the present invention, including Examples, are described. The solid content standard purity of the high molecular polysaccharide in the purified solution of high molecular polysaccharide was measured as follows.
(1) 高分子多糖類謾度の測定 (1) Measurement of degree of polymer polysaccharide
9 5 重量 の ィ ソ ° ロ ヒ0 ノレ ア ノレ コ 一 ノレ 4 リ ッ ト ノレ に、 攪拌 し ¾力; ら、 8 0 に加温 した高分子多糖類 抽出液あ るいは高分子多糖類精製濃縮液 1 を 加え 高分 子多糖類を繊維状に ¾:澱させる 。 溺維状沈 ·'殿 ^ を室温にて 取後、 得 られた沈澱物 を 1 0 0 倍量の 8 0 : の温水に溶解する 。 得 られた溶液を再び 4 リ ヅ ト ル の 9 5 重量 ィ ン プ ロ ビ ル ァ ノレ コ ー ル に攪拌 しなが ら 加え高分子多糖類を繊維状に沈澱 し、 室温 に て 戸取する 。 取 して得た沈澱物を 6 0 で 2 4 時間乾燥後秤量する 。 秤量 して得た重 !:か ら、 高分 子多糖類濃度を次の よ う に して算出する 。 9 5 weight I Seo ° b arsenide 0 Honoré A Honoré co one Honoré 4 Li Tsu preparative Honoré, stirring ¾ force; al, polysaccharide extract Ah Rui polymer was warmed to 8 0 polymer polysaccharide purification Concentrated liquid 1 is added and the high molecular polysaccharide is made into a fibrous form and allowed to settle. After collecting the fibrous sediment at room temperature, the precipitate obtained is dissolved in 100 times the amount of 80: warm water. The obtained solution is again stirred into 4 5 liters of 9 5 weight-in-proliferanolol to add high-molecular polysaccharides into a fibrous form, which is then taken at room temperature. .. The precipitate obtained is dried at 60 for 24 hours and then weighed. Weight obtained by weighing! : From this, calculate the high molecular polysaccharide concentration as follows.
OMH WIPO W OMH WIPO W
A (重量? δ ) x 0 0  A (weight? Δ) x 0 0
0 0 0 (^ 但し、 Aは高分子多糖類 '農度を表わ し、  0 0 0 (^ where A is the macromolecular polysaccharide '
Wは沈澱物の乾燥重量を表わす。  W represents the dry weight of the precipitate.
(2) 高分子多糖類純度 ( 固形分基準 ) の測定 高分子多糖類抽出液あ る いは高分子多糖類精製瀵 縮液 1 を蒸発乾固 し、 さ らに 6 0 で 2 4 時間乾 燥した後秤量 し固形分重 *を得る 。 一方、 上記(1) と 同様の方法で高分子多糖類をア ル コ ー ル沈澱させる 操作を 2 度 く 返 した後 、 萨取 し 6 0 で 2 4 時間 乾燥後秤量 して 高分子多糖類重量を得る 。 得 られた 固形分重量及び高分子多糖類重量か ら、 高分子多糖 類の固形分基準純度を次の よ う に して算出する 。  (2) Measurement of polymer polysaccharide purity (based on solid content) Evaporate the polymer polysaccharide extract or polymer polysaccharide purification solution 1 to dryness, and then dry at 60 for 24 hours. After drying, weigh to obtain solid weight *. On the other hand, after the procedure of alcohol precipitation of the high molecular polysaccharide in the same manner as in (1) above was repeated twice, it was picked up, dried at 60 for 24 hours, and then weighed. Get the weight. From the obtained solid content weight and high molecular weight polysaccharide, the solid content standard purity of the high molecular weight polysaccharides is calculated as follows.
D ( D (
B (重量 ) = X 1 0 0  B (weight) = X 100
C ( 伹 し、 Β は高分子多糖 ii Si形 ^基準純度を表; し C 及び D はそれぞれ固形分重量お よ び高分子多犍類 重量を表わす。 C (B, Β represents the high molecular polysaccharide ii Si form ^ standard purity; C and D respectively represent the solid content weight and the polymer slag weight.
発明 を実施する ための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明を よ 詳細に記述する ために実施例に よ i? 説明するが、 本発明の範囲は これ らの実施例にのみ 限定される も のでは い 。  The present invention will be described with reference to Examples in order to describe the present invention in more detail, but the scope of the present invention is not limited to these Examples.
本実施例において海藻か らの高分子多糖類抽出液 の限外^過を行 う のに使用 した装置の フ ロ ー シー ト を第 1 図に示す。 本実施例で行る つ た限外 過の 方法について第 1 図 を参照 し ¾が ら以下に説明する  FIG. 1 shows the flow chart of the apparatus used for carrying out the ultrafiltration of the polymeric polysaccharide extract from seaweed in this example. The following is a description of the method of the ultrafiltration performed in this example, with reference to FIG.
