USRE45744E1 - Temperature controlled crimping - Google Patents

Temperature controlled crimping Download PDF

Info

Publication number
USRE45744E1
USRE45744E1 US14/074,543 US201314074543A USRE45744E US RE45744 E1 USRE45744 E1 US RE45744E1 US 201314074543 A US201314074543 A US 201314074543A US RE45744 E USRE45744 E US RE45744E
Authority
US
United States
Prior art keywords
stent
temperature
polymer
crimping
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US14/074,543
Inventor
David C. Gale
Bin Huang
Anthony Abbate
Stephen D. Pacetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Cardiovascular Systems Inc
Original Assignee
Abbott Cardiovascular Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Cardiovascular Systems Inc filed Critical Abbott Cardiovascular Systems Inc
Priority to US14/074,543 priority Critical patent/USRE45744E1/en
Assigned to ABBOTT CARDIOVASCULAR SYSTEMS INC. reassignment ABBOTT CARDIOVASCULAR SYSTEMS INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ADVANCED CARDIOVASCULAR SYSTEMS, INC.
Application granted granted Critical
Publication of USRE45744E1 publication Critical patent/USRE45744E1/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • B29B13/023Half-products, e.g. films, plates
    • B29B13/024Hollow bodies, e.g. tubes or profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9522Means for mounting a stent or stent-graft onto or into a placement instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9522Means for mounting a stent or stent-graft onto or into a placement instrument
    • A61F2/9524Iris-type crimpers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9522Means for mounting a stent or stent-graft onto or into a placement instrument
    • A61F2/9526Means for mounting a stent or stent-graft onto or into a placement instrument using a mandrel
    • A61F2002/9522
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • B29C2071/022Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/76Making non-permanent or releasable joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91431Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91945Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined lower than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • B29K2001/08Cellulose derivatives
    • B29K2001/12Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/086EVOH, i.e. ethylene vinyl alcohol copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/08PVDC, i.e. polyvinylidene chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2031/00Use of polyvinylesters or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/18Polymers of nitriles
    • B29K2033/20PAN, i.e. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
    • B29K2055/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7542Catheters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49863Assembling or joining with prestressing of part
    • Y10T29/49865Assembling or joining with prestressing of part by temperature differential [e.g., shrink fit]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • Percutaneous transluminal coronary angioplasty is a procedure for treating heart disease.
  • a surgeon introduces a catheter assembly having a balloon portion percutaneously into the cardiovascular system of a patient via the brachial or femoral artery.
  • the surgeon advances the catheter assembly through the coronary vasculature until the balloon portion crosses the occlusive lesion.
  • Once in position the surgeon inflates the balloon to radially compress the atherosclerotic plaque of the lesion and remodel the vessel wall. The surgeon then deflates the balloon to remove the catheter.
  • stents act as scaffoldings, physically holding open and, if desired, expanding the vessel wall. Typically, stents compress for insertion through small vessels and then expand to a larger diameter once in position.
  • U.S. Pat. No. 4,733,665, issued to Palmaz; U.S. Pat. No. 4,800,882, issued to Gianturco; and U.S. Pat. No. 4,886,062, issued to Wiktor disclose examples of PTCA stents.
  • Stent crimping is a critical step in manufacturing this equipment in that stent retention depends on it.
  • stent crimping is the act of affixing the stent to the delivery catheter or delivery balloon so that it remains affixed to the catheter or balloon until the physician desires to deliver the stent at the treatment site.
  • Current stent crimping technology is sophisticated. A short time ago, one process used a roll crimper. This damaged many polymer coatings due to its inherent shearing action. Next came the collet crimper; in it, metal jaws are mounted into what is essentially a drill chuck. The jaws move in a purely radial direction.
  • the stent is slid loosely onto the balloon portion of the catheter. This assembly is placed between the plates of the roll crimper. With an automated roll crimper, the plates come together and apply a specified amount of force. They then move back and forth a set distance in a direction that is perpendicular to the catheter. The catheter rolls back and forth under this motion, and the diameter of the stent is reduced.
  • the process can be broken down into more than one step, each with its own level of force, translational distance, and number of cycles.
  • this process imparts a great deal of shear to the stent in a direction perpendicular to the catheter or catheter wall.
  • the stent is crimped, there is additional relative motion between the stent surface and the crimping plates. As a result, this crimping process tends to damage the drug eluting stent coating.
  • the collet crimper is equally conceptually simple.
  • a standard drill-chuck collet is equipped with several pie-piece-shaped jaws. These jaws move in a radial direction as an outer ring is turned.
  • a stent is loosely placed onto the balloon portion of a catheter and inserted in the center space between the jaws. Turning the outer ring causes the jaws to move inward.
  • An issue with this device is determining or designing the crimping endpoint.
  • One scheme is to engineer the jaws so that when they completely close, they touch and a center hole of a known diameter remains. Using this approach, turning the collet onto the collet stops crimps the stent to the known outer diameter.
  • Stent struts have a tolerance on their thickness. Additionally, the process of folding noncompliant balloons is not exactly reproducible. Consequently, the collet crimper exerts a different amount of force on each stent in order to achieve the same final dimension. Unless this force, and the final crimped diameter, is carefully chosen, the variability of the stent and balloon dimensions can yield stent coating or balloon damage.
  • collet jaws move in a radial direction, they move closer together as they crimp. This action, combined with the scissoring motion of the struts, imparts tangential shear on the coatings that can also lead to damage.
  • the actual contact surfaces of the collet crimper are the jaw tips. These surfaces are quite small, and only form a cylindrical surface at the final point of crimping. Before that point, the load being applied to the stent surface is discontinuous.
  • the sliding wedge or iris crimper In the sliding wedge or iris crimper, adjacent pie-piece-shaped sections move inward and twist, much like the leaves in a camera aperture.
  • This crimper can be engineered to have two different types of endpoints. It can stop at a final diameter, or it can apply a fixed force and allow the final diameter to float. From the discussion on the collet crimper, there are advantages in applying a fixed level of force as variabilities in strut and balloon dimension will not change the crimping force.
  • the sliding wedges impart primarily normal forces, which are the least damaging to stent coatings. As the wedges slide over each other, they impart some tangential force. But the shear damage is frequently equal to or less than that of the collet crimper.
  • the sliding wedge crimper presents a nearly cylindrical inner surface to the stent, even as it crimps. This means the crimping loads are distributed over the entire outer surface of the stent.
  • brittle polymeric material is laser cut.
  • the polymer's brittle nature and the stress induced by laser cutting often causes stress cracking in the polymeric stent.
  • FIGS. 1 and 2 show an Elasteon 80A (a polyurethane) coating on poly(ethylene-co-vinyl alcohol) (EVAL) after crimp, grip, and the wet expansion test.
  • EVAL poly(ethylene-co-vinyl alcohol)
  • Grip is a process conducted after crimping to further increase stent retention.
  • An outer sleeve restrains the crimped stent.
  • pressure and heat are applied to the stent-balloon section.
  • the balloon material deforms slightly, moving in between the struts.
  • the final stent-on-catheter assembly is immersed in deionized water at 37° C. for 30 seconds.
  • the balloon is inflated according to the device instructions to at least a nominal pressure (8 atmospheres). After holding this pressure for 30 seconds, the balloon is deflated, and the stent slides off. After drying, the stent can be examined by optical microscopy or scanning electron microscopy for coating damage.
  • the primary purpose of the polymer in the stent coating is to contain the drug and control its release at a desired rate.
  • Other obvious specifications for the polymer are a high level of vascular biocompatibility and the ability to flex and elongate to accommodate stent expansion without cracking or peeling. Meeting all of these objectives, while also possessing a high level of toughness and strength to withstand conventional crimping process, can be challenging.
  • a crimping process that minimizes damage to the polymer coatings of stents is needed. Moreover, a crimping process that minimizes internal stress or strain in the polymeric substrate of a polymeric stent is also needed.
  • the current invention comprises several embodiments, some of which relate to extracorporeal methods of making medical devices or implantable medical devices. These devices can comprise portions with coatings.
  • the coating comprises a polymer or polymer combination or drug(s).
  • the piece comprising the coating is crimped onto another part of the device or onto a separate device.
  • crimping is done at non-ambient temperatures. Sometimes non-ambient-temperature crimping comprises changing the temperatures of the coating, the piece comprising the coating, the medical device, the crimping device, or any combination of these.
  • medical devices made using these methods and devices for implementing these methods are also part of this invention.
  • the medical device is or comprise a stent.
  • embodiments of crimping methods include adjusting the temperature of the coating to a target temperature followed by a crimping step; adjusting the temperature of the coating to a target temperature during a crimping step; adjusting the temperature of the coating to a target temperature and maintaining the temperature of the coating within plus or minus 5° C. of the target temperature during a crimping step; adjusting the temperature of the coating to a target temperature followed by crimping such that the temperature of the coating remains within plus or minus 10° C.
  • the temperature of the coating can first be adjusted to a target temperature with the crimper jaws then closing. After that, the temperature can be adjusted to a second temperature, followed by opening the crimper jaws.
  • the target temperature takes values based on Tg and intervals around Tg are described, with the goal of some embodiments being to simultaneously minimize deformation- and delamination-based failure during crimping.
  • the target temperature ultimately depends on the predominate failure mode of the polymer coating, Tg of the coating, shore D hardness of the polymer coating at ambient temperature, and shore hardness of the polymer coating at the target temperature, among other factors.
  • invention methods relate to making medical devices comprising at least one piece wherein the piece can comprise a polymer or polymer combination.
  • the piece comprises a polymer or polymer combination and drug(s).
  • a typical method comprises choosing a target temperature based on the mechanical behavior of the polymeric material, sometimes the behavior during crimping. The method further comprises juxtaposing the closing of the crimping jaws with adjusting the temperature of the piece in any combination. For instance, the following heating regimes are practical:
  • the heating regime can comprise closing the crimper, adjusting the temperature of the piece to a second temperature, and opening the crimper wherein the second temperature is greater than or less than the target temperature.
  • Some medical devices further comprise a catheter. In those devices, the crimping step of invention methods can be used to attach the piece to the catheter.
  • Invention methods can be used on a variety of polymeric materials including those characterized as having Tg above ambient temperature.
  • the methods act on polymeric materials comprising ABS resins; acrylic polymers and acrylic copolymers; acrylonitrile-styrene copolymers; alkyd resins; biomolecules; cellulose ethers; celluloses; copoly(ether-esters); copolymers of polycarboxylic acids and poly-hydroxycarboxylic acids; copolymers of vinyl monomers with each other and olefins; cyanoacrylates; epoxy resins; ethylene vinyl alcohol copolymers; ethylene-methyl methacrylate copolymers; ethylene-vinyl acetate copolymers; ethylene- ⁇ -olefin copolymers; poly(amino acids); poly(anhydrides); poly(butyl methacrylates); poly(ester amides); poly(ester-urethanes); poly(ether-urethanes); poly(imino carbonates
  • useful polymers include the following polymers: starch, sodium alginate, rayon-triacetate, rayon, polyvinylidene fluoride, polyvinylidene chloride, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl chloride, polyvinyl acetate, polystyrene, polyisocyanate, polyisobutylene, polyethylene glycol, polydioxanone, polycaprolactone, polycaprolactam, KYNAR (brand poly(vinylidene fluoride) available from Atofina), polyacrylonitrile, poly(trimethylene carbonate), poly(L-lactic acid), poly(lactide-co-glycolide), poly(hydroxyvalerate), poly(hydroxybutyrate-co-valerate), poly(hydroxybutyrate-co-hydroxyvalerate), poly(hydroxybutyrate), poly(glycolide), poly(glycolic acid), poly(D,L-lactide-co
  • the drugs are selected from the following types: antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antioxidants, or their combinations.
  • the target temperature can be chosen in a number of ways.
  • the target temperature can be
  • Some invention embodiments choose the target temperature to avoid ambient temperature or a window around ambient temperature. Other embodiments choose the target temperature such that therapeutic agents present in the coating avoid substantial decomposition.
  • target temperature is selected from a group that specifically excludes any one or any combination of the temperature range is described above.
  • Some invention embodiments choose the target temperature to simultaneously minimize deformation- and delamination-based failure during crimping. Some invention embodiments choose the target temperature to yield an improvement in shore hardness.
  • the annealing temperature can be selected from any of the temperature's described above for the target temperature. Moreover, in some embodiments, annealing temperature is selected from a group that specifically excludes any one or any combination of the temperature ranges described above.
  • the heat source is integrated with a crimping device.
  • the piece is selected from self-expandable stents, balloon-expandable stents, and stent-grafts.
  • FIG. 1 shows a coating as prepared in Example 1, which is an Elasteon 80A coating on EVAL after crimp, grip, and the wet expansion test.
  • FIG. 2 shows another coating as prepared in Example 1, which is Elasteon 80A coating on EVAL after crimp, grip, and the wet expansion test.
  • FIG. 3 shows a topcoat of Solef 21508 on EVAL made using the procedures of Example 3.
  • FIG. 4 shows another topcoat of Solef 21508 on EVAL, also made using the procedures of Example 3.
  • FIG. 5 shows the tensile stress at yield of polypropylene as a function of temperature.
  • FIG. 6 shows how the stress-strain curve of a thermoplastic polymer changes with temperature.
  • FIG. 7 plots heat capacity versus temperature for a typical thermoplastic polymer.
  • FIG. 8 shows a stent-delivery device combination, in cross-section.
  • FIG. 9 shows a polymeric stent after heat crimping.
  • FIG. 10 shows the polymeric stent of Ex. 3 after heat crimping.
  • FIGS. 1 and 2 show that the coating on the outer surface of the stent, in one case, has been pinched or wrinkled over, while in the other, has been smeared off.
  • FIGS. 3 and 4 show a topcoat of Solef 21508 on EVAL.
  • Solef 21508 is the softest poly(hexafluoropropene-co-vinylidene fluoride) thermoplastic polymer commercially available.
  • FIGS. 3 and 4 show dents in the high spots of the strut arms. Most high spots of these two stents show similar damage. For these reasons, polymer coatings made of lower durometer (80A for example) polymers frequently fail quality assurance tests. EVAL, a hard plastic, seems to hold up to standard crimping, but it has a hardness of 85 shore D. For comparison, the low-density polyethylene used in milk containers is 47-55 shore D.
  • Some embodiments of this invention are directed at stents containing a substrate material that is polymeric in nature and methods of manufacturing those stents. Some methods pertain to crimping the stent to the delivery device or balloon.
  • crimping is done at a temperature greater than Tg; in some embodiments, crimping is done at a temperature greater than ambient but not necessarily greater than Tg.
  • a device for crimping the polymeric stent onto the delivery device is also contemplated as an invention embodiment.
  • the device can resemble any crimping device as is known in the art or in this document. Additionally, the device is especially modified so that it can heat the stent during crimping. In some embodiments, the device can apply pressure and heat simultaneously.
  • the crimping device can hold the stent at an elevated temperature, which may be selected such that it is greater than, equal to, or less than the target temperature or may be selected to specifically exclude temperatures greater than, equal to, or less than the target temperature.
  • the device crimps the polymeric stent while the stent is heated by other means.
  • the crimping method comprises:
  • the stent can be heated for up to one hour, 30 seconds to one hour, or for 30 seconds. In some embodiments, the stent is heated long enough that the material becomes ductile enough to adequately lower the brittleness of the stent. Adequate means having a value for the parameter in question such that one of ordinary skill in the art would expect the invention to function in the particular application. For example, “adequately lower the brittleness of the stent” means that the brittleness of the stent is reduced enough to warrant the extra heating step and the extra cost and complication of the heating step, as viewed by one of ordinary skill in the art.
  • the radial compression pressure is chosen so that no damage to the stent or coating occurs. In some embodiments, the radial compression pressure is chosen so that any damage or deformation that occurs is insufficient to cause one of ordinary skill in the art to reject the stent for use.
  • variable temperature means a temperature above ambient. In these or other embodiments, it means a temperature equal to, above or below Tg of the material. In some embodiments, variable temperature means a temperature equal to or below ambient. In some embodiments, the stent is cooled to ambient temperature or below before the radial compression pressure is removed.
  • a time sufficient to set the crimp state is any time long enough that the polymeric stent or coating has substantially assumed the new shape induced by crimping such that it substantially retain this shape until the stent is implanted. In these or other embodiments, this time is 1 second to 2 hours, 2 seconds to 1 hour, 3 seconds to 30 minutes, 4 sec to 5 minutes; 1 second to 5 minutes, 2 seconds to 5 minutes, or 3 seconds to 5 minutes.
  • This procedure is believed to provide the polymer chains with increased mobility and such that they relax into a lower energy (less stressed) configuration. Using this procedure results in polymeric stents with significantly fewer cracks.
  • polymeric stents are sometimes sterilized with e-beam radiation. E-beam sterilization frequently exhibits higher polymer degradation rates at high stress regions in the polymer (stent). But after the heat crimping of this invention, which relieves extrusion and laser-cutting-induced stress and strain, e-beam sterilization of treated stents results in significantly fewer cracks and exhibits less pronounced polymer degradation rates at high stress regions in the polymer.
  • a crimp process in which the coated stent or polymeric stent is held at a target temperature is disclosed. Temperatures above ambient can be used in cases where the Tg is above ambient or room temperature and greater ductility is desired.
  • ambient temperature is the temperature of the crimper or polymer when the crimper or polymer has not been purposely heated or cooled. Typically, this temperature will be close to room temperature or the temperature surrounding the crimping equipment or the polymer.
  • a target temperature is a temperature numerically different from ambient temperature brought about by purposely heating or cooling the crimper, stent, balloon, polymer, or any combination of these.
  • polymer for purposes of this disclosure, “polymer”, “polymer combination” and “polymer mixture” are synonymous, meaning a composition of one polymer or, when more than one polymer, a mixture of, a blend of, a copolymerization of, or any other combination of more than one polymer.
  • the combination can occur after the polymers are polymerized or can occur during the polymerization of monomer into one or more polymers.
  • a representative method includes heating a polymer on a medical device to or towards a target temperature. Next, either after the target temperature has been reached or while the polymer is changing temperature towards the target temperature, the portion of the medial device containing the polymer is crimped onto another portion of the medical device or onto another medical device. Crimping is done in a temperature region designed to minimize both cohesive and adhesive failure (or deformation- and delamination-based failure) caused by local pressure from the jaws or surfaces of the crimping device, and deformation of the stent caused by reducing its diameter. For instance, a stent can be heated with a stream of air and crimped onto a delivery catheter with an iris crimper. Moreover, in some embodiments, the temperature region is chosen so that internal stress in the polymeric stent or polymer coating diminishes over time after crimping.
  • Heating is generically discussed as “adjusting” the temperature of the polymer, the crimper, or the medical device. Adjusting the temperature comprises placing the object that is to have its temperature adjusted into thermal contact with a heat source.
  • thermal contact with a heat source means heat source arrangement vis-à-vis the object so that energy would flow or be carried from the heat source to the object.
  • Thermal contact is a generic term at least encompassing an arrangement of the object such that radiation, conduction, or convection from the heat source would transfer energy. In some embodiments, thermal contact is defined to exclude any of radiation, conduction, convection, or any combination of these.
  • Different invention embodiments employ different heating profiles. For instance, when the heating profile calls for softening the polymer by choosing a target temperature above some temperature value, the polymer is adjusted to the target temperature before crimping and then crimping occurs (with or without some amount of temperature decrease before crimping); alternatively, the polymer is adjusted to the target temperature before crimping and maintained at or near the target temperature during crimping; alternatively, crimping is started, the polymer is adjusted to the target temperature, and crimping is completed.
  • “maintained near the target temperature” means that the temperature of the polymer at the instant of contact with the crimper is the target temperature plus or minus 20° C., 15° C., 10° C., 5° C., 2° C. or 1° C. In some embodiments, “maintained near the target temperature” means that the temperature of the polymer at the instant of contact with the crimper is the target temperature plus or minus 10° C.
  • Polymers on crimped stents or crimped polymeric stents exhibit adhesive and cohesive failure as two main failure modes.
  • adhesive failure polymer is sheared off the stent due to poor adhesion to the metal stent or between the polymer molecules in a polymeric stent. This is a failure of the polymer due to poor interaction between polymer molecules. Since at higher temperatures, particularly those above Tg, polymeric materials are softer, a higher temperature crimp process should assist in preventing adhesive failure.
  • Adhesive failure is sometimes referred to as an adhesive-based failure or delamination-based failure. When a polymer exhibits adhesive failure, that polymer becomes a candidate for crimping above Tg of the polymer.
  • Adhesive failure is also caused by a build-up of stress. Heating the polymer above its Tg lowers its modulus and decreases the internal stress within the polymer. When stents are crimped, whether polymer coated or substantially polymeric, certain portions of the stent undergo elongation. If too much elongation occurs, the polymer will crack. The ultimate elongation of polymers depends on the temperature, and heating the polymer above its Tg can increase the ultimate elongation, thereby preventing failure. If the polymer exhibits a cohesive failure due to insufficient elongation, it is also a candidate for crimping above the Tg of the polymer.
  • the polymer is then heated to set, anneal or otherwise remove internal stresses caused by mechanically stressing the polymer during assembly of the medical device. In some embodiments, the polymer is heated to an annealing temperature.
  • FIG. 5 shows tensile stress at yield of polypropylene as a function of temperature. This property is not the same as hardness, but correlates with it. Both involve the stress needed to permanently deform the polymer. For thermoplastics in general, a lower temperature leads to greater hardness.
  • FIG. 6 shows how a thermoplastic's stress-strain curve changes with temperature.
  • the target temperature is selected in relation to Tg of the polymer.
  • Tg is the temperature at which the amorphous domains of a polymer change from a brittle vitreous state to a plastic state at atmospheric pressure.
  • Tg corresponds to the temperature where the onset of segmental motion in the chains of the polymer occurs, and it is discernible in a heat-capacity-versus-temperature graph for a polymer, as is depicted in FIG. 7 .
  • Tg of a given polymer can be dependent on the heating rate and can be influenced by the thermal history of the polymer. Furthermore, polymer chemical structure heavily influences Tg by affecting polymer mobility. Generally, flexible main-chain components lower Tg and bulky side groups raise Tg. Similarly, increasing flexible-side-group length lowers Tg and increasing main-chain polarity increases Tg. Additionally, the presence of crosslinks can increase the observed Tg for a given polymer, and the presence of a drug or therapeutic agent can alter the Tg of a polymer due to plasticization effects. The magnitude of these plasticization effects depends on the miscibility and compatibility of the drug and polymer and the loading of drug in the polymer.
  • Tg is shown on the first curve, 60 , which is the temperature at which half of the increase in heat capacity has occurred.
  • the crystallinity then increases rapidly after Tg and reaches a maximum at Tc (the apex of second curve, 62 ).
  • Tg is somewhat arbitrarily placed on the temperature versus heat capacity curve.
  • the Tg range is defined in several different ways for a polymer or polymer combination. Some invention embodiments can be predicated on any one of these Tg range definitions.
  • Tg range is greater than or equal to the initial point on the polymer's (or polymer combination's) temperature-versus-heat-capacity curve showing a drop in heat capacity, indicated as Tg 1 ( 100 ) on FIG. 7 (this point is defined as lower Tg for definition 1 ). Tg range is less than or equal to Tc ( 110 ) on the curve in FIG. 7 (this point is defined as upper Tg for definition 1 ).
  • Tg range definition 1 This Tg range is referred to in this disclosure as Tg range definition 1 .
  • Those of ordinary skill in the art recognize that the specific curvature and temperature points in FIG. 7 depend upon the nature of the polymer or polymer combination. Therefore, the indication of a point on FIG. 7 is meant to communicate a point corresponding to the FIG. 7 point on a similar graph for the particular polymer or polymer combination being used.
  • a target temperature is within Tg range definition 1 if it is above or equal to Tg 1 and below or equal to Tg 2 .
  • a target temperature is below Tg range definition 1 if it is below or equal to Tg 2 .
  • a target temperature is above Tg range definition 1 if it is above or equal to Tg 1 .
  • a target temperature is between a higher temperature and a lower temperature if it is above or equal to the lower temperature and below or equal to the higher temperature.
  • the Tg range is greater than or equal to the point Tg 1 ( 100 ) on FIG. 7 (lower Tg for definition 2 ) and less than or equal to point 140 on FIG. 7 (upper Tg for definition 2 ).
  • This range is referred to in this disclosure as Tg range definition 2 .
  • Point 140 corresponds to the onset of the crystallization phase transition for the material.
  • the Tg range is the conventionally measured Tg ( 180 ) for the polymer (or combination) plus 40° C. (upper Tg for definition 3 ) and minus 40° C. (lower Tg for definition 3 ).
  • the Tg range is the conventionally measured Tg for the polymer (or combination) plus 20° C. (upper Tg for definition 4 ) and ⁇ 20° C. (lower Tg for definition 4 ).
  • the Tg range is the conventionally measured Tg for the polymer (or combination) plus 10° C. (upper Tg for definition 5 ) and minus 10° C. (lower Tg for definition 5 ).
  • the Tg range is the conventionally measured Tg for the polymer (or combination) plus 5° C. (upper Tg for definition 6 ) and minus 5° C. (lower Tg for definition 6 ).
  • the Tg range is greater than or equal to the point Tg 1 ( 100 ) on FIG. 7 (lower Tg for definition 7 ) and less than or equal to point 160 on FIG. 7 (upper Tg for definition 7 ).
  • This range is referred to in this disclosure as Tg range definition 7 .
  • Point 160 corresponds to the tail off or end of the glass phase transition for the material.
  • embodiments also include embodiments in which the Tg range specifically excludes ambient temperature, ambient temperature + or ⁇ 1° C. or ambient temperature + or ⁇ 5° C.
  • the target temperature has a maximum at or below the temperature at which any included therapeutic agents substantially decompose.
  • substantially decompose means decomposition to the extent that one of ordinary skill in the art would conclude that the decomposition would reduce the efficacy of the therapeutic substance too much. In other words, decomposition would reduce the efficacy enough that one of ordinary skill in the art would reject the heated or cooled, crimped composition for use in vivo.
  • the polymer can be improved by causing the polymer to be harder during crimping. This can be accomplished by choosing a target temperature less than upper Tg. (When this disclosure speaks of upper Tg or lower Tg, but does not specify which definition of Tg range is being used, this disclosure is intended to cover upper and lower Tg for each range definition). Alternatively, the polymer can be hardened during crimping by choosing a target temperature below lower Tg.
  • choosing a target temperature below ambient temperature can harden the polymer.
  • choosing a target temperature below ⁇ 30° C., ⁇ 40° C., ⁇ 50° C., or ⁇ 60° C. can harden the polymer.
  • the target temperature is between ambient temperature and upper Tg; ambient temperature and lower Tg; or ⁇ 30° C., ⁇ 40° C., ⁇ 50° C., or ⁇ 60° C. and upper Tg; ⁇ 30° C., ⁇ 40° C., 50° C., or ⁇ 60° C. and lower Tg; or ⁇ 30° C., ⁇ 40° C., ⁇ 50° C., or ⁇ 60° C. and ambient temperature.
  • the target temperature can be chosen based on the Tg range definitions discussed above.
  • the polymer can be improved by causing the polymer to be harder during crimping. Therefore, an improvement in cohesive or deformation failures can be achieved by choosing a target temperature that yields a 50% increase in shore hardness, alternatively, a 40%, 30%, 20%, or 10% increase in shore hardness.
  • invention medical devices prepared with invention crimping methods allow the use of polymers with shore D hardness as low as 30 to 80, or 35 to 60.
  • invention medical devices prepared with invention crimping methods allow the use of polymers with shore D hardness less than or equal to 45, 40, 35, or 30.
  • the polymer can be improved by causing the polymer to be softer during crimping or by maintaining an increased temperature in the polymer after crimping to relieve any stress. This can be accomplished by choosing a target temperature greater than upper Tg. Alternatively, the target temperature is above lower Tg. Alternatively, the target temperature is above ambient temperature. Alternatively, the target temperature is above 70° C., 80° C., 90° C., or 100° C.
  • the target temperature is between ambient temperature and upper Tg; ambient temperature and lower Tg; between 70° C., 80° C., 90° C., or 100° C. and upper Tg; between 70° C., 80° C., 90° C., or 100° C. and lower Tg; or between 70° C., 80° C., 90° C., or 100° C. and ambient temperature.
  • the target temperature can be chosen based on the Tg range definitions discussed above.
  • the polymer can be improved by causing the polymer to be softer during crimping. Therefore, an improvement in adhesive failure can be achieved by choosing a target temperature that yields a 50% decrease in shore hardness, alternatively, a 40%, 30%, 20%, or 10% decrease in shore hardness.
  • invention medical devices prepared with invention crimping methods allow the use of polymers with shore hardness as high as 60D to 90D, or 65D to 85D.
  • invention medical devices prepared with invention crimping methods allow the use of polymers with shore hardness greater than or equal to 60D, 70D, 80D, or 90D.
  • EVAL When EVAL is crimped at ambient temperature, it is in a glassy state ( FIG. 6 , curve A). By crimping at a temperature above its glass transition temperature (Tg) (55° C.), the ultimate elongation becomes higher ( FIG. 6 , curve B). This should reduce cracking in the tensile regions on the outside of stent junctions.
  • Tg glass transition temperature
  • crimping at a low temperature of 0° or less should reduce crimping damage from shear and compression.
  • Tg ⁇ 30° C.
  • crimping at a temperature of ⁇ 40° C. should also reduce denting and shearing damage.
  • a polymeric stent is crimped onto a delivery device, such as a catheter, after being heated to a target temperature.
  • the target temperature is greater than Tg range for definitions 1 - 7 , any of definitions 1 - 7 , any combination of definitions 1 - 7 , or any combination of definitions 1 - 7 that also excludes any one or any combination of definitions 1 - 7 .
  • a polymeric stent is crimped onto a delivery device, such as a catheter, while being heated to a target temperature.
  • the target temperature is greater than Tg range for definitions 1 - 7 , any of definitions 1 - 7 , any combination of definitions 1 - 7 , or any combination of definitions 1 - 7 that also excludes any one or any combination of definitions 1 - 7 .
  • the device is designed to crimp the polymer-coated stent onto the balloon portion of a catheter for PTCA.
  • the temperature may be controlled by passage of a stream of dry air, or inert gas through the bore. This air can be heated or cooled by first passing it through a tube heater or chilled heat exchanger. The stent is loosely placed onto the catheter, and then the assembly is inserted into the bore of the crimper. The passage of air would rapidly equilibrate the stent delivery system (SDS) to the crimp temperature. Continuously heated or cooled airflow would bring the crimping jaws to the desired temperature.
  • SDS stent delivery system
  • Alternative ways include heating or cooling the jaws of the crimper itself. Electrical heating elements can be installed into the crimper jaws. By appropriate placement of thermocouples and feedback controls, an elevated temperature can be maintained. Cooling of the crimper jaws can be accomplished by rendering them with passageways through which a cooling medium is pumped. This may also be used to heat the crimping jaws. If the jaws were composed of an electrically conductive material, application of an oscillating electric field can heat them via eddy currents. If the jaws were made of an IR transparent material, the stent on catheter can be thermostated by infrared radiation.
  • the crimper is at ambient temperature, but the jaws themselves are of a material with low thermal conductivity, then processes can be considered where the stent loosely applied to the catheter is pre-equilibrated to a non-ambient temperature before crimping.
  • the stent is small, with a high surface area to volume ratio, it would have to be rapidly moved from the controlled temperature environment to the crimper to maintain the desired temperature. Heating in an incubator or oven, or cooling in a refrigerator can pre-equilibrate the stent to the desired temperature before crimping.
  • Processes of the current invention provide medical devices. These medical devices contain a piece or portion that is coated with or constructed of, in some embodiments, polymer(s).
  • the crimping device used in invention crimping steps can be heated or cooled before it is used to crimp the piece or portion onto the remainder of the medical device or onto another medical device. This heating or cooling causes the temperature of the material to change so that the crimping effectively occurs at a target temperature other than ambient temperature.
  • Other ways of modifying the temperature of the polymer include heating or cooling the substrate of the medical device or heating or cooling the material directly with forced air, among other methods.
  • Some invention embodiments select medical devices to be those adapted for placement in arterial, venous, neurovascular, urethral, biliary, prostate, intravascular, ureteral, bronchial, esophageal, fallopial, tracheal, laryngeal, gastrointestinal, lymphatic, eustachiaic, pancreatic, cerebral, other genitourinary, other gastrointestinal, or other respiratory lumens or passages.
  • Invention methods can be used on a variety of polymeric materials including those characterized as having Tg above ambient temperature.
  • the methods act on polymeric materials comprising ABS resins; acrylic polymers and acrylic copolymers; acrylonitrile-styrene copolymers; alkyd resins; biomolecules; cellulose ethers; celluloses; copoly(ether-esters); copolymers of polycarboxylic acids and poly-hydroxycarboxylic acids; copolymers of vinyl monomers with each other and olefins; cyanoacrylates; epoxy resins; ethylene vinyl alcohol copolymers; ethylene-methyl methacrylate copolymers; ethylene-vinyl acetate copolymers; ethylene- ⁇ -olefin copolymers; poly(amino acids); poly(anhydrides); poly(butyl methacrylates); poly(ester amides); poly(ester-urethanes); poly(ether-urethanes); poly(imino carbonates
  • useful polymers include the following polymers: starch, sodium alginate, rayon-triacetate, rayon, polyvinylidene fluoride, polyvinylidene chloride, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl chloride, polyvinyl acetate, polystyrene, polyisocyanate, polyisobutylene, polyethylene glycol, polydioxanone, polycaprolactone, polycaprolactam, KYNAR (brand poly(vinylidene fluoride) available from Atofina), polyacrylonitrile, poly(trimethylene carbonate), poly(L-lactic acid), poly(lactide-co-glycolide), poly(hydroxyvalerate), poly(hydroxybutyrate-co-valerate), poly(hydroxybutyrate-co-hydroxyvalerate), poly(hydroxybutyrate), poly(glycolide), poly(glycolic acid), poly(D,L-lactide-co
  • the polymer for use with this invention can comprise a mixture of polymers, such as an intimate mixture of polymer molecules, or can use a combination of polymers arranged in a layered structure.
  • a mixture of polymers such as an intimate mixture of polymer molecules
  • a combination of polymers arranged in a layered structure can be chosen based on the overall thermal behavior of the polymers or combination of polymers.
  • invention polymers add conventional drugs, such as small, hydrophobic drugs, to invention polymers (as discussed in any of the embodiments, above), making them biostable, drug systems.
  • Invention polymers can serve as base or topcoat layers for biobeneficial polymer layers.
  • the selected drugs can inhibit vascular, smooth muscle cell activity. More specifically, the drug activity can aim at inhibiting abnormal or inappropriate migration or proliferation of smooth muscle cells to prevent, inhibit, reduce, or treat restenosis.
  • the drug can also include any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. Examples of such active agents include antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, and antioxidant substances, as well as their combinations, and any prodrugs, metabolites, analogs, congeners, derivatives, salts and their combinations.
  • an antiproliferative substance is actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin II, actinomycin X1, and actinomycin C1. Examples of antineoplastics include paclitaxel and docetaxel.
  • antiplatelets examples include aspirin, sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-pheproarg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor (available from Biogen), and 7E-3B® (an antiplatelet drug from Centocor).
  • aspirin sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-pheproarg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudi
  • antimitotic agents include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, and mutamycin.
  • cytostatic or anti-proliferative agents include angiopeptin (a somatostatin analog from Ibsen), angiotensin converting enzyme inhibitors such as CAPTOPRIL (available from Squibb), CILAZAPRIL (available from Hoffman-LaRoche), or LISINOPRIL (available from Merck & Co., Whitehouse Station, N.J.), calcium channel blockers (such as Nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, histamine antagonist, LOVASTATIN (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck &Co.), monoclonal antibodies (such as PDGF receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor (available from Glazo
  • Other useful drugs may include alpha-interferon, genetically engineered epithelial cells, dexamethasone, estradiol, clobetasol propionate, cisplatin, insulin sensitizers, receptor tyrosine kinase inhibitors, and carboplatin. Exposure of the composition to the drug should not adversely alter the drug's composition or characteristic. Accordingly, drug containing embodiments choose drugs that are compatible with the composition. Rapamycin is a suitable drug. Additionally, methyl rapamycin (ABT-578), everolimus, 40-O-(2-hydroxy)ethyl-rapamycin, or functional analogs or structural derivatives thereof, is suitable, as well.
  • Examples of analogs or derivatives of 40-O-(2-hydroxy)ethyl-rapamycin include, among others, 40-O-(3-hydroxy)propyl-rapamycin and 40-O-2-(2-hydroxy)ethoxyethylrapamycin.
  • Those of ordinary skill in the art know of various methods and coatings for advantageously controlling the release rate of drugs, such as 40-O-(2-hydroxy)ethyl-rapamycin.
  • Some embodiments choose the drug such that it does not contain at least one of or any combination of antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, or antioxidant substances, or any prodrugs, metabolites, analogs, congeners, derivatives, salts or their combinations.
  • Some invention embodiments choose the drug such that it does not contain at least one of or any combination of actinomycin D, derivatives and analogs of Actinomycin D, dactinomycin, actinomycin IV, actinomycin II, actinomycin X1, actinomycin C1, paclitaxel, docetaxel, aspirin, sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin, prostacyclin analogs, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor and 7E-3B, methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, mutamycin, angiopeptin, an
  • Some invention embodiments comprise a drug or drug combination, and some require a drug or combination of drugs. Of the drugs specifically listed above, some invention embodiments exclude a single or any combination of these drugs.
  • Some embodiments comprise polymers combined with other polymers in multilayer arrangements.
  • one polymer can under- or over-lay another polymer such as a polymer coated on a device, a medical device, an implantable medical device, or a stent.
  • the polymer can be used neat in this regard, or it can first be mixed with another polymer.
  • implantable devices useful in the present invention include self-expandable stents, balloon-expandable stents, and stent-grafts.
  • the underlying structure of the device can be of virtually any design.
  • the device can comprise a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316 L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
  • cobalt chromium alloy ELGILOY
  • stainless steel 316 L
  • high nitrogen stainless steel e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-i
  • MP35N and MP20N are trade names for alloys of cobalt, nickel, chromium, and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Of course, one of ordinary skill in the art recognizes that the invention method is only useful for medical devices that use a crimping step in their production.
  • Various, specialized tests are used to assay the integrity of a drug eluting stent coating.
  • completed units are tested which have been though all stent-catheter assembly processes, including crimping and any heat-pressure processes.
  • One test is inspection of the coated stents by scanning electron microscopy. This can be done on the completed units by cutting the stent-balloon section from the catheter, or the stent can be removed from the catheter by dry expansion in air or wet expansion in aqueous solution. Under SEM, the fraction of compromised coating surface area can be estimated. Compromised coating is coating that has been deformed, torn, or removed. When this fraction of surface area exceeds 5-10%, the drug-release rate properties, and total drug content can be affected.
  • Another measure of coating integrity is the number and size of particles shed when the stent is expanded in aqueous solution.
  • the stent is deployed in a solution of previously filtered water and the particles shed are counted by one of several available particle-counting instruments.
  • Example instruments would be those produced by Malvern that work by light scattering, instruments that work by light obscuration, such as the Hiac-Royco, or the Coulter counter which works by electrical conductivity. Elevated numbers, and sizes, of particles shed are indicative of coating failure, which is affected by crimping damage either in the form of coating pieces that are completely shorn off, or cracks in the coating which propagated during stent expansion to liberate particles.
  • a first composition was prepared by mixing the following components:
  • the first composition was applied onto the surface of bare 13 mm TETRA stents (available from Guidant Corporation), which were first pre-expanded by passing them over a 0.071 inch, tapered mandrel. Coating was sprayed and dried to form a primer layer.
  • a spray coater was used having a 0.046 fan nozzle maintained at about 60 C with a feed pressure 2.5 psi (0.17 atm) and an atomization pressure of about 15 psi (1.02 atm). Coating was applied at 10 ⁇ g per pass, in between which the stent was dried for 10 seconds in a flowing air stream at 60 C. Approximately 70 ⁇ g of wet coating was applied.
  • the stents were baked at 140 C for one hour, yielding a primer layer composed of approximately 50 ⁇ g of EVAL.
  • a simulated reservoir layer was applied onto the primer layer, using the same spraying technique, equipment, and formulation used for the applying the primer. In this case, approximately 340 ⁇ g of wet coating is applied, followed by drying, e.g., baking at 50 C for about two hours, yielding about 300 ⁇ g of simulated drug-polymer reservoir layer.
  • a second composition can be prepared by mixing the following components:
  • the second composition can be applied onto the dried simulated drug reservoir layer to form a topcoat layer. Using the same spraying technique and equipment used for applying the simulated drug reservoir layer. Approximately 340 ⁇ g of wet topcoat is applied followed by baking at 80 C for two hours, yielding a 300 ⁇ g Elast-Eon 80A topcoat layer.
  • the stents were crimped onto 13 mm Tetra catheters (available from Guidant Corporation).
  • the stents were expanded in deionized water at 37 C with a balloon deployment pressure of 12 atm. Examination by SEM yielded FIGS. 1 &2 .
  • a first composition was prepared by mixing the following component
  • the first composition was applied onto the surface of bare 13 mm TETRA stents (available from Guidant Corporation), which were first pre-expanded by passing them over a 0.071 inch, tapered mandrel. Coating was sprayed and dried to form a primer layer.
  • a spray coater was having a 0.046 fan nozzle maintained at about 60 C with a feed pressure 2.5 psi (0.17 atm) and an atomization pressure of about 15 psi (1.02 atm). Coating was applied at 10 ⁇ g per pass, in between which the stent was dried for 10 seconds in a flowing air stream at 60 C. Approximately 65 ⁇ g of wet coating was applied. The stents were baked at 140 C for one hour, yielding a primer layer composed of approximately 60 ⁇ g of EVAL.
  • a simulated reservoir layer was applied onto the primer layer, using the same spraying technique, equipment, and formulation used for the applying the primer. In this case approximately 340 ⁇ g of wet coating is applied, followed by drying, e.g., baking at 80 C for about two hours, yielding about 315 ⁇ g of a simulated drug-polymer reservoir layer.
  • a second composition can be prepared by mixing the following components:
  • AMS Defluxer is a blend of dichloropentafluoropropanes and methanol available from Tech Spray Inc. of Amarillo Tex.
  • the second composition can be applied onto the dried simulated drug reservoir layer to form a topcoat layer. Using the same spraying technique and equipment used for applying the simulated drug reservoir layer. Approximately 345 ⁇ g of wet topcoat is applied followed by baking at 50 C for two hours, yielding a 325 ⁇ g Solef 21508 topcoat layer.
  • the stents were crimped onto 13 mm Tetra catheters (available from Guidant Corporation). After this, they were subjected to a heat and pressure process wherein the balloon was restrained by a sheath, air pressure was applied to the catheter, and heat was applied to the balloon. Units were packaged and sterilized by electron beam radiation at a dose of 35 KGy.
  • the stent coating performance was evaluated in an apparatus where a guiding catheter was connected to flexible silicone tubing embedded in a block with three gradual 90-degree bends. Deionized water at 37 C was recirculated through the guiding catheter.
  • the stents were passed through a rotating hemostatic valve attached to the guiding catheter, through the guiding catheter, through the tortuous silicone tubing, and deployed at a pressure of 12 atmospheres. After the stents were removed from the tubing, examination by SEM yielded FIGS. 3 & 4 .
  • Stents are laser cut from polymer tubing, then crimped to the desired diameter. A sliding wedge style heated crimper is used. The stents are supported on a wire mandrel during the crimping process.
  • Tubing material 100% poly(L-lactide) Tubing OD: 0.084′′ Tubing ID: 0.070′′ Pre-heat temp: 30 C. Pre-heat time: 30 seconds Crimp temperature: 30 C. Descent time: 3-5 seconds Mandrel diameter: 0.031′′ Post crimp dwell time: 99.9 seconds Number of crimp cycles: 1
  • ranges When this is done, it is meant to disclose the ranges as a range, and to disclose each and every point within the range, including end points.
  • supplementary embodiments exist that are otherwise identical, but that specifically exclude the value or the conditions for the aspect.