原液 タ ン ク 1 に海藻か らの 高分子多糖類抽出液  Undiluted solution tank 1 is a high-molecular-weight polysaccharide extract from seaweed
( あ る いは水で う すめた稀薄抽出液 ) を入れ ポ ン プ Add (or diluted extract diluted with water) and pump
2 に よ ]? フ ィ ル タ 一 3 に送 、 フ ィ ル タ 一 3 に よ つ て海藻か らの高分子多糖類抽出液中の浮遊物を除去 した後、 流入配管 5 を通 して限外 i戸過モ -ノ ユ ー ル 7 へ供給 した。 こ の時の海藻か ら の高分子多糖類抽出 液の限外 ^過モ .ノ ユ ー ル 7 への供給流 量及び流入圧 力はそれぞれ流入配管 5 に 設置 した流量計 4 及び流 入圧力計 6 に よ っ て測定 した。 海藻か らの高分子多 糖類抽出液を圧力をかけなが ら限外 i戸過モ 'ノ ュ 一 ル 2)? It is sent to the filter 13, and the filter 13 removes the suspended matter in the high molecular polysaccharide extract from the seaweed, and then it passes through the inflow pipe 5. Supplied to ultra-i-door excess module 7. At this time, the supply flow rate and the inflow pressure of the high molecular polysaccharide extract from the seaweed to the ultra-permanent module 7 are the flowmeter 4 installed in the inflow pipe 5 and the inflow pressure, respectively. A total of 6 measurements were made. Ultra high molecular weight polysaccharide extract from seaweed while applying pressure
7 に通すこ と に よ 海藻か ら の 高分子多糖類抽 出液 中の着色成分な らびに低分 子量の不純物は水分 と 共 に限外萨過モ 'ゾ ユ ー ル の限外^過膜を通 して ί戸液 と して ^液配管 1 1 を通って排出 される 。 その結果、 海藻か らの高分子多糖類抽出液は精製饞縮される 。  The high-molecular polysaccharide extract from seaweed and the low-molecular-weight impurities in the extract of high-molecular-weight polysaccharides along with water, together with water, are ultra ^ It is discharged through the liquid membrane 1 1 as liquid through the membrane. As a result, the high-molecular-weight polysaccharide extract from seaweed is purified and crimped.
精製濃縮 した海藻か らの 高分子多糖類 ¾出液は、 限 The high molecular polysaccharide extract from the purified and concentrated seaweed is
O PI 外 ' 過モ ゾ ユ ー ルか ら流出配管 9 を通 して原液タ ン ク 1 に循環 した。 限外萨過モ ジ ュ ールカゝ ら流 出 した 海藻か らの高分子多糖類抽出液の流出圧力は流出配 管 9 に設置 した流出圧力計 8 に よ つ て測定 した。 海 藻か らの高分子多糖類抽出液の 限外^過モ ヅ ユ ー ル への流入圧力及び流量、 限外 過モ ジ ュ ー ル か ら の 流出圧力は調節弁 1 0 及び 1 7 に よ 調節 した。 一 方、 限外^過モ ジ ュ ールに よ る限外萨過で萨液配管 1 1 を通 して排出 された萨液は、 本実施例に おい て 海藻か ら の高分子多糖類抽出液を萨液 と と も に循澴 させて透水率を測定する場合は循環切替弁 1 2 を開 け、 饞縮切替弁 1 3 を閉 じ る こ と に よ ]? 、 循環配管O PI It was circulated to the stock solution tank 1 through the outflow pipe 9 from the outside 'super module. The outflow pressure of the high molecular polysaccharide extract from the seaweed that had flowed out from the ultrafiltration module care was measured by an outflow pressure gauge 8 installed in the outflow pipe 9. The inflow pressure and flow rate of the high molecular polysaccharide extract from seaweed into the ultra ^ permoule module and the outflow pressure from the ultrapermeable module were adjusted to control valves 10 and 17 respectively. I adjusted it. On the other hand, the broth discharged through the liquor pipe 1 1 due to the ultrafiltration by the ultra-ultramodulation was the high molecular polysaccharide from seaweed in this example. When measuring the water permeability by circulating the extract with the liquid, open the circulation switching valve 1 2 and close the compression switching valve 1 3] ?, Circulation piping
1 4 を通 して原液 タ ン ク 1 に循環 した。 ま た、 本実 施例に おいて海藻か らの高分 子多糖類抽出液を濃縮 し 力' ら透水率を測定する 場合は、 循環切蒈讦 1 2 閉 じ、 i¾縮切替弁 1 3 を開ける こ と に よ 、 液 抜出配管 1 5 を通 して ^液 タ ン ク 1 6 に導いた。 本 実施例におい て使用 した限外 ϊ戸過モ .ク ユ ー ル 7 の仕 様を第 1 表に示す。 第 1 表 限外萨過モ ジ ュ ール仕様 製 _造 所 旭化成工業㈱ It was circulated to the stock solution tank 1 through 1 4. Further, in the present example, when the high molecular polysaccharide extract from seaweed was concentrated and the hydraulic conductivity was measured from the force, the circulation switch 1 2 was closed and the i¾ compression switching valve 1 3 Each time it was opened, it was led to the ^ liquid tank 16 through the liquid extraction pipe 15. Table 1 shows the specifications of the ultra-perimeter door module 7 used in this example. Table 1 Ultra-super module specifications _ Factory Asahi Kasei Corporation