Abstract

This disclosure describes a method for crimping a polymeric stent onto a catheter for percutaneous transluminal coronary angioplasty or other intraluminal interventions. The method comprises crimping the stent onto a catheter when the polymer is at a target temperature other than ambient temperature. The polymer can optionally comprise drug(s).

Description

This application is a continuation-in-part of U.S. patent application Ser. No. 10/725,698, filed on Dec. 1, 2003, the entire disclosure of which is incorporated by reference.
BACKGROUND
Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. A surgeon introduces a catheter assembly having a balloon portion percutaneously into the cardiovascular system of a patient via the brachial or femoral artery. The surgeon advances the catheter assembly through the coronary vasculature until the balloon portion crosses the occlusive lesion. Once in position, the surgeon inflates the balloon to radially compress the atherosclerotic plaque of the lesion and remodel the vessel wall. The surgeon then deflates the balloon to remove the catheter.
An advance on PTCA involved using an intravascular stent. Mechanically, stents act as scaffoldings, physically holding open and, if desired, expanding the vessel wall. Typically, stents compress for insertion through small vessels and then expand to a larger diameter once in position. U.S. Pat. No. 4,733,665, issued to Palmaz; U.S. Pat. No. 4,800,882, issued to Gianturco; and U.S. Pat. No. 4,886,062, issued to Wiktor disclose examples of PTCA stents.
Before this procedure can occur, equipment for the procedure must be manufactured. Stent crimping is a critical step in manufacturing this equipment in that stent retention depends on it. Generally, stent crimping is the act of affixing the stent to the delivery catheter or delivery balloon so that it remains affixed to the catheter or balloon until the physician desires to deliver the stent at the treatment site. Current stent crimping technology is sophisticated. A short time ago, one process used a roll crimper. This damaged many polymer coatings due to its inherent shearing action. Next came the collet crimper; in it, metal jaws are mounted into what is essentially a drill chuck. The jaws move in a purely radial direction. This movement was not expected to shear the coating, because it applied forces only normal to the stent surface. But some stent geometries require that stent struts scissor together during crimping. In those geometries, even if the crimper imposes only normal forces, the scissor action of the stent struts imparts shear. Finally, the iris or sliding-wedge crimper imparts mostly normal forces with some amount of tangential shear.
To use a roll crimper, first the stent is slid loosely onto the balloon portion of the catheter. This assembly is placed between the plates of the roll crimper. With an automated roll crimper, the plates come together and apply a specified amount of force. They then move back and forth a set distance in a direction that is perpendicular to the catheter. The catheter rolls back and forth under this motion, and the diameter of the stent is reduced. The process can be broken down into more than one step, each with its own level of force, translational distance, and number of cycles. With regard to a stent with a drug eluting coating, this process imparts a great deal of shear to the stent in a direction perpendicular to the catheter or catheter wall. Furthermore, as the stent is crimped, there is additional relative motion between the stent surface and the crimping plates. As a result, this crimping process tends to damage the drug eluting stent coating.
The collet crimper is equally conceptually simple. A standard drill-chuck collet is equipped with several pie-piece-shaped jaws. These jaws move in a radial direction as an outer ring is turned. To use this crimper, a stent is loosely placed onto the balloon portion of a catheter and inserted in the center space between the jaws. Turning the outer ring causes the jaws to move inward. An issue with this device is determining or designing the crimping endpoint. One scheme is to engineer the jaws so that when they completely close, they touch and a center hole of a known diameter remains. Using this approach, turning the collet onto the collet stops crimps the stent to the known outer diameter. While this seems ideal, it can lead to problems. Stent struts have a tolerance on their thickness. Additionally, the process of folding noncompliant balloons is not exactly reproducible. Consequently, the collet crimper exerts a different amount of force on each stent in order to achieve the same final dimension. Unless this force, and the final crimped diameter, is carefully chosen, the variability of the stent and balloon dimensions can yield stent coating or balloon damage.
Furthermore, although the collet jaws move in a radial direction, they move closer together as they crimp. This action, combined with the scissoring motion of the struts, imparts tangential shear on the coatings that can also lead to damage. Lastly, the actual contact surfaces of the collet crimper are the jaw tips. These surfaces are quite small, and only form a cylindrical surface at the final point of crimping. Before that point, the load being applied to the stent surface is discontinuous.
In the sliding wedge or iris crimper, adjacent pie-piece-shaped sections move inward and twist, much like the leaves in a camera aperture. This crimper can be engineered to have two different types of endpoints. It can stop at a final diameter, or it can apply a fixed force and allow the final diameter to float. From the discussion on the collet crimper, there are advantages in applying a fixed level of force as variabilities in strut and balloon dimension will not change the crimping force. The sliding wedges impart primarily normal forces, which are the least damaging to stent coatings. As the wedges slide over each other, they impart some tangential force. But the shear damage is frequently equal to or less than that of the collet crimper. Lastly, the sliding wedge crimper presents a nearly cylindrical inner surface to the stent, even as it crimps. This means the crimping loads are distributed over the entire outer surface of the stent.
All current stent crimping methods were developed for all-metal stents. Stent metals, such as stainless steel, are durable and can take abuse. When crimping was too severe, it usually damaged the underlying balloon, not the stent. But polymeric coatings present different challenges.
Moreover, as part of polymeric stent manufacture, brittle polymeric material is laser cut. The polymer's brittle nature and the stress induced by laser cutting often causes stress cracking in the polymeric stent.
In the drug eluting stent arena, drugs are commonly placed on the stent in combination with a polymer or mixed into the polymer for polymeric stents. This placement typically coats all stent surfaces or causes the drug to be distributed throughout the polymeric stent. Then the stent is crimped onto the catheter. In general, polymer coatings are softer, weaker, and less durable than the underlying stent material. Upon crimping with a sliding wedge crimper, and following crimp protocols for the particular stent, coating damage is frequently seen. FIGS. 1 and 2 show an Elasteon 80A (a polyurethane) coating on poly(ethylene-co-vinyl alcohol) (EVAL) after crimp, grip, and the wet expansion test.
Grip is a process conducted after crimping to further increase stent retention. An outer sleeve restrains the crimped stent. Simultaneously, pressure and heat are applied to the stent-balloon section. Under this action, the balloon material deforms slightly, moving in between the struts. In a wet expansion test, the final stent-on-catheter assembly is immersed in deionized water at 37° C. for 30 seconds. Then the balloon is inflated according to the device instructions to at least a nominal pressure (8 atmospheres). After holding this pressure for 30 seconds, the balloon is deflated, and the stent slides off. After drying, the stent can be examined by optical microscopy or scanning electron microscopy for coating damage.
The primary purpose of the polymer in the stent coating is to contain the drug and control its release at a desired rate. Other obvious specifications for the polymer are a high level of vascular biocompatibility and the ability to flex and elongate to accommodate stent expansion without cracking or peeling. Meeting all of these objectives, while also possessing a high level of toughness and strength to withstand conventional crimping process, can be challenging.
A crimping process that minimizes damage to the polymer coatings of stents is needed. Moreover, a crimping process that minimizes internal stress or strain in the polymeric substrate of a polymeric stent is also needed.
SUMMARY
The current invention comprises several embodiments, some of which relate to extracorporeal methods of making medical devices or implantable medical devices. These devices can comprise portions with coatings. In some embodiments, the coating comprises a polymer or polymer combination or drug(s). The piece comprising the coating is crimped onto another part of the device or onto a separate device. In some embodiments, crimping is done at non-ambient temperatures. Sometimes non-ambient-temperature crimping comprises changing the temperatures of the coating, the piece comprising the coating, the medical device, the crimping device, or any combination of these. Likewise, medical devices made using these methods and devices for implementing these methods are also part of this invention. In some embodiments the medical device is or comprise a stent.
Specific heating and cooling profiles are used in different invention embodiments. For instance, embodiments of crimping methods include adjusting the temperature of the coating to a target temperature followed by a crimping step; adjusting the temperature of the coating to a target temperature during a crimping step; adjusting the temperature of the coating to a target temperature and maintaining the temperature of the coating within plus or minus 5° C. of the target temperature during a crimping step; adjusting the temperature of the coating to a target temperature followed by crimping such that the temperature of the coating remains within plus or minus 10° C. of the target temperature during a crimping step; and adjusting the temperature of the coating to a temperature other than ambient towards a target temperature and continuing to adjust the temperature of the coating towards the target temperature during a crimping step. Alternatively, the temperature of the coating can first be adjusted to a target temperature with the crimper jaws then closing. After that, the temperature can be adjusted to a second temperature, followed by opening the crimper jaws.
Embodiments in which the target temperature takes values based on Tg and intervals around Tg are described, with the goal of some embodiments being to simultaneously minimize deformation- and delamination-based failure during crimping. In some embodiments, the target temperature ultimately depends on the predominate failure mode of the polymer coating, Tg of the coating, shore D hardness of the polymer coating at ambient temperature, and shore hardness of the polymer coating at the target temperature, among other factors.
In some embodiments, invention methods relate to making medical devices comprising at least one piece wherein the piece can comprise a polymer or polymer combination. In some embodiments, the piece comprises a polymer or polymer combination and drug(s). A typical method comprises choosing a target temperature based on the mechanical behavior of the polymeric material, sometimes the behavior during crimping. The method further comprises juxtaposing the closing of the crimping jaws with adjusting the temperature of the piece in any combination. For instance, the following heating regimes are practical:
    • adjusting the temperature of the piece to a target temperature followed by a crimping step;
    • adjusting the temperature of the piece to a target temperature during a crimping step;
    • adjusting the temperature of the piece to a target temperature and maintaining that temperature within plus or minus 5° C. of the target temperature during a crimping step;
    • adjusting the temperature of the piece to a target temperature followed by crimping such that the temperature of the piece remains within plus or minus 10° C. of the target temperature during the crimping step; and
    • adjusting the temperature of the piece to a temperature other than ambient towards a target temperature and continuing to adjust the temperature of the piece towards the target temperature during a crimping step.
    • Any of these regimes can optionally be coupled with continued heating for a time after crimping—either while crimping pressure is applied or after pressure is removed.
In these embodiments or others the heating regime can comprise closing the crimper, adjusting the temperature of the piece to a second temperature, and opening the crimper wherein the second temperature is greater than or less than the target temperature. Some medical devices further comprise a catheter. In those devices, the crimping step of invention methods can be used to attach the piece to the catheter.
Invention methods can be used on a variety of polymeric materials including those characterized as having Tg above ambient temperature. In some embodiments the methods act on polymeric materials comprising ABS resins; acrylic polymers and acrylic copolymers; acrylonitrile-styrene copolymers; alkyd resins; biomolecules; cellulose ethers; celluloses; copoly(ether-esters); copolymers of polycarboxylic acids and poly-hydroxycarboxylic acids; copolymers of vinyl monomers with each other and olefins; cyanoacrylates; epoxy resins; ethylene vinyl alcohol copolymers; ethylene-methyl methacrylate copolymers; ethylene-vinyl acetate copolymers; ethylene-α-olefin copolymers; poly(amino acids); poly(anhydrides); poly(butyl methacrylates); poly(ester amides); poly(ester-urethanes); poly(ether-urethanes); poly(imino carbonates); poly(orthoesters); poly(silicone-urethanes); poly(tyrosine arylates); poly(tyrosine-derived carbonates); polyacrylates; polyacrylic acid; polyacrylic acids; polyacrylonitrile; polyacrylonitrile; polyalkylene oxalates; polyamides; polyamino acids; polyanhydrides; polycarbonates; polyearboxylic acids; polycyanoacrylates; polyesters; polyethers; poly-hydroxycarboxylic acids; polyimides; polyisobutylene and ethylene-α-olefin copolymers; polyketones; polymethacrylates; polyolefins; polyorthoesters; polyoxymethylenes; polyphosphazenes; polyphosphoesters; polyphosphoester urethanes; polyphosphoesters; polyphosphoestersurethane; polyurethanes; polyvinyl aromatics; polyvinyl esters; polyvinyl ethers; polyvinyl ketones; polyvinylidene halides; silicones; starches; vinyl copolymers vinyl-olefin copolymers; and vinyl halide polymers and copolymers. Some embodiments select the group of polymers to specifically exclude any one of or any combination of the polymers listed above.
Specific examples of useful polymers for some embodiments include the following polymers: starch, sodium alginate, rayon-triacetate, rayon, polyvinylidene fluoride, polyvinylidene chloride, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl chloride, polyvinyl acetate, polystyrene, polyisocyanate, polyisobutylene, polyethylene glycol, polydioxanone, polycaprolactone, polycaprolactam, KYNAR (brand poly(vinylidene fluoride) available from Atofina), polyacrylonitrile, poly(trimethylene carbonate), poly(L-lactic acid), poly(lactide-co-glycolide), poly(hydroxyvalerate), poly(hydroxybutyrate-co-valerate), poly(hydroxybutyrate-co-hydroxyvalerate), poly(hydroxybutyrate), poly(glycolide), poly(glycolic acid), poly(D,L-lactide-co-L-lactide), poly(D,L-lactide-co-glycolide), poly(D,L-lactide), poly(4-hydroxybutyrate), poly(3-hydroxybutyrate), poly(3-hydroxy valerate), Nylon 66, hyaluronic acid, fibrinogen, fibrin, elastin-collagen, collagen, cellulose propionate, cellulose nitrate, cellulose butyrate, cellulose acetate butyrate, cellulose acetate, cellulose, cellophane, carboxymethyl cellulose, or poly(2-hydroxyethyl methacrylate), Chitin, Chitosan, EVAL, poly(butyl methacrylate), poly(D,L-lactic acid), poly(D,L-lactide), poly(glycolic acid-co-trimethylene carbonate), poly(hydroxybutyrate-co-valerate), poly(hydroxyvalerate), poly(iminocarbonate), poly(lactide-co-glycolide), poly(L-lactic acid), poly(N-acetylglucosamine), poly(trimethylene carbonate), poly(vinyl chloride), poly(vinyl fluoride), poly(vinylidene chloride), poly(vinylidene fluoride), poly(vinylidene fluoride-co-chlorotrifluoroethylene), poly(vinylidene fluoride-co-hexafluoropropene), polyanhydride, polyorthoester, polyurethane, polyvinyl alcohol, polyvinyl chloride, rayon, SOLEF 21508 (formulation available from Solvay Solexis), and PEO/PLA. Some embodiments select the group of polymers to specifically exclude any one of or any combination of the polymers listed above.
Some invention methods operate on drug-containing pieces. In some of these embodiments, the drugs are selected from the following types: antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antioxidants, or their combinations.
The target temperature can be chosen in a number of ways. For instance, the target temperature can be
    • within or above the range defined by definition 1, definition 2, definition 3, definition 4, definition 5, definition 6, or definition 7 of the Tg range of the polymer or polymer combination;
    • above ambient temperature;
    • above room temperature;
    • between ambient temperature and upper Tg of the Tg range;
    • between ambient temperature and lower Tg of the Tg range;
    • between −40° C. and upper Tg of the Tg range;
    • between −40° C. and lower Tg of the Tg range;
    • between −40° C. and ambient temperature;
    • at or above 60° C.;
    • between 60° C. and upper Tg of the Tg range;
    • between 60° C. and lower Tg of the Tg range; or
    • between 60° C. and ambient temperature.
Some invention embodiments choose the target temperature to avoid ambient temperature or a window around ambient temperature. Other embodiments choose the target temperature such that therapeutic agents present in the coating avoid substantial decomposition.
In some embodiments, target temperature is selected from a group that specifically excludes any one or any combination of the temperature range is described above.
Some invention embodiments choose the target temperature to simultaneously minimize deformation- and delamination-based failure during crimping. Some invention embodiments choose the target temperature to yield an improvement in shore hardness.
The annealing temperature can be selected from any of the temperature's described above for the target temperature. Moreover, in some embodiments, annealing temperature is selected from a group that specifically excludes any one or any combination of the temperature ranges described above.
Different invention embodiments use a variety of methods for achieving the temperature adjustment of the polymeric material. For instance, the following ways of changing the temperature are all within the scope of the current invention:
    • contacting the polymeric material or piece with a heat source.
    • directing a heated gas at the polymeric material or piece;
    • placing the polymeric material or piece near a heated surface for emitting thermal or infrared radiation to the coating or coated piece;
    • placing the polymeric material or polymeric material or piece near a heated surface to enable convection to the coating or coated piece from the surface;
    • heating the jaws of the crimper and thermally contacting the polymeric material or piece with the crimper jaws;
    • for crimper jaws that allow the passage of infrared radiation, bathing the stent on catheter with infrared radiation;
    • heating the stent on catheter in an incubator or oven to pre-equilibrate the stent on catheter to the desired temperature before crimping.
For some invention devices useful in practicing invention methods, the heat source is integrated with a crimping device. In some embodiments, the piece is selected from self-expandable stents, balloon-expandable stents, and stent-grafts.
BRIEF DESCRIPTION OF FIGURES
FIG. 1 shows a coating as prepared in Example 1, which is an Elasteon 80A coating on EVAL after crimp, grip, and the wet expansion test.
FIG. 2 shows another coating as prepared in Example 1, which is Elasteon 80A coating on EVAL after crimp, grip, and the wet expansion test.
FIG. 3 shows a topcoat of Solef 21508 on EVAL made using the procedures of Example 3.
FIG. 4 shows another topcoat of Solef 21508 on EVAL, also made using the procedures of Example 3.
FIG. 5 shows the tensile stress at yield of polypropylene as a function of temperature.
FIG. 6 shows how the stress-strain curve of a thermoplastic polymer changes with temperature.
FIG. 7 plots heat capacity versus temperature for a typical thermoplastic polymer.
FIG. 8 shows a stent-delivery device combination, in cross-section.
FIG. 9 shows a polymeric stent after heat crimping.
FIG. 10 shows the polymeric stent of Ex. 3 after heat crimping.
DETAILED DESCRIPTION
This document incorporates by this reference the entire disclosure of U.S. patent application Ser. No. 10/725,698, filed on Dec. 1, 2003.
FIGS. 1 and 2 show that the coating on the outer surface of the stent, in one case, has been pinched or wrinkled over, while in the other, has been smeared off. Similarly, FIGS. 3 and 4 show a topcoat of Solef 21508 on EVAL. Solef 21508 is the softest poly(hexafluoropropene-co-vinylidene fluoride) thermoplastic polymer commercially available.
FIGS. 3 and 4 show dents in the high spots of the strut arms. Most high spots of these two stents show similar damage. For these reasons, polymer coatings made of lower durometer (80A for example) polymers frequently fail quality assurance tests. EVAL, a hard plastic, seems to hold up to standard crimping, but it has a hardness of 85 shore D. For comparison, the low-density polyethylene used in milk containers is 47-55 shore D.
Some embodiments of this invention are directed at stents containing a substrate material that is polymeric in nature and methods of manufacturing those stents. Some methods pertain to crimping the stent to the delivery device or balloon.
In some embodiments, crimping is done at a temperature greater than Tg; in some embodiments, crimping is done at a temperature greater than ambient but not necessarily greater than Tg. A device for crimping the polymeric stent onto the delivery device is also contemplated as an invention embodiment. The device can resemble any crimping device as is known in the art or in this document. Additionally, the device is especially modified so that it can heat the stent during crimping. In some embodiments, the device can apply pressure and heat simultaneously. In these or other embodiments, after crimping, the crimping device can hold the stent at an elevated temperature, which may be selected such that it is greater than, equal to, or less than the target temperature or may be selected to specifically exclude temperatures greater than, equal to, or less than the target temperature. In some embodiments, the device crimps the polymeric stent while the stent is heated by other means.
In some embodiments, the crimping method comprises:
    • placing the stent in the crimping device;
    • heating the stent to a target temperature long enough that the stent substantially reaches the target temperature;
    • applying pressure (radial compression pressure) to the stent to attach it to a delivery device;
    • holding the stent at a radial compression pressure adequate to affix it to the delivery device and holding the stent at an annealing temperature for a time sufficient to set the crimp state into the polymeric stent or coating;
    • removing the stent-delivery-device combination.
The stent can be heated for up to one hour, 30 seconds to one hour, or for 30 seconds. In some embodiments, the stent is heated long enough that the material becomes ductile enough to adequately lower the brittleness of the stent. Adequate means having a value for the parameter in question such that one of ordinary skill in the art would expect the invention to function in the particular application. For example, “adequately lower the brittleness of the stent” means that the brittleness of the stent is reduced enough to warrant the extra heating step and the extra cost and complication of the heating step, as viewed by one of ordinary skill in the art.
In some embodiments the radial compression pressure is chosen so that no damage to the stent or coating occurs. In some embodiments, the radial compression pressure is chosen so that any damage or deformation that occurs is insufficient to cause one of ordinary skill in the art to reject the stent for use.
In the forgoing embodiments or others, variable temperature means a temperature above ambient. In these or other embodiments, it means a temperature equal to, above or below Tg of the material. In some embodiments, variable temperature means a temperature equal to or below ambient. In some embodiments, the stent is cooled to ambient temperature or below before the radial compression pressure is removed.
In the forgoing embodiments or others, a time sufficient to set the crimp state is any time long enough that the polymeric stent or coating has substantially assumed the new shape induced by crimping such that it substantially retain this shape until the stent is implanted. In these or other embodiments, this time is 1 second to 2 hours, 2 seconds to 1 hour, 3 seconds to 30 minutes, 4 sec to 5 minutes; 1 second to 5 minutes, 2 seconds to 5 minutes, or 3 seconds to 5 minutes.
This procedure is believed to provide the polymer chains with increased mobility and such that they relax into a lower energy (less stressed) configuration. Using this procedure results in polymeric stents with significantly fewer cracks.
In a separate production step, polymeric stents are sometimes sterilized with e-beam radiation. E-beam sterilization frequently exhibits higher polymer degradation rates at high stress regions in the polymer (stent). But after the heat crimping of this invention, which relieves extrusion and laser-cutting-induced stress and strain, e-beam sterilization of treated stents results in significantly fewer cracks and exhibits less pronounced polymer degradation rates at high stress regions in the polymer.
A crimp process in which the coated stent or polymeric stent is held at a target temperature, which may be different from ambient, is disclosed. Temperatures above ambient can be used in cases where the Tg is above ambient or room temperature and greater ductility is desired. For purposes of this disclosure, ambient temperature is the temperature of the crimper or polymer when the crimper or polymer has not been purposely heated or cooled. Typically, this temperature will be close to room temperature or the temperature surrounding the crimping equipment or the polymer. Similarly, for purposes of this disclosure, a target temperature is a temperature numerically different from ambient temperature brought about by purposely heating or cooling the crimper, stent, balloon, polymer, or any combination of these. For purposes of this disclosure, “polymer”, “polymer combination” and “polymer mixture” are synonymous, meaning a composition of one polymer or, when more than one polymer, a mixture of, a blend of, a copolymerization of, or any other combination of more than one polymer. The combination can occur after the polymers are polymerized or can occur during the polymerization of monomer into one or more polymers.
Durometer Temperature Temperature
Hardness Range for Range
Polymer Tg ° C. Shore D Greater Hardness for Ductility
Solef 21508 −29 60 −62 to 10 Ambient to 60
Elasteon 80A 100, 0 30-35 −110 to −10 Ambient to 60
Elasteon 55D −100, 0 55 −110 to −10 Ambient to 60
EVAL-E151 55 85 Zero to Ambient 50 to 100
Kynar-Flex −30 65-70 −62 to 10 Ambient to 60
2800
Butvar B-90 72-78 85-90 Zero to Ambient Ambient to 100
Kynar 710 −30 76-80 −62 to 10 Ambient to 60
Poly(n-butyl 20 NA −30 to 15 Ambient to 60
methacrylate)
A representative method includes heating a polymer on a medical device to or towards a target temperature. Next, either after the target temperature has been reached or while the polymer is changing temperature towards the target temperature, the portion of the medial device containing the polymer is crimped onto another portion of the medical device or onto another medical device. Crimping is done in a temperature region designed to minimize both cohesive and adhesive failure (or deformation- and delamination-based failure) caused by local pressure from the jaws or surfaces of the crimping device, and deformation of the stent caused by reducing its diameter. For instance, a stent can be heated with a stream of air and crimped onto a delivery catheter with an iris crimper. Moreover, in some embodiments, the temperature region is chosen so that internal stress in the polymeric stent or polymer coating diminishes over time after crimping.
Heating is generically discussed as “adjusting” the temperature of the polymer, the crimper, or the medical device. Adjusting the temperature comprises placing the object that is to have its temperature adjusted into thermal contact with a heat source. For purposes of this disclosure, thermal contact with a heat source means heat source arrangement vis-à-vis the object so that energy would flow or be carried from the heat source to the object. Thermal contact is a generic term at least encompassing an arrangement of the object such that radiation, conduction, or convection from the heat source would transfer energy. In some embodiments, thermal contact is defined to exclude any of radiation, conduction, convection, or any combination of these.
Different invention embodiments employ different heating profiles. For instance, when the heating profile calls for softening the polymer by choosing a target temperature above some temperature value, the polymer is adjusted to the target temperature before crimping and then crimping occurs (with or without some amount of temperature decrease before crimping); alternatively, the polymer is adjusted to the target temperature before crimping and maintained at or near the target temperature during crimping; alternatively, crimping is started, the polymer is adjusted to the target temperature, and crimping is completed. For purposes of this disclosure, “maintained near the target temperature” means that the temperature of the polymer at the instant of contact with the crimper is the target temperature plus or minus 20° C., 15° C., 10° C., 5° C., 2° C. or 1° C. In some embodiments, “maintained near the target temperature” means that the temperature of the polymer at the instant of contact with the crimper is the target temperature plus or minus 10° C.
Polymers on crimped stents or crimped polymeric stents exhibit adhesive and cohesive failure as two main failure modes. In adhesive failure, polymer is sheared off the stent due to poor adhesion to the metal stent or between the polymer molecules in a polymeric stent. This is a failure of the polymer due to poor interaction between polymer molecules. Since at higher temperatures, particularly those above Tg, polymeric materials are softer, a higher temperature crimp process should assist in preventing adhesive failure. Adhesive failure is sometimes referred to as an adhesive-based failure or delamination-based failure. When a polymer exhibits adhesive failure, that polymer becomes a candidate for crimping above Tg of the polymer. Adhesive failure is also caused by a build-up of stress. Heating the polymer above its Tg lowers its modulus and decreases the internal stress within the polymer. When stents are crimped, whether polymer coated or substantially polymeric, certain portions of the stent undergo elongation. If too much elongation occurs, the polymer will crack. The ultimate elongation of polymers depends on the temperature, and heating the polymer above its Tg can increase the ultimate elongation, thereby preventing failure. If the polymer exhibits a cohesive failure due to insufficient elongation, it is also a candidate for crimping above the Tg of the polymer.
In some embodiments, after crimping, the polymer is then heated to set, anneal or otherwise remove internal stresses caused by mechanically stressing the polymer during assembly of the medical device. In some embodiments, the polymer is heated to an annealing temperature.
FIG. 5 shows tensile stress at yield of polypropylene as a function of temperature. This property is not the same as hardness, but correlates with it. Both involve the stress needed to permanently deform the polymer. For thermoplastics in general, a lower temperature leads to greater hardness. FIG. 6 shows how a thermoplastic's stress-strain curve changes with temperature.
For some embodiments of this invention, the target temperature is selected in relation to Tg of the polymer. Tg is the temperature at which the amorphous domains of a polymer change from a brittle vitreous state to a plastic state at atmospheric pressure. In other words, Tg corresponds to the temperature where the onset of segmental motion in the chains of the polymer occurs, and it is discernible in a heat-capacity-versus-temperature graph for a polymer, as is depicted in FIG. 7. When an amorphous or semicrystalline polymer is heated, its coefficient of expansion and heat capacity both increase as the temperature rises, indicating increased molecular motion. As the temperature rises, the sample's actual molecular volume remains constant. Therefore, a higher coefficient of expansion points to a free volume increase of the system and increased freedom of movement for the molecules. The increasing heat capacity corresponds to increasing heat dissipation through movement.