型 式 SIT-1013  Model SIT-1013
膜 形 式 中空糸型  Membrane type Hollow fiber type
膜 材 質 ポリスルホン樹月旨  Membrane material Polysulfone
中空糸膜内径 0.8 β ø  Hollow fiber membrane inner diameter 0.8 β ø
中空糸膜外径 ΙΛπη  Hollow fiber membrane outer diameter ΙΛπη
分画分子量 6 0 0 0  Molecular weight cutoff 600 0 0
単 糸 本 数 4 0 0本  Number of single threads 400
モゾユール径 4  Mozoule diameter 4
モゾユール長 •3 4 5舰  Mozoyule length • 3 4 5 舰
' 過 面 積 0.2 nf  '' Area 0.2 nf
本実施例に おいて、 高分子多糖類水溶液の粘度は 日 本国東京計器株式会社製の E 型粘度計で測定 した 実施例 1 フ ィ リ ビ ン 淫の ェ ゥ チ ュ 一 マ コ ト ニ イ (Eucheuma In this example, the viscosity of the aqueous solution of the high-molecular polysaccharide was measured by an E-type viscometer manufactured by Tokyo Keiki Co., Ltd. in Example 1.Example 1 (Eucheuma
Cottoni ) 系の海藻を海藻の重量 ( 乾燥基準 ) に対す る 水酸化 カ リ ゥ ム 水溶液の重 量の比が 1 : 2 0 に な る よ う に 1 重量 の水酸化 カ リ ゥ ム 水溶液を加え、 Cottoni) -based seaweed is mixed with 1% by weight aqueous solution of calcium hydroxide so that the weight ratio of aqueous solution of calcium hydroxide to the weight of seaweed (dry basis) is 1:20. In addition,
9 0 X; で約 5 時間煮熟 した後、 硅藻土を ^過助剤 と して用い、 フ ィ ル タ 一プ レ ス に て加圧萨過を行い、 力 ラ ギ 一 ナ ン抽出液 ( 水溶液 ) を 得た。 カ ラ ギ 一 ナ ン抽出液の カ ラ ギ 一 ナ ン濃度は 1. 6 7 重量 、 粘度 は 2 1 セ ン チ ボ ィ ズ ( 7 2 ) であ っ た。 After ripening at 90 X; for about 5 hours, diatomaceous earth was used as a ^ super-assistant, and pressure filtration was performed using a filter press to extract the force. A liquid (aqueous solution) was obtained. The potassium-analan extract had a potassium-analan concentration of 1.67 weight and a viscosity of 21 centigrade (72).
OMPI o 得 られたカ ラ ギ ー ナ ン抽出液を第 1 図に示す実験 装置の原液タ ン ク 1 に入れ、 循瑗切替弁 1 2 を開 き、 濃縮切替弁 1 3 を閉 じて、 濃縮液及び^液 と も に原 料タ ン ク 1 に循環 し、 剪靳速度 ( Sec— 1 :) と透水率 OMPI o Put the obtained collagen extract into the stock solution tank 1 of the experimental device shown in Fig. 1, open the circulation switching valve 12 and close the concentration switching valve 13 to close the concentrated liquid. It also circulates in the raw material tank 1 along with the liquid and ^, and the shear rate (Sec- 1 :) and permeability
( 7 2 *Hr )、 及び剪断速度 〔 Sec"1 ) と 単位圧力当 (7 2 * Hr), and shear rate [Sec " 1 ) and unit pressure
]? の透水銮 〔 /^2 · Hr -kg/bin2 ) との関係を求めた。 こ の際、 限外 過モ ジ ュ ー ル 7 か らの流出 EE ( 濃縮液 の圧力 ) を 0.5 kg CTi2 〔 ゲー ジ王 ) ( 以下、 ゲー ゾ圧 は 「 Zcm2 G」 と 表示する 。 ) に保ち、 限外^過モ ク ユ ー ル 7 への流入 EE ( 供給液圧力 ) を第 2 表に示す よ う に 1.0 ^ cm2 G カゝ ら 3.0 k£/cm2 G迄変化させ限外^ 過モ ^ ュ ー ル 7 への供給液流入量を変化させた。 こ ]? Of the water permeability [/ ^ 2 · Hr -kg / bin 2 ). At this time, the outflow EE (pressure of the concentrated solution) from the ultra-super module 7 is 0.5 kg CTi 2 [King of King] (hereinafter, the piezo pressure is expressed as “Zcm 2 G”). ), And the inflow EE (feed liquid pressure) into the ultra ^ super-module 7 is changed from 1.0 ^ cm 2 G to 3.0 k £ / cm 2 G as shown in Table 2. The flow rate of the supply liquid to the ultra-super module 7 was changed. This
の と き のモ ジ ュ ー ル内の 中空糸の流路の剪断速度 Shear rate of the hollow fiber flow path in the module
( Sec_1 ) を第 2 表に示す。 又、 各剪断速度 〔 Sec— 1 ) での透水率は、 循環配管 1 4 か らの ^ ^量 ( 3 0 秒 間 ) を測定する こ と に よ 求めた。 得 られた結杲を 第 2 表 ( 実験 I ) に示す。 剪断速 S 〔 Sec一1 ) と単 位圧力 当 の透水 ¾ 〔 ^Xm2 . Hr . ^/m2 ) の関係を第 2 図の 曲線 I に、 剪断速度 ( See— 1 ) と透水率 〔 Zw2 'Hr) の関係を第 3 図の 曲線 Ι'に示す。 Table 2 shows (Sec _1 ). The permeability at each shear rate [Sec- 1 ] was obtained by measuring the ^^ amount (for 30 seconds) from the circulating pipe 14. The obtained knots are shown in Table 2 (Experiment I). Shear velocity S [Sec one 1) and permeability ¾ of the single-position pressure equivalent [^ Xm 2. Hr. ^ / M the relationship 2) the curve I of FIG. 2, the shear rate (See- 1) and hydraulic permeability [ The relationship of Zw 2 'Hr) is shown in the curve Ι'in Fig. 3.
流出圧を 1.0 k^/cm2 G に保ち、 流入圧を 1.5 G か ら 3.0 k^/cm2 G 迄変化さ せた以外は 上記 と 同様の方 法に よ ]? 、 カ ラ ギ 一 ナ ン抽出液を原液タ ン ク 1 か ら 限外^過モ ゾ ユ ー ル 7 を通 し、 原液タ ン ク 1 に循環 The same method as above except that the outflow pressure was kept at 1.0 k ^ / cm 2 G and the inflow pressure was changed from 1.5 G to 3.0 k ^ / cm 2 G]? The extract solution is passed from the stock solution tank 1 through the ultra ^ supermodule 7 and circulated to the stock solution tank 1.
OMPI WIPO し、 剪断速度 (Sec一1 ) と 透水率 ( Z 2 · ΗΓ ) 及び剪断 速度 〔Se 1 ) と単位 E力当 ]3 の透水率 ( /^2 · · OMPI WIPO And a water permeability shear rate (Sec one 1) (Z 2 · Η Γ ) and a shear rate of [Se 1) the unit E Chikarato] 3 water permeability (/ ^ 2 · ·
) との関係を求め た。 得 られた結果を第 2 表 ). Table 2 shows the results obtained.
( 実験^ II ) 、 第 2 図の 曲線 ]! 及び第 3 図の 曲線 Γ に示す。 (Experiment ^ II), the curve in Figure 2]! And the curve Γ in Fig. 3.
第 2 表、 第 2 図及び第 3 図か ら明 らかな よ う に、 単位圧力 当 ^ の透水 ( Z 2 · Hr · Κ9 Μ2 ) な らびに透 水率 ( / 2 . Hr ) は、 中空糸の流路における供給液 の剪断速度が 5, 0 0 0 Sec-1 以上に於いて頭著に向上 する 。 As is clear from Tables 2, 2 and 3, the permeation rate (Z 2 · Hr · Κ 9 Μ 2 ) and the permeability (/ 2 .Hr) at the unit pressure are When the shear rate of the feed liquid in the hollow fiber flow path is 5,000 Sec -1 or more, it markedly improves.
尚、 約 2 時間に亘 る 上記実験では、 中 空糸内の 目 詰 j は全 く 見 られなかっ た。  In the above experiment for about 2 hours, no clogging j was found in the hollow fiber.
O PI 実 験 .0 O PI Experiment .0
L5  L5
2.0  2.0
2.5  2.5
1.67 21 72 3.0  1.67 21 72 3.0
1.5  1.5
2.0  2.0
2.5  2.5
3.0 3.0
Figure imgf000032_0001
Figure imgf000032_0001
* f '均泸過 i .力は狁入圧力と流出圧力の相加平均である 林 分およの圧力は f均'/尸'過 ί£力である。 * f 'uniformity i. Force is the arithmetic mean of goose pressure and outflow pressure. Forest and pressure are f uniform' / 尸 'excess force.
実施例 2 Example 2
実施例 1 で用いた と 同様の カ ラ ギ一ナ ン抽 出液  Carrageenan extract similar to that used in Example 1
( 水溶液 ) を第 1 図に示す実験装置の原液 タ ン ク 1 に 入れ、 循環切替弁 1 2 を 閉 じ、 濃縮切替弁 1 3 を 開いて、 萨液を萨液 タ ン ク 1 6 に入れ、 濃縮液を原 液 タ ン ク 1 に戻す こ と に よ カ ラ ギ一ナ ン抽出液の 精製饞縮を行る つ た。 この と き 、 供給液温度 8 4 匸、 流入圧力 3.5 /CIIL2 G 、 流出圧力 1.0 K9 M2 G と し、 限 外沪過モ ヅ ュ ー ル 7 内の中 空糸の流路に おけ る供給 液の剪断速度が約 3 0 0 0 0 Se c 1 の状態か ら約 5000 Se c"1 に下がる迄精製'濃縮操作 を行な っ た。 (Aqueous solution) into the stock solution tank 1 of the experimental equipment shown in Fig. 1, close the circulation switching valve 12 and open the concentration switching valve 13 and put the liquid solution into the liquid tank 16. Then, the concentrate was returned to the stock solution tank 1 and the refinement and contraction of the extract of the karana extract was performed. In this case, the feed liquid temperature is 84, the inflow pressure is 3.5 / CIIL 2 G, and the outflow pressure is 1.0 K9 M 2 G, and it is placed in the hollow fiber passage in the ultra-turbulent super-module 7. shear rate of feed about 3 0 0 0 0 Se c 1 of the state to about 5000 Se c "purified down to 1 'concentration procedure was rows Tsu name.
上記での 力 ラ ギ一ナ ン水溶液の精製饞縮に おける、 カ ラ ギ一ナ ン 水溶液 カ ラ ギ一 ナ ン濃度 と粘度 と の 関係を第 4 図の 曲線 IV 、 カ ラ ギ一 ナ ン 水溶液粘度 と 透水率 と の関係を第 4 図の 曲線 III に示す。  Fig. 4 shows the relationship between the concentration and the viscosity of the aqueous solution of potassium lanthanum in the refining process of the aqueous solution of potassium lanthanum described above, as shown in curve IV and The relationship between aqueous solution viscosity and water permeability is shown in curve III in Fig. 4.