Tg of a given polymer can be dependent on the heating rate and can be influenced by the thermal history of the polymer. Furthermore, polymer chemical structure heavily influences Tg by affecting polymer mobility. Generally, flexible main-chain components lower Tg and bulky side groups raise Tg. Similarly, increasing flexible-side-group length lowers Tg and increasing main-chain polarity increases Tg. Additionally, the presence of crosslinks can increase the observed Tg for a given polymer, and the presence of a drug or therapeutic agent can alter the Tg of a polymer due to plasticization effects. The magnitude of these plasticization effects depends on the miscibility and compatibility of the drug and polymer and the loading of drug in the polymer.
By way of illustration, when a semicrystalline polymer is heated, the polymer crystallinity begins to increase as temperature reaches Tg. At or above Tg, the increased molecular motion allows the polymer chains to adopt a more thermodynamically stable relationship, and thereby increases polymer crystallinity. In FIG. 7, Tg is shown on the first curve, 60, which is the temperature at which half of the increase in heat capacity has occurred. The crystallinity then increases rapidly after Tg and reaches a maximum at Tc (the apex of second curve, 62).
As can be seen in FIG. 7, Tg is somewhat arbitrarily placed on the temperature versus heat capacity curve. For purposes of this disclosure, the Tg range is defined in several different ways for a polymer or polymer combination. Some invention embodiments can be predicated on any one of these Tg range definitions.
Tg Range Definition 1
For this definition, Tg range is greater than or equal to the initial point on the polymer's (or polymer combination's) temperature-versus-heat-capacity curve showing a drop in heat capacity, indicated as Tg1 (100) on FIG. 7 (this point is defined as lower Tg for definition 1). Tg range is less than or equal to Tc (110) on the curve in FIG. 7 (this point is defined as upper Tg for definition 1). This Tg range is referred to in this disclosure as Tg range definition 1. Those of ordinary skill in the art recognize that the specific curvature and temperature points in FIG. 7 depend upon the nature of the polymer or polymer combination. Therefore, the indication of a point on FIG. 7 is meant to communicate a point corresponding to the FIG. 7 point on a similar graph for the particular polymer or polymer combination being used.
A target temperature is within Tg range definition 1 if it is above or equal to Tg1 and below or equal to Tg2. A target temperature is below Tg range definition 1 if it is below or equal to Tg2. A target temperature is above Tg range definition 1 if it is above or equal to Tg1. A target temperature is between a higher temperature and a lower temperature if it is above or equal to the lower temperature and below or equal to the higher temperature. These concepts hold for all temperatures and ranges throughout this disclosure.
Tg Range Definition 2
For this definition, the Tg range is greater than or equal to the point Tg1 (100) on FIG. 7 (lower Tg for definition 2) and less than or equal to point 140 on FIG. 7 (upper Tg for definition 2). This range is referred to in this disclosure as Tg range definition 2. Point 140 corresponds to the onset of the crystallization phase transition for the material.
Tg Range Definitions 3, 4, 5, and 6
For definition 3, the Tg range is the conventionally measured Tg (180) for the polymer (or combination) plus 40° C. (upper Tg for definition 3) and minus 40° C. (lower Tg for definition 3).
For definition 4, the Tg range is the conventionally measured Tg for the polymer (or combination) plus 20° C. (upper Tg for definition 4) and −20° C. (lower Tg for definition 4).
For definition 5, the Tg range is the conventionally measured Tg for the polymer (or combination) plus 10° C. (upper Tg for definition 5) and minus 10° C. (lower Tg for definition 5).
For definition 6, the Tg range is the conventionally measured Tg for the polymer (or combination) plus 5° C. (upper Tg for definition 6) and minus 5° C. (lower Tg for definition 6).
Tg Range Definition 7
For this definition, the Tg range is greater than or equal to the point Tg1 (100) on FIG. 7 (lower Tg for definition 7) and less than or equal to point 160 on FIG. 7 (upper Tg for definition 7). This range is referred to in this disclosure as Tg range definition 7. Point 160 corresponds to the tail off or end of the glass phase transition for the material.
These embodiments also include embodiments in which the Tg range specifically excludes ambient temperature, ambient temperature + or −1° C. or ambient temperature + or −5° C. Also, in some embodiments the target temperature has a maximum at or below the temperature at which any included therapeutic agents substantially decompose. For purposes of this disclosure, “substantially decompose” means decomposition to the extent that one of ordinary skill in the art would conclude that the decomposition would reduce the efficacy of the therapeutic substance too much. In other words, decomposition would reduce the efficacy enough that one of ordinary skill in the art would reject the heated or cooled, crimped composition for use in vivo.
Based on the shore hardness of the polymer or the failure mode of the coating or polymer, several embodiments can be described. For polymers that are too soft, that exhibit cohesive or deformation failures, that have Tg below ambient or room temperature, or that have a shore hardness of shore 60A to 80D (alternatively, shore 80A to 60D), the polymer can be improved by causing the polymer to be harder during crimping. This can be accomplished by choosing a target temperature less than upper Tg. (When this disclosure speaks of upper Tg or lower Tg, but does not specify which definition of Tg range is being used, this disclosure is intended to cover upper and lower Tg for each range definition). Alternatively, the polymer can be hardened during crimping by choosing a target temperature below lower Tg. Alternatively, choosing a target temperature below ambient temperature can harden the polymer. Alternatively, choosing a target temperature below −30° C., −40° C., −50° C., or −60° C. can harden the polymer. In some embodiments, the target temperature is between ambient temperature and upper Tg; ambient temperature and lower Tg; or −30° C., −40° C., −50° C., or −60° C. and upper Tg; −30° C., −40° C., 50° C., or −60° C. and lower Tg; or −30° C., −40° C., −50° C., or −60° C. and ambient temperature.
In addition to choosing the target temperature based on the Tg range definitions discussed above, various embodiments can be described otherwise. For polymers that are too soft, that exhibit cohesive or deformation failures, that have Tg below ambient or room temperature, or that have a shore hardness of shore 60A to 80D (alternatively, shore 80A to 60D), the polymer can be improved by causing the polymer to be harder during crimping. Therefore, an improvement in cohesive or deformation failures can be achieved by choosing a target temperature that yields a 50% increase in shore hardness, alternatively, a 40%, 30%, 20%, or 10% increase in shore hardness.
Medical devices that use polymers with shore hardness of shore 60A to 60D frequently experience cohesive failure during crimping. Invention medical devices prepared with invention crimping methods allow the use of polymers with shore D hardness as low as 30 to 80, or 35 to 60. Alternatively, invention medical devices prepared with invention crimping methods allow the use of polymers with shore D hardness less than or equal to 45, 40, 35, or 30.
For polymers that are too hard, that exhibit adhesive failures, have insufficient elongation, or that have Tg above ambient or room temperature, or that have a shore hardness of 60D to 95D (alternatively, 65D to 90D), the polymer can be improved by causing the polymer to be softer during crimping or by maintaining an increased temperature in the polymer after crimping to relieve any stress. This can be accomplished by choosing a target temperature greater than upper Tg. Alternatively, the target temperature is above lower Tg. Alternatively, the target temperature is above ambient temperature. Alternatively, the target temperature is above 70° C., 80° C., 90° C., or 100° C. In some embodiments, the target temperature is between ambient temperature and upper Tg; ambient temperature and lower Tg; between 70° C., 80° C., 90° C., or 100° C. and upper Tg; between 70° C., 80° C., 90° C., or 100° C. and lower Tg; or between 70° C., 80° C., 90° C., or 100° C. and ambient temperature.
In addition to choosing the target temperature based on the Tg range definitions discussed above, various embodiments can be described otherwise. For polymers that are too hard, that exhibit adhesive failures, that have Tg above ambient or room temperature, or that have a shore hardness of 60D to 95D (alternatively, 65D to 90D), the polymer can be improved by causing the polymer to be softer during crimping. Therefore, an improvement in adhesive failure can be achieved by choosing a target temperature that yields a 50% decrease in shore hardness, alternatively, a 40%, 30%, 20%, or 10% decrease in shore hardness.
Medical devices that use polymers with shore hardness of shore 60D to shore 90D frequently experience adhesive, or elongational failure during crimping. Invention medical devices prepared with invention crimping methods allow the use of polymers with shore hardness as high as 60D to 90D, or 65D to 85D. Alternatively, invention medical devices prepared with invention crimping methods allow the use of polymers with shore hardness greater than or equal to 60D, 70D, 80D, or 90D.
When EVAL is crimped at ambient temperature, it is in a glassy state (FIG. 6, curve A). By crimping at a temperature above its glass transition temperature (Tg) (55° C.), the ultimate elongation becomes higher (FIG. 6, curve B). This should reduce cracking in the tensile regions on the outside of stent junctions. For PBMA, Tg of 20° C., crimping at a low temperature of 0° or less should reduce crimping damage from shear and compression. Similarly, for KYNAR (a polymer consisting of poly(vinylidene fluoride) and available from Atofina of Philadelphia, Pa.), Tg of −30° C., crimping at a temperature of −40° C. should also reduce denting and shearing damage.
In some embodiments, a polymeric stent is crimped onto a delivery device, such as a catheter, after being heated to a target temperature. The target temperature is greater than Tg range for definitions 1-7, any of definitions 1-7, any combination of definitions 1-7, or any combination of definitions 1-7 that also excludes any one or any combination of definitions 1-7.
In some embodiments, a polymeric stent is crimped onto a delivery device, such as a catheter, while being heated to a target temperature. The target temperature is greater than Tg range for definitions 1-7, any of definitions 1-7, any combination of definitions 1-7, or any combination of definitions 1-7 that also excludes any one or any combination of definitions 1-7.
Devices for crimping medical devices are well known in the art. In some embodiments, the device is designed to crimp the polymer-coated stent onto the balloon portion of a catheter for PTCA. For crimpers such as the sliding wedge design, the temperature may be controlled by passage of a stream of dry air, or inert gas through the bore. This air can be heated or cooled by first passing it through a tube heater or chilled heat exchanger. The stent is loosely placed onto the catheter, and then the assembly is inserted into the bore of the crimper. The passage of air would rapidly equilibrate the stent delivery system (SDS) to the crimp temperature. Continuously heated or cooled airflow would bring the crimping jaws to the desired temperature.
Alternative ways include heating or cooling the jaws of the crimper itself. Electrical heating elements can be installed into the crimper jaws. By appropriate placement of thermocouples and feedback controls, an elevated temperature can be maintained. Cooling of the crimper jaws can be accomplished by rendering them with passageways through which a cooling medium is pumped. This may also be used to heat the crimping jaws. If the jaws were composed of an electrically conductive material, application of an oscillating electric field can heat them via eddy currents. If the jaws were made of an IR transparent material, the stent on catheter can be thermostated by infrared radiation.
If the crimper is at ambient temperature, but the jaws themselves are of a material with low thermal conductivity, then processes can be considered where the stent loosely applied to the catheter is pre-equilibrated to a non-ambient temperature before crimping. As the stent is small, with a high surface area to volume ratio, it would have to be rapidly moved from the controlled temperature environment to the crimper to maintain the desired temperature. Heating in an incubator or oven, or cooling in a refrigerator can pre-equilibrate the stent to the desired temperature before crimping.
Processes of the current invention provide medical devices. These medical devices contain a piece or portion that is coated with or constructed of, in some embodiments, polymer(s). In some embodiments, the crimping device used in invention crimping steps can be heated or cooled before it is used to crimp the piece or portion onto the remainder of the medical device or onto another medical device. This heating or cooling causes the temperature of the material to change so that the crimping effectively occurs at a target temperature other than ambient temperature. Other ways of modifying the temperature of the polymer include heating or cooling the substrate of the medical device or heating or cooling the material directly with forced air, among other methods.
Some invention embodiments select medical devices to be those adapted for placement in arterial, venous, neurovascular, urethral, biliary, prostate, intravascular, ureteral, bronchial, esophageal, fallopial, tracheal, laryngeal, gastrointestinal, lymphatic, eustachiaic, pancreatic, cerebral, other genitourinary, other gastrointestinal, or other respiratory lumens or passages.
Invention methods can be used on a variety of polymeric materials including those characterized as having Tg above ambient temperature. In some embodiments the methods act on polymeric materials comprising ABS resins; acrylic polymers and acrylic copolymers; acrylonitrile-styrene copolymers; alkyd resins; biomolecules; cellulose ethers; celluloses; copoly(ether-esters); copolymers of polycarboxylic acids and poly-hydroxycarboxylic acids; copolymers of vinyl monomers with each other and olefins; cyanoacrylates; epoxy resins; ethylene vinyl alcohol copolymers; ethylene-methyl methacrylate copolymers; ethylene-vinyl acetate copolymers; ethylene-α-olefin copolymers; poly(amino acids); poly(anhydrides); poly(butyl methacrylates); poly(ester amides); poly(ester-urethanes); poly(ether-urethanes); poly(imino carbonates); poly(orthoesters); poly(silicone-urethanes); poly(tyrosine arylates); poly(tyrosine-derived carbonates); polyacrylates; polyacrylic acid; polyacrylic acids; polyacrylonitrile; polyacrylonitrile; polyalkylene oxalates; polyamides; polyamino acids; polyanhydrides; polycarbonates; polycarboxylic acids; polycyanoacrylates; polyesters; polyethers; poly-hydroxycarboxylic acids; polyimides; polyisobutylene and ethylene-α-olefin copolymers; polyketones; polymethacrylates; polyolefins; polyorthoesters; polyoxymethylenes; polyphosphazenes; polyphosphoesters; polyphosphoester urethanes; polyphosphoesters; polyphosphoesters-urethane; polyurethanes; polyvinyl aromatics; polyvinyl esters; polyvinyl ethers; polyvinyl ketones; polyvinylidene halides; silicones; starches; vinyl copolymers vinyl-olefin copolymers; and vinyl halide polymers and copolymers. Some embodiments select the group of polymers to specifically exclude any one of or any combination of the polymers listed above.
Specific examples of useful polymers for some embodiments include the following polymers: starch, sodium alginate, rayon-triacetate, rayon, polyvinylidene fluoride, polyvinylidene chloride, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl chloride, polyvinyl acetate, polystyrene, polyisocyanate, polyisobutylene, polyethylene glycol, polydioxanone, polycaprolactone, polycaprolactam, KYNAR (brand poly(vinylidene fluoride) available from Atofina), polyacrylonitrile, poly(trimethylene carbonate), poly(L-lactic acid), poly(lactide-co-glycolide), poly(hydroxyvalerate), poly(hydroxybutyrate-co-valerate), poly(hydroxybutyrate-co-hydroxyvalerate), poly(hydroxybutyrate), poly(glycolide), poly(glycolic acid), poly(D,L-lactide-co-L-lactide), poly(D,L-lactide-co-glycolide), poly(D,L-lactide), poly(4-hydroxybutyrate), poly(3-hydroxybutyrate), poly(3-hydroxy valerate), Nylon 66, hyaluronic acid, fibrinogen, fibrin, elastin-collagen, collagen, cellulose propionate, cellulose nitrate, cellulose butyrate, cellulose acetate butyrate, cellulose acetate, cellulose, cellophane, carboxymethyl cellulose, or poly(2-hydroxyethyl methacrylate), Chitin, Chitosan, EVAL, poly(butyl methacrylate), poly(D,L-lactic acid), poly(D,L-lactide), poly(glycolic acid-co-trimethylene carbonate), poly(hydroxybutyrate-co-valerate), poly(hydroxyvalerate), poly(iminocarbonate), poly(lactide-co-glycolide), poly(L-lactic acid), poly(N-acetylglucosamine), poly(trimethylene carbonate), poly(vinyl chloride), poly(vinyl fluoride), poly(vinylidene chloride), poly(vinylidene fluoride), poly(yinylidene fluoride-co-chlorotrifluoroethylene), poly(vinylidene fluoride-co-hexafluoropropene), polyanhydride, polyorthoester, polyurethane, polyvinyl alcohol, polyvinyl chloride, rayon, SOLEF 21508 (formulation available from Solvay Solexis), and PEO/PLA. Some embodiments select the group of polymers to specifically exclude any one of or any combination of the polymers listed above.
The polymer for use with this invention can comprise a mixture of polymers, such as an intimate mixture of polymer molecules, or can use a combination of polymers arranged in a layered structure. One of ordinary skill in the art will recognize that the optimal target temperature can be chosen based on the overall thermal behavior of the polymers or combination of polymers.
Some embodiments add conventional drugs, such as small, hydrophobic drugs, to invention polymers (as discussed in any of the embodiments, above), making them biostable, drug systems. Some embodiments graft-on conventional drugs or mix conventional drugs with invention polymers. Invention polymers can serve as base or topcoat layers for biobeneficial polymer layers.
The selected drugs can inhibit vascular, smooth muscle cell activity. More specifically, the drug activity can aim at inhibiting abnormal or inappropriate migration or proliferation of smooth muscle cells to prevent, inhibit, reduce, or treat restenosis. The drug can also include any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. Examples of such active agents include antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, and antioxidant substances, as well as their combinations, and any prodrugs, metabolites, analogs, congeners, derivatives, salts and their combinations.
An example of an antiproliferative substance is actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin II, actinomycin X1, and actinomycin C1. Examples of antineoplastics include paclitaxel and docetaxel. Examples of antiplatelets, anticoagulants, antifibrins, and antithrombins include aspirin, sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-pheproarg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor (available from Biogen), and 7E-3B® (an antiplatelet drug from Centocor). Examples of antimitotic agents include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, and mutamycin. Examples of cytostatic or anti-proliferative agents include angiopeptin (a somatostatin analog from Ibsen), angiotensin converting enzyme inhibitors such as CAPTOPRIL (available from Squibb), CILAZAPRIL (available from Hoffman-LaRoche), or LISINOPRIL (available from Merck & Co., Whitehouse Station, N.J.), calcium channel blockers (such as Nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, histamine antagonist, LOVASTATIN (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck &Co.), monoclonal antibodies (such as PDGF receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor (available from Glazo), Seramin (a PDGF antagonist), serotonin blockers, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. Other useful drugs may include alpha-interferon, genetically engineered epithelial cells, dexamethasone, estradiol, clobetasol propionate, cisplatin, insulin sensitizers, receptor tyrosine kinase inhibitors, and carboplatin. Exposure of the composition to the drug should not adversely alter the drug's composition or characteristic. Accordingly, drug containing embodiments choose drugs that are compatible with the composition. Rapamycin is a suitable drug. Additionally, methyl rapamycin (ABT-578), everolimus, 40-O-(2-hydroxy)ethyl-rapamycin, or functional analogs or structural derivatives thereof, is suitable, as well. Examples of analogs or derivatives of 40-O-(2-hydroxy)ethyl-rapamycin include, among others, 40-O-(3-hydroxy)propyl-rapamycin and 40-O-2-(2-hydroxy)ethoxyethylrapamycin. Those of ordinary skill in the art know of various methods and coatings for advantageously controlling the release rate of drugs, such as 40-O-(2-hydroxy)ethyl-rapamycin.
Some embodiments choose the drug such that it does not contain at least one of or any combination of antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, or antioxidant substances, or any prodrugs, metabolites, analogs, congeners, derivatives, salts or their combinations.
Some invention embodiments choose the drug such that it does not contain at least one of or any combination of actinomycin D, derivatives and analogs of Actinomycin D, dactinomycin, actinomycin IV, actinomycin II, actinomycin X1, actinomycin C1, paclitaxel, docetaxel, aspirin, sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin, prostacyclin analogs, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor and 7E-3B, methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, mutamycin, angiopeptin, angiotensin converting enzyme inhibitors, CAPTOPRIL, CILAZAPRIL, or LISINOPRIL, calcium channel blockers, Nifedipine, colchicine, fibroblast growth factor (FGF) antagonists, histamine antagonist, LOVASTATIN, monoclonal antibodies, PDGF receptors, nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor, Seramin, PDGF antagonists, serotonin blockers, thioprotease inhibitors, triazolopyrimidine, nitric oxide, alpha-interferon, genetically engineered epithelial cells, dexamethasone, estradiol, clobetasol propionate, cisplatin, insulin sensitizers, receptor tyrosine kinase inhibitors, carboplatin, Rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin, or a functional analogs of 40-O-(2-hydroxy)ethyl-rapamycin, structural derivative of 40-O-(2-hydroxy)ethyl-rapamycin, 40-O-(3-hydroxy)propyl-rapamycin, and 40-O-2-(2-hydroxy)ethoxyethyl-rapamycin, or any prodrugs, metabolites, analogs, congeners, derivatives, salts or their combinations.
Some invention embodiments comprise a drug or drug combination, and some require a drug or combination of drugs. Of the drugs specifically listed above, some invention embodiments exclude a single or any combination of these drugs.
Some embodiments comprise polymers combined with other polymers in multilayer arrangements. For example, one polymer can under- or over-lay another polymer such as a polymer coated on a device, a medical device, an implantable medical device, or a stent. The polymer can be used neat in this regard, or it can first be mixed with another polymer.
Examples of implantable devices useful in the present invention include self-expandable stents, balloon-expandable stents, and stent-grafts. The underlying structure of the device can be of virtually any design. The device can comprise a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316 L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium, and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Of course, one of ordinary skill in the art recognizes that the invention method is only useful for medical devices that use a crimping step in their production.
Various, specialized tests are used to assay the integrity of a drug eluting stent coating. In all of them, completed units are tested which have been though all stent-catheter assembly processes, including crimping and any heat-pressure processes. One test is inspection of the coated stents by scanning electron microscopy. This can be done on the completed units by cutting the stent-balloon section from the catheter, or the stent can be removed from the catheter by dry expansion in air or wet expansion in aqueous solution. Under SEM, the fraction of compromised coating surface area can be estimated. Compromised coating is coating that has been deformed, torn, or removed. When this fraction of surface area exceeds 5-10%, the drug-release rate properties, and total drug content can be affected. Another measure of coating integrity, which is tied to crimping damage, is the number and size of particles shed when the stent is expanded in aqueous solution. The stent is deployed in a solution of previously filtered water and the particles shed are counted by one of several available particle-counting instruments. Example instruments would be those produced by Malvern that work by light scattering, instruments that work by light obscuration, such as the Hiac-Royco, or the Coulter counter which works by electrical conductivity. Elevated numbers, and sizes, of particles shed are indicative of coating failure, which is affected by crimping damage either in the form of coating pieces that are completely shorn off, or cracks in the coating which propagated during stent expansion to liberate particles. Yet another approach to measuring the effects of coating crimping damage is by acute thrombogenicity testing, one example of which is that detailed by Sukavaneshvar et al. ASIAO Journal, Aug. 11, 2000, p 301 and ASIAO Journal, Jul. 5, 2000, p M393, which approach subjected stents deployed in tubing to a flow of bovine blood in which the platelets have been radiolabeled. Accumulation of platelets and thrombus is a measure of the acute thrombogenicity. The effect of coating cracks and defect can be compared to uncoated stents, or to stents where the coatings have fewer, or no cracks and coating defects.
EXAMPLES Example 1 Used to Make Stents for FIGS. 1&2
A first composition was prepared by mixing the following components:
  • (a) 2.0 mass % of poly(ethylene-co-vinyl alcohol) (EVAL) EC-151A and
  • (b) the balance, dimethylacetamide
The first composition was applied onto the surface of bare 13 mm TETRA stents (available from Guidant Corporation), which were first pre-expanded by passing them over a 0.071 inch, tapered mandrel. Coating was sprayed and dried to form a primer layer. A spray coater was used having a 0.046 fan nozzle maintained at about 60 C with a feed pressure 2.5 psi (0.17 atm) and an atomization pressure of about 15 psi (1.02 atm). Coating was applied at 10 μg per pass, in between which the stent was dried for 10 seconds in a flowing air stream at 60 C. Approximately 70 μg of wet coating was applied. The stents were baked at 140 C for one hour, yielding a primer layer composed of approximately 50 μg of EVAL.
A simulated reservoir layer was applied onto the primer layer, using the same spraying technique, equipment, and formulation used for the applying the primer. In this case, approximately 340 μg of wet coating is applied, followed by drying, e.g., baking at 50 C for about two hours, yielding about 300 μg of simulated drug-polymer reservoir layer.
A second composition can be prepared by mixing the following components:
  • (a) 2.0 mass % of Elast-Eon 80A and
  • (b) the balance dimethylacetamide.
The second composition can be applied onto the dried simulated drug reservoir layer to form a topcoat layer. Using the same spraying technique and equipment used for applying the simulated drug reservoir layer. Approximately 340 μg of wet topcoat is applied followed by baking at 80 C for two hours, yielding a 300 μg Elast-Eon 80A topcoat layer.
Using a sliding wedge crimper, the stents were crimped onto 13 mm Tetra catheters (available from Guidant Corporation). The stents were expanded in deionized water at 37 C with a balloon deployment pressure of 12 atm. Examination by SEM yielded FIGS. 1 &2.
Example 2 Used to Make Stents for FIG. 3
A first composition was prepared by mixing the following component
  • (a) 4.0 mass % of poly(ethylene-co-vinyl alcohol) (EVAL) EC-151A and
  • (b) the balance, an 80/20 weight blend of dimethylacetamide and pentane.
The first composition was applied onto the surface of bare 13 mm TETRA stents (available from Guidant Corporation), which were first pre-expanded by passing them over a 0.071 inch, tapered mandrel. Coating was sprayed and dried to form a primer layer. A spray coater was having a 0.046 fan nozzle maintained at about 60 C with a feed pressure 2.5 psi (0.17 atm) and an atomization pressure of about 15 psi (1.02 atm). Coating was applied at 10 μg per pass, in between which the stent was dried for 10 seconds in a flowing air stream at 60 C. Approximately 65 μg of wet coating was applied. The stents were baked at 140 C for one hour, yielding a primer layer composed of approximately 60 μg of EVAL.
A simulated reservoir layer was applied onto the primer layer, using the same spraying technique, equipment, and formulation used for the applying the primer. In this case approximately 340 μg of wet coating is applied, followed by drying, e.g., baking at 80 C for about two hours, yielding about 315 μg of a simulated drug-polymer reservoir layer.
A second composition can be prepared by mixing the following components:
  • (a) 2.0 mass % of Solef 21508 and
  • (b) the balance a 50/25/25, by weight, blend of acetone, cyclohexanone, and AMS Defluxer.
AMS Defluxer is a blend of dichloropentafluoropropanes and methanol available from Tech Spray Inc. of Amarillo Tex.
The second composition can be applied onto the dried simulated drug reservoir layer to form a topcoat layer. Using the same spraying technique and equipment used for applying the simulated drug reservoir layer. Approximately 345 μg of wet topcoat is applied followed by baking at 50 C for two hours, yielding a 325 μg Solef 21508 topcoat layer.
Using a sliding wedge crimper, the stents were crimped onto 13 mm Tetra catheters (available from Guidant Corporation). After this, they were subjected to a heat and pressure process wherein the balloon was restrained by a sheath, air pressure was applied to the catheter, and heat was applied to the balloon. Units were packaged and sterilized by electron beam radiation at a dose of 35 KGy. The stent coating performance was evaluated in an apparatus where a guiding catheter was connected to flexible silicone tubing embedded in a block with three gradual 90-degree bends. Deionized water at 37 C was recirculated through the guiding catheter. The stents were passed through a rotating hemostatic valve attached to the guiding catheter, through the guiding catheter, through the tortuous silicone tubing, and deployed at a pressure of 12 atmospheres. After the stents were removed from the tubing, examination by SEM yielded FIGS. 3 & 4.
Example 3 Used to make the Stent Shown in FIG. 10
Stents are laser cut from polymer tubing, then crimped to the desired diameter. A sliding wedge style heated crimper is used. The stents are supported on a wire mandrel during the crimping process.
Parameters:
Tubing material: 100% poly(L-lactide)
Tubing OD: 0.084″
Tubing ID: 0.070″
Pre-heat temp: 30 C.
Pre-heat time: 30 seconds
Crimp temperature: 30 C.
Descent time: 3-5 seconds
Mandrel diameter: 0.031″
Post crimp dwell time: 99.9 seconds
Number of crimp cycles: 1
Appropriate standards for the measurement of durometer hardness are ASTM D2240 or ISO868.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from the embodiments of this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of the embodiments of this invention. Additionally, various embodiments have been described above. For convenience's sake, combinations of aspects composing invention embodiments have been listed in such a way that one of ordinary skill in the art may read them exclusive of each other when they are not necessarily intended to be exclusive. But a recitation of an aspect for one embodiment is meant to disclose its use in all embodiments in which that aspect can be incorporated without undue experimentation. In like manner, a recitation of an aspect as composing part of an embodiment is a tacit recognition that a supplementary embodiment exists that specifically excludes that aspect. All patents, test procedures, and other documents cited in this specification are fully incorporated by reference to the extent that this material is consistent with this specification and for all jurisdictions in which such incorporation is permitted.
Moreover, some embodiments recite ranges. When this is done, it is meant to disclose the ranges as a range, and to disclose each and every point within the range, including end points. For those embodiments that disclose a specific value or condition for an aspect, supplementary embodiments exist that are otherwise identical, but that specifically exclude the value or the conditions for the aspect.