得 られた 力 ラ ギ一 ナ ン精製 ά .縮液の 力 ラ ギー ナ ン 饞度は 4 % であ っ た。 又、 精製濃縮液の カ ラ ギ一 ナ ン の固形分基準純度は 9 2 % であ っ た 。  The obtained force-refining strength of the condensed liquid was 4%. In addition, the purity of the purified concentrated liquid based on the solid content of potassium was 92%.
実施例 3 Example 3
実施例 1 と 同様の方法に よ り 、 ェ ゥ チ ュ ー マ コ 卜 ニ イ ( Eucheuma Co tton i ) 系海藻を煮熟 した。 これに 5. 6 倍量の温水を加え、 実施例 L と 同様の方法で加 E萨過を行る つ た。 実施例 1 に 比 して、 加圧 過は 非常に容易であ ]? 、 短時間 で行 う こ と がで き た。 得  By the same method as in Example 1, Eucheuma Cotton i type seaweed was boiled. To this, 5.6 times the amount of warm water was added, and the filtration was conducted in the same manner as in Example L. Compared with Example 1, overpressurization was very easy] ?, and it was possible to do it in a short time. Profit
O H IPO られた 力 ラ ギーナ ン稀薄水溶液の 力 ラ ギー ナ ン濃度 は 0. 3 重量 、 粘度は 4 セ ン チ イ ズ ( 7 2 1C ) で あ っ た。 OH IPO The strength and concentration of the diluted strength and strength solution was 0.3 weight and the viscosity was 4 centigrade (7 2 1C).
上記 カ ラ ギ ー ナ ン稀薄水溶液を 8 2 1C迄加温後、 流入圧 2.5 Κ9- ΊΠ2 G、 流出王 1.0 \ /αι2 G 、 剪靳速度 After warming the above-mentioned dilute aqueous solution of carrageenan to 8 2 1 C, inflow pressure 2.5 K9-ΊΠ 2 G, outflow king 1.0 \ / αι 2 G, shear rate
3 5,0 0 0 Sec-1 で実施例 1 と 同様の方法で透水率を 求めた と ころ、 2 8 0 ^ym2 'Hrであ 、 著 し く 高い透 水率を示 した。 When the permeability was determined by the same method as in Example 1 at 3,500 Sec -1, it was 280 ^ ym 2 'Hr, which showed a remarkably high permeability.
透水率測定後、 上記と 同様の温度、 流入圧、 流出 圧及び剪断速度で実施例 2 と 同様の方法で カ ラ ギ一 ナ ン稀薄水溶液を 4 重量 の '囊度迄精製饞縮 した。 得 られた精製讒縮液の 力 ラ ギー ナ ン の固形分基準純 度は 9 6 であ っ た。  After the measurement of the water permeability, the dilute aqueous solution of potassium quinanine was purified and contracted to a porosity of 4% by the same method as in Example 2 at the same temperature, inflow pressure, outflow pressure and shear rate as above. The purified raffinate obtained had a purity of 96 in terms of solid content.
実施洌 4 Implementation 4
紅藻類の テ ン ダサ ( Gelidium ) に属する 海藻を海 藻の重量 ( 乾镍基準 ) に対する 水の重 鼂の比が 1 : 2 0 に な る よ う に水を加え 9 0 で約 1 0 時間煮熟 した後、 硅藻土を萨過助剤 と して用いて、 フ ィ ル タ — プ レ ス に て 加圧萨過を行な い、 寒天抽出液 〔 水溶 液 ) を得た。 寒天抽出液の寒天濃度は 1. 5 重量 、 轱度は 2 0 セ ン チ ボ イ ズ ( 7 2 X: ) であ っ た。  For seaweeds belonging to the red alga Gelidium, water was added so that the weight ratio of water to seaweed weight (dry basis) was 1: 20. After ripening, diatomaceous earth was used as a filtration aid, and pressure filtration was not performed on the filter press to obtain an agar extract (aqueous solution). The agar extract had an agar concentration of 1.5 weight and a rotation of 20 centibodies (72X:).
得 られた寒天抽出液を実施例 2 と 同様の供給温度 流入圧力及び流出圧力で、 限外^過モ ゾ ユ ー ル 7 内 の 中空糸の流路に おける供給液の剪断速度が約  The obtained agar extract was fed at the same feed temperature and inflow pressure as in Example 2, and the shear rate of the feed in the hollow fiber passage in the ultra ^ supermodule 7 was approximately 1.
OMPI OMPI
曹 O 3 0 0 0 0 Sec"1 の状態か ら 約 5 0 0 0 Sec に下がる ま で精製濃縮 した。 Cao O The product was purified and concentrated from the state of 300 0 Sec " 1 to about 500 Sec.
上記での寒天水溶液の精製饞縮における寒天水溶 液粘度と透水率の関係を第 4 図の曲線 V に示す。  The curve V in Fig. 4 shows the relationship between the agar solution viscosity and the water permeability in the above-mentioned refining of the agar solution.