Claims (8)

What is claimed is:
1. A method of making a medical device comprising:
providing a stent cut from a tubing made of a polymer combination comprising poly(L-lactide);
positioning the stent loosely over a catheter; and
crimping the positioned stent to secure the stent to a the catheter, wherein the crimping reduces the diameter of the stent,;
wherein the temperature of the stent substrate during the crimping is at a temperature between 10° C. below less than the conventionally measured glass transition temperature for poly(L-lactide) (Tg) and below greater than or equal to 10° C. less than Tg.
2. The method of claim 1, wherein the method further comprises annealing the stent at a second temperature after securing the stent to the catheter.
3. The method of claim 1, wherein the temperature is between 5° C. below Tg and below less than Tg and greater than or equal to 5° C. less than Tg.
4. The method of claim 1, wherein the temperature of the stent during crimping is adjusted by thermal contact with a heat source.
5. The method of claim 1, wherein the crimping comprises applying radial compression pressure to the stent to reduce the diameter.
6. The method of claim 1, wherein the temperature is between 2° C. below Tg and below less than Tg and greater than or equal to 2° C. less than Tg.
7. The method of claim 1, wherein the polymer combination is poly(L-lactide).
8. The method of claim 1, wherein the polymer combination is selected from a group consisting of: a mixture of more than one polymer, one polymer, and a copolymerization of more than one polymer.
US14/074,543 2003-12-01 2013-11-07 Temperature controlled crimping Expired - Fee Related USRE45744E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/074,543 USRE45744E1 (en) 2003-12-01 2013-11-07 Temperature controlled crimping

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/725,698 US20050118344A1 (en) 2003-12-01 2003-12-01 Temperature controlled crimping
US10/957,022 US8052912B2 (en) 2003-12-01 2004-10-01 Temperature controlled crimping
US14/074,543 USRE45744E1 (en) 2003-12-01 2013-11-07 Temperature controlled crimping

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/957,022 Reissue US8052912B2 (en) 2003-12-01 2004-10-01 Temperature controlled crimping

Publications (1)

Publication Number Publication Date
USRE45744E1 true USRE45744E1 (en) 2015-10-13

Family

ID=34620322

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/725,698 Abandoned US20050118344A1 (en) 2003-06-25 2003-12-01 Temperature controlled crimping
US10/957,022 Ceased US8052912B2 (en) 2003-12-01 2004-10-01 Temperature controlled crimping
US13/846,859 Abandoned US20130333193A1 (en) 2003-06-25 2013-03-18 Temperature controlled crimping
US14/074,543 Expired - Fee Related USRE45744E1 (en) 2003-12-01 2013-11-07 Temperature controlled crimping

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/725,698 Abandoned US20050118344A1 (en) 2003-06-25 2003-12-01 Temperature controlled crimping
US10/957,022 Ceased US8052912B2 (en) 2003-12-01 2004-10-01 Temperature controlled crimping
US13/846,859 Abandoned US20130333193A1 (en) 2003-06-25 2013-03-18 Temperature controlled crimping

Country Status (4)

Country Link
US (4) US20050118344A1 (en)
AT (1) ATE492390T1 (en)
DE (1) DE602004030716D1 (en)
ES (1) ES2356466T3 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10010653B2 (en) * 2016-02-05 2018-07-03 Abbott Cardiovascular Systems Inc. Methods for increasing coating strength to improve scaffold crimping yield
US10232147B2 (en) 2011-05-27 2019-03-19 Abbott Cardiovascular Systems Inc. Method for assembling a scaffold-balloon catheter
US10660773B2 (en) 2017-02-14 2020-05-26 Abbott Cardiovascular Systems Inc. Crimping methods for thin-walled scaffolds
US10967556B2 (en) 2018-06-11 2021-04-06 Abbott Cardiovascular Systems Inc. Uniform expansion of thin-walled scaffolds

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU716005B2 (en) 1995-06-07 2000-02-17 Cook Medical Technologies Llc Implantable medical device
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US7208010B2 (en) 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US6241762B1 (en) 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US7179289B2 (en) * 1998-03-30 2007-02-20 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US7682647B2 (en) * 1999-09-03 2010-03-23 Advanced Cardiovascular Systems, Inc. Thermal treatment of a drug eluting implantable medical device
US7807211B2 (en) * 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US20070032853A1 (en) 2002-03-27 2007-02-08 Hossainy Syed F 40-O-(2-hydroxy)ethyl-rapamycin coated stent
DK1328213T3 (en) 2000-10-16 2005-11-28 Conor Medsystems Inc Expandable medical device for delivery of a useful agent
US8632845B2 (en) * 2000-12-28 2014-01-21 Abbott Cardiovascular Systems Inc. Method of drying bioabsorbable coating over stents
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US7842083B2 (en) 2001-08-20 2010-11-30 Innovational Holdings, Llc. Expandable medical device with improved spatial distribution
US6863683B2 (en) 2001-09-19 2005-03-08 Abbott Laboratoris Vascular Entities Limited Cold-molding process for loading a stent onto a stent delivery system
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7226978B2 (en) 2002-05-22 2007-06-05 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US20090093875A1 (en) * 2007-05-01 2009-04-09 Abbott Laboratories Drug eluting stents with prolonged local elution profiles with high local concentrations and low systemic concentrations
ATE526038T1 (en) 2003-03-28 2011-10-15 Innovational Holdings Llc IMPLANTABLE MEDICAL DEVICE WITH CONTINUOUS MEDIUM CONCENTRATION DISTANCE
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
WO2007120442A2 (en) 2003-07-25 2007-10-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
EP1648298A4 (en) 2003-07-25 2010-01-13 Dexcom Inc Oxygen enhancing membrane systems for implantable devices
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
ATE480761T1 (en) 2003-12-05 2010-09-15 Dexcom Inc CALIBRATION METHODS FOR A CONTINUOUSLY WORKING ANALYTICAL SENSOR
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
WO2009048462A1 (en) 2007-10-09 2009-04-16 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US20050208093A1 (en) 2004-03-22 2005-09-22 Thierry Glauser Phosphoryl choline coating compositions
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
WO2006127694A2 (en) 2004-07-13 2006-11-30 Dexcom, Inc. Analyte sensor
US20060020192A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US7971333B2 (en) * 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8597716B2 (en) 2009-06-23 2013-12-03 Abbott Cardiovascular Systems Inc. Methods to increase fracture resistance of a drug-eluting medical device
US8980300B2 (en) 2004-08-05 2015-03-17 Advanced Cardiovascular Systems, Inc. Plasticizers for coating compositions
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US7763198B2 (en) * 2005-04-12 2010-07-27 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US8099851B2 (en) * 2005-06-27 2012-01-24 Boston Scientific Scimed, Inc. Crimping and edge protection elements
US7621192B2 (en) * 2005-07-29 2009-11-24 Dynatek Laboratories, Inc. Medical device durability test apparatus having an integrated particle counter and method of use
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US7526849B2 (en) * 2005-10-07 2009-05-05 Boston Scientific Scimed, Inc. Stent loader
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US7998404B2 (en) * 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US8685430B1 (en) 2006-07-14 2014-04-01 Abbott Cardiovascular Systems Inc. Tailored aliphatic polyesters for stent coatings
EP3047860A1 (en) 2006-07-20 2016-07-27 OrbusNeich Medical, Inc. Bioabsorbable polymeric composition for a medical device
US7959942B2 (en) 2006-10-20 2011-06-14 Orbusneich Medical, Inc. Bioabsorbable medical device with coating
EP2073754A4 (en) 2006-10-20 2012-09-26 Orbusneich Medical Inc Bioabsorbable polymeric composition and medical device background
US8099849B2 (en) * 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US20200037874A1 (en) 2007-05-18 2020-02-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US10155881B2 (en) * 2007-05-30 2018-12-18 Abbott Cardiovascular Systems Inc. Substituted polycaprolactone for coating
WO2008154312A1 (en) 2007-06-08 2008-12-18 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US7812941B2 (en) * 2007-06-15 2010-10-12 Abbott Cardiovascular Systems Inc. Systems and methods for the inspection of cylinders
US8003157B2 (en) 2007-06-15 2011-08-23 Abbott Cardiovascular Systems Inc. System and method for coating a stent
US9737638B2 (en) 2007-06-20 2017-08-22 Abbott Cardiovascular Systems, Inc. Polyester amide copolymers having free carboxylic acid pendant groups
US20090004243A1 (en) 2007-06-29 2009-01-01 Pacetti Stephen D Biodegradable triblock copolymers for implantable devices
US8046897B2 (en) 2007-09-28 2011-11-01 Abbott Cardiovascular Systems Inc. Method and apparatus for stent retention on a balloon catheter
US9814553B1 (en) 2007-10-10 2017-11-14 Abbott Cardiovascular Systems Inc. Bioabsorbable semi-crystalline polymer for controlling release of drug from a coating
US20090104241A1 (en) * 2007-10-23 2009-04-23 Pacetti Stephen D Random amorphous terpolymer containing lactide and glycolide
US20090306120A1 (en) * 2007-10-23 2009-12-10 Florencia Lim Terpolymers containing lactide and glycolide
US8642062B2 (en) * 2007-10-31 2014-02-04 Abbott Cardiovascular Systems Inc. Implantable device having a slow dissolving polymer
US20090163985A1 (en) * 2007-12-19 2009-06-25 Vipul Dave Method of Retaining a Polymeric Stent on an Expansion Member
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US20090247855A1 (en) * 2008-03-28 2009-10-01 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8128983B2 (en) * 2008-04-11 2012-03-06 Abbott Cardiovascular Systems Inc. Coating comprising poly(ethylene glycol)-poly(lactide-glycolide-caprolactone) interpenetrating network
US20090297584A1 (en) * 2008-04-18 2009-12-03 Florencia Lim Biosoluble coating with linear over time mass loss
US8916188B2 (en) * 2008-04-18 2014-12-23 Abbott Cardiovascular Systems Inc. Block copolymer comprising at least one polyester block and a poly (ethylene glycol) block
US20090285873A1 (en) * 2008-04-18 2009-11-19 Abbott Cardiovascular Systems Inc. Implantable medical devices and coatings therefor comprising block copolymers of poly(ethylene glycol) and a poly(lactide-glycolide)
US8697113B2 (en) * 2008-05-21 2014-04-15 Abbott Cardiovascular Systems Inc. Coating comprising a terpolymer comprising caprolactone and glycolide
US8042251B2 (en) * 2008-05-21 2011-10-25 Boston Scientific Scimed, Inc. Systems and methods for heating and cooling during stent crimping
US8765040B2 (en) 2008-08-11 2014-07-01 Abbott Cardiovascular Systems Inc. Medical device fabrication process including strain induced crystallization with enhanced crystallization
US8642063B2 (en) 2008-08-22 2014-02-04 Cook Medical Technologies Llc Implantable medical device coatings with biodegradable elastomer and releasable taxane agent
EP2326944B1 (en) 2008-09-19 2020-08-19 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US20100152027A1 (en) * 2008-12-15 2010-06-17 Chevron U.S.A., Inc. Ionic liquid catalyst having a high molar ratio of aluminum to nitrogen
US8183337B1 (en) 2009-04-29 2012-05-22 Abbott Cardiovascular Systems Inc. Method of purifying ethylene vinyl alcohol copolymers for use with implantable medical devices
US8697110B2 (en) 2009-05-14 2014-04-15 Abbott Cardiovascular Systems Inc. Polymers comprising amorphous terpolymers and semicrystalline blocks
US8844113B2 (en) 2010-04-30 2014-09-30 Abbott Cardiovascular Systems, Inc. Methods for crimping a polymeric stent scaffold onto a delivery balloon
US8261423B2 (en) 2010-04-30 2012-09-11 Abbott Cardiovascular Systems Inc. Methods for crimping a polymeric stent onto a delivery balloon
US8752261B2 (en) 2010-07-07 2014-06-17 Abbott Cardiovascular Systems Inc. Mounting stents on stent delivery systems
US8539663B2 (en) 2010-08-23 2013-09-24 Abbott Cardiovascular Systems Inc. Reducing crimping damage to polymer scaffold
US8595913B2 (en) 2010-09-30 2013-12-03 Advanced Cardiovascular Systems, Inc. Stent crimping methods
US8496865B2 (en) 2010-10-15 2013-07-30 Abbott Cardiovascular Systems Inc. Method to minimize chain scission and monomer generation in processing of poly(L-lactide) stent
US8961848B2 (en) 2011-04-18 2015-02-24 Abbott Cardiovascular Systems Inc. Methods for increasing a retention force between a polymeric scaffold and a delivery balloon
US9199408B2 (en) 2012-04-03 2015-12-01 Abbott Cardiovascular Systems Inc. Uniform crimping and deployment methods for polymer scaffold
US20120290063A1 (en) 2011-05-09 2012-11-15 Abbott Cardiovascular Systems Inc. Method of Increasing Stent Retention of Bioabsorbable Scaffolding with a Sheath
US8752265B2 (en) 2011-05-13 2014-06-17 Abbott Cardiovascular Systems Inc. Methods for crimping a polymeric scaffold to a delivery balloon and achieving stable mechanical properties in the scaffold after crimping
US8632847B2 (en) 2011-07-13 2014-01-21 Abbott Cardiovascular Systems Inc. Methods of manufacture of bioresorbable and durable stents with grooved lumenal surfaces for enhanced re-endothelialization
US8726483B2 (en) 2011-07-29 2014-05-20 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US8574283B1 (en) * 2011-08-30 2013-11-05 Suraj Govind Kamat Deployment of stents within bifurcated vessels
US9724219B2 (en) 2012-10-04 2017-08-08 Abbott Cardiovascular Systems Inc. Method of uniform crimping and expansion of medical devices
ES2633354T3 (en) * 2012-10-25 2017-09-20 Arterial Remodeling Technologies S.A. Crimping procedure for bioreabsorbable stents
JP2017505817A (en) 2014-02-04 2017-02-23 アボット カーディオバスキュラー システムズ インコーポレイテッド Drug delivery scaffold or stent having a coating based on NOVOLIMUS and lactide so that the binding of NOVOLIMUS to the coating is minimized
US9381280B2 (en) 2014-06-13 2016-07-05 Abbott Cardiovascular Systems Inc. Plasticizers for a biodegradable scaffolding and methods of forming same
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
CN111246797A (en) 2017-10-24 2020-06-05 德克斯康公司 Pre-attached analyte sensors
US10555825B2 (en) 2017-11-09 2020-02-11 Abbott Cardiovascular Systems Inc. Rotation of a medical device during crimping
CN112239567B (en) * 2020-08-31 2021-08-31 中国科学院兰州化学物理研究所 Polycaprolactone/sodium alginate composite material and preparation method and application thereof
JP2024506889A (en) 2021-02-08 2024-02-15 ステンティット ベスローテン フェンノートシャップ Crimping of fibrous implants by heat treatment