第 4 図か ら 明 らかな よ う に、 寒天抽出液 も カ ラ ギ 一ナ ン抽出液 と 同様に高い透水率で精製濃縮を行る う こ と が可能であ る こ と がわか っ た。  As is clear from Fig. 4, it was found that the agar extract can be purified and concentrated with a high water permeability as in the case of the Karan-nan extract. ..
実施例 5 Example 5
褐藻類の コ ン プ属 ( Laminaria ) に属する海藻を 0. 3 重量 の塩酸に室温下約 1 2 時間浸清 して十分 に膨潤 させた。 膨潤 した海藻を塩酸浴 よ 取 出 し て軽 く 水洗 し、 海藻の重量 ( 乾燥基準 ) に対する炭 酸 ナ ト リ ウ ム 水溶液の重量の比が 1 : 4 0 に ¾ る よ う に 3 重量 炭酸ナ ト リ ウ ム 水溶液を加え、 6 0 匸 で 5 時間加温抽出 後、 硅藻土を 過动剤 と して用い、 フ ィ ノレ タ 一 プ レ ス に よ っ て 加圧 ^過を行な いア ルギ ン 酸 ソ 一 ダ抽出 液 ( 水溶液 ) を得た。 ア ル ギ ン 酸 ソ ーダ抽 出 液の ア ル ギ ン 酸 ン 一ダ 慮度は 0. 8 5 重量 ヽ 粘度は 7 0 セ ン チ ボ イ ズ ( 6 0 ) で あ っ た。 得 られたア ル ギ ン 酸 ン ー ダ抽出液を 8 5 C 迄加温 後、 実施例 2 と 同様の流入圧 力 び流出 ίΈ 力で、 限 外萨過モ 'ゾ ュ ー ル内の中 空糸の流路内 おける供袷 液の剪断速度が約 3 0 0 0 0 Sec'1の状態か ら約 5 0 0 0Seaweed belonging to the genus Laminaria of brown algae was immersed in 0.3 weight of hydrochloric acid at room temperature for about 12 hours to be sufficiently swollen. The swollen seaweed is removed from the hydrochloric acid bath and washed lightly with water, and the ratio of the weight of the aqueous sodium carbonate solution to the weight of the seaweed (dry basis) is 1:40. After adding an aqueous solution of sodium and extracting with warming at 60 mushrooms for 5 hours, diatomaceous earth was used as a mobilizing agent, and pressurization was carried out with a phenol press. A non-sodium alginate extract solution (aqueous solution) was obtained. The sodium alginate extraction solution had an alkalinity level of 0.85 weight ヽ and a viscosity of 70 centigrade (60). After heating the obtained solution of alginic acid oxide to 85 C, the same inflow pressure and outflow pressure as in Example 2 was applied to the inside of the ultrahigh pressure module. From the state where the shear rate of the feeding liquid in the empty fiber channel is about 300 0 0 Sec ' 1 , it is about 500 0 0.
Sec"1 に下がる ま で精製漫縮 した Purified and reduced until it decreased to Sec " 1
OMH 剪断速度 3 0 0 0 0 Sec-1 に おける透水率は 1 0 0 / w2 'Hr であ ]) 、 剪断速度 5 0 0 0 Sec*1 における透 水率は 3 0 A/m,2 ·ΗΓ であ った。 精製濃縮液のアルギ ン酸 ソ ー ダの 固形分基準純度は 9 6 と非常に高品 質の も の であ っ た 。 OMH The permeability at a shear rate of 300 Sec -1 is 100 / w 2 'Hr]), and the permeability at a shear rate of 500 Sec * 1 is 30 A / m, 2 ·. It was Η Γ . The purity of the purified concentrated solution of sodium alginate was 96, which was a very high quality.
以上の実験に よ ]? 、 ア ル ギ ン酸 ソ 一ダ抽出液 も 、 カ ラ ギーナ ン抽 出液や寒天抽出液 と 同様に高い透水 率で精製滠縮を行 ¾ う こ とが可能であ る こ とがわか つ 化。  Based on the above experiment], the sodium alginate extract can also be purified and condensed at a high water permeability as with the carrageenan extract and the agar extract. There is a sudden change.
Ο ΡΙ 図面の簡単 ¾ 説明 Ο ΡΙ Brief description of the drawings
第 1 図は、 本実施例に用いた装置の フ π — シ ー ト であ る 。  Fig. 1 shows the feet of the device used in this example.
第 2 図は、 剪断速度 (Se<T1) と 単位圧力当 の透 水率 ( Z 2 ΈτΊ /σιιι2 ) との関係を示すダ ラ フ であ る。 Figure 2 is a graph showing the relationship between the shear rate (Se <T 1 ) and the permeability per unit pressure (Z 2 ΈτΊ / σιιι 2 ).
第 3 図は、 剪断速度 ( Sec ) と 透水率 ( ¼2'Hr) との関係を示す ダ ラ フ であ る 。 Figure 3 is Ru Da La off der showing the relationship between shear rate (Sec) water permeability and (¼ 2 'Hr).
第 4 図は、 カ ラ ギ一ナ ン水溶液の粘度 ( cp ) と 透 水率 ( Z 2 'Hr ) の関係 〔 曲線 ]]! ) 、 カ ラ ギ一 ナ ン水 溶液の粘度 ( cp ) と 濃度 ( 重量 ) の関係 ( 曲線 IV 及び寒天水溶液の粘度 ( cp ) と 透水率 ( Zm2 -Hr )の 関係 ( 曲線 V :) を示すグ ラ フ であ る 。 Figure 4 shows the relationship between the viscosity (cp) of the aqueous solution of potassium nitrate and the water permeability (Z 2 'Hr) [curve]]!), And the viscosity of the aqueous solution of potassium nitrate (cp). It is a graph showing the relationship between the concentration (weight) (curve IV and the relationship between the viscosity of the agar solution (cp) and the permeability (Zm 2 -Hr) (curve V)).
O PI WIPO 産業上の利用可能性 O PI WIPO Industrial availability
本発明の方法は、 海藻か ら抽出 さ れる 高粘度の高 分子多糖類水溶液を効率よ く 且つ簡便に約 3. 0〜 4. 5 重量 にま で漫縮で き る と 同時に 9 2〜 9 6 以上の 純度にま で精製する こ と がで き る ため、 食品、 医薬 品工業界で多 く の 用途を有する例えばカ ラ ギ 一 ナ ン 寒天、 フ ァ ー セ ラ ラ ン 、 ア ル ギ ン酸誘導体の よ う な 高分子多糖類の高純度製品を安価に提供する こ と が で き 、 その産業上の価値は高い。  The method of the present invention is capable of efficiently and simply compressing a high-viscosity high-molecular-weight polysaccharide aqueous solution extracted from seaweed to about 3.0 to 4.5 weight, and at the same time 92 to 9 Since it can be purified to a purity of 6 or higher, it has many uses in the food and pharmaceutical industry, for example, karagi-mono-agar, ferreralan, and algi. High-purity products of high molecular weight polysaccharides such as acid derivatives can be provided at low cost, and their industrial value is high.

Claims

761 35 請 求 の 範 囲 761 35 Request range
1. 海藻を水性溶媒で抽出 して高分子多糖類水溶液 を得、 1 端及び他端にそれぞれ開 口部があ 長手方 向に延び るその周辺部に限外 ^過膜を有する限外^ 過中 空体の 中空流路内に該高分子多糖類水溶液を  1. Seaweed is extracted with an aqueous solvent to obtain a high-molecular-weight polysaccharide aqueous solution, and one end and the other end each have an opening extending in the longitudinal direction. The aqueous solution of the polymeric polysaccharide is placed in the hollow channel of the hollow body.
5 0 0 0 Sec""1 以上の剪断速度で流す こ と に よ ]? 、 高 5 0 0 0 Sec "" At a shear rate of 1 or more] ?, High
透水率の も と に該高分子多糖類水溶液を該限外 ^ 過膜の内側に精製擾縮する 方法。  A method of purifying and contracting the aqueous solution of the high molecular polysaccharide to the inside of the ultrafiltration membrane based on the water permeability.
2. 該高分子多糖頷が カ ラ ギ ー ナ ン 、 寒天、 フ ァ ー セ ラ ラ ン 、 ア ル ギ ン酸塩又は ア ル ギ ン酸 エ ス テ ル で あ る ク レ ー ム 方法。  2. A method of claiming in which the high molecular polysaccharide syrup is carrageenan, agar, phacerallan, alginate or alginate ester.
3. 該高分子多糖類水溶液の高分子多糖類濃度が約  3. The polymer polysaccharide concentration of the polymer polysaccharide aqueous solution is about
0. 8 〜 3 重量 であ る ク レ ー ム 1 の方法。  Method for Frame 1, which is 0.8 to 3 weight.
4. 該高分子多糖類水溶液 を、 限外^過膜中空体に  4. The polymeric polysaccharide aqueous solution is used as an ultrafiltration membrane hollow body.
流す前に、 温水で稀釈する ク レ ー ム 1 の方法。 Cream 1 method of diluting with warm water before flushing.
5. 温水での稀釈を 高分 子多糖 :'頃水溶液の 高分子多 糖類濃度が約 0.1〜: 1.5 重量 に る る よ う に行 ぅ ク  5. Dilute with warm water so that the concentration of high-molecular-weight polysaccharides in the aqueous solution is approximately 0.1 to: 1.5 weight.
レ ー ム 4 の方法。 Frame 4 method.
6. 該高分子多塘類が カ ラ ギ ー ナ ン 、 寒天、 フ ァ ー  6. The high molecular weight polymer is a coloran, agar, or far
セ ラ ラ ン 、 ァ ノレ ギ ン 酸塩又は ア ル ギ ン 酸 エ ス テ ル で With seralane, anolenoate or an ester of alginate.
あ る ク レ ー ム 4 の 方法。 One of the four methods.
7. 該高分子 多糖類水溶液の高分 子多糖類漫度が約  7. The high molecular polysaccharide dampness of the aqueous solution of high molecular polysaccharide is about
0.8〜 3 重量 であ る ク レ ー ム 4 の方法。 The method of claim 4, which is 0.8 to 3 weight.
OMPIOMPI
WIPO * - 61 WIPO *- 61
36 36
8. 稀釈 して得 られる稀薄高分子多糖類水溶液を、 限外萨過中空体に流す前に、 予備 過に附すク レ ー ム 4 の方法。  8. The method of claim 4 in which the diluted high-molecular-weight polysaccharide aqueous solution obtained by dilution is added to the preliminary filtration before flowing into the ultrafiltration hollow body.