Citations (511)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2072303A (en) 1932-10-18 1937-03-02 Chemische Forschungs Gmbh Artificial threads, bands, tubes, and the like for surgical and other purposes
US2386454A (en) 1940-11-22 1945-10-09 Bell Telephone Labor Inc High molecular weight linear polyester-amides
US3178399A (en) 1961-08-10 1965-04-13 Minnesota Mining & Mfg Fluorine-containing polymers and preparation thereof
US3773737A (en) 1971-06-09 1973-11-20 Sutures Inc Hydrolyzable polymers of amino acid and hydroxy acids
US3849514A (en) 1967-11-17 1974-11-19 Eastman Kodak Co Block polyester-polyamide copolymers
US3855638A (en) 1970-06-04 1974-12-24 Ontario Research Foundation Surgical prosthetic device with porous metal coating
US3929992A (en) 1972-09-29 1975-12-30 Ayerst Mckenna & Harrison Rapamycin and process of preparation
US4101984A (en) 1975-05-09 1978-07-25 Macgregor David C Cardiovascular prosthetic devices and implants with porous systems
US4151413A (en) 1977-06-29 1979-04-24 Texaco Inc. Method of measuring horizontal fluid flow behind casing in subsurface formations with sequential logging for interfering isotope compensation and increased measurement accuracy
US4226243A (en) 1979-07-27 1980-10-07 Ethicon, Inc. Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids
SU872531A1 (en) 1979-08-07 1981-10-15 Институт Физиологии Им.И.С.Бериташвили Ан Гсср Method of producing polyurethans
SU876663A1 (en) 1979-11-11 1981-10-30 Институт Физиологии Им. Академика И.С.Бериташвили Ан Гсср Method of producing polyarylates
SU905228A1 (en) 1980-03-06 1982-02-15 Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср Method for preparing thiourea
US4316885A (en) 1980-08-25 1982-02-23 Ayerst, Mckenna And Harrison, Inc. Acyl derivatives of rapamycin
US4321711A (en) 1978-10-18 1982-03-30 Sumitomo Electric Industries, Ltd. Vascular prosthesis
US4325903A (en) 1980-07-15 1982-04-20 Celanese Corporation Processing of melt processible liquid crystal polymer by control of thermal history
US4329383A (en) 1979-07-24 1982-05-11 Nippon Zeon Co., Ltd. Non-thrombogenic material comprising substrate which has been reacted with heparin
US4343931A (en) 1979-12-17 1982-08-10 Minnesota Mining And Manufacturing Company Synthetic absorbable surgical devices of poly(esteramides)
US4355426A (en) 1975-05-09 1982-10-26 Macgregor David C Porous flexible vascular graft
SU790725A1 (en) 1979-07-27 1983-01-23 Ордена Ленина Институт Элементоорганических Соединений Ан Ссср Process for preparing alkylaromatic polyimides
US4374669A (en) 1975-05-09 1983-02-22 Mac Gregor David C Cardiovascular prosthetic devices and implants with porous systems
SU1016314A1 (en) 1979-12-17 1983-05-07 Институт Физиологии Им.И.С.Бериташвили Process for producing polyester urethanes
SU811750A1 (en) 1979-08-07 1983-09-23 Институт Физиологии Им.С.И.Бериташвили Bis-bicarbonates of aliphatic diols as monomers for preparing polyurethanes and process for producing the same
US4529792A (en) 1979-12-17 1985-07-16 Minnesota Mining And Manufacturing Company Process for preparing synthetic absorbable poly(esteramides)
US4611051A (en) 1985-12-31 1986-09-09 Union Camp Corporation Novel poly(ester-amide) hot-melt adhesives
SU1293518A1 (en) 1985-04-11 1987-02-28 Тбилисский зональный научно-исследовательский и проектный институт типового и экспериментального проектирования жилых и общественных зданий Installation for testing specimen of cross-shaped structure
US4650803A (en) 1985-12-06 1987-03-17 University Of Kansas Prodrugs of rapamycin
US4656242A (en) 1985-06-07 1987-04-07 Henkel Corporation Poly(ester-amide) compositions
US4693721A (en) 1984-10-17 1987-09-15 Paul Ducheyne Porous flexible metal fiber material for surgical implantation
US4729871A (en) 1985-06-21 1988-03-08 Hiroshi Kawaguchi Process for preparing porous metal plate
US4733665A (en) 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
JPS63160645U (en) 1987-04-09 1988-10-20
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4816339A (en) 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
EP0323042A1 (en) 1987-12-09 1989-07-05 FISONS plc Process to macrocyclic compounds
US4882168A (en) 1986-09-05 1989-11-21 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
WO1990001969A1 (en) 1988-08-24 1990-03-08 Slepian Marvin J Biodegradable polymeric endoluminal sealing
US4931287A (en) 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
US4941870A (en) 1986-11-10 1990-07-17 Ube-Nitto Kasei Co., Ltd. Method for manufacturing a synthetic vascular prosthesis
US4977901A (en) 1988-11-23 1990-12-18 Minnesota Mining And Manufacturing Company Article having non-crosslinked crystallized polymer coatings
JPH0314516Y2 (en) 1986-09-16 1991-03-29
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
WO1991012846A1 (en) 1990-02-26 1991-09-05 Slepian Marvin J Method and apparatus for treatment of tubular organs
US5059211A (en) 1987-06-25 1991-10-22 Duke University Absorbable vascular stent
EP0475230A1 (en) 1990-09-11 1992-03-18 Research Corporation Technologies, Inc. Methods of conjugating actinomycin D
US5100992A (en) 1989-05-04 1992-03-31 Biomedical Polymers International, Ltd. Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
US5100883A (en) 1991-04-08 1992-03-31 American Home Products Corporation Fluorinated esters of rapamycin
US5102876A (en) 1991-05-07 1992-04-07 American Home Products Corporation Reduction products of rapamycin
US5112457A (en) 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5118677A (en) 1991-05-20 1992-06-02 American Home Products Corporation Amide esters of rapamycin
US5118678A (en) 1991-04-17 1992-06-02 American Home Products Corporation Carbamates of rapamycin
US5120727A (en) 1991-05-29 1992-06-09 American Home Products Corporation Rapamycin dimers
US5120842A (en) 1991-04-01 1992-06-09 American Home Products Corporation Silyl ethers of rapamycin
US5120725A (en) 1991-05-29 1992-06-09 American Home Products Corporation Bicyclic rapamycins
US5133742A (en) 1990-06-15 1992-07-28 Corvita Corporation Crack-resistant polycarbonate urethane polymer prostheses
JPH04215768A (en) 1990-02-08 1992-08-06 Pfizer Hospital Prod Group Inc Expansion type stent
US5138051A (en) 1991-08-07 1992-08-11 American Home Products Corporation Rapamycin analogs as immunosuppressants and antifungals
US5151413A (en) 1991-11-06 1992-09-29 American Home Products Corporation Rapamycin acetals as immunosuppressant and antifungal agents
US5162333A (en) 1991-09-11 1992-11-10 American Home Products Corporation Aminodiesters of rapamycin
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US5163958A (en) 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
US5165919A (en) 1988-03-28 1992-11-24 Terumo Kabushiki Kaisha Medical material containing covalently bound heparin and process for its production
US5169851A (en) 1991-08-07 1992-12-08 American Home Products Corporation Rapamycin analog as immunosuppressants and antifungals
US5219980A (en) 1992-04-16 1993-06-15 Sri International Polymers biodegradable or bioerodiable into amino acids
US5221740A (en) 1992-01-16 1993-06-22 American Home Products Corporation Oxepane isomers of rapamycin useful as immunosuppressive agents
US5258389A (en) 1992-11-09 1993-11-02 Merck & Co., Inc. O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives
US5258020A (en) 1990-09-14 1993-11-02 Michael Froix Method of using expandable polymeric stent with memory
US5272012A (en) 1989-06-23 1993-12-21 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
DE4224401A1 (en) 1992-07-21 1994-01-27 Pharmatech Gmbh New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd.
EP0514406B1 (en) 1990-01-30 1994-03-02 Akzo Nobel N.V. Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances
US5292516A (en) 1990-05-01 1994-03-08 Mediventures, Inc. Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5298260A (en) 1990-05-01 1994-03-29 Mediventures, Inc. Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5300295A (en) 1990-05-01 1994-04-05 Mediventures, Inc. Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
US5306501A (en) 1990-05-01 1994-04-26 Mediventures, Inc. Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
US5306786A (en) 1990-12-21 1994-04-26 U C B S.A. Carboxyl group-terminated polyesteramides
WO1994009760A1 (en) 1992-11-05 1994-05-11 Massachusetts Institute Of Technology Biodegradable polymers for cell transplantation
WO1994013268A1 (en) 1992-12-04 1994-06-23 Kaplan Aaron V Method and device for treating and enlarging body lumens
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5328471A (en) 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5330768A (en) 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
US5370682A (en) 1993-04-26 1994-12-06 Meadox Medicals, Inc. Solid woven tubular prosthesis
US5370684A (en) 1986-12-12 1994-12-06 Sorin Biomedica S.P.A. Prosthesis of polymeric material coated with biocompatible carbon
US5380299A (en) 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5383928A (en) 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
WO1995010989A1 (en) 1993-10-19 1995-04-27 Scimed Life Systems, Inc. Intravascular stent pump
WO1995011817A1 (en) 1993-10-27 1995-05-04 Hoffman & Co. Elektrokohle Ges. Mbh Rubbing contact component and process for connecting an electrical connection lead to a rubbing contact component
US5417981A (en) 1992-04-28 1995-05-23 Terumo Kabushiki Kaisha Thermoplastic polymer composition and medical devices made of the same
EP0301856B1 (en) 1987-07-28 1995-05-24 Biomeasure, Inc. Delivery system
US5419760A (en) 1993-01-08 1995-05-30 Pdt Systems, Inc. Medicament dispensing stent for prevention of restenosis of a blood vessel
US5433909A (en) 1992-03-13 1995-07-18 Atrium Medical Corporation Method of making controlled porosity expanded polytetrafluoroethylene products
US5437834A (en) 1992-10-08 1995-08-01 Kyocera Corporation Porous living body repairing member, and a method of imparting elasticity to it
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5447724A (en) 1990-05-17 1995-09-05 Harbor Medical Devices, Inc. Medical device polymer
US5455040A (en) 1990-07-26 1995-10-03 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
US5462990A (en) 1990-10-15 1995-10-31 Board Of Regents, The University Of Texas System Multifunctional organic polymers
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5468253A (en) 1993-01-21 1995-11-21 Ethicon, Inc. Elastomeric medical device
WO1995031104A1 (en) 1994-05-13 1995-11-23 The General Hospital Corporation Inhibition of insulin-induced adiposis
EP0687008A2 (en) 1994-06-06 1995-12-13 Motorola, Inc. Method and apparatus for improving interfacial adhesion between a polymer and a metal
WO1995024929A3 (en) 1994-03-15 1995-12-28 Univ Brown Res Found Polymeric gene delivery system
US5480599A (en) 1992-04-09 1996-01-02 Huels Aktiengesellschaft Method of manufacturing foam beads
US5485496A (en) 1994-09-22 1996-01-16 Cornell Research Foundation, Inc. Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties
JPH0821306B2 (en) 1985-07-19 1996-03-04 イートン コーポレイション Circuit breaker
EP0401747B1 (en) 1989-06-06 1996-03-13 Roy Calne Use of rapamycin and derivatives and prodrugs thereof in the manufacture of a medicament for inhibiting transplant rejection in mammals
JPH0833718B2 (en) 1989-12-04 1996-03-29 三菱電機株式会社 Television screen display
WO1996013273A1 (en) 1994-10-26 1996-05-09 Novartis Ag Pharmaceutical compositions
US5516781A (en) 1992-01-09 1996-05-14 American Home Products Corporation Method of treating restenosis with rapamycin
US5516881A (en) 1994-08-10 1996-05-14 Cornell Research Foundation, Inc. Aminoxyl-containing radical spin labeling in polymers and copolymers
US5522894A (en) 1984-12-14 1996-06-04 Draenert; Klaus Bone replacement material made of absorbable beads
US5527907A (en) 1993-11-19 1996-06-18 Abbott Laboratories Macrolide immunomodulators
US5527337A (en) 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
WO1996028115A1 (en) 1995-03-10 1996-09-19 Impra, Inc. Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
US5563145A (en) 1994-12-07 1996-10-08 American Home Products Corporation Rapamycin 42-oximes and hydroxylamines
EP0414632B1 (en) 1989-07-24 1996-10-23 Sandoz Ltd. Cyclosporin derivatives
US5571187A (en) 1992-02-27 1996-11-05 Zimmer, Inc. Implant having a metallic porous surface
US5575818A (en) 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US5578073A (en) 1994-09-16 1996-11-26 Ramot Of Tel Aviv University Thromboresistant surface treatment for biomaterials
US5583139A (en) 1993-11-19 1996-12-10 Abbott Laboratories Marcolide immunomodulators
US5584877A (en) 1993-06-25 1996-12-17 Sumitomo Electric Industries, Ltd. Antibacterial vascular prosthesis and surgical suture
WO1996040140A1 (en) 1995-06-07 1996-12-19 Guilford Pharmaceuticals Inc. Inhibitors of rotamase enzyme activity
WO1996040174A1 (en) 1995-06-07 1996-12-19 The American National Red Cross Supplemented and unsupplemented tissue sealants, methods of their production and use
US5605693A (en) 1991-10-18 1997-02-25 Seare, Jr.; William J. Methods of making a porous device
US5605696A (en) 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US5607463A (en) 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5610241A (en) 1996-05-07 1997-03-11 Cornell Research Foundation, Inc. Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
WO1997003654A3 (en) 1995-07-14 1997-03-20 Sandoz Ltd Pharmaceutical compositions
WO1997010011A1 (en) 1995-09-11 1997-03-20 Schneider (Usa) Inc. Drug release stent coating process
JPH0985028A (en) 1995-09-25 1997-03-31 Sintokogio Ltd Filter for treating carbon particle in exhaust gas and carbon particle device using the filter
US5628730A (en) 1990-06-15 1997-05-13 Cortrak Medical, Inc. Phoretic balloon catheter with hydrogel coating
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
US5632779A (en) 1989-07-25 1997-05-27 Smith & Nephew, Inc. Zirconium oxide and zirconium nitride coated vascular grafts
US5644020A (en) 1993-08-12 1997-07-01 Bayer Aktiengesellschaft Thermoplastically processible and biodegradable aliphatic polyesteramides
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
US5651174A (en) * 1992-03-19 1997-07-29 Medtronic, Inc. Intravascular radially expandable stent
US5658995A (en) 1995-11-27 1997-08-19 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
WO1997029793A1 (en) 1996-02-13 1997-08-21 Massachusetts Institute Of Technology Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
WO1997031020A1 (en) 1996-02-22 1997-08-28 The General Hospital Corporation METHODS AND COMPOSITIONS FOR ENHANCING CELLULAR RESPONSE TO TGF-β LIGANDS
US5665772A (en) 1992-10-09 1997-09-09 Sandoz Ltd. O-alkylated rapamycin derivatives and their use, particularly as immunosuppressants
US5667767A (en) 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5670558A (en) 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
WO1997045105A1 (en) 1996-05-24 1997-12-04 Angiotech Pharmaceuticals, Inc. Compositions and methods for treating or preventing diseases of body passageways
WO1997046590A1 (en) 1996-06-03 1997-12-11 Gore Enterprise Holdings, Inc. Materials and methods for the immobilization of bioactive species onto polymeric substrates
US5697967A (en) 1992-03-19 1997-12-16 Medtronic, Inc. Drug eluting stent
US5700286A (en) 1994-12-13 1997-12-23 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5702754A (en) 1995-02-22 1997-12-30 Meadox Medicals, Inc. Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US5707385A (en) 1994-11-16 1998-01-13 Advanced Cardiovascular Systems, Inc. Drug loaded elastic membrane and method for delivery
US5707867A (en) 1993-10-27 1998-01-13 The Regents Of The University Of California Antiviral compounds
US5711958A (en) 1996-07-11 1998-01-27 Life Medical Sciences, Inc. Methods for reducing or eliminating post-surgical adhesion formation
US5713949A (en) 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
WO1998004256A1 (en) 1996-07-30 1998-02-05 Novartis Nutrition Ag Amino acid compositions and use thereof in immunosuppression
US5716981A (en) 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
US5721131A (en) 1987-03-06 1998-02-24 United States Of America As Represented By The Secretary Of The Navy Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells
US5723219A (en) 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
WO1998002441A3 (en) 1996-07-12 1998-03-05 Ariad Pharma Inc Non immunosuppressive antifungal rapalogs
WO1998008463A1 (en) 1996-08-30 1998-03-05 Helix Medical Corporation Medical devices having microbial resistant material properties
US5725567A (en) 1990-02-28 1998-03-10 Medtronic, Inc. Method of making a intralumenal drug eluting prosthesis
WO1998009523A1 (en) 1996-09-05 1998-03-12 Massachusetts Institute Of Technology Compositions and methods for treatment of neurological disorders and neurodegenerative diseases
WO1998010747A1 (en) 1996-09-12 1998-03-19 Galena As Immunomodulatory formulation
WO1998017331A1 (en) 1995-06-07 1998-04-30 Cook Incorporated Silver implantable medical device
US5746691A (en) 1997-06-06 1998-05-05 Global Therapeutics, Inc. Method for polishing surgical stents
US5746998A (en) 1994-06-24 1998-05-05 The General Hospital Corporation Targeted co-polymers for radiographic imaging
US5755771A (en) 1994-11-03 1998-05-26 Divysio Solutions Ulc Expandable stent and method of delivery of same
US5759192A (en) 1994-11-28 1998-06-02 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
US5759205A (en) 1994-01-21 1998-06-02 Brown University Research Foundation Negatively charged polymeric electret implant
WO1998023228A1 (en) 1996-11-25 1998-06-04 Alza Corporation Directional drug delivery stent
US5766710A (en) 1994-06-27 1998-06-16 Advanced Cardiovascular Systems, Inc. Biodegradable mesh and film stent
US5769883A (en) 1991-10-04 1998-06-23 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5783657A (en) 1996-10-18 1998-07-21 Union Camp Corporation Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids
WO1998032398A1 (en) 1997-01-28 1998-07-30 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
US5788979A (en) 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
US5788558A (en) 1995-11-13 1998-08-04 Localmed, Inc. Apparatus and method for polishing lumenal prostheses
US5795318A (en) 1993-04-30 1998-08-18 Scimed Life Systems, Inc. Method for delivering drugs to a vascular site
US5798355A (en) 1995-06-07 1998-08-25 Gpi Nil Holdings, Inc. Inhibitors of rotamase enzyme activity
WO1998036784A1 (en) 1997-02-20 1998-08-27 Cook Incorporated Coated implantable medical device
US5800512A (en) 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US5800392A (en) 1995-01-23 1998-09-01 Emed Corporation Microporous catheter
WO1998038687A1 (en) 1997-02-28 1998-09-03 Elf Atochem North America, Inc. Copolymers of vinylidene fluoride and hexafluoropropylene having reduced extractable content and improved solution clarity
US5820917A (en) 1995-06-07 1998-10-13 Medtronic, Inc. Blood-contacting medical device and method
WO1998044922A1 (en) 1997-04-04 1998-10-15 Merck & Co., Inc. Somatostatin agonists
WO1998044921A1 (en) 1997-04-04 1998-10-15 Merck & Co., Inc. Somatostatin agonists
US5824048A (en) 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
US5824049A (en) 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US5830178A (en) 1996-10-11 1998-11-03 Micro Therapeutics, Inc. Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US5836965A (en) 1994-10-19 1998-11-17 Jendersee; Brad Stent delivery and deployment method
JPH10305105A (en) 1997-04-30 1998-11-17 Schneider Usa Inc Medicine release coating for medical tool
US5843172A (en) 1997-04-15 1998-12-01 Advanced Cardiovascular Systems, Inc. Porous medicated stent
US5846981A (en) 1993-05-28 1998-12-08 Gpi Nil Holdings Inc. Inhibitors of rotamase enzyme activity
US5849859A (en) 1992-03-27 1998-12-15 Novartis Ag Polyesters
US5854376A (en) 1995-03-09 1998-12-29 Sekisui Kaseihin Kogyo Kabushiki Kaisha Aliphatic ester-amide copolymer resins
US5856814A (en) 1995-08-02 1999-01-05 Canon Kk Driving method for display apparatus
US5858746A (en) 1992-04-20 1999-01-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5869127A (en) 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US5876433A (en) 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
US5877224A (en) 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5879398A (en) 1995-02-14 1999-03-09 Zimmer, Inc. Acetabular cup
US5879713A (en) 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
WO1999016386A1 (en) 1997-09-30 1999-04-08 Scimed Life Systems, Inc. Stent drug delivery system
WO1999019473A1 (en) 1997-10-16 1999-04-22 Board Of Regents, The University Of Texas System Transgenic animal models for cardiac hypertrophy and uses thereof
US5898029A (en) 1994-04-12 1999-04-27 The John Hopkins University Direct influences on nerve growth of agents that interact with immunophilins in combination with neurotrophic factors
US5897911A (en) 1997-08-11 1999-04-27 Advanced Cardiovascular Systems, Inc. Polymer-coated stent structure
US5902875A (en) 1997-01-28 1999-05-11 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
US5905168A (en) 1992-12-11 1999-05-18 Rhone-Poulenc Chimie Process for treating a material comprising a polymer by hydrolysis
WO1999024036A1 (en) 1997-11-07 1999-05-20 Aberdeen University Skin penetration enhancing components
WO1999001118A9 (en) 1997-07-01 1999-05-20 Atherogenics Inc Antioxidant enhancement of therapy for hyperproliferative conditions
US5910564A (en) 1995-12-07 1999-06-08 Th. Goldschmidt Ag Polyamino acid ester copolymers
US5912253A (en) 1993-12-17 1999-06-15 Novartis Ag Rapamycin derivatives
US5914387A (en) 1997-01-28 1999-06-22 United States Surgical Corporation Polyesteramides with amino acid-derived groups alternating with alpha-hydroxyacid-derived groups and surgical articles made therefrom
US5925720A (en) 1995-04-19 1999-07-20 Kazunori Kataoka Heterotelechelic block copolymers and process for producing the same
US5928279A (en) 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
US5932243A (en) 1993-05-27 1999-08-03 Novartis Ag Galenical formulations
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
WO1999038546A1 (en) 1998-01-30 1999-08-05 Advanced Cardiovascular Systems, Inc. Hydrophilic coating for an intracorporeal medical device
WO1999039720A1 (en) 1998-02-04 1999-08-12 Applied Genetics Incorporated Dermatics Compositions and methods for modulating cytokine release in response to genotoxic agents
WO1999042104A1 (en) 1998-02-23 1999-08-26 Fujisawa Pharmaceutical Co., Ltd. Use of macrolide compounds for treating glaucoma
US5945029A (en) 1996-09-03 1999-08-31 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Ceramic monofilament or multifilament fiber and processes for their production and use
WO1999044584A1 (en) 1998-03-06 1999-09-10 Novartis Ag Emulsion preconcentrates containing cyclosporin or a macrolide
US5955509A (en) 1996-05-01 1999-09-21 Board Of Regents, The University Of Texas System pH dependent polymer micelles
US5958385A (en) 1994-09-28 1999-09-28 Lvmh Recherche Polymers functionalized with amino acids or amino acid derivatives, method for synthesizing same, and use thereof as surfactants in cosmetic compositions, particularly nail varnishes
US5962007A (en) 1997-12-19 1999-10-05 Indigo Medical, Inc. Use of a multi-component coil medical construct
US5961914A (en) 1996-05-03 1999-10-05 Milliken & Company Method of thermoforming polyolefin resin
US5968091A (en) * 1996-03-26 1999-10-19 Corvita Corp. Stents and stent grafts having enhanced hoop strength and methods of making the same
US5971954A (en) 1990-01-10 1999-10-26 Rochester Medical Corporation Method of making catheter
JPH11299901A (en) 1998-04-16 1999-11-02 Johnson & Johnson Medical Kk Stent and its manufacture
US5980972A (en) 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
US5980564A (en) 1997-08-01 1999-11-09 Schneider (Usa) Inc. Bioabsorbable implantable endoprosthesis with reservoir
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US5985890A (en) 1995-06-09 1999-11-16 Novartis Ag Rapamycin derivatives
US5994444A (en) 1997-10-16 1999-11-30 Medtronic, Inc. Polymeric material that releases nitric oxide
WO1999060997A1 (en) 1998-05-22 1999-12-02 Hewlett Healthcare Limited Pharmaceutical compositions comprising an amphoteric surfactant an alkoxylated cetyl alcohol and a polar drug
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6001117A (en) 1998-03-19 1999-12-14 Indigo Medical, Inc. Bellows medical construct and apparatus and method for using same
WO1999044597A3 (en) 1998-03-06 1999-12-29 Fujisawa Pharmaceutical Co Use of macrolide compounds for the treatment of ards
US6010529A (en) 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US6011125A (en) 1998-09-25 2000-01-04 General Electric Company Amide modified polyesters
US6010530A (en) 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US6013621A (en) 1997-10-17 2000-01-11 The Rockfeller University Method of treating psychosis and/or hyperactivity
US6015815A (en) 1997-09-26 2000-01-18 Abbott Laboratories Tetrazole-containing rapamycin analogs with shortened half-lives
US6015541A (en) 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
WO2000002599A1 (en) 1998-07-08 2000-01-20 Advanced Biocompatible Coatings Inc. Biocompatible metallic stents with hydroxy methacrylate coating
US6027779A (en) 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
JP2000051367A (en) 1998-06-30 2000-02-22 Ethicon Inc Stent coating method
EP0982041A1 (en) 1998-08-21 2000-03-01 Medtronic Ave, Inc. Thromboresistant coating using silanes or siloxanes
US6033582A (en) 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US6034204A (en) 1997-08-08 2000-03-07 Basf Aktiengesellschaft Condensation products of basic amino acids with copolymerizable compounds and a process for their production
WO2000012147A1 (en) 1998-09-02 2000-03-09 Scimed Life Systems, Inc. Drug delivery device for stent
WO2000018446A1 (en) 1998-09-25 2000-04-06 Cathnet-Science S.A. Multi-layered sleeve for intravascular expandable device
US6051648A (en) 1995-12-18 2000-04-18 Cohesion Technologies, Inc. Crosslinked polymer compositions and methods for their use
US6051576A (en) 1994-01-28 2000-04-18 University Of Kentucky Research Foundation Means to achieve sustained release of synergistic drugs by conjugation
WO1999063981A3 (en) 1998-06-11 2000-04-20 Cerus Corp Use of alkylating compounds for inhibiting proliferation of arterial smooth muscle cells
US6054553A (en) 1996-01-29 2000-04-25 Bayer Ag Process for the preparation of polymers having recurring agents
US6056993A (en) 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US6056906A (en) 1996-09-25 2000-05-02 Medtronic, Inc. Method of making an intervascular catheter system for implanting a radially expandable stent within a body vessel
US6060451A (en) 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
US6060518A (en) 1996-08-16 2000-05-09 Supratek Pharma Inc. Polymer compositions for chemotherapy and methods of treatment using the same
US6066156A (en) 1999-03-11 2000-05-23 Advanced Cardiovascular Systems, Inc. Temperature activated adhesive for releasably attaching stents to balloons
WO2000032234A1 (en) 1998-12-03 2000-06-08 Novartis Ag Topical compositions comprising ascomycins
US6080488A (en) 1995-02-01 2000-06-27 Schneider (Usa) Inc. Process for preparation of slippery, tenaciously adhering, hydrophilic polyurethane hydrogel coating, coated polymer and metal substrate materials, and coated medical devices
US6083534A (en) 1995-03-01 2000-07-04 Yeda Research And Development Co. Ltd. Pharmaceutical compositions for controlled release of soluble receptors
WO2000038703A1 (en) 1998-12-24 2000-07-06 R-Tech Ueno, Ltd. Agent for treating visual cell function disorder
WO2000038590A1 (en) 1998-12-23 2000-07-06 Stephen George Edward Barker Endoluminal stent
WO2000038754A1 (en) 1998-12-23 2000-07-06 Atrium Medical Corporation Self-expanding prosthesis with biocompatible coating
WO2000015208A3 (en) 1998-09-14 2000-07-13 Fujisawa Pharmaceutical Co New use of immunosupressants for mmp-mediated diseases
US6095817A (en) 1999-02-24 2000-08-01 Sulzer Calcitek Inc. Dental implant having multiple textured surfaces
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US6100346A (en) 1995-03-06 2000-08-08 Ethicon, Inc. Copolymers of polyoxaamides
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US6110188A (en) 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
US6113629A (en) 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
US6121027A (en) 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US6120847A (en) 1999-01-08 2000-09-19 Scimed Life Systems, Inc. Surface treatment method for stent coating
US6120491A (en) 1997-11-07 2000-09-19 The State University Rutgers Biodegradable, anionic polymers derived from the amino acid L-tyrosine
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US6120904A (en) 1995-02-01 2000-09-19 Schneider (Usa) Inc. Medical device coated with interpenetrating network of hydrogel polymers
US6120788A (en) 1997-10-16 2000-09-19 Bioamide, Inc. Bioabsorbable triglycolic acid poly(ester-amide)s
EP1036562A1 (en) 1997-12-03 2000-09-20 Fujisawa Pharmaceutical Co., Ltd. Soft-pellet drug and process for the preparation thereof
WO2000056247A1 (en) 1999-03-19 2000-09-28 Scimed Life Systems, Inc. Polymer coated stent
WO2000009085A3 (en) 1998-08-14 2000-09-28 West Pharm Serv Drug Res Ltd Oral formulation containing cyclosporin
WO2000057818A1 (en) 1999-03-29 2000-10-05 Cardio Synopsis Inc. Stent with an integrated film coating for deployment throughout the body
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US6139573A (en) 1997-03-05 2000-10-31 Scimed Life Systems, Inc. Conformal laminate stent device
WO2000033878A3 (en) 1998-12-07 2000-11-02 Novartis Ag Stabilization of macrolides
US6143037A (en) 1996-06-12 2000-11-07 The Regents Of The University Of Michigan Compositions and methods for coating medical devices
US6143354A (en) 1999-02-08 2000-11-07 Medtronic Inc. One-step method for attachment of biomolecules to substrate surfaces
US6143370A (en) 1997-08-27 2000-11-07 Northeastern University Process for producing polymer coatings with various porosities and surface areas
WO2000066122A1 (en) 1999-04-30 2000-11-09 Sucampo Ag Use of macrolide compounds for the treatment of dry eye
WO2000042949A3 (en) 1999-01-22 2000-11-30 Gore Enterprise Holdings Inc A biliary stent-graft
WO2000071052A1 (en) 1999-05-19 2000-11-30 Bernd Starck Highly flexible coating for stents and/or stent grafts and/or vascular stent prostheses
WO2000032238A9 (en) 1998-12-03 2000-12-07 Scimed Life Systems Inc Stent having drug crystals thereon
WO2000024390A9 (en) 1998-10-23 2000-12-07 Univ British Columbia Method and composition for modulating amyloidosis
US6159978A (en) 1997-05-28 2000-12-12 Aventis Pharmaceuticals Product, Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6165212A (en) 1993-10-21 2000-12-26 Corvita Corporation Expandable supportive endoluminal grafts
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US6172167B1 (en) 1996-06-28 2001-01-09 Universiteit Twente Copoly(ester-amides) and copoly(ester-urethanes)
WO2001001890A1 (en) 1999-07-02 2001-01-11 Boston Scientific Limited Stent coating
US6177523B1 (en) 1999-07-14 2001-01-23 Cardiotech International, Inc. Functionalized polyurethanes
US6180632B1 (en) 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
WO1999061040A9 (en) 1998-05-22 2001-02-01 Boys Town Nat Res Hospital USE OF α1β1 INTEGRIN RECEPTOR INHIBITORS AND TGF-β1 INHIBITORS IN THE TREATMENT OF KIDNEY DISEASE
WO2001014387A1 (en) 1999-08-24 2001-03-01 Ariad Gene Therapeutics, Inc. 28-epirapalogs
WO2001015751A1 (en) 1999-09-01 2001-03-08 Bioxid Oy Novel multilayered material bearing a biologically active agent and the preparation thereof
WO2001017577A1 (en) 1999-09-03 2001-03-15 Advanced Cardiovascular Systems, Inc. A porous prosthesis and a method of depositing substances into the pores
US6203551B1 (en) 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US6206915B1 (en) 1998-09-29 2001-03-27 Medtronic Ave, Inc. Drug storing and metering stent
US6211249B1 (en) 1997-07-11 2001-04-03 Life Medical Sciences, Inc. Polyester polyether block copolymers
US6214901B1 (en) 1998-04-27 2001-04-10 Surmodics, Inc. Bioactive agent release coating
US6221102B1 (en) * 1983-12-09 2001-04-24 Endovascular Technologies, Inc. Intraluminal grafting system
US6228934B1 (en) 1998-06-09 2001-05-08 Metabolix, Inc. Methods and apparatus for the production of amorphous polymer suspensions
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
WO2000074665A3 (en) 1999-06-04 2001-05-17 Fujisawa Pharmaceutical Co New use of macrolide compounds for inducing chondrogenic differentiation
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6245753B1 (en) 1998-05-28 2001-06-12 Mediplex Corporation, Korea Amphiphilic polysaccharide derivatives
US6245760B1 (en) 1997-05-28 2001-06-12 Aventis Pharmaceuticals Products, Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US6251136B1 (en) 1999-12-08 2001-06-26 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
WO2001045763A1 (en) 1999-12-23 2001-06-28 Advanced Cardiovascular Systems, Inc. Biocomptabible coating
US6254632B1 (en) 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US20010007083A1 (en) 1999-12-29 2001-07-05 Roorda Wouter E. Device and active component for inhibiting formation of thrombus-inflammatory cell matrix
US6258371B1 (en) 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
WO2001049338A1 (en) 1999-12-30 2001-07-12 Li Wei Pin Controlled delivery of therapeutic agents by insertable medical devices
JP2001190687A (en) 2000-01-07 2001-07-17 Kawasumi Lab Inc Stent and stent graft
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US20010014717A1 (en) 1999-12-23 2001-08-16 Hossainy Syed F.A. Coating for implantable devices and a method of forming the same
US20010018469A1 (en) 1999-09-03 2001-08-30 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US6284788B1 (en) 1997-02-21 2001-09-04 Bayer Aktiengesellschaft Use of known agonists of the central cannabinoid receptor CB1
US6283947B1 (en) 1999-07-13 2001-09-04 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6283949B1 (en) 1999-12-27 2001-09-04 Advanced Cardiovascular Systems, Inc. Refillable implantable drug delivery pump
EP0953320A3 (en) 1998-04-30 2001-09-05 Medtronic, Inc. Medical device
US6287628B1 (en) 1999-09-03 2001-09-11 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6287337B1 (en) 1996-12-03 2001-09-11 Atrium Medical Corporation Multi-stage prosthesis
US6293959B1 (en) 1998-11-16 2001-09-25 Cordis Corporation Balloon catheter and stent delivery system having enhanced stent retention and method
US6299604B1 (en) 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
WO2001074414A1 (en) 2000-03-31 2001-10-11 Advanced Cardiovascular Systems, Inc. A biocompatible carrier containing actinomycin d and a method of forming the same
US20010029351A1 (en) 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
WO2001023395A3 (en) 1999-09-29 2001-10-25 American Home Prod Regioselective synthesis of rapamycin derivatives
WO2001087373A1 (en) 2000-05-12 2001-11-22 Cordis Corporation Delivery devices for treatment of vascular disease
WO2001087372A1 (en) 2000-05-12 2001-11-22 Cordis Corporation Drug combinations useful for prevention of restenosis
US20010046518A1 (en) 1998-08-14 2001-11-29 Amarpreet S. Sawhney Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6335029B1 (en) 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
WO2001051027A3 (en) 2000-01-11 2002-01-10 Intralytix Inc Polymer blends as biodegradable matrices for preparing biocomposites
US20020005206A1 (en) 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007215A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
WO2002003890A1 (en) 2000-07-06 2002-01-17 Biosurface Engineering Technologies, Inc. Drug diffusion coatings, applications and methods
US20020007213A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007214A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020009604A1 (en) 1999-12-22 2002-01-24 Zamora Paul O. Plasma-deposited coatings, devices and methods
US20020035774A1 (en) 1999-09-22 2002-03-28 Scimed Life Systems, Inc. A Method and Apparatus for Contracting, Loading or Crimping Self-Expanding and Balloon Expandable Stent Devices
US20020038145A1 (en) 2000-06-05 2002-03-28 Jang G. David Intravascular stent with increasing coating retaining capacity
WO2002026139A1 (en) 2000-09-29 2002-04-04 Cordis Corporation Coated medical devices
US6368658B1 (en) 1999-04-19 2002-04-09 Scimed Life Systems, Inc. Coating medical devices using air suspension
US6368346B1 (en) * 1999-06-03 2002-04-09 American Medical Systems, Inc. Bioresorbable stent
US6379381B1 (en) 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6379379B1 (en) 1998-05-05 2002-04-30 Scimed Life Systems, Inc. Stent with smooth ends
US20020051730A1 (en) 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US6384046B1 (en) 1996-03-27 2002-05-07 Novartis Ag Use of 40-O-(2-hydroxy)ethylrapamycin for treatment of restenosis and other disorders
US6387379B1 (en) 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US6395326B1 (en) 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
WO2000064506A9 (en) 1999-04-23 2002-06-06 Agion Technologies L L C Stent having antimicrobial agent
US20020071822A1 (en) 2000-07-27 2002-06-13 Uhrich Kathryn E. Therapeutic polyesters and polyamides
US6406739B1 (en) 2000-01-12 2002-06-18 Alcon Universal Ltd. Coating compositions and methods for reducing edge glare in implantable ophthalmic lenses
US20020077693A1 (en) 2000-12-19 2002-06-20 Barclay Bruce J. Covered, coiled drug delivery stent and method
US20020082679A1 (en) 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
US20020082685A1 (en) 2000-12-22 2002-06-27 Motasim Sirhan Apparatus and methods for controlled substance delivery from implanted prostheses
US20020087123A1 (en) 2001-01-02 2002-07-04 Hossainy Syed F.A. Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices
US20020091433A1 (en) 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US6419692B1 (en) 1999-02-03 2002-07-16 Scimed Life Systems, Inc. Surface protection method for stents and balloon catheters for drug delivery
US20020094440A1 (en) 2000-09-29 2002-07-18 Llanos Gerard H. Coatings for medical devices
US20020100998A1 (en) 1997-12-24 2002-08-01 Hock Mark R. Plastic closure with compression molded barrier liner
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US20020120326A1 (en) 2000-12-22 2002-08-29 Gene Michal Ethylene-carboxyl copolymers as drug delivery matrices
US20020123801A1 (en) 2000-12-28 2002-09-05 Pacetti Stephen D. Diffusion barrier layer for implantable devices
US20020127263A1 (en) 2001-02-27 2002-09-12 Wenda Carlyle Peroxisome proliferator-acitvated receptor gamma ligand eluting medical device
US6451373B1 (en) 2000-08-04 2002-09-17 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
US20020142039A1 (en) 2001-03-30 2002-10-03 Advanced Cardiovascular Systems, Inc. Controlled morphologies in polymer drug for release of drugs from polymer films
US20020143382A1 (en) 2001-03-29 2002-10-03 Luuk Hijlkema Thermal regulation of a coated work-piece during the reconfiguration of the coated work-piece
US20020155212A1 (en) 2001-04-24 2002-10-24 Hossainy Syed Faiyaz Ahmed Coating for a stent and a method of forming the same
US6475235B1 (en) 1999-11-16 2002-11-05 Iowa-India Investments Company, Limited Encapsulated stent preform
US20020165608A1 (en) 2001-05-07 2002-11-07 Llanos Gerard H. Local drug delivery devices and methods for maintaining the drug coatings thereon
US20020176849A1 (en) 2001-02-09 2002-11-28 Endoluminal Therapeutics, Inc. Endomural therapy
FR2785812B1 (en) 1998-11-16 2002-11-29 Commissariat Energie Atomique BIOACTIVE PROSTHESES, IN PARTICULAR WITH IMMUNOSUPPRESSIVE PROPERTIES, ANTISTENOSIS AND ANTITHROMBOSIS, AND THEIR MANUFACTURE
US20020183581A1 (en) 2001-05-31 2002-12-05 Yoe Brandon James Radiation or drug delivery source with activity gradient to minimize edge effects
US20020188037A1 (en) 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
US20020188277A1 (en) 2001-05-18 2002-12-12 Roorda Wouter E. Medicated stents for the treatment of vascular disease
US6494862B1 (en) 1999-07-13 2002-12-17 Advanced Cardiovascular Systems, Inc. Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
WO2002102283A1 (en) 2001-06-19 2002-12-27 Advanced Cardiovascular Systems, Inc. Method and system for securing a coated stent to a balloon catheter
US20030004141A1 (en) 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
US6503538B1 (en) 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US6503556B2 (en) 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
EP1273314A1 (en) 2001-07-06 2003-01-08 Terumo Kabushiki Kaisha Stent
US6506437B1 (en) 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
WO2002026162A3 (en) 2000-09-26 2003-01-16 Advanced Cardiovascular System A method of loading a substance onto an implantable device
WO2002056790A3 (en) 2000-12-22 2003-01-23 Avantec Vascular Corp Delivery of therapeutic capable agents
WO2002034311A3 (en) 2000-10-26 2003-01-30 Advanced Cardiovascular System Selective coating of medical devices
US20030028243A1 (en) 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US20030028244A1 (en) 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US20030032767A1 (en) 2001-02-05 2003-02-13 Yasuhiro Tada High-strength polyester-amide fiber and process for producing the same
US20030036794A1 (en) 1995-06-07 2003-02-20 Cook Incorporated Coated implantable medical device
US20030039689A1 (en) 2001-04-26 2003-02-27 Jianbing Chen Polymer-based, sustained release drug delivery system
US20030040790A1 (en) 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US6527863B1 (en) 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US6527801B1 (en) 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6530951B1 (en) 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US6530950B1 (en) 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
WO2003022323A1 (en) 2001-09-07 2003-03-20 Advanced Cardiovascular Systems, Inc. Coating for reducing the rate of release of drugs from stents
US20030060877A1 (en) 2001-09-25 2003-03-27 Robert Falotico Coated medical devices for the treatment of vascular disease
US20030059520A1 (en) 2001-09-27 2003-03-27 Yung-Ming Chen Apparatus for regulating temperature of a composition and a method of coating implantable devices
US6540776B2 (en) 2000-12-28 2003-04-01 Advanced Cardiovascular Systems, Inc. Sheath for a prosthesis and methods of forming the same
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US6544223B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
US6544582B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
US6544543B1 (en) 2000-12-27 2003-04-08 Advanced Cardiovascular Systems, Inc. Periodic constriction of vessels to treat ischemic tissue
US6547819B2 (en) 1994-07-09 2003-04-15 Ernst Peter Strecker Endoprosthesis percutaneously implantable in the body of a patient
US20030073961A1 (en) 2001-09-28 2003-04-17 Happ Dorrie M. Medical device containing light-protected therapeutic agent and a method for fabricating thereof
US6555157B1 (en) 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
US20030083646A1 (en) 2000-12-22 2003-05-01 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US20030083739A1 (en) 2001-09-24 2003-05-01 Robert Cafferata Rational drug therapy device and methods
WO2003035131A1 (en) 2001-09-27 2003-05-01 Advanced Cardiovascular Systems, Inc. A rate-reducing membrane for release of an agent
US6558733B1 (en) 2000-10-26 2003-05-06 Advanced Cardiovascular Systems, Inc. Method for etching a micropatterned microdepot prosthesis
US6565659B1 (en) 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US20030097088A1 (en) 2001-11-12 2003-05-22 Pacetti Stephen Dirk Coatings for drug delivery devices
US20030099712A1 (en) 2001-11-26 2003-05-29 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
US6572644B1 (en) 2001-06-27 2003-06-03 Advanced Cardiovascular Systems, Inc. Stent mounting device and a method of using the same to coat a stent
US6574497B1 (en) 2000-12-22 2003-06-03 Advanced Cardiovascular Systems, Inc. MRI medical device markers utilizing fluorine-19
US6585926B1 (en) 2000-08-31 2003-07-01 Advanced Cardiovascular Systems, Inc. Method of manufacturing a porous balloon
US6585755B2 (en) 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
US6585765B1 (en) 2000-06-29 2003-07-01 Advanced Cardiovascular Systems, Inc. Implantable device having substances impregnated therein and a method of impregnating the same
JP2003210570A (en) 2002-01-18 2003-07-29 Olympus Optical Co Ltd Implant material having living body active layer and method for covering living body active layer on implant basic material
US20030144727A1 (en) 2002-01-31 2003-07-31 Rosenthal Arthur L. Medical device for delivering biologically active material
US6605154B1 (en) 2001-05-31 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent mounting device
US6610087B1 (en) 1999-11-16 2003-08-26 Scimed Life Systems, Inc. Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance
US6623448B2 (en) 2001-03-30 2003-09-23 Advanced Cardiovascular Systems, Inc. Steerable drug delivery device
US6625486B2 (en) 2001-04-11 2003-09-23 Advanced Cardiovascular Systems, Inc. Method and apparatus for intracellular delivery of an agent
US6623764B1 (en) 1996-12-20 2003-09-23 Aventis Pasteur Limited Biodegradable targetable microparticle delivery system
WO2003080147A1 (en) 2002-03-20 2003-10-02 Advanced Cardiovascular Systems, Inc. Biodegradable hydrophobic polymer for stents
US6629350B2 (en) 2000-06-08 2003-10-07 Tom Motsenbocker Stent crimping apparatus and method
WO2003082368A1 (en) 2002-03-27 2003-10-09 Advanced Cardiovascular Systems, Inc. 40-o-(2-hydroxy)ethyl-rapamycin coated stent
US20030208254A1 (en) 2002-05-03 2003-11-06 James Shortt Method and apparatus for mounting a stent onto a stent delivery system
US6645135B1 (en) 2001-03-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance
US6645195B1 (en) 2001-01-05 2003-11-11 Advanced Cardiovascular Systems, Inc. Intraventricularly guided agent delivery system and method of use
US6652581B1 (en) 1998-07-07 2003-11-25 Boston Scientific Scimed, Inc. Medical device with porous surface for controlled drug release and method of making the same
WO2003097015A1 (en) 2002-05-15 2003-11-27 Brown University Research Foundation Short chain polymer for enhancing the bioadhesiveness of polymers on mucosal membrane
US6656216B1 (en) 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
US6656506B1 (en) 2001-05-09 2003-12-02 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
WO2003090818A3 (en) 2002-04-24 2003-12-04 Sun Biomedical Ltd Drug-delivery endovascular stent and method for treating restenosis
US6660034B1 (en) 2001-04-30 2003-12-09 Advanced Cardiovascular Systems, Inc. Stent for increasing blood flow to ischemic tissues and a method of using the same
US6663880B1 (en) 2001-11-30 2003-12-16 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery
US6673385B1 (en) 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US6673154B1 (en) 2001-06-28 2004-01-06 Advanced Cardiovascular Systems, Inc. Stent mounting device to coat a stent
WO2002074194A3 (en) 2001-03-16 2004-01-08 Sts Biopolymers Inc Stent with medicated multi-layer hydrid polymer coating
WO2004009145A1 (en) 2002-07-19 2004-01-29 Advanced Cardiovascular Systems, Inc. Purified polymers for coatings of implantable medical devices
US20040029952A1 (en) 1999-09-03 2004-02-12 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US6695920B1 (en) 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US6706013B1 (en) 2001-06-29 2004-03-16 Advanced Cardiovascular Systems, Inc. Variable length drug delivery catheter
US20040054104A1 (en) 2002-09-05 2004-03-18 Pacetti Stephen D. Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US6709514B1 (en) 2001-12-28 2004-03-23 Advanced Cardiovascular Systems, Inc. Rotary coating apparatus for coating implantable medical devices
US20040063805A1 (en) 2002-09-19 2004-04-01 Pacetti Stephen D. Coatings for implantable medical devices and methods for fabrication thereof
US6716444B1 (en) 2000-09-28 2004-04-06 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US20040072922A1 (en) 2002-10-09 2004-04-15 Hossainy Syed F.A. Rate limiting barriers for implantable medical devices
EP0665023B1 (en) 1993-07-21 2004-04-21 Otsuka Pharmaceutical Factory, Inc. Medical material and process for producing the same
WO2004032987A1 (en) 2002-10-11 2004-04-22 Cartificial A/S Medical device comprising a bio-compatible polymeric product with a layered structure
US20040086542A1 (en) 1999-12-23 2004-05-06 Hossainy Syed F.A. Coating for implantable devices and a method of forming the same
US6740040B1 (en) 2001-01-30 2004-05-25 Advanced Cardiovascular Systems, Inc. Ultrasound energy driven intraventricular catheter to treat ischemia
WO2004000383A3 (en) 2002-06-21 2004-05-27 Advanced Cardiovascular System Polyacrylates coatings for implantable medical devices
US6743462B1 (en) 2001-05-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating implantable devices
US6749626B1 (en) 2000-03-31 2004-06-15 Advanced Cardiovascular Systems, Inc. Actinomycin D for the treatment of vascular disease
EP1064942B1 (en) 1998-03-26 2004-06-16 Fujisawa Pharmaceutical Co., Ltd. Sustained release preparation of a macrolide
US6758859B1 (en) 2000-10-30 2004-07-06 Kenny L. Dang Increased drug-loading and reduced stress drug delivery device
US6764505B1 (en) 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
EP1440699A1 (en) 2003-01-24 2004-07-28 Medtronic Vascular, Inc. Stent with epoxy primer coating
EP1470830A1 (en) 2003-04-25 2004-10-27 Medtronic Vascular, Inc. Drug-polymer coated stent with polysulfone and styrenic block copolymer
US20040220665A1 (en) 1999-09-03 2004-11-04 Hossainy Syed F.A. Thermal treatment of a drug eluting implantable medical device
US20050037052A1 (en) 2003-08-13 2005-02-17 Medtronic Vascular, Inc. Stent coating with gradient porosity
US20050038134A1 (en) 1997-08-18 2005-02-17 Scimed Life Systems, Inc. Bioresorbable hydrogel compositions for implantable prostheses
US20050038497A1 (en) 2003-08-11 2005-02-17 Scimed Life Systems, Inc. Deformation medical device without material deformation
US20050043786A1 (en) 2003-08-18 2005-02-24 Medtronic Ave, Inc. Methods and apparatus for treatment of aneurysmal tissue
US6861088B2 (en) 2002-03-28 2005-03-01 Boston Scientific Scimed, Inc. Method for spray-coating a medical device having a tubular wall such as a stent
US20050049693A1 (en) 2003-08-25 2005-03-03 Medtronic Vascular Inc. Medical devices and compositions for delivering biophosphonates to anatomical sites at risk for vascular disease
US20050049694A1 (en) 2003-08-07 2005-03-03 Medtronic Ave. Extrusion process for coating stents
US20050055044A1 (en) 2003-09-09 2005-03-10 Scimed Life Systems, Inc. Lubricious coatings for medical device
US20050055078A1 (en) 2003-09-04 2005-03-10 Medtronic Vascular, Inc. Stent with outer slough coating
US20050054774A1 (en) 2003-09-09 2005-03-10 Scimed Life Systems, Inc. Lubricious coating
US6865810B2 (en) 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
US20050060020A1 (en) 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
US20050065593A1 (en) 2003-09-19 2005-03-24 Medtronic Vascular, Inc. Delivery of therapeutics to treat aneurysms
US20050065545A1 (en) 2003-09-23 2005-03-24 Scimed Life Systems, Inc. External activation of vaso-occlusive implants
US20050065501A1 (en) 2003-09-23 2005-03-24 Scimed Life Systems, Inc. Energy activated vaso-occlusive devices
US20050064088A1 (en) 2003-09-24 2005-03-24 Scimed Life Systems, Inc Ultrasonic nozzle for coating a medical appliance and method for using an ultrasonic nozzle to coat a medical appliance
EP1023879B1 (en) 1999-01-29 2005-04-06 Medtronic, Inc. Implantable medical device with enhanced biocompatibility and biostability
US20050074406A1 (en) 2003-10-03 2005-04-07 Scimed Life Systems, Inc. Ultrasound coating for enhancing visualization of medical device in ultrasound images
US20050074545A1 (en) 2003-09-29 2005-04-07 Medtronic Vascular, Inc. Stent with improved drug loading capacity
US20050075714A1 (en) 2003-09-24 2005-04-07 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US6878160B2 (en) 2001-03-27 2005-04-12 Scimed Life Systems, Inc. Stent with controlled expansion
US20050079274A1 (en) 2003-10-14 2005-04-14 Maria Palasis Method for coating multiple stents
US20050084515A1 (en) 2003-03-20 2005-04-21 Medtronic Vascular, Inc. Biocompatible controlled release coatings for medical devices and related methods
US6887485B2 (en) 2000-05-10 2005-05-03 Medtronic Vascular, Inc. Nitric oxide-releasing metallic medical devices
US6887270B2 (en) 2002-02-08 2005-05-03 Boston Scientific Scimed, Inc. Implantable or insertable medical device resistant to microbial growth and biofilm formation
US6890546B2 (en) 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US20050113903A1 (en) 2002-01-31 2005-05-26 Scimed Life Systems, Inc. Medical device for delivering biologically active material
JP2004523275A5 (en) 2001-12-18 2005-05-26
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US20050143752A1 (en) 2001-09-19 2005-06-30 Abbott Laboratories Vascular Entities Limited Cold-molding process for loading a stent onto a stent delivery system
US20050233062A1 (en) 1999-09-03 2005-10-20 Hossainy Syed F Thermal treatment of an implantable medical device
US20050238686A1 (en) 1999-12-23 2005-10-27 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
EP0978288A4 (en) 1997-04-11 2006-07-12 Astellas Pharma Inc Medicinal composition
US20070289117A1 (en) 2006-06-19 2007-12-20 Bin Huang Methods for improving stent retention on a balloon catheter
US7316148B2 (en) 2005-02-15 2008-01-08 Boston Scientific Scimed, Inc. Protective sheet loader
US7591844B2 (en) 2000-09-29 2009-09-22 Cordis Corporation Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US8123793B2 (en) 2008-09-10 2012-02-28 Boston Scientific Scimed, Inc. Pre-crimp balloon inflation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US208254A (en) * 1878-09-24 Improvement in windmills
US35774A (en) * 1862-07-01 Improvement in windmills
US143382A (en) * 1873-09-30 Improvement in bracelet-fastenings
US5680840A (en) * 1996-11-08 1997-10-28 Mandella; Michael J. Multi-crankshaft variable stroke engine
US7519844B2 (en) * 2005-06-22 2009-04-14 Rambus, Inc. PVT drift compensation
JP4215768B2 (en) 2005-11-29 2009-01-28 株式会社日研工作所 Brake mechanism of rotary table

Patent Citations (634)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2072303A (en) 1932-10-18 1937-03-02 Chemische Forschungs Gmbh Artificial threads, bands, tubes, and the like for surgical and other purposes
US2386454A (en) 1940-11-22 1945-10-09 Bell Telephone Labor Inc High molecular weight linear polyester-amides
US3178399A (en) 1961-08-10 1965-04-13 Minnesota Mining & Mfg Fluorine-containing polymers and preparation thereof
US3849514A (en) 1967-11-17 1974-11-19 Eastman Kodak Co Block polyester-polyamide copolymers
US3855638A (en) 1970-06-04 1974-12-24 Ontario Research Foundation Surgical prosthetic device with porous metal coating
US3773737A (en) 1971-06-09 1973-11-20 Sutures Inc Hydrolyzable polymers of amino acid and hydroxy acids
US3929992A (en) 1972-09-29 1975-12-30 Ayerst Mckenna & Harrison Rapamycin and process of preparation
US4101984A (en) 1975-05-09 1978-07-25 Macgregor David C Cardiovascular prosthetic devices and implants with porous systems
US4459252A (en) 1975-05-09 1984-07-10 Macgregor David C Method of forming a small bore flexible vascular graft involving eluting solvent-elutable particles from a polymeric tubular article
US4374669A (en) 1975-05-09 1983-02-22 Mac Gregor David C Cardiovascular prosthetic devices and implants with porous systems
US4355426A (en) 1975-05-09 1982-10-26 Macgregor David C Porous flexible vascular graft
US4151413A (en) 1977-06-29 1979-04-24 Texaco Inc. Method of measuring horizontal fluid flow behind casing in subsurface formations with sequential logging for interfering isotope compensation and increased measurement accuracy
US4321711A (en) 1978-10-18 1982-03-30 Sumitomo Electric Industries, Ltd. Vascular prosthesis
US4329383A (en) 1979-07-24 1982-05-11 Nippon Zeon Co., Ltd. Non-thrombogenic material comprising substrate which has been reacted with heparin
SU790725A1 (en) 1979-07-27 1983-01-23 Ордена Ленина Институт Элементоорганических Соединений Ан Ссср Process for preparing alkylaromatic polyimides
US4226243A (en) 1979-07-27 1980-10-07 Ethicon, Inc. Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids
SU872531A1 (en) 1979-08-07 1981-10-15 Институт Физиологии Им.И.С.Бериташвили Ан Гсср Method of producing polyurethans
SU811750A1 (en) 1979-08-07 1983-09-23 Институт Физиологии Им.С.И.Бериташвили Bis-bicarbonates of aliphatic diols as monomers for preparing polyurethanes and process for producing the same
SU876663A1 (en) 1979-11-11 1981-10-30 Институт Физиологии Им. Академика И.С.Бериташвили Ан Гсср Method of producing polyarylates
US4529792A (en) 1979-12-17 1985-07-16 Minnesota Mining And Manufacturing Company Process for preparing synthetic absorbable poly(esteramides)
SU1016314A1 (en) 1979-12-17 1983-05-07 Институт Физиологии Им.И.С.Бериташвили Process for producing polyester urethanes
US4343931A (en) 1979-12-17 1982-08-10 Minnesota Mining And Manufacturing Company Synthetic absorbable surgical devices of poly(esteramides)
SU905228A1 (en) 1980-03-06 1982-02-15 Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср Method for preparing thiourea
US4325903A (en) 1980-07-15 1982-04-20 Celanese Corporation Processing of melt processible liquid crystal polymer by control of thermal history
US4316885A (en) 1980-08-25 1982-02-23 Ayerst, Mckenna And Harrison, Inc. Acyl derivatives of rapamycin
US6221102B1 (en) * 1983-12-09 2001-04-24 Endovascular Technologies, Inc. Intraluminal grafting system
US4693721A (en) 1984-10-17 1987-09-15 Paul Ducheyne Porous flexible metal fiber material for surgical implantation
US5522894A (en) 1984-12-14 1996-06-04 Draenert; Klaus Bone replacement material made of absorbable beads
SU1293518A1 (en) 1985-04-11 1987-02-28 Тбилисский зональный научно-исследовательский и проектный институт типового и экспериментального проектирования жилых и общественных зданий Installation for testing specimen of cross-shaped structure
US4656242A (en) 1985-06-07 1987-04-07 Henkel Corporation Poly(ester-amide) compositions
US4729871A (en) 1985-06-21 1988-03-08 Hiroshi Kawaguchi Process for preparing porous metal plate
JPH0821306B2 (en) 1985-07-19 1996-03-04 イートン コーポレイション Circuit breaker
US4733665A (en) 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4650803A (en) 1985-12-06 1987-03-17 University Of Kansas Prodrugs of rapamycin
US4611051A (en) 1985-12-31 1986-09-09 Union Camp Corporation Novel poly(ester-amide) hot-melt adhesives
US4882168A (en) 1986-09-05 1989-11-21 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
JPH0314516Y2 (en) 1986-09-16 1991-03-29
US4941870A (en) 1986-11-10 1990-07-17 Ube-Nitto Kasei Co., Ltd. Method for manufacturing a synthetic vascular prosthesis
US5370684A (en) 1986-12-12 1994-12-06 Sorin Biomedica S.P.A. Prosthesis of polymeric material coated with biocompatible carbon
US5721131A (en) 1987-03-06 1998-02-24 United States Of America As Represented By The Secretary Of The Navy Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
JPS63160645U (en) 1987-04-09 1988-10-20
US6387379B1 (en) 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US4816339A (en) 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5306286A (en) 1987-06-25 1994-04-26 Duke University Absorbable stent
US5059211A (en) 1987-06-25 1991-10-22 Duke University Absorbable vascular stent
US5527337A (en) 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
EP0301856B1 (en) 1987-07-28 1995-05-24 Biomeasure, Inc. Delivery system
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
EP0323042A1 (en) 1987-12-09 1989-07-05 FISONS plc Process to macrocyclic compounds
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US5616338A (en) 1988-02-11 1997-04-01 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US5165919A (en) 1988-03-28 1992-11-24 Terumo Kabushiki Kaisha Medical material containing covalently bound heparin and process for its production
US4931287A (en) 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
WO1990001969A1 (en) 1988-08-24 1990-03-08 Slepian Marvin J Biodegradable polymeric endoluminal sealing
US4977901A (en) 1988-11-23 1990-12-18 Minnesota Mining And Manufacturing Company Article having non-crosslinked crystallized polymer coatings
US5163958A (en) 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
EP0396429B1 (en) 1989-05-04 1996-07-31 Biomedical Polymers International, Ltd. Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
US5100992A (en) 1989-05-04 1992-03-31 Biomedical Polymers International, Ltd. Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
EP0401747B1 (en) 1989-06-06 1996-03-13 Roy Calne Use of rapamycin and derivatives and prodrugs thereof in the manufacture of a medicament for inhibiting transplant rejection in mammals
US5272012A (en) 1989-06-23 1993-12-21 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
EP0414632B1 (en) 1989-07-24 1996-10-23 Sandoz Ltd. Cyclosporin derivatives
US5632779A (en) 1989-07-25 1997-05-27 Smith & Nephew, Inc. Zirconium oxide and zirconium nitride coated vascular grafts
JPH0833718B2 (en) 1989-12-04 1996-03-29 三菱電機株式会社 Television screen display
US5971954A (en) 1990-01-10 1999-10-26 Rochester Medical Corporation Method of making catheter
EP0514406B1 (en) 1990-01-30 1994-03-02 Akzo Nobel N.V. Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances
JPH04215768A (en) 1990-02-08 1992-08-06 Pfizer Hospital Prod Group Inc Expansion type stent
US5234456A (en) 1990-02-08 1993-08-10 Pfizer Hospital Products Group, Inc. Hydrophilic stent
US5328471A (en) 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
WO1991012846A1 (en) 1990-02-26 1991-09-05 Slepian Marvin J Method and apparatus for treatment of tubular organs
US5725567A (en) 1990-02-28 1998-03-10 Medtronic, Inc. Method of making a intralumenal drug eluting prosthesis
US5298260A (en) 1990-05-01 1994-03-29 Mediventures, Inc. Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5292516A (en) 1990-05-01 1994-03-08 Mediventures, Inc. Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5300295A (en) 1990-05-01 1994-04-05 Mediventures, Inc. Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
US5306501A (en) 1990-05-01 1994-04-26 Mediventures, Inc. Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
US5569463A (en) 1990-05-17 1996-10-29 Harbor Medical Devices, Inc. Medical device polymer
US5447724A (en) 1990-05-17 1995-09-05 Harbor Medical Devices, Inc. Medical device polymer
US5628730A (en) 1990-06-15 1997-05-13 Cortrak Medical, Inc. Phoretic balloon catheter with hydrogel coating
US5133742A (en) 1990-06-15 1992-07-28 Corvita Corporation Crack-resistant polycarbonate urethane polymer prostheses
US6060451A (en) 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
US5112457A (en) 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5455040A (en) 1990-07-26 1995-10-03 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
EP0475230A1 (en) 1990-09-11 1992-03-18 Research Corporation Technologies, Inc. Methods of conjugating actinomycin D
US5258020A (en) 1990-09-14 1993-11-02 Michael Froix Method of using expandable polymeric stent with memory
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US5607467A (en) 1990-09-14 1997-03-04 Froix; Michael Expandable polymeric stent with memory and delivery apparatus and method
US5462990A (en) 1990-10-15 1995-10-31 Board Of Regents, The University Of Texas System Multifunctional organic polymers
US5306786A (en) 1990-12-21 1994-04-26 U C B S.A. Carboxyl group-terminated polyesteramides
US5120842B1 (en) 1991-04-01 1993-07-06 A Failli Amedeo
US5120842A (en) 1991-04-01 1992-06-09 American Home Products Corporation Silyl ethers of rapamycin
US5100883A (en) 1991-04-08 1992-03-31 American Home Products Corporation Fluorinated esters of rapamycin
US5118678A (en) 1991-04-17 1992-06-02 American Home Products Corporation Carbamates of rapamycin
US5102876A (en) 1991-05-07 1992-04-07 American Home Products Corporation Reduction products of rapamycin
US5118677A (en) 1991-05-20 1992-06-02 American Home Products Corporation Amide esters of rapamycin
US5120727A (en) 1991-05-29 1992-06-09 American Home Products Corporation Rapamycin dimers
US5120725A (en) 1991-05-29 1992-06-09 American Home Products Corporation Bicyclic rapamycins
US5330768A (en) 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
US5169851A (en) 1991-08-07 1992-12-08 American Home Products Corporation Rapamycin analog as immunosuppressants and antifungals
US5138051A (en) 1991-08-07 1992-08-11 American Home Products Corporation Rapamycin analogs as immunosuppressants and antifungals
US5162333A (en) 1991-09-11 1992-11-10 American Home Products Corporation Aminodiesters of rapamycin
US6387124B1 (en) 1991-10-04 2002-05-14 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5769883A (en) 1991-10-04 1998-06-23 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US6869443B2 (en) 1991-10-04 2005-03-22 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5605693A (en) 1991-10-18 1997-02-25 Seare, Jr.; William J. Methods of making a porous device
US5151413A (en) 1991-11-06 1992-09-29 American Home Products Corporation Rapamycin acetals as immunosuppressant and antifungal agents
US5516781A (en) 1992-01-09 1996-05-14 American Home Products Corporation Method of treating restenosis with rapamycin
US5221740A (en) 1992-01-16 1993-06-22 American Home Products Corporation Oxepane isomers of rapamycin useful as immunosuppressive agents
US5344833A (en) 1992-01-16 1994-09-06 American Home Products Corporation Oxepane isomers of rapamycin useful as immunosuppressive agents
US5571187A (en) 1992-02-27 1996-11-05 Zimmer, Inc. Implant having a metallic porous surface
US5433909A (en) 1992-03-13 1995-07-18 Atrium Medical Corporation Method of making controlled porosity expanded polytetrafluoroethylene products
US5697967A (en) 1992-03-19 1997-12-16 Medtronic, Inc. Drug eluting stent
US5651174A (en) * 1992-03-19 1997-07-29 Medtronic, Inc. Intravascular radially expandable stent
US5849859A (en) 1992-03-27 1998-12-15 Novartis Ag Polyesters
US5480599A (en) 1992-04-09 1996-01-02 Huels Aktiengesellschaft Method of manufacturing foam beads
US5219980A (en) 1992-04-16 1993-06-15 Sri International Polymers biodegradable or bioerodiable into amino acids
US5858746A (en) 1992-04-20 1999-01-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5417981A (en) 1992-04-28 1995-05-23 Terumo Kabushiki Kaisha Thermoplastic polymer composition and medical devices made of the same
US5383928A (en) 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
DE4224401A1 (en) 1992-07-21 1994-01-27 Pharmatech Gmbh New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd.
US5437834A (en) 1992-10-08 1995-08-01 Kyocera Corporation Porous living body repairing member, and a method of imparting elasticity to it
US5492768A (en) 1992-10-08 1996-02-20 Kyocera Corporation Porous living body repairing member, and a method of imparting elasticity to it
US5665772A (en) 1992-10-09 1997-09-09 Sandoz Ltd. O-alkylated rapamycin derivatives and their use, particularly as immunosuppressants
WO1994009760A1 (en) 1992-11-05 1994-05-11 Massachusetts Institute Of Technology Biodegradable polymers for cell transplantation
US5258389A (en) 1992-11-09 1993-11-02 Merck & Co., Inc. O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives
WO1994013268A1 (en) 1992-12-04 1994-06-23 Kaplan Aaron V Method and device for treating and enlarging body lumens
US5905168A (en) 1992-12-11 1999-05-18 Rhone-Poulenc Chimie Process for treating a material comprising a polymer by hydrolysis
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5419760A (en) 1993-01-08 1995-05-30 Pdt Systems, Inc. Medicament dispensing stent for prevention of restenosis of a blood vessel
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
US5468253A (en) 1993-01-21 1995-11-21 Ethicon, Inc. Elastomeric medical device
US5607463A (en) 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5837008A (en) 1993-04-26 1998-11-17 Medtronic, Inc. Intravascular stent and method
US5776184A (en) 1993-04-26 1998-07-07 Medtronic, Inc. Intravasoular stent and method
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5824048A (en) 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
US5679400A (en) 1993-04-26 1997-10-21 Medtronic, Inc. Intravascular stent and method
EP0623354B1 (en) 1993-04-26 2002-10-02 Medtronic, Inc. Intravascular stents
US5624411A (en) 1993-04-26 1997-04-29 Medtronic, Inc. Intravascular stent and method
US5370682A (en) 1993-04-26 1994-12-06 Meadox Medicals, Inc. Solid woven tubular prosthesis
US5795318A (en) 1993-04-30 1998-08-18 Scimed Life Systems, Inc. Method for delivering drugs to a vascular site
US5932243A (en) 1993-05-27 1999-08-03 Novartis Ag Galenical formulations
US5846981A (en) 1993-05-28 1998-12-08 Gpi Nil Holdings Inc. Inhibitors of rotamase enzyme activity
US5584877A (en) 1993-06-25 1996-12-17 Sumitomo Electric Industries, Ltd. Antibacterial vascular prosthesis and surgical suture
US5716981A (en) 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
EP0665023B1 (en) 1993-07-21 2004-04-21 Otsuka Pharmaceutical Factory, Inc. Medical material and process for producing the same
US5644020A (en) 1993-08-12 1997-07-01 Bayer Aktiengesellschaft Thermoplastically processible and biodegradable aliphatic polyesteramides
US6027779A (en) 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
US5380299A (en) 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
WO1995010989A1 (en) 1993-10-19 1995-04-27 Scimed Life Systems, Inc. Intravascular stent pump
US5735897A (en) 1993-10-19 1998-04-07 Scimed Life Systems, Inc. Intravascular stent pump
US6165212A (en) 1993-10-21 2000-12-26 Corvita Corporation Expandable supportive endoluminal grafts
WO1995011817A1 (en) 1993-10-27 1995-05-04 Hoffman & Co. Elektrokohle Ges. Mbh Rubbing contact component and process for connecting an electrical connection lead to a rubbing contact component
US5707867A (en) 1993-10-27 1998-01-13 The Regents Of The University Of California Antiviral compounds
US5672605A (en) 1993-11-19 1997-09-30 Abbott Laboratories Macrolide immunomodulators
US5527907A (en) 1993-11-19 1996-06-18 Abbott Laboratories Macrolide immunomodulators
US5583139A (en) 1993-11-19 1996-12-10 Abbott Laboratories Marcolide immunomodulators
US5912253A (en) 1993-12-17 1999-06-15 Novartis Ag Rapamycin derivatives
US5759205A (en) 1994-01-21 1998-06-02 Brown University Research Foundation Negatively charged polymeric electret implant
US6051576A (en) 1994-01-28 2000-04-18 University Of Kentucky Research Foundation Means to achieve sustained release of synergistic drugs by conjugation
US20010051608A1 (en) 1994-03-15 2001-12-13 Edith Mathiowitz Polymeric gene delivery
US6262034B1 (en) 1994-03-15 2001-07-17 Neurotech S.A. Polymeric gene delivery system
US20010020011A1 (en) 1994-03-15 2001-09-06 Edith Mathiowitz Polymeric gene delivery system
WO1995024929A3 (en) 1994-03-15 1995-12-28 Univ Brown Res Found Polymeric gene delivery system
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5898029A (en) 1994-04-12 1999-04-27 The John Hopkins University Direct influences on nerve growth of agents that interact with immunophilins in combination with neurotrophic factors
WO1995031104A1 (en) 1994-05-13 1995-11-23 The General Hospital Corporation Inhibition of insulin-induced adiposis
EP0687008A2 (en) 1994-06-06 1995-12-13 Motorola, Inc. Method and apparatus for improving interfacial adhesion between a polymer and a metal
US5746998A (en) 1994-06-24 1998-05-05 The General Hospital Corporation Targeted co-polymers for radiographic imaging
US5766710A (en) 1994-06-27 1998-06-16 Advanced Cardiovascular Systems, Inc. Biodegradable mesh and film stent
US5670558A (en) 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US6547819B2 (en) 1994-07-09 2003-04-15 Ernst Peter Strecker Endoprosthesis percutaneously implantable in the body of a patient
US5788979A (en) 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
US5516881A (en) 1994-08-10 1996-05-14 Cornell Research Foundation, Inc. Aminoxyl-containing radical spin labeling in polymers and copolymers
EP0701802B1 (en) 1994-09-15 2002-08-28 Medtronic, Inc. Drug eluting stent
US5578073A (en) 1994-09-16 1996-11-26 Ramot Of Tel Aviv University Thromboresistant surface treatment for biomaterials
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
US5485496A (en) 1994-09-22 1996-01-16 Cornell Research Foundation, Inc. Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties
US5958385A (en) 1994-09-28 1999-09-28 Lvmh Recherche Polymers functionalized with amino acids or amino acid derivatives, method for synthesizing same, and use thereof as surfactants in cosmetic compositions, particularly nail varnishes
US5879713A (en) 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
US5836965A (en) 1994-10-19 1998-11-17 Jendersee; Brad Stent delivery and deployment method
US6309402B1 (en) 1994-10-19 2001-10-30 Medtronic Ave, Inc. Stent delivery and deployment method
WO1996013273A1 (en) 1994-10-26 1996-05-09 Novartis Ag Pharmaceutical compositions
US5755771A (en) 1994-11-03 1998-05-26 Divysio Solutions Ulc Expandable stent and method of delivery of same
US5707385A (en) 1994-11-16 1998-01-13 Advanced Cardiovascular Systems, Inc. Drug loaded elastic membrane and method for delivery
US5759192A (en) 1994-11-28 1998-06-02 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
US5563145A (en) 1994-12-07 1996-10-08 American Home Products Corporation Rapamycin 42-oximes and hydroxylamines
US5700286A (en) 1994-12-13 1997-12-23 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
EP0716836B1 (en) 1994-12-13 2001-07-04 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5800392A (en) 1995-01-23 1998-09-01 Emed Corporation Microporous catheter
US6120904A (en) 1995-02-01 2000-09-19 Schneider (Usa) Inc. Medical device coated with interpenetrating network of hydrogel polymers
US6080488A (en) 1995-02-01 2000-06-27 Schneider (Usa) Inc. Process for preparation of slippery, tenaciously adhering, hydrophilic polyurethane hydrogel coating, coated polymer and metal substrate materials, and coated medical devices
US5879398A (en) 1995-02-14 1999-03-09 Zimmer, Inc. Acetabular cup
US5575818A (en) 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US5702754A (en) 1995-02-22 1997-12-30 Meadox Medicals, Inc. Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US5869127A (en) 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US6083534A (en) 1995-03-01 2000-07-04 Yeda Research And Development Co. Ltd. Pharmaceutical compositions for controlled release of soluble receptors
US6100346A (en) 1995-03-06 2000-08-08 Ethicon, Inc. Copolymers of polyoxaamides
US5854376A (en) 1995-03-09 1998-12-29 Sekisui Kaseihin Kogyo Kabushiki Kaisha Aliphatic ester-amide copolymer resins
WO1996028115A1 (en) 1995-03-10 1996-09-19 Impra, Inc. Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
US5605696A (en) 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US20050106210A1 (en) 1995-04-19 2005-05-19 Boston Scientific Scimed, Inc. Medical device with drug
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US6358556B1 (en) 1995-04-19 2002-03-19 Boston Scientific Corporation Drug release stent coating
US5925720A (en) 1995-04-19 1999-07-20 Kazunori Kataoka Heterotelechelic block copolymers and process for producing the same
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US20020091433A1 (en) 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US6096070A (en) 1995-06-07 2000-08-01 Med Institute Inc. Coated implantable medical device
US6010530A (en) 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US5865814A (en) 1995-06-07 1999-02-02 Medtronic, Inc. Blood contacting medical device and method
US20030036794A1 (en) 1995-06-07 2003-02-20 Cook Incorporated Coated implantable medical device
US5873904A (en) 1995-06-07 1999-02-23 Cook Incorporated Silver implantable medical device
WO1998017331A1 (en) 1995-06-07 1998-04-30 Cook Incorporated Silver implantable medical device
US20030028243A1 (en) 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US5843960A (en) 1995-06-07 1998-12-01 Gpi Nil Holdings, Inc. Inhibitors of rotamase enzyme activity
US5820917A (en) 1995-06-07 1998-10-13 Medtronic, Inc. Blood-contacting medical device and method
US5798355A (en) 1995-06-07 1998-08-25 Gpi Nil Holdings, Inc. Inhibitors of rotamase enzyme activity
WO1996040174A1 (en) 1995-06-07 1996-12-19 The American National Red Cross Supplemented and unsupplemented tissue sealants, methods of their production and use
WO1996040140A1 (en) 1995-06-07 1996-12-19 Guilford Pharmaceuticals Inc. Inhibitors of rotamase enzyme activity
US20030028244A1 (en) 1995-06-07 2003-02-06 Cook Incorporated Coated implantable medical device
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US5824049A (en) 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US6200985B1 (en) 1995-06-09 2001-03-13 Novartis Ag Rapamycin derivatives
US5985890A (en) 1995-06-09 1999-11-16 Novartis Ag Rapamycin derivatives
WO1997003654A3 (en) 1995-07-14 1997-03-20 Sandoz Ltd Pharmaceutical compositions
US5667767A (en) 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US5851508A (en) 1995-07-27 1998-12-22 Microtherapeutics, Inc. Compositions for use in embolizing blood vessels
US5877224A (en) 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5856814A (en) 1995-08-02 1999-01-05 Canon Kk Driving method for display apparatus
WO1997010011A1 (en) 1995-09-11 1997-03-20 Schneider (Usa) Inc. Drug release stent coating process
JPH0985028A (en) 1995-09-25 1997-03-31 Sintokogio Ltd Filter for treating carbon particle in exhaust gas and carbon particle device using the filter
US6277449B1 (en) 1995-10-19 2001-08-21 Omprakash S. Kolluri Method for sequentially depositing a three-dimensional network
US5788558A (en) 1995-11-13 1998-08-04 Localmed, Inc. Apparatus and method for polishing lumenal prostheses
US5658995A (en) 1995-11-27 1997-08-19 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
US5910564A (en) 1995-12-07 1999-06-08 Th. Goldschmidt Ag Polyamino acid ester copolymers
US6051648A (en) 1995-12-18 2000-04-18 Cohesion Technologies, Inc. Crosslinked polymer compositions and methods for their use
US5723219A (en) 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5962138A (en) 1995-12-19 1999-10-05 Talison Research, Inc. Plasma deposited substrate structure
US6033582A (en) 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US5800512A (en) 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US6054553A (en) 1996-01-29 2000-04-25 Bayer Ag Process for the preparation of polymers having recurring agents
WO1997029793A1 (en) 1996-02-13 1997-08-21 Massachusetts Institute Of Technology Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
WO1997031020A1 (en) 1996-02-22 1997-08-28 The General Hospital Corporation METHODS AND COMPOSITIONS FOR ENHANCING CELLULAR RESPONSE TO TGF-β LIGANDS
US5968091A (en) * 1996-03-26 1999-10-19 Corvita Corp. Stents and stent grafts having enhanced hoop strength and methods of making the same
US6384046B1 (en) 1996-03-27 2002-05-07 Novartis Ag Use of 40-O-(2-hydroxy)ethylrapamycin for treatment of restenosis and other disorders
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5955509A (en) 1996-05-01 1999-09-21 Board Of Regents, The University Of Texas System pH dependent polymer micelles
US5961914A (en) 1996-05-03 1999-10-05 Milliken & Company Method of thermoforming polyolefin resin
US5610241A (en) 1996-05-07 1997-03-11 Cornell Research Foundation, Inc. Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
WO1997045105A1 (en) 1996-05-24 1997-12-04 Angiotech Pharmaceuticals, Inc. Compositions and methods for treating or preventing diseases of body passageways
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
EP0809999A3 (en) 1996-05-29 1999-11-24 Ethicon, Inc. Method of varying amounts of heparin coated on a medical device to control treatment thereon
US5876433A (en) 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
WO1997046590A1 (en) 1996-06-03 1997-12-11 Gore Enterprise Holdings, Inc. Materials and methods for the immobilization of bioactive species onto polymeric substrates
EP0910584B1 (en) 1996-06-03 2001-07-25 Gore Enterprise Holdings, Inc. Materials and methods for the immobilization of bioactive species onto polymeric substrates
US6143037A (en) 1996-06-12 2000-11-07 The Regents Of The University Of Michigan Compositions and methods for coating medical devices
EP0832655B1 (en) 1996-06-13 2004-09-01 Schneider (Usa) Inc. Drug release stent coating and process
US6284305B1 (en) 1996-06-13 2001-09-04 Schneider (Usa) Inc. Drug coating with topcoat
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US6172167B1 (en) 1996-06-28 2001-01-09 Universiteit Twente Copoly(ester-amides) and copoly(ester-urethanes)
US5928279A (en) 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
US6136333A (en) 1996-07-11 2000-10-24 Life Medical Sciences, Inc. Methods and compositions for reducing or eliminating post-surgical adhesion formation
US5711958A (en) 1996-07-11 1998-01-27 Life Medical Sciences, Inc. Methods for reducing or eliminating post-surgical adhesion formation
WO1998002441A3 (en) 1996-07-12 1998-03-05 Ariad Pharma Inc Non immunosuppressive antifungal rapalogs
WO1998004256A1 (en) 1996-07-30 1998-02-05 Novartis Nutrition Ag Amino acid compositions and use thereof in immunosuppression
US5713949A (en) 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
US6060518A (en) 1996-08-16 2000-05-09 Supratek Pharma Inc. Polymer compositions for chemotherapy and methods of treatment using the same
WO1998008463A1 (en) 1996-08-30 1998-03-05 Helix Medical Corporation Medical devices having microbial resistant material properties
US5945029A (en) 1996-09-03 1999-08-31 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Ceramic monofilament or multifilament fiber and processes for their production and use
WO1998009523A1 (en) 1996-09-05 1998-03-12 Massachusetts Institute Of Technology Compositions and methods for treatment of neurological disorders and neurodegenerative diseases
WO1998010747A1 (en) 1996-09-12 1998-03-19 Galena As Immunomodulatory formulation
US6056906A (en) 1996-09-25 2000-05-02 Medtronic, Inc. Method of making an intervascular catheter system for implanting a radially expandable stent within a body vessel
US5830178A (en) 1996-10-11 1998-11-03 Micro Therapeutics, Inc. Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US5783657A (en) 1996-10-18 1998-07-21 Union Camp Corporation Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids
US6530951B1 (en) 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
WO1998023228A1 (en) 1996-11-25 1998-06-04 Alza Corporation Directional drug delivery stent
US6010529A (en) 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US6287337B1 (en) 1996-12-03 2001-09-11 Atrium Medical Corporation Multi-stage prosthesis
EP0850651B1 (en) 1996-12-20 2004-02-25 Schneider (Usa) Inc. Method and Apparatus for applying drug-release coatings
US5980972A (en) 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
US6623764B1 (en) 1996-12-20 2003-09-23 Aventis Pasteur Limited Biodegradable targetable microparticle delivery system
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
US6306176B1 (en) 1997-01-27 2001-10-23 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
WO1998032398A1 (en) 1997-01-28 1998-07-30 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
US5902875A (en) 1997-01-28 1999-05-11 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
US5919893A (en) 1997-01-28 1999-07-06 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
US5914387A (en) 1997-01-28 1999-06-22 United States Surgical Corporation Polyesteramides with amino acid-derived groups alternating with alpha-hydroxyacid-derived groups and surgical articles made therefrom
WO1998036784A1 (en) 1997-02-20 1998-08-27 Cook Incorporated Coated implantable medical device
US6284788B1 (en) 1997-02-21 2001-09-04 Bayer Aktiengesellschaft Use of known agonists of the central cannabinoid receptor CB1
WO1998038687A1 (en) 1997-02-28 1998-09-03 Elf Atochem North America, Inc. Copolymers of vinylidene fluoride and hexafluoropropylene having reduced extractable content and improved solution clarity
US6139573A (en) 1997-03-05 2000-10-31 Scimed Life Systems, Inc. Conformal laminate stent device
WO1998044921A1 (en) 1997-04-04 1998-10-15 Merck & Co., Inc. Somatostatin agonists
WO1998044922A1 (en) 1997-04-04 1998-10-15 Merck & Co., Inc. Somatostatin agonists
EP0978288A4 (en) 1997-04-11 2006-07-12 Astellas Pharma Inc Medicinal composition
US5843172A (en) 1997-04-15 1998-12-01 Advanced Cardiovascular Systems, Inc. Porous medicated stent
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
EP0875218B1 (en) 1997-04-15 2005-02-16 Advanced Cardiovascular Systems, Inc. Porous medicated stent
US6723120B2 (en) 1997-04-15 2004-04-20 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
JPH10305105A (en) 1997-04-30 1998-11-17 Schneider Usa Inc Medicine release coating for medical tool
EP0879595B1 (en) 1997-04-30 2003-01-29 Schneider (Usa) Inc., Drug-releasing coatings for medical devices
US6042875A (en) 1997-04-30 2000-03-28 Schneider (Usa) Inc. Drug-releasing coatings for medical devices
US6482834B2 (en) 1997-05-28 2002-11-19 Aventis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6245760B1 (en) 1997-05-28 2001-06-12 Aventis Pharmaceuticals Products, Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6180632B1 (en) 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6524347B1 (en) 1997-05-28 2003-02-25 Avantis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6528526B1 (en) 1997-05-28 2003-03-04 Aventis Pharmaceuticals Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6159978A (en) 1997-05-28 2000-12-12 Aventis Pharmaceuticals Product, Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6056993A (en) 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US5746691A (en) 1997-06-06 1998-05-05 Global Therapeutics, Inc. Method for polishing surgical stents
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
WO1999001118A9 (en) 1997-07-01 1999-05-20 Atherogenics Inc Antioxidant enhancement of therapy for hyperproliferative conditions
US6211249B1 (en) 1997-07-11 2001-04-03 Life Medical Sciences, Inc. Polyester polyether block copolymers
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US5980564A (en) 1997-08-01 1999-11-09 Schneider (Usa) Inc. Bioabsorbable implantable endoprosthesis with reservoir
US6034204A (en) 1997-08-08 2000-03-07 Basf Aktiengesellschaft Condensation products of basic amino acids with copolymerizable compounds and a process for their production
US5897911A (en) 1997-08-11 1999-04-27 Advanced Cardiovascular Systems, Inc. Polymer-coated stent structure
US6121027A (en) 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US20050038134A1 (en) 1997-08-18 2005-02-17 Scimed Life Systems, Inc. Bioresorbable hydrogel compositions for implantable prostheses
US6143370A (en) 1997-08-27 2000-11-07 Northeastern University Process for producing polymer coatings with various porosities and surface areas
US6015815A (en) 1997-09-26 2000-01-18 Abbott Laboratories Tetrazole-containing rapamycin analogs with shortened half-lives
US5972027A (en) 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
WO1999016386A1 (en) 1997-09-30 1999-04-08 Scimed Life Systems, Inc. Stent drug delivery system
WO1999019473A1 (en) 1997-10-16 1999-04-22 Board Of Regents, The University Of Texas System Transgenic animal models for cardiac hypertrophy and uses thereof
WO1999019471A1 (en) 1997-10-16 1999-04-22 Board Of Regents, The University Of Texas System Models and treatments for cardiac hypertrophy in relation with nf-at3 function