PCT/JP1983/000261 1982-08-10 1983-08-10 Process for purifying and condensing high-molecular polysaccharide extract obtained from sea weed WO1984000761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK82684A DK82684A (en) 1982-08-10 1984-02-21 PROCEDURE FOR CLEANING AND CONCENTRATING A WATER POLYSACCHARIDE SOLUTION DRAWING FROM MARINE ALGES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57137852A JPS5941303A (en) 1982-08-10 1982-08-10 Purification and concentration of extract of seaweed

Publications (1)

Publication Number Publication Date
WO1984000761A1 true WO1984000761A1 (en) 1984-03-01

Family

ID=15208292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1983/000261 WO1984000761A1 (en) 1982-08-10 1983-08-10 Process for purifying and condensing high-molecular polysaccharide extract obtained from sea weed

Country Status (3)

Country Link
JP (1) JPS5941303A (en)
DK (1) DK82684A (en)
WO (1) WO1984000761A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777102A (en) * 1993-04-06 1998-07-07 Grindsted Products A/S (Danisco) Carrageenan-containing product and a method of producing same
KR100411481B1 (en) * 2000-03-07 2003-12-18 김형락 Microfiltrated microbiological agar and process for preparation thereof
US7772211B2 (en) 2000-12-13 2010-08-10 Fmc Corporation Production of carrageenan and carrageenan products
CN103833864A (en) * 2012-11-23 2014-06-04 德丰铭国际股份有限公司 Method for extracting colloid
CN111560079A (en) * 2020-05-18 2020-08-21 集美大学 Preparation method of Iota carrageenan glue solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236741B1 (en) * 2001-02-28 2006-08-16 Hercules Incorporated Process for recovering cellulose ethers from aqueous solutions via enhanced shear ultrafiltration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957000A (en) * 1972-08-16 1974-06-03
JPS56139501A (en) * 1980-02-29 1981-10-31 Italfarmaco Spa Separation of high biological activity glucosaminoglucan
JPS5786296A (en) * 1980-09-29 1982-05-29 Shell Int Research Treatment of polysaccharide solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957000A (en) * 1972-08-16 1974-06-03
JPS56139501A (en) * 1980-02-29 1981-10-31 Italfarmaco Spa Separation of high biological activity glucosaminoglucan
JPS5786296A (en) * 1980-09-29 1982-05-29 Shell Int Research Treatment of polysaccharide solution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777102A (en) * 1993-04-06 1998-07-07 Grindsted Products A/S (Danisco) Carrageenan-containing product and a method of producing same
KR100411481B1 (en) * 2000-03-07 2003-12-18 김형락 Microfiltrated microbiological agar and process for preparation thereof
US7772211B2 (en) 2000-12-13 2010-08-10 Fmc Corporation Production of carrageenan and carrageenan products
CN103833864A (en) * 2012-11-23 2014-06-04 德丰铭国际股份有限公司 Method for extracting colloid
CN111560079A (en) * 2020-05-18 2020-08-21 集美大学 Preparation method of Iota carrageenan glue solution

Also Published As

Publication number Publication date
DK82684D0 (en) 1984-02-21
JPS5941303A (en) 1984-03-07
DK82684A (en) 1984-03-01

Similar Documents

Publication Publication Date Title
US3856569A (en) Process for the purification and concentration of solutions derived from marine algae
Jiraratananon et al. Self-forming dynamic membrane for ultrafiltration of pineapple juice
US3556992A (en) Anisotropic ultrafiltration membrane having adhering coating and methods of forming and using this membrane
Li et al. Recovery and purification of potato proteins from potato starch wastewater by hollow fiber separation membrane integrated process
CN104151445B (en) A kind of method extracting natural low methoxyl pectin from sunflower plate
JP2002502259A (en) Method for producing sugar juice from raw materials containing sugar
Alsobh et al. The application of membrane technology in the concentration and purification of plant extracts: a review
WO1984000761A1 (en) Process for purifying and condensing high-molecular polysaccharide extract obtained from sea weed
CN104311391B (en) With the membrane concentration technique that viscose fiber pressed liquor is raw material production Xylitol
CN102911278B (en) Membrane concentration process used for carrageenan production
JP4768142B2 (en) Simple manufacturing method of fucoidan
Ariono et al. Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane
CN111362359A (en) Method for recycling alginate through forward osmosis concentration of reverse osmosis of driving agent
DE2845797C2 (en)
CN106318995B (en) A method of levulan and gluconic acid are prepared using inulin
CN104496756A (en) Electrodialysis technology for preparing xylitol by taking viscose fiber squeezed alkali liquid
CN206051730U (en) A kind of system using various membrane technology recycling treatment kelp processing waste water
RU2066962C1 (en) Pectin production method
JP7082519B2 (en) How to dehydrate cooking oil
KR20150078870A (en) Collagen method of preparing
CN205874261U (en) Lactic acid decoloration purification and concentration device
EP0876196A1 (en) Process for purifying a liquid contaminated by filamentary molecules
CN112955408A (en) Device and method for recovering alkaline solution and device and method for producing regenerated cellulose moulded bodies having such a method
JP2002336000A (en) Purification apparatus for sugar liquid
CN212504676U (en) Molecular level apparatus for producing of inulin

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): DK US

CFP Corrected version of a pamphlet front page