US5994444A (en) 1997-10-16 1999-11-30 Medtronic, Inc. Polymeric material that releases nitric oxide
US6120788A (en) 1997-10-16 2000-09-19 Bioamide, Inc. Bioabsorbable triglycolic acid poly(ester-amide)s
US6013621A (en) 1997-10-17 2000-01-11 The Rockfeller University Method of treating psychosis and/or hyperactivity
US6015541A (en) 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
US6120491A (en) 1997-11-07 2000-09-19 The State University Rutgers Biodegradable, anionic polymers derived from the amino acid L-tyrosine
WO1999024036A1 (en) 1997-11-07 1999-05-20 Aberdeen University Skin penetration enhancing components
EP1036562A1 (en) 1997-12-03 2000-09-20 Fujisawa Pharmaceutical Co., Ltd. Soft-pellet drug and process for the preparation thereof
US5962007A (en) 1997-12-19 1999-10-05 Indigo Medical, Inc. Use of a multi-component coil medical construct
EP0923953B1 (en) 1997-12-22 2008-08-13 Boston Scientific Scimed, Inc. Drug coating with topcoat
US20020100998A1 (en) 1997-12-24 2002-08-01 Hock Mark R. Plastic closure with compression molded barrier liner
WO1999038546A1 (en) 1998-01-30 1999-08-05 Advanced Cardiovascular Systems, Inc. Hydrophilic coating for an intracorporeal medical device
WO1999039720A1 (en) 1998-02-04 1999-08-12 Applied Genetics Incorporated Dermatics Compositions and methods for modulating cytokine release in response to genotoxic agents
WO1999042104A1 (en) 1998-02-23 1999-08-26 Fujisawa Pharmaceutical Co., Ltd. Use of macrolide compounds for treating glaucoma
WO1999044597A3 (en) 1998-03-06 1999-12-29 Fujisawa Pharmaceutical Co Use of macrolide compounds for the treatment of ards
WO1999044584A1 (en) 1998-03-06 1999-09-10 Novartis Ag Emulsion preconcentrates containing cyclosporin or a macrolide
US6110188A (en) 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
US6001117A (en) 1998-03-19 1999-12-14 Indigo Medical, Inc. Bellows medical construct and apparatus and method for using same
EP1064942B1 (en) 1998-03-26 2004-06-16 Fujisawa Pharmaceutical Co., Ltd. Sustained release preparation of a macrolide
US6270788B1 (en) 1998-04-03 2001-08-07 Medtronic Inc Implantable medical device
US6258371B1 (en) 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
US20030040790A1 (en) 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
JPH11299901A (en) 1998-04-16 1999-11-02 Johnson & Johnson Medical Kk Stent and its manufacture
EP0950386B2 (en) 1998-04-16 2011-07-13 Cordis Corporation Stent with local rapamycin delivery
US20010029351A1 (en) 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US6214901B1 (en) 1998-04-27 2001-04-10 Surmodics, Inc. Bioactive agent release coating
US20020032434A1 (en) 1998-04-27 2002-03-14 Chudzik Stephen J. Bioactive agent release coating
US20030031780A1 (en) 1998-04-27 2003-02-13 Chudzik Stephen J. Bioactive agent release coating
US6344035B1 (en) 1998-04-27 2002-02-05 Surmodics, Inc. Bioactive agent release coating
EP0953320A3 (en) 1998-04-30 2001-09-05 Medtronic, Inc. Medical device
US6113629A (en) 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
US6379379B1 (en) 1998-05-05 2002-04-30 Scimed Life Systems, Inc. Stent with smooth ends
WO1999061040A9 (en) 1998-05-22 2001-02-01 Boys Town Nat Res Hospital USE OF α1β1 INTEGRIN RECEPTOR INHIBITORS AND TGF-β1 INHIBITORS IN THE TREATMENT OF KIDNEY DISEASE
WO1999060997A1 (en) 1998-05-22 1999-12-02 Hewlett Healthcare Limited Pharmaceutical compositions comprising an amphoteric surfactant an alkoxylated cetyl alcohol and a polar drug
US6245753B1 (en) 1998-05-28 2001-06-12 Mediplex Corporation, Korea Amphiphilic polysaccharide derivatives
US6228934B1 (en) 1998-06-09 2001-05-08 Metabolix, Inc. Methods and apparatus for the production of amorphous polymer suspensions
WO1999063981A3 (en) 1998-06-11 2000-04-20 Cerus Corp Use of alkylating compounds for inhibiting proliferation of arterial smooth muscle cells
US6281225B1 (en) 1998-06-11 2001-08-28 Cerus Corporation Inhibiting proliferation of arterial smooth muscle cells
EP0970711B1 (en) 1998-06-30 2004-10-13 Ethicon, Inc. Process for coating stents
JP2000051367A (en) 1998-06-30 2000-02-22 Ethicon Inc Stent coating method
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
US6652581B1 (en) 1998-07-07 2003-11-25 Boston Scientific Scimed, Inc. Medical device with porous surface for controlled drug release and method of making the same
WO2000002599A1 (en) 1998-07-08 2000-01-20 Advanced Biocompatible Coatings Inc. Biocompatible metallic stents with hydroxy methacrylate coating
WO2000009085A3 (en) 1998-08-14 2000-09-28 West Pharm Serv Drug Res Ltd Oral formulation containing cyclosporin
US20010046518A1 (en) 1998-08-14 2001-11-29 Amarpreet S. Sawhney Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels
US20020032414A1 (en) 1998-08-20 2002-03-14 Ragheb Anthony O. Coated implantable medical device
US6299604B1 (en) 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
EP0982041A1 (en) 1998-08-21 2000-03-01 Medtronic Ave, Inc. Thromboresistant coating using silanes or siloxanes
US6335029B1 (en) 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
WO2000012147A1 (en) 1998-09-02 2000-03-09 Scimed Life Systems, Inc. Drug delivery device for stent
WO2000015208A3 (en) 1998-09-14 2000-07-13 Fujisawa Pharmaceutical Co New use of immunosupressants for mmp-mediated diseases
US6890546B2 (en) 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
WO2000018446A1 (en) 1998-09-25 2000-04-06 Cathnet-Science S.A. Multi-layered sleeve for intravascular expandable device
US6011125A (en) 1998-09-25 2000-01-04 General Electric Company Amide modified polyesters
US6206915B1 (en) 1998-09-29 2001-03-27 Medtronic Ave, Inc. Drug storing and metering stent
WO2000024390A9 (en) 1998-10-23 2000-12-07 Univ British Columbia Method and composition for modulating amyloidosis
US6293959B1 (en) 1998-11-16 2001-09-25 Cordis Corporation Balloon catheter and stent delivery system having enhanced stent retention and method
FR2785812B1 (en) 1998-11-16 2002-11-29 Commissariat Energie Atomique BIOACTIVE PROSTHESES, IN PARTICULAR WITH IMMUNOSUPPRESSIVE PROPERTIES, ANTISTENOSIS AND ANTITHROMBOSIS, AND THEIR MANUFACTURE
WO2000032234A1 (en) 1998-12-03 2000-06-08 Novartis Ag Topical compositions comprising ascomycins
WO2000032238A9 (en) 1998-12-03 2000-12-07 Scimed Life Systems Inc Stent having drug crystals thereon
WO2000033878A3 (en) 1998-12-07 2000-11-02 Novartis Ag Stabilization of macrolides
WO2000038590A1 (en) 1998-12-23 2000-07-06 Stephen George Edward Barker Endoluminal stent
WO2000038754A1 (en) 1998-12-23 2000-07-06 Atrium Medical Corporation Self-expanding prosthesis with biocompatible coating
WO2000038703A1 (en) 1998-12-24 2000-07-06 R-Tech Ueno, Ltd. Agent for treating visual cell function disorder
US6120847A (en) 1999-01-08 2000-09-19 Scimed Life Systems, Inc. Surface treatment method for stent coating
US6530950B1 (en) 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
WO2000042949A3 (en) 1999-01-22 2000-11-30 Gore Enterprise Holdings Inc A biliary stent-graft
EP1023879B1 (en) 1999-01-29 2005-04-06 Medtronic, Inc. Implantable medical device with enhanced biocompatibility and biostability
US6419692B1 (en) 1999-02-03 2002-07-16 Scimed Life Systems, Inc. Surface protection method for stents and balloon catheters for drug delivery
US6143354A (en) 1999-02-08 2000-11-07 Medtronic Inc. One-step method for attachment of biomolecules to substrate surfaces
US6095817A (en) 1999-02-24 2000-08-01 Sulzer Calcitek Inc. Dental implant having multiple textured surfaces
US6066156A (en) 1999-03-11 2000-05-23 Advanced Cardiovascular Systems, Inc. Temperature activated adhesive for releasably attaching stents to balloons
WO2000056247A1 (en) 1999-03-19 2000-09-28 Scimed Life Systems, Inc. Polymer coated stent
US6364903B2 (en) 1999-03-19 2002-04-02 Meadox Medicals, Inc. Polymer coated stent
WO2000057818A1 (en) 1999-03-29 2000-10-05 Cardio Synopsis Inc. Stent with an integrated film coating for deployment throughout the body
US20020188037A1 (en) 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
US6368658B1 (en) 1999-04-19 2002-04-09 Scimed Life Systems, Inc. Coating medical devices using air suspension
WO2000064506A9 (en) 1999-04-23 2002-06-06 Agion Technologies L L C Stent having antimicrobial agent
WO2000066122A1 (en) 1999-04-30 2000-11-09 Sucampo Ag Use of macrolide compounds for the treatment of dry eye
WO2000071052A1 (en) 1999-05-19 2000-11-30 Bernd Starck Highly flexible coating for stents and/or stent grafts and/or vascular stent prostheses
US6368346B1 (en) * 1999-06-03 2002-04-09 American Medical Systems, Inc. Bioresorbable stent
WO2000074665A3 (en) 1999-06-04 2001-05-17 Fujisawa Pharmaceutical Co New use of macrolide compounds for inducing chondrogenic differentiation
WO2001001890A1 (en) 1999-07-02 2001-01-11 Boston Scientific Limited Stent coating
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US20030040712A1 (en) 1999-07-13 2003-02-27 Pinaki Ray Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
US6494862B1 (en) 1999-07-13 2002-12-17 Advanced Cardiovascular Systems, Inc. Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
US6689099B2 (en) 1999-07-13 2004-02-10 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6283947B1 (en) 1999-07-13 2001-09-04 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6177523B1 (en) 1999-07-14 2001-01-23 Cardiotech International, Inc. Functionalized polyurethanes
WO2001014387A1 (en) 1999-08-24 2001-03-01 Ariad Gene Therapeutics, Inc. 28-epirapalogs
WO2001015751A1 (en) 1999-09-01 2001-03-08 Bioxid Oy Novel multilayered material bearing a biologically active agent and the preparation thereof
US20010018469A1 (en) 1999-09-03 2001-08-30 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US20040220665A1 (en) 1999-09-03 2004-11-04 Hossainy Syed F.A. Thermal treatment of a drug eluting implantable medical device
US6713119B2 (en) 1999-09-03 2004-03-30 Advanced Cardiovascular Systems, Inc. Biocompatible coating for a prosthesis and a method of forming the same
WO2001017577A1 (en) 1999-09-03 2001-03-15 Advanced Cardiovascular Systems, Inc. A porous prosthesis and a method of depositing substances into the pores
US6287628B1 (en) 1999-09-03 2001-09-11 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US20040029952A1 (en) 1999-09-03 2004-02-12 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US20050233062A1 (en) 1999-09-03 2005-10-20 Hossainy Syed F Thermal treatment of an implantable medical device
US7682647B2 (en) 1999-09-03 2010-03-23 Advanced Cardiovascular Systems, Inc. Thermal treatment of a drug eluting implantable medical device
US6379381B1 (en) 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6759054B2 (en) 1999-09-03 2004-07-06 Advanced Cardiovascular Systems, Inc. Ethylene vinyl alcohol composition and coating
US20020035774A1 (en) 1999-09-22 2002-03-28 Scimed Life Systems, Inc. A Method and Apparatus for Contracting, Loading or Crimping Self-Expanding and Balloon Expandable Stent Devices
US6823576B2 (en) 1999-09-22 2004-11-30 Scimed Life Systems, Inc. Method and apparatus for contracting, loading or crimping self-expanding and balloon expandable stent devices
WO2001023395A3 (en) 1999-09-29 2001-10-25 American Home Prod Regioselective synthesis of rapamycin derivatives
US6346110B2 (en) 1999-10-04 2002-02-12 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implantable device
US6203551B1 (en) 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6475235B1 (en) 1999-11-16 2002-11-05 Iowa-India Investments Company, Limited Encapsulated stent preform
US6610087B1 (en) 1999-11-16 2003-08-26 Scimed Life Systems, Inc. Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance
US6251136B1 (en) 1999-12-08 2001-06-26 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
US20010037145A1 (en) 1999-12-08 2001-11-01 Guruwaiya Judy A. Coated stent
US20020009604A1 (en) 1999-12-22 2002-01-24 Zamora Paul O. Plasma-deposited coatings, devices and methods
US20050238686A1 (en) 1999-12-23 2005-10-27 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US20010014717A1 (en) 1999-12-23 2001-08-16 Hossainy Syed F.A. Coating for implantable devices and a method of forming the same
US20040086542A1 (en) 1999-12-23 2004-05-06 Hossainy Syed F.A. Coating for implantable devices and a method of forming the same
WO2001045763A1 (en) 1999-12-23 2001-06-28 Advanced Cardiovascular Systems, Inc. Biocomptabible coating
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6283949B1 (en) 1999-12-27 2001-09-04 Advanced Cardiovascular Systems, Inc. Refillable implantable drug delivery pump
US20010007083A1 (en) 1999-12-29 2001-07-05 Roorda Wouter E. Device and active component for inhibiting formation of thrombus-inflammatory cell matrix
US6899731B2 (en) 1999-12-30 2005-05-31 Boston Scientific Scimed, Inc. Controlled delivery of therapeutic agents by insertable medical devices
WO2001049338A1 (en) 1999-12-30 2001-07-12 Li Wei Pin Controlled delivery of therapeutic agents by insertable medical devices
JP2001190687A (en) 2000-01-07 2001-07-17 Kawasumi Lab Inc Stent and stent graft
WO2001051027A3 (en) 2000-01-11 2002-01-10 Intralytix Inc Polymer blends as biodegradable matrices for preparing biocomposites
US6406739B1 (en) 2000-01-12 2002-06-18 Alcon Universal Ltd. Coating compositions and methods for reducing edge glare in implantable ophthalmic lenses
US6503954B1 (en) 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
US6749626B1 (en) 2000-03-31 2004-06-15 Advanced Cardiovascular Systems, Inc. Actinomycin D for the treatment of vascular disease
WO2001074414A1 (en) 2000-03-31 2001-10-11 Advanced Cardiovascular Systems, Inc. A biocompatible carrier containing actinomycin d and a method of forming the same
US20030105518A1 (en) 2000-04-13 2003-06-05 Debashis Dutta Biodegradable drug delivery material for stent
US20030097173A1 (en) 2000-04-13 2003-05-22 Debashis Dutta Biodegradable drug delivery material for stent
US6527801B1 (en) 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6887485B2 (en) 2000-05-10 2005-05-03 Medtronic Vascular, Inc. Nitric oxide-releasing metallic medical devices
WO2001087373A1 (en) 2000-05-12 2001-11-22 Cordis Corporation Delivery devices for treatment of vascular disease
US20020016625A1 (en) 2000-05-12 2002-02-07 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
WO2001087372A1 (en) 2000-05-12 2001-11-22 Cordis Corporation Drug combinations useful for prevention of restenosis
US20020005206A1 (en) 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007213A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007215A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007214A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US6673385B1 (en) 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US6395326B1 (en) 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US20040018296A1 (en) 2000-05-31 2004-01-29 Daniel Castro Method for depositing a coating onto a surface of a prosthesis
US6616765B1 (en) 2000-05-31 2003-09-09 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US6783543B2 (en) 2000-06-05 2004-08-31 Scimed Life Systems, Inc. Intravascular stent with increasing coating retaining capacity
US20020038145A1 (en) 2000-06-05 2002-03-28 Jang G. David Intravascular stent with increasing coating retaining capacity
US6629350B2 (en) 2000-06-08 2003-10-07 Tom Motsenbocker Stent crimping apparatus and method
US6585765B1 (en) 2000-06-29 2003-07-01 Advanced Cardiovascular Systems, Inc. Implantable device having substances impregnated therein and a method of impregnating the same
US20030190406A1 (en) 2000-06-29 2003-10-09 Hossainy Syed F. A. Implantable device having substances impregnated therein and a method of impregnating the same
WO2002003890A1 (en) 2000-07-06 2002-01-17 Biosurface Engineering Technologies, Inc. Drug diffusion coatings, applications and methods
US6555157B1 (en) 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
US20030157241A1 (en) 2000-07-25 2003-08-21 Hossainy Syed F.A. Method for coating an implantable device and system for performing the method
US20020071822A1 (en) 2000-07-27 2002-06-13 Uhrich Kathryn E. Therapeutic polyesters and polyamides
US6451373B1 (en) 2000-08-04 2002-09-17 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
US20040047978A1 (en) 2000-08-04 2004-03-11 Hossainy Syed F.A. Composition for coating an implantable prosthesis
US6733768B2 (en) 2000-08-04 2004-05-11 Advanced Cardiovascular Systems, Inc. Composition for coating an implantable prosthesis
US6503538B1 (en) 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US6585926B1 (en) 2000-08-31 2003-07-01 Advanced Cardiovascular Systems, Inc. Method of manufacturing a porous balloon
WO2002026162A3 (en) 2000-09-26 2003-01-16 Advanced Cardiovascular System A method of loading a substance onto an implantable device
US6716444B1 (en) 2000-09-28 2004-04-06 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US6254632B1 (en) 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US6746773B2 (en) 2000-09-29 2004-06-08 Ethicon, Inc. Coatings for medical devices
US20020051730A1 (en) 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
EP1192957B1 (en) 2000-09-29 2007-02-14 Ethicon, Inc. Coating for medical devices
US20020094440A1 (en) 2000-09-29 2002-07-18 Llanos Gerard H. Coatings for medical devices
US7591844B2 (en) 2000-09-29 2009-09-22 Cordis Corporation Medical devices, drug coatings and methods for maintaining the drug coatings thereon
WO2002026139A1 (en) 2000-09-29 2002-04-04 Cordis Corporation Coated medical devices
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US6506437B1 (en) 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
WO2002034311A3 (en) 2000-10-26 2003-01-30 Advanced Cardiovascular System Selective coating of medical devices
US6558733B1 (en) 2000-10-26 2003-05-06 Advanced Cardiovascular Systems, Inc. Method for etching a micropatterned microdepot prosthesis
US6758859B1 (en) 2000-10-30 2004-07-06 Kenny L. Dang Increased drug-loading and reduced stress drug delivery device
US20020077693A1 (en) 2000-12-19 2002-06-20 Barclay Bruce J. Covered, coiled drug delivery stent and method
US20040096504A1 (en) 2000-12-22 2004-05-20 Gene Michal Ethylene-carboxyl copolymers as drug delivery matrices
US6574497B1 (en) 2000-12-22 2003-06-03 Advanced Cardiovascular Systems, Inc. MRI medical device markers utilizing fluorine-19
US20020120326A1 (en) 2000-12-22 2002-08-29 Gene Michal Ethylene-carboxyl copolymers as drug delivery matrices
US7077859B2 (en) 2000-12-22 2006-07-18 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US20020082679A1 (en) 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
US20030083646A1 (en) 2000-12-22 2003-05-01 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
WO2002056790A3 (en) 2000-12-22 2003-01-23 Avantec Vascular Corp Delivery of therapeutic capable agents
US20020082685A1 (en) 2000-12-22 2002-06-27 Motasim Sirhan Apparatus and methods for controlled substance delivery from implanted prostheses
US6544543B1 (en) 2000-12-27 2003-04-08 Advanced Cardiovascular Systems, Inc. Periodic constriction of vessels to treat ischemic tissue
US20030072868A1 (en) 2000-12-28 2003-04-17 Sameer Harish Methods of forming a coating for a prosthesis
US6503556B2 (en) 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US6540776B2 (en) 2000-12-28 2003-04-01 Advanced Cardiovascular Systems, Inc. Sheath for a prosthesis and methods of forming the same
US20040047980A1 (en) 2000-12-28 2004-03-11 Pacetti Stephen D. Method of forming a diffusion barrier layer for implantable devices
US20020123801A1 (en) 2000-12-28 2002-09-05 Pacetti Stephen D. Diffusion barrier layer for implantable devices
US6663662B2 (en) 2000-12-28 2003-12-16 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
WO2002058753A9 (en) 2000-12-28 2003-08-07 Advanced Cardiovascular System Coating for implantable devices and a method of forming the same
US20020087123A1 (en) 2001-01-02 2002-07-04 Hossainy Syed F.A. Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices
US6645195B1 (en) 2001-01-05 2003-11-11 Advanced Cardiovascular Systems, Inc. Intraventricularly guided agent delivery system and method of use
US6544582B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
US20030150380A1 (en) 2001-01-05 2003-08-14 Yoe Brandon J. Method and apparatus for coating an implant device
US20030158517A1 (en) 2001-01-05 2003-08-21 Lyudmila Kokish Balloon catheter for delivering therapeutic agents
US6544223B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
US6740040B1 (en) 2001-01-30 2004-05-25 Advanced Cardiovascular Systems, Inc. Ultrasound energy driven intraventricular catheter to treat ischemia
US20030032767A1 (en) 2001-02-05 2003-02-13 Yasuhiro Tada High-strength polyester-amide fiber and process for producing the same
US20020176849A1 (en) 2001-02-09 2002-11-28 Endoluminal Therapeutics, Inc. Endomural therapy
US20020127263A1 (en) 2001-02-27 2002-09-12 Wenda Carlyle Peroxisome proliferator-acitvated receptor gamma ligand eluting medical device
US20030004141A1 (en) 2001-03-08 2003-01-02 Brown David L. Medical devices, compositions and methods for treating vulnerable plaque
WO2002074194A3 (en) 2001-03-16 2004-01-08 Sts Biopolymers Inc Stent with medicated multi-layer hydrid polymer coating
US6878160B2 (en) 2001-03-27 2005-04-12 Scimed Life Systems, Inc. Stent with controlled expansion
US7010850B2 (en) 2001-03-29 2006-03-14 Boston Scientific Scimed, Inc. Thermal regulation of a coated work-piece during the reconfiguration of the coated work-piece
US20020143382A1 (en) 2001-03-29 2002-10-03 Luuk Hijlkema Thermal regulation of a coated work-piece during the reconfiguration of the coated work-piece
US6739033B2 (en) 2001-03-29 2004-05-25 Scimed Life Systems, Inc. Thermal regulation of a coated work-piece during the reconfiguration of the coated work-piece
US20020142039A1 (en) 2001-03-30 2002-10-03 Advanced Cardiovascular Systems, Inc. Controlled morphologies in polymer drug for release of drugs from polymer films
US6645135B1 (en) 2001-03-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance
US6623448B2 (en) 2001-03-30 2003-09-23 Advanced Cardiovascular Systems, Inc. Steerable drug delivery device
US6625486B2 (en) 2001-04-11 2003-09-23 Advanced Cardiovascular Systems, Inc. Method and apparatus for intracellular delivery of an agent
US6764505B1 (en) 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US20020155212A1 (en) 2001-04-24 2002-10-24 Hossainy Syed Faiyaz Ahmed Coating for a stent and a method of forming the same
US6712845B2 (en) 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
US20040073298A1 (en) 2001-04-24 2004-04-15 Hossainy Syed Faiyaz Ahmed Coating for a stent and a method of forming the same
US20030039689A1 (en) 2001-04-26 2003-02-27 Jianbing Chen Polymer-based, sustained release drug delivery system
US6660034B1 (en) 2001-04-30 2003-12-09 Advanced Cardiovascular Systems, Inc. Stent for increasing blood flow to ischemic tissues and a method of using the same
US20040071861A1 (en) 2001-04-30 2004-04-15 Evgenia Mandrusov Method of manufacturing a stent coating and a method of using the stent
US20020165608A1 (en) 2001-05-07 2002-11-07 Llanos Gerard H. Local drug delivery devices and methods for maintaining the drug coatings thereon
US6656506B1 (en) 2001-05-09 2003-12-02 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
US20040052859A1 (en) 2001-05-09 2004-03-18 Wu Steven Z. Microparticle coated medical device
US20040052858A1 (en) 2001-05-09 2004-03-18 Wu Steven Z. Microparticle coated medical device
US20020188277A1 (en) 2001-05-18 2002-12-12 Roorda Wouter E. Medicated stents for the treatment of vascular disease
US6605154B1 (en) 2001-05-31 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent mounting device
US20030207020A1 (en) 2001-05-31 2003-11-06 Villareal Plaridel K. Stent mounting device and a method of using the same to coat a stent
US6743462B1 (en) 2001-05-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating implantable devices
US20020183581A1 (en) 2001-05-31 2002-12-05 Yoe Brandon James Radiation or drug delivery source with activity gradient to minimize edge effects
WO2002102283A1 (en) 2001-06-19 2002-12-27 Advanced Cardiovascular Systems, Inc. Method and system for securing a coated stent to a balloon catheter
US6666880B1 (en) 2001-06-19 2003-12-23 Advised Cardiovascular Systems, Inc. Method and system for securing a coated stent to a balloon catheter
WO2003000308A1 (en) 2001-06-22 2003-01-03 Cordis Corporation Drug delivery devices
US6572644B1 (en) 2001-06-27 2003-06-03 Advanced Cardiovascular Systems, Inc. Stent mounting device and a method of using the same to coat a stent
US6695920B1 (en) 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US20040062853A1 (en) 2001-06-27 2004-04-01 Pacetti Stephen D. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US6673154B1 (en) 2001-06-28 2004-01-06 Advanced Cardiovascular Systems, Inc. Stent mounting device to coat a stent
US6565659B1 (en) 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US20030211230A1 (en) 2001-06-28 2003-11-13 Pacetti Stephen D. Stent mounting assembly and a method of using the same to coat a stent
US20040060508A1 (en) 2001-06-28 2004-04-01 Pacetti Stephen D. Stent mounting device
US6706013B1 (en) 2001-06-29 2004-03-16 Advanced Cardiovascular Systems, Inc. Variable length drug delivery catheter
US20030113439A1 (en) 2001-06-29 2003-06-19 Pacetti Stephen D. Support device for a stent and a method of using the same to coat a stent
US6585755B2 (en) 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
US20040098117A1 (en) 2001-06-29 2004-05-20 Hossainy Syed F.A. Composite stent with regioselective material and a method of forming the same
US6527863B1 (en) 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US6656216B1 (en) 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
EP1273314A1 (en) 2001-07-06 2003-01-08 Terumo Kabushiki Kaisha Stent
WO2003022323A1 (en) 2001-09-07 2003-03-20 Advanced Cardiovascular Systems, Inc. Coating for reducing the rate of release of drugs from stents
JP2005512959A (en) 2001-09-10 2005-05-12 アボット・ラボラトリーズ Medical devices containing rapamycin analogs
US20050143752A1 (en) 2001-09-19 2005-06-30 Abbott Laboratories Vascular Entities Limited Cold-molding process for loading a stent onto a stent delivery system
US20030083739A1 (en) 2001-09-24 2003-05-01 Robert Cafferata Rational drug therapy device and methods
US20030060877A1 (en) 2001-09-25 2003-03-27 Robert Falotico Coated medical devices for the treatment of vascular disease
US20030059520A1 (en) 2001-09-27 2003-03-27 Yung-Ming Chen Apparatus for regulating temperature of a composition and a method of coating implantable devices
WO2003035131A1 (en) 2001-09-27 2003-05-01 Advanced Cardiovascular Systems, Inc. A rate-reducing membrane for release of an agent
US6753071B1 (en) 2001-09-27 2004-06-22 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
WO2003028780A3 (en) 2001-09-28 2004-03-11 Advanced Cardiovascular System Medical device containing light-protected therapeutic agent
US20030073961A1 (en) 2001-09-28 2003-04-17 Happ Dorrie M. Medical device containing light-protected therapeutic agent and a method for fabricating thereof
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
WO2003037223A1 (en) 2001-11-01 2003-05-08 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US20030097088A1 (en) 2001-11-12 2003-05-22 Pacetti Stephen Dirk Coatings for drug delivery devices
US20030099712A1 (en) 2001-11-26 2003-05-29 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
US20040086550A1 (en) 2001-11-30 2004-05-06 Roorda Wouter E. Permeabilizing reagents to increase drug delivery and a method of local delivery
US6663880B1 (en) 2001-11-30 2003-12-16 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery
JP2004523275A5 (en) 2001-12-18 2005-05-26
US6709514B1 (en) 2001-12-28 2004-03-23 Advanced Cardiovascular Systems, Inc. Rotary coating apparatus for coating implantable medical devices
JP2003210570A (en) 2002-01-18 2003-07-29 Olympus Optical Co Ltd Implant material having living body active layer and method for covering living body active layer on implant basic material
US20030144727A1 (en) 2002-01-31 2003-07-31 Rosenthal Arthur L. Medical device for delivering biologically active material
US20050113903A1 (en) 2002-01-31 2005-05-26 Scimed Life Systems, Inc. Medical device for delivering biologically active material
US7291165B2 (en) 2002-01-31 2007-11-06 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US6887270B2 (en) 2002-02-08 2005-05-03 Boston Scientific Scimed, Inc. Implantable or insertable medical device resistant to microbial growth and biofilm formation
WO2003080147A1 (en) 2002-03-20 2003-10-02 Advanced Cardiovascular Systems, Inc. Biodegradable hydrophobic polymer for stents
WO2003082368A1 (en) 2002-03-27 2003-10-09 Advanced Cardiovascular Systems, Inc. 40-o-(2-hydroxy)ethyl-rapamycin coated stent
US6861088B2 (en) 2002-03-28 2005-03-01 Boston Scientific Scimed, Inc. Method for spray-coating a medical device having a tubular wall such as a stent
WO2003090818A3 (en) 2002-04-24 2003-12-04 Sun Biomedical Ltd Drug-delivery endovascular stent and method for treating restenosis
US20030208254A1 (en) 2002-05-03 2003-11-06 James Shortt Method and apparatus for mounting a stent onto a stent delivery system
US6948223B2 (en) 2002-05-03 2005-09-27 Medtronic Vascular, Inc. Apparatus for mounting a stent onto a stent delivery system
WO2003097015A1 (en) 2002-05-15 2003-11-27 Brown University Research Foundation Short chain polymer for enhancing the bioadhesiveness of polymers on mucosal membrane
WO2004000383A3 (en) 2002-06-21 2004-05-27 Advanced Cardiovascular System Polyacrylates coatings for implantable medical devices
US6865810B2 (en) 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
WO2004009145A1 (en) 2002-07-19 2004-01-29 Advanced Cardiovascular Systems, Inc. Purified polymers for coatings of implantable medical devices
US20040054104A1 (en) 2002-09-05 2004-03-18 Pacetti Stephen D. Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US20040063805A1 (en) 2002-09-19 2004-04-01 Pacetti Stephen D. Coatings for implantable medical devices and methods for fabrication thereof
US20040072922A1 (en) 2002-10-09 2004-04-15 Hossainy Syed F.A. Rate limiting barriers for implantable medical devices
WO2004032987A1 (en) 2002-10-11 2004-04-22 Cartificial A/S Medical device comprising a bio-compatible polymeric product with a layered structure
WO2004060428A1 (en) 2002-12-16 2004-07-22 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
EP1440699A1 (en) 2003-01-24 2004-07-28 Medtronic Vascular, Inc. Stent with epoxy primer coating
US20050084515A1 (en) 2003-03-20 2005-04-21 Medtronic Vascular, Inc. Biocompatible controlled release coatings for medical devices and related methods
EP1470830A1 (en) 2003-04-25 2004-10-27 Medtronic Vascular, Inc. Drug-polymer coated stent with polysulfone and styrenic block copolymer
WO2005004945A3 (en) 2003-06-25 2005-03-24 Advanced Cardiovascular System Thermal treatment of a drug eluting implantable medical device
US20050049694A1 (en) 2003-08-07 2005-03-03 Medtronic Ave. Extrusion process for coating stents
US20050038497A1 (en) 2003-08-11 2005-02-17 Scimed Life Systems, Inc. Deformation medical device without material deformation
US20050037052A1 (en) 2003-08-13 2005-02-17 Medtronic Vascular, Inc. Stent coating with gradient porosity
US20050043786A1 (en) 2003-08-18 2005-02-24 Medtronic Ave, Inc. Methods and apparatus for treatment of aneurysmal tissue
US20050049693A1 (en) 2003-08-25 2005-03-03 Medtronic Vascular Inc. Medical devices and compositions for delivering biophosphonates to anatomical sites at risk for vascular disease
US20050055078A1 (en) 2003-09-04 2005-03-10 Medtronic Vascular, Inc. Stent with outer slough coating
US20050054774A1 (en) 2003-09-09 2005-03-10 Scimed Life Systems, Inc. Lubricious coating
US20050055044A1 (en) 2003-09-09 2005-03-10 Scimed Life Systems, Inc. Lubricious coatings for medical device
US20050060020A1 (en) 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
US20050065593A1 (en) 2003-09-19 2005-03-24 Medtronic Vascular, Inc. Delivery of therapeutics to treat aneurysms
US20050065545A1 (en) 2003-09-23 2005-03-24 Scimed Life Systems, Inc. External activation of vaso-occlusive implants
US20050065501A1 (en) 2003-09-23 2005-03-24 Scimed Life Systems, Inc. Energy activated vaso-occlusive devices
US20050075714A1 (en) 2003-09-24 2005-04-07 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US20050064088A1 (en) 2003-09-24 2005-03-24 Scimed Life Systems, Inc Ultrasonic nozzle for coating a medical appliance and method for using an ultrasonic nozzle to coat a medical appliance
US20050074545A1 (en) 2003-09-29 2005-04-07 Medtronic Vascular, Inc. Stent with improved drug loading capacity
US20050074406A1 (en) 2003-10-03 2005-04-07 Scimed Life Systems, Inc. Ultrasound coating for enhancing visualization of medical device in ultrasound images
US20050079274A1 (en) 2003-10-14 2005-04-14 Maria Palasis Method for coating multiple stents
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US20050119720A1 (en) 2003-12-01 2005-06-02 Advanced Cardiovascular Systems, Inc. State Of Incorporation: California Temperature controlled crimping
US7316148B2 (en) 2005-02-15 2008-01-08 Boston Scientific Scimed, Inc. Protective sheet loader
US20070289117A1 (en) 2006-06-19 2007-12-20 Bin Huang Methods for improving stent retention on a balloon catheter
US8123793B2 (en) 2008-09-10 2012-02-28 Boston Scientific Scimed, Inc. Pre-crimp balloon inflation

Non-Patent Citations (126)

* Cited by examiner, † Cited by third party
Title
"Copolymer", Definition and More from the Free Miriam-Webster Dictionary, http://www.merriam-webster.com/dictionary/copolymer, printed, Oct. 29, 2012, 1 pg.
"Copolymer", Definition of Copolymer by the Free Online Dictionary, Thesaurus and Encyclopedia, http://www.thefreedictionary.com/copolymer, printed Oct. 29, 2012, 1 pg.
"Copolymer," Wikipedia: The Free Encyclopedia, http://en.wikipedia.org/wiki/Copolymer, printed Oct. 29, 2012, 5 pgs.
"Copolymer/Define Copolymer at Dictionary.com," and "Copolymer," Encyclopedia Britannica Online, http://dictionary.reference.com/browse/copolymer, printed Oct. 30, 2012, 2 pgs.
"Poly(vinylidene fluoride-co-hexafluoropropylene)", SIGMA-ALDRICH catalog, product detail, downloaded from:www.sigmaaldrich.com/catalog?ProductDetail.do?, Jul. 3, 2010, 2 pgs.
Angioplasty Summit Abstracts/Oral, The Am. J. of Cardiology, Apr. 23-26, 2013, p. 23B.
Anonymous "A Simple Approach for Glass Transition Temperature Prediction", http://www.geocities.com/ResearchTriangle/Thinktank/4146/6400glass-temperature.html, printed May 5, 2005 (2 pages).
Anonymous "Amorphous Polymers and the Glass Transition Temperature", http://www.irc.leeds.ac.uk/iaps/mod1/node6 html printed Mar. 21, 2003 (3 pages).
Anonymous, "Cardiologists Draw-Up The Dream Stent", Clinica 710:15 (Jun. 17, 1996), http://www.dialogweb.com/cgi/document?req=1061848202959, printed Aug. 25, 2003 (2 pages).
Anonymous, "Differential Scanning Calorimetry", http://www.pslc.ws/macrog/dsc.htm, printed Sep. 29, 2003 (8 pages).
Anonymous, "Glass Transition Temperature", http://islnotes.cps.msu.edu/trp/back/mol glas.html, printed May 5, 2005 (1 page).
Anonymous, "Glass transition temperature", http://palimpsest.stanford.edu/don/dt/dt1549.html, printed Mar. 21, 2003 (1 page).
Anonymous, "How Big are Polymers?", www.chemeng.ucla.edu/che112/Notes, printed May 9, 2005 (13 pages).
Anonymous, "Measuring and Understanding Tg (Glass Transition Temperature)," Arlon, Application Notes (4 pages).
Anonymous, "The Glass Transition", http://www.pslc.ws/macrog/tg.htm, printed Mar. 21, 2003 (11 pages).
Anonymous, "Thermal Properties-Crystallization" (16 pages).
Anonymous, "Thermoplastics-An Introduction", http://www.azom.com/details.asp?ArticleID+83&head=Thermoplastics%2B-%2BAn%2BIntroduction, printed May 18, 2005 (5 pages).
Anonymous, Appendix I-Glass Transition Temperature (T9) www.Dymax.com/pdf/SPIE-Paper-Apendix.pdf, printed May 9, 2005 (2 pages).
Anonymous, Heparin-coated stents cut complications by 30%, Clinica 732:17 (Nov. 18, 1996), http://www.dialogweb.com/cgi/document?req=1061847871753, printed Aug. 25, 2003 (2 pages).
Anonymous, Rolling Therapeutic Agent Loading Device for Therapeutic Agent Delivery or Coated Stent (Abstract 434009), Res. Disclos. pp. 974-975 (Jun. 2000).
Anonymous, Stenting continues to dominate cardiology, Clinica 720:22 (Sep. 2, 1996), http://www.dialogweb.com/cgi/document?reg=1061848017752, printed Aug. 25, 2003 (2 pages).
Aoyagi et al., Preparation of cross-linked aliphatic polyester and application to thermo-responsive material, Journal of Controlled Release 32:87-96 (1994).
Arvanitoyannis et al., "Novel star-shaped polylactide with glycerol using stannous octoate or tetraphenyl tin as catalyst: 1 Synthesis, characterization and study of their biodegradability", Polymer vol. 36, No. 15, pp. 2947-2956 (1995).
Baird et al, "Dielectric behaviour and morphology of polyvinylidene fluoride", Journal of Material Science 10:1248-1251 (1975).
Barath et al., Low Dose of Antitumor Agents Prevents Smooth Muscle Cell Proliferation After Endothelial Injury, JACC 13(2): 252A (Abstract) (Feb. 1989).
Barbucci et al., Coating of commercially available materials with a new heparinizable material, J. Biomed. Mater. Res. 25:1259-1274 (Oct. 1991).
Birmingham Polymers, Inc., Biodegradation Information, www.absorbables.com (2 pages).
Birmingham Polymers, Inc., Chemical & Physical Properties of Selected Polymers, www.absorbables.com printed Apr. 2, 2015 (2 pages).
Birmingham Polymers, Inc., Inherent Viscosity, www.absorbables.com.
Black et al., "Glass Transitions of Some Block Copolymers", Journal of Applied Polymer Science 18:2307-2310 (1974).
Bliznyuk et al., "Surface Glass Transition Temperature of Amorphous Polystyrene Measured By SFM", pp. 1-5.
Bloembergen et al., "Studies of Composition and Crystallinity of Bacterial Poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate)", Macromolecules 19, pp. 2865-2871 (1986).
Bloembergen et al., "Studies of Composition and Crystallinity of Bacterial Poly(β-hydroxybutyrate-co-β-hydroxyvalerate)", Macromolecules 19, pp. 2865-2871 (1986).
Bosiers et al., "Coronary and endovascular applications of the Absorb(TM) bioresorbable vascular scaffold", Interv. Cardiol. 4(6), pp. 621-631 (2012).
Bosiers et al., "Coronary and endovascular applications of the Absorb™ bioresorbable vascular scaffold", Interv. Cardiol. 4(6), pp. 621-631 (2012).
Buchholz et al., "Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study", Journal of Chemical Physics 117(15):7364-7372 (Oct. 15, 2002).
Chung et al., Inner core segment design for drug delivery control of thermo-responsive polymeric micelles, Journal of Controlled Release 65:93-103 (2000).
Claude Tournut Chapter 31, "Thermoplastic Copolymers of Vinylidene Fluoride," John Scheirs, ed. Modern Fluoropolymers, pp. 577-596 (1997), Chichester, England, John Wiley & Sons Ltd.
De Scheerder et al., Biocompatibility of Polymer-Coated Oversized Metallic Stents Implanted in Normal Porcine Coronary Arteries, Atherosclerosis 114:105-114 (1995).
Degertekin et al., "Persistent Inhibition of Neointimal Hyperplasia After Sirolimus-Eluting Stent Implantation: Long-Term Clinical, Angiographic, and Intravascular Ultrasound Follow-Up", Circulation 106, pp. 1610-1613 (2002).
Dev et al., Kinetics of Drug Delivery to the Arterial Wall Via Polyurethane-Coated Removable Nitinol Stent: Comparative Study of Two Drugs, Catheterization and Cardiovascular Diagnosis 34:272-278 (1995).
Dichek et al., Seeding of Intravascular Stents with Genetically Engineered Endothelial Cells, Circ. 80(5):1347-1353 (Nov. 1989).
Ding et al., "Novel Synthesis of Poly(p-phenylene sulfide) from Cyclic Disulfide Oligomers", Macromolecules 29:4811-4812 (1996).
Eigler et al., Local Arterial Wall Drug Delivery from a Polymer Coated Removable Metallic Stent: Kinetics, Distribution, and Bioactivity of Forskolin, JACC, 4A (701-1), Abstract (Feb. 1994).
Eling et al., "Biodegradable materials of poly(L-lactic acid): 1. melt-spun and solution-spun fibres", Polymer, vol. 23, pp. 1587-1593 (1982).
Encyclopedia of Polymer Science and Technology Suppl., 2 Ed. Bikales, 9 title pages (1977).
EPO Examination Report for application 04 812 597.5-2307, mailed Feb. 26, 2007, 2 pgs.
EPO Examination Report for application 04 812 597.5-2307, mailed Jul. 4, 2008, 3 pgs.
EPO Examination Report for application 04 812 597.5-2307, mailed Sep. 6, 2007, 3 pgs.
Fernandez-Martin et al., "Glass Transition Temperature and Heat Capacity of Heterotacticlike PMMA", Journal of Polymer Science: Polymer Physics Edition 19:1353-1363 (1981).
Forrest et al., "Brillouin Light Scattering Determination of the Glass Transition in Thin, Freely-Standing Poly (styrene) Films", Met. Res. Soc. Symp. Proc. vol. 407, pp. 131-136 (1996).
Forrest et al., "Effect of Free Surfaces on the Glass Transition Temperature of Thin Polymer Films", Physical Review Letters 77(10):2002-2005 (Sep. 2, 1996).
Fried, Polymer Science and Technology, Prentice Hall, Englewood Cliffs, New Jersey, 1995, p. 10.
Fryer et al., "Dependence of the Glass Transition Temperature of Polymer Films on Interfacial Energy and Thickness", Macromolecules 34(16):5627-5634 (2001).
Fujii et al., "Investigation of the Stereoregularity of Poly(vinyl Alcohol)", Journal of Polymer Science: Part A 2:2327-2347 (1964).
Gee et al., "The effect of ionizing radiation on the thermal properties of linear high polymers": Part 2. Nylon-6, pp. 192-197 (1970).
Grohens et al., "Tacticity and surface chemistry effects on the glass transition temperature of thin supported PMMA films", Mat. Res. Soc. Symp. 629:FF1.7.1-FF1.7.7 (2000).
Helmenstine, Anne Marie, "Copolymer-Definition of Copolymer," About.com Guide, http://chemistry.about.com/od/chemsitryglossary/g/Copolymer-Definition.htm, printed Oct. 29, 2012, 1 page.
Helmus, Overview of Biomedical Materials, MRS Bulletin, pp. 33-38 (Sep. 1991).
Herdeg et al., Antiproliferative Stent Coatings: Taxol and Related Compounds, Semin. Intervent. Cardiol. 3:197-199 (1998).
Huang et al.,Biodegradable Polymers Derived from Aminoacids, Macromol. Symp. 144, 7-32 (1999).
Inoue et al., "An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs", Journal of Controlled Release 51:221-229 (1998).
Inoue et al., An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs, Journal of Controlled Release 51:221-229 (1998).
International Search Report and Written Opinion for PCT/US2004/017060, mailed Dec. 30, 2004, 10 pgs.
International Search Report and Written Opinion for PCT/US2004/040121, filed Nov. 30, 2004, mailed Apr. 12, 2005, 12 pgs.
International Search Report for 05780079.9-2107, mailed Jan. 17, 2008, 6 pages.
International Search Report for PCT/US2005/018579 filed May 26, 2006, mailed May 24, 2006, 6 pages.
Jacobsen et al.,"Filling of Poly(Lactic Acid) With Native Starch", Polymer Engineering and Science, vol. 36, No. 22, pp. 2799-2804 (1996).
Jaeger et al., "Two-Year Angiographic and Intravascular Ultrasound Follow-Up After Implantation of Sirolimus-Eluting Stents in Human Coronary Arteries", Circulation 107, pp. 381-383 (2003).
Kataoka et al., Block copolymer micelles as vehicles for drug delivery, Journal of Controlled Release 24:119-132 (1993).
Katsarava et al., Amino Acid-Based Bioanalogous Polymers. Synthesis and Study of Regular Poly(ester amide)s Based on Bis(alpha-amino acid)alpha, omega-Alkylene Diesters, and Aliphatic Dicarbolic Acids, Journal of Polymer Science, Part A: Polymer Chemistry, 37(4), 391-407 (1999).
Katsarava et al., Amino Acid-Based Bioanalogous Polymers. Synthesis and Study of Regular Poly(ester amide)s Based on Bis(α-amino acid)α, ω-Alkylene Diesters, and Aliphatic Dicarbolic Acids, Journal of Polymer Science, Part A: Polymer Chemistry, 37(4), 391-407 (1999).
Kumar et al., "Biodegradable block copolymers", Advance Drug Delivery Rev. vol. 53, pp. 23-44 (2001).
KYNAR® and KYNAR®FLEX PVDF, The Base Resins for Demanding Industrial Applications, http.//www.products.arkemagroup.com/print.cfm, printed May 18, 2005 (3 pages).
Lam et al., "Biodegradation of porous versus non-porous poly(L-lactic acid) films", J. of Materials Science: Materials Medicine 5, pp. 181-189 (1994).
Lambert et al., Localized Arterial Wall Drug Delivery From a Polymer-Coated Removable Metallic Stent, Circulation 90(2):1003-1011 (Aug. 1994).
Levy et al., Strategies for Treating Arterial Restenosis Using Polymeric Controlled Release Implants, Biotechnol. Bioact. Polym. [Proc. Am. Chem. Soc. Symp.], pp. 259-268 (1994).
Liu et al., Drug release characteristics of unimolecular polymeric micelles, Journal of Controlled Release 68:167-174 (2000).
Löfgren et al., "Synthesis and Characterization of Biodegradable Homopolymers and Block Copolymers Based on 1,5-Dioxepan-2-one", Macromolecules 27:5556-5562 (1994).
Lotz, Phase Transitions and Structure of Crystalline Polymers, pp. 1-27.
Marconi et al., Covalent bonding of heparin to a vinyl copolymer for biomedical applications, Biomaterials 18(12):885-890 (1997).
Matsumaru et al., Embolic Materials for Endovascular Treatment of Cerebral Lesions, J. Biomater. Sci. Polymer Edn 8(7):555-569 (1997).
Micoulaut et al., "Glass Transition temperature variation, cross-linking and structure in network glasses: A stochastic approach", Europhysics Letters 47(5):568-574 (1999).
Migliaresi et al., "Dynamic Mechanical and Calorimetric Analysis of Compression-Molded PLLA of Different Molecular Weights: Effect of Thermal Treatments", J. of Applied Polymer Science, vol. 43, pp. 83-95 (1991).
Miller "Abbott's Bioresorbable Stent Shows Durable Results in ABSORB Trial", The Gray Sheet, pp. 17-18, Mar. 2003.
Miyazaki et al., Antitumor Effect of Implanted Ethylene-Vinyl Alcohol Copolymer Matrices Containing Anticancer Agents on Ehrlich Ascites Carcinoma and P388 Leukemia in Mice, Chem. Pharm. Bull. 33(6) 2490-2498 (1985).
Miyazawa et al., Effects of Pemirolast and Tranilast on Intimal Thickening After Arterial Injury in the Rat, J. Cardiovasc. Pharmacol., pp. 157-162 (1997).
Neuhaus et al., "mTOR Inhibitors: An Overview", Liver Transpl. vol. 7. No. 6, pp. 473-484.
Nijenhuis et al., "Highly crystalline as-polymerized poly(L-Iactide)", Polymer bulletin 26, pp. 71-77 (1991).
Nordrehaug et al.,A novel biocompatible coating applied to coronary stents, EPO Heart Journal 14, p. 321 (P1694), Abstr. Suppl. (1993).
Ohsawa et al., Preventive Effects of an Antiallergic Drug, Pemirolast Potassium, on Restenosis After Percutaneous Transluminal Coronary Angioplasty, American Heart Journal 136(6):1081-1087 (Dec. 1998).
Ozaki et al., New Stent Technologies, Progress in Cardiovascular Diseases, vol. XXXIX(2):129-140 (Sep./Oct. 1996).
Parravicini et al., "Crystallization of Poly(Ethylene Terephthalate) (PET) from the Oriented Mesomorphic Form", pp. 875-885 (1994).
Peng et al., Role of polymers in improving the results of stenting in coronary arteries, Biomaterials 17:685-694 (1996).
Perchar et al., Poly(ethylene glycol) Multiblock Copolymer as a Carrier of Anti-Cancer Drug Doxorubicin, Bioconjucate Chemistry 11(2):131-139 (Mar./Apr. 2000).
Perego et al., "Copolymers of L and D, L Lactide with 6-caprolactone:synthesis and characterization", Macromol. Chem. 194, pp. 2463-2469 (1993).
Polymer Data Handbook, Oxford Univ. Press. pp. 114-117 (1999).
Property data in Registry on STN 9011-17-0, 6 pgs.
Reeve et al., "Polylactide Stereochemistry:Effect on Enzymatic Degradability", Macromolecules 27, pp. 825-831 (1994).
Rodriguez, Ferdinand, Principles of Polymer Systems, Fourth Edition, Taylor & Francis, Washingon, D.C., 1996, p. 129.
Rogers et al., "Glass Formation in Polymers. I. The Glass Transitions of the Poly-(n-Alkyl Methacrylates)", 61:985-990 (Jul. 1957).
Saotome, et al., Novel Enzymatically Degradable Polymers Comprising α-Amino Acid, 1,2-Ethanediol, and Adipic Acid, Chemistry Letters, pp. 21-24, (1991).
Sarasua et al., "Crystallization and Melting Behavior of Polylactides", Macromolecules 31, pp. 3895-3905 (1998).
Schwartz et al., "Restenosis After Ballon Angioplasty", Circulation vol. 82, No. 6, pp. 2190-2200 (1990).
Schwartz et al., "Restenosis and the Proportional Neointimal Response to Coronary Artery Injury: Results in a Porcine Model", JACC vol. 19, No. 2, pp. 267-74 (1992).
Scott et al., "Ehtylene-Vinyl Acetate Semi-Batch Emulsion Copolymerization: Use of Factorial Experiments for Process Optimization", pp. 539-555 (1993).
Shigeno, Prevention of Cerebrovascular Spasm By Bosentan, Novel Endothelin Receptor, Chemical Abstract 125:212307 (1996).
Sichina, "Characterization of Polymers by TMA", Perkin Elmer Polymers technical note (9 pages).
Sousa et al., "Lack of Neointimal Proliferation After Implantation of Sirolimus-Coated Stents in Human Coronary Arteries: A Quantitative Coronary Angiography and Three-Dimensional Intravascular Ultrasound Study", Circulation 103, pp. 192-195 (2001).
Sousa et al., "Two-Year Angiographic and Intravascular Ultrasound Follow-Up After Implantation of Sirolimus-Eluting Stents in Human Coronary Arteries", Circulation 107, pp. 381-383 (2003).
Sperling, Introduction to Physical Polymer Science, 3rd Ed. 21 title pages (2001).
Sun et al., "Novel Copolyesters Containing Naphthalene Structure. I. From Bis(hydroxyalkyl)naphthalate and Bis[4-(2-hydroxyethoxy)aryl] Compounds", Journal of Polymer Science: Part A: Polymer Chemistry 34:1783-1792 (1996).
Taylor et al., "An Applied Approach to Film Formation; The glass transition temperature evolution of plasticized latex films", downloaded May 5, 2005 (13 pages).
Techspray Product Information, HFE Flux Remover, http://www.techsoray.com/1686info.htm, printed May 9, 2005 (2 pages).
Tokoh et al., "Glass Transition Temperature of Ethylene-Vinyl Alcohol Copolymers", Chemistry Express vol. 2, No. 9, pp. 575-578 (1987).
Translation of a Notification of Reasons for Refusal issued by JPO on Nov. 17, 2009, in connection with Appl. No. 2003-579899, 3 pgs.
Translation of a Notification of Reasons for Refusal issued by JPO on Nov. 17, 2009, in connection with Appl. No. 2003-579899, 8 pgs.
Translation of a Notification of Refusal issued by JPO on Oct. 4, 2011, in connection with Appl. No. 2006-517163, 7 pgs.
Translation of Notification of Refusal received from JPO for Appl. No. 2007-515347, mailed Jul. 10, 2012, 8 pgs.
Transplant 2001: Certican (Everolimus) Effective in Preventing Acute Rejection in Renal Transplantation, http://www.docouide.com/do.nsf/PrintPrint/A9A24F321A71712485256A4E00689824, printed May 9, 2005 (2 pages).
Tsige et al., "Simulation study of the glass transition temperature in poly(methyl methacrylate)", Physical Review E vol. 65: (2002) (8 pages).
van Beusekom et al., "Coronary stent coatings", Coronary Artery Disease 5(7): 590-596 (Jul. 1994).
van Beusekom et al., Coronary stent coatings, Coronary Artery Disease 5(7):590-596 (Jul. 1994).
Van de Velde et al., "Biopolymers: overview of several properties and consequences on their applications", Polymer Testing vol. 21, pp. 433-442 (2002).
Wilensky et al., Methods and Devices for Local Drug Delivery in Coronary and Peripheral Arteries, Trends Cardiovasc. Med. 3(5):163-170 (1993).
Yokoyama et al., Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor, Journal of Controlled Release 50:79-92 (1998).

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10232147B2 (en) 2011-05-27 2019-03-19 Abbott Cardiovascular Systems Inc. Method for assembling a scaffold-balloon catheter
US10010653B2 (en) * 2016-02-05 2018-07-03 Abbott Cardiovascular Systems Inc. Methods for increasing coating strength to improve scaffold crimping yield
US10660773B2 (en) 2017-02-14 2020-05-26 Abbott Cardiovascular Systems Inc. Crimping methods for thin-walled scaffolds
US10967556B2 (en) 2018-06-11 2021-04-06 Abbott Cardiovascular Systems Inc. Uniform expansion of thin-walled scaffolds

Also Published As

Publication number Publication date
DE602004030716D1 (en) 2011-02-03
US20130333193A1 (en) 2013-12-19
US20050119720A1 (en) 2005-06-02
US20050118344A1 (en) 2005-06-02
ATE492390T1 (en) 2011-01-15
ES2356466T3 (en) 2011-04-08
US8052912B2 (en) 2011-11-08

Similar Documents

Publication Publication Date Title
USRE45744E1 (en) Temperature controlled crimping
EP1706254B1 (en) Temperature controlled crimping
US9949854B2 (en) Crimping method
US7247364B2 (en) Coating for implantable medical devices
US8470014B2 (en) Stent-catheter assembly with a releasable connection for stent retention
US7063884B2 (en) Stent coating
EP1684821B1 (en) Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US8689729B2 (en) Apparatus for coating stents
US7563483B2 (en) Methods for fabricating a coating for implantable medical devices
US8366762B2 (en) Method of making a medical device with regioselective structure-property distribution
EP1959877A1 (en) Adhesion polymers to improve stent retention

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABBOTT CARDIOVASCULAR SYSTEMS INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ADVANCED CARDIOVASCULAR SYSTEMS, INC.;REEL/FRAME:032308/0399

Effective date: 20070209

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY